WO2016159423A1 - Additive composition for livestock feed, containing pozzolan, and use thereof - Google Patents

Additive composition for livestock feed, containing pozzolan, and use thereof Download PDF

Info

Publication number
WO2016159423A1
WO2016159423A1 PCT/KR2015/003416 KR2015003416W WO2016159423A1 WO 2016159423 A1 WO2016159423 A1 WO 2016159423A1 KR 2015003416 W KR2015003416 W KR 2015003416W WO 2016159423 A1 WO2016159423 A1 WO 2016159423A1
Authority
WO
WIPO (PCT)
Prior art keywords
livestock
composition
pozzolanic
feed
weight
Prior art date
Application number
PCT/KR2015/003416
Other languages
French (fr)
Korean (ko)
Inventor
최규택
박병성
박상오
이관호
Original Assignee
주식회사 모닝스타
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 모닝스타 filed Critical 주식회사 모닝스타
Priority to CN201580078379.0A priority Critical patent/CN107427030A/en
Publication of WO2016159423A1 publication Critical patent/WO2016159423A1/en

Links

Images

Definitions

  • the present invention relates to an additive composition for livestock feed and its use comprising Pozzolan as an active ingredient.
  • Organic livestock refers to livestock that has not been fertilized or genetically modified for livestock production without chemical fertilizers, pesticides, and genetically modified feeds.
  • antibiotics, growth hormone, and animal origin It is not an intensive factory-type breeding that does not use artificial synthetic additives such as by-product feeds or animal medicines, but it is a natural method of breeding, processing, Means the distribution, evaluation, and labeling of livestock and their livestock products.
  • the certification of organic livestock includes the production and distribution of organic livestock as well as the final product, the livestock food.
  • the most difficult part of implementing organic livestock is the coping and prevention of diseases when breeding without antibiotics. This requires the administration of feed additives with immunity and antimicrobial / antiviral activity.
  • the certification criteria for organic livestock raising in Korea is the transition period (12 months after stocking of cattle, 6 months after pigs). Use only acceptable substances and do not use antibiotics or growth accelerators. According to the Ministry of Agriculture, Forestry and Forestry Notice No. 2004-72, it was limited to 18 species (9 anticoccidial agents, 9 growth promoters) from December 2007. In 2012, the use of antibiotics as a growth accelerator for livestock is completely prohibited.
  • the inventors of the present invention can replace antibiotics and provide an antimicrobial composition for feed, and in particular, it is possible to suppress harmful bacteria and improve immune function for livestock feed, and to improve feed demand and feed for livestock feed. It is an object to provide an antimicrobial composition of a new material. It is also an object of the present invention to provide a feed additive, a livestock feed comprising the same, and a novel immune enhancing method.
  • the present invention provides an antimicrobial composition for livestock feed comprising pozzolan as an active ingredient.
  • the pozzolanic may be a combination of any one or more of silica, aluminum, aluminum oxide (Al 2 O 3), iron, (Fe), ferric trioxide (Fe 2 O 3), and germanium (Ge).
  • the pozzolane is a composition having a silica content of at least 70% by weight.
  • the pozzolane is a composition in which the content ratio of silicon and silicon dioxide (SiO 2) in silica is in the range of 1: 2 to 1: 3.
  • the pozzolan may be 80% by weight or more of silica and aluminum oxide. It is preferred to be in the powder phase in the pozzolane.
  • the pozzolanic is preferably mixed in a ratio of 0.01 to 0.70% by weight based on the total weight of the feed.
  • the livestock may be any one of cows, chickens, pigs, horses, goats, ducks, geese, dogs, cats, and rabbits.
  • a livestock feed additive containing the antimicrobial composition as an active ingredient.
  • the pozzolanic is preferably mixed in a ratio of 0.01 to 0.70% by weight based on the total weight of the feed, the livestock may be any one of cow, chicken, pig, horse, goat, duck, goose, dog, cat, rabbit. have.
  • a livestock feed comprising the livestock feed additive.
  • a method for enhancing immunity of a livestock wherein the antimicrobial composition or the livestock feed additive is administered to a livestock.
  • Pozolan for livestock feed according to the present invention is a very suitable material for feed of organic livestock, such as odor removal while enhancing the immune function and have an antimicrobial / antiviral effect. It improves the absorption and utilization of nutrients and has a weight gain effect, which in turn can improve meat quality and promote growth. Livestock It can be applied to a variety of livestock feed, and can replace antibiotics with various side effects, so it is expected to satisfy the strict specifications of countries around the world including Korea.
  • 1 to 4 are photographs showing the growth inhibitory or promoting effect of each of the strains Salmonella typhimurium, Escherichia coli, Clostridium butyricum, Lactobacillus casei.
  • Control group (medium 1), SP extract (medium 4), SP3% (medium 2), SP5% (medium 3) is shown.
  • FIGS 6 and 7 are photographs showing growth inhibition of strains MRSA (Staphylococcus aureus) and VRE (Enterococcus), respectively.
  • Figure 8 is a graph comparing the growth of the strains (MRSA and VRE). Control group (medium 1), SP extract (medium 4), SP3% (medium 2), SP5% (medium 3) is shown.
  • FIG. 9 is a graph comparing the 35-day shipping weight of the broiler of Example 3.
  • Figure 10 is a graph comparing the weight gain rate by growth period of the broiler of Example 3.
  • Figure 11 is a graph comparing the feed efficiency of the broiler of Example 3.
  • Control group (T1), SP 0.3% (T2), SP 0.5% (T3), SP 0.7% (T4) are shown.
  • FIG. 12 is a graph comparing the conductor ratio of the broiler of Example 3.
  • FIG. 13 is a graph comparing tracheal weight at week 3 of the broiler of Example 3.
  • FIG. 14 is a graph comparing tracheal weight at week 5 of the broiler of Example 3.
  • FIG. 15 is a graph comparing the weight of immune organs of the broiler of Example 3 at week 3.
  • FIG. 15 is a graph comparing the weight of immune organs of the broiler of Example 3 at week 3.
  • FIG. 16 is a graph comparing the weight of immune organs of the broiler of Example 3 at week 5.
  • FIG. 17 is a graph comparing blood IgG content of broilers of Example 3.
  • FIG. 18 is a graph comparing the concentration of powdered microorganisms in a broiler of Example 3.
  • 19 and 20 are graphs comparing the contents of cecum organic acid of the broiler of Example 3.
  • Control group (T1), SP 0.3% (T2), SP 0.5% (T3), SP 0.7% (T4) are shown.
  • 21 is a graph comparing fatty acid content of broiler of Example 3.
  • Figure 23 is a graph comparing the hydrogen sulfide content of the broiler of Example 3.
  • FIG. 24 is a graph comparing end weights of piglets of Example 4.
  • 25 is a graph comparing the daily weight gain of piglets of Example 4.
  • Figure 26 is a graph comparing the daily feed intake of piglets of Example 4.
  • Figure 27 is a graph comparing the feed demand rate of piglets of Example 4.
  • FIG. 28 is a graph comparing blood analysis results of piglets of Example 4.
  • FIG. 29 is a graph comparing the concentration of powdered microorganisms in piglets of Example 4.
  • 30 and 31 are graphs comparing the contents of cecum organic acid in piglets of Example 4.
  • the present invention provides an antimicrobial composition for livestock feed comprising pozzolan as an active ingredient.
  • the pozzolan mineral is composed of volcanic ashes and is known as a type of feldspar. It is known as an orphan created during the Cretaceous period, and its main mountain is a mineral derived from Pojori village near Bari Island in Italy, and the famous Colosseum Stadium, which was already famous in Roman times around 2nd century AD, and Pandeon. It has been found by researchers to use pozzolanic, which has been used in place of cement in buildings and has been preserved in its original form for years without cracking and corrosion. Other distribution areas are produced only in extremely limited regional countries such as the United States, the Mountain Region, Malaysia, and India, and the unusual ones are the fact that there is no germanium or far-infrared emission effect other than Italy and Korea. The same vein does not exist at all.
  • pozzolan was added to the base material of concrete manufacturing and used as a mixed material to give special performance to concrete or to improve its properties.
  • Inorganic solidifying material for solidifying waste is usually cement-reactive, so that inorganic sludge of appropriate moisture content Suitable for solidifying (containing heavy metals).
  • pozzolan (Pozzolan) having a good affinity with cement is most commonly used to control the sludge moisture content and cement replacement solidification aid, and the cost is relatively low.
  • Pozzolanic is at least one selected from the group consisting of volcanic ash, tuff, siliceous silica, diatomaceous earth and natural rock, and is preferably in powder form.
  • the main component may be silica-alumina or silica, and preferably pozzolan is a combination of any one or more of silica, aluminum, aluminum oxide (Al 2 O 3), iron, (Fe), ferric trioxide (Fe 2 O 3), and germanium (Ge).
  • pozzolanic is a composition having a silica content of at least 70% by weight.
  • the pozzolane is a composition in which the content ratio of silicon and silicon dioxide (SiO 2) in silica is in the range of 1: 2 to 1: 3.
  • the pozzolane preferably has a content of silica and aluminum oxide of 80% by weight or more. It is preferred to be in the powder phase in the pozzolane.
  • antimicrobial is meant the ability to reduce, prevent, inhibit or eliminate the growth or survival of microorganisms at any concentration.
  • the antimicrobial composition may mean the same as an antibiotic, which is a generic term for an antimicrobial agent, and may mean the same as an antimicrobial agent, a fungicide, a preservative, a preservative or an antimicrobial agent, preferably Gram-positive bacteria, Gram-negative bacteria, fungi (yeast and mold) Means a substance capable of inhibiting or inhibiting the development and life functions of at least one microorganism selected from the group consisting of, that is, antibacterial and antifungal substances.
  • the pozzolanic may be added to the feed without content limitation, but is preferably mixed in a ratio of 0.01 to 0.70% by weight based on the total weight of the feed. More preferably, it is 0.3 to 0.7 weight%, More preferably, it is 0.5 weight%.
  • the livestock may be cattle, chickens, pigs, horses, goats, ducks, geese, dogs, cats or rabbits, preferably chicken or pigs, but is not limited thereto.
  • a livestock feed additive containing the antimicrobial composition as an active ingredient.
  • the livestock feed additive may be used as it is or may be added to known carriers, stabilizers, etc., such as grains and by-products allowed for livestock, and organic acids such as citric acid, fumaric acid, adipic acid, lactic acid, and malic acid, if necessary.
  • Phosphates such as sodium phosphate, potassium phosphate, acid pyrophosphate, and polyphosphate (polyphosphate), or natural substances such as polyphenols, catechins, alpha-tocopherols, rosemary extracts, vitamin C, green tea extracts, licorice extracts, chitosan, tannic acid, and phytic acid.
  • Antioxidants, antibiotics, antibacterial agents and other additives may be added, and the shape thereof may be in a suitable state such as powder, granules, pellets, suspensions, etc. It can be mixed and supplied to.
  • the pozzolanic is preferably mixed in a ratio of 0.01 to 0.70% by weight based on the total weight of the feed, the livestock may be any one of cow, chicken, pig, horse, goat, duck, goose, dog, cat, rabbit. have.
  • a livestock feed comprising the livestock feed additive.
  • the additives may be cereals, for example crushed or ground wheat, oats, barley, corn and rice; Vegetable protein sources based on rapeseed, soybean and sunflower seeds; Animal protein sources; molasses; And dry ingredients consisting of milk products such as various milk powders and whey powders.
  • the liquid component may consist of lipids, such as fats, for example vegetable fats, and / or carboxylic acids, for example fatty acids, optionally liquefied by heating.
  • a powder or particulate concentration is obtained depending on the degree of polishing of the components.
  • water should preferably be added to the animal feed, which is subsequently processed by conventional pelletization, extension or extrusion processes. Any additional water can be removed by drying. If desired, the resulting particulate animal feed can be ground to smaller particle sizes.
  • a method for enhancing immunity of a livestock wherein the antimicrobial composition or the livestock feed additive is administered to a livestock.
  • the pozzolane is mixed at a ratio of 0.01 to 0.70% by weight based on the total weight of the feed, more preferably 0.3 to 0.7% by weight, even more preferably 0.5% by weight.
  • the livestock may be cattle, chickens, pigs, horses, goats, ducks, geese, dogs, cats or rabbits, preferably pigs, but is not limited thereto.
  • Pozzolane was supplied with powdered products from Morningstar Co., Ltd. and analyzed by ingredients of KIST's analysis institute, and as a result, various Si and Ge components were identified as shown in Tables 1 and 2 below. It became.
  • a sample was prepared by mixing various amounts of pozzolanic or pozzolanic extract in a raw material medium or feed.
  • Distilled water medium 1 which is a control group, was sterilized after adding distilled water to the raw material of the medium without adding pozzolan, diluted with strain 10 ⁇ 7 , and then inoculated with 100 uL.
  • Distilled water medium 2 and 3 of the experimental group were mixed with 3.0 and 5.0% of distilled water and pozzolane, respectively, and sterilized in the raw material, and diluted with strain 10 ⁇ 7 , respectively, and then inoculated with 100 uL.
  • CFU Coldy Forming Unit
  • colony mass, colony
  • FIGS. 1 to 4 and 6 to 7 Photos showing growth inhibition or promotion according to the media of the respective strains are shown in FIGS. 1 to 4 and 6 to 7, respectively. Comparison graphs between the strains are shown in FIGS. 5 and 8.
  • beneficial bacteria Salmonella typhimurium, Escherichia coli, MRSA, VRE
  • pozzolanic or pozzolanic extract The effect was confirmed.
  • broiler broiler broiler broiler
  • the growth capacity of each stage according to the growth of broiler that is, feed intake, weight gain and feed efficiency, were measured, respectively, and the results are shown in Table 7 below. Feed efficiency was expressed as feed intake divided by weight gain in a given period. The dressing percent was calculated as the ratio of carcass weight (weight excluding feathers, blood, head, legs and viscera) to live weight at day 35. The results are shown in Table 8 below. The weights of liver, proximal and immune organs (thymus, spleen, F sac) were measured at 3 weeks and 5 weeks, respectively. Table 10 is the analysis of lipids, blood sugar, AST, ALT, and the like through blood analysis.
  • FIG. 9 is a graph comparing the 35-day shipping body weight according to the pozzolanic content showed the largest increase rate in the case of 0.5% content of pozzolanic T3.
  • Figure 10 is a comparison of the weight gain rate by growth period, the highest increase rate of pozzolanic 0.5% content at each time period.
  • FIG. 11 shows a comparison of feed efficiency, and showed similar results for pozolan 0.3% and 0.7%, and slightly increased for 0.5% T3.
  • FIG. 12 shows a somewhat higher increase in T3, comparing the conductor rates.
  • FIG. 13 is a graph comparing the increase in tracheal weight at 3 weeks, the largest increase in T3 followed by the highest increase in the order of T2 and T4.
  • Figure 14 is a graph comparing the increase in tracheal weight at 5 weeks, which also showed a slightly higher increase in T3, and the other T2 and T3 were similar to the control group T1.
  • Figure 15 shows the weight of the immune system at 3 weeks, showing a significant increase in T3 indirectly showing that the duration of immunity is enhanced.
  • Figure 16 shows the weight of the immune organs at week 5, which also showed a markedly high increase in T3.
  • Blood immunoassay was determined by ELISA (enzyme-linked immunosorbent assay, Bethyl laboratories., Inc., USA) (Constantinoiu et al., 2007). The results are shown in Table 11.
  • Figure 17 is a graph comparing the content of IgG as a blood immune material showed the largest increase in T3 and in order of T4 and T2 confirmed that the pozzolanic can increase the secretion of immune material.
  • Fig. 18 is a graph comparing the change patterns of the microorganisms, and the beneficial bacteria showed the highest concentration in T3 for Lactobacillus , and the high inhibitory effect for the harmful bacterium E. Coli, Salmonella .
  • the cecals were collected from the sacrificed chickens and the concentrations of acetate, propionate, butyrate, isobutyrate, valerate and isovalerate were measured by a gas chromatographic system (model GC-15A, Shimadzu Corp., Kyoto, Japan). It was.
  • Figures 19 and 20 compare the cecum organic acid, although the content of some organic acids decreased, but the overall short-chain organic acid (SCFA, Sohrt chain Fatty acid) showed the largest increase rate in T3 and increased in the treatment group containing pozzolanic Showed.
  • SCFA Sohrt chain Fatty acid
  • Lipids were extracted from chicken leg meat and injected into a gas chromatographic system (model GC-15A, Shimadzu Corp., Kyoto, Japan) to analyze fatty acids. The results are shown in Table 14.
  • Ammonia and hydrogen sulfide concentrations were measured with a gas indicator (Gas Indicator AP-20, Axis Sensitive Co. Ltd, Japan). After inhaling the gas according to the manufacturer's manual, the displayed value was recorded and compared with the control, and presented as shown in Table 15 below.
  • a gas indicator Gas Indicator AP-20, Axis Sensitive Co. Ltd, Japan.
  • 22 and 23 are graphs comparing the contents of ammonia and hydrogen sulfide, showing a tendency to decrease overall in the treatment group containing pozzolanic, in particular, the largest decrease in T4.
  • 24 to 27 are graphs comparing end weight, daily weight gain, daily intake, and feed demand rate, respectively, showing a high increase rate in the treatment group containing pozzolanic, especially the highest value in the group containing 0.5% pozzolanic. Showed.
  • FIG. 28 is a graph comparing the levels of lipids and blood glucose as a result of blood analysis, showing an increase in the treatment group containing pozzolanic. This is higher than the antibiotic treatment group, demonstrating the replacement effect of antibiotics.
  • Blood immunoassay was measured by ELISA (enzyme-linked immunosorbent assay, Bethyl laboratories., Inc., USA) (Constantinoiu et al., 2007) and the results are shown in Table 18.
  • Fig. 29 is a graph comparing the microorganisms with beneficial bacteria showed the highest concentration in T3 in the case of Lactobacillus , and showed higher inhibitory effect than the antibiotics in the case of harmful bacterium E. Coli, Salmonella .
  • cecals were collected from sacrificial weaners and the concentrations of acetate, propionate, butyrate, isobutyrate, valerate and isovalerate were measured by a gas chromatographic system (model GC-15A, Shimadzu Corp., Kyoto, Japan) and the results are shown in Table 20. .
  • T4 group containing 0.5% of the total short chain organic acid (SCFA) containing pozzolanic showed a higher increase rate than the T2 group treated with antibiotics, and contained pozzolanic as a whole.
  • the treatment group showed a tendency to increase.
  • pozolan induced an increase in the organic acid of the cecum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Fodder In General (AREA)
  • Inorganic Chemistry (AREA)
  • Birds (AREA)
  • Feed For Specific Animals (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention relates to an additive composition for livestock feed, containing pozzolan, and specifically, the present invention provide a novel use of an additive composition for livestock feed, the composition containing, as an active ingredient, pozzolan, which has an excellent antibiotic effect to substitute for a conventional antibiotic agent, enhances the immune function, and removes bad smells, and thus is very suitable for livestock feed.

