WO2016159332A1 - Ophthalmic laser surgery device and ophthalmic laser surgery control program - Google Patents

Ophthalmic laser surgery device and ophthalmic laser surgery control program Download PDF

Info

Publication number
WO2016159332A1
WO2016159332A1 PCT/JP2016/060859 JP2016060859W WO2016159332A1 WO 2016159332 A1 WO2016159332 A1 WO 2016159332A1 JP 2016060859 W JP2016060859 W JP 2016060859W WO 2016159332 A1 WO2016159332 A1 WO 2016159332A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
unit
front image
light
ophthalmic laser
Prior art date
Application number
PCT/JP2016/060859
Other languages
French (fr)
Japanese (ja)
Inventor
通浩 滝井
柴田 隆義
昌明 羽根渕
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015074637A external-priority patent/JP2016193096A/en
Priority claimed from JP2015074639A external-priority patent/JP2016193098A/en
Priority claimed from JP2015074638A external-priority patent/JP2016193097A/en
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Publication of WO2016159332A1 publication Critical patent/WO2016159332A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser

Definitions

  • the present disclosure relates to an ophthalmic laser surgical apparatus that treats an eye of a subject by irradiating surgical laser light, and a control program used therefor.
  • Patent Documents 1 and 2 An ophthalmic laser surgical apparatus that treats an eye by irradiating the eye of a subject with surgical laser light is known (see Patent Documents 1 and 2).
  • a front image capturing unit that captures a front image of the anterior segment may be provided (see Patent Document 3).
  • the front image capturing unit may share a part of the optical path with the laser irradiation optical system, and the front image capturing unit is connected to the patient's eye via an optical element provided at an interface attached to the tip of the laser irradiation unit of the apparatus. May be taken.
  • the interface may be changed in the conventional device.
  • the interface is provided with an optical element for adjusting the condensing state of the laser light, and an interface with a different type of optical element may be attached depending on a laser irradiation site or the like.
  • the laser irradiation unit for irradiating a laser and the front image capturing unit may be moved integrally, and the focus position of the front image capturing unit is shifted with respect to the patient. There was a case.
  • the present disclosure has a typical technical problem to provide an ophthalmic laser surgical apparatus that solves at least one of the problems of the related art, and a control program used therefor.
  • the first embodiment according to the present disclosure is characterized by having the following configuration.
  • An ophthalmic laser surgical apparatus that treats the eye by irradiating the eye of the subject with surgical laser light, and has a light receiving element, and varies depending on the distance between the apparatus main body and the eye
  • At least one of a front image capturing unit that captures a front image of the anterior segment of the eye at a magnification, an optical member provided on the optical path of the front image capturing unit, and the light receiving element is used as an optical axis of the optical path.
  • a focus adjustment unit that adjusts a focus state of reflected light from the anterior ocular segment of the eye in the light receiving element, and a control unit, and the control unit includes the eye for the apparatus main body.
  • the focus adjustment is performed by processing the light including the reflected light reflected by the eye in each of the case where the position is in the first region and the second region closer to the apparatus body than the first region. By driving the part The focus state is adjusted.
  • An ophthalmic surgery control program for controlling an ophthalmic laser surgical apparatus for treating the eye by irradiating the eye of the subject with surgical laser light, wherein the ophthalmic laser surgical apparatus includes a light receiving element A front image capturing unit that captures a front image of the anterior segment of the eye at different magnifications according to the distance between the apparatus main body and the eye, and an optical path of the front image capturing unit.
  • a focus adjustment unit that adjusts a focus state of reflected light from the anterior segment of the eye in the light receiving element by moving at least one of the optical member and the light receiving element along the optical axis of the optical path; And the ophthalmic surgery control program is executed by the processor of the ophthalmic laser surgical apparatus, so that the position of the eye with respect to the apparatus body is in the first area, and more than the first area.
  • a focus state adjustment step of adjusting the focus state by processing the light including the reflected light reflected by the eye and driving the focus adjustment unit in each case where the second region is close to the apparatus main body. Is performed by the ophthalmic laser surgical apparatus.
  • the second embodiment according to the present disclosure is characterized by having the following configuration.
  • An ophthalmic laser surgical apparatus that treats the eye by irradiating the eye of the subject with surgical laser light, a drive unit that moves at least one of the apparatus main body and the subject, and a light receiving element
  • a front image capturing unit that captures a front image of the anterior ocular segment of the eye at different magnifications according to the distance between the apparatus main body and the eye, and provided on the imaging optical path of the front image capturing unit.
  • a focus adjustment unit that adjusts the eye that moves relative to the apparatus main body, the distance that is changed by driving of the drive unit, the optical member that is moved by the focus adjustment unit, and The relationship with at least one position of the light receiving element is non-linear.
  • An ophthalmic surgery control program for controlling an ophthalmic laser surgical apparatus for treating the eye by irradiating the eye of the subject with a surgical laser beam, wherein the ophthalmic laser surgical apparatus is an apparatus main body.
  • a drive unit that moves at least one of the subjects and a light receiving element, and captures a front image of the anterior segment of the eye at a different magnification according to the distance between the apparatus main body and the eye.
  • a focus adjustment unit that adjusts a focus state of reflected light from the anterior eye part of the eye in the light receiving element to the eye that moves relative to the apparatus main body, and the ophthalmic surgery control program stores the eye
  • the processor of the medical laser surgical apparatus executes the ophthalmic laser surgical apparatus to execute a focus adjustment step of adjusting the focus state according to the distance.
  • the third embodiment according to the present disclosure is characterized by having the following configuration.
  • An ophthalmic laser surgical apparatus that treats the eye by irradiating the eye of the subject with surgical laser light, and has at least a lens disposed on an irradiation optical path of the surgical laser light,
  • a holding unit that holds an interface interposed between the apparatus main body and the eye; and a light receiving element that receives reflected light that has been reflected by the eye and passed through the lens, and the distance between the apparatus main body and the eye
  • a front image capturing unit that captures a front image of the anterior segment of the eye at different magnifications according to When the interface held by the holding unit is changed, and the magnification of the front image captured by the front image capturing unit changes, a magnification adjusting unit that adjusts the change of the magnification is provided.
  • An ophthalmic surgery control program for controlling an ophthalmic laser surgical apparatus for treating the eye by irradiating the eye of the subject with surgical laser light, wherein the ophthalmic laser surgical apparatus includes the surgery And at least a lens arranged on the irradiation light path of the laser beam for use, a holding unit for holding an interface interposed between the apparatus main body and the eye, and a reflected light reflected by the eye and passing through the lens
  • a front image capturing unit that captures a front image of the anterior ocular segment of the eye at different magnifications depending on the distance between the apparatus main body and the eye
  • the ophthalmic surgery control program Is executed by the processor of the ophthalmic laser surgical apparatus, the interface held in the holding unit is changed, and the image taken by the front image taking unit is changed.
  • the ophthalmic laser surgical apparatus is caused to execute a magnification adjustment step for adjusting the change in magnification.
  • FIG. 1 is a diagram illustrating an overall configuration of an ophthalmic laser surgical apparatus 1.
  • FIG. 2 is a diagram illustrating a schematic configuration of a front image capturing unit 30.
  • FIG. 3 is a diagram showing a schematic configuration of a fixation target projection unit 40.
  • FIG. It is a figure which shows the outline of the mechanical structure of the ophthalmic laser surgery apparatus.
  • 6 is a cross-sectional view of an immersion interface 91 coupled to an eye E.
  • FIG. FIG. 6 is a cross-sectional view of an applanation interface 92 coupled to an eye E. It is a figure explaining the imaging range of a front image.
  • 3 is a flowchart showing control of the ophthalmic laser surgical apparatus 1.
  • FIG. 1 is a diagram illustrating an overall configuration of an ophthalmic laser surgical apparatus 1.
  • FIG. 2 is a diagram illustrating a schematic configuration of a front image capturing unit 30.
  • FIG. 3 is a diagram showing a schematic configuration of a fixation
  • FIG. 6 is a diagram for explaining a modification example of a magnification adjustment unit 300. It is a figure explaining the example of a change of magnification adjustment.
  • FIG. 6 is a diagram relating to the amount of movement of the light receiving element 31 with respect to the distance WD between the apparatus main body and the patient's eye E It is a figure explaining the acquisition method of focus information using a front picture. It is a figure explaining the acquisition method of focus information using a front picture. It is a figure explaining the acquisition method of focus information using a tomographic image.
  • an ophthalmic laser surgical apparatus 1 that performs an operation or the like of a subject (patient or subject) is illustrated.
  • the ophthalmic laser surgical apparatus 1 can treat both the cornea and the crystalline lens of the eye E of the subject.
  • the technique exemplified in the present embodiment includes a technique that can be applied to other surgical apparatuses (for example, an apparatus that performs photocoagulation of the fundus using a laser).
  • the surgical laser light source 2 emits surgical laser light for treating the eye E.
  • the pulsed laser light emitted from the surgical laser light source 2 is condensed in the tissue of the eye E, plasma is generated at the condensing position (spot), and the tissue is cut and fractured. Is called.
  • the above phenomenon is sometimes referred to as photodisruption.
  • a device that emits pulsed laser light in femtosecond to picosecond order can be used.
  • the direction along the optical path of the surgical laser beam emitted from the surgical laser light source 2 is defined as the Z direction.
  • One of the directions intersecting the Z direction (vertically intersecting in the present embodiment) is defined as the X direction.
  • a direction that intersects both the Z direction and the X direction is defined as a Y direction.
  • the reference light source 3 emits reference light (reference laser light) serving as a reference for performing various controls.
  • reference light reference laser light
  • the reference light of this embodiment may be used when detecting the irradiation position of the surgical laser light.
  • the dichroic mirror 4 is provided in the optical path of the surgical laser beam.
  • the dichroic mirror 4 combines the surgical laser light emitted from the surgical laser light source 2 and the reference light emitted from the reference light source 3.
  • the zoom expander 5 is provided between the surgical laser light source 2 and the XY scanning unit 10 (described later) in the optical path of the surgical laser light.
  • the zoom expander 5 can change the beam diameter of the surgical laser light.
  • the control unit 50 (described later) drives the zoom expander 5 to change the beam diameter of the surgical laser beam, thereby operating the surgical laser beam emitted from the objective lens 20 (described later) toward the eye E. Can be adjusted.
  • the high-speed Z-scanning unit 6 is a part of the Z-scanning unit that scans the spot where the surgical laser beam is collected in the Z direction.
  • the high-speed Z scanning unit 6 is provided between the zoom expander 5 and the XY scanning unit 10 in the optical path of the surgical laser light.
  • the high-speed Z scanning unit 6 of the present embodiment includes a moving optical element 7 having negative refractive power and a high-speed Z scanning driving unit 8 that moves the moving optical element 7 along the optical axis.
  • a galvano motor or the like that can move the moving optical element 7 at a high speed may be used for the high-speed Z scanning drive unit 8.
  • a lens 9 is provided between the moving optical element 7 and the XY scanning unit 10.
  • the lens 9 guides the laser light that has passed through the high-speed Z scanning unit 8 to the XY scanning unit 10.
  • the moving optical element 7 moves in the optical axis direction
  • the spot of the surgical laser beam on the eye E moves in the Z direction.
  • the high speed Z scanning unit 6 can scan the spot in the Z direction at a higher speed than the wide range Z scanning unit 18 (described later).
  • the XY scanning unit 10 scans the surgical laser beam in the XY direction intersecting the optical axis.
  • the XY scanning unit 10 of this embodiment includes an X deflection device 11 and a Y deflection device 12.
  • the X deflection device 11 scans the surgical laser beam in the X direction.
  • the Y deflection device 12 further scans the surgical laser beam scanned in the X direction by the X deflection device 11 in the Y direction.
  • galvanometer mirrors are employed for both the X deflection device 11 and the Y deflection device 12.
  • a scanner such as a polygon mirror or an acousto-optic device
  • a scanner such as a polygon mirror or an acousto-optic device
  • at least one of the X deflection device 11 and the Y deflection device 12 may include a plurality of scanners.
  • the relay unit 14 is provided between the XY scanning unit 10 and the objective lens 20.
  • the relay unit 14 relays the surgical laser light that has passed through the XY scanning unit 10 to the objective lens 20 by the upstream relay optical element 15 and the downstream relay optical element 16.
  • the wide-range Z scanning unit 18 is a part of the Z scanning unit that scans the spot in the Z direction.
  • the wide-range Z scanning unit 18 of the present embodiment moves the optical unit including the XY scanning unit 10 and the upstream relay optical element 15 along the optical axis by the wide-range Z scanning drive unit 19, thereby The optical path length between the side relay optical element 15 and the objective lens 20 is changed.
  • the spot is scanned in the Z direction.
  • the wide-range Z scanning unit 18 can scan a spot in a wide range in the Z direction as compared with the high-speed Z scanning unit 10.
  • the configuration of the wide-range Z scanning unit 18 can be changed as appropriate.
  • the ophthalmic laser surgical apparatus 1 includes at least one of optical elements (for example, the upstream relay optical element 15, the downstream relay optical element 16, and the objective lens 20) located on the downstream side of the XY scanning unit 10.
  • the spot may be scanned in the Z direction by moving in the optical axis direction. It is also possible to scan the spot in the Z direction using only the high-speed Z scanning unit 10.
  • the objective lens 20 is arranged on the downstream side of the optical path of the surgical laser light with respect to the downstream side relay optical element 16 of the relay unit 14.
  • the surgical laser light that has passed through the objective lens 20 is focused on the tissue of the eye E via the interface 90.
  • the interface 90 is interposed between the apparatus main body and the eye E among optical paths of various lights (surgical laser light, reference light, observation light, OCT light, and fixation target projection light) that pass through the objective lens 20. Coupled to eye E.
  • Various configurations for example, an immersion interface 91 and an applanation interface 92
  • Details of the interface 90 will be described later with reference to FIGS. 5 and 6.
  • the dichroic mirror (optical axis combining unit) 22 is provided between the objective lens 20 and the downstream relay optical element 16 in the optical path of the surgical laser beam.
  • the dichroic mirror 22 has coaxial optical axes of various lights propagating between the ophthalmic laser surgical apparatus 1 and the eye E.
  • the dichroic mirror 22 reflects most of the surgical laser light emitted from the surgical laser light source 2 toward the objective lens 20.
  • the dichroic mirror 22 reflects part of the reference light emitted from the reference light source 3 and transmits the rest (details of the optical path of the reference light will be described later).
  • the dichroic mirror 22 transmits most of the observation light, the OCT light, and the fixation target projection light.
  • the optical axis of the observation light, the OCT light, and the fixation target projection light and the optical axis of the surgical laser light are branched using the dichroic mirror 22 as a branch point.
  • the observation light is reflected light that is reflected by the eye E and enters the front image capturing unit 30.
  • the OCT light is light emitted from the tomographic image photographing unit 23 for photographing a tomographic image.
  • the fixation target projection light is light emitted from the fixation target projection unit 40 in order to fix the eye E.
  • the front image capturing unit 30 is a part of a capturing unit that captures an image of the eye E.
  • the front image capturing unit 30 captures a front image of the eye E (in this embodiment, a front image of the anterior segment) by receiving the reflected light (observation light) reflected by the eye E.
  • the front image capturing unit 30 can also capture at least a part of the interface 90 attached to the apparatus main body.
  • reflected light of infrared light emitted from the alignment / illumination light source 64 (see FIG. 4) of the alignment index projection unit 63 is received by the front image capturing unit 30 as observation light. Details of the front image capturing unit 30 will be described later with reference to FIG.
  • the tomographic image capturing unit 23 is also a part of the capturing unit that captures an image of the eye E.
  • the tomographic image capturing unit 23 can capture a tomographic image of the eye E.
  • the tomographic image capturing unit 23 can also capture tomographic images of the interface lenses 100 and 110 (details will be described later with reference to FIGS. 5 and 6) included in the interface 90.
  • the tomographic imaging unit 23 of the present embodiment includes an OCT light source, a light splitter, a reference optical system, a scanning unit, and a light receiving element.
  • the OCT light source emits OCT light for capturing a tomographic image.
  • the optical splitter divides the OCT light emitted from the OCT light source into reference light and measurement light.
  • the reference light enters the reference optical system, and the measurement light enters the scanning unit.
  • the reference optical system has a configuration that changes the optical path length difference between the measurement light and the reference light.
  • the scanning unit scans the measurement light in a two-dimensional direction (XY direction).
  • the detector detects an interference state between the measurement light reflected by the subject and the reference light that has passed through the reference optical system.
  • the measurement light is scanned, and the interference state between the reflected measurement light and the reference light is detected, whereby information in the depth direction of the object to be imaged is acquired.
  • a tomographic image to be imaged is acquired based on the acquired depth information.
  • the tomographic image capturing unit 23 can be used for the tomographic image capturing unit 23.
  • any of SS-OCT, SD-OCT, TD-OCT, and the like may be adopted for the tomographic imaging unit 23.
  • the ophthalmic laser surgical apparatus 1 may capture a tomographic image to be imaged using a technique other than optical interference (for example, Shine-Pluke etc.).
  • the fixation target projection unit 40 can project a fixation target that guides the line of sight of the eye E of the subject onto the eye E. That is, the fixation target projection unit 40 is used for performing fixation of the eye E.
  • the fixation target projection unit 40 of the present embodiment can change the projection state of the fixation target onto the eye E. Details of the fixation target projecting unit 40 will be described later with reference to FIG.
  • the dichroic mirror 24 is coaxial with the imaging optical axis of the front image capturing unit 30 (that is, the optical axis 9 of the reflected light incident on the front image capturing unit 30) and the projection optical axis of the fixation target projecting unit 40. Specifically, in the present embodiment, most of the reflected light incident on the front image capturing unit 30 is transmitted through the dichroic mirror 24, and most of the light of the fixation target projected from the fixation target projection unit 40 is dichroic. Reflected by the mirror 24.
  • the dichroic mirror 25 has the imaging optical axis of the front image capturing unit 30 and the projection optical axis of the fixation target projecting unit 40 coaxial with the imaging optical axis of the tomographic image capturing unit 23. Specifically, in the present embodiment, most of the reflected light incident on the front image capturing unit 30 is transmitted through the dichroic mirror 25. Most of the light of the fixation target projected from the fixation target projection unit 40 also passes through the dichroic mirror 25. Most of the OCT light for capturing a tomographic image is reflected by the dichroic mirror 25.
  • the irradiation position detection unit 26 is provided on an optical path branched from the optical path of the surgical laser light extending from the surgical laser light source 2 to the eye E.
  • the optical path of the surgical laser light extending from the scanning units 6, 10, 18 to the dichroic mirror 22 is branched by the dichroic mirror 22.
  • An irradiation position detector 26 is installed on the optical path of light that passes through the dichroic mirror 22 among the branched optical paths. However, the installation position of the irradiation position detector 26 can be changed.
  • the half mirror 27 branches the optical path of the reference light transmitted through the dichroic mirror 22.
  • One of the branched optical paths extends to the irradiation position detector 26 and the other extends to the mirror 28.
  • the mirror 28 reflects the reference light incident from the half mirror 27 and makes it incident on the half mirror 27 again.
  • the optical axis of the reference light incident on the mirror 28 and the optical axis of the reference light reflected by the mirror 28 are coaxial.
  • the reference light reflected by the mirror 28 is reflected again by the half mirror 27 and reflected by the dichroic mirror 22. Thereafter, the reference light passes through the dichroic mirror 25 and the dichroic mirror 24 and enters the front image capturing unit 30. As a result, the reference light is projected onto the light receiving element 31 (see FIG.
  • the control unit 50 includes a CPU 51, a ROM 52, a RAM 53, a nonvolatile memory (not shown), and the like.
  • the CPU 51 performs various controls of the ophthalmic laser surgical apparatus 1 (for example, control of the surgical laser light source 2, control of the reference light source 3, operation control of the scanning units 6, 10, and 18, image shooting control, and fixation target projection).
  • Control controls of the ophthalmic laser surgical apparatus 1 (for example, control of the surgical laser light source 2, control of the reference light source 3, operation control of the scanning units 6, 10, and 18, image shooting control, and fixation target projection).
  • Control controls the ophthalmic laser surgical apparatus 1 (for example, control of the surgical laser light source 2, control of the reference light source 3, operation control of the scanning units 6, 10, and 18, image shooting control, and fixation target projection).
  • Control controls of the ophthalmic laser surgical apparatus 1 (for example, control of the surgical laser light source 2, control of the reference light source 3, operation control of the scanning units 6, 10, and 18, image shooting control, and fixation target projection).
  • the display unit 54 can display various images.
  • the operation unit 55 is operated by a user (for example, an operator, an examiner, an assistant, etc.).
  • the control unit 50 receives input of various operation instructions by the user via the operation unit 55.
  • various devices such as a touch panel, various buttons, a keyboard, and a mouse provided in the display unit 54 may be appropriately employed.
  • the display unit 54 and the operation unit 55 may be incorporated in the apparatus main body of the ophthalmic laser surgical apparatus 1 or may be another device connected to the apparatus main body by wire or wirelessly.
  • FIG. 1 illustrates the case where one control unit 50 is used as the controller of the ophthalmic laser surgical apparatus 1.
  • the ophthalmic laser surgical apparatus 1 may be controlled by a plurality of controllers.
  • the ophthalmic laser surgical apparatus 1 may include an apparatus main body including various optical elements and actuators, and a personal computer connected to the apparatus main body.
  • the controller of the personal computer may create laser irradiation control data
  • the controller of the apparatus main body may control the driving of the actuator in accordance with the created irradiation control data.
  • display control of the display unit 54, analysis of captured images, calculation of various parameters, and the like may be executed by a controller of a personal computer. That is, it is not necessary for all the control processes described later to be executed by one controller of the apparatus main body.
  • the front image capturing unit 30 will be described with reference to FIG.
  • the front image capturing unit 30 of the present embodiment includes a light receiving element 31, a lens 32, and a light receiving adjustment unit (focus adjustment unit) 33.
  • the light receiving element 31 receives reflected light (observation light) reflected by the eye E.
  • the light receiving element 31 of the present embodiment captures an image of the eye E (specifically, a front image of the anterior eye part) by receiving the reflected light from the eye E.
  • a two-dimensional light receiving element for example, CCD, CMOS, etc.
  • the lens 32 conjugates the imaging target region of the eye E and the light receiving element 31.
  • the light receiving adjustment unit 33 adjusts the light receiving state of the reflected light in the light receiving element 31. Specifically, the light receiving adjustment unit 33 of the present embodiment adjusts the focus state of the reflected light at the light receiving element 31. That is, the light receiving adjustment unit 33 according to the present embodiment moves the light receiving element 31 in a direction along the optical axis (imaging optical axis) of reflected light (in the direction of arrow A in FIG. 2), so that the light receiving element 31 and the imaging target part are moved. Can be conjugated. For example, a motor or the like is used for the light receiving adjustment unit 33 of the present embodiment.
  • the front image photographing unit 30 may include a light receiving adjustment unit 34 that moves an optical element (for example, a lens 32) provided on the photographing optical path in a direction along the optical path (in the direction of arrow B in FIG. 2).
  • the ophthalmic laser surgical apparatus 1 can adjust the focus state by moving at least one of the light receiving element 31 and the optical element along the optical axis.
  • the ophthalmic laser surgical apparatus 1 may adjust the light receiving state (for example, the imaging magnification of the front image) other than the focus state by driving the light receiving adjustment unit 34.
  • the front image photographing unit 30 may include a light receiving adjustment unit 36 for inserting the optical element 35 on the photographing optical axis and removing the optical element 35 from the photographing optical axis (arrow C in FIG. 2). reference).
  • the ophthalmic laser surgical apparatus 1 can adjust the light receiving state in stages according to various conditions. Note that description of the magnification adjustment unit 300 and the luminance adjustment unit 400 illustrated in FIG. 2 will be described later.
  • the fixation target projection unit 40 will be described with reference to FIG.
  • the fixation target projection unit 40 of the present embodiment includes a fixation target projection light source 41, a first diaphragm 42, a second diaphragm 43, a lens 44, a movable stage 45, a fixation target movement drive unit 46, a fixed lens 47, and movable optics.
  • An element 48 and an optical element movement drive unit 49 are provided.
  • the fixation target projection light source 41 emits light (fixation target projection light) for projecting the fixation target onto the eye E of the subject.
  • the amount of fixation target projection light emitted from the fixation target projection light source 41 is changed by the control unit 50.
  • the first diaphragm 42 and the second diaphragm 43 make the light flux of the fixation target projection light incident on the projection optical path of the fixation target a certain size.
  • the lens 44 is fixed at a predetermined position with respect to the first diaphragm 42 and the second diaphragm 43 in the projection optical path.
  • the movable stage 45 is equipped with a fixation target projection light source 41, a first diaphragm 42, a second diaphragm 43, and a lens 44.
  • the movable stage 45 can move in a direction intersecting the optical axis (projection optical axis) of the projection optical path (in the direction of arrow D in FIG. 3).
  • the fixation target moving drive unit 46 moves the movable stage 45.
  • a motor or the like is used for the fixation target movement drive unit 46.
  • the fixed lens 47 is fixed on the projection optical path.
  • the movable optical element (for example, movable lens) 48 moves between an insertion position where the movable optical element (for example, a movable lens) is inserted on the projection optical path and a removal position where the movable optical element 48 is removed from the projection optical path (see arrow E in FIG. 3).
  • the optical element movement drive unit 49 moves the movable optical element 48.
  • Various actuators such as a motor and a solenoid can be used for the optical element movement drive unit 49.
  • the ophthalmic laser surgical apparatus 1 of the present embodiment can change the projection state of the fixation target projected onto the eye E.
  • the ophthalmic laser surgical apparatus 1 can change the amount of fixation target projection light by adjusting the power supplied to the fixation target projection light source 41.
  • the brightness of the fixation target projected toward the eye E is changed.
  • the ophthalmologic laser surgical apparatus 1 changes the focal length of the fixation target projection optical system by switching between insertion of the movable optical element 48 on the projection optical path and removal of the movable optical element 48 from the projection optical path. can do. In this case, the focusing state of the fixation target in the retina of the eye E is changed.
  • the fixation target projection optical system is various optical members provided in a projection optical path extending from the fixation target projection light source 41 to the eye E.
  • the fixation target projection optical system of the present embodiment includes diaphragms 42 and 43, a lens 44, a fixed lens 44, and a movable optical element 48.
  • the method for changing the projection state of the fixation target can be selected as appropriate.
  • the ophthalmic laser surgical apparatus 1 may move the movable optical element 48 in the direction along the projection optical axis (the direction of arrow F in FIG. 3) by driving the optical element movement drive unit 49.
  • the ophthalmic laser surgical apparatus 1 may move the movable stage 45 in a direction along the projection optical axis (in the direction of arrow G in FIG. 3) by driving the fixation target moving drive unit 46.
  • the focal length of the fixation target projection optical system is changed.
  • both the movable optical element 48 and the movable stage 45 may be moved along the projection optical axis.
  • the method of projecting the fixation target can also be changed.
  • a liquid crystal display may be used instead of the point light source.
  • the fixation direction of the eye E is changed by changing the display position of the target in the display area of the liquid crystal display.
  • a method of arranging a plurality of point light sources and switching the point light sources to be lit can also be adopted.
  • the ophthalmic laser surgical apparatus 1 includes a housing 60 that houses various optical systems and scanning units 6, 10, 18, and the like.
  • a cylindrical portion 61 is provided in a part of the lower portion of the housing.
  • the objective lens 20 described above is fixed inside the cylindrical portion 61.
  • the tube portion 61 serves as an irradiation end for irradiating the eye E with a surgical laser beam.
  • An alignment index projection unit 63 is provided at the lower end of the housing 60.
  • the alignment index projection unit 63 projects the alignment index onto the cornea of the eye E.
  • the alignment projection unit 63 of the present embodiment includes a plurality of alignment / illumination light sources 64 that are point light sources that emit light of a finite distance.
  • the light emitted from the alignment / illumination light source 64 also serves as an illumination light source for capturing a front image.
  • an illumination light source may be provided separately from the alignment light source.
  • a plurality (eight in this embodiment) of alignment / illumination light sources 64 are arranged in an annular shape around the central axis of the cylindrical portion 61.
  • control unit 50 processes the front image to detect light emitted from the alignment / illumination light source 64 and reflected by the cornea as a bright spot.
  • the control unit 50 detects the position of the eye E with respect to the apparatus main body based on the detected position of the bright spot.
  • the configuration of the alignment index projection unit 63 can be changed as appropriate.
  • an annular light source that projects a continuous ring-shaped index may be employed.
  • the position of the eye E in the direction (XY direction) intersecting the photographing optical axis of the front image is detected by projecting the alignment index with light of finite distance.
  • the ophthalmic laser surgical apparatus 1 projects the position of the eye E in the direction along the imaging optical axis (Z direction) by projecting both an infinite index and a finite target toward the eye E. You may detect with the position in a direction.
  • the position of the eye E in the Z direction is detected based on the relationship between the infinity index reflected in the front image and the finite distance target.
  • the illumination light may be applied to the eye E by a light source different from the light source provided in the ophthalmic laser surgical apparatus 1.
  • the housing 60 includes a coupling drive unit 66.
  • the coupling drive unit 66 couples the interface 90 to the eye E by moving the housing 60 (device main body) and the holding unit 67 (described later) with respect to the eye E.
  • the coupling drive unit 66 of the present embodiment can move the housing 60 and the holding unit 67 in three directions (X, Y, Z directions).
  • the specific method for changing the relative positional relationship between the apparatus main body and the eye E is not limited to the method of moving the housing 60 in three directions.
  • the coupling drive unit may couple the interface 90 to the eye E by moving the subject relative to the apparatus main body.
  • the adjustment driving unit 70 is connected to the housing 60 and the holding unit 67. At least a part of the interface 90 is detachably attached to the holding unit 67.
  • the holding unit 67 holds the mounting interface in a state where at least one of the position and the angle of the mounted interface 90 (hereinafter sometimes referred to as “mounting interface”) with respect to the apparatus main body can be adjusted.
  • the adjustment driving unit 70 of the present embodiment adjusts the position of the mounting interface with respect to the apparatus main body by moving the holding unit 67 in the XY directions with respect to the apparatus main body.
  • the adjustment holding unit may adjust the angle of the mounting interface (details will be described later).
  • the holding part 67 includes a base part 68, a first link 71, a second link 72, a lock mechanism 73, a connecting part 74, a position detection sensor 75, an interface mounting part 76, and a pressure sensor 77.
  • the holding portion 67 serves as a base for holding the interface 90 while the nut base portion 68 is connected to the adjustment driving portion 70.
  • the first link 71 is connected to a part of the upper end of the base portion 68 so as to be rotatable about a horizontal axis.
  • the second link 72 is connected to one end of the first link 71 so as to be rotatable about a horizontal axis.
  • the second link 72 extends in the vertical direction. When the first link 71 rotates, the second link 72 moves in the vertical direction (Z direction). The movement of the second link 72 in the Z direction is guided by a part of the base portion 68.
  • the lock mechanism 73 is connected to a part of the second link 72 (in the vicinity of the lower end in the present embodiment).
  • the lock mechanism 73 can lock and unlock the movement of the second link 72.
  • the connecting portion 74 is fixed to a part of the second link 72 (in the present embodiment, near the center in the vertical direction) and moves in the Z direction together with the second link 72.
  • the connecting part 74 connects the second link 72 and the interface mounting part 76.
  • the position detection sensor 74 can detect the position of the interface 90 in the Z direction by detecting the position of the second link 72 in the Z direction.
  • the interface 90 is detachably mounted on the interface mounting portion 76.
  • a space 78 is formed between the base portion of the interface 90 and the interface mounting portion 76.
  • the pressure sensor (for example, load cell) 77 detects a load applied between the interface mounting portion 76 and the connecting portion 74.
  • the CPU 51 of the control unit 50 can detect whether the interface 90 is in contact with the eye E using the pressure sensor 77.
  • the nut 80 is mounted in a hole formed in the base portion 68 so as to be movable in the Z direction.
  • a pin 81 that contacts the first link 71 from below is provided at the upper end of the nut 80.
  • the feed screw 82 is screwed into the nut 80.
  • the motor 83 rotates the feed screw 82.
  • the nut 80 and the pin 81 move in the Z direction.
  • the first link 71 rotates
  • the second link 72, the connecting portion 74, the interface mounting portion 76, and the interface 90 move in the Z direction.
  • the lock mechanism 73 unlocks the second link 72 and the interface 90 is movable upward. It becomes. As a result, the safety for the eye E is improved.
  • the interface 90 will be described with reference to FIGS. 5 and 6.
  • the interface 90 is disposed between the apparatus main body and the eye E among optical paths of various lights (surgical laser light, reference light, observation light, OCT light, and fixation target projection light) extending between the apparatus main body and the eye E. Intervenes and is coupled to eye E.
  • the user can selectively use a plurality of types of interfaces 90 according to the region to be operated, the surgical procedure, and the like.
