WO2016159313A1 - Power transmission system - Google Patents

Power transmission system Download PDF

Info

Publication number
WO2016159313A1
WO2016159313A1 PCT/JP2016/060825 JP2016060825W WO2016159313A1 WO 2016159313 A1 WO2016159313 A1 WO 2016159313A1 JP 2016060825 W JP2016060825 W JP 2016060825W WO 2016159313 A1 WO2016159313 A1 WO 2016159313A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
electrode
communication
phase
Prior art date
Application number
PCT/JP2016/060825
Other languages
French (fr)
Japanese (ja)
Inventor
原川 健一
Original Assignee
株式会社ExH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ExH filed Critical 株式会社ExH
Publication of WO2016159313A1 publication Critical patent/WO2016159313A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • the present invention relates to a power transmission system for transmitting power to various loads.
  • the present inventor has already invented the “electric field coupling method” as a new method of electric power transmission, and has further already described a circuit technology capable of realizing the new method (hereinafter referred to as “electric field coupling electric power transmission technology”).
  • electric field coupled power transmission technology two metal plates (conductive plates) are made to face each other, and a capacitor (such a capacitor is hereinafter referred to as a “junction capacitance”) is formed using these two metal plates as electrode pairs. In this state, non-contact power transmission is realized by flowing a high-frequency current.
  • the power transmission system to which the electric field coupled power transmission technology is applied includes a power transmission unit that transmits power from a power source and a power reception unit that receives power from the power transmission unit and supplies the power to a load.
  • the junction capacitance is formed by making the metal plate (electrode) provided at the end of the power transmission unit and the metal plate (electrode) provided at the tip of the power reception unit face each other.
  • FIG. 13 is a circuit diagram of a conventional non-contact power transmission system to which the electric field coupled power transmission technology is applied.
  • the fixed body 801 disposed in the power transmission region 800 includes power transmission electrodes 805 and 806.
  • the movable body 803 disposed in the power supplied region 802 includes power receiving electrodes 807 and 808 that are disposed so as to face the power transmitting electrodes 805 and 806 in a non-contact manner.
  • a coupling capacitor 809 is constituted by the power transmitting electrodes 805 and 806 and the power receiving electrodes 807 and 808 opposed to each other.
  • a series resonance circuit is formed by the coupling capacitor 809 and the coil 810 provided in the movable body 803.
  • the power receiving electrodes 807 and 808 are sufficiently larger than the separation distance between the power transmitting electrodes 805 and 806 so that neither of the power receiving electrodes 807 and 808 straddles both the power transmitting electrode 805 and the power transmitting electrode 806. It is formed to have a narrow width.
  • the power receiving electrodes 807 and 808 and the power transmitting electrodes 805 and 806 are not disposed at positions that completely correspond to each other in the vertical direction depending on the arrangement position of the movable body 803.
  • the power receiving electrodes 807 and 808 may be arranged so as to cover only a part of the power transmitting electrodes 805 and 806.
  • the capacitor capacity of the coupling capacitor 809 is deviated from the predetermined capacity, and the predetermined series resonance condition is not satisfied, which may reduce the power transmission efficiency.
  • FIG. 14 is a circuit diagram of a conventional non-contact power transmission system, which is different from FIG.
  • an inductance 920 and a capacitor 921 are connected in parallel to the power transmission electrodes 905 and 906.
  • the inductance 920, the capacitor 921, and the coupling capacitor 909 form a parallel resonant circuit.
  • power transmission can be performed from the fixed body 901 to the movable body 903 in a resonance state.
  • the power receiving electrode 907 has a width sufficiently narrower than the separation distance between the power transmission electrodes 905 and 906 so as not to straddle both the power transmission electrode 905 and the power transmission electrode 906. Formed to have.
  • the power transmission system described in Patent Document 3 includes an inductance and a capacitor connected in parallel to each of the power transmission electrodes.
  • the power transmission system includes the wide range of power transmission electrodes. Since it is necessary to supply the current flowing through the resonance circuit from the power source, there is a problem that the capacity of the power source becomes extremely large.
  • the conventional non-contact power transmission system is an electromagnetic induction system
  • the magnetic resonance method “if a conductive loop is present in order to distribute a high-frequency magnetic field in the space, heat will be generated”, “If used only for low power applications, it will be used in combination with an outlet, There are further problems such as “it will not be a thimble system”, “there is a heat generating part”, “communication function must be prepared separately, and it is difficult to integrate communication and power transmission”.
  • the present invention has been made in view of such circumstances, and in a power transmission system using an electric field coupling technique, is a power transmission system capable of achieving a free position by non-contact, and only in a necessary range.
  • An object is to provide a power transmission system capable of power transmission.
  • the power transmission system can have the following configuration.
  • a power transmission system comprising a plurality of power transmission side devices arranged adjacent to each other, and a power reception side device placed across at least two power transmission side devices included in the plurality of power transmission side devices,
  • Each of the plurality of power transmission side devices is: An AC power supply device for generating a positive phase AC power source or a reverse phase AC power source;
  • the power receiving device is: At least two power receiving electrodes that are capacitively coupled to the power transmitting electrodes respectively provided in at least two power transmitting side devices on which the power receiving side devices are mounted; At least two pairs of half-wave rectifier circuits corresponding to at least two power receiving electrodes, respectively, each pair of half-wave rectifier circuits including rectifier elements in opposite directions to each other.
  • the AC power supply device provided in at least two power transmission devices on which the power receiving device is mounted is opposite to the phase of the AC power generated by the AC power supply device provided in the power transmission device adjacent to the power transmission device.
  • An electric power transmission system is provided that generates an AC power supply having a phase of.
  • power can be transmitted only within a necessary range.
  • FIG. 2 is a partially enlarged view of FIG. 1.
  • (A) And (b) is the perspective view and top view which show the detail of the block shown in FIG. 1, respectively.
  • FIG. 1 is a diagram showing the structure of the free-position power transmission panel and power receiver.
  • FIG. 1B is an enlarged view of a part thereof.
  • a power transmission panel 101 is provided at the lower portion, and a power receiving unit 131 is placed thereon.
  • the power transmission panel 101 is manufactured in an easy-to-handle size, and they are continuously arranged in a one-dimensional or two-dimensional manner in a plane to construct a table surface or a floor surface. (In the case of a table, it may be made of a single plate.)
  • These power transmission panels 101 are fed with direct current, and devices and the like can perform two-way communication via the power transmission panel 101 and the LAN 175.
  • the power receiving unit 131 includes arranged power receiving electrodes 133, a pair of rectifier diodes 135 having different directions are connected to each power receiving electrode 133, and some of the power receiving electrodes 133 are positive.
  • the other part of the plurality of power receiving electrodes rides on the negative power transmitting electrode 121, they are automatically identified by the rectifier diode 135 and rectified by the smoothing capacitor 137.
  • the power can be supplied to the load 143 by smoothing, and a part of the energy can be stored in the storage battery 141.
  • the power receiving side communication control unit 139 can be supplied with power from the smoothing capacitor 137 or the storage battery 141. Further, communication with the power transmission panel 101 can be performed.
  • the power reception unit 131 is entirely covered with a shield cover 145.
  • the edge portion of the shield cover 145 is referred to as an overhang 147 and covers the periphery of the power receiving unit.
  • the peripheral portion of the power receiving unit is, for example, a region between the overhang inner edge and the overhang outer edge shown in FIG.
  • the frequency used for power transmission is the MHz band
  • the frequency used for communication is the GHz band. For this reason, since communication is possible even if the power transmission is lifted to the extent that power transmission is not possible, the control system (communication system) is more reliable than the controlled system (power transmission system). Communication is performed by generating a potential difference between the shield cover 145 and the power receiving electrode 133. The reception of non-contact power is different from using a potential difference between at least two power reception electrodes 133.
  • the downlink transmission signal from the communication transceiver 177 includes a non-attenuating two-dimensional waveguide 163, a power transmission side communication control unit 113, an inverter 115, a power transmission electrode 121, a power reception electrode 133, and a rectifier diode 135. Is received by the power receiving side communication control unit 139.
  • the inverter 115 modulates the AC power supply by the downstream transmission signal.
  • the uplink transmission signal from the reception-side communication control unit 139 is received by the communication transceiver 177 via the reverse path (except for the inverter).
  • the power transmission panel 101 includes a DC / communication base plate 161, a block array 111A (in which a plurality of blocks 111 are arranged, see FIG. 6), a back layer 119, a power transmission electrode 121, a top coat 123, and a frame (not shown). To be included).
  • the DC / communication base plate 161 is a panel having a three-layer structure (upper layer 161-1, intermediate layer 161-2, and lower layer 161-3), and the panels of the upper layer 161-1 and the lower layer 161-3 are connected at the ends. Therefore, it has a closed structure (shield structure). Between the intermediate layer panel 161-2 and the upper layer panel 161-1, a material that transmits electromagnetic waves, such as foam, is disposed. Between the intermediate layer panel 161-2 and the upper layer panel 161-1, The region 163 functions as a non-attenuating two-dimensional waveguide 163.
  • Protrusions are formed in the intermediate layer 161-2 and the upper layer 161-1 in accordance with the positions of the arranged blocks 111 so that they can be connected to the upper part (specifically, the block 111) in the upper part with a coaxial structure. Since the electromagnetic wave propagating through the two-dimensional waveguide is in contact with the outside only at a portion where the physical protrusion is present, the coupling coefficient can be set low, so that the multiple reflection in the non-attenuated two-dimensional waveguide 163 is small. Further, a radio wave absorbing material is disposed between the intermediate layer 161-2 and the lower layer 161-3, and a region 165 between the intermediate layer 161-2 and the lower layer 161-3 is formed as an attenuating two-dimensional waveguide. It has become.
  • the intermediate layer 161-2 is not in contact with the shield portion closed by the upper layer 161-1 and the lower layer 161-3 at the end. For this reason, the electromagnetic wave that has traveled through the non-attenuating two-dimensional waveguide 163 is guided to the attenuating two-dimensional waveguide 165 with almost no reflection. Since the electromagnetic wave absorber is disposed in the attenuating two-dimensional waveguide 165, it attenuates as it travels in the two-dimensional plane. In order to prevent reflection, the radio wave absorber is arranged so that the impedance does not change so much in the peripheral portion, and the absorption characteristic is improved as it goes to the central portion.
  • the electromagnetic wave hardly oozes out, and there is no problem even if the opening 161-4 is opened in this central part. From this opening 161-4, DC power is fed between the intermediate layer 161-2 and the shield. Further, a probe antenna 179 for the communication transceiver 177 is set up at the center 161-5 of the upper layer 161-1 through the lower layer 161-3.
  • each protrusion is a coaxial line and can supply direct current, a clock signal, and a communication wave to the block 111.
  • Each block 111 includes a power transmission side communication control unit 113, an inverter 115, an inductance 125, and switches S1, S2, and V. By changing the frequency or phase of the output AC signal of the inverter 115, communication by phase modulation can be performed in the frequency band corresponding to each of the non-contact power transmission mode and the electric field communication mode.
  • Each block 111 is further provided with a back layer 119, which functions as a common ground when communicating with the power receiver.
  • the back layer 119 is also effective for reducing the radiation electric field in the power receiving unit 131. However, since it is attached in the vicinity of the power transmission electrode 121, the parasitic capacitance 120 is generated, and the transmission efficiency is lowered. In order to prevent this, an inductance 125 that resonates in parallel with the parasitic capacitance 120 is provided.
  • each block 111 is made according to the same standard, the cost can be reduced by the mass production effect. Furthermore, each block 111 is connected to the periphery at 11 points of contact.
  • a perforated metal panel constituting the back layer 119 is arranged on the block array 111A in which the blocks 111 are arranged one-dimensionally or two-dimensionally, and each block 111 and the power transmission electrode 121 are connected through the holes.
  • the gap between the back layer 119 and the power transmission electrode 121 is adjusted for the distance, the size of the dielectric material inserted therein, and the dielectric constant, thereby forming a parasitic capacitance between the back layer 119 and the power transmission electrode 121. Adjustment is made so that the value of 120 becomes a desired value. As a result, the resonance circuit formed by the capacitance and the inductance 125 described above is desired in consideration of transmission efficiency.
  • the power transmission panel 101 has a structure in which three elements of (1) the DC / communication plate 161, (2) the block array 111A, and (3) the back layer 119 and the panel 122 including the power transmission electrode 121 are connected to each other. We are thinking so that we can do it. Furthermore, depending on the thickness of the block, if it can be thinned, the whole can be made thin.
  • FIGS. 2A and 2B are a schematic view and a plan view of a block, respectively.
  • the block 111 includes a power transmission side communication control unit 113 and an inverter 115, and lines 127 and 128 connecting from the top of the inverter 115 to the power transmission electrode 121 are provided.
  • a communication coupling capacitor 117 is disposed around the line 128, and a transmission / reception changeover switch V for half-duplex electric field communication is attached between the line 127 and the line 128. .
  • the switch V connects the line 128 and the line 127 at the time of transmission so that the input / output unit of the transceiver 213 is connected to the line 127.
  • the line V is connected to the line 127 and the line 129 so The input unit of the receiver 217 is connected.
  • the inductance 125 comes out in four directions, and these are connected to the inductance 125 of the adjacent block 111 in the four directions.
  • the other output Z of the inverter 115 is distributed in four directions, and switches S1 and S2 are attached to two of them, and the other output Z of the inverter 115 is adjacent via the switches S1 and S2. It is connected to the block 111. Switching signals for the switches S1 and S2 are output from the transmission-side communication control unit 113. The terminal Z is also connected to the four surrounding blocks 111, but two of them are connected via the switches S1 and S2 as described above.
  • the inverters 115 of the block 111 connected to each other via the switch S1 and the switch S2 are synchronized by a synchronization signal passing through the terminal Z. However, the phases of the inverters of the adjacent blocks 111 are different by 180 degrees.
  • the terminal Z of the inverter is also connected to the back layer 119 via a switch 218 inside the power transmission side communication control unit 113.
  • switch 218 When switch 218 is connected, a current path is formed.
  • 3 and 3B are a block diagram and a circuit diagram showing an internal configuration of the power transmission side communication control unit 113, respectively.
  • the DC power is received from the DC / communication base plate 161 and the communication signal is transmitted / received.
  • a clock signal is also superimposed on the DC power from the DC power source 171.
  • Part of the electric power is stored in the power supply unit 207, and the electric power is supplied to a CPU (Central Processing Unit) 209, a transceiver 213, a gate driver 211, and the like.
  • the communication signal line 128 and the communication coupling 117 are connected to the transceiver 213.
  • the clock signal supplied by being superimposed on the DC power is separated by a BPF (Band Pass Filter) 201, shaped by a waveform shaping circuit 205, and sent to the CPU 209.
  • a signal from a server (not shown) connected via the LAN 175 is received via the transceiver 213 and adjustment with the adjacent block 111 is performed.
  • the transceiver 213 since the transceiver 213 communicates with the power receiver, the transceiver 213 can receive a power transmission stop request due to the convenience of the power receiver, and can also recognize whether or not the power receiver is a simple metal piece. If the inverter 115 is provided with a transmission current monitoring function, it can be recognized whether the transmission current is within a normal range. When the transmission current is reduced, the output of the gate driver 211 can be stopped immediately and the output of the inverter 115 can be stopped.
  • the clock signal generated by the clock signal generator 173 is superimposed on the DC power transmission line 221, and the phases of the power transmission panels 101 are matched. Thereby, non-contact power transmission and electric field communication are possible seamlessly between the power transmission panels 101.
  • the gate driver 211 for the inverter 115 causes a gate signal having a predetermined frequency and a predetermined phase to flow through the transistors constituting the inverter 115.
  • the output of the inverter 115 is modulated with a transmission signal.
  • PWM Pulse Width Modulation
  • the switch controller 215 controls the power transmission range by operating the switches S1 and S2 between the block 111 and the connecting block 111. Further, the switch controller 215 controls the switch V to switch circuits when the inverter 115 is used for power transmission and when it is used for electric field communication. Further, the switch controller 215 controls the switch V to switch between the transmission mode and the reception mode when performing electric field communication.
  • the electric field communication receiver 217 converts the signal received by the electric field communication into data and transmits it to the CPU 209.
  • the CPU 209 also performs integrated management, situation determination based on sensor data, data delivery and temporary storage functions.
  • the CPU 209 incorporates or is connected to a circuit such as a memory (not shown).
  • the free-position power transmission panel 101 is considered to move to a device of several kW.
  • a laser printer for example, there are a laser printer, a teppanyaki machine, a toaster, a laminator, a juicer, and the like. If you can move to these devices, you can simplify the system.
  • large electrode devices need to be powered from an outlet. For this reason, free-position power transmission equipment, which is a new power transmission interface, and conventional outlets are mixed, and the system is not simple and beautiful.
  • a shield cover 145 covering the power receiver and an overhang 147 provided on the peripheral edge thereof are necessary.
  • a back layer 119 provided below the power transmission electrode 121 is required. That is, as shown in FIG. 4A, the driven power transmission electrode 121-A is not driven (that is, grounded or connected to the input unit of the receiver 217 instead of the input / output unit of the transceiver 213).
  • the overhang 147, the back layer 119, and the non-drive power transmission electrode 121-C are charged with a polarity opposite to that of the driven power transmission electrode 121-A.
  • the overhang 147 extends to the non-drive power transmission electrode 121-C, the electric field generated between the polarity of the driven power transmission electrode 121-A and the surrounding reverse polarity charge induced by the drive electrode is It is contained without leaving the space. Since there are the overhang 147, the non-drive power transmission electrode 121-C, and the back layer 119 that are charged with a common polarity at the end face with the space, no displacement current flows in the space.
  • FIG. 4B is a diagram illustrating a state where the shield cover 145 and the back layer 119 are not provided. If there is no back layer, an electric field is generated between the drive power transmission electrodes charged with different charges (phases are inverted) to radiate electromagnetic waves, and the electromagnetic waves radiated downward are also spaced from the gaps of the power transmission electrodes 121. To be emitted. When there is no shield cover 145, an AC electric field is generated between the driven power transmission electrode 121-A and the power reception electrode 133, and between the driven power transmission electrode 121-A and the non-driven power transmission electrode 121-C. Thereby, electromagnetic waves are radiated into the space.
  • an alternating electric field is generated between the driven power transmission electrode 121-A and the shield cover 145, whereby electromagnetic waves are radiated into the space.
  • the radiated electromagnetic field can be reduced by sandwiching the drive power transmission electrode 121-A between the overhang 147, the back layer 119, and the non-drive power transmission electrode 121-C.
  • the back layer 119 can reduce the radiation electromagnetic field because the back layer 119 is in the vicinity of the power transmission electrode 121. However, this causes a parasitic capacitance 120 between the power transmission electrode 121 and the back layer 119. The parasitic capacitance 120 causes a current to flow in the power transmission panel 101 when performing non-contact power transmission, thereby reducing power transmission efficiency.
  • an inductance 125 is provided between each block 111 and the adjacent block 111 as shown in FIG.
  • an inductance 125 is provided between each block 111 and the adjacent block 111 as shown in FIG. 5
  • the inverter 115 of the adjacent block 111 operates in reverse polarity with respect to the inverter 115 of the own block 111, if parallel resonance is caused by the parasitic capacitance 120 and the inductance 125, Since the impedance increases, power transmission loss can be reduced.
  • the inverters 115 of the blocks 111 adjacent to each other are operated with opposite polarities, the voltage can be doubled and the transmission power can be increased.
  • the inductance 125 is small and the series resistance thereof is also small.
  • the parasitic capacitance 120 needs to be greatly stabilized.
  • FIG. 6 is a plan view of the power transmission panel.
  • a power reception unit 131 is placed as a power receiver.
  • the power transmission electrode 121 of the 3 ⁇ 4 block 111 inside the overhang 149 or partially overlapping with the overhang 149 changes the voltage of the positive electrode (positive phase) and the negative electrode (reverse phase) to a checkered pattern.
  • the 3 ⁇ 4 block 111 is connected with the switches S1 and S2 between adjacent blocks turned on.
  • the inverters 115 adjacent to each other are driven with their phases inverted.
  • the inverter in the overhang 147 area is driven at a frequency for electric field communication, and is driven at a frequency for electric field communication in the opposite phase so as to surround the overhang 147 on the outer side. Accordingly, the power receiver is surrounded by the electric field for electric field communication, and the communication device can be operated.
  • the arrangement of the blocks 111 driven for electric field communication is not limited to the peripheral portion as described above, and can be arbitrarily arranged depending on the application.
  • WPS in FIG. 6 is an abbreviation for Wireless ⁇ Power Supply, which means transmission of the inverter voltage through the power transmission electrode and the power reception electrode according to the present invention.
  • Electric shock countermeasures Other considerations include electric shock prevention measures.
  • the driven power transmission electrode Since the overhang 147 is provided, the driven power transmission electrode is completely surrounded and cannot be touched by a person.
  • the surface of the power transmission electrode 121 has an uneven structure, and the surface is covered with an oxide film 122. Further, since the top coat layer 123 is adhered to the uneven portion by the anchor effect, a strong film is formed. Even if the top coat layer 123 is peeled off, the oxide film 122 remains, so that the human body does not directly contact the electrode. This is related to the power transmission electrode 121 and the top coat 123, but can also be applied to the power reception electrode 133 and the bottom coat 149.
  • the power transmission electrode 121 needs to be formed of a ferromagnetic material. Furthermore, in order to correspond to the suction cup system, it is necessary to have flatness and airtightness so that air does not leak.
  • the power transmission panel 101 can be attached to the wall, and the device can be magnetically attached and fixed for power transmission. In such a case, the equipment can be rearranged at an arbitrary location.
  • a diagram of electric field communication (human body communication) modeled on the human body is added.
  • an AC electric field is generated so as to cling to the human body as shown in FIG.
  • a person has a portable device 191 and the portable device 191 has a mechanism capable of receiving an electric field, communication can be performed between the portable device 191 and the power transmission floor.
  • the oscillation form of the floor inverter is not limited to FIG. 10, and may be the case of FIG. 11 or FIG. 12.
  • FIG. 11 is a diagram illustrating a case where only the peripheral portion is operated without operating the inverter 115 below the power receiver. This is considered to be able to operate.
  • the back layer 119 functions as a ground.
  • the power transmission electrode 121 corresponding to the block 111 that does not operate the inverter 115 may be grounded or may not be grounded. Further, the inverter 115 of this block is not operated.
  • FIG. 12 is a diagram illustrating a case where the phase of the inverter 115 is reversed between the front, rear, left, and right with respect to the object.
  • the power transmission electrode 121 corresponding to the block 111 that does not operate the inverter 115 may be grounded or may not be grounded. Further, the inverter 115 of this block is not operated. In this case, since a null point exists, it is necessary to change the operation pattern of the power transmission electrode 121 between the blocks 111.
  • a non-driven power transmission electrode is provided in the vicinity of the overhang. Electric field communication is performed using a block that is slightly outside the block where the non-driven power transmission electrode is provided.
  • the blocks on the outer side correspond to the two blocks on the left end and the two blocks on the right end in FIGS. 10, 11, and 12 where the human body is placed.
  • the electric field communication is performed in the MHz band considering the human body.
  • the signal is transmitted by modulating the output of the inverter 115 (for example, PWM modulation).
  • the example in the figure assumes that electric field communication is performed in half duplex, and on the upstream side, a period in which the switch V is connected to the electric field communication receiver 217 side for the upstream communication signal received by the power transmission electrode 121. Then, the electric field communication receiver 217 receives the signal.
  • the electric field communication may be full-duplex communication.
  • the switch V is in a state in which the lines 127 and 128 are always connected.
  • the electric field communication receiver 217 receives the upstream signal on the line 127 together with the downstream signal.
  • a completely free position can be realized with power scalability.
  • a wide range of devices ranging from 1 kW to several watts such as a laser printer 303, a PC 307, a smartphone 309, and an LED lamp 305 can be made to function at any point on the desk. Furthermore, mutual communication between these devices is also possible.
  • the embodiment is merely an example, and does not limit the technical scope of the present invention.
  • the present invention can take other various embodiments, and various modifications such as omission and replacement can be made without departing from the gist of the present invention.
  • These embodiments and modifications thereof are included in the scope and gist of the invention described in this specification and the like, and are included in the invention described in the claims and the equivalents thereof.
  • a power transmission system comprising a plurality of power transmission side devices arranged adjacent to each other, and a power reception side device placed across at least two power transmission side devices included in the plurality of power transmission side devices,
  • Each of the plurality of power transmission side devices is: An AC power supply device for generating a positive phase AC power source or a reverse phase AC power source;
  • the power receiving device is: At least two power receiving electrodes that are capacitively coupled to the power transmitting electrodes respectively provided in at least two power transmitting side devices on which the power receiving side devices are mounted; At least two pairs of half-wave rectifier circuits corresponding to at least two power receiving electrodes, respectively, each pair of half-wave rectifier circuits including rectifier elements in opposite directions to each other.
  • the AC power supply device provided in at least two power transmission devices on which the power receiving device is mounted is opposite to the phase of the AC power generated by the AC power supply device provided in the power transmission device adjacent to the power transmission device.
  • a power transmission system characterized by generating an alternating current power supply of the phase.
  • Appendix 3 An electric power transmission system according to appendix 1 or appendix 2, The power transmission system, wherein the power receiving electrode is formed so that a plurality of power receiving electrodes can be opposed to one power transmitting electrode.
  • Appendix 4 The power transmission system according to any one of appendix 1 to appendix 3,
  • the power receiving side device is covered with a shield cover having an overhang, Opposite to the opposite surface of the power transmission electrode of the power transmission electrode provided in each of the power transmission side devices adjacent to each other, a back layer is provided so as to straddle these power transmission electrodes,
  • the power transmission electrode of the power transmission side device present in the periphery of the power reception unit of the power reception side device is in an undriven state, A power transmission system that shields leakage radio waves from the overhang, the back layer, and a power transmission electrode that is driven by the power transmission electrode in a non-driven state.
  • Appendix 6 The power transmission system according to appendix 4 or appendix 5, A switch for bringing the power transmission electrode into a driving state or a non-driving state; The power transmission system further comprising a control unit for controlling the switch so that the power transmission electrode of the power transmission side device existing in the periphery of the power reception unit of the power reception side device is in a non-driven state.
  • the power transmission system according to any one of appendix 1 to appendix 6,
  • the power transmission side device is mounted, and further includes a direct current / communication base plate including an attenuating two-dimensional waveguide and a non-attenuating two-dimensional waveguide,
  • the power transmission system wherein the plurality of power transmission side devices are supplied with power via the direct current / communication base plate and communicate with the outside via the direct current / communication base plate.
  • Appendix 10 The power transmission system according to appendix 8 or appendix 9, wherein The power transmission system is characterized in that a DC power supply is supplied to the power transmission side device via choke coils respectively connected to an inner conductor and an outer conductor of the coaxial line.
  • Appendix 11 The power transmission system according to any one of appendix 7 to appendix 10, The power transmission system, wherein the power transmission side device regenerates the clock signal by a band pass filter and a pulse wave former connected to an inner conductor and an outer conductor of the coaxial line.
  • Appendix 12 The power transmission system according to any one of appendix 1 to appendix 11, A switch for forming or blocking a communication path between power transmission side devices adjacent to each other is provided. By controlling the switch, at least two power transmission side devices on which the power reception side devices are placed are connected to each other so as to form a communication path.
  • Appendix 14 The power transmission system according to appendix 12 or appendix 13, wherein At least two of the power transmission side devices communicate with each other via the communication path.
  • Appendix 18 The power transmission system according to any one of appendix 1 to appendix 17, A power transmission system, wherein a bottom coat is laminated on an opposite surface of the power receiving electrode to the power transmitting electrode via an oxide film.
  • Appendix 19 The power transmission system according to any one of appendix 1 to appendix 18, wherein The power transmission system, wherein the plurality of power transmission side devices are arranged in a square lattice pattern.
  • An electric field communication device comprising a plurality of power transmission side devices arranged adjacent to each other, Each of the plurality of power transmission side devices is: An AC power supply device for generating a positive phase AC power source or a reverse phase AC power source; A power transmission electrode coupled to the AC power supply; Control means for performing control such that a positive-phase or reverse-phase AC power is supplied to the power transmission electrode in contact with the human body, and a reverse-phase or positive-phase AC power is supplied to the power transmission electrode that is electrically coupled to the human body; , Modulation means for modulating the AC power supply with a transmission signal; An electric field communication receiver for receiving a reception signal from the power transmission electrode; An electric field communication device comprising:
  • Appendix 22 The electric field communication device according to appendix 20 or appendix 21, The AC output of the AC power supply device corresponding to the power transmission electrode in contact with the human body becomes zero, and a positive phase AC power supply is supplied to some of the front power transmission electrodes that are electric field coupled with the human body, thereby electric field coupling with the human body 3.
  • Power transmission panel 111 blocks (power transmission side device) 113 power transmission side communication control unit 115 inverter 117 communication coupling 119 back layer 121 power transmission electrode 123 top coat 125 inductance 127, 128, 129 wire 131 power reception unit (power reception side measure) 133 Power receiving electrode 135 Rectifier diode 137 Smoothing capacitor 139 Power receiving side communication control unit 141 Battery 143 Load 145 Shield cover 161 DC / communication base plate 163 Non-attenuating two-dimensional waveguide 165 Attenuating two-dimensional waveguide 171 DC power supply 173 Clock signal generator 175 LAN 177 Communication transceiver 179 Probe 191 Portable equipment

Abstract

Provided is a power transmission system capable of transmitting power only in a necessary area. The system includes a plurality of adjacently arranged power transmitting apparatuses and a power receiving apparatus placed over at least two power transmitting apparatuses. The power transmitting apparatuses each include an AC power source device that generates an AC power source having a normal phase or a reverse phase, and a power transmission electrode coupled to the AC power source device. The power receiving apparatus includes: at least two power reception electrodes that are capacitivity-coupled with the respective power transmission electrodes provided to the at least two power transmitting apparatuses over which the power receiving apparatus is placed; at least two pairs of half-wave rectifier circuits that are each provided to the corresponding power reception electrode and that are provided with rectifying elements in different directions from each other; and an output terminal shared by the at least two pairs of half-wave rectifier circuits. The AC power source devices provided to the respective power transmitting apparatuses over which the power receiving apparatus is placed generate AC power sources having a phase which is opposite to the phase of the AC power source generated by the AC power source device provided to the adjacent power transmitting apparatus.