Description

포졸란을 포함하는 가축 사료용 첨가제 조성물 및 이의 용도Additives composition for livestock feed comprising pozzolan and use thereof
본 발명은 포졸란(Pozzolan)을 유효성분으로 포함하는 가축 사료용 첨가제 조성물 및 이의 용도에 관한 것이다.The present invention relates to an additive composition for livestock feed and its use comprising Pozzolan as an active ingredient.
유기축산은 축산물의 생산과정에서 수정란이식이나 유전자 조작을 거치지 않은 가축에 화학비료, 농약을 사용하지 않고 또한 유전자 조작을 거치지 않은 사료를 근간으로 한 것을 의미하며, 그 외에도 항생물질, 성장호르몬, 동물성부산물사료, 동물약품 등 인위적 합성 첨가물을 사용하지 않은 사료를 급여한 집약 공장형 사육이 아니라 운동이나 휴식공간, 방목초지가 겸비된 환경에서 자연적 방법으로 분뇨처리와 환경이 제어된 조건에서 사육, 가공, 유통, 평가, 표시된 가축의 사육체계와 그 축산물을 의미한다.Organic livestock refers to livestock that has not been fertilized or genetically modified for livestock production without chemical fertilizers, pesticides, and genetically modified feeds. In addition, antibiotics, growth hormone, and animal origin It is not an intensive factory-type breeding that does not use artificial synthetic additives such as by-product feeds or animal medicines, but it is a natural method of breeding, processing, Means the distribution, evaluation, and labeling of livestock and their livestock products.
유기축산의 인증은 유기축산물의 생산과 더불어 최종생산재인 축산식품까지의 생산 및 유통과정을 포함한다. 유기축산 실행에 있어 가장 어려운 부분은 항생물질을 사용하지 않을 경우 사육시 질병에 대한 대처 및 예방이다. 이를 위해 면역력과 항균/항바이러스력을 지닌 사료 첨가제의 투여가 필요하다.The certification of organic livestock includes the production and distribution of organic livestock as well as the final product, the livestock food. The most difficult part of implementing organic livestock is the coping and prevention of diseases when breeding without antibiotics. This requires the administration of feed additives with immunity and antimicrobial / antiviral activity.
2010년 세계 유기식품 시장 규모는 약 59,341백만불로 전년대비 12.4%성장하였으며, 2015년에는 2010년 대비 약 48.4% 증가한 88,069.3백만불 규모의 시장이 형성될 것으로 전망된다. 전세계 유기식품 시장은 유럽(독일, 영국), 북미, 호주 등에서 주도되고 있으며, 특히 미국은 유럽을 제치고 세계 최대의 시장규모를 형성하고 있으며, 2009년 기준 세계 유기식품 총수익의 49%를 차지하고 있다. 유기식품의 수요는 유럽, 미주 등 서구 선진국에 집중되어 있다. 특히, 친환경 유기축산의 대두로 EU는 2005년부터 유기축산물 생산에 이용되는 사료는 100% 유기사료를 사용하여야 하며 항생제는 더 이상 허용되지 않을 것을 규정하였고 (Commission Regulation EC 2277, 2003) 2006년 1월부터 시행하고 있다 (European Union Commission, 2005). 독일에서는 유기농 인증을 받은 제품에만 유기농을 의미하는 바이오(Bio)'라는 단어를 사용할 수 있으며, 단 물, 소금, 이스트 등 몇몇 공인된 첨가물은 농산물로 인정되지 않기 때문에 유기농이라는 단어를 사용할 수 없다. 독일에서는 유기농인증을 받기 위해서는 원료의 95% 이상이 유기농농업을 통해 조달된 것이어야 하고, 유전자 재조합 원료 사용을 금지해야 한다.In 2010, the global organic food market grew by 12.4% year-on-year to US $ 59,341 million, and in 2015, it is expected to reach US $ 88,069.3 million, an increase of 48.4% from 2010. The global organic food market is dominated by Europe (Germany, UK), North America, Australia, etc. In particular, the United States is the largest market in the world, surpassing Europe, accounting for 49% of total global organic food revenue in 2009. . The demand for organic food is concentrated in Western countries such as Europe and America. In particular, with the rise of eco-friendly organic livestock, the EU has stipulated that since 2005, 100% organic feed should be used for feed used for organic livestock production and antibiotics are no longer allowed (Commission Regulation EC 2277, 2003). It has been in effect since March (European Union Commission, 2005). In Germany, the word bio can be used only for products that are certified organic, and the word organic cannot be used because some certified additives, such as sweet water, salt and yeast, are not recognized as agricultural products. In Germany, more than 95% of the raw materials must be obtained from organic farming and ban on the use of genetically modified ingredients.
이로 인하여 선진 각국은 효율적인 유기축산 시행 대책을 마련하고 이를 실현시키는데 많은 노력을 기울이고 있다. 그러나 미국이나 EU를 중심으로 유기축산에 대한 소비자 단체와 NGO의 요구가 매우 큰 반면, 유기축산의 시행규모가 아직은 적고 식품의 국제규격화에도 뒤쳐지고 있다. As a result, developed countries have made great efforts to develop and implement effective measures for implementing organic livestock. However, while the demands of consumer organizations and NGOs for organic livestock are very high, especially in the US and the EU, the implementation of organic livestock is still small and lagging behind the international standardization of food.
우리나라의 경우에도 국제식품규격위원회(CODEX)의 유기 축산 규범을 근간으로 우리 실정에 적합한 한국형 유기축산 규범 제정을 적용, 한국 실정에 가장 경제적인 유기축산의 규모와 사육체계를 개발하여 이를 적극적으로 추진 시행할 시점에 와있다. In the case of Korea, the Korean Food Standard for Organic Livestock, which is appropriate for our situation, is applied based on the Codex's Organic Livestock Standard, and the most economical scale and breeding system for organic livestock is developed in Korea. It is at the time of implementation.
우리나라의 경우 유기축산의 시행규모가 매우 미미하여 식품의 국제규격화에 미흡한 부분이 있다. 따라서 한국도 CODEX의 유기 축산 규범을 근간으로 우리 실정에 적합한 한국형 유기축산 규정을 2001년 친환경농업육성법의 시행규칙으로 제정하였으며, 한국 실정에 적합한 유기축산의 사양체계를 개발하여 이를 적극적으로 추진 시행할 시점에 와있다.In Korea, the scale of implementation of organic livestock is very small, and there is a lack of international standardization of food. Therefore, based on CODEX's Organic Livestock Code, Korea has enacted the Korean-style organic livestock regulation, which is suitable for our situation, as the enforcement rule of the Eco-Friendly Agriculture Promotion Act in 2001. It is at this point.
국내 유기축산의 인증기준은 전환기간(한우는 입식 후 12개월, 돼지는 생후 6개월 이상) 유기사료를 반추가축은 85% 이상 비반추가축은 80% 이상 급여하고 사료첨가제로는 농림부 고시 및 Codex에서 정한 허용물질만을 사용한 것으로 항생제나 성장촉진제 등을 사용하지 않아야 한다. 농림부농림부고시 제 2004-72호에 의하여 2007년 12월부터 18종 (항콕시듐제 9종, 성장촉진제 9종)으로 제한하였고 2012년 가축에 대한 성장촉진제로서 항생제의 사용은 전면 금지하고 있다. The certification criteria for organic livestock raising in Korea is the transition period (12 months after stocking of cattle, 6 months after pigs). Use only acceptable substances and do not use antibiotics or growth accelerators. According to the Ministry of Agriculture, Forestry and Forestry Notice No. 2004-72, it was limited to 18 species (9 anticoccidial agents, 9 growth promoters) from December 2007. In 2012, the use of antibiotics as a growth accelerator for livestock is completely prohibited.
특히, 항생제를 사람 및 가축에게 오남용함으로써 생체 내에서는 선택적으로 항생제에 대한 내성을 나타내는 강력한 세균(super bacteria)이 출현하였다. 환경에서 항생제 내성유전자(antibiotic resistance genes)의 수평적인 이동 (Shakibaie et al., 2009), 물고기 (Matyar et al., 2004)와 축산식품 (Toroglu et al., 2009; Jones et al., 2002)에서 내성균 및 병원에 입원 중인 환자 (Cosgrove et al., 2005)에서 Methicillin- resistant Staphylococcus aureus (MRSA), Vancomycin- resistant enterococcus (VRE)의 출현은 심각한 사회적 현안이 되었다 (Toroglu et al., 2005; Perl, 1999). 공장집약형 축산업에서 사료용 항생제를 사용하지 않을 경우 발생할 수 있는 피해와 손실을 줄이고 지속적인 가축의 생산성 향상을 위해 항생제를 대체할 수 있는 새로운 항생제 대체물질의 개발이 시급한 실정이다 (Dibner and Richards, 2005). 인간과 동물에 대한 항생제 내성균주의 출현에 관한 우려가 없으면서 가축에 대한 항생제를 대체할 수 있는 천연물로부터 항균 성장촉진 물질의 개발이 활발히 진행되고 있다. In particular, the abuse of antibiotics in humans and livestock has led to the emergence of potent super bacteria that show selective resistance to antibiotics in vivo. Horizontal migration of antibiotic resistance genes in the environment (Shakibaie et al., 2009), fish (Matyar et al., 2004) and livestock food (Toroglu et al., 2009; Jones et al., 2002) The emergence of Methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-resistant enterococcus (VRE) in resistant bacteria and hospitalized patients (Cosgrove et al., 2005) has become a serious social issue (Toroglu et al., 2005; Perl). , 1999). In plant-intensive livestock farming, there is an urgent need to develop new antibiotic substitutes that can replace antibiotics to reduce the damage and loss of feed antibiotics and to ensure continued animal productivity (Dibner and Richards, 2005). Without the concern about the emergence of antibiotic resistant strains for humans and animals, the development of antimicrobial growth promoters from natural products that can replace antibiotics for livestock is actively underway.
현재 전세계적으로 가축에서의 항생제 및 항균제 사용은 축산물의 안전성 문제로 인해 규제가 날로 강화되고 있으며 특히 배합사료에 첨가되는 항생제 사용규제가 향후 더욱 강화될 것으로 보이며, 잔류검사 강화로 축산 농가들도 휴약 기간이 긴 항생제 사용을 기피하고 있다. 또한 항생제의 남용으로 항생제 내성 병원균들이 나타남으로써 대체 항균 물질의 개발이 필요한 상황이다.Currently, the use of antibiotics and antimicrobials in livestock is becoming more regulated due to the safety issues of livestock products. In particular, the use of antibiotics added to formulated feeds will be tightened in the future. Avoid long-term use of antibiotics. In addition, antibiotic-resistant pathogens appear due to the abuse of antibiotics, which requires the development of alternative antimicrobial substances.
따라서, 항생제를 배제하면서 가축질병을 예방 또는 치료할 수 있는 면역증강, 항염증, 생장촉진 및 항균/항바이러스 효과를 낼 수 있는 새로운 소재 개발이 필요하다. Therefore, there is a need for the development of new materials that can exert anti-inflammatory, anti-inflammatory, growth and antimicrobial / antiviral effects that can prevent or treat livestock diseases while excluding antibiotics.
본 발명자들은 항생제를 대체할 수 있으며 사료용 항균 조성물을 제공하는 것으로 목적으로 하며, 상세하게는 가축 사료용으로 유해균을 억제하고 면역기능을 향상시킬 수 있으며, 사료요구율을 개선하고 증체 효과가 있는 가축사료용으로 새로운 소재의 항균조성물을 제공하는 것을 목적으로 한다. 또한, 본 발명은 사료 첨가제, 이를 포함하는 가축 사료 및 새로운 면역증강방법을 제공하는 것을 목적으로 한다.The inventors of the present invention can replace antibiotics and provide an antimicrobial composition for feed, and in particular, it is possible to suppress harmful bacteria and improve immune function for livestock feed, and to improve feed demand and feed for livestock feed. It is an object to provide an antimicrobial composition of a new material. It is also an object of the present invention to provide a feed additive, a livestock feed comprising the same, and a novel immune enhancing method.