  • the plurality of types of interfaces 90 in the present embodiment include an immersion interface 91 (see FIG. 5) and an applanation interface 92 (see FIG. 6).
  • a configuration common to the immersion interface 91 and the applanation interface 92 will be described. The details of the configuration described below may be different between the immersion interface 91 and the applanation interface 92.
  • the interface 90 includes a mount 93, a suction path 94, an eye fixing portion 95, and an interface lens (an immersion lens 100 or a contact lens 110).
  • the mount 93 is a member that becomes a base of the interface 90.
  • the mount 93 is mounted on the interface mounting portion 76 (see FIG. 4) of the holding portion 67 and holds the eye fixing portion 95 and the like.
  • the mount 93 is formed with a circular hole penetrating in the Z direction (vertical direction in FIGS. 5 and 6). Various types of light can propagate inside the circular hole.
  • the suction path 94 is provided in the mount 93 and allows gas to flow between a space 96 described later and a pump (not shown).
  • the eye fixing part (suction ring in the present embodiment) 95 is an annular (annular in the present embodiment) member.
  • the eye fixing part 95 is provided at the lower part of the mount 93 so as to surround the lower end of the circular hole formed in the mount 93.
  • the eye fixing unit 95 is coupled to the eye E (in this embodiment, the cornea or sclera of the eye E), so that the apparatus main body (specifically, the objective lens 20 provided in the apparatus main body and the surgical laser) The position of the eye E with respect to the light reference axis or the like is fixed.
  • the eye fixing part 95 and the mount 93 are separate members.
  • the eye fixing part 95 is fixed to the mount 93 by fitting, welding, adhesive bonding, or the like.
  • the eye fixing part 95 may be formed integrally with the mount 93. Further, the eye fixing portion 95 may be detachably attached to the mount 93 or the arm portion of the mount 93 by suction or the like. When the eye fixing part 95 contacts the eye E, a sealed space 96 is formed between the surface of the eye E and the eye fixing part 95. As the gas in the space 96 is discharged through the suction passage 94, the eye fixing portion 95 is sucked and fixed to the eye E.
  • the interface lens (the immersion lens 100 and the contact lens 110) is disposed on the apparatus main body side (above the eye fixing unit 95 in the present embodiment) of the various light paths of the light.
  • the interface lenses 100 and 110 of this embodiment are fixed to the upper part of a circular hole formed in the mount 93 by an adhesive or the like.
  • the interface lenses 100 and 110 and the eye fixing part 95 may be separate members instead of being integrally fixed.
  • the interface lenses 100 and 110 may be detachably attached to the mount 93 or the arm portion of the mount 93 by suction or the like.
  • the immersion lens 100 of the immersion interface 91 will be described with reference to FIG.
  • a space 103 is generated between the immersion lens 100 and the surface (cornea) of the eye E.
  • a substance for example, a liquid such as water or a viscoelastic substance or an elastic body
  • the refractive index difference between the transparent tissues of the eye E eg, cornea
  • that of air is disposed in the space 103.
  • an injection path (not shown) for injecting liquid into the space 103 is formed in the mount 93.
  • the liquid is injected into the space 103 through the injection path with the immersion interface 91 in contact with the eye E.
  • the method of arranging a substance such as a liquid in the space 103 can be changed as appropriate.
  • the user may place a substance such as a liquid on the eye E from above while the immersion interface 91 is in contact with the eye E, and then attach the immersion lens 100 to the mount 93.
  • the rear surface 101 located on the eye E side and the front surface 102 located on the apparatus main body side are both convex toward the eye E side (lower side). Is curved.
  • the surfaces of the rear surface 101 and the front surface 102 are shaped along a spherical surface.
  • the shapes of the rear surface 101 and the front surface 102 can be changed.
  • at least one of the rear surface 101 and the front surface 102 may be a flat surface.
  • the control unit 50 can also detect the center position of the immersion lens 100 by the light (bright spot) that is irradiated from the alignment index projection unit 63 (see FIG. 4) and reflected by the lens surface.
  • the lens surface may be curved along an aspheric surface.
  • the contact lens 110 of the applanation interface 92 will be described with reference to FIG.
  • the rear surface 111 of the contact lens 110 comes into contact with the surface of the eye E (including the cornea). That is, the cornea of the eye E is applanated.
  • the shape of the cornea surface is deformed to the shape of the rear surface 111 of the contact lens 110. Therefore, the irradiation position of the surgical laser beam is set appropriately.
  • an adverse effect for example, generation of aberration
  • the contact lens 110 may be applanated by the eye E by sucking the gas between the rear surface 111 of the contact lens 110 and the surface of the eye E.
  • the rear surface 111 located on the eye E side is curved in a convex shape toward the upper side. Therefore, an increase in intraocular pressure during applanation is suppressed as compared with the case where the eye E is applanated by a flat surface.
  • the control unit 50 can detect the center position of the contact lens 110 by the light emitted from the alignment index projection unit 63 (see FIG. 4) and reflected by the rear surface 111.
  • the front surface 112 of the contact lens 110 is curved in a convex shape toward the apparatus main body, similarly to the front surface 102 of the immersion lens 100 described above. Both the rear surface 111 and the front surface 112 are formed in a curved shape along the spherical surface.
  • the shapes of the rear surface 111 and the front surface 102 of the contact lens 110 can be changed in the same manner as the immersion lens 100.
  • the rear surface 111 of the contact lens 110 may be a flat surface.
  • applanation includes not only the meaning of deforming the cornea of the eye E into a flat shape but also the meaning of deforming the cornea of the eye E into a predetermined shape that is not flat.
  • the refractive power of the interface lens differs depending on the type of the interface 90.
  • the interface lenses 100 and 110 are arranged in the photographing optical path of the front image photographing unit 30 when the interface 90 is attached to the interface attaching unit 76. Therefore, when the refractive powers of the interface lenses 100 and 110 differ depending on the type of the interface 90, the refractive power of the optical elements in the entire photographing optical path of the front image photographing unit 30 changes, and the photographing magnification of the front image photographing unit 30 changes.
  • FIG. 7A shows the distance WD between the apparatus main body and the eye E and the diameter ⁇ of the photographing range of the front image photographing unit 30 when the immersion interface 91 is used and when the applanation interface 92 is used.
  • the horizontal axis is the distance WD
  • the vertical axis is the diameter ⁇ of the imaging range.
  • the solid line indicates when the liquid immersion interface 91 is used
  • the dotted line indicates when the applanation interface 92 is used.
  • the diameter ⁇ of the imaging range is wider when the applanation interface 92 is used than when the immersion interface 91 is used. That is, the photographing magnification is smaller when the applanation interface 92 is used than when the immersion interface 91 is used.
  • the front image capturing unit 30 of the present embodiment is non-telecentric on the image side, and the diameter ⁇ of the capturing range varies depending on the distance WD. That is, the shooting magnification varies depending on the size of the distance WD.
  • the diameter ⁇ of the imaging range when the distance WD is 0 mm is approximately 15 mm
  • the diameter ⁇ of the imaging range when the distance WD is 100 mm is , Approximately 40 mm (see FIG. 7B).
  • the diameter ⁇ of the photographing range when the distance WD is 0 mm is about 20 mm
  • a magnification adjustment unit 300 described later is provided, and the photographing magnification of the front image photographing unit 30 is adjusted so that a change in the photographing range that occurs according to the type of the interface 90 does not become too large.
  • the magnification adjustment unit 300 may adjust the magnification so that a change in the photographing range that occurs according to the type of the interface 90 is reduced.
  • the magnification adjustment unit 300 adjusts the photographing magnification of the front image photographing unit 30.
  • the magnification adjustment unit 300 includes an optical element 301 and a drive unit 302.
  • the optical element 301 is provided in the photographing optical path of the front image photographing unit 30.
  • the drive unit 302 drives (moves) the optical element 301.
  • the drive unit 302 inserts and removes the optical element 301 on the photographing optical path (see arrow H in FIG. 2).
  • the magnification adjusting unit 300 may insert the optical element 301 on the photographing optical path when the interface 90 having a small photographing magnification is mounted among the plurality of types of interfaces 90.
  • the magnification adjusting unit 300 is mounted when the interface 90 having a large photographing magnification is mounted among the plurality of types of interfaces 90.
  • the optical element 301 may be inserted on the photographing optical path.
  • the magnification adjustment unit 300 may include a plurality of optical elements.
  • the magnification adjustment unit 300 may include an optical element 303 in addition to the optical element 301.
  • the magnification adjustment unit 300 may adjust the photographing magnification of the front image photographing unit 30 by driving the optical element 303 by the driving unit 304.
  • the imaging magnification and telecentricity (degree of telecentricity) of the front image capturing unit 30 may be easily adjusted.
  • a treatment laser light irradiation mode according to the content of the surgery (step S1). For example, by applying a therapeutic laser beam to the cornea of the patient's eye E, a LASIK mode for performing refractive surgery, and performing a cataract surgery by irradiating the cornea and the lens of the patient's eye E with the therapeutic laser beam.
  • An irradiation mode such as a cataract mode may be provided.
  • the case where the LASIK mode is selected will be exemplified.
  • the CPU 51 sets the irradiation mode to LASIK mode.
  • the CPU 51 controls the magnification adjustment unit 300, inserts the optical element 301 on the optical path of the front image capturing unit 30, and sets the shooting magnification of the front image capturing unit 30 to be suitable for the LASIK mode.
  • the magnification is adjusted (step S2). Details of the control in step S2 will be described later.
  • the CPU 51 adjusts the focus of the front image photographing unit 30 to the first position before starting the alignment (step S3).
  • the first position is an alignment start position between the apparatus 1 and the patient's eye E.
  • the first position is set at a position about 100 mm away from the position where the patient eye E and the interface 90 are docked in the optical axis direction of the treatment laser light.
  • the CPU 50 controls the light receiving adjustment unit 33 to adjust the focus of the light receiving element 31 to the first position.
  • the surgeon attaches the interface 90 suitable for the selected irradiation mode to the interface attaching part 76.
  • the surgeon attaches the applanation interface 92 to the interface attachment portion 76.
  • the CPU 51 may detect the type of the interface 90 attached to the interface attachment unit 76 using a sensor or the like. In this case, the CPU 90 may set the irradiation mode according to the type of the detected interface 90.
  • the operator uses an opener or the like to fix the patient's heel lying on the bed in an open state. Then, the operator starts automatic alignment between the patient's eye E and the applanation interface 92 by operating the operation unit 55 or the like.
  • the CPU 51 executes the first focus control in order to focus the light receiving element 31 on the patient's eye E (step S4). Details of the first focus control will be described later.
  • the CPU 51 acquires alignment information in the XYZ directions based on the bright spot reflected in the front image (step S5). Then, the CPU 51 drives the coupling drive unit 66 in the XYZ directions based on the acquired alignment information, and brings the interface 92 closer to the patient's eye E while adjusting the alignment in the XY directions. At this time, the CPU 51 controls the light receiving adjustment unit 33 to drive the light receiving element 31 based on the drive amount of the imaging drive unit 66, thereby adjusting the focus of the light receiving element 31 (step S6). Details of the method of driving the light receiving element 31 at this time will be described later.
  • the CPU 51 drives the coupling drive unit 66 to drive the apparatus 1 by about 100 mm, and moves the position of the patient's eye E relative to the apparatus 1 to the second position.
  • the second position is the vicinity of the position where the docking between the patient's eye E and the interface 90 is completed, and is the vicinity of the irradiation position when the laser light is irradiated.
  • the first position and the second position may be separated from a bright spot disappearance section in which a bright spot formed on the cornea of the patient's eye disappears due to the light beam from the alignment index projection unit 63.
  • the CPU 51 When the CPU 51 adjusts the focus state of the light receiving element 31 at the second position by the second focus control, the CPU 51 starts docking the applanation interface 92 and the patient's eye E (step S8). When docking is completed, the surgeon performs laser irradiation planning and the like, and performs irradiation with therapeutic laser light (step S9). By the steps as described above, surgery for the patient's eye using the ophthalmic laser surgical apparatus is performed.
  • the control operation of the magnification adjustment unit 300 in step S2 of FIG. 8 will be described.
  • the magnification adjustment unit 300 according to the present embodiment switches the imaging magnification of the front image by switching insertion and removal of the optical element 301 according to the type of the interface 90 used.
  • the CPU 51 controls the magnification adjustment unit 300 and inserts the optical element 301 on the optical path of the front image photographing unit 30 in order to reduce the change ratio of the photographing magnification.
  • the change in the photographing magnification of the front image photographing unit 30 in the LASIK mode is reduced, and the photographing magnification can be made closer when the applanation interface 92 is attached and when the immersion interface 91 is attached.
  • the ophthalmic laser surgical apparatus 1 can reduce a sense of incongruity caused by different magnification changes with respect to the distance WD when different types of interfaces 90 are used.
  • the timing at which the CPU 51 switches the photographing magnification by the magnification adjusting unit 300 may be when the setting of the irradiation mode is switched. For example, every time the irradiation mode is switched between the LASIK mode and the cataract mode by the operator's operation on the operation unit 55, the CPU 51 may control the magnification adjustment unit 300 to switch the imaging magnification. For example, when the irradiation mode is switched to the LASIK mode, the CPU 51 may control the driving of the driving unit 302 and insert the optical element 301 into the optical path of the front image capturing unit 30. Further, when the irradiation mode is switched to the cataract mode, the CPU 51 may control the driving of the driving unit 302 and remove the optical element 301 out of the optical path of the front image capturing unit 30.
  • a method other than inserting the optical element 301 in the LASIK mode as described above is also conceivable.
  • the optical element 301 may be inserted in the cataract mode, and the optical element 301 may be removed from the optical path in the LASIK mode.
  • the photographing magnification may be adjusted by inserting / removing the optical element 301.
  • magnification adjustment unit 300 may adjust the change in the magnification of the front image caused by the difference in the interface 90 by adjusting the ratio of the change in the magnification of the front image to the change in the distance WD.
  • the optical element 301 is inserted into and removed from the optical path of the front image capturing unit 30, but the change ratio of the imaging magnification is adjusted by moving the optical element 301 in the optical axis direction of the optical path. May be.
  • the magnification adjustment unit 300 may adjust the change ratio of the imaging magnification by moving the optical element 301 disposed on the optical path of the front image capturing unit 30 in the optical axis direction. Good.
  • the magnification adjustment unit 300 may adjust the change ratio of the photographing magnification by inserting and removing the reflecting member on the photographing optical path.
  • the reflecting member may be a mirror, a half mirror, a dichroic mirror, or the like.
  • the optical element (here, the reflecting member) 301 is arranged on the optical path of the front image capturing unit 30 by driving the driving unit 302, the reflected light from the patient's eye E is reflected by the optical element 301.
  • the light passes through the mirror 303, the relay lens 304, the diaphragm 37b, and the imaging lens 32b and is received by the light receiving element 31b.
  • the optical element 301 is inserted into and removed from the photographing optical path by the driving unit 302, thereby photographing from the first photographing optical path L1 to the second photographing optical path L2 having a photographing magnification different from that of the first photographing optical path L1.
  • the photographing magnification of the front image photographing unit 30 may be adjusted by switching the optical path.
  • two light receiving elements 31a and 31b may be provided as in the example of FIG.
  • the light receiving elements 31a and 31b may be provided in the first photographing optical path L1 and the second photographing optical path L2, respectively.
  • the front image capturing unit 30 may switch the light reception signals received from the two light receiving elements 31 a and 31 b according to the type of the interface 90.
  • the imaging magnification may be switched using a single light receiving element by once branching the optical path and then recombining the optical paths.
  • the imaging optical axis of the front image capturing unit 30 and the irradiation optical path of the therapeutic laser beam are partially coaxial.
  • the magnification adjusting unit 300 receives the light receiving element from the branch point where the irradiation optical axis of the imaging optical axis of the front image capturing unit 30 and the therapeutic laser beam is branched by the optical path branching member (for example, the dichroic mirror 22).
  • the optical element 301 may be driven in the optical path on the 31st side to adjust the photographing magnification of the front image photographing unit 30.
  • the imaging magnification of the front image capturing unit 30 can be adjusted without affecting the irradiation of the therapeutic laser beam.
  • the photographing optical axis of the front image photographing unit 30 and the photographing optical axis of the tomographic image photographing unit 23 are partially coaxial.
  • the optical paths of the front image capturing unit 30 and the tomographic image capturing unit 23 are closer to the light receiving element 31 than the branch point where the optical path branching member (for example, the dichroic mirror 25) branches.
  • the optical element 301 may be driven to adjust the photographing magnification of the front image photographing unit 30.
  • the imaging magnification of the front image capturing unit 30 can be adjusted without affecting the tomographic image capturing by the tomographic image capturing unit 23.
  • the present apparatus 1 may include a luminance adjusting unit 400 that suppresses a change in luminance of the front image before and after the magnification switching by the magnification adjusting unit 300 (see FIG. 2).
  • the brightness adjusting unit 400 may include an aperture value changing unit 410 that switches the aperture value of the front image capturing unit 30 in accordance with the interface 90.
  • the aperture value changing unit 410 may include a variable aperture 411 that can change the aperture value and a drive unit 412 that drives the variable aperture 411.
  • the aperture value changing unit 410 may change the aperture value of the variable aperture 411 by driving the drive unit 412.
  • the aperture value changing unit 410 may include a plurality of apertures having different aperture values (for example, the apertures 411a and 411b in FIG. 9).
  • the diaphragm arranged in the optical path may be switched by a drive unit (not shown), or the diaphragm may be changed in accordance with the switching of the photographing optical path by the magnification adjusting unit 300 as shown in FIG.
  • the luminance adjustment unit 400 may include a gain adjustment unit 420.
  • the gain adjustment unit 420 is provided in the control unit 50 (see FIG. 1), and adjusts the gain of the signal output from the light receiving element 31 according to the switching of the photographing magnification, thereby adjusting the brightness of the front image. May be.
  • the brightness adjustment unit 400 may include a light amount adjustment unit 430.
  • the light amount adjustment unit 430 may be provided in the control unit 50 (see FIG. 1), and may adjust the brightness of the front image by adjusting the light amount of the alignment / illumination light source 64 according to switching of the photographing magnification. .
  • the luminance adjustment unit 400 can acquire a front image with little luminance change.
  • the magnification adjusting unit 300 includes the optical element 301 and the driving unit 302, and optically adjusts the imaging magnification of the front image capturing unit 30 by driving the optical element 301 by the driving unit 302.
  • the magnification adjustment unit 300 may be provided in the control unit 50 (see FIG. 1) and adjust the display magnification of the front image captured by the front image capturing unit 30.
  • the photographing magnification is reduced by changing the interface 90, as shown in FIG. 10
  • a part of the front image photographed by the front image photographing unit 30 is cut out and displayed on the display unit with the display magnification increased. Also good. Accordingly, it is possible to suppress a change in magnification of the front image without providing the configuration of the optical element 301 and the drive unit 302 and the like.
  • the distance WD between the apparatus main body and the eye E may be, for example, a distance from the interface 90 to the eye E, a distance from the cylindrical portion 61 to the eye E, or a distance from the objective lens 20 to the eye E.
  • the distance from the light receiving element 31 to the eye E may be used. It is only necessary to know the positional relationship between the apparatus main body and the eye E.
  • FIG. 11 is a graph showing the relationship of the movement amount M (that is, the movement amount (distance) from the reference position) of the light receiving element 31 with respect to the distance WD between the apparatus main body and the patient's eye E.
  • the solid line is one point in the cataract mode.
  • a chain line indicates a relationship in LASIK mode.
  • the present embodiment is a non-telecentric optical system on the image side, and as shown in FIG. 11, the amount of movement M of the light receiving element 31 with respect to the distance WD has a non-linear relationship. Therefore, the CPU 51 controls the light receiving adjustment unit 33 to adjust the focus state of the front image by moving the light receiving element 31 nonlinearly.
  • the CPU 51 brings the device 1 close to the eye E by the coupling drive unit 66
  • the front of the CPU 51 so that the relationship between the driving amount of the coupling driving unit 66 and the amount of movement of the light receiving element 31 by the light receiving adjustment unit 33 becomes nonlinear.
  • the focus state of the image may be adjusted.
  • the relationship between the distance WD and the amount of movement of the light receiving element 31 can be theoretically obtained using an imaging magnification or the like.
  • the amount of change in the image plane that is, the amount of movement of the light receiving element 31 is obtained by the square of the magnification ⁇ .
  • the movement amount M of the light receiving element with respect to the minute change amount ⁇ WD of the distance WD is expressed by the following equation (1).
  • magnification at a certain position is ⁇ 0.3, 1 ⁇ (0.3) ⁇ 2 ⁇ 0.09 mm for the movement of the subject eye 1 mm.
  • magnification ⁇ changes continuously and is expressed by the following equation (2) using constants a and b.
  • the moving amount M of the light receiving element 31 is obtained by integration shown by the following equation (3).
  • the ROM 52 may store an arithmetic expression as described above, a data table created based on the arithmetic expression, or a data table created based on the experimental data.
  • the CPU 51 may obtain at least one of the position and the movement amount of the light receiving element 31 using at least one of the arithmetic expression stored in the ROM 52 and the data table.
  • the CPU 51 obtains the apparatus main body, the patient's eye E, and the distance WD based on the driving amount of the coupling driving unit 66 from the first position, and drives the light receiving adjustment unit 33 using the above-described arithmetic expression or data table. An amount may be obtained. Then, the CPU 51 may adjust the focus by linking the driving of the coupling driving unit 66 and the driving of the light receiving adjustment unit 33 and moving the light receiving element 31 non-linearly with the movement of the device 1. . Of course, the CPU 51 may move the light reception adjusting unit 33 stepwise with respect to the driving of the coupling drive unit 66 based on the drive amount of the light reception adjustment unit 33 acquired using the above-described arithmetic expression or data table. .
  • the CPU 51 may acquire the relationship between the distance WD and the movement amount M of the light receiving element 31 for each type of interface 90.
  • a data table or an arithmetic expression in which the distance WD and the amount of movement of the light receiving element 31 are associated with each type of the interface 90 may be stored in the ROM 52.
  • the CPU 51 may switch an arithmetic expression and a data table for obtaining at least one of the position and the movement amount of the light receiving element 31 according to the irradiation mode corresponding to the type of the interface 90.
  • the front image capturing unit 30 is a non-telecentric optical system, and the relationship of the position of the light receiving element 31 with respect to the distance WD is nonlinear.
  • the CPU 51 may increase the moving speed of the light receiving element 31 as the distance WD decreases when the apparatus 1 and the patient's eye E are brought close to each other at a constant speed by the coupling drive unit 66. Thereby, the focus adjustment is performed in conjunction with the movement of the apparatus 1 without delaying the focus adjustment.
  • the CPU 51 detects the distance between the apparatus main body and the eye E when the position of the eye E with respect to the apparatus main body is in a specific area (an area in the vicinity of the first position in the present embodiment).
  • the CPU 51 detects the distance between the apparatus main body and the eye E detected at the first position, and the relative movement amount of the position of the eye E relative to the apparatus main body from the position at which the distance is detected (relative position change amount). Based on the above, the position of the light receiving element 31 is determined. Therefore, the CPU 51 can appropriately adjust the focus state.
  • the CPU 51 of the present embodiment adjusts the focus state based on the front image while moving the light receiving element 31 along the optical axis.
  • the distance of the eye E with respect to the apparatus main body is detected based on the position of the light receiving element 31 in a state where the focus state is adjusted. Therefore, the ophthalmic laser surgical apparatus 1 according to the present embodiment can appropriately detect the distance from the eye E using the front image without using a sensor or the like for detecting the position of the eye E. it can.
  • the ophthalmic laser surgical apparatus 1 can also detect the distance by other methods (for example, a method using a sensor or the like).
  • the CPU 51 of the present embodiment projects alignment light onto the eye E in the vicinity of the first position, and the apparatus main body and the eye E based on the reflected light of the alignment light reflected by the eye E.
  • the distance between can be detected. Therefore, the ophthalmic laser surgical apparatus 1 according to the present embodiment can appropriately detect the distance to the eye E.
  • the CPU 51 may detect the distance between the apparatus main body and the eye E with reference to a tissue or the like other than the bright spot reflected in the front image (for example, the iris of the eye E).
  • the first focus control in step S4 in FIG. 8 and the second focus control in S7 will be described.
  • the first focus control is control for adjusting the focus of the light receiving element 31 with respect to the patient's eye E located around the first position.
  • the CPU 51 may detect the focus state with respect to the patient's eye E by analyzing the front image captured by the front image capturing unit 30. For example, the CPU 51 may acquire the focus information of the light receiving element 31 by detecting a bright spot or tissue reflected in the front image.
  • the CPU 51 adjusts the focus state of the light receiving element 31 by controlling the driving of the light receiving adjustment unit 33 based on the detected focus information.
  • the CPU 51 When adjusting the focus based on the focus state of the bright spot or tissue reflected in the front image, the CPU 51 detects a change in the focus state of the bright spot or tissue while controlling the driving of the light receiving adjustment unit 33. Thus, it may be detected whether or not the driving direction of the light receiving adjustment unit 33 is correct. For example, the CPU 51 controls driving of the light receiving adjustment unit 33 to move at least one of the light receiving element 31 and the optical member in the first direction, while changing the focus state of the bright spot or the tissue on the front image ( For example, a change in the size of a bright spot) is detected.
  • the CPU 51 determines whether the light receiving element 31 and the optical member are At least one of them is continuously moved in the first direction.
  • the CPU 51 and the light receiving element 31 and At least one of the optical members is switched to a second direction opposite to the first direction. In this case, the automatic adjustment of the focus state is executed more smoothly.
  • the CPU 51 may drive the coupling drive unit 66 when the focus cannot be adjusted within the drive range of the light receiving element 31. At this time, the CPU 51 detects a change in the size of the bright spot on the front image when driving the combined drive unit 66 as described above, and detects whether the drive direction of the combined drive unit 66 is correct. Also good. As described above, even when the position of the patient's eye E is greatly deviated from the first position, the focus of the light receiving element 31 can be adjusted by controlling the light receiving adjustment unit 33 and the coupling driving unit 66.
  • the second focus control is a control for adjusting the focus of the light receiving element 31 with respect to the patient's eye E located around the second position. Further, the second focus control may adjust a focus shift caused by moving the position of the patient's eye E from the vicinity of the first position to the vicinity of the second position.
  • the focus state is detected at the first position, the focus is adjusted, and the position is further moved to the second position. At this time, the focus state is adjusted according to the distance from the first position to the second position. However, since the focus state may be deviated even after being moved to the second position, the focus state is detected again at the second position. Adjust the focus.
  • the front image capturing unit 30 of the present embodiment is a non-telecentric optical system on the image side, and the front image capturing magnification varies depending on the distance WD between the apparatus main body and the patient's eye E. Therefore, the shooting range of the front image can be widened at a position where the distance WD is large, but the depth of field changes according to the size of the distance WD. For example, the depth of field is greater when the distance WD is large and the magnification is small than when the distance WD is small and the magnification is large. For example, as shown in FIG. 2, in the depth of field F1 at the first position and the depth of field F2 at the second position, the range of the depth of field F1 at the first position where the distance WD is large is larger. large.
  • the second position where the distance WD is smaller than the first position corresponds to the difference in the depth of field F1, F2.
  • the CPU 51 detects the focus state again at the second position and adjusts the focus state of the light receiving element 31.
  • the CPU 51 detects the focus state with respect to the patient's eye E by analyzing the front image captured by the front image capturing unit 30 as in the first focus control, and focuses the light receiving element 31 at the second position. You may adjust.
  • the present apparatus 1 can capture a front image in focus at both the first position and the second position by executing the first focus control and the second focus control. That is, the focus state is adjusted by processing the light including the reflected light reflected by the eyes at each of the first position and the second position and driving the focus adjustment unit (for example, the light reception adjustment unit 33). Therefore, the surgeon can confirm the focused front images at the first position where observation of the patient's eye E is started for alignment and at the second position where the patient's eye E docks the interface 90. .
  • the CPU 51 acquires the size of the bright spots a to h projected onto the patient's eye E by the alignment index projection unit 63 by image analysis, and acquires the acquired bright spots a to The focus state may be detected based on the magnitude of h.
  • the CPU 51 may detect the size of the bright spot reflected in the front image by detecting the brightness edge.
  • the CPU 51 may adjust the focus of the light receiving element 31 by driving the light receiving adjustment unit 33 so that the sizes of the bright spots a to h become small. .
  • a method for detecting the focus information of the light receiving element 31 by detecting the bright spot a method for detecting the focus information based on the position of the bright spot may be used. For example, when both an infinitely bright spot and a finite bright spot are projected toward the eye E by the alignment / illumination light source 64, as shown in FIG.
  • the distance K1 is constant regardless of the size of the distance WD, and the distance K2 between the finite bright points c and f varies depending on the size of the distance WD. Therefore, the CPU 51 may acquire the focus information of the light receiving element 31 by detecting a bright spot from the front image and comparing the distance K1 and the distance K2. In this case, as shown in FIG. 13A, the CPU 51 may adjust the focus of the light receiving element 31 by driving the light receiving adjustment unit 33 so that the distance K1 and the distance K2 are equal.
  • the CPU 51 detects the distance between the apparatus main body and the eye E using the bright spot of the index at infinity without using the bright spot of the finite target, and adjusts the focus state according to the detected distance. May be.
  • the ophthalmic laser surgical apparatus 1 may project, for example, an index at infinity from an oblique direction with respect to the imaging optical path of the front image capturing unit 30 onto the eye.
  • the CPU 51 determines whether or not the distance between the apparatus main body and the eye E is a predetermined distance depending on whether or not an infinite index reflected by the eye E is reflected in a predetermined location of the light receiving element 31. The distance may be detected.
  • a method of detecting focus information by analyzing the front image a method of detecting focus information based on the contrast size of the front image may be used.
  • the CPU 51 may detect the magnitude of the contrast of each tissue shown in the front image and drive the light receiving adjustment unit 33 so that the contrast becomes large.
  • the method for detecting the focus information of the light receiving element 31 is not limited to the method based on the image analysis of the front image.
  • the CPU 51 may acquire position information in the Z direction of the patient's eye E from the tomographic image, and drive the light receiving adjustment unit 33 based on the acquired position information.
  • the CPU 51 detects the position H in the Z direction of the corneal apex of the patient's eye E by image processing of the tomographic image, and calculates the position of the light receiving element 31 based on the detected position H. Also good.
  • the focus state When the focus state is detected by analyzing the tomographic image, the focus state can be detected more reliably because it is not affected by the depth of field unlike the front image. In addition, when using tomographic image analysis, it is not necessary to adjust the focus state while moving the light receiving element 31 and the like along the optical axis. Therefore, the ophthalmic laser surgical apparatus 1 can adjust the focus state while changing the distance between the apparatus main body and the eye E.
  • the CPU 51 may switch the method for detecting the focus information of the light receiving element 31 in the first focus control and the second focus control. For example, in the first focus control, the CPU 51 acquires focus information based on the size of the bright spot that appears in the front image, and in the second focus control, acquires focus information from the position of the patient eye E that appears in the tomographic image. May be. For example, when the eye E is at the first position, the OCT light emitted from the tomographic imaging unit 23 may not reach the eye E. In such a case, the CPU 51 can adjust the focus state by an appropriate method according to the position of the eye E by using the front image in the first focus control and using the tomographic image in the second focus control. it can.
  • the CPU 51 obtains focus information based on the size of the bright spot reflected in the front image, and in the second focus control, the CPU 51 obtains an infinite bright spot and a finite distance reflected in the front image. Focus information may be acquired based on the positional relationship with the bright spot.
  • the CPU 51 may acquire focus information by analyzing the tomographic image in the first focus control, or based on the positional relationship between the infinity bright spot and the finite bright spot reflected in the front image. Focus information may be acquired.
  • the timing at which the CPU 51 starts the second focus control may be when the eye E and the interface 90 are in contact.
  • the CPU 51 may switch the focus information acquisition method based on the detection result of the pressure sensor 77 that detects that the eye E and the interface 90 are in contact with each other. Thereby, the focus adjustment by the second focus control can be executed smoothly.
  • the CPU 51 may start the second focus control when the driving amount of the coupling driving unit 66 reaches a predetermined value.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Laser Surgery Devices (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