Description

電力伝送システムPower transmission system
 本発明は、各種の負荷に対して電力伝送を行うための電力伝送システムに関する。 The present invention relates to a power transmission system for transmitting power to various loads.
 本発明者は、電力電送の新たな方式として「電界結合方式」を既に発明し、さらに、当該新たな方式を実現可能な回路の技術(以下、「電界結合電力電送技術」と呼ぶ)について既に発明している(特許文献1参照)。
 電界結合電力伝送技術は、2枚の金属板(導電性の板)を対向させて、これら2枚の金属板を電極対としてコンデンサ(このようなコンデンサを以下「接合容量」と呼ぶ)を形成した状態で、高周波電流を流すことで非接触の電力電送を実現する技術である。
The present inventor has already invented the “electric field coupling method” as a new method of electric power transmission, and has further already described a circuit technology capable of realizing the new method (hereinafter referred to as “electric field coupling electric power transmission technology”). Invented (see Patent Document 1).
In electric field coupled power transmission technology, two metal plates (conductive plates) are made to face each other, and a capacitor (such a capacitor is hereinafter referred to as a “junction capacitance”) is formed using these two metal plates as electrode pairs. In this state, non-contact power transmission is realized by flowing a high-frequency current.
 電界結合電力電送技術を適用した電力電送システムは、電源からの電力を送電する送電部と、送電部から電力を受電して負荷に供給する受電部とを備えている。この場合、送電部の末端に設けた金属板(電極)と、受電部の先端に設けた金属板(電極)とを対向させることで、接合容量が形成される。 The power transmission system to which the electric field coupled power transmission technology is applied includes a power transmission unit that transmits power from a power source and a power reception unit that receives power from the power transmission unit and supplies the power to a load. In this case, the junction capacitance is formed by making the metal plate (electrode) provided at the end of the power transmission unit and the metal plate (electrode) provided at the tip of the power reception unit face each other.
 電界結合電力電送技術を適用した従来の非接触の電力伝送システムとしては、直列共振を利用した電力伝送システムが存在する(特許文献2参照)。
 図13は、電界結合電力電送技術を適用した従来の非接触式の電力伝送システムの回路図である。
 従来の非接触の電力伝送システムにおいて、電力伝送領域800に配置された固定体801は、送電電極805、806を備える。
 また、電力被供給領域802に配置された可動体803は、送電電極805、806に対して対向状かつ非接触に配置される受電電極807、808を備える。
 これら相互に対向させた送電電極805、806と受電電極807、808とから結合コンデンサ809が構成されている。
 結合コンデンサ809と、可動体803に設けられたコイル810とにより直列共振回路が形成される。
 直流電源815をスイッチング制御部111、トランジスタ112、113によるスイッチング制御部816により共振周波数の交流電源に変換することで、固定体801から可動体803へ共振状態で電力伝送を行うことが可能となる。
 この従来の非接触の電力伝送システムでは、受電電極807、808は、何れも、送電電極805、送電電極806の両者に跨ることがないように、送電電極805、806の離間距離よりも十分に狭い幅を持つように形成される。
As a conventional non-contact power transmission system to which electric field coupling power transmission technology is applied, there is a power transmission system using series resonance (see Patent Document 2).
FIG. 13 is a circuit diagram of a conventional non-contact power transmission system to which the electric field coupled power transmission technology is applied.
In the conventional non-contact power transmission system, the fixed body 801 disposed in the power transmission region 800 includes power transmission electrodes 805 and 806.
In addition, the movable body 803 disposed in the power supplied region 802 includes power receiving electrodes 807 and 808 that are disposed so as to face the power transmitting electrodes 805 and 806 in a non-contact manner.
A coupling capacitor 809 is constituted by the power transmitting electrodes 805 and 806 and the power receiving electrodes 807 and 808 opposed to each other.
A series resonance circuit is formed by the coupling capacitor 809 and the coil 810 provided in the movable body 803.
By converting the DC power source 815 to an AC power source having a resonance frequency by the switching control unit 816 including the switching control unit 111 and the transistors 112 and 113, power transmission can be performed from the fixed body 801 to the movable body 803 in a resonance state. .
In this conventional non-contact power transmission system, the power receiving electrodes 807 and 808 are sufficiently larger than the separation distance between the power transmitting electrodes 805 and 806 so that neither of the power receiving electrodes 807 and 808 straddles both the power transmitting electrode 805 and the power transmitting electrode 806. It is formed to have a narrow width.
 しかしながら、この従来の非接触の電力伝送システムでは、可動体803の配置位置によっては、受電電極807、808と送電電極805、806とが相互に鉛直方向に完全に対応する位置に配置されない。その結果、受電電極807、808が送電電極805、806の一部のみに掛かるように配置される場合が生じる。
 この場合には、結合コンデンサ809のコンデンサ容量が所定容量からずれてしまい、所定の直列共振条件が満足されないために、送電効率が低下する可能性があった。
However, in this conventional non-contact power transmission system, the power receiving electrodes 807 and 808 and the power transmitting electrodes 805 and 806 are not disposed at positions that completely correspond to each other in the vertical direction depending on the arrangement position of the movable body 803. As a result, the power receiving electrodes 807 and 808 may be arranged so as to cover only a part of the power transmitting electrodes 805 and 806.
In this case, the capacitor capacity of the coupling capacitor 809 is deviated from the predetermined capacity, and the predetermined series resonance condition is not satisfied, which may reduce the power transmission efficiency.
 このため、本願発明者らは、さらに、直列共振に代えて並列共振を利用した非接触式の電力伝送システムを提案した(特許文献3参照)。
 図14は、従来の非接触式の電力伝送システムであって、図13とは異なる電力伝送システムの回路図である。
 この従来の非接触式の電力伝送システムにおいて、送電電極905、906にはインダクタンス920及びコンデンサ921が並列接続されている。
 これらインダクタンス920及びコンデンサ921と、結合コンデンサ909とにより並列共振回路が形成される。これにより、固定体901から可動体903へ共振状態で電力伝送を行うことが可能となる。
 特に、負荷部のインピーダンスを増大させることができるため、結合コンデンサ909における電圧降下を低減でき、結合コンデンサ909のコンデンサ容量の変動に関わらず安定した電力伝送を可能とすることができる。
 この従来の非接触式の電力伝送システムにおいても、受電電極907は、送電電極905、送電電極906の両者に跨ることがないように、送電電極905、906の離間距離よりも十分に狭い幅を持つように形成される。
For this reason, the inventors of the present application further proposed a non-contact power transmission system using parallel resonance instead of series resonance (see Patent Document 3).
FIG. 14 is a circuit diagram of a conventional non-contact power transmission system, which is different from FIG.
In this conventional non-contact power transmission system, an inductance 920 and a capacitor 921 are connected in parallel to the power transmission electrodes 905 and 906.
The inductance 920, the capacitor 921, and the coupling capacitor 909 form a parallel resonant circuit. As a result, power transmission can be performed from the fixed body 901 to the movable body 903 in a resonance state.
In particular, since the impedance of the load portion can be increased, a voltage drop in the coupling capacitor 909 can be reduced, and stable power transmission can be performed regardless of fluctuations in the capacitance of the coupling capacitor 909.
Even in this conventional non-contact power transmission system, the power receiving electrode 907 has a width sufficiently narrower than the separation distance between the power transmission electrodes 905 and 906 so as not to straddle both the power transmission electrode 905 and the power transmission electrode 906. Formed to have.
特開2009-38329号公報JP 2009-38329 A 特開2009-89520号公報JP 2009-89520 A 特開2010-193692号公報JP 2010-193692 A
 しかしながら、上記特許文献3に記載の電力伝送システムは、送電電極の各々にインダクタンス及びコンデンサが並列接続されており、広い範囲に送電電極を並設した場合には、この広い範囲の送電電極を含む共振回路に流れる電流を電源から供給する必要があるため、電源の容量が極めて大きくなってしまうという問題があった。 However, the power transmission system described in Patent Document 3 includes an inductance and a capacitor connected in parallel to each of the power transmission electrodes. When the power transmission electrodes are arranged in a wide range, the power transmission system includes the wide range of power transmission electrodes. Since it is necessary to supply the current flowing through the resonance circuit from the power source, there is a problem that the capacity of the power source becomes extremely large.
 また、従来の非接触の電力伝送システムは、電磁誘導方式であれば、「銅を多用する」、「大電力用途では、フリーポジションが難しい」、「フェライト及び銅コイルが使用され、重い」、「通信機能を別途用意しなければならず、通信と送電の一体化が得にくい」といった問題点もさらに有する。
 また、磁気共鳴方式であれば、「空間に高周波磁場を分布させるため、導電性ループがあれば発熱してしまう」、「小電力用途にのみ使用されるとなれば、コンセントとの併用となり、シンブルなシステムではなくなる」、「発熱部位がある」、「通信機能を別途用意しなければならず、通信と送電の一体化が得にくい」といった問題点をさらに有する。
In addition, if the conventional non-contact power transmission system is an electromagnetic induction system, “copper is used extensively”, “free position is difficult in high power applications”, “ferrite and copper coils are used and heavy”, There is also a problem that “communication function must be prepared separately and it is difficult to integrate communication and power transmission”.
In addition, in the case of the magnetic resonance method, “if a conductive loop is present in order to distribute a high-frequency magnetic field in the space, heat will be generated”, “If used only for low power applications, it will be used in combination with an outlet, There are further problems such as “it will not be a thimble system”, “there is a heat generating part”, “communication function must be prepared separately, and it is difficult to integrate communication and power transmission”.
 本発明は、このような状況に鑑みてなされたものであり、電界結合技術を用いた電力伝送システムにおいて、非接触によるフリーポジション化を達成できる電力伝送システムであって、必要な範囲にのみにおいて電力伝送をすることができる電力伝送システムを提供することを目的とする。 The present invention has been made in view of such circumstances, and in a power transmission system using an electric field coupling technique, is a power transmission system capable of achieving a free position by non-contact, and only in a necessary range. An object is to provide a power transmission system capable of power transmission.
 上述した課題を解決し目的を達成するため、電力伝送システムは次のような構成を取ることができる。 In order to solve the above-described problems and achieve the object, the power transmission system can have the following configuration.
 本発明によれば、
 相互に隣接して並べられた複数の送電側装置と、該複数の送電側装置に含まれる少なくとも2つの送電側装置に跨って載置される受電側装置とを備える電力伝送システムであって、
 前記複数の送電側装置の各々は、
 正位相の交流電源又は逆位相の交流電源を発生させるための交流電源装置と、
 該交流電源装置に結合された送電電極と、
 を備え、
 前記受電側装置は、
 該受電側装置が載置される少なくとも2つの前記送電側装置にそれぞれ備わる前記送電電極と容量結合する少なく2つの受電電極と、
 少なくとも2つの前記受電電極にそれぞれ対応して備わる少なくとも二対の半波整流回路であって、それに含まれる各対の半端整流回路が相互に反対の方向の整流素子を備える二対の半波整流回路と、
 少なくとも二対の前記半波整流回路に共通な出力端子と、
 を備え、
 前記受電側装置が載置される少なくとも2つの前記送電側装置に備わる交流電源装置は、自送電側装置に隣接する前記送電側装置に備わる交流電源装置が発生する交流電源の位相に対して反対の位相の交流電源を発生することを特徴とする電力伝送システム
が提供される。
According to the present invention,
A power transmission system comprising a plurality of power transmission side devices arranged adjacent to each other, and a power reception side device placed across at least two power transmission side devices included in the plurality of power transmission side devices,
Each of the plurality of power transmission side devices is:
An AC power supply device for generating a positive phase AC power source or a reverse phase AC power source;
A power transmission electrode coupled to the AC power supply;
With
The power receiving device is:
At least two power receiving electrodes that are capacitively coupled to the power transmitting electrodes respectively provided in at least two power transmitting side devices on which the power receiving side devices are mounted;
At least two pairs of half-wave rectifier circuits corresponding to at least two power receiving electrodes, respectively, each pair of half-wave rectifier circuits including rectifier elements in opposite directions to each other. Circuit,
An output terminal common to at least two pairs of the half-wave rectifier circuits;
With
The AC power supply device provided in at least two power transmission devices on which the power receiving device is mounted is opposite to the phase of the AC power generated by the AC power supply device provided in the power transmission device adjacent to the power transmission device. An electric power transmission system is provided that generates an AC power supply having a phase of.
 本発明によれば、必要な範囲にのみにおいて電力伝送をすることができる。 According to the present invention, power can be transmitted only within a necessary range.
本発明の実施形態によるフリーポジション電力伝送パネル及び受電体を示す図である。It is a figure which shows the free position electric power transmission panel and power receiving body by embodiment of this invention. 図1の一部拡大図である。FIG. 2 is a partially enlarged view of FIG. 1. (a)及び(b)は、それぞれ、図1に示すブロックの詳細を示す斜視図及び平面図である。(A) And (b) is the perspective view and top view which show the detail of the block shown in FIG. 1, respectively. 図1に示す通信制御部の内部の構成を示すブロック図である。It is a block diagram which shows the internal structure of the communication control part shown in FIG. 図1に示す通信制御部の内部の構成を示す回路図である。It is a circuit diagram which shows the internal structure of the communication control part shown in FIG. オーバーハングとバックレイヤによる放射低減を示す図である。It is a figure which shows the radiation reduction by an overhang and a back layer. 本発明の実施形態による寄生容量による効率低下防止用インダクタンスを示す図である。It is a figure which shows the inductance for efficiency fall prevention by the parasitic capacitance by embodiment of this invention. 本発明の実施形態による送電パネルの中央に受電体がある時の送電パネルの動作を示す図である。It is a figure which shows operation | movement of the power transmission panel when there exists a power receiving body in the center of the power transmission panel by embodiment of this invention. 本発明の実施形態によるトップコート層を示す図である。It is a figure which shows the topcoat layer by embodiment of this invention. 本発明の実施形態による介護ロボットの一例を示す図である。It is a figure which shows an example of the care robot by embodiment of this invention. 本発明の実施形態による机上でのフリーポジションの例を示す図である。It is a figure which shows the example of the free position on the desk by embodiment of this invention. 本発明の実施形態による電界通信の様子の第1の例を示す図である。It is a figure which shows the 1st example of the mode of the electric field communication by embodiment of this invention. 本発明の実施形態による電界通信の様子の第2の例を示す図である。It is a figure which shows the 2nd example of the mode of the electric field communication by embodiment of this invention. 本発明の実施形態による電界通信の様子の第3の例を示す図である。It is a figure which shows the 3rd example of the mode of the electric field communication by embodiment of this invention. 従来の非接触の電力伝送システムに係る固定体及び可動体の回路図である。It is a circuit diagram of the fixed body and movable body which concern on the conventional non-contact electric power transmission system. 他の従来の電力伝送システムに係る固定体及び可動体の回路図である。It is a circuit diagram of the fixed body and movable body which concern on the other conventional power transmission system.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
(1) フリーポジション電力伝送パネルと受電体の構造
 図1は、フリーポジション電力伝送パネル及び受電体の構造を示す図である。図1Bは、その一部の拡大図である。図1に示すように、下部に送電パネル101があり、その上に受電部131が乗っている。図1には記していないが、送電パネル101は、取扱い容易なサイズで製作されており、それらが平面的に一次元状又は二次元状に連続して配置され、テーブル面や床面を構築する(テーブルの場合には、一枚板で作られる場合もある。)。それらの送電パネル101は、直流給電され、また、送電パネル101及びLAN175などを介して機器などが双方向通信が行えるようになっている。