본 발명의 일예에 따르면, 포졸란을 유효성분으로 포함하는 가축 사료용 항균 조성물을 제공한다. 상기 포졸란은 실리카, 알루미늄, 산화알루미늄(Al2O3), 철,(Fe), 삼산화이철(Fe2O3), 게르마늄(Ge) 중 어느 하나이상의 조합일 수 있으며,. 바람직하게는 포졸란은 실리카의 함량이 70중량% 이상인 조성물인 것이다. 상기 포졸란은 실리카 중 규소와 이산화규소(SiO2)의 함량비가 1:2 내지 1:3의 범위인 것인 조성물인 것이다. 또한, 상기 포졸란은 실리카와 알루미늄산화물의 함량이 80중량% 이상일 수 있다. 상기 포졸란에서 분말상(powder phase)인 것이 바람직하다. 상기 포졸란은 사료 전체 중량을 기준으로 0.01 ~ 0.70 중량%의 비율로 혼합되는 것이 바람직하다. 상기 가축은 소, 닭, 돼지, 말, 염소, 오리, 거위, 개, 고양이, 토끼 중 어느 하나일 수 있다. According to one embodiment of the present invention, it provides an antimicrobial composition for livestock feed comprising pozzolan as an active ingredient. The pozzolanic may be a combination of any one or more of silica, aluminum, aluminum oxide (Al 2 O 3), iron, (Fe), ferric trioxide (Fe 2 O 3), and germanium (Ge). Preferably the pozzolane is a composition having a silica content of at least 70% by weight. The pozzolane is a composition in which the content ratio of silicon and silicon dioxide (SiO 2) in silica is in the range of 1: 2 to 1: 3. In addition, the pozzolan may be 80% by weight or more of silica and aluminum oxide. It is preferred to be in the powder phase in the pozzolane. The pozzolanic is preferably mixed in a ratio of 0.01 to 0.70% by weight based on the total weight of the feed. The livestock may be any one of cows, chickens, pigs, horses, goats, ducks, geese, dogs, cats, and rabbits.
본 발명의 다른 양태에 따르며, 상기 항균 조성물을 유효성분으로 함유하는 가축사료 첨가제를 제공한다. 상기 포졸란은 사료 전체 중량을 기준으로 0.01 ~ 0.70 중량%의 비율로 혼합되는 것이 바람직하다며, 상기 가축은 소, 닭, 돼지, 말, 염소, 오리, 거위, 개, 고양이, 토끼 중 어느 하나일 수 있다. According to another aspect of the present invention, there is provided a livestock feed additive containing the antimicrobial composition as an active ingredient. The pozzolanic is preferably mixed in a ratio of 0.01 to 0.70% by weight based on the total weight of the feed, the livestock may be any one of cow, chicken, pig, horse, goat, duck, goose, dog, cat, rabbit. have.
본 발명의 다른 양태에 따르며, 상기 가축 사료 첨가제 포함하는 가축사료를 제공한다.According to another aspect of the present invention, there is provided a livestock feed comprising the livestock feed additive.
본 발명의 다른 양태에 따르며, 상기 항균조성물 또는 상기 가축사료 첨가제를 가축에게 투여하는 가축의 면역력 증강방법을 제공한다.According to another aspect of the present invention, there is provided a method for enhancing immunity of a livestock, wherein the antimicrobial composition or the livestock feed additive is administered to a livestock.
본 발명에 따른 가축 사료용으로의 포졸란은 면역기능을 강화시키고 항균/항바이러스 효과를 가지면서 동시에 악취제거 등 유기가축의 사료용으로 매우 적합한 소재이다. 영양소의 흡수 및 이용율을 향상시키며 증체효과를 가져 결과적으로 고기의 품질을 개선시키고 성장을 촉진할 수 있다. 가축 다양한 가축종류의 사료에 적용될 수 있으며, 여러 부작용을 가지는 항생제를 대체할 수 있어 우리나라를 포함한 세계 각국의 엄격한 규격을 만족시킬 수 있을 것으로 기대된다.Pozolan for livestock feed according to the present invention is a very suitable material for feed of organic livestock, such as odor removal while enhancing the immune function and have an antimicrobial / antiviral effect. It improves the absorption and utilization of nutrients and has a weight gain effect, which in turn can improve meat quality and promote growth. Livestock It can be applied to a variety of livestock feed, and can replace antibiotics with various side effects, so it is expected to satisfy the strict specifications of countries around the world including Korea.
도 1 내지 4는 균주인 Salmonella typhimurium, Escherichia coli, Clostridium butyricum, Lactobacillus casei 각각의 생장억제 또는 촉진효과를 보여주는 사진이다. 1 to 4 are photographs showing the growth inhibitory or promoting effect of each of the strains Salmonella typhimurium, Escherichia coli, Clostridium butyricum, Lactobacillus casei.
도 5는 배지에 따른 상기 균주들의 생장정도는 비교한 그래프이다. 대조군(배지1), SP추출액(배지4), SP3%(배지2), SP5%(배지3)을 나타낸다.5 is a graph comparing the growth of the strain according to the medium. Control group (medium 1), SP extract (medium 4), SP3% (medium 2), SP5% (medium 3) is shown.
도6 및 도7은 각각 균주인 MRSA (Staphylococcus aureus) 및 VRE (Enterococcus)을 생장억제를 보여주는 사진이다.6 and 7 are photographs showing growth inhibition of strains MRSA (Staphylococcus aureus) and VRE (Enterococcus), respectively.
도8은 상기 균주들(MRSA 및 VRE)의 생장정도는 비교한 그래프이다. 대조군(배지1), SP추출액(배지4), SP3%(배지2), SP5%(배지3)을 나타낸다.Figure 8 is a graph comparing the growth of the strains (MRSA and VRE). Control group (medium 1), SP extract (medium 4), SP3% (medium 2), SP5% (medium 3) is shown.
도9는 실시예3의 브로일러의 35일 출하체중을 비교한 그래프이다. 9 is a graph comparing the 35-day shipping weight of the broiler of Example 3. FIG.
도10은 실시예3의 브로일러의 성장기간별 체중증가율을 비교한 그래프이다.Figure 10 is a graph comparing the weight gain rate by growth period of the broiler of Example 3.
도11은 실시예3의 브로일러의 사료효율을 비교한 그래프이다.Figure 11 is a graph comparing the feed efficiency of the broiler of Example 3.
대조군(T1), SP 0.3%(T2), SP 0.5%(T3), SP 0.7%(T4)를 나타낸다. Control group (T1), SP 0.3% (T2), SP 0.5% (T3), SP 0.7% (T4) are shown.
도12는 실시예3의 브로일러의 도체율을 비교한 그래프이다.12 is a graph comparing the conductor ratio of the broiler of Example 3. FIG.
도13은 실시예3의 브로일러의 3주째 기관무게를 비교한 그래프이다.FIG. 13 is a graph comparing tracheal weight at week 3 of the broiler of Example 3. FIG.
도14는 실시예3의 브로일러의 5주째 기관무게를 비교한 그래프이다.14 is a graph comparing tracheal weight at week 5 of the broiler of Example 3. FIG.
도15는 실시예3의 브로일러의 3주째 면역기관 무게를 비교한 그래프이다.FIG. 15 is a graph comparing the weight of immune organs of the broiler of Example 3 at week 3. FIG.
도16은 실시예3의 브로일러의 5주째 면역기관 무게를 비교한 그래프이다.16 is a graph comparing the weight of immune organs of the broiler of Example 3 at week 5. FIG.
도17은 실시예3의 브로일러의 혈액 IgG함량을 비교한 그래프이다.17 is a graph comparing blood IgG content of broilers of Example 3. FIG.
도18은 실시예3의 브로일러의 분 미생물의 농도를 비교한 그래프이다.18 is a graph comparing the concentration of powdered microorganisms in a broiler of Example 3. FIG.
도19 및 20은 실시예3의 브로일러의 맹장유기산의 함량을 비교한 그래프이다.19 and 20 are graphs comparing the contents of cecum organic acid of the broiler of Example 3.
대조군(T1), SP 0.3%(T2), SP 0.5%(T3), SP 0.7%(T4)를 나타낸다. Control group (T1), SP 0.3% (T2), SP 0.5% (T3), SP 0.7% (T4) are shown.
도21은 실시예3의 브로일러의 지방산의 함량을 비교한 그래프이다.21 is a graph comparing fatty acid content of broiler of Example 3.
도22는 실시예3의 브로일러의 분 암모니아 함량을 비교한 그래프이다.22 is a graph comparing the ammonia content of broilers of Example 3.
도23은 실시예3의 브로일러의 분 황화수소 함량을 비교한 그래프이다.Figure 23 is a graph comparing the hydrogen sulfide content of the broiler of Example 3.
도24는 실시예4의 자돈의 종료체중을 비교한 그래프이다.24 is a graph comparing end weights of piglets of Example 4. FIG.
대조군(T1), 항생제 0.2%(T2), 포졸란 0.3%(T3), 포졸란 0.5%(T4), 포졸란 0.7%(T5)를 나타낸다. Control (T1), antibiotics 0.2% (T2), pozzolane 0.3% (T3), pozzolane 0.5% (T4), pozzolane 0.7% (T5).
도25은 실시예4의 자돈의 일일증체량을 비교한 그래프이다.25 is a graph comparing the daily weight gain of piglets of Example 4.
도26은 실시예4의 자돈의 일일 사료섭취량을 비교한 그래프이다.Figure 26 is a graph comparing the daily feed intake of piglets of Example 4.
도27는 실시예4의 자돈의 사료요구율을 비교한 그래프이다.Figure 27 is a graph comparing the feed demand rate of piglets of Example 4.
도28은 실시예4의 자돈의 혈액분석 결과를 비교한 그래프이다.28 is a graph comparing blood analysis results of piglets of Example 4. FIG.
도29는 실시예4의 자돈의 분 미생물 농도를 비교한 그래프이다.29 is a graph comparing the concentration of powdered microorganisms in piglets of Example 4. FIG.
도30 및 31은 실시예4의 자돈의 맹장유기산의 함량을 비교한 그래프이다.30 and 31 are graphs comparing the contents of cecum organic acid in piglets of Example 4.
대조군(T1), 항생제 0.2%(T2), SP 0.3%(T3), SP 0.5%(T4), SP 0.7%(T5)를 나타낸다.Control (T1), antibiotics 0.2% (T2), SP 0.3% (T3), SP 0.5% (T4), SP 0.7% (T5).
본 발명은 포졸란을 유효성분으로 포함하는 가축 사료용 항균 조성물을 제공한다.  The present invention provides an antimicrobial composition for livestock feed comprising pozzolan as an active ingredient.
포졸란(pozzolan) 광물은 화산회로 이루어진 것으로서 납석의 일종으로 알려져 있다. 이는 백악기시대에 생성된 고아물질로 알려져 있으며, 주요 산지로는 이태리의 바리섬 인근 포죠리 마을에서 발견되어 유래된 광물로서 서기 2세기경 로마시대에 이미 유명한 이미 유명한 콜로세움 경기장을 비롯하여 판데이온 등의 건축물에 시멘트 대신에 사용되어 오늘날까지 균열없고 부식없이 오랜 세월 원형 그대로 보존되고 있는 것은 포졸란이 쓰어졌기 때문으로 학자들에 의해 밝혀진 바 있다. 그외 분포지역으로는 미국의 파마운티지역, 말레이시아, 및 인도 등 극히 제한된 지역국가에서만 생산되고 있고 특이한 것은 이태리와 한국산 이외는 게르마늄 성분이나 원적외선 방출효과가 전무하다는 사실 또는 특이하며 아시아권에서는 광활한 중국의 평원 지역마저 동일 광맥이 전혀 존재하지 않는다. The pozzolan mineral is composed of volcanic ashes and is known as a type of feldspar. It is known as an orphan created during the Cretaceous period, and its main mountain is a mineral derived from Pojori village near Bari Island in Italy, and the famous Colosseum Stadium, which was already famous in Roman times around 2nd century AD, and Pandeon. It has been found by scholars to use pozzolanic, which has been used in place of cement in buildings and has been preserved in its original form for years without cracking and corrosion. Other distribution areas are produced only in extremely limited regional countries such as the United States, the Mountain Region, Malaysia, and India, and the unusual ones are the fact that there is no germanium or far-infrared emission effect other than Italy and Korea. The same vein does not exist at all.
종래 포졸란은 콘크리트 제조의 기본재료에 첨가되어 콘크리트에 특수한 성능을 부여하거나 성질을 개선하기 위한 혼화재료로 사용되었으며, 폐기물 고형화를 위한 무기성 고화재료는 대개 시멘트 반응성을 가지고 있어 적절한 함수율의 무기성 슬러지(중금속류 함유된 것)의 고형화에 적합하다. 또한, 시멘트와 친화성이 좋은 포졸란(pozzolan)은 슬러지 함수율 조절과 시멘트 대체 고화보조제로 이용할 수 있고, 비용이 비교적 저렴하다는 장점 등으로 가장 많이 이용되고 있다. In the past, pozzolan was added to the base material of concrete manufacturing and used as a mixed material to give special performance to concrete or to improve its properties.Inorganic solidifying material for solidifying waste is usually cement-reactive, so that inorganic sludge of appropriate moisture content Suitable for solidifying (containing heavy metals). In addition, pozzolan (Pozzolan) having a good affinity with cement is most commonly used to control the sludge moisture content and cement replacement solidification aid, and the cost is relatively low.