Provided are an ophthalmic laser surgery device with which at least one of problems of conventional art is solved, and a control program used therefor. The ophthalmic laser surgery device according to the present disclosure is an ophthalmic laser surgery device for treating an eye of a subject by irradiating the eye with surgical laser light, and is provided with: a frontal image capture unit which includes a light receiving element and which captures a frontal image of the anterior eye part of the eye at different magnification ratios in accordance with the distance between a device body and the eye; a focus adjustment unit that adjusts the focus state of reflected light from the anterior eye part of the eye in the light receiving element, by moving an optical member and/or the light receiving element disposed on the optical path of the frontal image capture unit along the optical axis of the optical path; and a control unit. The ophthalmic laser surgery device is characterized in that the control unit adjusts the focus state by driving the focus adjustment unit by processing light including the reflected light reflected by the eye in each of the case where the position of the eye with respect to the device body is in a first region and the case where the position is in a second region closer to the device body than the first region.

Description

眼科用レーザ手術装置、および眼科手術制御プログラムOphthalmic laser surgery apparatus and ophthalmic surgery control program
 本開示は、手術用レーザ光を照射することで対象者の眼を処置する眼科用レーザ手術装置、およびそれに用いられる制御プログラムに関する。 The present disclosure relates to an ophthalmic laser surgical apparatus that treats an eye of a subject by irradiating surgical laser light, and a control program used therefor.
 対象者の眼に手術用レーザ光を照射することによって、眼を治療する眼科用レーザ手術装置が知られている(特許文献1、2参照)。このような装置において、患者眼の前眼部を観察するために、前眼部の正面画像を撮影する正面画像撮影部が設けられることがある(特許文献3参照)。正面画像撮影部は、レーザ照射光学系と光路を一部共有することがあり、正面画像撮影部は、装置のレーザ照射部の先端に装着するインターフェースに設けられた光学素子を介して、患者眼の正面画像を撮影する場合がある。 2. Description of the Related Art An ophthalmic laser surgical apparatus that treats an eye by irradiating the eye of a subject with surgical laser light is known (see Patent Documents 1 and 2). In such an apparatus, in order to observe the anterior segment of the patient's eye, a front image capturing unit that captures a front image of the anterior segment may be provided (see Patent Document 3). The front image capturing unit may share a part of the optical path with the laser irradiation optical system, and the front image capturing unit is connected to the patient's eye via an optical element provided at an interface attached to the tip of the laser irradiation unit of the apparatus. May be taken.
 また、従来の装置において、インターフェースを取り換えることがある。例えば、インターフェースには、レーザ光の集光状態を調整するための光学素子が設けられており、レーザの照射部位等に応じて、光学素子の種類が異なるインターフェースが取り付けられる場合がある。 Also, the interface may be changed in the conventional device. For example, the interface is provided with an optical element for adjusting the condensing state of the laser light, and an interface with a different type of optical element may be attached depending on a laser irradiation site or the like.
特開2000-116694号公報JP 2000-116694 A 特表2004-531344号公報JP-T-2004-53344 特開2013-248303号公報JP 2013-248303 A
 第1の問題として、従来の装置において、レーザを照射するレーザ照射ユニットと正面画像撮影部とが一体的に移動されることがあり、正面画像撮影部のフォーカス位置が患者に対してずれてしまう場合があった。 As a first problem, in a conventional apparatus, the laser irradiation unit for irradiating a laser and the front image capturing unit may be moved integrally, and the focus position of the front image capturing unit is shifted with respect to the patient. There was a case.
 第2の問題として、上記のように手術用レーザ光の照射部位に応じてインターフェースが取り換えられると、インターフェースを取り換える前と、取り換える後で、装置本体と対象者の眼との距離と、前記正面画像撮影に撮影される正面画像の倍率との比率が変化する可能性があった。 As a second problem, when the interface is replaced in accordance with the irradiation site of the surgical laser light as described above, the distance between the apparatus main body and the subject's eyes before and after the interface is replaced, and the front surface There is a possibility that the ratio with the magnification of the front image taken for image shooting will change.
 本開示は、上記の問題点に鑑み、従来技術の問題点を少なくとも一つ解決する眼科用レーザ手術装置、およびそれに用いられる制御プログラムを提供することを典型的な技術課題とする。 In view of the above-described problems, the present disclosure has a typical technical problem to provide an ophthalmic laser surgical apparatus that solves at least one of the problems of the related art, and a control program used therefor.
 上記第1の問題を解決するために、本開示に係る第1実施形態は以下のような構成を備えることを特徴とする。 In order to solve the first problem, the first embodiment according to the present disclosure is characterized by having the following configuration.
 (1) 手術用レーザ光を対象者の眼に照射することで前記眼を処置する眼科用レーザ手術装置であって、受光素子を有し、装置本体と前記眼の間の距離に応じて異なる倍率で、前記眼の前眼部の正面画像を撮影する正面画像撮影部と、前記正面画像撮影部の光路上に設けられた光学部材および前記受光素子の少なくともいずれかを前記光路の光軸に沿って移動させることで、前記受光素子における前記眼の前眼部からの反射光のフォーカス状態を調整するフォーカス調整部と、制御部と、を備え、前記制御部は、前記装置本体に対する前記眼の位置が第1領域にある場合と、前記第1領域よりも前記装置本体に近い第2領域にある場合の各々で、前記眼によって反射された反射光を含む光を処理して前記フォーカス調整部を駆動させることで、前記フォーカス状態を調整することを特徴とする。
 (2) 手術用レーザ光を対象者の眼に照射することで前記眼を処置する眼科用レーザ手術装置を制御するための眼科手術制御プログラムであって、前記眼科用レーザ手術装置は、受光素子を有し、装置本体と前記眼の間の距離に応じて異なる倍率で、前記眼の前眼部の正面画像を撮影する正面画像撮影部と、前記正面画像撮影部の光路上に設けられた光学部材および前記受光素子の少なくともいずれかを前記光路の光軸に沿って移動させることで、前記受光素子における前記眼の前眼部からの反射光のフォーカス状態を調整するフォーカス調整部と、を備え、前記眼科手術制御プログラムが前記眼科用レーザ手術装置のプロセッサによって実行されることで、前記装置本体に対する前記眼の位置が第1領域にある場合と、前記第1領域よりも前記装置本体に近い第2領域にある場合の各々で、前記眼によって反射された反射光を含む光を処理して前記フォーカス調整部を駆動させることで、前記フォーカス状態を調整するフォーカス状態調整ステップを前記眼科用レーザ手術装置に実行させることを特徴とする。
(1) An ophthalmic laser surgical apparatus that treats the eye by irradiating the eye of the subject with surgical laser light, and has a light receiving element, and varies depending on the distance between the apparatus main body and the eye At least one of a front image capturing unit that captures a front image of the anterior segment of the eye at a magnification, an optical member provided on the optical path of the front image capturing unit, and the light receiving element is used as an optical axis of the optical path. A focus adjustment unit that adjusts a focus state of reflected light from the anterior ocular segment of the eye in the light receiving element, and a control unit, and the control unit includes the eye for the apparatus main body. The focus adjustment is performed by processing the light including the reflected light reflected by the eye in each of the case where the position is in the first region and the second region closer to the apparatus body than the first region. By driving the part The focus state is adjusted.
(2) An ophthalmic surgery control program for controlling an ophthalmic laser surgical apparatus for treating the eye by irradiating the eye of the subject with surgical laser light, wherein the ophthalmic laser surgical apparatus includes a light receiving element A front image capturing unit that captures a front image of the anterior segment of the eye at different magnifications according to the distance between the apparatus main body and the eye, and an optical path of the front image capturing unit. A focus adjustment unit that adjusts a focus state of reflected light from the anterior segment of the eye in the light receiving element by moving at least one of the optical member and the light receiving element along the optical axis of the optical path; And the ophthalmic surgery control program is executed by the processor of the ophthalmic laser surgical apparatus, so that the position of the eye with respect to the apparatus body is in the first area, and more than the first area. A focus state adjustment step of adjusting the focus state by processing the light including the reflected light reflected by the eye and driving the focus adjustment unit in each case where the second region is close to the apparatus main body. Is performed by the ophthalmic laser surgical apparatus.
 上記第1の問題を解決するために、本開示に係る第2実施形態は以下のような構成を備えることを特徴とする。 In order to solve the first problem, the second embodiment according to the present disclosure is characterized by having the following configuration.
 (3) 手術用レーザ光を対象者の眼に照射することで前記眼を処置する眼科用レーザ手術装置であって、装置本体および前記対象者の少なくともいずれかを移動させる駆動部と、受光素子を有し、前記装置本体と前記眼の間の距離に応じて異なる倍率で、前記眼の前眼部の正面画像を撮影する正面画像撮影部と、前記正面画像撮影部の撮影光路上に設けられた光学部材および前記受光素子の少なくともいずれかを、前記距離に応じて前記光路の光軸に沿って移動させることで、前記受光素子における前記眼の前眼部からの反射光のフォーカス状態を、前記装置本体に対して移動する前記眼に調整するフォーカス調整部と、を備え、前記駆動部の駆動によって変化する前記距離と、前記フォーカス調整部によって移動される前記光学部材および前記受光素子の少なくともいずれかの位置との関係が非線形であることを特徴とする。
 (4) 手術用レーザ光を対象者の眼に照射することで前記眼を処置する眼科用レーザ手術装置を制御するための眼科手術制御プログラムであって、前記眼科用レーザ手術装置は、装置本体および前記対象者の少なくともいずれかを移動させる駆動部と、受光素子を有し、前記装置本体と前記眼の間の距離に応じて異なる倍率で、前記眼の前眼部の正面画像を撮影する正面画像撮影部と、前記正面画像撮影部の撮影光路上に設けられた光学部材および前記受光素子の少なくともいずれかを、前記距離に応じて前記光路の光軸に沿って移動させることで、前記受光素子における前記眼の前眼部からの反射光のフォーカス状態を、前記装置本体に対して移動する前記眼に調整するフォーカス調整部と、を備え、前記眼科手術制御プログラムが前記眼科用レーザ手術装置のプロセッサによって実行されることで、前記駆動部の駆動によって変化する前記距離と、前記フォーカス調整部によって移動される前記光学部材および前記受光素子の少なくともいずれかの位置とが非線形となる関係で、前記距離に応じて前記フォーカス状態を調整するフォーカス調整ステップを前記眼科用レーザ手術装置に実行させることを特徴とする。
(3) An ophthalmic laser surgical apparatus that treats the eye by irradiating the eye of the subject with surgical laser light, a drive unit that moves at least one of the apparatus main body and the subject, and a light receiving element A front image capturing unit that captures a front image of the anterior ocular segment of the eye at different magnifications according to the distance between the apparatus main body and the eye, and provided on the imaging optical path of the front image capturing unit. By moving at least one of the optical member and the light receiving element along the optical axis of the optical path according to the distance, the focus state of the reflected light from the anterior segment of the eye in the light receiving element is changed. A focus adjustment unit that adjusts the eye that moves relative to the apparatus main body, the distance that is changed by driving of the drive unit, the optical member that is moved by the focus adjustment unit, and The relationship with at least one position of the light receiving element is non-linear.
(4) An ophthalmic surgery control program for controlling an ophthalmic laser surgical apparatus for treating the eye by irradiating the eye of the subject with a surgical laser beam, wherein the ophthalmic laser surgical apparatus is an apparatus main body. And a drive unit that moves at least one of the subjects and a light receiving element, and captures a front image of the anterior segment of the eye at a different magnification according to the distance between the apparatus main body and the eye. By moving at least one of the front image photographing unit, the optical member provided on the photographing optical path of the front image photographing unit, and the light receiving element along the optical axis of the optical path according to the distance, A focus adjustment unit that adjusts a focus state of reflected light from the anterior eye part of the eye in the light receiving element to the eye that moves relative to the apparatus main body, and the ophthalmic surgery control program stores the eye When executed by the processor of the medical laser surgical apparatus, the distance that is changed by driving the driving unit and the position of at least one of the optical member and the light receiving element that are moved by the focus adjusting unit are nonlinear Therefore, the ophthalmic laser surgical apparatus is caused to execute a focus adjustment step of adjusting the focus state according to the distance.
 上記第2の問題を解決するために、本開示に係る第3実施形態は以下のような構成を備えることを特徴とする。 In order to solve the second problem, the third embodiment according to the present disclosure is characterized by having the following configuration.
 (5) 手術用レーザ光を対象者の眼に照射することで前記眼を処置する眼科用レーザ手術装置であって、前記手術用レーザ光の照射光路上に配置されるレンズを少なくとも有し、装置本体と前記眼の間に介在するインターフェースを保持する保持部と、前記眼で反射して前記レンズを通過した反射光を受光する受光素子を有し、前記装置本体と前記眼の間の距離に応じて異なる倍率で、前記眼の前眼部の正面画像を撮影する正面画像撮影部と、
 前記保持部に保持されたインターフェースが変更されることによって、前記正面画像撮影部によって撮影された前記正面画像の倍率が変化する場合に、前記倍率の変化を調整する倍率調整手段を備えることを特徴とする。
 (6) 手術用レーザ光を対象者の眼に照射することで前記眼を処置する眼科用レーザ手術装置を制御するための眼科手術制御プログラムであって、前記眼科用レーザ手術装置は、前記手術用レーザ光の照射光路上に配置されるレンズを少なくとも有し、装置本体と前記眼の間に介在するインターフェースを保持する保持部と、前記眼で反射して前記レンズを通過した反射光を受光する受光素子を有し、前記装置本体と前記眼の間の距離に応じて異なる倍率で、前記眼の前眼部の正面画像を撮影する正面画像撮影部と、を備え、前記眼科手術制御プログラムが前記眼科用レーザ手術装置のプロセッサによって実行されることで、前記保持部に保持されたインターフェースが変更されることによって、前記正面画像撮影部によって撮影された前記正面画像の倍率が変化する場合に、前記倍率の変化を調整する倍率調整ステップを前記眼科用レーザ手術装置に実行させることを特徴とする。
(5) An ophthalmic laser surgical apparatus that treats the eye by irradiating the eye of the subject with surgical laser light, and has at least a lens disposed on an irradiation optical path of the surgical laser light, A holding unit that holds an interface interposed between the apparatus main body and the eye; and a light receiving element that receives reflected light that has been reflected by the eye and passed through the lens, and the distance between the apparatus main body and the eye A front image capturing unit that captures a front image of the anterior segment of the eye at different magnifications according to
When the interface held by the holding unit is changed, and the magnification of the front image captured by the front image capturing unit changes, a magnification adjusting unit that adjusts the change of the magnification is provided. And
(6) An ophthalmic surgery control program for controlling an ophthalmic laser surgical apparatus for treating the eye by irradiating the eye of the subject with surgical laser light, wherein the ophthalmic laser surgical apparatus includes the surgery And at least a lens arranged on the irradiation light path of the laser beam for use, a holding unit for holding an interface interposed between the apparatus main body and the eye, and a reflected light reflected by the eye and passing through the lens A front image capturing unit that captures a front image of the anterior ocular segment of the eye at different magnifications depending on the distance between the apparatus main body and the eye, and the ophthalmic surgery control program Is executed by the processor of the ophthalmic laser surgical apparatus, the interface held in the holding unit is changed, and the image taken by the front image taking unit is changed. When the magnification of the front image changes, the ophthalmic laser surgical apparatus is caused to execute a magnification adjustment step for adjusting the change in magnification.
眼科用レーザ手術装置1の全体構成を示す図である。1 is a diagram illustrating an overall configuration of an ophthalmic laser surgical apparatus 1. FIG. 正面画像撮影部30の概略構成を示す図である。2 is a diagram illustrating a schematic configuration of a front image capturing unit 30. FIG. 固視標投影部40の概略構成を示す図である。3 is a diagram showing a schematic configuration of a fixation target projection unit 40. FIG. 眼科用レーザ手術装置1の機械的構成の概略を示す図である。It is a figure which shows the outline of the mechanical structure of the ophthalmic laser surgery apparatus. 眼Eに結合された液浸インターフェース91の断面図である。6 is a cross-sectional view of an immersion interface 91 coupled to an eye E. FIG. 眼Eに結合された圧平インターフェース92の断面図である。FIG. 6 is a cross-sectional view of an applanation interface 92 coupled to an eye E. 正面画像の撮影範囲について説明する図である。It is a figure explaining the imaging range of a front image. 眼科用レーザ手術装置1の制御を示すフローチャートである。3 is a flowchart showing control of the ophthalmic laser surgical apparatus 1. 倍率調整部300の変容例について説明する図である。FIG. 6 is a diagram for explaining a modification example of a magnification adjustment unit 300. 倍率調整の変容例について説明する図である。It is a figure explaining the example of a change of magnification adjustment. 装置本体と患者眼Eとの距離WDに対する受光素子31の移動量に関する  図である。FIG. 6 is a diagram relating to the amount of movement of the light receiving element 31 with respect to the distance WD between the apparatus main body and the patient's eye E 正面画像を用いたフォーカス情報の取得方法について説明する図である。It is a figure explaining the acquisition method of focus information using a front picture. 正面画像を用いたフォーカス情報の取得方法について説明する図である。It is a figure explaining the acquisition method of focus information using a front picture. 断層画像を用いたフォーカス情報の取得方法について説明する図である。It is a figure explaining the acquisition method of focus information using a tomographic image.
 以下、本開示における典型的な実施形態について説明する。本実施形態では、対象者(患者または被検者)の手術等を行う眼科用レーザ手術装置1を例示する。本実施形態の眼科用レーザ手術装置1は、対象者の眼Eの角膜および水晶体を共に処置することができる。ただし、本実施形態で例示する技術には、他の手術装置(例えば、レーザによって眼底の光凝固を行う装置等)に適用できる技術も含まれる。 Hereinafter, typical embodiments in the present disclosure will be described. In the present embodiment, an ophthalmic laser surgical apparatus 1 that performs an operation or the like of a subject (patient or subject) is illustrated. The ophthalmic laser surgical apparatus 1 according to this embodiment can treat both the cornea and the crystalline lens of the eye E of the subject. However, the technique exemplified in the present embodiment includes a technique that can be applied to other surgical apparatuses (for example, an apparatus that performs photocoagulation of the fundus using a laser).
<全体構成>
 以下、図1を参照して、本実施形態の眼科用レーザ手術装置1の全体構成について、手術用レーザ光源2側(つまり、手術用レーザ光の光路の上流側)から、対象者の眼E側(つまり、手術用レーザ光の光路の下流側)に順に説明する。なお、図1~図3では、説明を簡略化するために、実際の光学素子(レンズ、ミラー等)の一部のみが図示されている。
<Overall configuration>
Hereinafter, with reference to FIG. 1, about the whole structure of the ophthalmic laser surgical apparatus 1 of this embodiment, from the surgical laser light source 2 side (that is, the upstream side of the optical path of the surgical laser light), the eye E of the subject Description will be made in order on the side (that is, downstream of the optical path of the surgical laser beam). In FIGS. 1 to 3, only part of actual optical elements (lenses, mirrors, etc.) are shown for the sake of simplicity.
 手術用レーザ光源2は、眼Eを処置するための手術用レーザ光を出射する。本実施形態では、手術用レーザ光源2から出射されたパルスレーザ光が眼Eの組織内で集光されると、集光位置(スポット)でプラズマが発生し、組織の切断、破砕等が行われる。以上の現象は、光破壊(photodisruption)と言われる場合もある。本実施形態の手術用レーザ光源2には、例えば、フェムト秒からピコ秒オーダーのパルスレーザ光を出射するデバイスを使用することができる。以下では、手術用レーザ光源2によって出射される手術用レーザ光の光路に沿う方向をZ方向とする。Z方向に交差(本実施形態では垂直に交差)する方向のうちの1つをX方向とする。Z方向およびX方向に共に交差(本実施形態では垂直に交差)する方向をY方向とする。 The surgical laser light source 2 emits surgical laser light for treating the eye E. In the present embodiment, when the pulsed laser light emitted from the surgical laser light source 2 is condensed in the tissue of the eye E, plasma is generated at the condensing position (spot), and the tissue is cut and fractured. Is called. The above phenomenon is sometimes referred to as photodisruption. For the surgical laser light source 2 of the present embodiment, for example, a device that emits pulsed laser light in femtosecond to picosecond order can be used. Hereinafter, the direction along the optical path of the surgical laser beam emitted from the surgical laser light source 2 is defined as the Z direction. One of the directions intersecting the Z direction (vertically intersecting in the present embodiment) is defined as the X direction. A direction that intersects both the Z direction and the X direction (vertically intersects in this embodiment) is defined as a Y direction.
 基準光源3は、各種制御を行う基準となる基準光(基準レーザ光)を出射する。例えば、本実施形態の基準光は、手術用レーザ光の照射位置を検出する際に用いられる場合がある。 The reference light source 3 emits reference light (reference laser light) serving as a reference for performing various controls. For example, the reference light of this embodiment may be used when detecting the irradiation position of the surgical laser light.
 ダイクロイックミラー4は、手術用レーザ光の光路に設けられている。ダイクロイックミラー4は、手術用レーザ光源2から出射される手術用レーザ光と、基準光源3から出射される基準光を合波する。 The dichroic mirror 4 is provided in the optical path of the surgical laser beam. The dichroic mirror 4 combines the surgical laser light emitted from the surgical laser light source 2 and the reference light emitted from the reference light source 3.
 ズームエキスパンダ5は、手術用レーザ光の光路のうち、手術用レーザ光源2とXY走査部10(後述する)の間に設けられている。ズームエキスパンダ5は、手術用レーザ光のビーム径を変更することができる。制御部50(後述する)は、ズームエキスパンダ5を駆動して手術用レーザ光のビーム径を変更することで、対物レンズ20(後述する)から眼Eに向けて出射される手術用レーザ光の開口数NAを調整することができる。 The zoom expander 5 is provided between the surgical laser light source 2 and the XY scanning unit 10 (described later) in the optical path of the surgical laser light. The zoom expander 5 can change the beam diameter of the surgical laser light. The control unit 50 (described later) drives the zoom expander 5 to change the beam diameter of the surgical laser beam, thereby operating the surgical laser beam emitted from the objective lens 20 (described later) toward the eye E. Can be adjusted.
 高速Z走査部6は、手術用レーザ光が集光されるスポットをZ方向に走査するZ走査部の一部である。本実施形態では、高速Z走査部6は、手術用レーザ光の光路のうち、ズームエキスパンダ5とXY走査部10の間に設けられている。一例として、本実施形態の高速Z走査部6は、負の屈折力を有する移動光学素子7と、移動光学素子7を光軸に沿って移動させる高速Z走査駆動部8とを備える。例えば、高速Z走査駆動部8には、移動光学素子7を高速で移動させることが可能なガルバノモータ等を用いてもよい。移動光学素子7とXY走査部10の間には、レンズ9が設けられている。レンズ9は、高速Z走査部8を経たレーザ光をXY走査部10に導光させる。移動光学素子7が光軸方向に移動すると、眼Eにおける手術用レーザ光のスポットがZ方向に移動する。高速Z走査部6は、広範囲Z走査部18(後述する)に比べて高速でスポットをZ方向に走査することができる。 The high-speed Z-scanning unit 6 is a part of the Z-scanning unit that scans the spot where the surgical laser beam is collected in the Z direction. In the present embodiment, the high-speed Z scanning unit 6 is provided between the zoom expander 5 and the XY scanning unit 10 in the optical path of the surgical laser light. As an example, the high-speed Z scanning unit 6 of the present embodiment includes a moving optical element 7 having negative refractive power and a high-speed Z scanning driving unit 8 that moves the moving optical element 7 along the optical axis. For example, a galvano motor or the like that can move the moving optical element 7 at a high speed may be used for the high-speed Z scanning drive unit 8. A lens 9 is provided between the moving optical element 7 and the XY scanning unit 10. The lens 9 guides the laser light that has passed through the high-speed Z scanning unit 8 to the XY scanning unit 10. When the moving optical element 7 moves in the optical axis direction, the spot of the surgical laser beam on the eye E moves in the Z direction. The high speed Z scanning unit 6 can scan the spot in the Z direction at a higher speed than the wide range Z scanning unit 18 (described later).
 XY走査部10は、光軸に交差するXY方向に手術用レーザ光を走査する。本実施形態のXY走査部10は、X偏向デバイス11およびY偏向デバイス12を備える。X偏向デバイス11は、手術用レーザ光をX方向に走査する。Y偏向デバイス12は、X偏向デバイス11によってX方向に走査された手術用レーザ光を、さらにY方向に走査する。本実施形態では、X偏向デバイス11およびY偏向デバイス12には共にガルバノミラーが採用されている。しかし、光を走査する他のデバイス(例えば、ポリゴンミラー、音響光学素子等のスキャナ)を、X偏向デバイス11およびY偏向デバイス12の少なくともいずれかに採用してもよい。また、X偏向デバイス11およびY偏向デバイス12の少なくともいずれかが、複数のスキャナを備えていてもよい。 The XY scanning unit 10 scans the surgical laser beam in the XY direction intersecting the optical axis. The XY scanning unit 10 of this embodiment includes an X deflection device 11 and a Y deflection device 12. The X deflection device 11 scans the surgical laser beam in the X direction. The Y deflection device 12 further scans the surgical laser beam scanned in the X direction by the X deflection device 11 in the Y direction. In this embodiment, galvanometer mirrors are employed for both the X deflection device 11 and the Y deflection device 12. However, another device that scans light (for example, a scanner such as a polygon mirror or an acousto-optic device) may be employed in at least one of the X deflection device 11 and the Y deflection device 12. Further, at least one of the X deflection device 11 and the Y deflection device 12 may include a plurality of scanners.
 リレー部14は、XY走査部10と対物レンズ20の間に設けられている。リレー部14は、上流側リレー光学素子15と下流側リレー光学素子16によって、XY走査部10を経た手術用レーザ光を対物レンズ20にリレーする。 The relay unit 14 is provided between the XY scanning unit 10 and the objective lens 20. The relay unit 14 relays the surgical laser light that has passed through the XY scanning unit 10 to the objective lens 20 by the upstream relay optical element 15 and the downstream relay optical element 16.
 広範囲Z走査部18は、スポットをZ方向に走査するZ走査部の一部である。一例として、本実施形態の広範囲Z走査部18は、XY走査部10と上流側リレー光学素子15とを含む光学ユニットを、広範囲Z走査駆動部19によって光軸に沿って移動させることで、上流側リレー光学素子15と対物レンズ20との間の光路長を変化させる。その結果、スポットがZ方向に走査される。広範囲Z走査部18は、高速Z走査部10に比べてスポットを広範囲にZ方向に走査させることができる。なお、広範囲Z走査部18の構成は適宜変更できる。例えば、眼科用レーザ手術装置1は、XY走査部10よりも下流側に位置する光学素子(例えば、上流側リレー光学素子15、下流側リレー光学素子16、および対物レンズ20)の少なくともいずれかを光軸方向に移動させることで、スポットをZ方向に走査してもよい。また、高速Z走査部10のみを用いてスポットをZ方向に走査することも可能である。 The wide-range Z scanning unit 18 is a part of the Z scanning unit that scans the spot in the Z direction. As an example, the wide-range Z scanning unit 18 of the present embodiment moves the optical unit including the XY scanning unit 10 and the upstream relay optical element 15 along the optical axis by the wide-range Z scanning drive unit 19, thereby The optical path length between the side relay optical element 15 and the objective lens 20 is changed. As a result, the spot is scanned in the Z direction. The wide-range Z scanning unit 18 can scan a spot in a wide range in the Z direction as compared with the high-speed Z scanning unit 10. The configuration of the wide-range Z scanning unit 18 can be changed as appropriate. For example, the ophthalmic laser surgical apparatus 1 includes at least one of optical elements (for example, the upstream relay optical element 15, the downstream relay optical element 16, and the objective lens 20) located on the downstream side of the XY scanning unit 10. The spot may be scanned in the Z direction by moving in the optical axis direction. It is also possible to scan the spot in the Z direction using only the high-speed Z scanning unit 10.
 対物レンズ20は、リレー部14の下流側リレー光学素子16よりも、手術用レーザ光の光路の下流側に配置されている。対物レンズ20を通過した手術用レーザ光は、インターフェース90を経て眼Eの組織に集光される。 The objective lens 20 is arranged on the downstream side of the optical path of the surgical laser light with respect to the downstream side relay optical element 16 of the relay unit 14. The surgical laser light that has passed through the objective lens 20 is focused on the tissue of the eye E via the interface 90.
 インターフェース90は、対物レンズ20を通過する各種光(手術用レーザ光、基準光、観察光、OCT光、および固視標投影光)の光路のうち、装置本体と眼Eの間に介在し、眼Eに結合される。インターフェース90の構成には種々の構成(例えば、液浸インターフェース91、圧平インターフェース92等)を採用できる。インターフェース90の詳細については、図5および図6を参照して後述する。 The interface 90 is interposed between the apparatus main body and the eye E among optical paths of various lights (surgical laser light, reference light, observation light, OCT light, and fixation target projection light) that pass through the objective lens 20. Coupled to eye E. Various configurations (for example, an immersion interface 91 and an applanation interface 92) can be adopted as the configuration of the interface 90. Details of the interface 90 will be described later with reference to FIGS. 5 and 6.
 ダイクロイックミラー(光軸合成部)22は、手術用レーザ光の光路のうち、対物レンズ20と下流側リレー光学素子16の間に設けられている。ダイクロイックミラー22は、眼科用レーザ手術装置1と眼Eの間を伝播する各種光の光軸を同軸とする。本実施形態では、ダイクロイックミラー22は、手術用レーザ光源2から出射された手術用レーザ光の大部分を、対物レンズ20に向けて反射させる。ダイクロイックミラー22は、基準光源3から出射された基準光の一部を反射させると共に、残りを透過させる(基準光の光路の詳細については後述する)。また、ダイクロイックミラー22は、観察光、OCT光、および固視標投影光の大部分を透過させる。つまり、観察光、OCT光、および固視標投影光の光軸と、手術用レーザ光の光軸は、ダイクロイックミラー22を分岐点として分岐する。なお、観察光は、眼Eによって反射されて正面画像撮影部30に入射する反射光である。OCT光は、断層画像を撮影するために断層画像撮影部23から出射される光である。固視標投影光は、眼Eを固視させるために固視標投影部40から出射される光である。 The dichroic mirror (optical axis combining unit) 22 is provided between the objective lens 20 and the downstream relay optical element 16 in the optical path of the surgical laser beam. The dichroic mirror 22 has coaxial optical axes of various lights propagating between the ophthalmic laser surgical apparatus 1 and the eye E. In the present embodiment, the dichroic mirror 22 reflects most of the surgical laser light emitted from the surgical laser light source 2 toward the objective lens 20. The dichroic mirror 22 reflects part of the reference light emitted from the reference light source 3 and transmits the rest (details of the optical path of the reference light will be described later). The dichroic mirror 22 transmits most of the observation light, the OCT light, and the fixation target projection light. That is, the optical axis of the observation light, the OCT light, and the fixation target projection light and the optical axis of the surgical laser light are branched using the dichroic mirror 22 as a branch point. The observation light is reflected light that is reflected by the eye E and enters the front image capturing unit 30. The OCT light is light emitted from the tomographic image photographing unit 23 for photographing a tomographic image. The fixation target projection light is light emitted from the fixation target projection unit 40 in order to fix the eye E.
 正面画像撮影部30は、眼Eの画像を撮影する撮影部の一部である。正面画像撮影部30は、眼Eによって反射された反射光(観察光)を受光することで、眼Eの正面画像(本実施形態では、前眼部の正面画像)を撮影する。また、正面画像撮影部30は、装置本体に装着されたインターフェース90の少なくとも一部を撮影することも可能である。本実施形態では、アライメント指標投影部63のアライメント・照明光源64(図4参照)によって出射される赤外光の反射光が、観察光として正面画像撮影部30によって受光される。正面画像撮影部30の詳細については、図2を参照して後述する。 The front image capturing unit 30 is a part of a capturing unit that captures an image of the eye E. The front image capturing unit 30 captures a front image of the eye E (in this embodiment, a front image of the anterior segment) by receiving the reflected light (observation light) reflected by the eye E. The front image capturing unit 30 can also capture at least a part of the interface 90 attached to the apparatus main body. In the present embodiment, reflected light of infrared light emitted from the alignment / illumination light source 64 (see FIG. 4) of the alignment index projection unit 63 is received by the front image capturing unit 30 as observation light. Details of the front image capturing unit 30 will be described later with reference to FIG.
 断層画像撮影部23も、正面画像撮影部30と同様に、眼Eの画像を撮影する撮影部の一部である。断層画像撮影部23は、眼Eの断層画像を撮影することができる。また、断層画像撮影部23は、インターフェース90が備えるインターフェースレンズ100,110(詳細は、図5および図6を参照して後述する)の断層画像を撮影することも可能である。一例として、本実施形態の断層画像撮影部23は、OCT光源、光分割器、参照光学系、走査部、および受光素子を備える。OCT光源は、断層画像を撮影するためのOCT光を出射する。光分割器は、OCT光源によって出射されたOCT光を、参照光と測定光に分割する。参照光は参照光学系に入射し、測定光は走査部に入射する。参照光学系は、測定光と参照光の光路長差を変更する構成を有する。走査部は、測定光を二次元方向(XY方向)に走査させる。検出器は、撮影対象によって反射された測定光と、参照光学系を経た参照光との干渉状態を検出する。測定光が走査され、反射測定光と参照光の干渉状態が検出されることで、撮影対象の深さ方向の情報が取得される。取得された深さ方向の情報に基づいて、撮影対象の断層画像が取得される。 Similarly to the front image capturing unit 30, the tomographic image capturing unit 23 is also a part of the capturing unit that captures an image of the eye E. The tomographic image capturing unit 23 can capture a tomographic image of the eye E. The tomographic image capturing unit 23 can also capture tomographic images of the interface lenses 100 and 110 (details will be described later with reference to FIGS. 5 and 6) included in the interface 90. As an example, the tomographic imaging unit 23 of the present embodiment includes an OCT light source, a light splitter, a reference optical system, a scanning unit, and a light receiving element. The OCT light source emits OCT light for capturing a tomographic image. The optical splitter divides the OCT light emitted from the OCT light source into reference light and measurement light. The reference light enters the reference optical system, and the measurement light enters the scanning unit. The reference optical system has a configuration that changes the optical path length difference between the measurement light and the reference light. The scanning unit scans the measurement light in a two-dimensional direction (XY direction). The detector detects an interference state between the measurement light reflected by the subject and the reference light that has passed through the reference optical system. The measurement light is scanned, and the interference state between the reflected measurement light and the reference light is detected, whereby information in the depth direction of the object to be imaged is acquired. A tomographic image to be imaged is acquired based on the acquired depth information.
 断層画像撮影部23には種々の構成を用いることができる。例えば、SS-OCT、SD-OCT、TD-OCT等のいずれを断層画像撮影部23に採用してもよい。また、眼科用レーザ手術装置1は、光干渉以外の技術(例えば、シャインプルーク等)を用いて、撮影対象の断層画像を撮影してもよい。 Various configurations can be used for the tomographic image capturing unit 23. For example, any of SS-OCT, SD-OCT, TD-OCT, and the like may be adopted for the tomographic imaging unit 23. Further, the ophthalmic laser surgical apparatus 1 may capture a tomographic image to be imaged using a technique other than optical interference (for example, Shine-Pluke etc.).
 固視標投影部40は、対象者の眼Eの視線を誘導する固視標を眼Eに投影することができる。つまり、固視標投影部40は、眼Eの固視を行うために用いられる。本実施形態の固視標投影部40は、眼Eへの固視標の投影状態を変更することができる。固視標投影部40の詳細については、図3を参照して後述する。 The fixation target projection unit 40 can project a fixation target that guides the line of sight of the eye E of the subject onto the eye E. That is, the fixation target projection unit 40 is used for performing fixation of the eye E. The fixation target projection unit 40 of the present embodiment can change the projection state of the fixation target onto the eye E. Details of the fixation target projecting unit 40 will be described later with reference to FIG.