(1) Structure of free-position power transmission panel and power receiver FIG. 1 is a diagram showing the structure of the free-position power transmission panel and power receiver. FIG. 1B is an enlarged view of a part thereof. As shown in FIG. 1, a power transmission panel 101 is provided at the lower portion, and a power receiving unit 131 is placed thereon. Although not shown in FIG. 1, the power transmission panel 101 is manufactured in an easy-to-handle size, and they are continuously arranged in a one-dimensional or two-dimensional manner in a plane to construct a table surface or a floor surface. (In the case of a table, it may be made of a single plate.) These power transmission panels 101 are fed with direct current, and devices and the like can perform two-way communication via the power transmission panel 101 and the LAN 175.
 受電部131は、配列された受電電極133が有り、個々の受電電極133には相互に方向の異なる整流ダイオード135が一対接続され、複数の受電電極133のうちの一部の受電電極が正の送電電極121の上に乗り、複数の受電電極のうちの他の部分が負の送電電極121の上に乗った場合に、整流ダイオード135によりそれらを自動的に識別して、平滑コンデンサ137により整流・平滑して負荷143に電力を供給でき、一部のエネルギーを蓄電池141に蓄えられるようになっている。また、受電側通信制御部139は、平滑コンデンサ137又は蓄電池141から電源の供給を受けられるようになっている。
 さらに、送電パネル101との間で通信が行えるようにしている。
 受電部131は、全体がシールドカバー145で覆われている。シールドカバー145の縁端部はオーバーハング147と称され、受電部周辺部をカバーしている。ここで、受電部周辺部とは、例えば、図6に示すオーバハング内縁とオーバハング外縁との間の領域のことである。このオーバーハング147を用いることにより、操作者は電力が出ている送電電極121に触ることを回避することができる。
 操作者が受電部131を持ち上げて、送電電極121に触ろうとすると、結合コンデンサ(送電電極121及び受電電極133)を含む回路のインピーダンスが高くなる。このために、自動的に電力送電は止まる。その結果、操作者はアクティブな電極に触ることが出来ない。
 電力伝送に用いる周波数は、MHz帯であり、通信に用いる周波数は、GHz帯である。このため、送電不可能な程度に持ち上げられても、通信は可能であるため、制御系(通信系)が被制御系(送電系)を上回る信頼性が得られる。
 通信は、シールドカバー145と、受電電極間133に電位差を発生させて行う。非接触電力の受電は、少なくとも2つの受電電極133相互間の電位差を用いているのに対して異なる。通信についてより詳細に説明をすると、通信用トランシーバ177からの下り伝送信号は、非減衰性二次元導波路163、送電側通信制御部113、インバータ115、送電電極121、受電電極133、整流ダイオード135を介して、受電側通信制御部139により受信される。ここで、インバータ115は、下り伝送信号により交流電源を変調する。受信側通信制御部139からの上り伝送信号は、逆の経路(但し、インバータを除く。)を介して、通信用トランシーバ177により受信される。
The power receiving unit 131 includes arranged power receiving electrodes 133, a pair of rectifier diodes 135 having different directions are connected to each power receiving electrode 133, and some of the power receiving electrodes 133 are positive. When the other part of the plurality of power receiving electrodes rides on the negative power transmitting electrode 121, they are automatically identified by the rectifier diode 135 and rectified by the smoothing capacitor 137. The power can be supplied to the load 143 by smoothing, and a part of the energy can be stored in the storage battery 141. In addition, the power receiving side communication control unit 139 can be supplied with power from the smoothing capacitor 137 or the storage battery 141.
Further, communication with the power transmission panel 101 can be performed.
The power reception unit 131 is entirely covered with a shield cover 145. The edge portion of the shield cover 145 is referred to as an overhang 147 and covers the periphery of the power receiving unit. Here, the peripheral portion of the power receiving unit is, for example, a region between the overhang inner edge and the overhang outer edge shown in FIG. By using this overhang 147, the operator can avoid touching the power transmitting electrode 121 that is generating power.
When the operator lifts the power reception unit 131 and tries to touch the power transmission electrode 121, the impedance of the circuit including the coupling capacitor (the power transmission electrode 121 and the power reception electrode 133) increases. For this reason, power transmission automatically stops. As a result, the operator cannot touch the active electrode.
The frequency used for power transmission is the MHz band, and the frequency used for communication is the GHz band. For this reason, since communication is possible even if the power transmission is lifted to the extent that power transmission is not possible, the control system (communication system) is more reliable than the controlled system (power transmission system).
Communication is performed by generating a potential difference between the shield cover 145 and the power receiving electrode 133. The reception of non-contact power is different from using a potential difference between at least two power reception electrodes 133. In more detail, the downlink transmission signal from the communication transceiver 177 includes a non-attenuating two-dimensional waveguide 163, a power transmission side communication control unit 113, an inverter 115, a power transmission electrode 121, a power reception electrode 133, and a rectifier diode 135. Is received by the power receiving side communication control unit 139. Here, the inverter 115 modulates the AC power supply by the downstream transmission signal. The uplink transmission signal from the reception-side communication control unit 139 is received by the communication transceiver 177 via the reverse path (except for the inverter).
 送電パネル101は、直流・通信ベースプレート161、ブロックアレイ111A(複数のブロック111を並べたもの。図6参照)、バックレイヤ119、送電電極121、トップコート123及び、これらを保持するフレーム(図示せず)を含むように構成されている。 The power transmission panel 101 includes a DC / communication base plate 161, a block array 111A (in which a plurality of blocks 111 are arranged, see FIG. 6), a back layer 119, a power transmission electrode 121, a top coat 123, and a frame (not shown). To be included).
 直流・通信ベースプレート161は、3層構造(上層161-1、中間層161-2及び下層161-3)のパネルであり、上層161-1と下層161-3のパネルは端部で接続されていて、閉構造となっている(シールド構造)。
 中間層パネル161-2と上層パネル161-1との間には、発泡体等の電磁波を透過する材料が配設されており、中間層パネル161-2と上層パネル161-1との間の領域163を、非減衰性二次元導波路163として機能させている。配列されたブロック111の位置に合わせて中間層161-2と上層161-1で突起を作り、同軸構造で上部にある外部(具体的には、ブロック111)と接続できるようにしている。
 二次元導波路を伝播する電磁波は、物理的な突起のある部分でのみ外部とコンタクトするため、その結合係数は低く設定できるため、非減衰二次元導波路163内での多重反射は少ない。また、中間層161-2と下層161-3の間には電波吸収性材料が配設されていて、中間層161-2と下層161-3の間の領域165は減衰性二次元導波路になっている。
 さらに、中間層161-2は端部で上層161-1と下層161-3で閉ざされているシールド部には接していない。このため、非減衰性二次元導波路163を進んできた電磁波は、ほとんど反射することなく減衰性二次元導波路165に導かれる。
 減衰性二次元導波路165には、電波吸収体が配設されているため、二次
元面内を進行してゆくにつれて減衰する。電波吸収体は、反射を防ぐため、周辺部ではインピーダンスがあまり変わらない程度のものを配設し、中央部に進むにつれて吸収特性を上げてゆく。
 下層161-3の中央部では、ほとんど電磁波が染み出ないため、この中央部に開口部161-4を開けても問題ない。
 この開口部161-4から、中間層161-2とシールド間に直流電力を給電する。さらに、下層部161-3を貫通して上層部161-1の中央部161-5に通信用トランシーバ177用のプローブアンテナ179を立てる。
The DC / communication base plate 161 is a panel having a three-layer structure (upper layer 161-1, intermediate layer 161-2, and lower layer 161-3), and the panels of the upper layer 161-1 and the lower layer 161-3 are connected at the ends. Therefore, it has a closed structure (shield structure).
Between the intermediate layer panel 161-2 and the upper layer panel 161-1, a material that transmits electromagnetic waves, such as foam, is disposed. Between the intermediate layer panel 161-2 and the upper layer panel 161-1, The region 163 functions as a non-attenuating two-dimensional waveguide 163. Protrusions are formed in the intermediate layer 161-2 and the upper layer 161-1 in accordance with the positions of the arranged blocks 111 so that they can be connected to the upper part (specifically, the block 111) in the upper part with a coaxial structure.
Since the electromagnetic wave propagating through the two-dimensional waveguide is in contact with the outside only at a portion where the physical protrusion is present, the coupling coefficient can be set low, so that the multiple reflection in the non-attenuated two-dimensional waveguide 163 is small. Further, a radio wave absorbing material is disposed between the intermediate layer 161-2 and the lower layer 161-3, and a region 165 between the intermediate layer 161-2 and the lower layer 161-3 is formed as an attenuating two-dimensional waveguide. It has become.
Further, the intermediate layer 161-2 is not in contact with the shield portion closed by the upper layer 161-1 and the lower layer 161-3 at the end. For this reason, the electromagnetic wave that has traveled through the non-attenuating two-dimensional waveguide 163 is guided to the attenuating two-dimensional waveguide 165 with almost no reflection.
Since the electromagnetic wave absorber is disposed in the attenuating two-dimensional waveguide 165, it attenuates as it travels in the two-dimensional plane. In order to prevent reflection, the radio wave absorber is arranged so that the impedance does not change so much in the peripheral portion, and the absorption characteristic is improved as it goes to the central portion.
In the central part of the lower layer 161-3, the electromagnetic wave hardly oozes out, and there is no problem even if the opening 161-4 is opened in this central part.
From this opening 161-4, DC power is fed between the intermediate layer 161-2 and the shield. Further, a probe antenna 179 for the communication transceiver 177 is set up at the center 161-5 of the upper layer 161-1 through the lower layer 161-3.
 減衰性二次元導波路165は、パネルの幅を利用して、徐々に電磁波を吸収できるため、極めて反射の少ない通信環境が構築できる。
 各突起部の先端は、同軸線路となっていて、直流、クロック信号、通信波をブロック111に供給できる。各ブロック111は、送電側通信制御部113、インバータ115、インダクタンス125及びスイッチS1、S2、Vを含む。インバータ115の出力交流信号の周波数又は位相を変化させることにより、非接触電力伝送モードと、電界通信モードとのそれぞれにおいて、それぞれに対応した周波数帯域で位相変調による通信ができるようになっている。各ブロック111には、さらに、バックレイヤ119を設けられているが、これは、受電体との通信をする場合には共通グランドとして機能する。このバックレイヤ119は、受電部131における放射電界を低減させるためにも有効である。しかしながら、送電電極121の近傍に取付けているため、寄生容量120が発生してしまい、伝送効率を落としてしまう。これを防止するために、寄生容量120と並列共振するインダクタンス125を設けている。
Since the attenuating two-dimensional waveguide 165 can gradually absorb electromagnetic waves using the width of the panel, a communication environment with very little reflection can be constructed.
The tip of each protrusion is a coaxial line and can supply direct current, a clock signal, and a communication wave to the block 111. Each block 111 includes a power transmission side communication control unit 113, an inverter 115, an inductance 125, and switches S1, S2, and V. By changing the frequency or phase of the output AC signal of the inverter 115, communication by phase modulation can be performed in the frequency band corresponding to each of the non-contact power transmission mode and the electric field communication mode. Each block 111 is further provided with a back layer 119, which functions as a common ground when communicating with the power receiver. The back layer 119 is also effective for reducing the radiation electric field in the power receiving unit 131. However, since it is attached in the vicinity of the power transmission electrode 121, the parasitic capacitance 120 is generated, and the transmission efficiency is lowered. In order to prevent this, an inductance 125 that resonates in parallel with the parasitic capacitance 120 is provided.
(2) ブロック
 各ブロック111は、同じ規格で作られているため、量産効果によってコストが低減できるようにしている。さらに、各ブロック111は、周辺との間で、11か所の接点で接続される。
 ブロック111を一次元状又は二次元上に並べて成るブロックアレイ111Aの上には、バックレイヤ119を構成する穴あき金属パネルが配置され、この穴を介して、各ブロック111と送電電極121が接続されている。バックレイヤ119と送電電極121との間隙は、その距離とそこに挿入する誘電体の寸法と誘電率が調整されており、これによりバックレイヤ119と送電電極121との間に形成される寄生容量120の値が所望値となるように調整している。これによりキャパシタンスと上述したインダクタンス125が形成する共振回路を伝送効率を考慮した所望のものとしている。
(2) Block Since each block 111 is made according to the same standard, the cost can be reduced by the mass production effect. Furthermore, each block 111 is connected to the periphery at 11 points of contact.
A perforated metal panel constituting the back layer 119 is arranged on the block array 111A in which the blocks 111 are arranged one-dimensionally or two-dimensionally, and each block 111 and the power transmission electrode 121 are connected through the holes. Has been. The gap between the back layer 119 and the power transmission electrode 121 is adjusted for the distance, the size of the dielectric material inserted therein, and the dielectric constant, thereby forming a parasitic capacitance between the back layer 119 and the power transmission electrode 121. Adjustment is made so that the value of 120 becomes a desired value. As a result, the resonance circuit formed by the capacitance and the inductance 125 described above is desired in consideration of transmission efficiency.
 送電パネル101は、(1)直流・通信プレート161、(2)ブロックアレイ111A、(3)バックレイヤ119と送電電極121を含むパネル122の三要素を結ぶだけの構造にしてあり、容易に製造できるように配慮している。さらに、ブロックの厚さに依存するが、これが薄くできるのならば、全体として薄いものを製作できる。 The power transmission panel 101 has a structure in which three elements of (1) the DC / communication plate 161, (2) the block array 111A, and (3) the back layer 119 and the panel 122 including the power transmission electrode 121 are connected to each other. We are thinking so that we can do it. Furthermore, depending on the thickness of the block, if it can be thinned, the whole can be made thin.
 図2(a)及び(b)は、それぞれ、ブロックの模式図及び平面図を示す図である。 FIGS. 2A and 2B are a schematic view and a plan view of a block, respectively.
 ブロック111は、送電側通信制御部113とインバータ115を含み、インバータ115の天部から送電電極121に接続する線127、128が出ている。線128の周囲には、通信用のカップリングコンデンサ117が配設されており、また、線127と線128との間には半二重電界通信時の送受切替スイッチVが付けられていている。スイッチVは、送信時には、線128と線127を接続することによりトランシーバ213の入出力部が線127と接続されるようにし、受信時には、線127と線129することにより線127が電界通信用レシーバ217の入力部と接続されるようにする。さらに、線128からは、4方向にインダクタンス125が出ていて、これらは4方向にある隣接ブロック111のインダクタンス125に接続される。 The block 111 includes a power transmission side communication control unit 113 and an inverter 115, and lines 127 and 128 connecting from the top of the inverter 115 to the power transmission electrode 121 are provided. A communication coupling capacitor 117 is disposed around the line 128, and a transmission / reception changeover switch V for half-duplex electric field communication is attached between the line 127 and the line 128. . The switch V connects the line 128 and the line 127 at the time of transmission so that the input / output unit of the transceiver 213 is connected to the line 127. At the time of reception, the line V is connected to the line 127 and the line 129 so The input unit of the receiver 217 is connected. Furthermore, from the line 128, the inductance 125 comes out in four directions, and these are connected to the inductance 125 of the adjacent block 111 in the four directions.