포졸란은 화산재, 응회암, 규산백토, 규조토 및 천매암으로 이루어진 군에서 선택되는 적어도 하나 이상이며, 분말상인 것이 바람직하다. 또한 주성분이 실리카-알루미나질 또는 실리카질일 수 있으며, 바람직하게는 포졸란은 실리카, 알루미늄, 산화알루미늄(Al2O3), 철,(Fe), 삼산화이철(Fe2O3), 게르마늄(Ge) 중 어느 하나이상의 조합인 것인 조성물이다. 또한, 바람직하게는 포졸란은 실리카의 함량이 70중량% 이상인 조성물인 것이다. 상기 포졸란은 실리카 중 규소와 이산화규소(SiO2)의 함량비가 1:2 내지 1:3의 범위인 것인 조성물인 것이다. 상기 포졸란은 실리카와 알루미늄산화물의 함량이 80중량% 이상인 것이 바람직하다. 상기 포졸란에서 분말상(powder phase)인 것이 바람직하다.Pozzolanic is at least one selected from the group consisting of volcanic ash, tuff, siliceous silica, diatomaceous earth and natural rock, and is preferably in powder form. In addition, the main component may be silica-alumina or silica, and preferably pozzolan is a combination of any one or more of silica, aluminum, aluminum oxide (Al 2 O 3), iron, (Fe), ferric trioxide (Fe 2 O 3), and germanium (Ge). Composition. Also preferably, pozzolanic is a composition having a silica content of at least 70% by weight. The pozzolane is a composition in which the content ratio of silicon and silicon dioxide (SiO 2) in silica is in the range of 1: 2 to 1: 3. The pozzolane preferably has a content of silica and aluminum oxide of 80% by weight or more. It is preferred to be in the powder phase in the pozzolane.
본 발명의 "함유하는(comprising)" 용어는 포함하는 것에 한정되지 않으며, 일예로 다른 첨가제, 성분, 지수 또는 단계와 같은 것을 제외하지 않는다.The term “comprising” of the present invention is not limited to including, and does not exclude, for example, other additives, components, indices or steps.
"항균(antimicrobial)"의 의미는 어떤 농도에서 미생물의 성장 또는 생존을 감소, 방지, 억제, 또는 제거하는 능력을 의미한다. 항균 조성물이란 항미생물제를 총칭하는 의미인 항생제와 같은 의미일 수 있고, 항균제, 살균제, 방부제, 보존제 또는 제균제와 같은 의미일 수 있으며, 바람직하게는 그람양성균, 그람음성균, 진균 (효모 및 곰팡이)으로 이루어진 군에서 선택된 1 종 이상의 미생물의 발육과 생활 기능을 저지 또는 억제할 수 있는 물질 즉, 항세균 및 항진균 효력이 있는 물질을 의미한다.By “antimicrobial” is meant the ability to reduce, prevent, inhibit or eliminate the growth or survival of microorganisms at any concentration. The antimicrobial composition may mean the same as an antibiotic, which is a generic term for an antimicrobial agent, and may mean the same as an antimicrobial agent, a fungicide, a preservative, a preservative or an antimicrobial agent, preferably Gram-positive bacteria, Gram-negative bacteria, fungi (yeast and mold) Means a substance capable of inhibiting or inhibiting the development and life functions of at least one microorganism selected from the group consisting of, that is, antibacterial and antifungal substances.
상기 포졸란은 함량제한이 없이 사료에 첨가될 수 있지만, 바람직하게는 사료 전체 중량을 기준으로 0.01 ~ 0.70 중량%의 비율로 혼합되는 것이다. 보다 바람직하게는 0.3 ~0.7 중량%인 것이며, 보다 더 바람직하게는 0.5중량%인 것이다.The pozzolanic may be added to the feed without content limitation, but is preferably mixed in a ratio of 0.01 to 0.70% by weight based on the total weight of the feed. More preferably, it is 0.3 to 0.7 weight%, More preferably, it is 0.5 weight%.
상기 가축은 소, 닭, 돼지, 말, 염소, 오리, 거위, 개, 고양이 또는 토끼일 수 있으며, 바람직하게는 닭 또는 돼지일 수 있으나, 이에 제한되지 않는다.The livestock may be cattle, chickens, pigs, horses, goats, ducks, geese, dogs, cats or rabbits, preferably chicken or pigs, but is not limited thereto.
본 발명의 다른 양태에 따르며, 상기 항균 조성물을 유효성분으로 함유하는 가축사료 첨가제를 제공한다. 상기 가축 사료첨가제는 원형 그대로 사용하거나 또는 추가적으로 가축에 허용되는 곡류 및 그 부산물 등의 공지된 담체, 안정제 등을 가할 수 있으며, 필요에 따라 구연산, 후말산, 아디픽산, 젖산, 사과산 등의 유기산이나 인산나트륨, 인산칼륨, 산성 피로인산염, 폴리인산염(중합인산염) 등의 인산염이나, 폴리페놀, 카테킨, 알파-토코페롤, 로즈마리 추출물, 비타민 C, 녹차 추출물, 감초 추출물, 키토산, 탄닌산, 피틴산 등의 천연 항산화제, 항생물질, 항균제 및 기타의 첨가제 등을 가할 수도 있으며, 그 형상으로서는 분체, 과립, 펠릿, 현탁액 등의 적당한 상태일 수 있으며, 상기 사료첨가제를 공급하는 경우는 가축 등에 대하여 단독으로 또는 사료에 혼합하여 공급할 수 있다.According to another aspect of the present invention, there is provided a livestock feed additive containing the antimicrobial composition as an active ingredient. The livestock feed additive may be used as it is or may be added to known carriers, stabilizers, etc., such as grains and by-products allowed for livestock, and organic acids such as citric acid, fumaric acid, adipic acid, lactic acid, and malic acid, if necessary. Phosphates such as sodium phosphate, potassium phosphate, acid pyrophosphate, and polyphosphate (polyphosphate), or natural substances such as polyphenols, catechins, alpha-tocopherols, rosemary extracts, vitamin C, green tea extracts, licorice extracts, chitosan, tannic acid, and phytic acid. Antioxidants, antibiotics, antibacterial agents and other additives may be added, and the shape thereof may be in a suitable state such as powder, granules, pellets, suspensions, etc. It can be mixed and supplied to.
상기 포졸란은 사료 전체 중량을 기준으로 0.01 ~ 0.70 중량%의 비율로 혼합되는 것이 바람직하다며, 상기 가축은 소, 닭, 돼지, 말, 염소, 오리, 거위, 개, 고양이, 토끼 중 어느 하나일 수 있다. The pozzolanic is preferably mixed in a ratio of 0.01 to 0.70% by weight based on the total weight of the feed, the livestock may be any one of cow, chicken, pig, horse, goat, duck, goose, dog, cat, rabbit. have.
본 발명의 다른 양태에 따르며, 상기 가축 사료 첨가제 포함하는 가축사료를 제공한다. 본 발명에서 가축사료를 제조하는 경우, 첨가제는 곡류, 예를 들면 연마되거나 분쇄된 밀, 귀리, 보리, 옥수수 및 쌀; 평지씨, 대두콩 및 해바라기 씨에 근거한 식물성 단백질 공급원; 동물성 단백질 공급원; 당밀; 및 우유 제품, 예를 들면 다양한 우유 분말 및 유장 분말로 구성된 건조 성분과 혼합될 수 있다. 모든 건조 성분과 혼합된 후, 액체 성분 및 가열 후 액체가 된 성분을 첨가할 수 있다. 액체 성분은, 선택적으로 가열에 의해 액화된 지질, 예를 들면 지방, 예를 들면 식물성 지방, 및/또는 카복실산, 예를 들면 지방산으로 구성될 수 있다. 완전히 혼합한 후, 성분의 연마도에 따라 가루 또는 입자상 농도가 수득된다. 저장하는 동안 분리되는 것을 방지하기 위해서, 물을 바람직하게는 동물 사료에 첨가해야만 하고, 이 사료는 후속적으로 종래의 펠렛화, 증량 또는 압출 공정으로 처리된다. 임의의 추가의 물을 건조에 의해 제거할 수 있다. 원하는 경우, 생성된 입자상 동물 사료를 더 작은 입자 크기로 분쇄할 수 있다.According to another aspect of the present invention, there is provided a livestock feed comprising the livestock feed additive. In the case of producing livestock feed in the present invention, the additives may be cereals, for example crushed or ground wheat, oats, barley, corn and rice; Vegetable protein sources based on rapeseed, soybean and sunflower seeds; Animal protein sources; molasses; And dry ingredients consisting of milk products such as various milk powders and whey powders. After mixing with all the dry ingredients, the liquid ingredients and the ingredients which become liquid after heating can be added. The liquid component may consist of lipids, such as fats, for example vegetable fats, and / or carboxylic acids, for example fatty acids, optionally liquefied by heating. After complete mixing, a powder or particulate concentration is obtained depending on the degree of polishing of the components. In order to prevent segregation during storage, water should preferably be added to the animal feed, which is subsequently processed by conventional pelletization, extension or extrusion processes. Any additional water can be removed by drying. If desired, the resulting particulate animal feed can be ground to smaller particle sizes.
본 발명의 다른 양태에 따르며, 상기 항균조성물 또는 상기 가축사료 첨가제를 가축에게 투여하는 가축의 면역력 증강방법을 제공한다. 바람직하게는 포졸란은 사료 전체 중량을 기준으로 0.01 ~ 0.70 중량%의 비율로 혼합되는 것이며, 보다 바람직하게는 0.3 ~0.7 중량%인 것이며, 보다 더 바람직하게는 0.5중량%인 것이다. 상기 가축은 소, 닭, 돼지, 말, 염소, 오리, 거위, 개, 고양이 또는 토끼일 수 있으며, 바람직하게는 돼지일 수 있으나, 이에 제한되지 않는다.According to another aspect of the present invention, there is provided a method for enhancing immunity of a livestock, wherein the antimicrobial composition or the livestock feed additive is administered to a livestock. Preferably the pozzolane is mixed at a ratio of 0.01 to 0.70% by weight based on the total weight of the feed, more preferably 0.3 to 0.7% by weight, even more preferably 0.5% by weight. The livestock may be cattle, chickens, pigs, horses, goats, ducks, geese, dogs, cats or rabbits, preferably pigs, but is not limited thereto.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상세하게 설명하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.Hereinafter, the operation and effects of the invention will be described in more detail with reference to specific examples of the invention. However, these embodiments are only presented as an example of the invention, whereby the scope of the invention is not determined.
<실시예 1> 포졸란의 제조 및 성분확인Example 1 Preparation of Pozolan and Identification of Ingredients
포졸란은 (주)모닝스타로부터 분말화된 제품을 공급받았으며 한국과학기술연구원(KIST)의 분석기관에 의뢰하여 성분분석을 한 결과 다음의 표 1 및 2와 같이 다양한 Si 및 Ge등의 성분이 확인되었다. Pozzolane was supplied with powdered products from Morningstar Co., Ltd. and analyzed by ingredients of KIST's analysis institute, and as a result, various Si and Ge components were identified as shown in Tables 1 and 2 below. It became.
Figure PCTKR2015003416-appb-I000001
Figure PCTKR2015003416-appb-I000001
Figure PCTKR2015003416-appb-I000002
Figure PCTKR2015003416-appb-I000002
상기 포졸란을 다양한 가축의 항균 및 성장효과를 실험하기 위하여 아래의 실시예와 같이 원료 배지 또는 사료에 다양한 함량의 포졸란 또는 포졸란 추출액을 혼합하여 시료를 제조하였다.In order to test the antimicrobial and growth effects of the various livestock of the pozzolan, a sample was prepared by mixing various amounts of pozzolanic or pozzolanic extract in a raw material medium or feed.
<실시예 2><Example 2>
다양한 유익균 또는 유해균에 대한 성장촉진 또는 억제효과를 실험하게 위하여 다음과 같은 실험설계를 통하여 다양한 균주의 생장정도를 측정하였다. In order to test the growth promoting or inhibitory effect on various beneficial or harmful bacteria, the growth of various strains was measured through the following experimental design.
2-1. 실험균주2-1. Experimental strain
장내 균주는 한국식품연구원(KFRI)으로부터 4개의 일반균주를 분양받았으며, 항생제 내성균주는 서울여자대학교 내성균주 은행(KNRRC)으로부터 2개의 내성균주를 분양받았다. 다음의 표3은 균주의 학명 및 균주 기탁번호를 기재한 것이다.Intestinal strains received four general strains from Korea Food Research Institute (KFRI), and antibiotic resistant strains received two resistant strains from Seoul Women's University resistant strain bank (KNRRC). Table 3 below lists the scientific name and strain accession number of the strain.
Figure PCTKR2015003416-appb-I000003
Figure PCTKR2015003416-appb-I000003
2-2. 배양방법 및 배지2-2. Culture method and medium