 ダイクロイックミラー24は、正面画像撮影部30の撮影光軸(つまり、正面画像撮影部30に入射する反射光の光軸9)と、固視標投影部40の投影光軸とを同軸とする。詳細には、本実施形態では、正面画像撮影部30に入射する反射光の大部分はダイクロイックミラー24を透過し、固視標投影部40から投影される固視標の光の大部分はダイクロイックミラー24によって反射される。 The dichroic mirror 24 is coaxial with the imaging optical axis of the front image capturing unit 30 (that is, the optical axis 9 of the reflected light incident on the front image capturing unit 30) and the projection optical axis of the fixation target projecting unit 40. Specifically, in the present embodiment, most of the reflected light incident on the front image capturing unit 30 is transmitted through the dichroic mirror 24, and most of the light of the fixation target projected from the fixation target projection unit 40 is dichroic. Reflected by the mirror 24.
 ダイクロイックミラー25は、正面画像撮影部30の撮影光軸および固視標投影部40の投影光軸を、断層画像撮影部23の撮影光軸と同軸とする。詳細には、本実施形態では、正面画像撮影部30に入射する反射光の大部分は、ダイクロイックミラー25を透過する。固視標投影部40から投影される固視標の光の大部分も、ダイクロイックミラー25を透過する。断層画像を撮影するためのOCT光の大部分は、ダイクロイックミラー25によって反射される。 The dichroic mirror 25 has the imaging optical axis of the front image capturing unit 30 and the projection optical axis of the fixation target projecting unit 40 coaxial with the imaging optical axis of the tomographic image capturing unit 23. Specifically, in the present embodiment, most of the reflected light incident on the front image capturing unit 30 is transmitted through the dichroic mirror 25. Most of the light of the fixation target projected from the fixation target projection unit 40 also passes through the dichroic mirror 25. Most of the OCT light for capturing a tomographic image is reflected by the dichroic mirror 25.
 照射位置検出部26は、手術用レーザ光源2から眼Eに延びる手術用レーザ光の光路から分岐した光路上に設けられている。一例として、本実施形態では、走査部6,10,18からダイクロイックミラー22に延びる手術用レーザ光の光路が、ダイクロイックミラー22によって分岐される。分岐された光路のうち、ダイクロイックミラー22を透過する光の光路上に、照射位置検出部26が設置されている。ただし、照射位置検出部26の設置位置を変更することも可能である。 The irradiation position detection unit 26 is provided on an optical path branched from the optical path of the surgical laser light extending from the surgical laser light source 2 to the eye E. As an example, in the present embodiment, the optical path of the surgical laser light extending from the scanning units 6, 10, 18 to the dichroic mirror 22 is branched by the dichroic mirror 22. An irradiation position detector 26 is installed on the optical path of light that passes through the dichroic mirror 22 among the branched optical paths. However, the installation position of the irradiation position detector 26 can be changed.
 ハーフミラー27は、ダイクロイックミラー22を透過した基準光の光路を分岐する。分岐した光路の一方は照射位置検出部26に延び、他方はミラー28に延びる。ミラー28は、ハーフミラー27から入射する基準光を反射させて、再びハーフミラー27に入射させる。ミラー28に入射する基準光の光軸と、ミラー28によって反射される基準光の光軸は同軸となる。ミラー28によって反射された基準光は、ハーフミラー27によって再び反射されて、ダイクロイックミラー22によって反射される。その後、基準光は、ダイクロイックミラー25とダイクロイックミラー24を透過し、正面画像撮影部30に入射する。その結果、基準光は、手術用レーザ光の光軸との関係が予め定められた(既知の)光軸に沿って、正面画像撮影部30の受光素子31(図2参照)に投影される。従って、正面画像の撮影範囲に対する手術用レーザ光の光軸の位置関係が、正面画像によって適切に把握される。 The half mirror 27 branches the optical path of the reference light transmitted through the dichroic mirror 22. One of the branched optical paths extends to the irradiation position detector 26 and the other extends to the mirror 28. The mirror 28 reflects the reference light incident from the half mirror 27 and makes it incident on the half mirror 27 again. The optical axis of the reference light incident on the mirror 28 and the optical axis of the reference light reflected by the mirror 28 are coaxial. The reference light reflected by the mirror 28 is reflected again by the half mirror 27 and reflected by the dichroic mirror 22. Thereafter, the reference light passes through the dichroic mirror 25 and the dichroic mirror 24 and enters the front image capturing unit 30. As a result, the reference light is projected onto the light receiving element 31 (see FIG. 2) of the front image photographing unit 30 along the (known) optical axis whose relationship with the optical axis of the surgical laser light is predetermined. . Therefore, the positional relationship of the optical axis of the surgical laser beam with respect to the imaging range of the front image is properly grasped by the front image.
 制御部50は、CPU51、ROM52、RAM53、および不揮発性メモリ(図示せず)等を備える。CPU51は、眼科用レーザ手術装置1の各種制御(例えば、手術用レーザ光源2の制御、基準光源3の制御、走査部6,10,18の動作制御、画像の撮影制御、固視標の投影制御等)を司る。ROM52には、眼科用レーザ手術装置1の動作を制御するための各種プログラム(例えば、後述するIF調整動作制御処理、ドッキング処理、照射制御データ作成処理等を実行するための眼科装置制御プログラム等)が記憶されている。RAM53は、各種情報を一時的に記憶する。不揮発性メモリは、電源の供給が遮断されても記憶内容を保持できる非一過性の記憶媒体である。眼科装置制御プログラム等は、不揮発性メモリに記憶されていてもよい。 The control unit 50 includes a CPU 51, a ROM 52, a RAM 53, a nonvolatile memory (not shown), and the like. The CPU 51 performs various controls of the ophthalmic laser surgical apparatus 1 (for example, control of the surgical laser light source 2, control of the reference light source 3, operation control of the scanning units 6, 10, and 18, image shooting control, and fixation target projection). Control). The ROM 52 stores various programs for controlling the operation of the ophthalmic laser surgical apparatus 1 (for example, an ophthalmic apparatus control program for executing IF adjustment operation control processing, docking processing, irradiation control data creation processing, etc., which will be described later). Is remembered. The RAM 53 temporarily stores various information. A nonvolatile memory is a non-transitory storage medium that can retain stored contents even when power supply is interrupted. The ophthalmologic apparatus control program or the like may be stored in a nonvolatile memory.
 表示部54は、各種画像を表示することができる。操作部55は、ユーザ(例えば、術者、検者、補助者等)によって操作される。制御部50は、ユーザによる各種操作指示の入力を、操作部55を介して受け付ける。操作部55には、例えば、表示部54に設けられるタッチパネル、各種ボタン、キーボード、マウス等の各種デバイスを適宜採用すればよい。表示部54および操作部55は、眼科用レーザ手術装置1の装置本体に組み込まれていてもよいし、装置本体に有線または無線によって接続された他のデバイスであってもよい。 The display unit 54 can display various images. The operation unit 55 is operated by a user (for example, an operator, an examiner, an assistant, etc.). The control unit 50 receives input of various operation instructions by the user via the operation unit 55. For the operation unit 55, for example, various devices such as a touch panel, various buttons, a keyboard, and a mouse provided in the display unit 54 may be appropriately employed. The display unit 54 and the operation unit 55 may be incorporated in the apparatus main body of the ophthalmic laser surgical apparatus 1 or may be another device connected to the apparatus main body by wire or wirelessly.
 また、図1では、眼科用レーザ手術装置1のコントローラとして1つの制御部50が用いられる場合を例示した。しかし、言うまでもないが、眼科用レーザ手術装置1は複数のコントローラによって制御されてもよい。例えば、眼科用レーザ手術装置1は、各種光学素子およびアクチュエータを備えた装置本体と、装置本体に接続されるパーソナルコンピュータとを備えていてもよい。この場合、例えば、パーソナルコンピュータのコントローラがレーザの照射制御データを作成し、作成された照射制御データに従って、装置本体のコントローラがアクチュエータの駆動を制御してもよい。また、表示部54の表示制御、撮影された画像の解析、各種パラメータの演算等が、パーソナルコンピュータのコントローラによって実行されてもよい。つまり、後述する制御処理の全てが装置本体の1つのコントローラによって実行される必要は無い。 Further, FIG. 1 illustrates the case where one control unit 50 is used as the controller of the ophthalmic laser surgical apparatus 1. However, it goes without saying that the ophthalmic laser surgical apparatus 1 may be controlled by a plurality of controllers. For example, the ophthalmic laser surgical apparatus 1 may include an apparatus main body including various optical elements and actuators, and a personal computer connected to the apparatus main body. In this case, for example, the controller of the personal computer may create laser irradiation control data, and the controller of the apparatus main body may control the driving of the actuator in accordance with the created irradiation control data. Further, display control of the display unit 54, analysis of captured images, calculation of various parameters, and the like may be executed by a controller of a personal computer. That is, it is not necessary for all the control processes described later to be executed by one controller of the apparatus main body.
<正面画像撮影部>
 図2を参照して、正面画像撮影部30について説明する。本実施形態の正面画像撮影部30は、受光素子31、レンズ32、および受光調整部(フォーカス調整部)33を備える。受光素子31は、眼Eによって反射された反射光(観察光)を受光する。本実施形態の受光素子31は、眼Eからの反射光を受光することで、眼Eの画像(詳細には、前眼部の正面画像)を撮影する。本実施形態では、二次元受光素子(例えば、CCD、CMOS等)が採用されている。レンズ32は、眼Eの撮影対象部位と受光素子31とを共役とする。なお、図2では便宜的に1つのレンズ32のみが図示されているが、光路中に設けられる光学素子の数が1つに限定されないことは言うまでもない。受光調整部33は、受光素子31における反射光の受光状態を調整する。詳細には、本実施形態の受光調整部33は、受光素子31における反射光のフォーカス状態を調整する。つまり、本実施形態の受光調整部33は、反射光の光軸(撮影光軸)に沿う方向(図2の矢印A方向)に受光素子31を移動させることで、受光素子31と撮影対象部位を共役とすることができる。本実施形態の受光調整部33には、例えばモータ等が用いられる。
<Front image shooting unit>
The front image capturing unit 30 will be described with reference to FIG. The front image capturing unit 30 of the present embodiment includes a light receiving element 31, a lens 32, and a light receiving adjustment unit (focus adjustment unit) 33. The light receiving element 31 receives reflected light (observation light) reflected by the eye E. The light receiving element 31 of the present embodiment captures an image of the eye E (specifically, a front image of the anterior eye part) by receiving the reflected light from the eye E. In this embodiment, a two-dimensional light receiving element (for example, CCD, CMOS, etc.) is employed. The lens 32 conjugates the imaging target region of the eye E and the light receiving element 31. In FIG. 2, only one lens 32 is shown for convenience, but it goes without saying that the number of optical elements provided in the optical path is not limited to one. The light receiving adjustment unit 33 adjusts the light receiving state of the reflected light in the light receiving element 31. Specifically, the light receiving adjustment unit 33 of the present embodiment adjusts the focus state of the reflected light at the light receiving element 31. That is, the light receiving adjustment unit 33 according to the present embodiment moves the light receiving element 31 in a direction along the optical axis (imaging optical axis) of reflected light (in the direction of arrow A in FIG. 2), so that the light receiving element 31 and the imaging target part are moved. Can be conjugated. For example, a motor or the like is used for the light receiving adjustment unit 33 of the present embodiment.
 受光状態を調整するための構成は、適宜変更できる。例えば、正面画像撮影部30は、撮影光路上に設けられた光学素子(例えばレンズ32)を光路に沿う方向(図2の矢印B方向)に移動させる受光調整部34を備えてもよい。この場合、眼科用レーザ手術装置1は、受光素子31および光学素子の少なくともいずれかを光軸に沿って移動させることで、フォーカス状態を調整することができる。また、眼科用レーザ手術装置1は、受光調整部34を駆動することで、フォーカス状態以外の受光状態(例えば、正面画像の撮影倍率)を調整してもよい。また、正面画像撮影部30は、撮影光軸上への光学素子35の挿入と、撮影光軸上からの光学素子35の取り外しを行う受光調整部36を備えてもよい(図2の矢印C参照)。この場合、眼科用レーザ手術装置1は、各種条件に応じて段階的に受光状態を調整できる。なお、図2に示す倍率調整部300および輝度調整部400の説明は後述する。 The configuration for adjusting the light receiving state can be changed as appropriate. For example, the front image photographing unit 30 may include a light receiving adjustment unit 34 that moves an optical element (for example, a lens 32) provided on the photographing optical path in a direction along the optical path (in the direction of arrow B in FIG. 2). In this case, the ophthalmic laser surgical apparatus 1 can adjust the focus state by moving at least one of the light receiving element 31 and the optical element along the optical axis. Further, the ophthalmic laser surgical apparatus 1 may adjust the light receiving state (for example, the imaging magnification of the front image) other than the focus state by driving the light receiving adjustment unit 34. Further, the front image photographing unit 30 may include a light receiving adjustment unit 36 for inserting the optical element 35 on the photographing optical axis and removing the optical element 35 from the photographing optical axis (arrow C in FIG. 2). reference). In this case, the ophthalmic laser surgical apparatus 1 can adjust the light receiving state in stages according to various conditions. Note that description of the magnification adjustment unit 300 and the luminance adjustment unit 400 illustrated in FIG. 2 will be described later.
<固視標投影部>
 図3を参照して、固視標投影部40について説明する。本実施形態の固視標投影部40は、固視標投影光源41、第1絞り42、第2絞り43、レンズ44、可動ステージ45、固視標移動駆動部46、固定レンズ47、可動光学素子48、および光学素子移動駆動部49を備える。固視標投影光源41は、対象者の眼Eに固視標を投影するための光(固視標投影光)を発光する。固視標投影光源41から発光される固視標投影光の光量は、制御部50によって変更される。第1絞り42および第2絞り43は、固視標の投影光路に入射する固視標投影光の光束を一定の大きさにする。レンズ44は、投影光路において、第1絞り42および第2絞り43に対して所定の位置に固定されている。
<Fixed target projection unit>
The fixation target projection unit 40 will be described with reference to FIG. The fixation target projection unit 40 of the present embodiment includes a fixation target projection light source 41, a first diaphragm 42, a second diaphragm 43, a lens 44, a movable stage 45, a fixation target movement drive unit 46, a fixed lens 47, and movable optics. An element 48 and an optical element movement drive unit 49 are provided. The fixation target projection light source 41 emits light (fixation target projection light) for projecting the fixation target onto the eye E of the subject. The amount of fixation target projection light emitted from the fixation target projection light source 41 is changed by the control unit 50. The first diaphragm 42 and the second diaphragm 43 make the light flux of the fixation target projection light incident on the projection optical path of the fixation target a certain size. The lens 44 is fixed at a predetermined position with respect to the first diaphragm 42 and the second diaphragm 43 in the projection optical path.
 可動ステージ45には、固視標投影光源41、第1絞り42、第2絞り43、およびレンズ44が搭載されている。可動ステージ45は、投影光路の光軸(投影光軸)に対して交差する方向(図3の矢印D方向)に移動することができる。投影光軸に交差する方向に可動ステージ45が移動すると、眼Eに対する固視標の投影位置が移動する。その結果、眼Eの固視方向が変更される。固視標移動駆動部46は可動ステージ45を移動させる。固視標移動駆動部46には、例えばモータ等が用いられる。 The movable stage 45 is equipped with a fixation target projection light source 41, a first diaphragm 42, a second diaphragm 43, and a lens 44. The movable stage 45 can move in a direction intersecting the optical axis (projection optical axis) of the projection optical path (in the direction of arrow D in FIG. 3). When the movable stage 45 moves in the direction intersecting the projection optical axis, the projection position of the fixation target with respect to the eye E moves. As a result, the fixation direction of the eye E is changed. The fixation target moving drive unit 46 moves the movable stage 45. For example, a motor or the like is used for the fixation target movement drive unit 46.
 固定レンズ47は、投影光路上に固定されている。可動光学素子(例えば可動レンズ)48は、投影光路上に挿入される挿入位置と、投影光路上から外れる取り外し位置との間を移動する(図3の矢印E参照)。光学素子移動駆動部49は、可動光学素子48を移動させる。光学素子移動駆動部49には、モータ、ソレノイド等の各種アクチュエータを用いることができる。 The fixed lens 47 is fixed on the projection optical path. The movable optical element (for example, movable lens) 48 moves between an insertion position where the movable optical element (for example, a movable lens) is inserted on the projection optical path and a removal position where the movable optical element 48 is removed from the projection optical path (see arrow E in FIG. 3). The optical element movement drive unit 49 moves the movable optical element 48. Various actuators such as a motor and a solenoid can be used for the optical element movement drive unit 49.
 本実施形態の眼科用レーザ手術装置1は、眼Eに投影される固視標の投影状態を変更することができる。例えば、眼科用レーザ手術装置1は、固視標投影光源41に供給する電力を調整することで、固視標投影光の光量を変更することができる。この場合、眼Eに向けて投影される固視標の明るさが変更される。また、眼科用レーザ手術装置1は、投影光路上への可動光学素子48の挿入と、投影光路からの可動光学素子48の取り外しとを切り替えることで、固視標投影光学系の焦点距離を変更することができる。この場合、眼Eの網膜における固視標の集光状態が変更される。なお、固視標投影光学系とは、固視標投影光源41から眼Eに延びる投影光路に設けられる各種光学部材である。本実施形態の固視標投影光学系には、絞り42,43、レンズ44、固定レンズ44、および可動光学素子48が含まれる。 The ophthalmic laser surgical apparatus 1 of the present embodiment can change the projection state of the fixation target projected onto the eye E. For example, the ophthalmic laser surgical apparatus 1 can change the amount of fixation target projection light by adjusting the power supplied to the fixation target projection light source 41. In this case, the brightness of the fixation target projected toward the eye E is changed. The ophthalmologic laser surgical apparatus 1 changes the focal length of the fixation target projection optical system by switching between insertion of the movable optical element 48 on the projection optical path and removal of the movable optical element 48 from the projection optical path. can do. In this case, the focusing state of the fixation target in the retina of the eye E is changed. The fixation target projection optical system is various optical members provided in a projection optical path extending from the fixation target projection light source 41 to the eye E. The fixation target projection optical system of the present embodiment includes diaphragms 42 and 43, a lens 44, a fixed lens 44, and a movable optical element 48.
 なお、固視標の投影状態を変更する方法は適宜選択できる。例えば、眼科用レーザ手術装置1は、光学素子移動駆動部49を駆動することで、可動光学素子48を投影光軸に沿う方向(図3の矢印F方向)に移動させてもよい。また、眼科用レーザ手術装置1は、固視標移動駆動部46を駆動することで、投影光軸に沿う方向(図3の矢印G方向)に可動ステージ45を移動させてもよい。これらの方法でも、固視標投影光学系の焦点距離が変更される。勿論、可動光学素子48と可動ステージ45を共に投影光軸に沿って移動させてもよい。 Note that the method for changing the projection state of the fixation target can be selected as appropriate. For example, the ophthalmic laser surgical apparatus 1 may move the movable optical element 48 in the direction along the projection optical axis (the direction of arrow F in FIG. 3) by driving the optical element movement drive unit 49. Further, the ophthalmic laser surgical apparatus 1 may move the movable stage 45 in a direction along the projection optical axis (in the direction of arrow G in FIG. 3) by driving the fixation target moving drive unit 46. Also in these methods, the focal length of the fixation target projection optical system is changed. Of course, both the movable optical element 48 and the movable stage 45 may be moved along the projection optical axis.
 また、言うまでもないが、固視標の投影方法も変更できる。例えば、点光源の代わりに液晶表示器を用いてもよい。この場合、液晶表示器の表示領域における視標の表示位置を変更することで、眼Eの固視方向が変更される。また、複数の点光源を配置し、点灯させる点光源を切り替える方法も採用できる。 Needless to say, the method of projecting the fixation target can also be changed. For example, a liquid crystal display may be used instead of the point light source. In this case, the fixation direction of the eye E is changed by changing the display position of the target in the display area of the liquid crystal display. A method of arranging a plurality of point light sources and switching the point light sources to be lit can also be adopted.
<機械的構成>
 図4を参照して、眼科用レーザ手術装置1の機械的構成の概略について説明する。眼科用レーザ手術装置1は、各種光学系および走査部6,10,18等を収容する筐体60を備える。筐体の下部の一部には、筒部61が設けられている。筒部61の内部には、前述した対物レンズ20が固定される。筒部61は、眼Eに手術用レーザ光を照射するための照射端となる。
<Mechanical configuration>
An outline of the mechanical configuration of the ophthalmic laser surgical apparatus 1 will be described with reference to FIG. The ophthalmic laser surgical apparatus 1 includes a housing 60 that houses various optical systems and scanning units 6, 10, 18, and the like. A cylindrical portion 61 is provided in a part of the lower portion of the housing. The objective lens 20 described above is fixed inside the cylindrical portion 61. The tube portion 61 serves as an irradiation end for irradiating the eye E with a surgical laser beam.
 筐体60の下端には、アライメント指標投影部63が設けられている。アライメント指標投影部63は、眼Eの角膜にアライメント指標を投影する。一例として、本実施形態のアライメント投影部63は、有限遠の光を照射する点光源であるアライメント・照明光源64を複数備える。本実施形態では、アライメント・照明光源64が照射する光は、正面画像を撮影するための照明光源を兼ねる。しかし、アライメント光源とは別に照明光源が設けられてもよい。複数(本実施形態では8個)のアライメント・照明光源64は、筒部61の中心軸を中心として円環状に配置されている。詳細は後述するが、制御部50は、正面画像を処理することで、アライメント・照明光源64から照射されて角膜で反射される光を輝点として検出する。制御部50は、検出した輝点の位置に基づいて、装置本体に対する眼Eの位置を検出する。 An alignment index projection unit 63 is provided at the lower end of the housing 60. The alignment index projection unit 63 projects the alignment index onto the cornea of the eye E. As an example, the alignment projection unit 63 of the present embodiment includes a plurality of alignment / illumination light sources 64 that are point light sources that emit light of a finite distance. In the present embodiment, the light emitted from the alignment / illumination light source 64 also serves as an illumination light source for capturing a front image. However, an illumination light source may be provided separately from the alignment light source. A plurality (eight in this embodiment) of alignment / illumination light sources 64 are arranged in an annular shape around the central axis of the cylindrical portion 61. Although details will be described later, the control unit 50 processes the front image to detect light emitted from the alignment / illumination light source 64 and reflected by the cornea as a bright spot. The control unit 50 detects the position of the eye E with respect to the apparatus main body based on the detected position of the bright spot.
 なお、アライメント指標投影部63の構成も適宜変更できる。例えば、複数の点光源を環状に配置する代わりに、連続したリング状の指標を投影する環状光源が採用されてもよい。また、本実施形態では、有限遠の光でアライメント指標を投影することで、正面画像の撮影光軸に交差する方向(XY方向)における眼Eの位置が検出される。しかし、眼科用レーザ手術装置1は、無限遠の指標と有限遠の視標を共に眼Eに向けて投影することで、撮影光軸に沿う方向(Z方向)における眼Eの位置を、XY方向における位置と共に検出してもよい。この場合、正面画像に写り込む無限遠の指標と有限遠の視標の関係に基づいて、Z方向における眼Eの位置が検出される。また、眼科用レーザ手術装置1が備える光源とは別の光源によって照明光が眼Eに照射されてもよい。 It should be noted that the configuration of the alignment index projection unit 63 can be changed as appropriate. For example, instead of arranging a plurality of point light sources in an annular shape, an annular light source that projects a continuous ring-shaped index may be employed. Further, in the present embodiment, the position of the eye E in the direction (XY direction) intersecting the photographing optical axis of the front image is detected by projecting the alignment index with light of finite distance. However, the ophthalmic laser surgical apparatus 1 projects the position of the eye E in the direction along the imaging optical axis (Z direction) by projecting both an infinite index and a finite target toward the eye E. You may detect with the position in a direction. In this case, the position of the eye E in the Z direction is detected based on the relationship between the infinity index reflected in the front image and the finite distance target. Further, the illumination light may be applied to the eye E by a light source different from the light source provided in the ophthalmic laser surgical apparatus 1.
 筐体60は結合駆動部66を備える。結合駆動部66は、筐体60(装置本体)および保持部67(後述する)を眼Eに対して移動させることで、インターフェース90を眼Eに結合させる。本実施形態の結合駆動部66は、筐体60および保持部67を3方向(X,Y,Z方向)に移動させることができる。なお、装置本体と眼Eの相対的な位置関係を変化させるための具体的な方法は、筐体60を3方向に移動させる方法に限定されない。例えば、結合駆動部は、対象者を装置本体に対して移動させることで、インターフェース90を眼Eに結合させてもよい。 The housing 60 includes a coupling drive unit 66. The coupling drive unit 66 couples the interface 90 to the eye E by moving the housing 60 (device main body) and the holding unit 67 (described later) with respect to the eye E. The coupling drive unit 66 of the present embodiment can move the housing 60 and the holding unit 67 in three directions (X, Y, Z directions). Note that the specific method for changing the relative positional relationship between the apparatus main body and the eye E is not limited to the method of moving the housing 60 in three directions. For example, the coupling drive unit may couple the interface 90 to the eye E by moving the subject relative to the apparatus main body.
 調整駆動部70は、筐体60と保持部67に連結している。保持部67には、インターフェース90の少なくとも一部が着脱可能に装着される。保持部67は、装着されたインターフェース90(以下、「装着インターフェース」という場合がある)の装置本体に対する位置および角度の少なくともいずれかを調整可能な状態で、装着インターフェースを保持する。一例として、本実施形態の調整駆動部70は、装置本体に対して保持部67をXY方向に移動させることで、装置本体に対する装着インターフェースの位置を調整する。しかし、調整保持部は、装着インターフェースの角度を調整してもよい(詳細は後述する)。 The adjustment driving unit 70 is connected to the housing 60 and the holding unit 67. At least a part of the interface 90 is detachably attached to the holding unit 67. The holding unit 67 holds the mounting interface in a state where at least one of the position and the angle of the mounted interface 90 (hereinafter sometimes referred to as “mounting interface”) with respect to the apparatus main body can be adjusted. As an example, the adjustment driving unit 70 of the present embodiment adjusts the position of the mounting interface with respect to the apparatus main body by moving the holding unit 67 in the XY directions with respect to the apparatus main body. However, the adjustment holding unit may adjust the angle of the mounting interface (details will be described later).
 保持部67は、ベース部68、第1リンク71、第2リンク72、ロック機構73、連結部74、位置検出センサ75、インターフェース装着部76、および圧力センサ77を備える。また、保持部67は、ナット
 ベース部68は、調整駆動部70に連結されると共に、インターフェース90を保持するためのベースとなる。第1リンク71は、ベース部68の上端の一部に、水平方向の軸を中心として回転可能な状態で接続されている。第2リンク72は、第1リンク71の一端部に、水平方向の軸を中心として回転可能な状態で接続されている。第2リンク72は上下方向に延びている。第1リンク71が回転すると、第2リンク72は上下方向(Z方向)に移動する。第2リンク72のZ方向の移動は、ベース部68の一部によってガイドされる。
The holding part 67 includes a base part 68, a first link 71, a second link 72, a lock mechanism 73, a connecting part 74, a position detection sensor 75, an interface mounting part 76, and a pressure sensor 77. In addition, the holding portion 67 serves as a base for holding the interface 90 while the nut base portion 68 is connected to the adjustment driving portion 70. The first link 71 is connected to a part of the upper end of the base portion 68 so as to be rotatable about a horizontal axis. The second link 72 is connected to one end of the first link 71 so as to be rotatable about a horizontal axis. The second link 72 extends in the vertical direction. When the first link 71 rotates, the second link 72 moves in the vertical direction (Z direction). The movement of the second link 72 in the Z direction is guided by a part of the base portion 68.
 ロック機構73は、第2リンク72の一部(本実施形態では下端部近傍)に接続している。ロック機構73は、第2リンク72の移動のロックおよびロック解除を行うことができる。連結部74は、第2リンク72の一部(本実施形態では上下方向の中央部近傍)に固定されており、第2リンク72と共にZ方向に移動する。連結部74は、第2リンク72とインターフェース装着部76を連結する。位置検出センサ74は、第2リンク72のZ方向における位置を検出することで、インターフェース90のZ方向における位置を検出することができる。 The lock mechanism 73 is connected to a part of the second link 72 (in the vicinity of the lower end in the present embodiment). The lock mechanism 73 can lock and unlock the movement of the second link 72. The connecting portion 74 is fixed to a part of the second link 72 (in the present embodiment, near the center in the vertical direction) and moves in the Z direction together with the second link 72. The connecting part 74 connects the second link 72 and the interface mounting part 76. The position detection sensor 74 can detect the position of the interface 90 in the Z direction by detecting the position of the second link 72 in the Z direction.
 インターフェース装着部76には、インターフェース90が着脱可能に装着される。本実施形態では、ユーザがインターフェース90の基部をインターフェース装着部76の所定箇所に取り付けると、インターフェース90の基部とインターフェース装着部76の間に空間78が形成される。ポンプ(図示せず)によって空間78に負圧を生じさせることで、インターフェース90がインターフェース装着部76に吸引固定される。圧力センサ(例えばロードセル)77は、インターフェース装着部76と連結部74の間に加わる荷重を検出する。本実施形態では、制御部50のCPU51は、眼Eに対してインターフェース90が接触したか否かを、圧力センサ77を用いて検出することができる。 The interface 90 is detachably mounted on the interface mounting portion 76. In the present embodiment, when the user attaches the base portion of the interface 90 to a predetermined location of the interface mounting portion 76, a space 78 is formed between the base portion of the interface 90 and the interface mounting portion 76. By generating a negative pressure in the space 78 by a pump (not shown), the interface 90 is sucked and fixed to the interface mounting portion 76. The pressure sensor (for example, load cell) 77 detects a load applied between the interface mounting portion 76 and the connecting portion 74. In the present embodiment, the CPU 51 of the control unit 50 can detect whether the interface 90 is in contact with the eye E using the pressure sensor 77.
 ナット80は、ベース部68に形成された穴に、Z方向に移動可能に装着されている。ナット80の上端部には、第1リンク71に下方から接触するピン81が設けられている。送りねじ82はナット80に螺合している。モータ83は送りねじ82を回転させる。モータ83が駆動して送りねじ82が回転すると、ナット80およびピン81がZ方向に移動する。その結果、第1リンク71が回転し、第2リンク72、連結部74、インターフェース装着部76、およびインターフェース90がZ方向に移動する。なお、本実施形態では、眼Eに過剰な荷重が加わったことが圧力センサ77によって検出されると、ロック機構73による第2リンク72のロックが解除され、インターフェース90が上方に移動可能な状態となる。その結果、眼Eに対する安全性が向上する。 The nut 80 is mounted in a hole formed in the base portion 68 so as to be movable in the Z direction. A pin 81 that contacts the first link 71 from below is provided at the upper end of the nut 80. The feed screw 82 is screwed into the nut 80. The motor 83 rotates the feed screw 82. When the motor 83 is driven and the feed screw 82 rotates, the nut 80 and the pin 81 move in the Z direction. As a result, the first link 71 rotates, and the second link 72, the connecting portion 74, the interface mounting portion 76, and the interface 90 move in the Z direction. In the present embodiment, when the pressure sensor 77 detects that an excessive load is applied to the eye E, the lock mechanism 73 unlocks the second link 72 and the interface 90 is movable upward. It becomes. As a result, the safety for the eye E is improved.
<インターフェース>
 図5および図6を参照して、インターフェース90について説明する。インターフェース90は、装置本体と眼Eの間に延びる各種光(手術用レーザ光、基準光、観察光、OCT光、および固視標投影光)の光路のうち、装置本体と眼Eの間に介在し、眼Eに結合される。本実施形態では、ユーザは、手術する部位および術式等に応じて、複数種類のインターフェース90を使い分けることができる。一例として、本実施形態における複数種類のインターフェース90には、液浸インターフェース91(図5参照)および圧平インターフェース92(図6参照)が含まれる。まず、液浸インターフェース91および圧平インターフェース92に共通する構成について説明する。なお、以下説明する構成の細部は、液浸インターフェース91と圧平インターフェース92の間で異なっていてもよい。
<Interface>
The interface 90 will be described with reference to FIGS. 5 and 6. The interface 90 is disposed between the apparatus main body and the eye E among optical paths of various lights (surgical laser light, reference light, observation light, OCT light, and fixation target projection light) extending between the apparatus main body and the eye E. Intervenes and is coupled to eye E. In the present embodiment, the user can selectively use a plurality of types of interfaces 90 according to the region to be operated, the surgical procedure, and the like. As an example, the plurality of types of interfaces 90 in the present embodiment include an immersion interface 91 (see FIG. 5) and an applanation interface 92 (see FIG. 6). First, a configuration common to the immersion interface 91 and the applanation interface 92 will be described. The details of the configuration described below may be different between the immersion interface 91 and the applanation interface 92.
 図5および図6に示すように、インターフェース90は、マウント93、吸引路94、眼固定部95、およびインターフェースレンズ(液浸レンズ100またはコンタクトレンズ110)を備える。 As shown in FIGS. 5 and 6, the interface 90 includes a mount 93, a suction path 94, an eye fixing portion 95, and an interface lens (an immersion lens 100 or a contact lens 110).
 マウント93は、インターフェース90のベースとなる部材である。マウント93は、保持部67のインターフェース装着部76(図4参照)に装着されると共に、眼固定部95等を保持する。マウント93には、Z方向(図5および図6における上下方向)に貫通する円形の孔が形成されている。各種光は、円形の孔の内側を伝播することができる。吸引路94はマウント93に設けられており、後述する空間96とポンプ(図示せず)の間で気体を流通させる。 The mount 93 is a member that becomes a base of the interface 90. The mount 93 is mounted on the interface mounting portion 76 (see FIG. 4) of the holding portion 67 and holds the eye fixing portion 95 and the like. The mount 93 is formed with a circular hole penetrating in the Z direction (vertical direction in FIGS. 5 and 6). Various types of light can propagate inside the circular hole. The suction path 94 is provided in the mount 93 and allows gas to flow between a space 96 described later and a pump (not shown).
 眼固定部(本実施形態ではサクションリング)95は、環状(本実施形態では円環状)の部材である。眼固定部95は、マウント93に形成された円形の孔の下端を取り囲むように、マウント93の下部に設けられている。眼固定部95は、眼E(本実施形態では、眼Eの角膜または強膜)に結合することで、装置本体(詳細には、装置本体に設けられた対物レンズ20、および、手術用レーザ光の基準軸等)に対する眼Eの位置を固定する。本実施形態では、眼固定部95とマウント93は別部材である。眼固定部95は、はめ込み、溶接、接着剤による接着等によってマウント93に固定される。しかし、眼固定部95は、マウント93と一体に形成されていてもよい。また、眼固定部95は、マウント93またはマウント93のアーム部分に対し、吸引等によって着脱可能に装着されてもよい。眼固定部95が眼Eに接触すると、眼Eの表面と眼固定部95の間に、密閉された空間96が形成される。空間96内の気体が吸引路94を通じて排出されることで、眼固定部95が眼Eに吸引固定される。 The eye fixing part (suction ring in the present embodiment) 95 is an annular (annular in the present embodiment) member. The eye fixing part 95 is provided at the lower part of the mount 93 so as to surround the lower end of the circular hole formed in the mount 93. The eye fixing unit 95 is coupled to the eye E (in this embodiment, the cornea or sclera of the eye E), so that the apparatus main body (specifically, the objective lens 20 provided in the apparatus main body and the surgical laser) The position of the eye E with respect to the light reference axis or the like is fixed. In this embodiment, the eye fixing part 95 and the mount 93 are separate members. The eye fixing part 95 is fixed to the mount 93 by fitting, welding, adhesive bonding, or the like. However, the eye fixing part 95 may be formed integrally with the mount 93. Further, the eye fixing portion 95 may be detachably attached to the mount 93 or the arm portion of the mount 93 by suction or the like. When the eye fixing part 95 contacts the eye E, a sealed space 96 is formed between the surface of the eye E and the eye fixing part 95. As the gas in the space 96 is discharged through the suction passage 94, the eye fixing portion 95 is sucked and fixed to the eye E.