 インバータ115の他方の出力Zは、4方向に分配されており、その内の2方向にはスイッチS1、S2が付けられて、インバータ115の他方の出力Zは、スイッチS1、S2を介して隣接ブロック111と接続されている。スイッチS1、S2の切替信号は、送信側通信制御部113から出力されている。端子Zは、周囲の4つのブロック111にも接続されるが、そのうちの2つのブロックについては、上述したように、スイッチS1、S2を介して接続される。スイッチS1及びスイッチS2を介して相互に接続されているブロック111のインバータ115は、端子Zを通る同期信号により同期される。但し、相互に隣接するブロック111のインバータの位相は180度異なる。 The other output Z of the inverter 115 is distributed in four directions, and switches S1 and S2 are attached to two of them, and the other output Z of the inverter 115 is adjacent via the switches S1 and S2. It is connected to the block 111. Switching signals for the switches S1 and S2 are output from the transmission-side communication control unit 113. The terminal Z is also connected to the four surrounding blocks 111, but two of them are connected via the switches S1 and S2 as described above. The inverters 115 of the block 111 connected to each other via the switch S1 and the switch S2 are synchronized by a synchronization signal passing through the terminal Z. However, the phases of the inverters of the adjacent blocks 111 are different by 180 degrees.
 インバータの端子Zは、送電側通信制御部113の内部にあるスイッチ218を介して、バックレイヤ119にも接続されている。スイッチ218が接続されている時には、電流路が形成される。 The terminal Z of the inverter is also connected to the back layer 119 via a switch 218 inside the power transmission side communication control unit 113. When switch 218 is connected, a current path is formed.
 図3及び図3Bは、それぞれ、送電側通信制御部113の内部の構成を示すブロック図及び回路図である。 3 and 3B are a block diagram and a circuit diagram showing an internal configuration of the power transmission side communication control unit 113, respectively.
 直流・通信ベースプレート161から直流電力をもらうとともに、通信信号を送受信している。直流電源171からの直流電力には、クロック信号も重畳している。 The DC power is received from the DC / communication base plate 161 and the communication signal is transmitted / received. A clock signal is also superimposed on the DC power from the DC power source 171.
 電力の一部は電源ユニット207に蓄え、その電力をCPU(Central Processing Unit)209、トランシーバ213、ゲートドライバ211等に給電している。通信信号線128及び通信用カップリング117はトランシーバ213に接続されている。直流電力に重畳されて供給されてクロック信号は、BPF(Band Pass Filter)201で分離されて波形整形回路205で整形され、CPU209に送られている。
 トランシーバ213を介して、LAN175を介して接続されているサーバ(図示せず)からの信号を受けたり、隣接ブロック111との調整を行っている。さらに、トランシーバ213は受電体との間でも通信を行っているため、受電体側の都合による送電停止要求を受けたり、受電体が単なる金属片であるか否かも認知して送電できる。インバータ115に、送電電流モニタ機能を設けていれば、送電流が正常範囲内であるか認識できる。送電電流が低減した場合には、直ちにゲートドライバ211の出力を停止してインバータ115の出力を停止できる。
Part of the electric power is stored in the power supply unit 207, and the electric power is supplied to a CPU (Central Processing Unit) 209, a transceiver 213, a gate driver 211, and the like. The communication signal line 128 and the communication coupling 117 are connected to the transceiver 213. The clock signal supplied by being superimposed on the DC power is separated by a BPF (Band Pass Filter) 201, shaped by a waveform shaping circuit 205, and sent to the CPU 209.
A signal from a server (not shown) connected via the LAN 175 is received via the transceiver 213 and adjustment with the adjacent block 111 is performed. Furthermore, since the transceiver 213 communicates with the power receiver, the transceiver 213 can receive a power transmission stop request due to the convenience of the power receiver, and can also recognize whether or not the power receiver is a simple metal piece. If the inverter 115 is provided with a transmission current monitoring function, it can be recognized whether the transmission current is within a normal range. When the transmission current is reduced, the output of the gate driver 211 can be stopped immediately and the output of the inverter 115 can be stopped.
 クロック信号発生器173が発生するクロック信号は、直流送電線221に重畳され、各送電パネル101の位相を合わせている。これにより、送電パネル101相互間でシームレスに非接触電力伝送及び電界通信が可能になる。 The clock signal generated by the clock signal generator 173 is superimposed on the DC power transmission line 221, and the phases of the power transmission panels 101 are matched. Thereby, non-contact power transmission and electric field communication are possible seamlessly between the power transmission panels 101.
 インバータ115用のゲートドライバ211は、インバータ115を構成するトランジスタに所定の周波数及び所定の位相のゲート信号を流す。また、インバータ115を電界通信用のジェネレータに使用する場合には、送信信号でインバータ115の出力を変調する。変調方式としては、PWM(Pulse Width Modulation)等を用いる。 The gate driver 211 for the inverter 115 causes a gate signal having a predetermined frequency and a predetermined phase to flow through the transistors constituting the inverter 115. When the inverter 115 is used as a generator for electric field communication, the output of the inverter 115 is modulated with a transmission signal. As a modulation method, PWM (Pulse Width Modulation) or the like is used.
 スイッチコントローラ215は、ブロック111と連接ブロック111間のスイッチS1、S2を操作することにより電力伝送をする範囲を制御する。また、スイッチコントローラ215は、スイッチVを制御することにより、インバータ115を電力伝送用として使用する場合と、電界通信用として使用する場合の回路の切替を行っている。更に、スイッチコントローラ215は、スイッチVを制御することにより、電界通信をする場合に送信モードと受信モードの切替を行っている。 The switch controller 215 controls the power transmission range by operating the switches S1 and S2 between the block 111 and the connecting block 111. Further, the switch controller 215 controls the switch V to switch circuits when the inverter 115 is used for power transmission and when it is used for electric field communication. Further, the switch controller 215 controls the switch V to switch between the transmission mode and the reception mode when performing electric field communication.
 電界通信用レシーバ217は、電界通信によって受け取った信号をデータ化してCPU209に送信する。 The electric field communication receiver 217 converts the signal received by the electric field communication into data and transmits it to the CPU 209.
 CPU209は、統合的管理、センサデータによる状況判定、データの受け渡しと一時的保管機能も果たす。なお、CPU209は、図示しないメモリ等の回路を内蔵し、又はこれらに接続される。 The CPU 209 also performs integrated management, situation determination based on sensor data, data delivery and temporary storage functions. The CPU 209 incorporates or is connected to a circuit such as a memory (not shown).
(3) 電磁波放射低減対策
 フリーポジション電力送電パネル101は、数kW程度の機器まで動かすことを考えている。例えば、レーザプリンタ、鉄板焼き機器、トースター、ラミネータ、ジューサー等がある。これらの機器まで動かすことが出来れば、システムの単純化が出来る。
 低い電力の機器のみフリーポジションで動かす他、システムの場合には、大電極機器はコンセントから電力を取る必要がある。このため、新しい送電インターフェースであるフリーポジション電力伝送機器と在来のコンセントが混在することになり、シンプルで美しいシステムにはならない。
(3) Measures for reducing electromagnetic wave radiation The free-position power transmission panel 101 is considered to move to a device of several kW. For example, there are a laser printer, a teppanyaki machine, a toaster, a laminator, a juicer, and the like. If you can move to these devices, you can simplify the system.
In addition to moving only low-power devices in a free position, in the case of a system, large electrode devices need to be powered from an outlet. For this reason, free-position power transmission equipment, which is a new power transmission interface, and conventional outlets are mixed, and the system is not simple and beautiful.
 コンセントを一掃してシンプルなシステムにするためには、大電力機器を使用した時でも、電磁波放射が低減できなければならない。その様な対策として、受電体を被うシールドカバー145とその周縁部に設けたオーバーハング147が必要になる。さらに、送電電極121の下部に設けたバックレイヤ119が必要になる。
 すなわち、図4(a)に示すように、駆動されている送電電極121-Aと駆動されていない(つまり、接地され、又は、トランシーバ213の入出力部ではなくレシーバ217の入力部に接続されている)送電電極121-Cとの境界部において、オーバーハング147とバックレイヤ119と非駆動送電電極121-Cには、駆動されている送電電極121-Aの極性と逆の極性で電荷が発生する。しかし、オーバーハング147が非駆動送電電極121-Cまで延びていれば、駆動されている送電電極121-Aの極性と、駆動電極が誘導する周囲の逆極性電荷の間に生ずる電界は、外部空間に出ることなく封じ込められる。空間との端面では共通な極性に帯電されたオーバーハング147、非駆動送電電極121-C、バックレイヤ119があるため、空間に変位電流が流れない。
In order to wipe out the outlets into a simple system, electromagnetic radiation must be reduced even when using high-power equipment. As such a countermeasure, a shield cover 145 covering the power receiver and an overhang 147 provided on the peripheral edge thereof are necessary. Further, a back layer 119 provided below the power transmission electrode 121 is required.
That is, as shown in FIG. 4A, the driven power transmission electrode 121-A is not driven (that is, grounded or connected to the input unit of the receiver 217 instead of the input / output unit of the transceiver 213). At the boundary with the power transmission electrode 121-C, the overhang 147, the back layer 119, and the non-drive power transmission electrode 121-C are charged with a polarity opposite to that of the driven power transmission electrode 121-A. appear. However, if the overhang 147 extends to the non-drive power transmission electrode 121-C, the electric field generated between the polarity of the driven power transmission electrode 121-A and the surrounding reverse polarity charge induced by the drive electrode is It is contained without leaving the space. Since there are the overhang 147, the non-drive power transmission electrode 121-C, and the back layer 119 that are charged with a common polarity at the end face with the space, no displacement current flows in the space.
 図4(b)は、シールドカバー145やバックレイヤ119がないときの様子を示す図である。バックレイヤがなければ、異なる電荷で帯電された(位相の反転する)駆動送電電極間で上下に電界が発生して電磁波を放射し、下側に放射された電磁波も送電電極121の隙間から空間に放射される。シールドカバー145が無いときには、駆動された送電電極121-Aと受電電極133との間、駆動された送電電極121-Aと非駆動送電電極間121-Cの間に交流電界が発生して、これにより電磁波が空間に放射される。 FIG. 4B is a diagram illustrating a state where the shield cover 145 and the back layer 119 are not provided. If there is no back layer, an electric field is generated between the drive power transmission electrodes charged with different charges (phases are inverted) to radiate electromagnetic waves, and the electromagnetic waves radiated downward are also spaced from the gaps of the power transmission electrodes 121. To be emitted. When there is no shield cover 145, an AC electric field is generated between the driven power transmission electrode 121-A and the power reception electrode 133, and between the driven power transmission electrode 121-A and the non-driven power transmission electrode 121-C. Thereby, electromagnetic waves are radiated into the space.
 シールドカバー145があってオーバーハング147が無いときにも、駆動された送電電極121-Aとシールドカバー145との間に交流電界が発生し、これにより電磁波が空間に放射される。
 オーバーハング147とバックレイヤ119及び非駆動送電電極121-Cで駆動送電電極121-Aを挟み込むことにより放射電磁界を低減することができる。
Even when the shield cover 145 is present and the overhang 147 is not present, an alternating electric field is generated between the driven power transmission electrode 121-A and the shield cover 145, whereby electromagnetic waves are radiated into the space.
The radiated electromagnetic field can be reduced by sandwiching the drive power transmission electrode 121-A between the overhang 147, the back layer 119, and the non-drive power transmission electrode 121-C.
(4) 寄生容量による効率低減防止用インダクタンス
 バックレイヤ119によって放射電磁界が低減できるのは、バックレイヤ119が送電電極121の近傍にあるからである。しかし、これでは送電電極121とバックレイヤ119との間に寄生容量120が発生してしまう。この寄生容量120により、非接触電力送電する際に送電パネル101内で電流が流れてしまい、送電効率が低減してしまう。
(4) Inductance for preventing efficiency reduction due to parasitic capacitance The back layer 119 can reduce the radiation electromagnetic field because the back layer 119 is in the vicinity of the power transmission electrode 121. However, this causes a parasitic capacitance 120 between the power transmission electrode 121 and the back layer 119. The parasitic capacitance 120 causes a current to flow in the power transmission panel 101 when performing non-contact power transmission, thereby reducing power transmission efficiency.
 これを防止するために、図5に示すように、各ブロック111と隣接ブロック111との間にインダクタンス125を設ける。これにより、図5に示すように隣接ブロック111のインバータ115が自ブロック111のインバータ115に対して逆極性で動作しても、寄生容量120とインダクタンス125で並列共振を起こさせれば、送電周波数においてインピーダンスが高くなるため、送電ロスを低減することができる。 In order to prevent this, an inductance 125 is provided between each block 111 and the adjacent block 111 as shown in FIG. As a result, as shown in FIG. 5, even if the inverter 115 of the adjacent block 111 operates in reverse polarity with respect to the inverter 115 of the own block 111, if parallel resonance is caused by the parasitic capacitance 120 and the inductance 125, Since the impedance increases, power transmission loss can be reduced.
 さらに、相互に隣接するブロック111のインバータ115を相互に逆極性で動作させるため、電圧を二倍にすることが出来、送電電力を大きくすることが出来る。 Furthermore, since the inverters 115 of the blocks 111 adjacent to each other are operated with opposite polarities, the voltage can be doubled and the transmission power can be increased.
 ブロック111にインダクタンス125を組み込み、組立作業の単純化を図るためには、インダクタンス125が小さくこれの直列抵抗も小さいものが好ましい。このためには、寄生容量120を大きく安定化させる必要がある。このためには、送電電極121とバックレイヤ119との間にシート状の誘電材を挟み込んで一体化しておくことが必要である。 In order to incorporate the inductance 125 in the block 111 and simplify the assembly work, it is preferable that the inductance 125 is small and the series resistance thereof is also small. For this purpose, the parasitic capacitance 120 needs to be greatly stabilized. For this purpose, it is necessary to sandwich and integrate a sheet-like dielectric material between the power transmission electrode 121 and the back layer 119.
 この部分の共振周波数は、式(1)で示すようになる。
Figure JPOXMLDOC01-appb-M000001
                          ・・・(1)
 送信周波数fに対して、LC=Constの関係にあるため、Cを大きくすれば、Lは小さい値で済む。Lが小さければ、Lの直流抵抗も小さくなり損失が低減する。このため、適度な範囲でCを大きくする構造を採用することが好ましい。
The resonance frequency of this part is as shown in the equation (1).
Figure JPOXMLDOC01-appb-M000001
... (1)
Since there is a relationship LC = Const with respect to the transmission frequency f, if C is increased, L can be small. If L is small, the direct current resistance of L also becomes small and the loss is reduced. For this reason, it is preferable to employ a structure in which C is increased within an appropriate range.
(5)送電パネル動作の説明
 図6は、送電パネルの平面図を示す図である。中央に、受電部131が受電体として置かれている。受電部131には、オーバハング149よりも内側の又はオーバハング149と一部が重なる3×4のブロック111の送電電極121が正極(正相)と負極(逆相)の電圧を市松模様状に替えて駆動されている。3×4の部分のブロック111は、隣接ブロック間のスイッチS1、S2をONにして接続されている。さらに、相互に隣接するインバータ115の位相を反転させて駆動している。
(5) Description of Power Transmission Panel Operation FIG. 6 is a plan view of the power transmission panel. In the center, a power reception unit 131 is placed as a power receiver. In the power receiving unit 131, the power transmission electrode 121 of the 3 × 4 block 111 inside the overhang 149 or partially overlapping with the overhang 149 changes the voltage of the positive electrode (positive phase) and the negative electrode (reverse phase) to a checkered pattern. Driven. The 3 × 4 block 111 is connected with the switches S1 and S2 between adjacent blocks turned on. Furthermore, the inverters 115 adjacent to each other are driven with their phases inverted.
 オーバーハング147エリアにあるインバータは、電界通信用の周波数で駆動し、その外側ではオーバーハング147を取り囲むように、逆位相の電界通信用周波数で駆動している。これにより、受電体は電界通信用の電界で取り囲まれ、通信機器を動作させることが可能になる。なお、電界通信用に駆動するブロック111の配列は、このように周辺部に限定されるものではなく、用途に応じて任意の配置が取れるものとする。なお、図6のWPSは、Wireless Power Supplyの略称であり、これは、本発明によるインバータ電圧の送電電極及び受電電極を介した伝送を意味する。 The inverter in the overhang 147 area is driven at a frequency for electric field communication, and is driven at a frequency for electric field communication in the opposite phase so as to surround the overhang 147 on the outer side. Accordingly, the power receiver is surrounded by the electric field for electric field communication, and the communication device can be operated. Note that the arrangement of the blocks 111 driven for electric field communication is not limited to the peripheral portion as described above, and can be arbitrarily arranged depending on the application. Note that WPS in FIG. 6 is an abbreviation for Wireless 意味 Power Supply, which means transmission of the inverter voltage through the power transmission electrode and the power reception electrode according to the present invention.