대조군인 증류수 배지1은 포졸란을 첨가하지 않고 배지 원료에 증류수를 가한 후 멸균하고 균주 10-7으로 희석한 후 100uL를 접종하였다. 실험군인 증류수 배지 2 및 3은 배지원료에 증류수 및 포졸란 각각 3.0 및 5.0%를 혼합하고 멸균한 후 각각 균주 10-7으로 희석한 후 100uL를 접종하였다. 다른 실험군으로 포졸란 추출액을 사용한 배지 4는 포졸란 100g과 증류수 500mL를 혼합하여 115℃에서 9시간 밤샘 정치 후 여과지(No.1)2매에 여과한 후 여과된 배지를 멸균하고 균주 10-6으로 희석한 후 100uL를 접종하였다. 대조군과 실험군의 배지는 아래 표4와 같다. Distilled water medium 1, which is a control group, was sterilized after adding distilled water to the raw material of the medium without adding pozzolan, diluted with strain 10 −7 , and then inoculated with 100 uL. Distilled water medium 2 and 3 of the experimental group were mixed with 3.0 and 5.0% of distilled water and pozzolane, respectively, and sterilized in the raw material, and diluted with strain 10 −7 , respectively, and then inoculated with 100 uL. Medium 4 with pozzolanic extract to a different experimental groups was mixed and filtered through filter paper (No.1) 2-sheet after 9 hours at 115 ℃ overnight political the pozzolan and 100g distilled water 500mL sterilization the medium was filtered and diluted with strain 10-6 100 μL was then inoculated. The medium of the control group and the experimental group is shown in Table 4 below.
Figure PCTKR2015003416-appb-I000004
Figure PCTKR2015003416-appb-I000004
이후 37℃에서 24시간 배양한 후 균수를 측정하였다. 단, Lactobacillus casei는 37℃에서 48 시간 배양하였다. 아래 표5는 균주의 특성 및 균주별 사용된 배지를 정리한 것이다.After incubating at 37 ℃ for 24 hours, the number of bacteria was measured. However, Lactobacillus casei was incubated for 48 hours at 37 ℃. Table 5 below summarizes the characteristics of the strains and the medium used for each strain.
Figure PCTKR2015003416-appb-I000005
Figure PCTKR2015003416-appb-I000005
2-3. 균주의 배양결과2-3. Culture result of strain
상기의 배양방법으로 균주에 따라 배양한 결과 성장결과는 다음 표6과 같다. 단위는 1 내지 4번의 균주는 Log10-7cfu이며, 5 내지 6번의 균주는 Log10-6cfu이다. CFU(Colony Forming Unit)는 미생물 집락형성단위로, 눈으로 보기 힘든 미생물을 적절한 조건으로 성장시켜 미생물 1개체마다 눈으로 볼 수 있을 정도의 크기로 키운 집락(colony=덩어리, 군락)의 단위이다.The growth results of the culture according to the strain according to the culture method are shown in Table 6 below. Single unit 1-4 strain is a -7 Log10 cfu, single strain 5-6 is Log10 cfu -6. CFU (Colony Forming Unit) is a microbial colony forming unit, which is a unit of colonies (colony = mass, colony) that grows to a size that is visible to each microbe by growing microorganisms that are hard to be seen under the proper conditions.
Figure PCTKR2015003416-appb-I000006
Figure PCTKR2015003416-appb-I000006
각각의 균주들의 배지에 따른 생장억제 또는 촉진을 보여주는 사진은 도 1 내지 4 및 도6 내지 7에 각각 보여주었다. 균주들간의 비교하는 그래프는 도5 및 8에 나타내었다. 그 결과들에서 알수 있는 바와 같이 포졸란의 첨가 또는 포졸란 추출액을 첨가한 배지에서는 유익균(Lactobacillus casei)의 생장은 촉진시킨 반면, 유해균(Salmonella typhimurium, Escherichia coli, MRSA, VRE)의 생장은 현저하게 억제하는 효과가 확인되었다.Photos showing growth inhibition or promotion according to the media of the respective strains are shown in FIGS. 1 to 4 and 6 to 7, respectively. Comparison graphs between the strains are shown in FIGS. 5 and 8. As can be seen from the results, the growth of Lactobacillus casei promoted the growth of beneficial bacteria ( Salmonella typhimurium, Escherichia coli, MRSA, VRE) in the medium added with pozzolanic or pozzolanic extract. The effect was confirmed.
<실시예 3><Example 3>
육계에 대한 항균성장 촉진효과의 실험하기 위하여 브로일러(broiler)를 선정하고 다음과 같이 실험설계를 통하여 다양한 효과를 측정하였다. In order to test the antimicrobial growth promoting effect on broiler broiler (broiler) was selected and various effects were measured through the experimental design as follows.
3-1. 실험동물 및 실험설계 3-1. Experimental Animal and Experimental Design
로스계통(Ross 308)의 성감별을 실시한 부화 1일령 수컷 브로일러 400마리를 4처리구 X 4반복(반복 당 25마리)으로 완전임의 배치하였다. 실험처리구는 T1(대조구), T2(포졸란 0.3%), T3(포졸란 0.5%), T4(포졸란 0.7%)로 구분하였다. Incubated male broiler 1 day-old male broilers subjected to sexual identification of Ross system (Ross 308) were randomly placed in four treatments X 4 repetitions (25 per repetition). Experimental treatments were divided into T1 (control), T2 (pozolan 0.3%), T3 (pozolan 0.5%), T4 (pozolan 0.7%).
3-2. 실험사료 및 사양관리 3-2. Experiment feed and specification management
실험사료는 미국의 NRC 사양표준 (1994)에서 제시한 브로일러의 영양소 요구량을 충족 또는 초과할 수 있도록 옥수수, 대두박 위주로 배합하였으며 포졸란의 첨가수준에 따른 배합사료 제조량은 옥수수의 량을 줄여서 조단백질과 대사에너지 함량을 동일한 수준으로 조절해 주었다. Experimental feeds were formulated mainly to corn or soybean meal to meet or exceed the nutrient requirements of broilers as set forth in the US NRC specification standard (1994), and the formulated feed production according to the addition level of pozzolan reduced the amount of crude protein and metabolic energy. The content was adjusted to the same level.
3-3. 사양성적 및 도체특성 3-3. Specification Performance and Conductor Characteristics
브로일러의 성장에 따른 각 단계 별 성장능력 즉, 사료섭취량, 증체량 및 사료효율을 각각 측정하였고 그 결과는 아래 표7과 같다. 사료효율은 일정한 기간 중의 사료섭취량을 증체량으로 나눈 값으로 나타냈다. 도체율(Dressing percent)은 35일 째 출하 시 생체중에 대한 도체중(깃털, 혈액, 머리, 다리 및 내장을 제외한 무게)의 비율로써 계산하였다. 그 결과는 아래 표8와 같다. 간, 근위, 면역기관(흉선, 비장, F낭)의 무게는 3주, 5주째 각각 측정하여 생체중에 대한 비율로서 나타내었고 그 결과는 표9과 같다. 표10은 혈액분석을 통한 지질, 혈당, AST, ALT 등을 분석한 것이다.The growth capacity of each stage according to the growth of broiler, that is, feed intake, weight gain and feed efficiency, were measured, respectively, and the results are shown in Table 7 below. Feed efficiency was expressed as feed intake divided by weight gain in a given period. The dressing percent was calculated as the ratio of carcass weight (weight excluding feathers, blood, head, legs and viscera) to live weight at day 35. The results are shown in Table 8 below. The weights of liver, proximal and immune organs (thymus, spleen, F sac) were measured at 3 weeks and 5 weeks, respectively. Table 10 is the analysis of lipids, blood sugar, AST, ALT, and the like through blood analysis.
Figure PCTKR2015003416-appb-I000007
Figure PCTKR2015003416-appb-I000007
Figure PCTKR2015003416-appb-I000008
Figure PCTKR2015003416-appb-I000008
Figure PCTKR2015003416-appb-I000009
Figure PCTKR2015003416-appb-I000009
Figure PCTKR2015003416-appb-I000010
Figure PCTKR2015003416-appb-I000010
도 9는 35일 출하 체중을 포졸란 함량에 따라 비교한 그래프로 T3인 포졸란 0.5%함량의 경우 가장 큰 증가율을 보였다. 도10은 성장기간별 체중증가율을 비교한 것으로 각 시기에 따라 포졸란 0.5%함량의 경우 가장 증가율이 높았다. 도11은 사료효율을 비교한 것으로 포졸란 0.3% 및 0.7%의 경우 유사하게 나타났으며 T3인 0.5%함량의 경우 다소 증가하는 수치를 보여주었다. 도 12는 도체율을 비교한 것으로 역시 T3에서 다소 높은 증가를 보여주었다. 도 13은 3주째의 기관무게의 증가율을 비교한 그래프로 T3에서 가장 크게 증가하였으며 그 다음으로 T2 및 T4의 순서로 높은 증가율을 보였다. 도14는 5주째 기관무게의 증가율을 비교한 그래프로 역시 T3에서 다소 높은 증가를 보였으며 다른 T2 및 T3는 대조군인 T1과 유사하였다. 도15는 3주째 면역기관의 무게를 보여준 것으로 T3에서 현저하게 높은 증가를 보여 면역기간이 강화됨을 간적접으로 보여주었다. 도 16은 5주째 면역기관의 무게를 보여준 것으로 역시 T3에서 현저하게 높은 증가를 보여주었다.9 is a graph comparing the 35-day shipping body weight according to the pozzolanic content showed the largest increase rate in the case of 0.5% content of pozzolanic T3. Figure 10 is a comparison of the weight gain rate by growth period, the highest increase rate of pozzolanic 0.5% content at each time period. FIG. 11 shows a comparison of feed efficiency, and showed similar results for pozolan 0.3% and 0.7%, and slightly increased for 0.5% T3. FIG. 12 shows a somewhat higher increase in T3, comparing the conductor rates. FIG. 13 is a graph comparing the increase in tracheal weight at 3 weeks, the largest increase in T3 followed by the highest increase in the order of T2 and T4. Figure 14 is a graph comparing the increase in tracheal weight at 5 weeks, which also showed a slightly higher increase in T3, and the other T2 and T3 were similar to the control group T1. Figure 15 shows the weight of the immune system at 3 weeks, showing a significant increase in T3 indirectly showing that the duration of immunity is enhanced. Figure 16 shows the weight of the immune organs at week 5, which also showed a markedly high increase in T3.
3-4. 혈액 면역물질3-4. Blood immune substances
혈액 면역물질 분석은 ELISA (enzyme-linked immunosorbent assay, Bethyl laboratories., Inc., USA)에 의해서 측정하였다(Constantinoiu 등, 2007). 그 결과는 표11로 보여주었다.Blood immunoassay was determined by ELISA (enzyme-linked immunosorbent assay, Bethyl laboratories., Inc., USA) (Constantinoiu et al., 2007). The results are shown in Table 11.
Figure PCTKR2015003416-appb-I000011
Figure PCTKR2015003416-appb-I000011
도17은 혈액 면역물질인 IgG의 함량을 비교한 그래프로 T3에서 가장 큰 증가를 보였으며 T4 및 T2의 순으로 증가양상을 보여 포졸란이 면역물질 분비량을 증가시킬 수 있음을 확인하였다.Figure 17 is a graph comparing the content of IgG as a blood immune material showed the largest increase in T3 and in order of T4 and T2 confirmed that the pozzolanic can increase the secretion of immune material.
3-5. 분 미생물3-5. Minute microorganism
실험 종료 3일 전의 분을 채취하여 인산완충식염수(po포졸란horus buffered saline)와 혼합하여 10배 희석 (w/v)하였다. 102-108 농도로 희석된 시료를 멸균된 평판배지에 분주하였다. 37℃에서 48시간 정치배양한 후 미생물카운터로써 colony의 수를 조사하였으며 g당 균수(log10 CFU, colony forming unit/g of feces)로써 상용로그를 취하여 제시하였고 그 결과는 표12와 같다.Three minutes before the end of the experiment, the mixture was collected and mixed with phosphate buffered saline (popozolan horus buffered saline) and diluted 10-fold (w / v). Samples diluted to 10 2 -10 8 concentrations were dispensed into sterile plate media. After 48 hours of incubation at 37 ° C, the number of colonies was examined as a microbial counter, and a commercial log was taken as the number of colonies per log (log 10 CFU, colony forming unit / g of feces) and the results are shown in Table 12.
Figure PCTKR2015003416-appb-I000012
Figure PCTKR2015003416-appb-I000012
도18은 분 미생물의 변화양상을 비교한 그래프로 유익균은 Lactobacillus의 경우 T3에서 가장 높은 농도를 보여주었고, 유해인균 E. Coli, Salmonella 등의 경우 높은 억제효과를 보여주었다.Fig. 18 is a graph comparing the change patterns of the microorganisms, and the beneficial bacteria showed the highest concentration in T3 for Lactobacillus , and the high inhibitory effect for the harmful bacterium E. Coli, Salmonella .
3-6. 맹장 유기산3-6. Cecum organic acid
희생한 닭으로부터 맹장을 채취하여 acetate, propionate, butyrate, isobutyrate, valerate 그리고 isovalerate의 농도를 Gas chromatographic system (model GC-15A, Shimadzu Corp., Kyoto, Japan)에 의해서 측정하였고 그 결과는 표13에 나타내었다.The cecals were collected from the sacrificed chickens and the concentrations of acetate, propionate, butyrate, isobutyrate, valerate and isovalerate were measured by a gas chromatographic system (model GC-15A, Shimadzu Corp., Kyoto, Japan). It was.