 インターフェースレンズ(液浸レンズ100およびコンタクトレンズ110)は、各種光の光路のうち、眼固定部95よりも装置本体側(本実施形態では眼固定部95よりも上方)に配置される。本実施形態のインターフェースレンズ100,110は、マウント93に形成された円形の穴の上部に、接着剤等によって固定される。しかし、インターフェースレンズ100,110と眼固定部95が一体的に固定されず別部材となっていてもよい。また、インターフェースレンズ100,110は、マウント93またはマウント93のアーム部分に対して吸引等によって着脱可能に装着されてもよい。 The interface lens (the immersion lens 100 and the contact lens 110) is disposed on the apparatus main body side (above the eye fixing unit 95 in the present embodiment) of the various light paths of the light. The interface lenses 100 and 110 of this embodiment are fixed to the upper part of a circular hole formed in the mount 93 by an adhesive or the like. However, the interface lenses 100 and 110 and the eye fixing part 95 may be separate members instead of being integrally fixed. The interface lenses 100 and 110 may be detachably attached to the mount 93 or the arm portion of the mount 93 by suction or the like.
 図5を参照して、液浸インターフェース91の液浸レンズ100について説明する。液浸インターフェース91が眼Eに接触すると、液浸レンズ100と眼Eの表面(角膜)の間に空間103が生じる。眼Eの透明組織(例えば角膜等)の間の屈折率差が空気よりも小さい物質(例えば、水または粘弾性物質等の液体、または弾性体)が、空間103に配置される。その結果、液浸レンズ100と眼Eの間のうち、少なくとも各種光が通過する部分が、液体等の物質によって満たされる。従って、眼Eの透明組織と空気の間の屈折率差の影響(例えば収差の発生等)が抑制される。 The immersion lens 100 of the immersion interface 91 will be described with reference to FIG. When the immersion interface 91 contacts the eye E, a space 103 is generated between the immersion lens 100 and the surface (cornea) of the eye E. A substance (for example, a liquid such as water or a viscoelastic substance or an elastic body) whose refractive index difference between the transparent tissues of the eye E (eg, cornea) is smaller than that of air is disposed in the space 103. As a result, at least a portion through which various types of light pass between the immersion lens 100 and the eye E is filled with a substance such as a liquid. Therefore, the influence (for example, generation | occurrence | production of an aberration) of the refractive index difference between the transparent structure | tissue of the eye E and air is suppressed.
 本実施形態では、空間103に液体を注入するための注入経路(図示せず)がマウント93に形成されている。液体は、液浸インターフェース91が眼Eに接触した状態で、注入経路を通じて空間103に注入される。しかし、空間103に液体等の物質を配置する方法は適宜変更できる。例えば、ユーザは、液浸インターフェース91が眼Eに接触した状態で、眼Eに上方から液体等の物質を配置し、その後液浸レンズ100をマウント93に装着させてもよい。 In this embodiment, an injection path (not shown) for injecting liquid into the space 103 is formed in the mount 93. The liquid is injected into the space 103 through the injection path with the immersion interface 91 in contact with the eye E. However, the method of arranging a substance such as a liquid in the space 103 can be changed as appropriate. For example, the user may place a substance such as a liquid on the eye E from above while the immersion interface 91 is in contact with the eye E, and then attach the immersion lens 100 to the mount 93.
 一例として、本実施形態の液浸レンズ100のレンズ面のうち、眼E側に位置する後面101、および装置本体側に位置する前面102は、共に眼E側(下側)に向けて凸状に湾曲している。この場合、例えば、OCT光がレンズ面(特に後面101)によって直接反射して断層画像撮影部23に入射する不具合等が抑制される。また、後面101および前面102の表面は、球面に沿う形状となっている。ただし、後面101および前面102の形状を変更することも可能である。例えば、後面101および前面102の少なくともいずれかを平面としてもよい。この場合、レンズ面による収差の発生が抑制される。また、後面101および前面の少なくとも一方が、装置本体側(上側)に向けて凸状に湾曲していてもよい。この場合、制御部50は、アライメント指標投影部63(図4参照)から照射されてレンズ面で反射される光(輝点)によって、液浸レンズ100の中心位置を検出することも可能である。また、レンズ面が非球面に沿って湾曲していてもよい。 As an example, out of the lens surfaces of the immersion lens 100 of the present embodiment, the rear surface 101 located on the eye E side and the front surface 102 located on the apparatus main body side are both convex toward the eye E side (lower side). Is curved. In this case, for example, a problem that the OCT light is directly reflected by the lens surface (particularly the rear surface 101) and incident on the tomographic image capturing unit 23 is suppressed. Further, the surfaces of the rear surface 101 and the front surface 102 are shaped along a spherical surface. However, the shapes of the rear surface 101 and the front surface 102 can be changed. For example, at least one of the rear surface 101 and the front surface 102 may be a flat surface. In this case, the occurrence of aberration due to the lens surface is suppressed. Further, at least one of the rear surface 101 and the front surface may be curved in a convex shape toward the apparatus main body side (upper side). In this case, the control unit 50 can also detect the center position of the immersion lens 100 by the light (bright spot) that is irradiated from the alignment index projection unit 63 (see FIG. 4) and reflected by the lens surface. . The lens surface may be curved along an aspheric surface.
 図6を参照して、圧平インターフェース92のコンタクトレンズ110について説明する。圧平インターフェース92が眼Eに吸引固定されると、コンタクトレンズ110の後面111(レンズ面のうち眼E側の面)が、眼Eの表面(角膜を含む)に接触する。つまり、眼Eの角膜が圧平される。その結果、角膜の表面の形状が、コンタクトレンズ110の後面111の形状に変形される。よって、手術用レーザ光の照射位置が適切に設定される。また、後面111と角膜の間に空気が介在する場合に比べて、光の屈折による悪影響(例えば収差の発生等)が抑制される。なお、コンタクトレンズ110の後面111と眼Eの表面の間の気体が吸引されることで、コンタクトレンズ110が眼Eに圧平されてもよい。 The contact lens 110 of the applanation interface 92 will be described with reference to FIG. When the applanation interface 92 is sucked and fixed to the eye E, the rear surface 111 of the contact lens 110 (the surface of the lens surface on the eye E side) comes into contact with the surface of the eye E (including the cornea). That is, the cornea of the eye E is applanated. As a result, the shape of the cornea surface is deformed to the shape of the rear surface 111 of the contact lens 110. Therefore, the irradiation position of the surgical laser beam is set appropriately. Further, as compared with the case where air is interposed between the rear surface 111 and the cornea, an adverse effect (for example, generation of aberration) due to light refraction is suppressed. Note that the contact lens 110 may be applanated by the eye E by sucking the gas between the rear surface 111 of the contact lens 110 and the surface of the eye E.
 一例として、本実施形態のコンタクトレンズ110のうち、眼E側に位置する後面111は、上側に向けて凸状に湾曲している。従って、平坦な面によって眼Eを圧平する場合に比べて、圧平時の眼圧の上昇が抑制される。さらに、制御部50は、アライメント指標投影部63(図4参照)から照射されて後面111で反射される光によって、コンタクトレンズ110の中心位置を検出することも可能である。コンタクトレンズ110の前面112は、前述した液浸レンズ100の前面102と同様に、装置本体側に向けて凸状に湾曲している。後面111および前面112は、共に球面に沿った湾曲形状に形成されている。ただし、コンタクトレンズ110の後面111および前面102の形状も、液浸レンズ100と同様に変更可能である。例えば、コンタクトレンズ110の後面111を平坦面としてもよい。以上の説明から明らかなように、圧平という用語は、眼Eの角膜を平坦な形状に変形させる意味だけでなく、眼Eの角膜を平坦でない所定の形状に変形させる意味も含む。 As an example, in the contact lens 110 of this embodiment, the rear surface 111 located on the eye E side is curved in a convex shape toward the upper side. Therefore, an increase in intraocular pressure during applanation is suppressed as compared with the case where the eye E is applanated by a flat surface. Further, the control unit 50 can detect the center position of the contact lens 110 by the light emitted from the alignment index projection unit 63 (see FIG. 4) and reflected by the rear surface 111. The front surface 112 of the contact lens 110 is curved in a convex shape toward the apparatus main body, similarly to the front surface 102 of the immersion lens 100 described above. Both the rear surface 111 and the front surface 112 are formed in a curved shape along the spherical surface. However, the shapes of the rear surface 111 and the front surface 102 of the contact lens 110 can be changed in the same manner as the immersion lens 100. For example, the rear surface 111 of the contact lens 110 may be a flat surface. As is apparent from the above description, the term applanation includes not only the meaning of deforming the cornea of the eye E into a flat shape but also the meaning of deforming the cornea of the eye E into a predetermined shape that is not flat.
 本実施形態では、インターフェースレンズ(例えば、液浸レンズ100およびコンタクトレンズ110など)の屈折力は、インターフェース90の種類に応じて異なる。 In this embodiment, the refractive power of the interface lens (for example, the immersion lens 100 and the contact lens 110) differs depending on the type of the interface 90.
 また、インターフェースレンズ100,110は、インターフェース90がインターフェース装着部76に装着されることによって、正面画像撮影部30の撮影光路に配置される。したがって、インターフェース90の種類によってインターフェースレンズ100,110の屈折力が異なる場合、正面画像撮影部30の撮影光路全体の光学素子の屈折力が変化し、正面画像撮影部30の撮影倍率が変化する。 Further, the interface lenses 100 and 110 are arranged in the photographing optical path of the front image photographing unit 30 when the interface 90 is attached to the interface attaching unit 76. Therefore, when the refractive powers of the interface lenses 100 and 110 differ depending on the type of the interface 90, the refractive power of the optical elements in the entire photographing optical path of the front image photographing unit 30 changes, and the photographing magnification of the front image photographing unit 30 changes.
 例えば、図7(a)は、液浸インターフェース91使用時と圧平インターフェース92使用時のそれぞれについて、装置本体と眼Eとの距離WDと、正面画像撮影部30の撮影範囲の直径φとの関係を示すグラフの一例である。図7(a)のグラフは、横軸が距離WDであり、縦軸が撮影範囲の直径φである。また、図7において、実線は液浸インターフェース91使用時を示し、点線は圧平インターフェース92使用時を示す。図7(a)のグラフからわかるように、液浸インターフェース91の使用時に比べ、圧平インターフェース92の使用時は撮影範囲の直径φが広い。つまり、液浸インターフェース91の使用時に比べ、圧平インターフェース92の使用時は撮影倍率が小さい。 For example, FIG. 7A shows the distance WD between the apparatus main body and the eye E and the diameter φ of the photographing range of the front image photographing unit 30 when the immersion interface 91 is used and when the applanation interface 92 is used. It is an example of the graph which shows a relationship. In the graph of FIG. 7A, the horizontal axis is the distance WD, and the vertical axis is the diameter φ of the imaging range. In FIG. 7, the solid line indicates when the liquid immersion interface 91 is used, and the dotted line indicates when the applanation interface 92 is used. As can be seen from the graph of FIG. 7A, the diameter φ of the imaging range is wider when the applanation interface 92 is used than when the immersion interface 91 is used. That is, the photographing magnification is smaller when the applanation interface 92 is used than when the immersion interface 91 is used.
 なお、本実施形態の正面画像撮影部30は、像側で非テレセントリックであり、距離WDの大きさによって撮影範囲の直径φが異なる。つまり、距離WDの大きさによって撮影倍率が異なる。 Note that the front image capturing unit 30 of the present embodiment is non-telecentric on the image side, and the diameter φ of the capturing range varies depending on the distance WD. That is, the shooting magnification varies depending on the size of the distance WD.
 図7(a)の例だと、液浸インターフェース91を使用した場合、距離WDが0mmのときの撮影範囲の直径φがおよそ15mmであり、距離WDが100mmのときの撮影範囲の直径φは、およそ40mm(図7(b)参照)である。従って、距離WDの変化に対する撮影範囲の直径φの変化の割合(つまり、距離WDの変化量に対する撮影範囲の変化量の比率)は、例えば、(40-15)/100-0=0.25となる。また、圧平インターフェース92を使用した場合、距離WDが0mmのときの撮影範囲の直径φはおよそ20mmであり、距離WDが100mmのときの撮影範囲の直径φはおよそ70mm(図7(c)参照)である。従って、距離WDの変化に対する撮影範囲の直径φの変化の割合は、例えば、(70-20)/100-0=0.5となる。 In the example of FIG. 7A, when the immersion interface 91 is used, the diameter φ of the imaging range when the distance WD is 0 mm is approximately 15 mm, and the diameter φ of the imaging range when the distance WD is 100 mm is , Approximately 40 mm (see FIG. 7B). Accordingly, the ratio of the change in the diameter φ of the shooting range to the change in the distance WD (that is, the ratio of the change amount in the shooting range to the change amount in the distance WD) is, for example, (40-15) /100-0=0.25. It becomes. When the applanation interface 92 is used, the diameter φ of the photographing range when the distance WD is 0 mm is about 20 mm, and the diameter φ of the photographing range when the distance WD is 100 mm is about 70 mm (FIG. 7C). Reference). Therefore, the ratio of the change in the diameter φ of the shooting range to the change in the distance WD is, for example, (70-20) /100-0=0.5.
 このように、使用するインターフェース90の種類によって撮影倍率に差が生じると、撮影倍率の違いによって術者に違和感を与えてしまい、患者眼の様子が観察しづらくなってしまう。そこで、本実施形態においては、後述する倍率調整部300が設けられ、インターフェース90の種類に応じて生じる撮影範囲の変化が大きくなり過ぎないように正面画像撮影部30の撮影倍率が調整される。例えば、倍率調整部300は、インターフェース90の種類に応じて生じる撮影範囲の変化が減少するように倍率を調整してもよい。 Thus, when a difference in imaging magnification occurs depending on the type of interface 90 to be used, the operator feels uncomfortable due to the difference in imaging magnification, making it difficult to observe the state of the patient's eyes. Therefore, in the present embodiment, a magnification adjustment unit 300 described later is provided, and the photographing magnification of the front image photographing unit 30 is adjusted so that a change in the photographing range that occurs according to the type of the interface 90 does not become too large. For example, the magnification adjustment unit 300 may adjust the magnification so that a change in the photographing range that occurs according to the type of the interface 90 is reduced.
<倍率調整部>
 以下、図1および図2を参照して倍率調整部300について説明する。例えば、倍率調整部300は、正面画像撮影部30の撮影倍率を調整する。例えば、倍率調整部300は、光学素子301と、駆動部302を備える。例えば、光学素子301は正面画像撮影部30の撮影光路中に設けられる。例えば、駆動部302は光学素子301を駆動する(移動させる)。例えば、駆動部302は撮影光路上への光学素子301の挿入および取り外しを行う(図2の矢印H参照)。
<Magnification adjustment section>
Hereinafter, the magnification adjustment unit 300 will be described with reference to FIGS. 1 and 2. For example, the magnification adjustment unit 300 adjusts the photographing magnification of the front image photographing unit 30. For example, the magnification adjustment unit 300 includes an optical element 301 and a drive unit 302. For example, the optical element 301 is provided in the photographing optical path of the front image photographing unit 30. For example, the drive unit 302 drives (moves) the optical element 301. For example, the drive unit 302 inserts and removes the optical element 301 on the photographing optical path (see arrow H in FIG. 2).
 本実施形態の光学素子301には、例えば、正面画像撮影部30の撮影倍率を大きくするレンズが用いられる。この場合、複数種類のインターフェース90のうち、撮影倍率が小さくなるインターフェース90が装着されたときに、倍率調整部300は光学素子301を撮影光路上に挿入してもよい。 For example, a lens that increases the imaging magnification of the front image capturing unit 30 is used as the optical element 301 of the present embodiment. In this case, the magnification adjusting unit 300 may insert the optical element 301 on the photographing optical path when the interface 90 having a small photographing magnification is mounted among the plurality of types of interfaces 90.
 なお、光学素子301として、正面画像撮影部30の撮影倍率を小さくするレンズを用いた場合は、複数種類のインターフェース90のうち、撮影倍率が大きいインターフェース90が装着されたときに、倍率調整部300は光学素子301を撮影光路上に挿入するようにしてもよい。 In the case where a lens for reducing the photographing magnification of the front image photographing unit 30 is used as the optical element 301, the magnification adjusting unit 300 is mounted when the interface 90 having a large photographing magnification is mounted among the plurality of types of interfaces 90. The optical element 301 may be inserted on the photographing optical path.
 なお、倍率調整部300は、光学素子を複数備えてもよい。例えば、図2に示すように、倍率調整部300は、光学素子301の他に光学素子303等を備えてもよい。例えば、倍率調整部300は、駆動部304によって光学素子303を駆動させることで正面画像撮影部30の撮影倍率を調整してもよい。これによって、正面画像撮影部30の撮影倍率とテレセン性(テレセントリックの度合い)の調整を容易に行えるようにしてもよい。 Note that the magnification adjustment unit 300 may include a plurality of optical elements. For example, as illustrated in FIG. 2, the magnification adjustment unit 300 may include an optical element 303 in addition to the optical element 301. For example, the magnification adjustment unit 300 may adjust the photographing magnification of the front image photographing unit 30 by driving the optical element 303 by the driving unit 304. Thus, the imaging magnification and telecentricity (degree of telecentricity) of the front image capturing unit 30 may be easily adjusted.
 <全体の制御動作>
 以上のような構成を備える眼科用レーザ手術装置1の制御動作を図8に基づいて説明する。まず、術者は、手術の内容に応じて治療用レーザ光の照射モードを選択する(ステップS1)。例えば、患者眼Eの角膜に治療用レーザ光を照射することによって、屈折矯正手術を行うためのレーシックモード、患者眼Eの角膜および水晶体に治療用レーザ光を照射することによって、白内障手術を行うためのカタラクトモードなどの照射モードが設けられてもよい。以下の説明においては、レーシックモードが選択された場合について例示する。
<Overall control action>
A control operation of the ophthalmic laser surgical apparatus 1 having the above configuration will be described with reference to FIG. First, the surgeon selects a treatment laser light irradiation mode according to the content of the surgery (step S1). For example, by applying a therapeutic laser beam to the cornea of the patient's eye E, a LASIK mode for performing refractive surgery, and performing a cataract surgery by irradiating the cornea and the lens of the patient's eye E with the therapeutic laser beam. An irradiation mode such as a cataract mode may be provided. In the following description, the case where the LASIK mode is selected will be exemplified.
 操作部55への操作等によってレーシックモードが選択されると、CPU51は、照射モードをレーシックモードに設定する。レーシックモードが設定された場合、CPU51は、倍率調整部300を制御し、光学素子301を正面画像撮影部30の光路上に挿入し、正面画像撮影部30の撮影倍率をレーシックモードに適した撮影倍率に調整する(ステップS2)。なお、ステップS2の制御についての詳細は後述する。 When the LASIK mode is selected by operating the operation unit 55 or the like, the CPU 51 sets the irradiation mode to LASIK mode. When the LASIK mode is set, the CPU 51 controls the magnification adjustment unit 300, inserts the optical element 301 on the optical path of the front image capturing unit 30, and sets the shooting magnification of the front image capturing unit 30 to be suitable for the LASIK mode. The magnification is adjusted (step S2). Details of the control in step S2 will be described later.
 さらにCPU51は、アライメントを開始する前に正面画像撮影部30のフォーカスを第1位置に合わせる(ステップS3)。ここで、第1位置とは、装置1と患者眼Eとのアライメント開始位置である。例えば、第1位置は、患者眼Eとインターフェース90がドッキングする位置から、治療レーザ光の光軸方向に100mm程度離れた位置に設定される。例えば、CPU50は、受光調整部33を制御し、受光素子31のフォーカスを第1位置に合わせる。第1位置にフォーカスが調整されることによって、患者眼Eとインターフェース90とが離れた位置から患者眼Eを観察できる。したがって、例えば、患者眼Eとインターフェース90とが意図せずに接触することを低減できる。 Further, the CPU 51 adjusts the focus of the front image photographing unit 30 to the first position before starting the alignment (step S3). Here, the first position is an alignment start position between the apparatus 1 and the patient's eye E. For example, the first position is set at a position about 100 mm away from the position where the patient eye E and the interface 90 are docked in the optical axis direction of the treatment laser light. For example, the CPU 50 controls the light receiving adjustment unit 33 to adjust the focus of the light receiving element 31 to the first position. By adjusting the focus to the first position, the patient's eye E can be observed from a position where the patient's eye E and the interface 90 are separated from each other. Therefore, for example, unintentional contact between the patient's eye E and the interface 90 can be reduced.
 術者は、選択した照射モードに適合するインターフェース90をインターフェース装着部76に装着する。例えば、レーシックモードの場合、術者は、圧平インターフェース92をインターフェース装着部76に装着する。なお、CPU51は、インターフェース装着部76に装着されたインターフェース90の種類をセンサ等によって検出してもよい。この場合、CPU90は、検出したインターフェース90の種類に応じて照射モードを設定してもよい。 The surgeon attaches the interface 90 suitable for the selected irradiation mode to the interface attaching part 76. For example, in the LASIK mode, the surgeon attaches the applanation interface 92 to the interface attachment portion 76. The CPU 51 may detect the type of the interface 90 attached to the interface attachment unit 76 using a sensor or the like. In this case, the CPU 90 may set the irradiation mode according to the type of the detected interface 90.
 さらに、術者は、開瞼器等を用いて、ベッドに仰向けになった患者の瞼を開いた状態で固定する。そして、術者は、操作部55への操作等によって、患者眼Eと圧平インターフェース92のオートアライメントを開始させる。 Furthermore, the operator uses an opener or the like to fix the patient's heel lying on the bed in an open state. Then, the operator starts automatic alignment between the patient's eye E and the applanation interface 92 by operating the operation unit 55 or the like.
 まず、CPU51は、患者眼Eに対して受光素子31のフォーカスを合わせるために第1フォーカス制御を実行する(ステップS4)。第1フォーカス制御についての詳細は後述する。 First, the CPU 51 executes the first focus control in order to focus the light receiving element 31 on the patient's eye E (step S4). Details of the first focus control will be described later.
 第1フォーカス制御によって患者眼Eからの反射光のフォーカスが受光素子31に合うと、CPU51は、正面画像に写り込んだ輝点に基づいて、XYZ方向のアライメント情報を取得する(ステップS5)。そして、CPU51は、取得されたアライメント情報に基づいて結合駆動部66をXYZ方向に駆動し、XY方向のアライメントを調整しながらインターフェース92を患者眼Eに近づける。このとき、CPU51は受光調整部33を制御し、結像駆動部66の駆動量に基づいて受光素子31を駆動させることで、受光素子31のフォーカスを調整する(ステップS6)。なお、このときの受光素子31の駆動方法についての詳細は後述する。 When the reflected light from the patient's eye E is focused on the light receiving element 31 by the first focus control, the CPU 51 acquires alignment information in the XYZ directions based on the bright spot reflected in the front image (step S5). Then, the CPU 51 drives the coupling drive unit 66 in the XYZ directions based on the acquired alignment information, and brings the interface 92 closer to the patient's eye E while adjusting the alignment in the XY directions. At this time, the CPU 51 controls the light receiving adjustment unit 33 to drive the light receiving element 31 based on the drive amount of the imaging drive unit 66, thereby adjusting the focus of the light receiving element 31 (step S6). Details of the method of driving the light receiving element 31 at this time will be described later.
 CPU51は、結合駆動部66を駆動させることによって装置1を100mm程度駆動させ、装置1に対する患者眼Eの位置を第2位置まで移動させる。ここで、第2位置とは、患者眼Eとインターフェース90とのドッキングが完了する位置の近傍であり、レーザ光を照射するときの照射位置の近傍である。なお、第1位置と第2位置は、アライメント指標投影部63からの光束によって患者眼の角膜に形成された輝点が消失する輝点消滅区間を隔ててもよい。CPU51は、装置1に対する患者眼Eの位置を第2位置まで移動させると、患者眼Eに対して受光素子31のフォーカスを再度合わせるために第2フォーカス制御を実行する(ステップS7)。 The CPU 51 drives the coupling drive unit 66 to drive the apparatus 1 by about 100 mm, and moves the position of the patient's eye E relative to the apparatus 1 to the second position. Here, the second position is the vicinity of the position where the docking between the patient's eye E and the interface 90 is completed, and is the vicinity of the irradiation position when the laser light is irradiated. Note that the first position and the second position may be separated from a bright spot disappearance section in which a bright spot formed on the cornea of the patient's eye disappears due to the light beam from the alignment index projection unit 63. When the position of the patient's eye E relative to the apparatus 1 is moved to the second position, the CPU 51 executes the second focus control in order to refocus the light receiving element 31 with respect to the patient's eye E (Step S7).
 CPU51は、第2フォーカス制御によって第2位置における受光素子31のフォーカス状態を調整すると、圧平インターフェース92と患者眼Eのドッキングを開始する(ステップS8)。ドッキングが完了すると、術者は、レーザ照射のプランニング等を行い、治療用レーザ光の照射を行う(ステップS9)。上記のようなステップによって、眼科用レーザ手術装置を用いた患者眼の手術が行われる。 When the CPU 51 adjusts the focus state of the light receiving element 31 at the second position by the second focus control, the CPU 51 starts docking the applanation interface 92 and the patient's eye E (step S8). When docking is completed, the surgeon performs laser irradiation planning and the like, and performs irradiation with therapeutic laser light (step S9). By the steps as described above, surgery for the patient's eye using the ophthalmic laser surgical apparatus is performed.
<倍率調整部の制御動作>
 図8のステップS2における倍率調整部300の制御動作について説明する。本実施形態の倍率調整部300は、使用されるインターフェース90の種類に応じて光学素子301の挿入および取り外しを切り換えることで正面画像の撮影倍率を切り替える。
<Control operation of magnification adjustment unit>
The control operation of the magnification adjustment unit 300 in step S2 of FIG. 8 will be described. The magnification adjustment unit 300 according to the present embodiment switches the imaging magnification of the front image by switching insertion and removal of the optical element 301 according to the type of the interface 90 used.
 例えば、CPU51は、圧平インターフェース92が装着された場合、倍率調整部300を制御し、撮影倍率の変化比率を小さくするために光学素子301を正面画像撮影部30の光路上に挿入する。これによって、レーシックモードのときの正面画像撮影部30の撮影倍率の変化が小さくなり、圧平インターフェース92の装着時と、液浸インターフェース91の装着時とで、撮影倍率を近づけることができる。 For example, when the applanation interface 92 is mounted, the CPU 51 controls the magnification adjustment unit 300 and inserts the optical element 301 on the optical path of the front image photographing unit 30 in order to reduce the change ratio of the photographing magnification. As a result, the change in the photographing magnification of the front image photographing unit 30 in the LASIK mode is reduced, and the photographing magnification can be made closer when the applanation interface 92 is attached and when the immersion interface 91 is attached.
 例えば、圧平インターフェース92の装着時に光学素子301を光路中に挿入することによって、距離WDと撮影範囲の直径φの関係は、図7の点線で示した関係から、一点鎖線で示す関係に調整される。これによって、眼科用レーザ手術装置1は、異なる種類のインターフェース90を用いた場合に、距離WDに対する倍率変化が異なることによって生じる違和感を低減できる。 For example, by inserting the optical element 301 into the optical path when the applanation interface 92 is mounted, the relationship between the distance WD and the shooting range diameter φ is adjusted from the relationship indicated by the dotted line in FIG. Is done. As a result, the ophthalmic laser surgical apparatus 1 can reduce a sense of incongruity caused by different magnification changes with respect to the distance WD when different types of interfaces 90 are used.
 例えば、CPU51が倍率調整部300によって撮影倍率を切り換えるタイミングは、照射モードの設定が切り換わったときでもよい。例えば、術者の操作部55への操作によって、照射モードがレーシックモードとカタラクトモードとで切り換わるたびに、CPU51は、倍率調整部300を制御して撮影倍率を切り換えてもよい。例えば、CPU51は、照射モードがレーシックモードに切り換わると、駆動部302の駆動を制御し、光学素子301を正面画像撮影部30の光路上に挿入してもよい。また、CPU51は、照射モードがカタラクトモードに切り換わると、駆動部302の駆動を制御し、光学素子301を正面画像撮影部30の光路外へ取り外してもよい。 For example, the timing at which the CPU 51 switches the photographing magnification by the magnification adjusting unit 300 may be when the setting of the irradiation mode is switched. For example, every time the irradiation mode is switched between the LASIK mode and the cataract mode by the operator's operation on the operation unit 55, the CPU 51 may control the magnification adjustment unit 300 to switch the imaging magnification. For example, when the irradiation mode is switched to the LASIK mode, the CPU 51 may control the driving of the driving unit 302 and insert the optical element 301 into the optical path of the front image capturing unit 30. Further, when the irradiation mode is switched to the cataract mode, the CPU 51 may control the driving of the driving unit 302 and remove the optical element 301 out of the optical path of the front image capturing unit 30.
 なお、上記のようにレーシックモードのときに光学素子301を挿入する以外の方法も考えられる。例えば、カタラクトモードのときに光学素子301を挿入しておいて、レーシックモードのときに光学素子301を光路から外してもよい。また、いずれのモードにおいても光学素子301を挿脱することによって撮影倍率を調整してもよい。 A method other than inserting the optical element 301 in the LASIK mode as described above is also conceivable. For example, the optical element 301 may be inserted in the cataract mode, and the optical element 301 may be removed from the optical path in the LASIK mode. In any mode, the photographing magnification may be adjusted by inserting / removing the optical element 301.
 なお、倍率調整部300は、距離WDの変化量に対する正面画像の倍率の変化量の割合を調整することによって、インターフェース90の違いによって生じる正面画像の倍率の変化を調整してもよい。 Note that the magnification adjustment unit 300 may adjust the change in the magnification of the front image caused by the difference in the interface 90 by adjusting the ratio of the change in the magnification of the front image to the change in the distance WD.
 なお、上記の例において、正面画像撮影部30の光路中に光学素子301を挿脱させるものとしたが、光学素子301を光路の光軸方向に移動させることによって、撮影倍率の変化比率を調整してもよい。例えば、図2に示すように、倍率調整部300は、正面画像撮影部30の光路上に配置された光学素子301を光軸方向に移動させることによって、撮影倍率の変化比率を調整してもよい。 In the above example, the optical element 301 is inserted into and removed from the optical path of the front image capturing unit 30, but the change ratio of the imaging magnification is adjusted by moving the optical element 301 in the optical axis direction of the optical path. May be. For example, as illustrated in FIG. 2, the magnification adjustment unit 300 may adjust the change ratio of the imaging magnification by moving the optical element 301 disposed on the optical path of the front image capturing unit 30 in the optical axis direction. Good.
 なお、倍率調整部300の光学素子301として用いられるのは、レンズだけでなく、反射部材、プリズム等であってもよい。例えば、倍率調整部300は、反射部材を撮影光路上に挿脱することによって、撮影倍率の変化比率を調整してもよい。例えば、反射部材は、ミラー、ハーフミラー、ダイクロイックミラー等であってもよい。例えば、図9において、駆動部302の駆動によって光学素子(ここでは反射部材)301が正面画像撮影部30の光路上に配置されると、患者眼Eからの反射光は光学素子301によって反射される。そして、ミラー303、リレーレンズ304、絞り37b、結像レンズ32b、を通過して受光素子31bに受光される。このように、駆動部302によって光学素子301を撮影光路上に挿脱することによって、第1の撮影光路L1から、第1の撮影光路L1とは撮影倍率の異なる第2の撮影光路L2に撮影光路を切り換えることによって、正面画像撮影部30の撮影倍率を調整してもよい。 Note that not only the lens but also a reflecting member, a prism, or the like may be used as the optical element 301 of the magnification adjusting unit 300. For example, the magnification adjustment unit 300 may adjust the change ratio of the photographing magnification by inserting and removing the reflecting member on the photographing optical path. For example, the reflecting member may be a mirror, a half mirror, a dichroic mirror, or the like. For example, in FIG. 9, when the optical element (here, the reflecting member) 301 is arranged on the optical path of the front image capturing unit 30 by driving the driving unit 302, the reflected light from the patient's eye E is reflected by the optical element 301. The Then, the light passes through the mirror 303, the relay lens 304, the diaphragm 37b, and the imaging lens 32b and is received by the light receiving element 31b. As described above, the optical element 301 is inserted into and removed from the photographing optical path by the driving unit 302, thereby photographing from the first photographing optical path L1 to the second photographing optical path L2 having a photographing magnification different from that of the first photographing optical path L1. The photographing magnification of the front image photographing unit 30 may be adjusted by switching the optical path.
 なお、光学素子301によって撮影光路を切り換える場合は、図9の例のように2つの受光素子31a,31bを備えてもよい。例えば、上記のように、第1の撮影光路L1と第2の撮影光路L2にそれぞれ受光素子31a,31bが設けられてもよい。この場合、正面画像撮影部30は、インターフェース90の種類に応じて2つの受光素子31a,31bから受け付ける受光信号を切り換えてもよい。もちろん、光学素子301によって撮影光路を切り換える場合であっても、光路を一旦分岐してから、再度結合させることによって一つの受光素子を用いて撮影倍率を切り換える構成であってもよい。 Note that when the optical path is switched by the optical element 301, two light receiving elements 31a and 31b may be provided as in the example of FIG. For example, as described above, the light receiving elements 31a and 31b may be provided in the first photographing optical path L1 and the second photographing optical path L2, respectively. In this case, the front image capturing unit 30 may switch the light reception signals received from the two light receiving elements 31 a and 31 b according to the type of the interface 90. Of course, even when the imaging optical path is switched by the optical element 301, the imaging magnification may be switched using a single light receiving element by once branching the optical path and then recombining the optical paths.
 なお、上記の例では、正面画像撮影部30の撮影光軸と治療用レーザ光の照射光路とが一部同軸とされている。この場合、倍率調整部300は、正面画像撮影部30の撮影光軸と治療用レーザ光との照射光軸が、光路分岐部材(例えば、ダイクロイックミラー22)によって分岐される分岐点よりも受光素子31側の光路において光学素子301を駆動させ、正面画像撮影部30の撮影倍率を調整してもよい。これによって、治療用レーザ光の照射に影響を与えることなく、正面画像撮影部30の撮影倍率を調整できる。 In the above example, the imaging optical axis of the front image capturing unit 30 and the irradiation optical path of the therapeutic laser beam are partially coaxial. In this case, the magnification adjusting unit 300 receives the light receiving element from the branch point where the irradiation optical axis of the imaging optical axis of the front image capturing unit 30 and the therapeutic laser beam is branched by the optical path branching member (for example, the dichroic mirror 22). The optical element 301 may be driven in the optical path on the 31st side to adjust the photographing magnification of the front image photographing unit 30. Thereby, the imaging magnification of the front image capturing unit 30 can be adjusted without affecting the irradiation of the therapeutic laser beam.
 なお、上記の例では、正面画像撮影部30の撮影光軸と断層画像撮影部23の撮影光軸が一部同軸とされている。この場合、本実施形態のように、正面画像撮影部30と断層画像撮影部23の光軸が、光路分岐部材(例えば、ダイクロイックミラー25)によって分岐される分岐点よりも受光素子31側の光路において光学素子301を駆動させ、正面画像撮影部30の撮影倍率を調整してもよい。これによって、断層画像撮影部23による断層画像の撮影に影響を与えることなく、正面画像撮影部30の撮影倍率を調整できる。 In the above example, the photographing optical axis of the front image photographing unit 30 and the photographing optical axis of the tomographic image photographing unit 23 are partially coaxial. In this case, as in the present embodiment, the optical paths of the front image capturing unit 30 and the tomographic image capturing unit 23 are closer to the light receiving element 31 than the branch point where the optical path branching member (for example, the dichroic mirror 25) branches. The optical element 301 may be driven to adjust the photographing magnification of the front image photographing unit 30. Thereby, the imaging magnification of the front image capturing unit 30 can be adjusted without affecting the tomographic image capturing by the tomographic image capturing unit 23.