(6) 感電対策
 その他配慮事項としては、感電防止策がある。
(6) Electric shock countermeasures Other considerations include electric shock prevention measures.
 オーバーハング147を設けているため、駆動されている送電電極は完全に包囲されていて、人が触ることは出来ない。 Since the overhang 147 is provided, the driven power transmission electrode is completely surrounded and cannot be touched by a person.
 送電パネル121と受電体としての受電部131との間の通信で受電部131を認識してから送電を開始するため、単に金属板が置かれても動作はしない。人がいても、その部分の送電電極121が駆動することはない。 Since power transmission is started after the power receiving unit 131 is recognized by communication between the power transmission panel 121 and the power receiving unit 131 as a power receiving body, even if a metal plate is simply placed, no operation is performed. Even if there is a person, the power transmission electrode 121 of that portion is not driven.
 図7に示すように、送電電極121の表面には、凹凸構造があってその表面は酸化膜122でおおわれている。さらに、凹凸部にトップコート層123がアンカー効果によって接着されているため、強固な膜が形成されている。トップコート層123が剥離したとしても、酸化膜122が残るため、人体は電極と直接接することはない。
 これは、送電電極121とトップコート123とに関連したことであるが、受電電極133とボトムコート149に適用することもできる。
As shown in FIG. 7, the surface of the power transmission electrode 121 has an uneven structure, and the surface is covered with an oxide film 122. Further, since the top coat layer 123 is adhered to the uneven portion by the anchor effect, a strong film is formed. Even if the top coat layer 123 is peeled off, the oxide film 122 remains, so that the human body does not directly contact the electrode.
This is related to the power transmission electrode 121 and the top coat 123, but can also be applied to the power reception electrode 133 and the bottom coat 149.
 (7) ロボットの動作支援
 本実施形態の送電パネル101をロボットに応用した場合には、図8に示す介護用ロボット301に電力を供給する。しかし、図8のロボット301のように、低面積の小さいロボットは、人を支える際に倒れてしまう。これを防止するために、支え構造が展開される方式もあるが、場所を取られてしまうとともに、支え構造を展開することが出来ない場面もある。
 このためロボット301の底面に磁石を有し、必要時には床面に吸着して作業を行う方式も考えられる。他方、吸盤で吸着する方法も考えられる。また、ハイブリッド型として吸盤の周囲部が磁石で吸い付く方式も考えられる。
 磁気吸着方式を用いる場合には、送電電極121が強磁性体で形成されている必要がある。さらに、吸盤方式に対応するためには、空気が漏れない平坦度と密閉性を有する必要がある。
(7) Robot Operation Support When the power transmission panel 101 of this embodiment is applied to a robot, power is supplied to the nursing robot 301 shown in FIG. However, a robot with a small area such as the robot 301 shown in FIG. 8 falls when supporting a person. In order to prevent this, there is a method in which the support structure is deployed, but there are cases where the space is taken up and the support structure cannot be deployed.
For this reason, a method is also conceivable in which a magnet is provided on the bottom surface of the robot 301 and the work is performed while attracting to the floor surface when necessary. On the other hand, a method of adsorbing with a suction cup is also conceivable. Further, as a hybrid type, a method in which the periphery of the suction cup is attracted by a magnet is also conceivable.
When the magnetic adsorption method is used, the power transmission electrode 121 needs to be formed of a ferromagnetic material. Furthermore, in order to correspond to the suction cup system, it is necessary to have flatness and airtightness so that air does not leak.
 送電電極121が強磁性体で作られている場合には、送電パネル101を壁に取り付け、磁気的に機器を取り付けて固定して送電することもできる。この様な場合には、任意の場所に機器の再配置も可能になる。 When the power transmission electrode 121 is made of a ferromagnetic material, the power transmission panel 101 can be attached to the wall, and the device can be magnetically attached and fixed for power transmission. In such a case, the equipment can be rearranged at an arbitrary location.
 人体をモデルにした電界通信(人体通信)の図を追加する。
 足の下部のインバータ115に対して周辺のインバータ115の交流出力の位相を反転させると、図10に示すように、人体にまとわりつくように、交流電場が発生する。人がポータブル機器191を保有し、ポータブル機器191内に電界が受けられる機構があれば、ポータブル機器191と電力伝送床間で通信が行える。
 ただし、床のインバータの発振形態は、図10に限定されず、図11や図12の場合もあり得る。
A diagram of electric field communication (human body communication) modeled on the human body is added.
When the phase of the AC output of the peripheral inverter 115 is inverted with respect to the inverter 115 at the bottom of the foot, an AC electric field is generated so as to cling to the human body as shown in FIG. If a person has a portable device 191 and the portable device 191 has a mechanism capable of receiving an electric field, communication can be performed between the portable device 191 and the power transmission floor.
However, the oscillation form of the floor inverter is not limited to FIG. 10, and may be the case of FIG. 11 or FIG. 12.
 図11は、受電体の下部のインバータ115は動作させずに、周辺部のみ動作させた場合を示す図である。これでも動作させられると考えられる。バックレイヤ119がグランドとして機能する。なお、インバータ115を動作させないブロック111に対応した送電電極121は接地してもよいし、接地させなくてもよい。また、このブロックのインバータ115は動作させない。 FIG. 11 is a diagram illustrating a case where only the peripheral portion is operated without operating the inverter 115 below the power receiver. This is considered to be able to operate. The back layer 119 functions as a ground. The power transmission electrode 121 corresponding to the block 111 that does not operate the inverter 115 may be grounded or may not be grounded. Further, the inverter 115 of this block is not operated.
 図12は、対象物に対して前後左右相互間でインバータ115の位相を反転させた場合を示す図である。なお、インバータ115を動作させないブロック111に対応した送電電極121は接地してもよいし、接地させなくてもよい。また、このブロックのインバータ115は動作させない。この場合には、ヌル点が存在するため、送電電極121の動作パターンをブロック111間で変化させる必要がある。 FIG. 12 is a diagram illustrating a case where the phase of the inverter 115 is reversed between the front, rear, left, and right with respect to the object. The power transmission electrode 121 corresponding to the block 111 that does not operate the inverter 115 may be grounded or may not be grounded. Further, the inverter 115 of this block is not operated. In this case, since a null point exists, it is necessary to change the operation pattern of the power transmission electrode 121 between the blocks 111.
 ところで、図4を参照した説明では、オーバハング近傍において、非駆動の送電電極を設けている。非駆動の送電電極を設けるブロックよりも一回り外側のブロックを利用して、電界通信を行う。一回り外側のブロックは、人体が乗せられている図10、図11、図12において、左端の2つのブロックと右端の2つのブロックに対応する。 Incidentally, in the description with reference to FIG. 4, a non-driven power transmission electrode is provided in the vicinity of the overhang. Electric field communication is performed using a block that is slightly outside the block where the non-driven power transmission electrode is provided. The blocks on the outer side correspond to the two blocks on the left end and the two blocks on the right end in FIGS. 10, 11, and 12 where the human body is placed.
 本実施形態における通信をまとめると下表のようになる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-I000003
The communication in this embodiment is summarized as shown in the table below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-I000003
 電界通信は、人体を考慮してMHzの帯域で行う。下り側では、インバータ115の出力を変調(例えばPWM変調)することにより信号の伝送を行う。図の例は、電界通信を半二重で行うことを想定したものであり、上り側では、送電電極121が受けた上り通信信号をスイッチVが電界通信用レシーバ217側に接続されている期間に、電界通信用レシーバ217が受信する。図の例とは異なるが、電界通信を全二重通信としてもよい。この場合には、スイッチVは、線127と線128を常時接続した状態となるが、例えば、下り信号と共に線127にある上り信号を電界通信用レシーバ217が受信する。 The electric field communication is performed in the MHz band considering the human body. On the downstream side, the signal is transmitted by modulating the output of the inverter 115 (for example, PWM modulation). The example in the figure assumes that electric field communication is performed in half duplex, and on the upstream side, a period in which the switch V is connected to the electric field communication receiver 217 side for the upstream communication signal received by the power transmission electrode 121. Then, the electric field communication receiver 217 receives the signal. Although different from the example in the figure, the electric field communication may be full-duplex communication. In this case, the switch V is in a state in which the lines 127 and 128 are always connected. For example, the electric field communication receiver 217 receives the upstream signal on the line 127 together with the downstream signal.
 本実施形態によれば、電界結合技術を用いた電力伝送システムにおいて、フリーポジション電力伝送システムでありながら、電磁波放射が少ない、感電しにくい、給電部以外の場所には電力伝送されないという高い安全性を持つとともに、伝送効率が高く、人体や機器等との間の電界通信機能も備えることができる。より具体的には、全体として次の点の効果を有する。
(1)完全フリーポジションが、パワースケーラビリティをもって実現できる。図9に示すように、レーザプリンタ303、PC307、スマートフォン309、LEDランプ305等の1kWから数Wの幅広い機器に対して、机の任意地点において機能させることが出来る。さらに、これらの機器の相互通信も可能である。
(2)不要な場所での送電が完全停止できるとともに、送電すべき機器とそうでないものが通信により区別できるため、人が送電面に接触していても、害を与えることが無い。なお、送電面に眼球、脳がたとえ近接する様な場合でも、影響がない。
(3)電磁波放射が少ない
 オーバーハング147及びバックレイヤ119により、電力伝送に伴う放射電磁波を低減出来る。ただし、低電力の人体通信は、意図的に電磁波を受電体の周りにまとわりつかせて通信させることを狙っている。低電力に限定しているため、人体への影響はない。
(4)感電対策
 駆動されている送電電極121に人が触れない構造を採用している。受電部131を持ち上げた時には、電流量が低減するため、これをモニタしてインバータ115の動作を停止させることができる。
 万が一、トップコート123が剥離しても、強固な絶縁層(酸化膜)122が人体の接触に対して感電することを防げる。この様に、多重な安全処置がとられている。
(5)機器の安全設計
 各送電電極121には、インバータ115が取り付けられている。トランジスタで、インバータ出力をON/OFFさせるシステムでは、そのトランジスタが壊れた時には電力を送電する方向に動く(危険サイドに動く)が、インバータ115を搭載している場合には、それが壊れた時には電力送電が停止する(安全サイドに動く)。
(6)資源的問題
 材料として、価格上昇の危険性の有る銅の使用が少ないため、資源的影響は受けにくい。標準規格に採用され、全世界的に広がるためには不可欠な要素である。
(7)複数の通信チャネルの装備
 送電パネルと受電体間のパワー制御、ロケーションデータの供給、システムモニタ等に使用する通信、各種サーバとのLANを介した通信、各種サーバと受電体間の通信の取次等を行うとともに、電界通信機能を設けることにより、人体が保有するモバイル機器との通信制御も可能にする。
(8)システム的対応性
 人・環境(建物)・機器・ネットワーク間の通信を可能にするプラットホームとして活用できる。ネットワークを介してファームウェアを変更可能にする等、システム的対応が可能になる。
 インバータを分散したことにより、個々のインバータは小さいもので済むため、小型かつ低用量ディバイスも利用可能になる。
According to the present embodiment, in a power transmission system using an electric field coupling technique, although it is a free position power transmission system, high safety that electromagnetic wave radiation is small, electric shock is difficult, and power is not transmitted to places other than the power feeding unit. In addition, the transmission efficiency is high, and an electric field communication function with a human body or equipment can be provided. More specifically, the following effects are obtained as a whole.
(1) A completely free position can be realized with power scalability. As shown in FIG. 9, a wide range of devices ranging from 1 kW to several watts such as a laser printer 303, a PC 307, a smartphone 309, and an LED lamp 305 can be made to function at any point on the desk. Furthermore, mutual communication between these devices is also possible.
(2) Power transmission at an unnecessary place can be completely stopped, and a device to be transmitted and a device that is not capable of being distinguished can be distinguished by communication. Therefore, even if a person is in contact with the power transmission surface, no harm is caused. Even if the eyeball and brain are close to the power transmission surface, there is no effect.
(3) Less electromagnetic wave radiation The overhang 147 and the back layer 119 can reduce radiation electromagnetic waves accompanying power transmission. However, low-power human body communication is intended to intentionally transmit electromagnetic waves around the power receiver. Because it is limited to low power, there is no impact on the human body.
(4) Electric shock countermeasures A structure in which a person does not touch the driven power transmission electrode 121 is adopted. When the power reception unit 131 is lifted, the amount of current is reduced, so that the operation of the inverter 115 can be stopped by monitoring this.
Even if the top coat 123 is peeled off, the strong insulating layer (oxide film) 122 can be prevented from receiving an electric shock with respect to human contact. In this way, multiple safety measures are taken.
(5) Safety Design of Equipment An inverter 115 is attached to each power transmission electrode 121. In a system that turns ON / OFF the inverter output with a transistor, when the transistor breaks, it moves in the direction of transmitting power (moves to the dangerous side). Power transmission stops (moves to the safe side).
(6) Resource issues Since there is little use of copper, which has a risk of rising prices, as a material, it is not easily affected by resources. It is an indispensable element for being adopted as a standard and spreading worldwide.
(7) Equipped with multiple communication channels Power control between power transmission panel and power receiver, location data supply, communication used for system monitoring, communication with various servers via LAN, communication between various servers and power receiver And the like, and by providing an electric field communication function, it is possible to control communication with a mobile device held by a human body.
(8) System compatibility It can be used as a platform that enables communication between people, the environment (buildings), devices, and networks. A systematic response such as making it possible to change the firmware via the network becomes possible.
By distributing the inverters, individual inverters can be small, so small and low-dose devices can be used.
 上述の如く、実施形態は例示に過ぎず、本発明の技術的範囲を限定するものではない。本発明はその他の様々な実施形態を取ることが可能であり、更に、本発明の要旨を逸脱しない範囲で、省略や置換など種々の変更を行うことができる。これら実施形態やその変形は、本明細書などに記載された発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As described above, the embodiment is merely an example, and does not limit the technical scope of the present invention. The present invention can take other various embodiments, and various modifications such as omission and replacement can be made without departing from the gist of the present invention. These embodiments and modifications thereof are included in the scope and gist of the invention described in this specification and the like, and are included in the invention described in the claims and the equivalents thereof.
 以下に、本発明が適用される得る装置等の例について付記する。 Hereinafter, examples of apparatuses and the like to which the present invention can be applied will be additionally described.
[付記1]
 相互に隣接して並べられた複数の送電側装置と、該複数の送電側装置に含まれる少なくとも2つの送電側装置に跨って載置される受電側装置とを備える電力伝送システムであって、
 前記複数の送電側装置の各々は、
 正位相の交流電源又は逆位相の交流電源を発生させるための交流電源装置と、
 該交流電源装置に結合された送電電極と、
 を備え、
 前記受電側装置は、
 該受電側装置が載置される少なくとも2つの前記送電側装置にそれぞれ備わる前記送電電極と容量結合する少なく2つの受電電極と、
 少なくとも2つの前記受電電極にそれぞれ対応して備わる少なくとも二対の半波整流回路であって、それに含まれる各対の半端整流回路が相互に反対の方向の整流素子を備える二対の半波整流回路と、
 少なくとも二対の前記半波整流回路に共通な出力端子と、
 を備え、
 前記受電側装置が載置される少なくとも2つの前記送電側装置に備わる交流電源装置は、自送電側装置に隣接する前記送電側装置に備わる交流電源装置が発生する交流電源の位相に対して反対の位相の交流電源を発生することを特徴とする電力伝送システム。