Figure PCTKR2015003416-appb-I000013
Figure PCTKR2015003416-appb-I000013
도19 및 20은 맹장 유기산을 비교한 것으로 일부 유기산의 경우 함량이 저하되기는 하였으나 전체적인 단쇄유기산(SCFA, Sohrt chain Fatty acid)를 보면 T3에서 가장 큰 증가율을 보였고 포졸란을 함유하는 처리군에서 증가하는 경향을 보였다.Figures 19 and 20 compare the cecum organic acid, although the content of some organic acids decreased, but the overall short-chain organic acid (SCFA, Sohrt chain Fatty acid) showed the largest increase rate in T3 and increased in the treatment group containing pozzolanic Showed.
3-7. 닭고기 지방산 3-7. Chicken Fatty Acid
닭고기 다리살로부터 지질을 추출하여 Gas chromatographic system (model GC-15A, Shimadzu Corp., Kyoto, Japan)에 주입하여 지방산을 분석하였고 그 결과는 표14에 표시하였다.Lipids were extracted from chicken leg meat and injected into a gas chromatographic system (model GC-15A, Shimadzu Corp., Kyoto, Japan) to analyze fatty acids. The results are shown in Table 14.
Figure PCTKR2015003416-appb-I000014
Figure PCTKR2015003416-appb-I000014
도 21은 닭고기 지방산을 비교한 것으로 포화지방산(saturated fatty acid: SFA)은 포졸란의 처리군에서 감소하였으며, 불포화지방산(unsaturated fatty acid: UFA)은 포졸란 처리군에서 증가하는 양상을 보였다. 그리고 불포화지방산/포화지방산(UFA/SFA)수치가 T3에서 가장 크게 보였으며 전체적으로 포졸란을 처리한 군에서 큰 증가수치를 보였다. 결국 포졸란으로 인하여 불포화지방산의 함량이 증가하여 육계의 영양학적 효능을 증가시키고 품질을 개선할 수 있음을 확인하였다.21 is a comparison of chicken fatty acids, saturated fatty acid (SFA) was decreased in the treatment group of pozzolanic, unsaturated fatty acid (UFA) was increased in the treatment group of pozzolanic. Unsaturated fatty acid / saturated fatty acid (UFA / SFA) levels were the highest in T3 and overall increased in the pozzolan-treated group. Eventually, it was confirmed that pozolan increases the content of unsaturated fatty acids, which can increase the nutritional efficacy of broilers and improve their quality.
3-8. 계분 악취3-8. Stepping odor
암모니아와 황화수소 농도를 가스측정기(Gas Indicator AP-20, Axis Sensitive Co. Ltd, Japan)로써 측정하였다. 제조사의 사용 메뉴얼에 따라서 가스를 흡입시킨 후 표시된 수치를 기록하여 대조구와 비교하여 아래 표15와 같이 제시하였다.Ammonia and hydrogen sulfide concentrations were measured with a gas indicator (Gas Indicator AP-20, Axis Sensitive Co. Ltd, Japan). After inhaling the gas according to the manufacturer's manual, the displayed value was recorded and compared with the control, and presented as shown in Table 15 below.
Figure PCTKR2015003416-appb-I000015
Figure PCTKR2015003416-appb-I000015
도 22 및 23는 암모니아 및 황화수소의 함량을 비교한 그래프로 포졸란을 함유하는 처리군에서 전체적으로 감소하는 경향을 보였으며 특히 T4에서 가장 큰 감소율을 보였다.22 and 23 are graphs comparing the contents of ammonia and hydrogen sulfide, showing a tendency to decrease overall in the treatment group containing pozzolanic, in particular, the largest decrease in T4.
<실시예 4><Example 4>
이유자돈에 대한 항균성장 촉진효과의 실험하기 위하여 교잡종 이유자돈를 선정하고 다음과 같이 실험설계를 통하여 다양한 효과를 측정하였다. In order to test the antimicrobial growth promoting effect on weaning piglets, we selected hybrid weaning piglets and measured various effects through experimental design as follows.
4-1. 실험동물 및 실험설계4-1. Experimental Animal and Experimental Design
표준환경 조건에서 3원 교잡종(Landrace*Yorkshire)*Duroc 이유자돈(평균 체중 121.20 kg) 300 마리를 이용하여 5처리 3반복, 반복 돈방 당 20마리씩 완전임의배치하였다. 실험처리구는 T1(무첨가군), T2(항생제 링코마이신 0.2%)), T3(포졸란 0.3%), T4(포졸란 0.5%), T5(포졸란 0.7%)로 구분하였다. Under standard environmental conditions, 300 rats of three-way hybrid (Landrace * Yorkshire) * Duroc weaning pigs (average body weight 121.20 kg) were used and randomly placed in a total of 20 treatments per 5 treatments 3 replicates. The experimental groups were divided into T1 (no additive group), T2 (antibiotic lincomycin 0.2%), T3 (pozolan 0.3%), T4 (pozolan 0.5%), T5 (pozolan 0.7%).
4-2. 실험사료 및 사양관리 4-2. Experiment feed and specification management
실험사료는 미국의 NRC 사양표준(1994)에서 제시한 돼지의 영양소 요구량을 충족 또는 초과할 수 있도록 옥수수, 대두박 위주로 배합하였으며 항생제와 포졸란의 첨가에 따른 배합사료 제조량은 옥수수의 량을 줄여서 조절하였다. 조단백질과 대사에너지 함량을 동일한 수준으로 조절해 주었다. Experimental feeds were formulated mainly on corn and soybean meal to meet or exceed the nutrient requirements of pigs suggested by the US NRC specification (1994). Crude protein and metabolic energy content were adjusted to the same level.
4-3. 성장능력 및 설사빈도 4-3. Growth capacity and diarrhea frequency
이유자돈의 성장능력 즉, 일일 평균 사료섭취량(ADFI: average daily feed intake), 일일 평균 증체량(ADWG: average daily weight gain) 및 사료요구율(FCR: feed conversion ratio)을 조사하기 위하여 돈방 당 개시 및 30일째의 체중과 사료섭취량을 각각 측정하였으며 이유자돈의 설사 빈도를 조사하였다. 사료요구율은 전체 실험기간 중의 증체량을 사료섭취량으로 나눈 값으로 나타냈다. 각 돈방의 모든 자돈들을 대상으로 매일 2회 항문주위의 수양성 설사 흔적을 가진 개체 수를 파악. 9점법으로 설사빈도를 측정하고 모든 개체의 항문 주위가 수양성설사 흔적을 보였을 때의 설사빈도를 9점부터 0점으로 표기하였다. 결과는 아래 표16과 같다. 표17은 혈액분석을 통한 지질, 혈당 등을 분석한 것이다.Initiation and 30 days per piglet to investigate the growth capacity of weaners, ie, average daily feed intake (ADFI), average daily weight gain (ADWG) and feed conversion ratio (FCR). Weight and feed intake were measured and the frequency of diarrhea in weaned piglets was investigated. Feed demand was expressed as weight gain divided by feed intake. Identify the number of individuals with evidence of benign diarrhea around the anus twice a day for all piglets in each piglet. Diarrhea frequency was measured by the 9-point method and diarrhea frequency was recorded from 9 points to 0 points when the anus periphery of all individuals showed signs of benign diarrhea. The results are shown in Table 16 below. Table 17 shows the analysis of lipids and blood glucose through blood analysis.
Figure PCTKR2015003416-appb-I000016
Figure PCTKR2015003416-appb-I000016
도24 내지 도 27은 각각, 종료체중, 일일 증체량, 일일 섭취량 및 사료요구율을 비교한 그래프로 포졸란을 함유한 처리군에서 대체적으로 높은 증가율을 보였으며 특히 포졸란 0.5%를 함유한 군에서 가장 높은 수치를 보였다.24 to 27 are graphs comparing end weight, daily weight gain, daily intake, and feed demand rate, respectively, showing a high increase rate in the treatment group containing pozzolanic, especially the highest value in the group containing 0.5% pozzolanic. Showed.
Figure PCTKR2015003416-appb-I000017
Figure PCTKR2015003416-appb-I000017
도28은 혈액분석 결과 지질 및 혈당 등의 수치를 비교한 그래프로 포졸란을 함유한 처리군에서 대체적으로 증가하는 양상을 보였다. 이는 항생제를 처리한 군보다 높은 수치를 보여 항생제의 대체효과를 입증한 것이다.FIG. 28 is a graph comparing the levels of lipids and blood glucose as a result of blood analysis, showing an increase in the treatment group containing pozzolanic. This is higher than the antibiotic treatment group, demonstrating the replacement effect of antibiotics.
4-4. 혈액 면역물질4-4. Blood immune substances
혈액 면역물질 분석은 ELISA (enzyme-linked immunosorbent assay, Bethyl laboratories., Inc., USA)에 의해서 측정하였고(Constantinoiu 등, 2007) 그 결과는 표18과 같다.Blood immunoassay was measured by ELISA (enzyme-linked immunosorbent assay, Bethyl laboratories., Inc., USA) (Constantinoiu et al., 2007) and the results are shown in Table 18.
Figure PCTKR2015003416-appb-I000018
Figure PCTKR2015003416-appb-I000018
도28에서 면역물질을 비교한 그래프는 T4의 처리군에서 항생제를 처리한 T3군보다 높은 면역물질의 함량을 보여 항생제를 투여하지 않고도 면역기능을 강화시킬 수 있음을 확인하였다.In the graph comparing the immune material in Figure 28 it was confirmed that in the T4 treated group showed a higher content of the immune substance than the T3 group treated with antibiotics, it was possible to enhance the immune function without administering antibiotics.
4-5. 분 미생물 4-5. Minute microorganism
실험 종료 3일 전의 분을 채취하여 인산완충식염수(po포졸란horus buffered saline)와 혼합하여 10배 희석 (w/v)하였다. 102-108 농도로 희석된 시료를 멸균된 평판배지에 분주하였다. 37℃에서 48시간 정치배양한 후 미생물카운터로써 colony의 수를 조사하였으며 g당 균수(log10 CFU, colony forming unit/g of feces)로써 상용로그를 취하여 제시하였고 그 결과는 아래 표19와 같다.Three minutes before the end of the experiment, the mixture was collected and mixed with phosphate buffered saline (popozolan horus buffered saline) and diluted 10-fold (w / v). Samples diluted to 10 2 -10 8 concentrations were dispensed into sterile plate media. After 48 hours of incubation at 37 ° C, the number of colonies was examined as a microbial counter, and the commercial log was taken as the number of colonies per log (log 10 CFU, colony forming unit / g of feces) and the results are shown in Table 19 below.
Figure PCTKR2015003416-appb-I000019
Figure PCTKR2015003416-appb-I000019
도 29는 분 미생물을 비교한 그래프로 유익균은 Lactobacillus의 경우 T3에서 가장 높은 농도를 보여주었고, 유해인균 E. Coli, Salmonella 등의 경우 오히려 항생제보다 높은 억제효과를 보여주었다.Fig. 29 is a graph comparing the microorganisms with beneficial bacteria showed the highest concentration in T3 in the case of Lactobacillus , and showed higher inhibitory effect than the antibiotics in the case of harmful bacterium E. Coli, Salmonella .
4-6. 맹장 유기산4-6. Cecum organic acid
희생한 이유자돈으로부터 맹장을 채취하여 acetate, propionate, butyrate, isobutyrate, valerate 그리고 isovalerate의 농도를 Gas chromatographic system (model GC-15A, Shimadzu Corp., Kyoto, Japan)에 의해서 측정하였고 그 결과는 표20과 같다.The cecals were collected from sacrificial weaners and the concentrations of acetate, propionate, butyrate, isobutyrate, valerate and isovalerate were measured by a gas chromatographic system (model GC-15A, Shimadzu Corp., Kyoto, Japan) and the results are shown in Table 20. .
Figure PCTKR2015003416-appb-I000020
Figure PCTKR2015003416-appb-I000020
도30 및 31은 유기산의 함량을 비교한 그래프로 전체 단쇄유기산(SCFA, Sohrt chain Fatty acid)이 포졸란의 0.5%를 함유한 T4군은 항생제를 투여한 T2군보다 높은 증가율을 보였고 전체적으로 포졸란을 함유하는 처리군에서 증가하는 경향을 보였다. 따라서, 포졸란이 맹장의 유기산의 증가를 유도한다는 것을 확인하였다.30 and 31 are graphs comparing the contents of organic acids. The T4 group containing 0.5% of the total short chain organic acid (SCFA) containing pozzolanic showed a higher increase rate than the T2 group treated with antibiotics, and contained pozzolanic as a whole. The treatment group showed a tendency to increase. Thus, it was confirmed that pozolan induced an increase in the organic acid of the cecum.