 なお、上記のようにインターフェース90の種類に応じて撮影倍率を切り換えた場合、正面画像撮影部30によって取得される画像の輝度が変化してしまう。したがって、本装置1は、倍率調整部300による倍率の切り換え前後において、正面画像の輝度の変化を抑える輝度調整部400を備えてもよい(図2参照)。例えば、輝度調整部400は、インターフェース90に応じて正面画像撮影部30の絞り値を切り換える絞り値変更部410を備えてもよい。例えば、絞り値変更部410は、絞り値を変更できる可変絞り411と、可変絞り411を駆動する駆動部412とを備えてもよい。そして、絞り値変更部410は、駆動部412の駆動によって可変絞り411の絞り値を変更してもよい。なお、絞り値変更部410は、絞り値の異なる複数の絞り(例えば、図9の絞り411a,411b)を備えてもよい。この場合、図示無き駆動部によって光路に配置される絞りが切り換えられてもよいし、図9のように、倍率調整部300による撮影光路の切り換えにともなって絞りが変更されてもよい。 Note that, when the shooting magnification is switched according to the type of the interface 90 as described above, the luminance of the image acquired by the front image shooting unit 30 changes. Therefore, the present apparatus 1 may include a luminance adjusting unit 400 that suppresses a change in luminance of the front image before and after the magnification switching by the magnification adjusting unit 300 (see FIG. 2). For example, the brightness adjusting unit 400 may include an aperture value changing unit 410 that switches the aperture value of the front image capturing unit 30 in accordance with the interface 90. For example, the aperture value changing unit 410 may include a variable aperture 411 that can change the aperture value and a drive unit 412 that drives the variable aperture 411. Then, the aperture value changing unit 410 may change the aperture value of the variable aperture 411 by driving the drive unit 412. The aperture value changing unit 410 may include a plurality of apertures having different aperture values (for example, the apertures 411a and 411b in FIG. 9). In this case, the diaphragm arranged in the optical path may be switched by a drive unit (not shown), or the diaphragm may be changed in accordance with the switching of the photographing optical path by the magnification adjusting unit 300 as shown in FIG.
 また、例えば、輝度調整部400は、ゲイン調整部420を備えてもよい。例えば、ゲイン調整部420は、制御部50に設けられ(図1参照)、撮影倍率の切り換えに応じて、受光素子31から出力される信号のゲインを調整することで、正面画像の輝度を調整してもよい。 For example, the luminance adjustment unit 400 may include a gain adjustment unit 420. For example, the gain adjustment unit 420 is provided in the control unit 50 (see FIG. 1), and adjusts the gain of the signal output from the light receiving element 31 according to the switching of the photographing magnification, thereby adjusting the brightness of the front image. May be.
 もちろん、輝度調整部400は、光量調整部430を備えてもよい。例えば、光量調整部430は、制御部50に設けられ(図1参照)、撮影倍率の切り換えに応じてアライメント・照明光源64の光量を調整することで、正面画像の輝度を調整してもよい。 Of course, the brightness adjustment unit 400 may include a light amount adjustment unit 430. For example, the light amount adjustment unit 430 may be provided in the control unit 50 (see FIG. 1), and may adjust the brightness of the front image by adjusting the light amount of the alignment / illumination light source 64 according to switching of the photographing magnification. .
 以上のように、倍率調整部300によって撮影倍率が調整された場合でも、輝度調整部400によって輝度変化の少ない正面画像を取得することができる。 As described above, even when the shooting magnification is adjusted by the magnification adjustment unit 300, the luminance adjustment unit 400 can acquire a front image with little luminance change.
 なお、上記の説明において、倍率調整部300は、光学素子301と駆動部302を備え、駆動部302によって光学素子301を駆動させることによって光学的に正面画像撮影部30の撮影倍率を調整するものとしたが、これに限らない。例えば、倍率調整部300は、制御部50に設けられ(図1参照)、正面画像撮影部30によって撮影された正面画像の表示倍率を調整してもよい。例えば、インターフェース90の変更によって撮影倍率が小さくなる場合、図10に示すように、正面画像撮影部30によって撮影された正面画像の一部を切り取り、表示倍率を大きくして表示部に表示してもよい。これによって、光学素子301および駆動部302等の構成を設けずに、正面画像の倍率変化を抑えることができる。 In the above description, the magnification adjusting unit 300 includes the optical element 301 and the driving unit 302, and optically adjusts the imaging magnification of the front image capturing unit 30 by driving the optical element 301 by the driving unit 302. However, it is not limited to this. For example, the magnification adjustment unit 300 may be provided in the control unit 50 (see FIG. 1) and adjust the display magnification of the front image captured by the front image capturing unit 30. For example, when the photographing magnification is reduced by changing the interface 90, as shown in FIG. 10, a part of the front image photographed by the front image photographing unit 30 is cut out and displayed on the display unit with the display magnification increased. Also good. Accordingly, it is possible to suppress a change in magnification of the front image without providing the configuration of the optical element 301 and the drive unit 302 and the like.
 なお、装置本体と眼Eとの距離WDとは、例えば、インターフェース90から眼Eまでの距離でもよいし、筒部61から眼Eまで距離でもよいし、対物レンズ20から眼Eまで距離でもよいし、受光素子31から眼Eまでの距離でもよい。装置本体と眼Eとの位置関係が分かればよい。 The distance WD between the apparatus main body and the eye E may be, for example, a distance from the interface 90 to the eye E, a distance from the cylindrical portion 61 to the eye E, or a distance from the objective lens 20 to the eye E. Alternatively, the distance from the light receiving element 31 to the eye E may be used. It is only necessary to know the positional relationship between the apparatus main body and the eye E.
 図8のステップS6における受光素子31の移動制御について、図11を用いて説明する。図11は、装置本体と患者眼Eとの距離WDに対する受光素子31の移動量M(つまり、基準位置からの移動量(距離))の関係を示すグラフであり、実線がカタラクトモード時、一点鎖線がレーシックモード時の関係をそれぞれ示している。前述のように、本実施形態は、像側で非テレセントリック光学系であり、図11に示すように、距離WDに対する受光素子31の移動量Mは非線形の関係になる。したがって、CPU51は、受光調整部33を制御し、受光素子31を非線形に移動させて正面画像のフォーカス状態を調整する。 The movement control of the light receiving element 31 in step S6 in FIG. 8 will be described with reference to FIG. FIG. 11 is a graph showing the relationship of the movement amount M (that is, the movement amount (distance) from the reference position) of the light receiving element 31 with respect to the distance WD between the apparatus main body and the patient's eye E. The solid line is one point in the cataract mode. A chain line indicates a relationship in LASIK mode. As described above, the present embodiment is a non-telecentric optical system on the image side, and as shown in FIG. 11, the amount of movement M of the light receiving element 31 with respect to the distance WD has a non-linear relationship. Therefore, the CPU 51 controls the light receiving adjustment unit 33 to adjust the focus state of the front image by moving the light receiving element 31 nonlinearly.
 例えば、CPU51は、結合駆動部66によって装置1と眼Eを近づける場合、結合駆動部66の駆動量と、受光調整部33による受光素子31の移動量との関係が非線形になるように、正面画像のフォーカス状態を調整してもよい。例えば、距離WDと、受光素子31の移動量との関係は、撮像倍率等を用いて理論的に求めることができる。例えば、正面画像撮影部30において、像面の変化量、つまり、受光素子31の移動量は、倍率βの2乗によって求められる。例えば、距離WDの微小変化量ΔWDに対する、受光素子の移動量Mは、以下の式(1)で表される。 For example, when the CPU 51 brings the device 1 close to the eye E by the coupling drive unit 66, the front of the CPU 51 so that the relationship between the driving amount of the coupling driving unit 66 and the amount of movement of the light receiving element 31 by the light receiving adjustment unit 33 becomes nonlinear. The focus state of the image may be adjusted. For example, the relationship between the distance WD and the amount of movement of the light receiving element 31 can be theoretically obtained using an imaging magnification or the like. For example, in the front image photographing unit 30, the amount of change in the image plane, that is, the amount of movement of the light receiving element 31 is obtained by the square of the magnification β. For example, the movement amount M of the light receiving element with respect to the minute change amount ΔWD of the distance WD is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 例えば、ある位置での倍率が×0.3とすると、被検眼1mmの移動に対して、1×(0.3)^2≒0.09mmとなる。ただし、実際には倍率βは連続的に変化し、定数a,bを用いて下記の式(2)で表される。 For example, if the magnification at a certain position is × 0.3, 1 × (0.3) ^ 2≈0.09 mm for the movement of the subject eye 1 mm. In practice, however, the magnification β changes continuously and is expressed by the following equation (2) using constants a and b.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 したがって、受光素子31の移動量Mは下記の式(3)で示す積分によって求められる。 Therefore, the moving amount M of the light receiving element 31 is obtained by integration shown by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 例えば、上記のような演算式、あるいは演算式に基づいて作成されたデータテーブル、実験データに基づいて作成されたデータテーブルがROM52に記憶されてもよい。この場合、CPU51はROM52に記憶された演算式、およびデータテーブルの少なくともいずれかを用いて、受光素子31の位置および移動量の少なくともいずれかを求めてもよい。 For example, the ROM 52 may store an arithmetic expression as described above, a data table created based on the arithmetic expression, or a data table created based on the experimental data. In this case, the CPU 51 may obtain at least one of the position and the movement amount of the light receiving element 31 using at least one of the arithmetic expression stored in the ROM 52 and the data table.
 例えば、CPU51は、第1位置からの結合駆動部66の駆動量に基づいて、装置本体と患者眼Eと距離WDを求め、前述の演算式あるいはデータテーブル等を用いて受光調整部33の駆動量を取得してもよい。そして、CPU51は、結合駆動部66の駆動と、受光調整部33との駆動を連動させ、装置1の移動に伴って、受光素子31を非線形に移動させることで、フォーカスを調整してもよい。もちろん、CPU51は、前述の演算式あるいはデータテーブル等を用いて取得した受光調整部33の駆動量に基づき、結合駆動部66の駆動に対して受光調整部33を段階的に移動させてもよい。 For example, the CPU 51 obtains the apparatus main body, the patient's eye E, and the distance WD based on the driving amount of the coupling driving unit 66 from the first position, and drives the light receiving adjustment unit 33 using the above-described arithmetic expression or data table. An amount may be obtained. Then, the CPU 51 may adjust the focus by linking the driving of the coupling driving unit 66 and the driving of the light receiving adjustment unit 33 and moving the light receiving element 31 non-linearly with the movement of the device 1. . Of course, the CPU 51 may move the light reception adjusting unit 33 stepwise with respect to the driving of the coupling drive unit 66 based on the drive amount of the light reception adjustment unit 33 acquired using the above-described arithmetic expression or data table. .
 なお、上記のように、インターフェース90の種類によって、正面画像撮影部30の撮影倍率が変化する。したがって、CPU51は、インターフェース90の種類ごとに、距離WDと受光素子31の移動量Mとの関係を取得してもよい。例えば、インターフェース90の種類ごとに距離WDと受光素子31の移動量とが対応づけられたデータテーブル、または演算式が、ROM52に記憶されてもよい。例えば、CPU51は、インターフェース90の種類に応じた照射モードに合わせて、受光素子31の位置および移動量の少なくともいずれかを求めるための演算式およびデータテーブルを切り換えてもよい。 Note that, as described above, the photographing magnification of the front image photographing unit 30 varies depending on the type of the interface 90. Therefore, the CPU 51 may acquire the relationship between the distance WD and the movement amount M of the light receiving element 31 for each type of interface 90. For example, a data table or an arithmetic expression in which the distance WD and the amount of movement of the light receiving element 31 are associated with each type of the interface 90 may be stored in the ROM 52. For example, the CPU 51 may switch an arithmetic expression and a data table for obtaining at least one of the position and the movement amount of the light receiving element 31 according to the irradiation mode corresponding to the type of the interface 90.
 なお、上記のように、正面画像撮影部30は非テレセントリック光学系であり、距離WDに対する受光素子31の位置の関係が非線形である。例えば、距離WDが小さくなるにつれて、受光素子31を移動させる移動量は大きくなる。しがたって、CPU51は、結合駆動部66によって装置1と患者眼Eを一定の速度で近づける場合、距離WDが小さくなるにつれて受光素子31の移動速度を大きくしてもよい。これによって、装置1の移動に対してフォーカス調整が遅れることなく連動してフォーカス調整が成される。 As described above, the front image capturing unit 30 is a non-telecentric optical system, and the relationship of the position of the light receiving element 31 with respect to the distance WD is nonlinear. For example, as the distance WD decreases, the amount of movement for moving the light receiving element 31 increases. Therefore, the CPU 51 may increase the moving speed of the light receiving element 31 as the distance WD decreases when the apparatus 1 and the patient's eye E are brought close to each other at a constant speed by the coupling drive unit 66. Thereby, the focus adjustment is performed in conjunction with the movement of the apparatus 1 without delaying the focus adjustment.
 本実施形態では、CPU51は、装置本体に対する眼Eの位置が特定領域(本実施形態では第1位置の近傍の領域)にある場合に、装置本体と眼Eの間の距離を検出する。CPU51は、第1位置で検出した装置本体と眼Eの間の距離と、距離を検出した位置からの、装置本体に対する眼Eの位置の相対的な移動量(相対的な位置の変化量)とに基づいて、受光素子31の位置を決定する。従って、CPU51は、適切にフォーカス状態を調整することができる。 In the present embodiment, the CPU 51 detects the distance between the apparatus main body and the eye E when the position of the eye E with respect to the apparatus main body is in a specific area (an area in the vicinity of the first position in the present embodiment). The CPU 51 detects the distance between the apparatus main body and the eye E detected at the first position, and the relative movement amount of the position of the eye E relative to the apparatus main body from the position at which the distance is detected (relative position change amount). Based on the above, the position of the light receiving element 31 is determined. Therefore, the CPU 51 can appropriately adjust the focus state.
 詳細は後述するが、本実施形態のCPU51は、眼Eが第1位置の近傍にある場合、受光素子31を光軸に沿って移動させながら、正面画像に基づいてフォーカス状態を調整する。フォーカス状態が調整された状態の受光素子31の位置によって、装置本体に対する眼Eの距離を検出する。従って、本実施形態の眼科用レーザ手術装置1は、眼Eの位置を検出するためのセンサ等を用いなくても、正面画像を用いて適切に眼Eとの間の距離を検出することができる。ただし、眼科用レーザ手術装置1は、他の方法(例えば、センサ等を用いる方法)で距離を検出することも可能である。 Although details will be described later, when the eye E is in the vicinity of the first position, the CPU 51 of the present embodiment adjusts the focus state based on the front image while moving the light receiving element 31 along the optical axis. The distance of the eye E with respect to the apparatus main body is detected based on the position of the light receiving element 31 in a state where the focus state is adjusted. Therefore, the ophthalmic laser surgical apparatus 1 according to the present embodiment can appropriately detect the distance from the eye E using the front image without using a sensor or the like for detecting the position of the eye E. it can. However, the ophthalmic laser surgical apparatus 1 can also detect the distance by other methods (for example, a method using a sensor or the like).
 詳細は後述するが、本実施形態のCPU51は、第1位置の近傍にある眼Eに対してアライメント光を投影し、眼Eによって反射されたアライメント光の反射光に基づいて装置本体と眼Eの間の距離を検出することができる。従って、本実施形態の眼科用レーザ手術装置1は、眼Eとの間の距離を適切に検出することができる。ただし、CPU51は、正面画像に写り込む輝点以外の組織等(例えば、眼Eの虹彩等)を基準として、装置本体と眼Eの間の距離を検出してもよい。 Although details will be described later, the CPU 51 of the present embodiment projects alignment light onto the eye E in the vicinity of the first position, and the apparatus main body and the eye E based on the reflected light of the alignment light reflected by the eye E. The distance between can be detected. Therefore, the ophthalmic laser surgical apparatus 1 according to the present embodiment can appropriately detect the distance to the eye E. However, the CPU 51 may detect the distance between the apparatus main body and the eye E with reference to a tissue or the like other than the bright spot reflected in the front image (for example, the iris of the eye E).
 図8のステップS4おける第1フォーカス制御、およびS7における第2フォーカス制御について説明する。まず、第1フォーカス制御について説明する。例えば、第1フォーカス制御は、第1位置の周辺に位置する患者眼Eに対して受光素子31のフォーカスを調整するための制御である。 The first focus control in step S4 in FIG. 8 and the second focus control in S7 will be described. First, the first focus control will be described. For example, the first focus control is control for adjusting the focus of the light receiving element 31 with respect to the patient's eye E located around the first position.
 例えば、第1フォーカス制御において、CPU51は、正面画像撮影部30によって撮影された正面画像を解析することによって、患者眼Eに対するフォーカス状態を検出してもよい。例えば、CPU51は、正面画像に写り込んでいる輝点または組織を検出することによって受光素子31のフォーカス情報を取得してもよい。 For example, in the first focus control, the CPU 51 may detect the focus state with respect to the patient's eye E by analyzing the front image captured by the front image capturing unit 30. For example, the CPU 51 may acquire the focus information of the light receiving element 31 by detecting a bright spot or tissue reflected in the front image.
 例えば、CPU51は、検出されたフォーカス情報に基づいて、受光調整部33の駆動を制御することによって、受光素子31のフォーカス状態を調整する。 For example, the CPU 51 adjusts the focus state of the light receiving element 31 by controlling the driving of the light receiving adjustment unit 33 based on the detected focus information.
 なお、正面画像に写り込んでいる輝点または組織のフォーカス状態に基づいてフォーカスを調整する場合、CPU51は、受光調整部33の駆動を制御しながら輝点または組織のフォーカス状態の変化を検出することで、受光調整部33の駆動方向が正しいか否かを検出してもよい。例えば、CPU51は、受光調整部33の駆動を制御して、受光素子31および光学部材の少なくともいずれかを第1の方向に移動させながら、正面画像上の輝点または組織のフォーカス状態の変化(例えば、輝点の大きさの変化)を検出する。CPU51は、フォーカス状態が改善されている場合(例えば、正面画像上の輝点の大きさが、受光調整部の駆動に伴って小さく変化している場合)には、受光素子31および光学部材の少なくともいずれかを、継続して第1の方向に移動させる。一方で、CPU51は、フォーカス状態が悪化している場合(例えば、正面画像上の輝点の大きさが、受光調整部の駆動に伴って大きく変化している場合)には、受光素子31および光学部材の少なくともいずれかを、第1の方向とは反対の第2の方向に切り替える。この場合、フォーカス状態の自動調整が、より円滑に実行される。 When adjusting the focus based on the focus state of the bright spot or tissue reflected in the front image, the CPU 51 detects a change in the focus state of the bright spot or tissue while controlling the driving of the light receiving adjustment unit 33. Thus, it may be detected whether or not the driving direction of the light receiving adjustment unit 33 is correct. For example, the CPU 51 controls driving of the light receiving adjustment unit 33 to move at least one of the light receiving element 31 and the optical member in the first direction, while changing the focus state of the bright spot or the tissue on the front image ( For example, a change in the size of a bright spot) is detected. When the focus state is improved (for example, when the size of the bright spot on the front image changes small as the light receiving adjustment unit is driven), the CPU 51 determines whether the light receiving element 31 and the optical member are At least one of them is continuously moved in the first direction. On the other hand, when the focus state is deteriorated (for example, when the size of the bright spot on the front image changes greatly with the driving of the light receiving adjustment unit), the CPU 51 and the light receiving element 31 and At least one of the optical members is switched to a second direction opposite to the first direction. In this case, the automatic adjustment of the focus state is executed more smoothly.
 また、CPU51は、受光素子31の駆動範囲内においてフォーカスを調整できなかった場合、結合駆動部66を駆動させてもよい。このとき、CPU51は、上記のように結合駆動部66を駆動させるときの正面画像上の輝点の大きさの変化を検出し、結合駆動部66の駆動方向が正しいか否かを検出してもよい。このように、患者眼Eの位置が第1位置から大きくずれている場合でも、受光調整部33と結合駆動部66とを制御することによって受光素子31のフォーカスを調整できる。 Further, the CPU 51 may drive the coupling drive unit 66 when the focus cannot be adjusted within the drive range of the light receiving element 31. At this time, the CPU 51 detects a change in the size of the bright spot on the front image when driving the combined drive unit 66 as described above, and detects whether the drive direction of the combined drive unit 66 is correct. Also good. As described above, even when the position of the patient's eye E is greatly deviated from the first position, the focus of the light receiving element 31 can be adjusted by controlling the light receiving adjustment unit 33 and the coupling driving unit 66.
 続いて、第2フォーカス制御について説明する。例えば、第2フォーカス制御は、第2位置の周辺に位置する患者眼Eに対して受光素子31のフォーカスを調整するための制御である。また、第2フォーカス制御は、患者眼Eの位置が第1位置の周辺から第2位置の周辺へ移動されたことによって生じるフォーカスのずれを調整してもよい。 Subsequently, the second focus control will be described. For example, the second focus control is a control for adjusting the focus of the light receiving element 31 with respect to the patient's eye E located around the second position. Further, the second focus control may adjust a focus shift caused by moving the position of the patient's eye E from the vicinity of the first position to the vicinity of the second position.
 例えば、第1位置でフォーカス状態を検出してフォーカスを合わせて、さらに第2位置に移動させる。このとき、第1位置から第2位置の距離に応じてフォーカス状態を調整するが、第2位置に移動させてからもずれている可能性があるため、再度第2位置でフォーカス状態を検出してフォーカスを合わせる。 For example, the focus state is detected at the first position, the focus is adjusted, and the position is further moved to the second position. At this time, the focus state is adjusted according to the distance from the first position to the second position. However, since the focus state may be deviated even after being moved to the second position, the focus state is detected again at the second position. Adjust the focus.
 例えば、本実施形態の正面画像撮影部30は像側で非テレセントリック光学系であり、装置本体と患者眼Eとの距離WDに応じて正面画像の撮影倍率が異なる。したがって、距離WDが大きい位置では正面画像の撮影範囲を広くすることができるが、距離WDの大きさに応じて被写界深度が変化する。例えば、被写界深度は、距離WDが小さく倍率が大きい場合に比べ、距離WDが大きく倍率が小さい場合の方が大きくなる。例えば、図2に示すように、第1位置における被写界深度F1と、第2位置における被写界深度F2では、距離WDの大きい第1位置における被写界深度F1の方が、範囲が大きい。 For example, the front image capturing unit 30 of the present embodiment is a non-telecentric optical system on the image side, and the front image capturing magnification varies depending on the distance WD between the apparatus main body and the patient's eye E. Therefore, the shooting range of the front image can be widened at a position where the distance WD is large, but the depth of field changes according to the size of the distance WD. For example, the depth of field is greater when the distance WD is large and the magnification is small than when the distance WD is small and the magnification is large. For example, as shown in FIG. 2, in the depth of field F1 at the first position and the depth of field F2 at the second position, the range of the depth of field F1 at the first position where the distance WD is large is larger. large.
 したがって、上記の第1フォーカス制御によって第1位置におけるフォーカスが調整された場合であっても、第1位置よりも距離WDの小さい第2位置においては、被写界深度F1,F2の差に応じたフォーカスずれが発生する場合がある。例えば、第1位置において、被写界深度の範囲の限界に近い位置でフォーカスが調整された場合、第2位置においては被写界深度が小さくなるため、フォーカスが合わなくなる場合がある。そこで、CPU51は、第2位置において再度フォーカス状態を検出し、受光素子31のフォーカス状態を調整する。 Therefore, even when the focus at the first position is adjusted by the first focus control described above, the second position where the distance WD is smaller than the first position corresponds to the difference in the depth of field F1, F2. There may be a focus shift. For example, when the focus is adjusted at a position close to the limit of the depth of field range at the first position, the depth of field becomes small at the second position, and the focus may not be achieved. Therefore, the CPU 51 detects the focus state again at the second position and adjusts the focus state of the light receiving element 31.
 例えば、CPU51は、第1フォーカス制御と同様に、正面画像撮影部30によって撮影された正面画像を解析することによって、患者眼Eに対するフォーカス状態を検出し、第2位置における受光素子31のフォーカスを調整してもよい。 For example, the CPU 51 detects the focus state with respect to the patient's eye E by analyzing the front image captured by the front image capturing unit 30 as in the first focus control, and focuses the light receiving element 31 at the second position. You may adjust.
 以上のように、本装置1は、第1フォーカス制御と第2フォーカス制御を実行することによって、第1位置と第2位置の両方においてフォーカスの合った正面画像を撮影できる。つまり、第1位置および第2位置の各々で、眼によって反射された反射光を含む光を処理してフォーカス調整部(例えば受光調整部33)を駆動することで、フォーカス状態を調整する。したがって、術者は、アライメントのために患者眼Eの観察を開始する第1位置と、患者眼Eにインターフェース90をドッキングさせる第2位置において、それぞれフォーカスの合った正面画像を確認することができる。 As described above, the present apparatus 1 can capture a front image in focus at both the first position and the second position by executing the first focus control and the second focus control. That is, the focus state is adjusted by processing the light including the reflected light reflected by the eyes at each of the first position and the second position and driving the focus adjustment unit (for example, the light reception adjustment unit 33). Therefore, the surgeon can confirm the focused front images at the first position where observation of the patient's eye E is started for alignment and at the second position where the patient's eye E docks the interface 90. .
 なお、輝点を検出して受光素子31のフォーカス情報を検出する方法としては、輝点の大きさに基づいてフォーカス情報を検出する方法が挙げられる。例えば、CPU51は、図12(a)に示すように、アライメント指標投影部63によって患者眼Eに投影された輝点a~hの大きさを画像解析によって取得し、取得された輝点a~hの大きさに基づいてフォーカス状態を検出してもよい。例えば、CPU51は、輝度のエッジ検出等によって正面画像に写り込んだ輝点の大きさを検出してもよい。 As a method for detecting the focus information of the light receiving element 31 by detecting the bright spot, there is a method for detecting the focus information based on the size of the bright spot. For example, as shown in FIG. 12A, the CPU 51 acquires the size of the bright spots a to h projected onto the patient's eye E by the alignment index projection unit 63 by image analysis, and acquires the acquired bright spots a to The focus state may be detected based on the magnitude of h. For example, the CPU 51 may detect the size of the bright spot reflected in the front image by detecting the brightness edge.
 この場合、CPU51は、図12(b)に示すように、輝点a~hの大きさが小さくなるように受光調整部33を駆動させることによって、受光素子31のフォーカスを調整してもよい。 In this case, as shown in FIG. 12B, the CPU 51 may adjust the focus of the light receiving element 31 by driving the light receiving adjustment unit 33 so that the sizes of the bright spots a to h become small. .
 また、輝点を検出して受光素子31のフォーカス情報を検出する方法として、輝点の位置に基づいてフォーカス情報を検出する方法が用いられてもよい。例えば、アライメント・照明光源64によって無限遠の輝点と有限遠の輝点を共に眼Eに向けて投影した場合、図13(a)に示すように、無限遠の輝点a,b間の距離K1は距離WDの大きさによらず一定となり、有限遠の輝点c,f間の距離K2は距離WDの大きさによって変化する。そこで、CPU51は、正面画像から輝点を検出し、距離K1と距離K2を比較することによって、受光素子31のフォーカス情報を取得してもよい。この場合、CPU51は、図13(a)に示すように、距離K1と距離K2が等しくなるように受光調整部33を駆動させることによって、受光素子31のフォーカスを調整してもよい。 Also, as a method for detecting the focus information of the light receiving element 31 by detecting the bright spot, a method for detecting the focus information based on the position of the bright spot may be used. For example, when both an infinitely bright spot and a finite bright spot are projected toward the eye E by the alignment / illumination light source 64, as shown in FIG. The distance K1 is constant regardless of the size of the distance WD, and the distance K2 between the finite bright points c and f varies depending on the size of the distance WD. Therefore, the CPU 51 may acquire the focus information of the light receiving element 31 by detecting a bright spot from the front image and comparing the distance K1 and the distance K2. In this case, as shown in FIG. 13A, the CPU 51 may adjust the focus of the light receiving element 31 by driving the light receiving adjustment unit 33 so that the distance K1 and the distance K2 are equal.
 また、CPU51は、有限遠の視標の輝点を用いずに、無限遠の指標の輝点を用いて装置本体と眼Eの距離を検出し、検出した距離に応じてフォーカス状態を調整してもよい。この場合、眼科用レーザ手術装置1は、例えば、正面画像撮影部30の撮影光路に対して斜めの方向から無限遠の指標を眼に投影してもよい。例えば、CPU51は、眼Eによって反射された無限遠の指標が受光素子31の所定箇所に写るか否かによって、装置本体と眼Eの距離が所定距離であるか否かを判断することで、距離を検出してもよい。 Further, the CPU 51 detects the distance between the apparatus main body and the eye E using the bright spot of the index at infinity without using the bright spot of the finite target, and adjusts the focus state according to the detected distance. May be. In this case, the ophthalmic laser surgical apparatus 1 may project, for example, an index at infinity from an oblique direction with respect to the imaging optical path of the front image capturing unit 30 onto the eye. For example, the CPU 51 determines whether or not the distance between the apparatus main body and the eye E is a predetermined distance depending on whether or not an infinite index reflected by the eye E is reflected in a predetermined location of the light receiving element 31. The distance may be detected.
 なお、正面画像を解析することによってフォーカス情報を検出する方法として、正面画像のコントラストの大きさに基づいてフォーカス情報を検出する方法が用いられてもよい。例えば、CPU51は、正面画像に写った各組織のコントラストの大きさを検出し、コントラストが大きくなるように受光調整部33を駆動させてもよい。 Note that as a method of detecting focus information by analyzing the front image, a method of detecting focus information based on the contrast size of the front image may be used. For example, the CPU 51 may detect the magnitude of the contrast of each tissue shown in the front image and drive the light receiving adjustment unit 33 so that the contrast becomes large.
 なお、受光素子31のフォーカス情報を検出する方法は、正面画像の画像解析による方法に限らず、例えば、断層画像撮影部23によって撮影された断層画像に基づいて、フォーカス情報が検出される方法が用いられてもよい。例えば、CPU51は、断層画像から患者眼EのZ方向の位置情報を取得し、取得された位置情報に基づいて受光調整部33を駆動させてもよい。例えば、図14に示すように、CPU51は、断層画像の画像処理によって患者眼Eの角膜頂点のZ方向の位置Hを検出し、検出した位置Hに基づいて受光素子31の位置を演算してもよい。断層画像の解析によってフォーカス状態を検出する場合、正面画像のように被写界深度の影響を受けないため、より確実にフォーカス状態を検出できる。また、断層画像の解析を利用する場合には、受光素子31等を光軸に沿って移動させながらフォーカス状態を調整する必要は無い。従って、眼科用レーザ手術装置1は、装置本体と眼Eの距離を変化させながらフォーカス状態を調整することができる。 The method for detecting the focus information of the light receiving element 31 is not limited to the method based on the image analysis of the front image. For example, there is a method for detecting the focus information based on the tomographic image captured by the tomographic image capturing unit 23. May be used. For example, the CPU 51 may acquire position information in the Z direction of the patient's eye E from the tomographic image, and drive the light receiving adjustment unit 33 based on the acquired position information. For example, as shown in FIG. 14, the CPU 51 detects the position H in the Z direction of the corneal apex of the patient's eye E by image processing of the tomographic image, and calculates the position of the light receiving element 31 based on the detected position H. Also good. When the focus state is detected by analyzing the tomographic image, the focus state can be detected more reliably because it is not affected by the depth of field unlike the front image. In addition, when using tomographic image analysis, it is not necessary to adjust the focus state while moving the light receiving element 31 and the like along the optical axis. Therefore, the ophthalmic laser surgical apparatus 1 can adjust the focus state while changing the distance between the apparatus main body and the eye E.
 なお、CPU51は、第1フォーカス制御および第2フォーカス制御において、受光素子31のフォーカス情報を検出する方法を切り換えるようにしてもよい。例えば、CPU51は、第1フォーカス制御において、正面画像に写り込んだ輝点の大きさによってフォーカス情報を取得し、第2フォーカス制御において、断層画像に写った患者眼Eの位置からフォーカス情報を取得してもよい。例えば、眼Eが第1位置にある場合には、断層画像撮影部23から出射されるOCT光が眼Eに到達しない場合がある。このような場合、CPU51は、第1フォーカス制御において正面画像を利用し、第2フォーカス制御において断層画像を利用することで、眼Eの位置に応じた適切な方法でフォーカス状態を調整することができる。 The CPU 51 may switch the method for detecting the focus information of the light receiving element 31 in the first focus control and the second focus control. For example, in the first focus control, the CPU 51 acquires focus information based on the size of the bright spot that appears in the front image, and in the second focus control, acquires focus information from the position of the patient eye E that appears in the tomographic image. May be. For example, when the eye E is at the first position, the OCT light emitted from the tomographic imaging unit 23 may not reach the eye E. In such a case, the CPU 51 can adjust the focus state by an appropriate method according to the position of the eye E by using the front image in the first focus control and using the tomographic image in the second focus control. it can.
 また、CPU51は、第1フォーカス制御において、正面画像に写り込んだ輝点の大きさによってフォーカス情報を取得し、第2フォーカス制御において、正面画像に写り込んだ無限遠の輝点と有限遠の輝点との位置関係によってフォーカス情報を取得してもよい。 In the first focus control, the CPU 51 obtains focus information based on the size of the bright spot reflected in the front image, and in the second focus control, the CPU 51 obtains an infinite bright spot and a finite distance reflected in the front image. Focus information may be acquired based on the positional relationship with the bright spot.
 もちろん、CPU51は、第1フォーカス制御において、断層画像の解析によってフォーカス情報を取得してもよいし、正面画像に写り込んだ無限遠の輝点と有限遠の輝点との位置関係に基づいてフォーカス情報を取得してもよい。 Of course, the CPU 51 may acquire focus information by analyzing the tomographic image in the first focus control, or based on the positional relationship between the infinity bright spot and the finite bright spot reflected in the front image. Focus information may be acquired.
 なお、CPU51が第2フォーカス制御を開始するタイミングは、眼Eとインターフェース90が接触した時であってもよい。例えば、CPU51は、眼Eとインターフェース90が接触したことを検出する圧力センサ77の検出結果に基づいて、フォーカス情報の取得方法を切り換えてもよい。これによって、第2フォーカス制御によるフォーカス調整を円滑に実行できる。もちろん、CPU51は、結合駆動部66の駆動量が所定値に達したときに第2フォーカス制御を開始するようにしてもよい。 The timing at which the CPU 51 starts the second focus control may be when the eye E and the interface 90 are in contact. For example, the CPU 51 may switch the focus information acquisition method based on the detection result of the pressure sensor 77 that detects that the eye E and the interface 90 are in contact with each other. Thereby, the focus adjustment by the second focus control can be executed smoothly. Of course, the CPU 51 may start the second focus control when the driving amount of the coupling driving unit 66 reaches a predetermined value.
1  眼科用レーザ手術装置
2  手術用レーザ光源
3  基準光源
6  高速Z走査部
10  XY走査部
18  広範囲Z走査部
20  対物レンズ
23  断面画像撮影部
26  照射位置検出部
30  正面画像撮影部
31  受光素子
33,34,36  受光調整部
35  光学素子
40  固視標投影部
48  可動光学素子
49  光学素子移動駆動部
50  制御部
51  CPU
54  表示部
55  操作部
63  アライメント指標投影部
64  アライメント・照明光源
66  結合駆動部
67  保持部
70  調整駆動部
90  インターフェース
91  液浸インターフェース
92  圧平インターフェース
95  眼固定部
97  エッジ
100  液浸レンズ
108  基準視標
110  コンタクトレンズ
128  IFレンズ調整駆動部
129  サクション調整駆動部
300  倍率調整部
301  受光素子
302  駆動部
DESCRIPTION OF SYMBOLS 1 Ophthalmic laser surgery apparatus 2 Surgical laser light source 3 Reference light source 6 High-speed Z scanning part 10 XY scanning part 18 Wide-range Z scanning part 20 Objective lens 23 Cross-section image photographing part 26 Irradiation position detection part 30 Front image photographing part 31 Light receiving element 33 , 34, 36 Light reception adjustment unit 35 Optical element 40 Fixation target projection unit 48 Movable optical element 49 Optical element movement drive unit 50 Control unit 51 CPU
54 display unit 55 operation unit 63 alignment index projection unit 64 alignment / illumination light source 66 coupling drive unit 67 holding unit 70 adjustment drive unit 90 interface 91 immersion interface 92 applanation interface 95 eye fixation unit 97 edge 100 immersion lens 108 reference view Mark 110 Contact lens 128 IF lens adjustment drive unit 129 Suction adjustment drive unit 300 Magnification adjustment unit 301 Light receiving element 302 Drive unit