[Appendix 1]
A power transmission system comprising a plurality of power transmission side devices arranged adjacent to each other, and a power reception side device placed across at least two power transmission side devices included in the plurality of power transmission side devices,
Each of the plurality of power transmission side devices is:
An AC power supply device for generating a positive phase AC power source or a reverse phase AC power source;
A power transmission electrode coupled to the AC power supply;
With
The power receiving device is:
At least two power receiving electrodes that are capacitively coupled to the power transmitting electrodes respectively provided in at least two power transmitting side devices on which the power receiving side devices are mounted;
At least two pairs of half-wave rectifier circuits corresponding to at least two power receiving electrodes, respectively, each pair of half-wave rectifier circuits including rectifier elements in opposite directions to each other. Circuit,
An output terminal common to at least two pairs of the half-wave rectifier circuits;
With
The AC power supply device provided in at least two power transmission devices on which the power receiving device is mounted is opposite to the phase of the AC power generated by the AC power supply device provided in the power transmission device adjacent to the power transmission device. A power transmission system characterized by generating an alternating current power supply of the phase.
[付記2]
付記1に記載の電力伝送システムであって、
 前記受電側装置が載置される少なくとも2つの前記送電側装置に備わる交流電源装置に、自送電側装置に隣接する前記送電側装置に備わる交流電源装置が発生する交流電源の位相に対して反対の位相の交流電源を発生させるための制御手段を更に備えることを特徴とする電力伝送システム。
[Appendix 2]
The power transmission system according to attachment 1, wherein
The AC power supply device provided in at least two power transmission devices on which the power receiving device is placed is opposite to the phase of the AC power generated by the AC power supply device provided in the power transmission device adjacent to the power transmission device. A power transmission system further comprising control means for generating an alternating current power supply having a phase of.
[付記3]
 付記1又は付記2に記載の電力伝送システムであって、
 1つの前記送電電極に対して複数の受電電極が対向できるように前記受電電極が形成されていることを特徴とする電力伝送システム。
[Appendix 3]
An electric power transmission system according to appendix 1 or appendix 2,
The power transmission system, wherein the power receiving electrode is formed so that a plurality of power receiving electrodes can be opposed to one power transmitting electrode.
[付記4]
 付記1乃至付記3の何れか1項に記載の電力伝送システムであって、
 前記受電側装置は、オーバハングを有するシールドカバーで覆われ、
 相互に隣接する前記送電側装置にそれぞれ備わる前記送電電極の前記受電電極に対向する面の反対面に対向して、これらの送電電極に跨るようにバックレイヤが備わり、
 前記受電側装置の受電部周辺部に存在する前記送電側装置の前記送電電極は非駆動状態となり、
 前記オーバハング、前記バックレイヤ及び非駆動状態の前記送電電極により駆動されている送電電極からの漏洩電波を遮蔽することを特徴とする電力伝送システム。
[Appendix 4]
The power transmission system according to any one of appendix 1 to appendix 3,
The power receiving side device is covered with a shield cover having an overhang,
Opposite to the opposite surface of the power transmission electrode of the power transmission electrode provided in each of the power transmission side devices adjacent to each other, a back layer is provided so as to straddle these power transmission electrodes,
The power transmission electrode of the power transmission side device present in the periphery of the power reception unit of the power reception side device is in an undriven state,
A power transmission system that shields leakage radio waves from the overhang, the back layer, and a power transmission electrode that is driven by the power transmission electrode in a non-driven state.
[付記5]
 付記4に記載の電力伝送システムであって、
 相互に隣接する一対の送電側装置に備わる前記交流電源装置の間にはインダクタンスが設けられていることを特徴とする電力伝送システム。
[Appendix 5]
The power transmission system according to attachment 4, wherein
An electric power transmission system, wherein an inductance is provided between the AC power supply devices provided in a pair of power transmission side devices adjacent to each other.
[付記6]
 付記4又は付記5に記載の電力伝送システムであって、
 前記送電電極を駆動状態又は非駆動状態にするためのスイッチと、
 前記受電側装置の受電部周辺部に存在する前記送電側装置の前記送電電極を非駆動状態にするように前記スイッチを制御するための制御手段を更に備えることを特徴とする電力伝送システム。
[Appendix 6]
The power transmission system according to appendix 4 or appendix 5,
A switch for bringing the power transmission electrode into a driving state or a non-driving state;
The power transmission system further comprising a control unit for controlling the switch so that the power transmission electrode of the power transmission side device existing in the periphery of the power reception unit of the power reception side device is in a non-driven state.
[付記7]
 付記1乃至付記6の何れか1項に記載の電力伝送システムであって、
 前記複数の送電側装置を載置し、減衰性二次元導波路及び非減衰性二次元導波路を含む直流・通信ベースプレートを更に備え、
 前記複数の送電側装置は、前記直流・通信ベースプレートを介して、電源の供給を受け、前記直流・通信ベースプレートを介して外部と通信をすることを特徴とする電力伝送システム。
[Appendix 7]
The power transmission system according to any one of appendix 1 to appendix 6,
The power transmission side device is mounted, and further includes a direct current / communication base plate including an attenuating two-dimensional waveguide and a non-attenuating two-dimensional waveguide,
The power transmission system, wherein the plurality of power transmission side devices are supplied with power via the direct current / communication base plate and communicate with the outside via the direct current / communication base plate.
[付記8]
 付記7に記載の電力伝送システムであって、
 前記非減衰性二次元導波路を構成する中間層は、前記送電側装置に繋がる同軸線路の内部導体及びクロック信号が重畳された直流電源に接続され、前記非減衰性二次元導波路を構成する上層は、前記送電側装置に繋がる同軸線路の外部導体及び通信用トランシーバに接続されたことを特徴とする電力伝送システム。
[Appendix 8]
The power transmission system according to appendix 7,
The intermediate layer constituting the non-attenuating two-dimensional waveguide is connected to a DC power source on which an internal conductor of a coaxial line connected to the power transmission side device and a clock signal are superimposed, and constitutes the non-attenuating two-dimensional waveguide An upper layer is connected to an outer conductor of a coaxial line connected to the power transmission side device and a communication transceiver.
[付記9]
 付記8に記載の電力伝送システムであって、
 前記送電側装置は、前記同軸線路の内部導体及び外部導体にそれぞれ接続されているコンデンサを介して、前記通信用トランシーバと通信を行うことを特徴とする電力伝送システム。
[Appendix 9]
The power transmission system according to attachment 8, wherein
The power transmission system, wherein the power transmission side device communicates with the communication transceiver through capacitors respectively connected to an inner conductor and an outer conductor of the coaxial line.
[付記10]
 付記8又付記9に記載の電力伝送システムであって、
 前記送電側装置は、前記同軸線路の内部導体及び外部導体にそれぞれ接続されているチョークコイルを介して、直流電源の供給を受けることを特徴とする電力伝送システム。
[Appendix 10]
The power transmission system according to appendix 8 or appendix 9, wherein
The power transmission system is characterized in that a DC power supply is supplied to the power transmission side device via choke coils respectively connected to an inner conductor and an outer conductor of the coaxial line.
[付記11]
 付記7乃至付記10の何れか1項に記載の電力伝送システムであって、
 前記送電側装置は、前記同軸線路の内部導体及び外部導体に接続されている帯域通過フィルタ及びパルス・ウェーブフォーマにより前記クロック信号を再生することを特徴とする電力伝送システム。
[Appendix 11]
The power transmission system according to any one of appendix 7 to appendix 10,
The power transmission system, wherein the power transmission side device regenerates the clock signal by a band pass filter and a pulse wave former connected to an inner conductor and an outer conductor of the coaxial line.
[付記12]
 付記1乃至付記11の何れか1項に記載の電力伝送システムであって、
 相互に隣接する送電側装置間で通信路を形成し又は遮断するためのスイッチが設けられており、
 前記スイッチを制御することにより、前記受電側装置が載置されている少なくとも2つの前記送電側装置は相互に通信路を形成するように接続されることを特徴とする電力伝送システム。
[Appendix 12]
The power transmission system according to any one of appendix 1 to appendix 11,
A switch for forming or blocking a communication path between power transmission side devices adjacent to each other is provided.
By controlling the switch, at least two power transmission side devices on which the power reception side devices are placed are connected to each other so as to form a communication path.
[付記13]
 付記12に記載の電力伝送システムであって、
 少なくとも2つの前記送電側装置は、前記通信路を介して、それぞれの前記送電側装置に備わる前記交流電源装置相互間の同期制御を行うことを特徴とする電力伝送システム。
[Appendix 13]
The power transmission system according to attachment 12, wherein
At least two of the power transmission side devices perform synchronization control between the AC power supply devices included in each of the power transmission side devices via the communication path.
[付記14]
 付記12又は付記13に記載の電力伝送システムであって、
 少なくとも2つの前記送電側装置は、前記通信路を介して、相互間で通信を行うことを特徴とする電力伝送システム。
[Appendix 14]
The power transmission system according to appendix 12 or appendix 13, wherein
At least two of the power transmission side devices communicate with each other via the communication path.
[付記15]
 付記1乃至付記14の何れか1項に記載の電力伝送システムであって、
 前記交流電源装置が発生する交流電源を変調することにより該交流電源に通信信号を重畳することを特徴とする電力伝送システム。
[Appendix 15]
The power transmission system according to any one of supplementary notes 1 to 14,
A power transmission system, wherein a communication signal is superimposed on the AC power supply by modulating the AC power generated by the AC power supply apparatus.
[付記16]
 付記1乃至付記15の何れか1項に記載の電力伝送システムであって、
 前記交流電源装置の出力部及び前記送電電極との間の送電路において電界通信用信号の混合及び/又は引き出しをするための容量結合が形成されていることを特徴とする電力伝送システム。
[Appendix 16]
The power transmission system according to any one of supplementary notes 1 to 15,
A power transmission system, wherein capacitive coupling for mixing and / or drawing out electric field communication signals is formed in a power transmission path between an output unit of the AC power supply device and the power transmission electrode.
[付記17]
 付記1乃至付記16の何れか1項に記載の電力伝送システムであって、
 前記送電電極の前記受電電極に対向する面には酸化膜を介してトップコートが積層されていることを特徴とする電力伝送システム。
[Appendix 17]
The power transmission system according to any one of supplementary notes 1 to 16,
A power transmission system, wherein a top coat is laminated on an opposite surface of the power transmission electrode to the power reception electrode via an oxide film.
[付記18]
 付記1乃至付記17の何れか1項に記載の電力伝送システムであって、
 前記受電電極の前記送電電極に対向する面には酸化膜を介してボトムコートが積層されていることを特徴とする電力伝送システム。
[Appendix 18]
The power transmission system according to any one of appendix 1 to appendix 17,
A power transmission system, wherein a bottom coat is laminated on an opposite surface of the power receiving electrode to the power transmitting electrode via an oxide film.
[付記19]
 付記1乃至付記18の何れか1項に記載の電力伝送システムであって、
 前記複数の送電側装置は、正方格子状に並べられていることを特徴とする電力伝送システム。
[Appendix 19]
The power transmission system according to any one of appendix 1 to appendix 18, wherein
The power transmission system, wherein the plurality of power transmission side devices are arranged in a square lattice pattern.
[付記20]
 相互に隣接して並べられた複数の送電側装置を備える電界通信装置であって、
 前記複数の送電側装置の各々は、
 正位相の交流電源又は逆位相の交流電源を発生させるための交流電源装置と、
 該交流電源装置に結合された送電電極と、
 人体に接触する前記送電電極に正位相又は逆位相の交流電源が供給され、前記人体と電界結合する前記送電電極に逆位相又は正位相の交流電源が供給されるような制御を行う制御手段と、
 前記交流電源を送信信号により変調する変調手段と、
 前記送電電極からの受信信号を受信する電界通信用レシーバと、
 を備えることを特徴とする電界通信装置。
[Appendix 20]
An electric field communication device comprising a plurality of power transmission side devices arranged adjacent to each other,
Each of the plurality of power transmission side devices is:
An AC power supply device for generating a positive phase AC power source or a reverse phase AC power source;
A power transmission electrode coupled to the AC power supply;
Control means for performing control such that a positive-phase or reverse-phase AC power is supplied to the power transmission electrode in contact with the human body, and a reverse-phase or positive-phase AC power is supplied to the power transmission electrode that is electrically coupled to the human body; ,
Modulation means for modulating the AC power supply with a transmission signal;
An electric field communication receiver for receiving a reception signal from the power transmission electrode;
An electric field communication device comprising:
[付記21]
 付記20に記載の電界通信装置であって、
 人体に接触する前記送電電極に対応する前記交流電源装置の交流出力がゼロになり、前記人体と電界結合する全ての前送電電極に同位相の交流電源が供給されるような制御を行う第2の制御手段を備えることを特徴とする電界通信装置。
[Appendix 21]
The electric field communication device according to attachment 20, wherein
A second control is performed so that the AC output of the AC power supply device corresponding to the power transmission electrode in contact with the human body becomes zero, and the AC power of the same phase is supplied to all the front power transmission electrodes that are electrically coupled to the human body. An electric field communication apparatus comprising the control means.
[付記22]
 付記20又は付記21に記載の電界通信装置であって、
 人体に接触する前記送電電極に対応する前記交流電源装置の交流出力がゼロになり、前記人体と電界結合する一部の前送電電極に正位相の交流電源が供給され、前記人体と電界結合する他の前送電電極に正位相の交流電源が供給されるような制御を行う第3の制御手段を更に備えることを特徴とする電界通信装置。
[Appendix 22]
The electric field communication device according to appendix 20 or appendix 21,
The AC output of the AC power supply device corresponding to the power transmission electrode in contact with the human body becomes zero, and a positive phase AC power supply is supplied to some of the front power transmission electrodes that are electric field coupled with the human body, thereby electric field coupling with the human body 3. An electric field communication apparatus, further comprising third control means for performing control such that positive phase AC power is supplied to another front power transmission electrode.
 101 送電パネル
 111 ブロック(送電側装置)
 113 送電側通信制御部
 115 インバータ
 117 通信用カップリング
 119 バックレイヤ
 121 送電電極
 123 トップコート
 125 インダクタンス
 127、128、129 線
 131 受電部(受電側措置)
 133 受電電極
 135 整流ダイオード
 137 平滑コンデンサ
 139 受電側通信制御部
 141 蓄電器
 143 負荷
 145 シールドカバー
 161 直流・通信ベースプレート
 163 非減衰性二次元導波路
 165 減衰性二次元導波路
 171 直流電源
 173 クロック信号発生器
 175 LAN
 177 通信用トランシーバ
 179 プローブ
 191 ポータブル機器
101 Power transmission panel 111 blocks (power transmission side device)
113 power transmission side communication control unit 115 inverter 117 communication coupling 119 back layer 121 power transmission electrode 123 top coat 125 inductance 127, 128, 129 wire 131 power reception unit (power reception side measure)
133 Power receiving electrode 135 Rectifier diode 137 Smoothing capacitor 139 Power receiving side communication control unit 141 Battery 143 Load 145 Shield cover 161 DC / communication base plate 163 Non-attenuating two-dimensional waveguide 165 Attenuating two-dimensional waveguide 171 DC power supply 173 Clock signal generator 175 LAN
177 Communication transceiver 179 Probe 191 Portable equipment