Claims (15)

  1. 포졸란을 유효성분으로 포함하는 가축용 사료 첨가제 조성물.Animal feed additive composition comprising a pozzolan as an active ingredient.
  2. 제 1항에 있어서, The method of claim 1,
    상기 포졸란은 실리카, 알루미늄, 산화알루미늄(Al2O3), 철,(Fe), 삼산화이철(Fe2O3), 게르마늄(Ge) 중 어느 하나 이상의 조합인 것을 특징으로 하는 조성물.The pozzolanic is a composition characterized in that the combination of any one or more of silica, aluminum, aluminum oxide (Al2O3), iron, (Fe), ferric trioxide (Fe2O3), germanium (Ge).
  3. 제 1항에 있어서, The method of claim 1,
    상기 포졸란은 실리카의 함량이 70중량% 이상인 것을 특징으로 하는 조성물.The pozzolanic composition is characterized in that the silica content of more than 70% by weight.
  4. 제 1항에 있어서, The method of claim 1,
    상기 포졸란은 실리카 중 규소와 이산화규소(SiO2)의 함량비가 1:2 내지 1:3의 범위인 것을 특징으로 하는 조성물.The pozzolanic is a composition, characterized in that the content ratio of silicon and silicon dioxide (SiO 2) in silica is in the range of 1: 2 to 1: 3.
  5. 제 1항에 있어서, The method of claim 1,
    상기 포졸란은 실리카와 알루미늄산화물의 함량이 80중량% 이상인 것을 특징으로 하는 조성물.The pozzolanic composition is characterized in that the content of silica and aluminum oxide of more than 80% by weight.
  6. 제 1항에 있어서, The method of claim 1,
    상기 포졸란은 분말상(powder phase)인 것을 특징으로 하는 조성물.The pozzolanic composition is characterized in that the powder phase (powder phase).
  7. 제 1항에 있어서, The method of claim 1,
    상기 포졸란은 사료 전체 중량을 기준으로 0.01 ~ 0.70 중량%의 비율로 혼합되는 것을 특징으로 하는 조성물.The pozzolanic is characterized in that the composition is mixed in a ratio of 0.01 to 0.70% by weight based on the total weight of the feed.
  8. 제 1항에 있어서, The method of claim 1,
    상기 가축은 소, 닭, 돼지, 말, 염소, 오리, 거위, 개, 고양이, 토끼 중 어느 하나인 것을 특징으로 하는 조성물.The livestock is a composition, characterized in that any one of a cow, chicken, pig, horse, goat, duck, goose, dog, cat, rabbit.
  9. 제1항의 조성물을 유효성분으로 함유하는 가축사료 첨가제.Animal feed additive containing the composition of claim 1 as an active ingredient.
  10. 제 9항에 있어서, The method of claim 9,
    포졸란은 사료 전체 중량을 기준으로 0.01 ~ 0.70 중량%로 혼합되는 것을 특징으로 하는 가축사료 첨가제.Pozzolan is a livestock feed additive, characterized in that mixed with 0.01 to 0.70% by weight based on the total weight of the feed.
  11. 제 9항에 있어서, The method of claim 9,
    상기 가축은 소, 닭, 돼지, 말, 염소, 오리, 거위, 개, 고양이, 토끼 중 어느 하나인 것을 특징으로 하는 가축사료 첨가제.The livestock feed additives, characterized in that any one of cows, chickens, pigs, horses, goats, ducks, geese, dogs, cats, rabbits.
  12. 제 9항의 가축 사료 첨가제를 포함하는 가축사료.Animal feed comprising the animal feed additive of claim 9.
  13. 제 1항의 조성물 또는 제 9항의 가축사료 첨가제를 가축에게 투여하는 단계를 포함하는, 가축의 면역력 증강방법.The method of claim 1, comprising administering the composition of claim 1 or the animal feed additive of claim 9 to the animal.
  14. 제 13항에 있어서, The method of claim 13,
    상기 포졸란은 사료 전체 중량을 기준으로 0.01 ~ 0.70 중량%의 비율로 혼합되는 것을 특징으로 하는 방법.The pozzolanic is characterized in that the mixture of 0.01 to 0.70% by weight based on the total weight of the feed.
  15. 제 13항에 있어서, The method of claim 13,
    상기 가축은 소, 닭, 돼지, 말, 염소, 오리, 거위, 개, 고양이, 토끼 중 어느 하나인 방법.The livestock is any one of a cow, chicken, pig, horse, goat, duck, goose, dog, cat, rabbit.
PCT/KR2015/003416 2015-03-31 2015-04-06 Additive composition for livestock feed, containing pozzolan, and use thereof WO2016159423A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580078379.0A CN107427030A (en) 2015-03-31 2015-04-06 Feed stripped compositions of additives comprising volcanic ash and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150045111A KR101847686B1 (en) 2015-03-31 2015-03-31 Composition of animal feed additive comprising pozzolan and use thereof
KR10-2015-0045111 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159423A1 true WO2016159423A1 (en) 2016-10-06

Family

ID=57007306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003416 WO2016159423A1 (en) 2015-03-31 2015-04-06 Additive composition for livestock feed, containing pozzolan, and use thereof

Country Status (3)

Country Link
KR (1) KR101847686B1 (en)
CN (1) CN107427030A (en)
WO (1) WO2016159423A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101890877B1 (en) * 2017-04-28 2018-08-23 (주)현농 supplementary feed for fish farming and manufacturing method thereof
KR102139867B1 (en) * 2018-10-17 2020-07-29 주식회사 바이오원 Preparation Method of Aplysia kurodai Peptides with High Yield Using Enzyme
KR102374291B1 (en) * 2019-09-10 2022-03-14 강릉원주대학교산학협력단 Feed additive composition containing natural pozzolan
KR102289532B1 (en) * 2021-01-28 2021-08-17 농업회사법인 주식회사 삼광 Livestock supplementary feed and a manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189067A (en) * 1998-12-25 2000-07-11 Japan Aqua Tec Co Ltd Feed for culturing pearl
KR20030088801A (en) * 2002-05-15 2003-11-20 박영자 Composition for producing far-infrared ray and anion comprising natural pozzolan, and its use
WO2014073634A1 (en) * 2012-11-08 2014-05-15 株式会社柏木興産 Pozzolan admixture
KR20140059472A (en) * 2012-11-08 2014-05-16 한림대학교 산학협력단 A pharmaceutical composition containing pozzolan for treating and preventing atopy dermatitis

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101852A (en) * 1987-10-16 1989-04-19 Yuko Muramoto Feed additive for domestic animal and small animal
RO119678B1 (en) * 1998-02-10 2005-02-28 Valea Cornel Podar Nonhormonal biostimulating composition for animal breeding and process for preparing the same
US7597916B2 (en) * 2005-09-22 2009-10-06 Castillo Alejandro R Livestock anti-acid composition
CN101361529B (en) * 2007-08-06 2012-01-11 王强 Volcano mineral spring microelement low-cholesterol fowl feed
US20140134308A1 (en) 2009-06-04 2014-05-15 Stephen L. Peterson Ruminant Mineral Feed Additive
US20120315358A1 (en) 2009-06-04 2012-12-13 Peterson Stephen L Ruminant Mineral Feed Additive
KR20120111379A (en) * 2011-03-31 2012-10-10 주식회사 생명탄 Livestock feed addtivies comprising volcanic ash powder
JP2013159593A (en) * 2012-02-08 2013-08-19 Yogan Kenkyusho:Kk Method of detoxifying toxic substance and radioactive substance inside living body using lava powder and volcanic ash and method of improving polluted field

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000189067A (en) * 1998-12-25 2000-07-11 Japan Aqua Tec Co Ltd Feed for culturing pearl
KR20030088801A (en) * 2002-05-15 2003-11-20 박영자 Composition for producing far-infrared ray and anion comprising natural pozzolan, and its use
WO2014073634A1 (en) * 2012-11-08 2014-05-15 株式会社柏木興産 Pozzolan admixture
KR20140059472A (en) * 2012-11-08 2014-05-16 한림대학교 산학협력단 A pharmaceutical composition containing pozzolan for treating and preventing atopy dermatitis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONG, YOUNG - HAN ET AL.: "Effect of Feeding Pozzolan, Chromium-Methionine Chelate and Rhus Vemiciflua Stokes Additive Feed on Carcass Treat of the Finishing Hanwoo Steer", ANNAL OF ANIMAL RESOURCE SCIENCES, vol. 18, 2007, pages 72 - 77 *

Also Published As

Publication number Publication date
KR101847686B1 (en) 2018-04-10
CN107427030A (en) 2017-12-01
KR20160116819A (en) 2016-10-10

Similar Documents

Publication Publication Date Title
JP6991162B2 (en) Bacillus subtilis strain showing probiotic activity
CN110573606B (en) Bacillus subtilis strain for improving animal performance parameters
Zeng et al. Effects of essential oil supplementation of a low‐energy diet on performance, intestinal morphology and microflora, immune properties and antioxidant activities in weaned pigs
Sun et al. Effects of Bacillus subtilis natto on performance and immune function of preweaning calves
US20230372413A1 (en) Bacillus strains improving health and performance of production animals
Stavric et al. 10 Microbial probiotics for pigs and poultry
Kantas et al. A feed additive containing Bacillus toyonensis (Toyocerin®) protects against enteric pathogens in postweaning piglets
US11173184B2 (en) Bacillus subtilis strain with probiotic activity
WO2016159423A1 (en) Additive composition for livestock feed, containing pozzolan, and use thereof
Skoufos et al. Effects of oregano essential oil and attapulgite on growth performance, intestinal microbiota and morphometry in broilers
CN107484879A (en) Feed addictive, antibiotic-free feed and its application
Gharib-Naseri et al. Bacillus amyloliquefaciens CECT 5940 improves performance and gut function in broilers fed different levels of protein and/or under necrotic enteritis challenge
Zhang et al. Probiotic Bacillus subtilis LF11 protects intestinal epithelium against Salmonella infection
US20220133816A1 (en) Feed additive formulation and methods of making and using the same
CN110292103A (en) A kind of live pig nonreactive feed and preparation method thereof
Ogwuegbu et al. Sodium butyrate and rosemary leaf meal inclusion in broiler diet: effects on gut micro-floral, growth performance, ileum, jejunum and duodenal histological traits
US20220168363A1 (en) Compositions containing bacillaene producing bacteria or preparations thereof
CN105166323A (en) Compound feedstuff additive
US20200305461A1 (en) Bacteriophage animal feed preservative
KR101649476B1 (en) Growth inhibitor against bacillus amyloliquefaciens KNU-1 (KCTC18343P) or culture medium thereof
Lee et al. Effect of feeding the combination with Lactobacillus plantarum and Bacillus subtilis on fecal microflora and diarrhea incidence of Korean native calves
CN112970968A (en) Probiotic functional feed for marine cultured fish and preparation method thereof
Lyons A time for answers: solutions for the 2001 feed industry.
Yadav et al. A review on gut health in chicken: Associated factors and nutritional strategies
Mathivanan et al. Effect of dietary Panchagavya supplementation on growth and feed conversion efficiency of broilers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887833

Country of ref document: EP

Kind code of ref document: A1