Claims (28)

  1.  手術用レーザ光を対象者の眼に照射することで前記眼を処置する眼科用レーザ手術装置であって、
     受光素子を有し、装置本体と前記眼の間の距離に応じて異なる倍率で、前記眼の前眼部の正面画像を撮影する正面画像撮影部と、
     前記正面画像撮影部の光路上に設けられた光学部材および前記受光素子の少なくともいずれかを前記光路の光軸に沿って移動させることで、前記受光素子における前記眼の前眼部からの反射光のフォーカス状態を調整するフォーカス調整部と、
     制御部と、を備え、
     前記制御部は、前記装置本体に対する前記眼の位置が第1領域にある場合と、前記第1領域よりも前記装置本体に近い第2領域にある場合の各々で、前記眼によって反射された反射光を含む光を処理して前記フォーカス調整部を駆動させることで、前記フォーカス状態を調整することを特徴とする眼科用レーザ手術装置。
    An ophthalmic laser surgical apparatus that treats the eye by irradiating the eye of the subject with surgical laser light,
    A front image capturing unit that has a light receiving element and captures a front image of the anterior segment of the eye at different magnifications depending on a distance between the apparatus main body and the eye;
    Reflected light from the anterior segment of the eye in the light receiving element by moving at least one of the optical member provided on the optical path of the front image capturing unit and the light receiving element along the optical axis of the optical path. A focus adjustment unit for adjusting the focus state of
    A control unit,
    The control unit reflects the eye reflected in each of the case where the position of the eye relative to the apparatus main body is in the first area and the case where the eye is in the second area closer to the apparatus main body than the first area. An ophthalmic laser surgical apparatus for adjusting the focus state by processing light including light and driving the focus adjustment unit.
  2.  前記制御部は、
     前記眼の位置が前記第1領域にある場合に、
     前記フォーカス調整部を駆動させながら、前記正面画像撮影部によって撮影された前記正面画像を解析処理することで、前記フォーカス状態を調整することを特徴とする請求項1の眼科用レーザ手術装置。
    The controller is
    When the position of the eye is in the first region,
    The ophthalmic laser surgical apparatus according to claim 1, wherein the focus state is adjusted by analyzing the front image captured by the front image capturing unit while driving the focus adjusting unit.
  3.  前記制御部は、
     前記眼の位置が前記第2領域にある場合に、
     前記フォーカス状態を駆動させながら、前記正面画像撮影部によって撮影された前記正面画像を解析処理することで、前記フォーカス状態を調整することを特徴とする請求項1または2の眼科用レーザ手術装置。
    The controller is
    When the position of the eye is in the second region,
    3. The ophthalmic laser surgical apparatus according to claim 1, wherein the focus state is adjusted by analyzing the front image captured by the front image capturing unit while driving the focus state.
  4.  前記眼に有限光を照射する有限光源をさらに備え、
     前記制御部は、前記正面画像を解析することで前記フォーカス状態を調整する場合に、前記有限光源から照射されて前記眼の前眼部において反射した反射光によって形成される輝点を検出し、検出された輝点の大きさに基づいて、前記フォーカス状態を検出することを特徴とする請求項2または3の眼科用レーザ手術装置。
    A finite light source for irradiating the eye with finite light;
    When the control unit adjusts the focus state by analyzing the front image, the control unit detects a bright spot formed by reflected light emitted from the finite light source and reflected by the anterior segment of the eye, 4. The ophthalmic laser surgical apparatus according to claim 2, wherein the focus state is detected based on the size of the detected bright spot.
  5.  測定光源を有し、前記測定光源から照射されて前記眼によって反射された反射光と、前記測定光源に対応する参照光とによって干渉信号を取得する干渉信号取得部をさらに備え、
     前記制御部は、
     前記眼の位置が前記第2領域にある場合に、
     前記干渉信号から検出される前記距離に応じて前記フォーカス調整部を駆動することで、前記フォーカス状態を調整することを特徴とする請求項1または2の眼科用レーザ手術装置。
    An interference signal acquisition unit that includes a measurement light source, and that acquires an interference signal using reflected light that is irradiated from the measurement light source and reflected by the eye, and reference light that corresponds to the measurement light source;
    The controller is
    When the position of the eye is in the second region,
    The ophthalmic laser surgical apparatus according to claim 1, wherein the focus state is adjusted by driving the focus adjustment unit according to the distance detected from the interference signal.
  6.  前記眼に無限光を照射する無限光源をさらに備え、
     前記制御部は、
     前記眼の位置が前記第2領域にある場合に、
     前記正面画像撮影部によって撮影された前記正面画像を解析処理することで、前記無限光源から照射されて前記眼の前眼部において反射した反射光によって形成される輝点を検出し、前記輝点から検出される前記距離に応じて前記フォーカス調整部を駆動することで、前記フォーカス状態を調整することを特徴とする請求項1または2の眼科用レーザ手術装置。
    Further comprising an infinite light source for irradiating the eye with infinite light,
    The controller is
    When the position of the eye is in the second region,
    By analyzing the front image photographed by the front image photographing unit, a bright spot formed by reflected light irradiated from the infinite light source and reflected by the anterior eye part of the eye is detected, and the bright spot 3. The ophthalmic laser surgical apparatus according to claim 1, wherein the focus state is adjusted by driving the focus adjustment unit in accordance with the distance detected from the eye.
  7.  前記装置本体と前記対象者の眼の少なくともいずれかを移動させる駆動部をさらに備え、
     前記制御部は、
     前記駆動部によって前記第1領域に移動された前記眼に対して前記フォーカス状態を調整した後、
     前記駆動部によって前記眼を前記第2領域に移動させる場合、
     前記駆動部の駆動量に基づいて前記フォーカス調整部を駆動することで、前記フォーカス状態を調整することを特徴とする請求項1~6のいずれかの眼科用レーザ手術装置。
    A drive unit that moves at least one of the apparatus body and the eyes of the subject;
    The controller is
    After adjusting the focus state for the eye moved to the first region by the driving unit,
    When the eye is moved to the second region by the driving unit,
    7. The ophthalmic laser surgical apparatus according to claim 1, wherein the focus state is adjusted by driving the focus adjustment unit based on a drive amount of the drive unit.
  8.  前記正面画像撮影部は、前記装置本体と前記対象者の間の前記距離に応じて、異なる倍率で前記正面画像を撮影することを特徴とする請求項1~7のいずれかの眼科用レーザ手術装置。 The ophthalmic laser surgery according to any one of claims 1 to 7, wherein the front image capturing unit captures the front image at different magnifications according to the distance between the apparatus main body and the subject. apparatus.
  9.  手術用レーザ光を対象者の眼に照射することで前記眼を処置する眼科用レーザ手術装置を制御するための眼科手術制御プログラムであって、
     前記眼科用レーザ手術装置は、
     受光素子を有し、装置本体と前記眼の間の距離に応じて異なる倍率で、前記眼の前眼部の正面画像を撮影する正面画像撮影部と、
     前記正面画像撮影部の光路上に設けられた光学部材および前記受光素子の少なくともいずれかを前記光路の光軸に沿って移動させることで、前記受光素子における前記眼の前眼部からの反射光のフォーカス状態を調整するフォーカス調整部と、を備え、
     前記眼科手術制御プログラムが前記眼科用レーザ手術装置のプロセッサによって実行されることで、
     前記装置本体に対する前記眼の位置が第1領域にある場合と、前記第1領域よりも前記装置本体に近い第2領域にある場合の各々で、前記眼によって反射された反射光を含む光を処理して前記フォーカス調整部を駆動させることで、前記フォーカス状態を調整するフォーカス状態調整ステップを前記眼科用レーザ手術装置に実行させることを特徴とする眼科手術制御プログラム。
    An ophthalmic surgery control program for controlling an ophthalmic laser surgery apparatus that treats the eye by irradiating the eye of the subject with laser light for surgery,
    The ophthalmic laser surgical apparatus is:
    A front image capturing unit that has a light receiving element and captures a front image of the anterior segment of the eye at different magnifications depending on a distance between the apparatus main body and the eye;
    Reflected light from the anterior segment of the eye in the light receiving element by moving at least one of the optical member provided on the optical path of the front image capturing unit and the light receiving element along the optical axis of the optical path. A focus adjustment unit for adjusting the focus state of
    The ophthalmic surgery control program is executed by the processor of the ophthalmic laser surgery apparatus,
    Light including reflected light reflected by the eye in each of the case where the position of the eye with respect to the device main body is in the first region and the case where the eye is in the second region closer to the device main body than the first region. An ophthalmic surgery control program that causes the ophthalmic laser surgical apparatus to execute a focus state adjustment step of adjusting the focus state by processing and driving the focus adjustment unit.
  10.  手術用レーザ光を対象者の眼に照射することで前記眼を処置する眼科用レーザ手術装置であって、
     装置本体および前記対象者の少なくともいずれかを移動させる駆動部と、
     受光素子を有し、前記装置本体と前記眼の間の距離に応じて異なる倍率で、前記眼の前眼部の正面画像を撮影する正面画像撮影部と、
     前記正面画像撮影部の撮影光路上に設けられた光学部材および前記受光素子の少なくともいずれかを、前記距離に応じて前記光路の光軸に沿って移動させることで、前記受光素子における前記眼の前眼部からの反射光のフォーカス状態を、前記装置本体に対して移動する前記眼に調整するフォーカス調整部と、を備え、
     前記駆動部の駆動によって変化する前記距離と、前記フォーカス調整部によって移動される前記光学部材および前記受光素子の少なくともいずれかの位置との関係が非線形であることを特徴とする眼科用レーザ手術装置。
    An ophthalmic laser surgical apparatus that treats the eye by irradiating the eye of the subject with surgical laser light,
    A drive unit for moving at least one of the apparatus main body and the subject; and
    A front image capturing unit that includes a light receiving element and captures a front image of the anterior segment of the eye at different magnifications according to a distance between the apparatus main body and the eye;
    By moving at least one of the optical member and the light receiving element provided on the photographing optical path of the front image photographing unit along the optical axis of the optical path according to the distance, A focus adjustment unit that adjusts the focus state of the reflected light from the anterior eye part to the eye that moves relative to the apparatus main body,
    An ophthalmic laser surgical apparatus, wherein a relationship between the distance changed by driving of the driving unit and a position of at least one of the optical member and the light receiving element moved by the focus adjusting unit is non-linear .
  11.  前記手術用レーザ光の光路上に配置されるレンズを少なくとも有し、前記装置本体と前記眼の間に介在するインターフェースを保持する保持部をさらに備え、
     前記フォーカス調整部は、前記駆動部の駆動によって変化する前記距離と、前記光学部材および前記受光素子の少なくともいずれかの位置との関係が、前記保持部に保持された前記インターフェースの種類に応じて異なる関係となるように、前記光学部材および前記受光素子の少なくともいずれかを前記光路の光軸に沿って移動させることを特徴とする請求項10の眼科用レーザ手術装置。
    At least a lens disposed on the optical path of the surgical laser beam, and further comprising a holding unit that holds an interface interposed between the apparatus main body and the eye;
    The focus adjustment unit is configured so that a relationship between the distance changed by driving of the driving unit and a position of at least one of the optical member and the light receiving element depends on a type of the interface held by the holding unit. The ophthalmic laser surgical apparatus according to claim 10, wherein at least one of the optical member and the light receiving element is moved along an optical axis of the optical path so as to have a different relationship.
  12.  前記装置本体に対する前記眼の位置が特定領域にある場合に、前記装置本体と前記眼の間の前記距離を検出する距離検出手段をさらに備え、
     前記フォーカス調整部は、前記距離検出手段によって検出された前記距離と、前記距離が検出された位置からの前記眼と前記装置本体の相対的な移動量とに基づいて、前記光学部材および前記受光素子の少なくともいずれかの位置を決定することを特徴とする請求項10または11の眼科用レーザ手術装置。
    A distance detecting means for detecting the distance between the apparatus main body and the eye when the position of the eye relative to the apparatus main body is in a specific region;
    The focus adjustment unit is configured to detect the optical member and the light reception based on the distance detected by the distance detection unit and a relative movement amount of the eye and the apparatus main body from the position where the distance is detected. 12. The ophthalmic laser surgical apparatus according to claim 10, wherein the position of at least one of the elements is determined.
  13.  前記距離検出手段は、前記光学部材および前記受光素子の少なくともいずれかを前記光路の光軸に沿って移動させながら、前記正面画像撮影部によって撮影された前記正面画像に基づいて前記フォーカス状態を調整し、前記フォーカス状態が調整された状態の前記光学部材および前記受光素子の少なくともいずれかの位置によって前記距離を検出することを特徴とする請求項12の眼科用レーザ手術装置。 The distance detection unit adjusts the focus state based on the front image captured by the front image capturing unit while moving at least one of the optical member and the light receiving element along the optical axis of the optical path. The ophthalmic laser surgical apparatus according to claim 12, wherein the distance is detected by a position of at least one of the optical member and the light receiving element in a state in which the focus state is adjusted.
  14.  前記距離検出手段は、前記特定領域に位置する前記眼に対してアライメント光を投影し、前記眼によって反射された前記アライメント光の反射光に基づいて前記距離を検出することを特徴とする請求項12または13の眼科用レーザ手術装置。 The distance detection unit projects alignment light onto the eye located in the specific region, and detects the distance based on reflected light of the alignment light reflected by the eye. 12 or 13 ophthalmic laser surgical devices.
  15.  前記フォーカス調整部は、前記駆動部の駆動によって前記距離が小さくなるにつれて、前記距離の単位変化量あたりの、前記光学部材および前記受光素子の少なくともいずれかの移動量を大きくすることを特徴とする請求項10~14のいずれかの眼科用レーザ手術装置。 The focus adjustment unit increases a movement amount of at least one of the optical member and the light receiving element per unit change amount of the distance as the distance is decreased by driving of the driving unit. The ophthalmic laser surgical apparatus according to any one of claims 10 to 14.
  16.  前記距離が入力されることによって、前記光学部材または前記受光素子の少なくともいずれかの位置を出力する対応関係出力手段をさらに備え、
     前記フォーカス調整部は、前記対応関係出力手段によって出力された前記光学部材または前記受光素子の少なくともいずれかの位置に応じて、前記光学部材または前記受光素子の少なくともいずれかを前記光路の光軸に沿って移動させることを特徴とする請求項10~15のいずれかの眼科用レーザ手術装置。
    Corresponding relationship output means for outputting the position of at least one of the optical member or the light receiving element when the distance is inputted,
    The focus adjustment unit uses at least one of the optical member or the light receiving element as an optical axis of the optical path according to a position of at least one of the optical member or the light receiving element output by the correspondence output unit. The ophthalmic laser surgical apparatus according to any one of claims 10 to 15, wherein the ophthalmic laser surgical apparatus is moved along the axis.
  17.  手術用レーザ光を対象者の眼に照射することで前記眼を処置する眼科用レーザ手術装置を制御するための眼科手術制御プログラムであって、
     前記眼科用レーザ手術装置は、
     装置本体および前記対象者の少なくともいずれかを移動させる駆動部と、
     受光素子を有し、前記装置本体と前記眼の間の距離に応じて異なる倍率で、前記眼の前眼部の正面画像を撮影する正面画像撮影部と、
     前記正面画像撮影部の撮影光路上に設けられた光学部材および前記受光素子の少なくともいずれかを、前記距離に応じて前記光路の光軸に沿って移動させることで、前記受光素子における前記眼の前眼部からの反射光のフォーカス状態を、前記装置本体に対して移動する前記眼に調整するフォーカス調整部と、を備え、
     前記眼科手術制御プログラムが前記眼科用レーザ手術装置のプロセッサによって実行されることで、
     前記駆動部の駆動によって変化する前記距離と、前記フォーカス調整部によって移動される前記光学部材および前記受光素子の少なくともいずれかの位置とが非線形となる関係で、前記距離に応じて前記フォーカス状態を調整するフォーカス調整ステップ
    を前記眼科用レーザ手術装置に実行させることを特徴とする眼科用レーザ手術装置。
    An ophthalmic surgery control program for controlling an ophthalmic laser surgery apparatus that treats the eye by irradiating the eye of the subject with laser light for surgery,
    The ophthalmic laser surgical apparatus is:
    A drive unit for moving at least one of the apparatus main body and the subject; and
    A front image capturing unit that includes a light receiving element and captures a front image of the anterior segment of the eye at different magnifications according to a distance between the apparatus main body and the eye;
    By moving at least one of the optical member and the light receiving element provided on the photographing optical path of the front image photographing unit along the optical axis of the optical path according to the distance, A focus adjustment unit that adjusts the focus state of the reflected light from the anterior eye part to the eye that moves relative to the apparatus main body,
    The ophthalmic surgery control program is executed by the processor of the ophthalmic laser surgery apparatus,
    The focus state is changed according to the distance in a relationship in which the distance changed by driving the driving unit and the position of at least one of the optical member and the light receiving element moved by the focus adjusting unit are nonlinear. An ophthalmic laser surgical apparatus that causes the ophthalmic laser surgical apparatus to perform a focus adjustment step for adjustment.
  18.  手術用レーザ光を対象者の眼に照射することで前記眼を処置する眼科用レーザ手術装置であって、
     前記手術用レーザ光の照射光路上に配置されるレンズを少なくとも有し、装置本体と前記眼の間に介在するインターフェースを保持する保持部と、
     前記眼で反射して前記レンズを通過した反射光を受光する受光素子を有し、前記装置本体と前記眼の間の距離に応じて異なる倍率で、前記眼の前眼部の正面画像を撮影する正面画像撮影部と、
     前記保持部に保持されたインターフェースが変更されることによって、前記正面画像撮影部によって撮影された前記正面画像の倍率が変化する場合に、前記倍率の変化を調整する倍率調整手段を備えることを特徴とする眼科用レーザ手術装置。
    An ophthalmic laser surgical apparatus that treats the eye by irradiating the eye of the subject with surgical laser light,
    A holding unit that holds at least a lens disposed on an irradiation optical path of the surgical laser light, and holds an interface interposed between the apparatus main body and the eye;
    A light receiving element that receives reflected light that has been reflected by the eye and passed through the lens is captured, and a front image of the anterior segment of the eye is captured at different magnifications depending on the distance between the apparatus body and the eye A front image capturing unit,
    When the interface held by the holding unit is changed, and the magnification of the front image captured by the front image capturing unit changes, a magnification adjusting unit that adjusts the change of the magnification is provided. Ophthalmic laser surgery device.
  19.  前記倍率調整手段は、
     前記装置本体と対象者の眼の間の距離の変化量と、前記正面画像撮影部によって撮影された前記正面画像の撮影範囲の変化量との比率の変化を調整することを特徴とする請求項18の眼科用レーザ手術装置。
    The magnification adjusting means includes
    The ratio change between the change amount of the distance between the apparatus main body and the eye of the subject and the change amount of the shooting range of the front image captured by the front image capturing unit is adjusted. 18 ophthalmic laser surgical devices.
  20.  前記倍率調整手段は、前記正面画像撮影部の撮影光路のうち、前記インターフェースから前記受光素子まで間の光路に位置する光学素子の焦点距離を変更することによって、前記倍率の変化を調整する焦点距離変更部を備えることを特徴とする請求項18または19の眼科用レーザ手術装置。 The magnification adjusting means adjusts the change in magnification by changing the focal length of an optical element located in the optical path between the interface and the light receiving element in the imaging optical path of the front image capturing unit. The ophthalmic laser surgical apparatus according to claim 18, further comprising a changing unit.
  21.  前記焦点距離変更部は、前記撮影光路のうち、前記手術用レーザ光の照射光路と、前記撮影光路と、が分岐される分岐点から前記受光素子までの間の光学素子の焦点距離を変更することを特徴とする請求項20の眼科用レーザ手術装置。 The focal length changing unit changes a focal length of an optical element from a branch point where the irradiation path of the surgical laser light and the imaging optical path are branched from the imaging optical path to the light receiving element. The ophthalmic laser surgical apparatus according to claim 20.
  22.  前記対象者の眼によって反射されて前記インターフェースの前記レンズを通過する測定光と、参照光との干渉信号を取得するためのOCT光学系をさらに備え、
     前記焦点距離変更部は、前記撮影光路のうち、前記OCT光学系の測定光路と、前記撮影光路と、が分岐される分岐点から前記受光素子までの間の光学素子の焦点距離を変更することを特徴とする請求項20または21の眼科用レーザ手術装置。
    An OCT optical system for obtaining an interference signal between the measurement light reflected by the eye of the subject and passing through the lens of the interface and the reference light;
    The focal length changing unit changes a focal length of the optical element between a branch point where the measurement optical path of the OCT optical system and the imaging optical path are branched from the imaging optical path to the light receiving element. The ophthalmic laser surgical apparatus according to claim 20 or 21, wherein:
  23.  前記焦点距離変更部は、少なくとも一つの第1光学素子と、前記第1光学素子を駆動させる駆動部とを備え、
     前記駆動部を駆動させ、前記撮影光路に対して前記第1光学素子を挿抜することによって、前記撮影光路の焦点距離を変更することを特徴とする請求項20~22のいずれかの眼科用レーザ手術装置。
    The focal length changing unit includes at least one first optical element and a driving unit that drives the first optical element,
    The ophthalmic laser according to any one of claims 20 to 22, wherein the focal length of the photographing optical path is changed by driving the driving unit and inserting and removing the first optical element with respect to the photographing optical path. Surgical device.
  24.  前記焦点距離変更部は、
     少なくとも一つの第2光学素子と、前記第2光学素子を駆動させる駆動部を備え、
     前記駆動部を駆動させ、前記第2光学素子及び前記受光素子の少なくともいずれかを前記撮影光路の光軸方向に移動させることによって、前記撮影光路の焦点距離を変更することを特徴とする請求項20~22のいずれかの眼科用レーザ手術装置。
    The focal length changing unit is
    Comprising at least one second optical element and a drive unit for driving the second optical element;
    The focal length of the photographing optical path is changed by driving the driving unit and moving at least one of the second optical element and the light receiving element in an optical axis direction of the photographing optical path. The ophthalmic laser surgical apparatus according to any one of 20 to 22.
  25.  前記焦点距離変更部は、
     前記撮影光路の少なくとも一部である第1光路を、第1光路とは光学素子の焦点距離の異なる第2光路に切り換えることによって、前記撮影光路の焦点距離を変更する光路切換手段を備えることを特徴とする請求項20~22のいずれかの眼科用レーザ手術装置。
    The focal length changing unit is
    An optical path switching unit that changes a focal length of the imaging optical path by switching a first optical path that is at least a part of the imaging optical path to a second optical path having a different focal length of an optical element from the first optical path; The ophthalmic laser surgical apparatus according to any one of claims 20 to 22.
  26.  前記倍率調整手段は、前記正面画像を表示部に表示させるときの倍率を調整することによって、前記正面画像の倍率の変化を調整することを特徴とする請求項18の眼科用レーザ手術装置。 19. The ophthalmic laser surgical apparatus according to claim 18, wherein the magnification adjusting unit adjusts a change in magnification of the front image by adjusting a magnification when the front image is displayed on a display unit.
  27.  前記倍率調整手段によって前記正面画像の倍率の変化が調整された場合、前記正面画像の輝度を調整する輝度調整手段をさらに備えることを特徴とする請求項18~26のいずれかの眼科レーザ手術装置。 The ophthalmic laser surgical apparatus according to any one of claims 18 to 26, further comprising a luminance adjusting unit that adjusts a luminance of the front image when a change in magnification of the front image is adjusted by the magnification adjusting unit. .
  28.  手術用レーザ光を対象者の眼に照射することで前記眼を処置する眼科用レーザ手術装置を制御するための眼科手術制御プログラムであって、
     前記眼科用レーザ手術装置は、
     前記手術用レーザ光の照射光路上に配置されるレンズを少なくとも有し、装置本体と前記眼の間に介在するインターフェースを保持する保持部と、
     前記眼で反射して前記レンズを通過した反射光を受光する受光素子を有し、前記装置本体と前記眼の間の距離に応じて異なる倍率で、前記眼の前眼部の正面画像を撮影する正面画像撮影部と、を備え、
     前記眼科手術制御プログラムが前記眼科用レーザ手術装置のプロセッサによって実行されることで、
     前記保持部に保持されたインターフェースが変更されることによって、前記正面画像撮影部によって撮影された前記正面画像の倍率が変化する場合に、前記倍率の変化を調整する倍率調整ステップ
    を前記眼科用レーザ手術装置に実行させることを特徴とする眼科手術制御プログラム。