Claims (1)

  1.  相互に隣接して並べられた複数の送電側装置と、該複数の送電側装置に含まれる少なくとも2つの送電側装置に跨って載置される受電側装置とを備える電力伝送システムであって、
     前記複数の送電側装置の各々は、
     正位相の交流電源又は逆位相の交流電源を発生させるための交流電源装置と、
     該交流電源装置に結合された送電電極と、
     を備え、
     前記受電側装置は、
     該受電側装置が載置される少なくとも2つの前記送電側装置にそれぞれ備わる前記送電電極と容量結合する少なく2つの受電電極と、
     少なくとも2つの前記受電電極にそれぞれ対応して備わる少なくとも二対の半波整流回路であって、それに含まれる各対の半端整流回路が相互に反対の方向の整流素子を備える二対の半波整流回路と、
     少なくとも二対の前記半波整流回路に共通な出力端子と、
     を備え、
     前記受電側装置が載置される少なくとも2つの前記送電側装置に備わる交流電源装置は、自送電側装置に隣接する前記送電側装置に備わる交流電源装置が発生する交流電源の位相に対して反対の位相の交流電源を発生することを特徴とする電力伝送システム。
    A power transmission system comprising a plurality of power transmission side devices arranged adjacent to each other, and a power reception side device placed across at least two power transmission side devices included in the plurality of power transmission side devices,
    Each of the plurality of power transmission side devices is:
    An AC power supply device for generating a positive phase AC power source or a reverse phase AC power source;
    A power transmission electrode coupled to the AC power supply;
    With
    The power receiving device is:
    At least two power receiving electrodes that are capacitively coupled to the power transmitting electrodes respectively provided in at least two power transmitting side devices on which the power receiving side devices are mounted;
    At least two pairs of half-wave rectifier circuits corresponding to at least two power receiving electrodes, respectively, each pair of half-wave rectifier circuits including rectifier elements in opposite directions to each other. Circuit,
    An output terminal common to at least two pairs of the half-wave rectifier circuits;
    With
    The AC power supply device provided in at least two power transmission devices on which the power receiving device is mounted is opposite to the phase of the AC power generated by the AC power supply device provided in the power transmission device adjacent to the power transmission device. A power transmission system characterized by generating an alternating current power supply of the phase.
PCT/JP2016/060825 2015-03-31 2016-03-31 Power transmission system WO2016159313A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015070851A JP2018093557A (en) 2015-03-31 2015-03-31 Power transmission system
JP2015-070851 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159313A1 true WO2016159313A1 (en) 2016-10-06