     
    An ophthalmic surgery control program for controlling an ophthalmic laser surgery apparatus that treats the eye by irradiating the eye of the subject with laser light for surgery,
    The ophthalmic laser surgical apparatus is:
    A holding unit that holds at least a lens disposed on an irradiation optical path of the surgical laser light, and holds an interface interposed between the apparatus main body and the eye;
    A light receiving element that receives reflected light that has been reflected by the eye and passed through the lens is captured, and a front image of the anterior segment of the eye is captured at different magnifications depending on the distance between the apparatus body and the eye A front image capturing unit that
    The ophthalmic surgery control program is executed by the processor of the ophthalmic laser surgery apparatus,
    When the interface held by the holding unit is changed to change the magnification of the front image captured by the front image capturing unit, a magnification adjustment step for adjusting the change in the magnification is performed in the ophthalmic laser. An ophthalmic surgery control program that is executed by a surgical apparatus.

PCT/JP2016/060859 2015-03-31 2016-03-31 Ophthalmic laser surgery device and ophthalmic laser surgery control program WO2016159332A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015074637A JP2016193096A (en) 2015-03-31 2015-03-31 Ophthalmic laser treatment device and ophthalmic surgery control program
JP2015074639A JP2016193098A (en) 2015-03-31 2015-03-31 Ophthalmic laser surgery device and ophthalmic surgery control program
JP2015-074639 2015-03-31
JP2015074638A JP2016193097A (en) 2015-03-31 2015-03-31 Ophthalmic laser surgery device and ophthalmic surgery control program
JP2015-074637 2015-03-31
JP2015-074638 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159332A1 true WO2016159332A1 (en) 2016-10-06

Family

ID=57005150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060859 WO2016159332A1 (en) 2015-03-31 2016-03-31 Ophthalmic laser surgery device and ophthalmic laser surgery control program

Country Status (1)

Country Link
WO (1) WO2016159332A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160549A (en) * 2003-11-28 2005-06-23 Nidek Co Ltd Fundus camera
JP2009291253A (en) * 2008-06-02 2009-12-17 Nidek Co Ltd Ophthalmic photographing apparatus
WO2014074598A1 (en) * 2012-11-07 2014-05-15 Clarity Medical Systems, Inc. Apparatus and method for operating a real time large diopter range sequential wavefront sensor
JP2014140542A (en) * 2013-01-24 2014-08-07 Topcon Corp Ophthalmological observation device
JP2015163093A (en) * 2014-02-28 2015-09-10 株式会社ニデック Ophthalmic laser surgery device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005160549A (en) * 2003-11-28 2005-06-23 Nidek Co Ltd Fundus camera
JP2009291253A (en) * 2008-06-02 2009-12-17 Nidek Co Ltd Ophthalmic photographing apparatus
WO2014074598A1 (en) * 2012-11-07 2014-05-15 Clarity Medical Systems, Inc. Apparatus and method for operating a real time large diopter range sequential wavefront sensor
JP2014140542A (en) * 2013-01-24 2014-08-07 Topcon Corp Ophthalmological observation device
JP2015163093A (en) * 2014-02-28 2015-09-10 株式会社ニデック Ophthalmic laser surgery device

Similar Documents

Publication Publication Date Title
TWI580395B (en) Electronically controlled fixation light for ophthalmic imaging systems
US10456034B2 (en) Ophthalmic microscope system
US9662013B2 (en) Ophthalmic microscope
CA2979336C (en) Tracking system for surgical optical coherence tomography
US20120310224A1 (en) Ophthalmic laser surgery apparatus
JP6812724B2 (en) Ophthalmic Surgery System, Ophthalmic Surgery System Control Program, and Ophthalmic Surgical Microscope
JP2016193033A (en) Ophthalmologic apparatus and ophthalmologic apparatus control program
JP2016193030A (en) Ophthalmic laser surgery device and ophthalmic surgery control program
US10456035B2 (en) Ophthalmic surgical microscope
JP6524609B2 (en) Ophthalmic laser surgery device
WO2019138916A1 (en) Fundus imaging device
JP2016193096A (en) Ophthalmic laser treatment device and ophthalmic surgery control program
JP2019118720A (en) Ophthalmography device
JP2015195923A (en) Ophthalmic laser surgery device
JP2016193028A (en) Ophthalmic laser surgery device
JP6492411B2 (en) Ophthalmic laser surgery device
JP2018038687A (en) Ophthalmologic apparatus
JP2016193098A (en) Ophthalmic laser surgery device and ophthalmic surgery control program
WO2016159332A1 (en) Ophthalmic laser surgery device and ophthalmic laser surgery control program
JP6713297B2 (en) Ophthalmic equipment
JP2016193029A (en) Ophthalmologic apparatus and ophthalmologic apparatus control program
JP6572596B2 (en) Ophthalmic apparatus and ophthalmic apparatus control program
JP2016193097A (en) Ophthalmic laser surgery device and ophthalmic surgery control program
WO2016159331A1 (en) Ophthalmic laser surgery device, ophthalmic device, ophthalmic device control program, and ophthalmic surgery control program
JP2008154725A (en) Ophthalmic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773212

Country of ref document: EP

Kind code of ref document: A1