Family

ID=57004405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060825 WO2016159313A1 (en) 2015-03-31 2016-03-31 Power transmission system

Country Status (2)

Country Link
JP (1) JP2018093557A (en)
WO (1) WO2016159313A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108306419A (en) * 2018-01-08 2018-07-20 西南交通大学 A kind of multi-emitting list receives the Electric field radio energy transmission system of structure
EP3432442A1 (en) * 2017-07-20 2019-01-23 Panasonic Intellectual Property Management Co., Ltd. Electrode unit, power transmitting device, power receiving device, electronic device, vehicle, and wireless power transmission system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291014A (en) * 2008-05-29 2009-12-10 Chugoku Electric Power Co Inc:The Power supply unit
JP2014197937A (en) * 2013-03-29 2014-10-16 沖電気工業株式会社 Non-contact power transmission device, non-contact power transmission system, and automatic transaction device
JP2015019484A (en) * 2013-07-10 2015-01-29 パナソニックIpマネジメント株式会社 Non-contact power supply system, non-contact power supply device and cooperative management method of non-contact power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291014A (en) * 2008-05-29 2009-12-10 Chugoku Electric Power Co Inc:The Power supply unit
JP2014197937A (en) * 2013-03-29 2014-10-16 沖電気工業株式会社 Non-contact power transmission device, non-contact power transmission system, and automatic transaction device
JP2015019484A (en) * 2013-07-10 2015-01-29 パナソニックIpマネジメント株式会社 Non-contact power supply system, non-contact power supply device and cooperative management method of non-contact power supply system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3432442A1 (en) * 2017-07-20 2019-01-23 Panasonic Intellectual Property Management Co., Ltd. Electrode unit, power transmitting device, power receiving device, electronic device, vehicle, and wireless power transmission system
CN109286246A (en) * 2017-07-20 2019-01-29 松下知识产权经营株式会社 Electrode unit, power transmission device, power receiving device, electronic equipment, moving body and Wireless power transmission system
US10913366B2 (en) 2017-07-20 2021-02-09 Panasonic Intellectual Property Management Co., Ltd. Electrode unit, power transmitting device, power receiving device, electronic device, vehicle, and wireless power transmission system
CN108306419A (en) * 2018-01-08 2018-07-20 西南交通大学 A kind of multi-emitting list receives the Electric field radio energy transmission system of structure
CN108306419B (en) * 2018-01-08 2020-01-03 西南交通大学 Electric field type wireless power transmission system with multi-transmitting single-receiving structure

Also Published As

Publication number Publication date
JP2018093557A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
CN106134032B (en) Wireless power transmission system with wireless power sending device
JP6094762B2 (en) Wireless energy distribution system
US9461714B2 (en) Packaging and details of a wireless power device
JP5152298B2 (en) Power transmission device, power reception device, and wireless power transmission system
JP2018507678A (en) Wireless power transfer adapter
JP5737545B2 (en) Power receiving device, power transmitting device, and power transmission system
US20160087477A1 (en) Wireless charger with uniform h-field generator and emi reduction
JP6472818B2 (en) Method and apparatus for transmitting power
KR101950369B1 (en) Wireless power receiving apparatus and wireless power transmitting system comprising the same
US20210175749A1 (en) Wireless Power Systems
EP2745420A2 (en) A conductive layer of a large surface for distribution of power using capacitive power transfer
JP2019534669A (en) Interference filter for wireless power transmission system
KR20170043393A (en) Coil Device Of Wireless Power Transfer System
WO2010103787A1 (en) Power supply system, and movable body and fixed body for same
EP3232451B1 (en) Shield for a wireless power transmitter
US10714983B2 (en) Near-field microwave wireless power system
JP2019530408A (en) Wireless power transmission apparatus, wireless power transmission system, and method for driving wireless power transmission system
KR102537162B1 (en) Method and apparatus for transmitting power and data
WO2016159313A1 (en) Power transmission system
JP2019535224A (en) Wireless power transmission device, wireless power transmission system, and method for driving wireless power transmission system
WO2013047732A1 (en) Power supply system
KR20180100749A (en) Coil Assembly Having Electromagnetic Wave Shielding Structure
KR101294481B1 (en) Apparatus for receiving a wireless power and touch panel combined therein
KR102124901B1 (en) Wireless power receiving apparatus and wireless power transmitting system comprising the same
KR101413490B1 (en) Wiress Power Transmission Apparatus and Method for Constructing Wiress Charging Space Using the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP