WO2016158687A1 - Metal powder composed of spherical particles - Google Patents

Metal powder composed of spherical particles Download PDF

Info

Publication number
WO2016158687A1
WO2016158687A1 PCT/JP2016/059444 JP2016059444W WO2016158687A1 WO 2016158687 A1 WO2016158687 A1 WO 2016158687A1 JP 2016059444 W JP2016059444 W JP 2016059444W WO 2016158687 A1 WO2016158687 A1 WO 2016158687A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
less
particles
particle diameter
metal powder
Prior art date
Application number
PCT/JP2016/059444
Other languages
French (fr)
Japanese (ja)
Inventor
山本 隆久
哲朗 仮屋
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016019607A external-priority patent/JP6620029B2/en
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Priority to US15/562,600 priority Critical patent/US10350680B2/en
Priority to EP16772568.8A priority patent/EP3278907B1/en
Publication of WO2016158687A1 publication Critical patent/WO2016158687A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Definitions

  • the present invention relates to a metal powder used in a three-dimensional additive manufacturing method, a thermal spraying method, a laser coating method, a cladding method, and the like.
  • the present invention relates to a metal powder comprising a large number of spherical particles.
  • 3D printers are used to produce metal objects.
  • a model is manufactured by a three-dimensional additive manufacturing method.
  • the spread metal powder is irradiated with a laser beam or an electron beam. Irradiation melts the metal. The metal then solidifies. Due to this melting and solidification, the spherical particles in the powder are bonded together. Irradiation is selectively performed on a part of the metal powder. The part of the powder that has not been irradiated does not melt. Only in the irradiated part, a bonding layer is formed.
  • the bonding powder may be obtained by irradiating a beam onto the metal powder that has been jetted from the nozzle and traveling.
  • metal powder is spread on the bonding layer.
  • This metal powder is irradiated with a laser beam or an electron beam. Irradiation melts the metal. The metal then solidifies. By this melting and solidification, particles in the powder are bonded to each other, and a new bonded layer is formed. The new bonding layer is also combined with the existing bonding layer.
  • the thermal spraying method is used for forming the metal coating layer.
  • powder particles are accelerated.
  • the acceleration is performed with compressed gas or the like.
  • the accelerated and ongoing particles are heated by the heating means.
  • the heating means include a gas combustion flame, plasma, and laser.
  • the particles become molten or semi-molten.
  • the particles collide with the object and solidify.
  • the particles are bonded together by solidification.
  • the particles also bind to the substrate.
  • a covering layer is formed. Heating may be performed after the metal powder collides with the object. Heating may be performed while the metal powder is in contact with the object.
  • the thermal spraying method in which a thick coating layer is formed is also referred to as a cladding method.
  • a thermal spraying method in which particles are heated by a laser is also called a laser coating method, and is also called a laser spraying method.
  • Metal powders used for additive manufacturing, thermal spraying, overlaying, laser coating, etc. are manufactured by water atomization, gas atomization, etc.
  • the properties of the metal powder affect the handleability.
  • the properties of the metal powder further affect the physical properties of the three-dimensional structure or the coating layer.
  • Patent Document 1 discloses a metal product obtained by impregnating a modeled object obtained by the additive manufacturing method with a metal having a melting point lower than the melting point of the modeled object. . Impregnation increases the density of the metal product.
  • Patent Document 2 JP 2006-321711 A discloses a metal powder having an arithmetic average circularity of 0.7 or more. In this powder, the surface of the particles is covered with aggregation preventing particles. With this powder, aggregation is unlikely to occur. This powder is excellent in handleability. The density of the shaped object obtained from this powder is large. This shaped article is excellent in strength.
  • Patent Document 3 discloses a powder containing a laser absorber. A shaped article obtained from this powder is excellent in strength.
  • An object of the present invention is to provide a powder excellent in various performances.
  • the metal powder according to the present invention comprises a large number of spherical particles.
  • This powder contains at least one of Ni, Fe and Co.
  • the total content (TC) of Ni, Fe and Co is 50% by mass or more.
  • the cumulative 10 volume% particle diameter D10 of this powder is 1.0 ⁇ m or more.
  • the balance other than three kinds of Ni, Fe and Co is C, Si, Cr, Mo, Al, Ti, V, W, Nb, Zn, Ta, B, Ag, At least one of Cu and Sn and inevitable impurities.
  • the ratio of the cumulative 60 volume% particle diameter D60 to the particle diameter D10 is 1.0 or more and less than 10.0.
  • the ratio of the particle diameter D50 to the mode diameter Dm is 0.80 or more and 1.20 or less.
  • the ratio P2 of the number of particles having a circularity of 0.95 or more with respect to the total number of particles is 50% or more. More preferably, the ratio P2 is 80% or more.
  • the oxygen concentration of the metal powder is less than 1000 ppm.
  • the Y value is 7.5 or more and 24.0 or less. This powder is excellent in handleability. A shaped article obtained from this powder has high strength. The coating layer obtained from this powder is excellent in wear resistance.
  • the metal powder according to the present invention is an aggregate of a large number of particles.
  • the shape of each particle is spherical.
  • spherical particles include true sphere particles and particles having a shape close to a true sphere.
  • the particles contained in the metal powder according to the present invention contain at least one of Ni, Fe and Co.
  • the particles may contain only one of Ni, Fe and Co.
  • the particles may contain only Ni and Fe.
  • the particles may contain only Fe and Co.
  • the particles may contain only Co and Ni.
  • the particles may include all of Ni, Fe and Co.
  • Preferred materials for the particles contained in the metal powder according to the present invention include SUS316, SUS630, ALLOYC276, ALLOY718, ALLOY-No. 6 and ALLOY-No. 20 is exemplified.
  • the total content (TC) of Ni, Fe and Co in the metal powder according to the present invention is 50% by mass or more.
  • Ni is suitable for applications requiring high corrosion resistance
  • Fe is suitable for applications requiring high strength
  • Co is suitable for applications requiring high corrosion resistance and high wear resistance.
  • the powder may contain two or more of Ni, Fe and Co.
  • the total content (TC) is particularly preferably 70% by mass or more.
  • the total content (TC) may be 100% by mass.
  • the particles contained in the metal powder according to the present invention may contain other elements.
  • Elements that can contribute to strength improvement such as C, Mg, Al, Ti, V, Mn, Zn, and B
  • Elements contributing to machinability such as S, P, Bi and Sb
  • Elements that can contribute to wear resistance such as C, Cr, W, Mo, N and B
  • Elements that can contribute to corrosion resistance such as Cr, Ag, Cu, Zr, Nb, Mo, Ta, W, and Sn
  • the particles can contain unavoidable impurities.
  • the balance other than three of Ni, Fe and Co is at least one of C, Si, Cr, Mo, Al, Ti, V, W, Nb, Zn, Ta, B, Ag, Cu and Sn. Species as well as inevitable impurities.
  • the value Y is calculated by the following mathematical formula (1).
  • Y D50 ⁇ ⁇ ⁇ S
  • D50 is the cumulative 50 volume% particle size (m) of the powder
  • is the true density (kg / m 3 ) of the powder
  • S is the specific surface area (m 2 / kg) of the powder.
  • the value Y is 7.5 or more and 24.0 or less.
  • the cumulative 10 volume% particle diameter D10 of the metal powder according to the present invention is 1.0 ⁇ m or more.
  • the particle diameter D50 is equal to the diameter d.
  • the particle diameter D50 is larger than the diameter d.
  • the present inventors have found that a powder having (d / D50) of 0.25 or more and 0.8 or less is excellent in fluidity.
  • the value Y is 7.5 or more and 24.0 or less.
  • the powder whose value Y is within the above range has small irregularities on the surface of the particles. This powder is excellent in fluidity. Therefore, this powder is excellent in handleability. A shaped article obtained from this powder has high strength. The coating layer obtained from this powder is excellent in wear resistance.
  • the true density ⁇ of the powder is a density that does not include surface pores and internal voids, and uses only the volume occupied by the solid itself as the denominator volume.
  • the true density ⁇ is derived by a gas phase substitution method.
  • As a measuring apparatus there is a dry automatic density measuring device “AccuPyc II II 1340” manufactured by Shimadzu Corporation.
  • the specific surface area S of the powder means the surface area per unit mass.
  • the specific surface area S is derived by a gas adsorption method.
  • An example of the measuring apparatus is a flow type specific surface area automatic measuring apparatus “Flowsorb III 2305” manufactured by Shimadzu Corporation.
  • the ratio of the cumulative 60 volume% particle diameter D60 to the particle diameter D10 is preferably 1.0 or more and less than 10.0.
  • the powder is filled, small diameter particles get in between large diameter particles. Powders with an excessive amount of small diameter particles are inferior in fluidity. This powder is inferior in spreadability. A powder having an excessively small amount of particles having a small diameter has a large volumetric shrinkage rate upon melting.
  • the ratio (D60 / D10) is more preferably 2.0 or more, and particularly preferably 5.0 or more.
  • the ratio (D60 / D10) is more preferably 8.0 or less, and particularly preferably 6.0 or less.
  • the total volume of the powder is 100%, and a cumulative curve is obtained.
  • the particle diameter at the point where the cumulative volume is 10% on this curve is D10.
  • the particle diameter at the point where the cumulative volume is 50% on this curve is D50.
  • the particle diameter at the point where the cumulative volume is 60% on this curve is D60.
  • the particle diameters D10, D50 and D60 are measured by a laser diffraction scattering method.
  • An apparatus suitable for this measurement is Nikkiso Co., Ltd.'s laser diffraction / scattering particle size distribution measuring apparatus “Microtrack MT3000”.
  • the powder is poured into the cell of this apparatus together with pure water, and the particle diameter is detected based on the light scattering information of the particles.
  • the ratio of the particle diameter D50 to the mode diameter Dm is preferably 0.80 or more and 1.20 or less.
  • the particle size distribution of a powder having a ratio (D50 / Dm) within this range is close to a lognormal distribution.
  • This powder is excellent in fluidity. Therefore, this powder is excellent in handleability.
  • a shaped article obtained from this powder has high strength.
  • the coating layer obtained from this powder is excellent in wear resistance.
  • the ratio (D50 / Dm) is more preferably 0.85 or more and 1.15 or less, and particularly preferably 0.90 or more and 1.10 or less.
  • the frequency curve of the particle size distribution is obtained based on the volume.
  • the particle diameter at which the frequency is maximum in this frequency curve is the mode diameter Dm.
  • the frequency curve of the particle size distribution is obtained by a laser diffraction scattering method.
  • An apparatus suitable for this measurement is Nikkiso Co., Ltd.'s laser diffraction / scattering particle size distribution measuring apparatus “Microtrack MT3000”.
  • the ratio P2 of the number of particles having a circularity of 0.95 or more with respect to the total number of particles is preferably 50% or more.
  • This powder is excellent in fluidity and filling properties. When this powder is subjected to additive manufacturing or thermal spraying, it can be spread smoothly and densely. Furthermore, the molded article and coating layer obtained from this powder are excellent in strength. From these viewpoints, the ratio P2 is more preferably 70% or more, and particularly preferably 80% or more.
  • An image analysis apparatus is used as a method for measuring the circularity. The powder is photographed from above, and the circularity is calculated by the image analyzer from the powder outline. When the powder is a sphere and the contour is circular, the circularity is 1, and when there is unevenness, the circularity is a number from 0 to less than 1.
  • the circularity Ro is calculated by the following mathematical formula.
  • Ro 4 ⁇ S / L 2
  • S is the projected area of the particle or its cross section
  • L is the ring length of this projected image.
  • an image analysis device is used to measure the projection area S and the ring length L.
  • the oxygen concentration is preferably less than 1000 ppm. This oxygen concentration correlates with the amount of oxide contained in the powder. A shaped article and a coating layer obtained from a powder having an oxygen concentration of less than 1000 ppm are excellent in strength. From these viewpoints, the oxygen concentration is particularly preferably 500 ppm or less.
  • a dispersion type infrared absorption method is used as a method for measuring the oxygen concentration. As the measuring device, for example, EMGA-930 manufactured by Horiba Seisakusho is used.
  • the metal powder according to the present invention can be densely spread, impregnation of the low melting point metal into the molded article disclosed in Japanese Patent Application Laid-Open No. 2001-152204 is unnecessary. Even if a shaped article obtained from this powder is used in a high temperature environment, melting of the low melting point metal does not occur. This shaped object is suitable for use in a high temperature environment. Of course, the molded object may be impregnated with a low melting point metal.
  • the metal powder according to the present invention is excellent in fluidity, the aggregation preventing particles disclosed in JP-A-2006-321711 are not necessary. In a powder containing no aggregation preventing particles, the aggregation preventing particles do not hinder the bonding between the particles. Therefore, the molded article and the coating layer obtained from this powder are excellent in strength. Of course, this powder may contain anti-agglomeration particles.
  • the molded article and the coating layer obtained from the metal powder according to the present invention are excellent in strength, it is not necessary to mix the laser absorber disclosed in JP2011-21218A with this powder. Therefore, defects due to the laser absorber do not occur. Of course, a laser absorber may be mixed with this powder.
  • the value Y of the metal powder according to the present invention is 7.5 or more and 24.0 or less.
  • the particles contained in this powder have a shape close to a sphere. Since this powder is excellent in fluidity and filling property, volume shrinkage at the time of melting is small.
  • the shaped product and the coating layer obtained from this powder have few pores. From this powder, a molded article and a coating layer excellent in strength can be obtained. From the viewpoint of strength, the value Y is more preferably 18.0 or less, and particularly preferably 12.0 or less.
  • the particle diameter D10 is preferably 5 ⁇ m or more, and particularly preferably 10 ⁇ m or more.
  • the particle diameter D10 is preferably 15 ⁇ m or less.
  • the particle diameter D50 is preferably 15 ⁇ m or more and 50 ⁇ m or less, and particularly preferably 20 ⁇ m or more and 30 ⁇ m or less.
  • the particle diameter D60 is preferably 18 ⁇ m or more and 70 ⁇ m or less, and particularly preferably 24 ⁇ m or more and 45 m or less.
  • the metal powder according to the present invention can be produced by various methods.
  • the production method include a water atomization method, a gas atomization method, a plasma atomization method, a rotating electrode method, a disk atomization method, a melt spinning method, a mechanical grinding method, and a chemical reduction method.
  • Preferable manufacturing methods are a water atomizing method, a gas atomizing method and a disk atomizing method.
  • the gas atomization method is preferable.
  • a plurality of manufacturing methods may be combined. For example, powder obtained by the water atomization method may be mechanically pulverized.
  • raw materials are put into a crucible having pores at the bottom. This raw material is heated and melted by a high frequency induction furnace in the atmosphere of air, argon gas or nitrogen gas. Water is jetted onto the raw material flowing out from the pores. The raw material is rapidly cooled and solidified to obtain a powder.
  • raw materials are put into a crucible having pores at the bottom. This raw material is heated and melted by a high frequency induction furnace in the atmosphere of air, argon gas or nitrogen gas. Helium gas, argon gas or nitrogen gas is injected into the raw material flowing out from the pores. The raw material is rapidly cooled and solidified to obtain a powder.
  • the powder with proper Y value can be obtained by adjusting the atomizing conditions.
  • Particles having an appropriate particle size, density, and specific surface area may be selected from the powder obtained by atomization.
  • One example of the selection method is sieving with a mesh.
  • particle diameters D10, D50 and D60 and mode diameter Dm The particle diameters D10, D50 and D60 and the mode diameter Dm are obtained based on the particle diameter distribution measured by the laser diffraction scattering method using a Nikkiso laser diffraction / scattering particle diameter distribution measuring device “Microtrack MT3000”. It was. In the measurement of the particle size distribution using the Microtrac MT3000, the powder is poured into the cell of this apparatus together with pure water, and the particle size is detected based on the light scattering information of the particles.
  • the circularity of the powder As for the circularity of the powder, the circularity of 500 particles was measured with an image analyzer, the number of particles having a circularity of 0.95 or more was measured, and the ratio of the total number of particles was defined as P2.
  • the oxygen concentration of the powder was measured by a dispersive infrared absorption method using a measuring device “EMGA-930” manufactured by Horiba.
  • Example 1-162 and Comparative Example 1-54 shown in Table 2-10 were obtained.
  • Each powder was obtained by classifying a large number of particles by sieving. The particles were obtained by a water atomization method, a gas atomization method, or a disk atomization method.
  • the fluidity of each powder was measured in accordance with the rules of “JIS Z 2502,” and the fluidity was evaluated. This fluidity correlates with the strength of the shaped article and the coating layer.
  • composition I The fluidity of the powders of Examples 1-18 and Comparative Examples 1-6 obtained from alloys having composition I were measured and rated according to the following criteria. S: 20.0 s / 50 g or less A: 20.0 s / 50 g or more and less than 22.0 s / 50 g B: 22.0 s / 50 g or more and less than 24.0 s / 50 g C: 24.0 s / 50 g or more and less than 26.0 s / 50 g F: 26.0 s / 50 g or more (or does not flow) The results are shown in Table 2 below.
  • composition II The fluidity of the powders of Examples 19-36 and Comparative Examples 7-12 obtained from alloys having composition II were measured and rated according to the following criteria. S: Less than 21.0 s / 50 g A: 21.0 s / 50 g or more and less than 23.0 s / 50 g B: 23.0 s / 50 g or more and less than 25.0 s / 50 g C: 25.0 s / 50 g or more and less than 27.0 s / 50 g F: 27.0 s / 50 g or more (or not flowing) The results are shown in Table 3 below.
  • composition III The fluidity of the powders of Examples 37-54 and Comparative Examples 13-18 obtained from alloys having composition III were measured and rated according to the following criteria. S: Less than 21.0 s / 50 g A: 21.0 s / 50 g or more and less than 23.0 s / 50 g B: 23.0 s / 50 g or more and less than 25.0 s / 50 g C: 25.0 s / 50 g or more and less than 27.0 s / 50 g F: 27.0 s / 50 g or more (or not flowing) The results are shown in Table 4 below.
  • composition IV The fluidity of the powders of Examples 55-72 and Comparative Examples 19-24 obtained from alloys having composition IV were measured and rated according to the following criteria. S: 17.0 s / 50 g or less A: 17.0 s / 50 g or more and less than 19.0 s / 50 g B: 19.0 s / 50 g or more and less than 21.0 s / 50 g C: 21.0 s / 50 g or more and less than 23.0 s / 50 g F: 23.0 s / 50 g or more (or not flowing) The results are shown in Table 5 below.
  • composition V The fluidity of the powders of Examples 73-90 and Comparative Examples 25-30 obtained from alloys having composition V were measured and rated according to the following criteria. S: 25.0 s / 50 g or less A: 25.0 s / 50 g or more and less than 27.0 s / 50 g B: 27.0 s / 50 g or more and less than 29.0 s / 50 g C: 31.0 s / 50 g or more and less than 33.0 s / 50 g F: 33.0 s / 50 g or more (or not flowing) The results are shown in Table 6 below.
  • composition VI The fluidity of the powders of Examples 91-108 and Comparative Examples 31-36 obtained from alloys having composition VI were measured and rated according to the following criteria. S: Less than 15.0 s / 50 g A: 15.0 s / 50 g or more and less than 17.0 s / 50 g B: 17.0 s / 50 g or more and less than 19.0 s / 50 g C: 21.0 s / 50 g or more and less than 23.0 s / 50 g F: 23.0 s / 50 g or more (or not flowing) The results are shown in Table 7 below.
  • composition VII The fluidity of the powders of Examples 109-126 and Comparative Examples 37-42 obtained from alloys having composition VII were measured and rated according to the following criteria. S: 27.0 s / 50 g or less A: 27.0 s / 50 g or more and less than 29.0 s / 50 g B: 29.0 s / 50 g or more and less than 31.0 s / 50 g C: 33.0 s / 50 g or more and less than 35.0 s / 50 g F: 35.0 s / 50 g or more (or not flowing) The results are shown in Table 8 below.
  • composition VIII The fluidity of the powders of Examples 127-144 and Comparative Examples 43-48 obtained from alloys having composition VIII were measured and rated according to the following criteria. S: 18.0 s / 50 g or less A: 18.0 s / 50 g or more and less than 20.0 s / 50 g B: 20.0 s / 50 g or more and less than 22.0 s / 50 g C: 22.0 s / 50 g or more and less than 24.0 s / 50 g F: 24.0 s / 50 g or more (or does not flow) The results are shown in Table 9 below.
  • composition IX The fluidity of the powders of Examples 145-162 and Comparative Examples 49-54 obtained from alloys with composition IX were measured and rated according to the following criteria. S: Less than 12.0 s / 50 g A: 12.0 s / 50 g or more and less than 14.0 s / 50 g B: 14.0 s / 50 g or more and less than 16.0 s / 50 g C: 16.0 s / 50 g or more and less than 18.0 s / 50 g F: 18.0 s / 50 g or more (or does not flow) The results are shown in Table 10 below.
  • the metal powders of Examples 163 to 252 and Comparative Examples 55 to 72 shown in Table 12-14 were obtained from the 18 alloys shown in Table 11. Each powder was obtained by classifying a large number of particles by sieving. The particles were obtained by a water atomization method, a gas atomization method, or a disk atomization method. As shown below, the fluidity of each powder was measured in accordance with the rules of “JIS Z 2502,” and the fluidity was evaluated. This fluidity correlates with the strength of the shaped article and the coating layer.
  • compositions I-1, I-2, II-1, II-2, III-1 and III-2 The fluidity of the powders of Examples 163-192 and Comparative Examples 55-60 were measured and rated according to the following criteria.
  • C 24.0 s / 50 g or more and less than 26.0 s / 50 g
  • the results are shown in Table 12 below.
  • compositions IV-1, IV-2, V-1, VI-2, VI-1 and VI-2 The fluidity of the powders of Examples 193-222 and Comparative Examples 61-66 were measured and rated according to the following criteria. S: 22.0 s / 50 g or less A: Over 22.0 s / 50 g and 24.0 s / 50 g or less B: 24.0 s / 50 g or more and 26.0 s / 50 g or less C: Over 26.0 s / 50 g 28. 0 s / 50 g or less F: exceeds 28.0 s / 50 g (or does not flow) The results are shown in Table 13 below.
  • compositions VII-1, VII-2, VIII-1, VIII-2, IX-1 and IX-2 The fluidity of the powders of Examples 223-252 and Comparative Examples 67-72 was measured and rated according to the following criteria. S: 18.0 s / 50 g or less A: 18.0 s / 50 g or more and less than 20.0 s / 50 g B: 20.0 s / 50 g or more and less than 22.0 s / 50 g C: 22.0 s / 50 g or more and less than 24.0 s / 50 g F: 24.0 s / 50 g or more (or does not flow) The results are shown in Table 14 below.
  • the powder according to the present invention is also suitable for a 3D printer of a type in which powder is ejected from a nozzle.
  • This powder is also suitable for a laser coating method in which the powder is sprayed from a nozzle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

The present invention addresses the problem of providing a metal powder having excellent various properties. In order to solve the problem, the present invention provides a metal powder which is composed of many spherical particles, contains at last one of Ni, Fe and Co, contains Ni, Fe and Co in a total content (T. C.) of 50% by mass or more, has a cumulative 10 vol% particle diameter D10 of 1.0 μm or more, and has a Y value of 7.5 to 24.0 inclusive wherein the Y value is a value calculated in accordance with the following mathematical formula: Y = D50 × ρ × S (wherein D50 represents a cumulative 50 vol% particle diameter of the powder; ρ represents a true density of the powder; and S represents the specific surface area of the powder).

Description

球状粒子からなる金属粉末Metal powder consisting of spherical particles
 本発明は、三次元積層造形法、溶射法、レーザーコーティング法、肉盛法等に用いられる金属粉末に関する。詳細には、本発明は、多数の球状粒子を含む金属粉末に関する。 The present invention relates to a metal powder used in a three-dimensional additive manufacturing method, a thermal spraying method, a laser coating method, a cladding method, and the like. In particular, the present invention relates to a metal powder comprising a large number of spherical particles.
 金属からなる造形物の製作に、3Dプリンターが使用されている。この3Dプリンターでは、三次元積層造形法によって造形物が製作される。積層造形法では、敷き詰められた金属粉末に、レーザービーム又は電子ビームが照射される。照射により、金属が溶融する。金属はその後、凝固する。この溶融と凝固とにより、粉末中の球状粒子同士が結合する。照射は、金属粉末の一部に、選択的になされる。粉末の、照射がなされなかった部分は、溶融しない。照射がなされた部分のみにおいて、結合層が形成される。ノズルから噴射されて進行している金属粉末に、ビームが照射されて、結合層が得られてもよい。 3D printers are used to produce metal objects. In this 3D printer, a model is manufactured by a three-dimensional additive manufacturing method. In the additive manufacturing method, the spread metal powder is irradiated with a laser beam or an electron beam. Irradiation melts the metal. The metal then solidifies. Due to this melting and solidification, the spherical particles in the powder are bonded together. Irradiation is selectively performed on a part of the metal powder. The part of the powder that has not been irradiated does not melt. Only in the irradiated part, a bonding layer is formed. The bonding powder may be obtained by irradiating a beam onto the metal powder that has been jetted from the nozzle and traveling.
 結合層の上に、さらに金属粉末が敷き詰められる。この金属粉末に、レーザービーム又は電子ビームが照射される。照射により、金属が溶融する。金属はその後、凝固する。この溶融と凝固とにより、粉末中の粒子同士が結合され、新たな結合層が形成される。新たな結合層は、既存の結合層とも結合される。 さ ら に Further metal powder is spread on the bonding layer. This metal powder is irradiated with a laser beam or an electron beam. Irradiation melts the metal. The metal then solidifies. By this melting and solidification, particles in the powder are bonded to each other, and a new bonded layer is formed. The new bonding layer is also combined with the existing bonding layer.
 照射による結合が繰り返されることにより、結合層の集合体が徐々に成長する。この成長により、三次元形状を有する造形物が得られる。積層造形法により、複雑な形状の造形物が、容易に得られる。 集合 By repeating the bonding by irradiation, the aggregate of the bonding layer grows gradually. With this growth, a three-dimensional shaped object is obtained. By the additive manufacturing method, a complicated shaped object can be easily obtained.
 金属被覆層の形成に、溶射法が用いられている。溶射法では、粉末の粒子が加速される。加速は、圧縮ガス等でなされる。加速されて進行中の粒子が、加熱手段にて加熱される。加熱手段として、ガスの燃焼炎、プラズマ、レーザー等が挙げられる。加熱により、粒子は溶融状態又は半溶融状態となる。この粒子が対象物に衝突させられ、凝固する。凝固により、粒子同士が結合する。粒子は、下地とも結合する。結合により、被覆層が形成される。金属粉末が対象物に衝突した後に、加熱がなされてもよい。金属粉末が対象物に接触した状態で、加熱がなされてもよい。厚い被覆層が形成される溶射法は、肉盛法とも称される。粒子がレーザーで加熱される溶射法は、レーザーコーティング法とも称され、さらにレーザー溶射法とも称される。 The thermal spraying method is used for forming the metal coating layer. In the thermal spraying method, powder particles are accelerated. The acceleration is performed with compressed gas or the like. The accelerated and ongoing particles are heated by the heating means. Examples of the heating means include a gas combustion flame, plasma, and laser. By heating, the particles become molten or semi-molten. The particles collide with the object and solidify. The particles are bonded together by solidification. The particles also bind to the substrate. By the bonding, a covering layer is formed. Heating may be performed after the metal powder collides with the object. Heating may be performed while the metal powder is in contact with the object. The thermal spraying method in which a thick coating layer is formed is also referred to as a cladding method. A thermal spraying method in which particles are heated by a laser is also called a laser coating method, and is also called a laser spraying method.
 積層造形法、溶射法、肉盛り法、レーザーコーティング法等に使用される金属粉末は、水アトマイズ法、ガスアトマイズ法等によって製作される。この金属粉末の性状は、取り扱い性に影響を与える。金属粉末の性状はさらに、三次元造形物又は被覆層の物性に影響を与える。 Metal powders used for additive manufacturing, thermal spraying, overlaying, laser coating, etc. are manufactured by water atomization, gas atomization, etc. The properties of the metal powder affect the handleability. The properties of the metal powder further affect the physical properties of the three-dimensional structure or the coating layer.
 特開2001-152204号公報(特許文献1)には、積層造形法によって得られた造形物に、この造形物の融点よりも低い融点を有する金属が含浸させられた金属製品が開示されている。含浸は、金属製品の密度を高める。 Japanese Patent Laid-Open No. 2001-152204 (Patent Document 1) discloses a metal product obtained by impregnating a modeled object obtained by the additive manufacturing method with a metal having a melting point lower than the melting point of the modeled object. . Impregnation increases the density of the metal product.
 特開2006-321711号公報(特許文献2)には、算術平均円形度が0.7以上である金属粉末が開示されている。この粉末では、粒子の表面が凝集防止粒子で覆われている。この粉末では、凝集が生じにくい。この粉末は、取り扱い性に優れる。この粉末から得られた造形物の密度は、大きい。この造形物は、強度に優れる。 JP 2006-321711 A (Patent Document 2) discloses a metal powder having an arithmetic average circularity of 0.7 or more. In this powder, the surface of the particles is covered with aggregation preventing particles. With this powder, aggregation is unlikely to occur. This powder is excellent in handleability. The density of the shaped object obtained from this powder is large. This shaped article is excellent in strength.
 特開2011-21218号公報(特許文献3)には、レーザー吸収剤を含む粉末が開示されている。この粉末から得られた造形物は、強度に優れる。 Japanese Patent Application Laid-Open No. 2011-21218 (Patent Document 3) discloses a powder containing a laser absorber. A shaped article obtained from this powder is excellent in strength.
特開2001-152204公報JP 2001-152204 A 特開2006-321711公報JP 2006-321711 A 特開2011-21218公報JP 2011-21218 A
 積層造形法、溶射法、肉盛り法、レーザーコーティング法等に用いられる粉末に対する要求性能は、益々高まっている。
 本発明の目的は、諸性能に優れた粉末の提供にある。
The required performance for powders used in additive manufacturing methods, thermal spraying methods, overlaying methods, laser coating methods and the like is increasing.
An object of the present invention is to provide a powder excellent in various performances.
 本発明に係る金属粉末は、多数の球状粒子からなる。この粉末は、Ni、Fe及びCoのうちの少なくとも1種を含む。このNi、Fe及びCoの合計含有率(T.C.)は、50質量%以上である。この粉末の累積10体積%粒子径D10は、1.0μm以上である。この粉末の、下記数式によって算出される値Yは、7.5以上24.0以下である。
  Y=D50×ρ×S
 この数式において、D50は粉末の累積50体積%粒子径であり、ρは粉末の真密度であり、Sは粉末の比表面積である。
The metal powder according to the present invention comprises a large number of spherical particles. This powder contains at least one of Ni, Fe and Co. The total content (TC) of Ni, Fe and Co is 50% by mass or more. The cumulative 10 volume% particle diameter D10 of this powder is 1.0 μm or more. The value Y of this powder calculated by the following mathematical formula is 7.5 or more and 24.0 or less.
Y = D50 × ρ × S
In this equation, D50 is the cumulative 50 volume% particle size of the powder, ρ is the true density of the powder, and S is the specific surface area of the powder.
 本発明に係る金属粉末の好ましい態様では、Ni、Fe及びCoの3種以外の残部は、C、Si、Cr、Mo、Al、Ti、V、W、Nb、Zn、Ta、B、Ag、Cu及びSnのうちの少なくとも1種並びに不可避不純物である。 In a preferred embodiment of the metal powder according to the present invention, the balance other than three kinds of Ni, Fe and Co is C, Si, Cr, Mo, Al, Ti, V, W, Nb, Zn, Ta, B, Ag, At least one of Cu and Sn and inevitable impurities.
 本発明に係る金属粉末の好ましい態様では、粒子径D10に対する、累積60体積%粒子径D60の比(D60/D10)は、1.0以上10.0未満である。 In a preferred embodiment of the metal powder according to the present invention, the ratio of the cumulative 60 volume% particle diameter D60 to the particle diameter D10 (D60 / D10) is 1.0 or more and less than 10.0.
 本発明に係る金属粉末の好ましい態様では、粒子径D50とモード径Dmとの比(D50/Dm)は、0.80以上1.20以下である。 In a preferred embodiment of the metal powder according to the present invention, the ratio of the particle diameter D50 to the mode diameter Dm (D50 / Dm) is 0.80 or more and 1.20 or less.
 本発明に係る金属粉末の好ましい態様では、粒子の総数に対するその円形度が0.95以上である粒子の数の比率P2は、50%以上である。より好ましくは、この比率P2は、80%以上である。 In a preferred embodiment of the metal powder according to the present invention, the ratio P2 of the number of particles having a circularity of 0.95 or more with respect to the total number of particles is 50% or more. More preferably, the ratio P2 is 80% or more.
 本発明に係る金属粉末の好ましい態様では、金属粉末の酸素濃度は、1000ppm未満である。 In a preferred embodiment of the metal powder according to the present invention, the oxygen concentration of the metal powder is less than 1000 ppm.
 本発明に係る金属粉末の上記好ましい態様のうち2以上の態様を組み合わせてもよい。 Two or more of the above preferred embodiments of the metal powder according to the present invention may be combined.
 本発明に係る粉末では、Y値が、7.5以上24.0以下である。この粉末は、取り扱い性に優れる。この粉末から得られた造形物は、高強度である。この粉末から得られた被覆層は、耐摩耗性に優れる。 In the powder according to the present invention, the Y value is 7.5 or more and 24.0 or less. This powder is excellent in handleability. A shaped article obtained from this powder has high strength. The coating layer obtained from this powder is excellent in wear resistance.
 本発明に係る金属粉末は、多数の粒子の集合である。それぞれの粒子の形状は、球状である。本発明において「球状の粒子」には、真球の粒子及び真球に近い形状を有する粒子が含まれる。 The metal powder according to the present invention is an aggregate of a large number of particles. The shape of each particle is spherical. In the present invention, “spherical particles” include true sphere particles and particles having a shape close to a true sphere.
 本発明に係る金属粉末に含まれる粒子は、Ni、Fe及びCoのうちの少なくとも1種を含んでいる。粒子は、Ni、Fe及びCoのうちの1種のみを含んでもよい。粒子は、Ni及びFeのみを含んでもよい。粒子は、Fe及びCoのみを含んでもよい。粒子は、Co及びNiのみを含んでもよい。粒子は、Ni、Fe及びCoの全てを含んでもよい。 The particles contained in the metal powder according to the present invention contain at least one of Ni, Fe and Co. The particles may contain only one of Ni, Fe and Co. The particles may contain only Ni and Fe. The particles may contain only Fe and Co. The particles may contain only Co and Ni. The particles may include all of Ni, Fe and Co.
 本発明に係る金属粉末に含まれる粒子の好ましい材質として、SUS316、SUS630、ALLOYC276、ALLOY718、ALLOY-No.6及びALLOY-No.20が例示される。 Preferred materials for the particles contained in the metal powder according to the present invention include SUS316, SUS630, ALLOYC276, ALLOY718, ALLOY-No. 6 and ALLOY-No. 20 is exemplified.
 本発明に係る金属粉末におけるNi、Fe及びCoの合計含有率(T.C.)は、50質量%以上である。Niは高耐食性が求められる用途に適しており、Feは高強度が求められる用途に適しており、Coは高耐食性及び高耐摩耗性が求められる用途に適している。求められる用途が複数の場合、粉末はNi、Fe及びCoのうち2つ以上を含んでもよい。合計含有率(T.C.)は、70質量%以上が特に好ましい。合計含有率(T.C.)は100質量%であってもよい。 The total content (TC) of Ni, Fe and Co in the metal powder according to the present invention is 50% by mass or more. Ni is suitable for applications requiring high corrosion resistance, Fe is suitable for applications requiring high strength, and Co is suitable for applications requiring high corrosion resistance and high wear resistance. When there are a plurality of required applications, the powder may contain two or more of Ni, Fe and Co. The total content (TC) is particularly preferably 70% by mass or more. The total content (TC) may be 100% by mass.
 本発明に係る金属粉末に含まれる粒子は、他の元素を含んでもよい。他の元素として、
(1)C、Mg、Al、Ti、V、Mn、Zn及びBのような、強度向上に寄与しうる元素、
(2)S、P、Bi及びSbのような、切削性に寄与する元素、
(3)C、Cr、W、Mo、N及びBのような、耐摩耗性に寄与しうる元素、
(4)Cr、Ag、Cu、Zr、Nb、Mo、Ta、W及びSnのような、耐食性に寄与しうる元素、並びに
(5)Si、Ge、Hf、La、Ce、Nd、Pr、Gd、Tb、Dy、Yb及びYのような、磁気特性に寄与しうる元素
が例示される。粒子は、不可避的不純物を含みうる。
The particles contained in the metal powder according to the present invention may contain other elements. As other elements,
(1) Elements that can contribute to strength improvement, such as C, Mg, Al, Ti, V, Mn, Zn, and B,
(2) Elements contributing to machinability, such as S, P, Bi and Sb,
(3) Elements that can contribute to wear resistance, such as C, Cr, W, Mo, N and B,
(4) Elements that can contribute to corrosion resistance, such as Cr, Ag, Cu, Zr, Nb, Mo, Ta, W, and Sn, and (5) Si, Ge, Hf, La, Ce, Nd, Pr, Gd Examples include elements that can contribute to the magnetic properties, such as Tb, Dy, Yb, and Y. The particles can contain unavoidable impurities.
 好ましくは、Ni、Fe及びCoの3種以外の残部は、C、Si、Cr、Mo、Al、Ti、V、W、Nb、Zn、Ta、B、Ag、Cu及びSnのうちの少なくとも1種並びに不可避不純物である。 Preferably, the balance other than three of Ni, Fe and Co is at least one of C, Si, Cr, Mo, Al, Ti, V, W, Nb, Zn, Ta, B, Ag, Cu and Sn. Species as well as inevitable impurities.
 本発明では、下記数式(1)により、値Yが算出される。
  Y=D50×ρ×S
 この数式において、D50は粉末の累積50体積%粒子径(m)であり、ρは粉末の真密度(kg/m)であり、Sは粉末の比表面積(m/kg)である。値Yは、7.5以上24.0以下である。
In the present invention, the value Y is calculated by the following mathematical formula (1).
Y = D50 × ρ × S
In this equation, D50 is the cumulative 50 volume% particle size (m) of the powder, ρ is the true density (kg / m 3 ) of the powder, and S is the specific surface area (m 2 / kg) of the powder. The value Y is 7.5 or more and 24.0 or less.
 本発明に係る金属粉末の累積10体積%粒子径D10は、1.0μm以上である。 The cumulative 10 volume% particle diameter D10 of the metal powder according to the present invention is 1.0 μm or more.
 粒子が真球である場合、その直径d、表面積S及び密度ρは、下記の数式を満たす。
  d=6/(ρ×S
 表面に凹凸を有する粒子では、真球である粒子に比べ、表面積Sが大きい。従って、表面に凹凸を有する粒子の直径dは、真球である粒子の直径に比べて小さい。直径dが小さな粒子では、この直径dが、見かけ直径とは異なる。粒子の集合体である粉末では、個々の粒子の表面積の質量あたりの平均値は、比表面積Sとして表現される。
 従って、以下の数式で算出される値dは粉末の直径の平均値を示す。
  d=6/(ρ×S)
 全ての粒子が真球である粉末では、粒子径D50は直径dと等しい。一方、粒子が凹凸を有する場合、粒子径D50は直径dよりも大きい。本発明者らは、鋭意検討の結果、(d/D50)が0.25以上0.8以下である粉末が流動性に優れることを見いだした。(d/D50)が0.25以上0.8以下である粉末では、値Yは、7.5以上24.0以下である。
When the particle is a true sphere, its diameter d 1 , surface area S 1, and density ρ satisfy the following mathematical formula.
d 1 = 6 / (ρ × S 1 )
In the particles having an uneven surface, as compared to the particle is a sphere, a large surface area S 1. Therefore, the diameter d of the particles having irregularities on the surface is smaller than the diameter of the particles that are true spheres. If the diameter d 1 is small particles, the diameter d 1 is different from the apparent diameter. In the powder that is an aggregate of particles, the average value per mass of the surface area of each particle is expressed as a specific surface area S.
Therefore, the value d calculated by the following mathematical formula represents the average value of the diameter of the powder.
d = 6 / (ρ × S)
In a powder in which all particles are true spheres, the particle diameter D50 is equal to the diameter d. On the other hand, when the particles have irregularities, the particle diameter D50 is larger than the diameter d. As a result of intensive studies, the present inventors have found that a powder having (d / D50) of 0.25 or more and 0.8 or less is excellent in fluidity. In a powder having (d / D50) of 0.25 or more and 0.8 or less, the value Y is 7.5 or more and 24.0 or less.
 値Yが上記範囲内である粉末では、粒子の表面の凹凸が小さい。この粉末は、流動性に優れる。従ってこの粉末は、取り扱い性に優れる。この粉末から得られた造形物は、高強度である。この粉末から得られた被覆層は、耐摩耗性に優れる。 The powder whose value Y is within the above range has small irregularities on the surface of the particles. This powder is excellent in fluidity. Therefore, this powder is excellent in handleability. A shaped article obtained from this powder has high strength. The coating layer obtained from this powder is excellent in wear resistance.
 粉末の真密度ρは、表面細孔や内部の空隙を含まない、固体自身が占める体積だけを分母である体積とした密度のことである。真密度ρは、気相置換法により導出される。測定装置として、島津製作所社の乾式自動密度測定器「AccuPyc II1340」が挙げられる。 The true density ρ of the powder is a density that does not include surface pores and internal voids, and uses only the volume occupied by the solid itself as the denominator volume. The true density ρ is derived by a gas phase substitution method. As a measuring apparatus, there is a dry automatic density measuring device “AccuPyc II II 1340” manufactured by Shimadzu Corporation.
 粉末の比表面積Sは、単位質量あたりの表面積を意味する。比表面積Sは、ガス吸着法により導出される。測定装置として、島津製作所社の流動式比表面積自動測定装置「フローソーブIII2305」が挙げられる。 The specific surface area S of the powder means the surface area per unit mass. The specific surface area S is derived by a gas adsorption method. An example of the measuring apparatus is a flow type specific surface area automatic measuring apparatus “Flowsorb III 2305” manufactured by Shimadzu Corporation.
 本発明に係る金属粉末では、粒子径D10に対する、累積60体積%粒子径D60の比(D60/D10)は、1.0以上10.0未満が好ましい。粉末が充填されたとき、直径の大きな粒子の間に直径の小さな粒子が入り込む。直径の小さな粒子の量が過大である粉末は、流動性に劣る。この粉末は、敷き詰め性に劣る。直径の小さな粒子の量が過小である粉末では、溶融時の体積収縮率が大きい。本発明者らは、鋭意検討の結果、比(D60/D10)が1.0以上10.0未満である粉末において、敷き詰め性と低収縮率とが両立されることを見いだした。比(D60/D10)は2.0以上がより好ましく、5.0以上が特に好ましい。比(D60/D10)は8.0以下がより好ましく、6.0以下が特に好ましい。 In the metal powder according to the present invention, the ratio of the cumulative 60 volume% particle diameter D60 to the particle diameter D10 (D60 / D10) is preferably 1.0 or more and less than 10.0. When the powder is filled, small diameter particles get in between large diameter particles. Powders with an excessive amount of small diameter particles are inferior in fluidity. This powder is inferior in spreadability. A powder having an excessively small amount of particles having a small diameter has a large volumetric shrinkage rate upon melting. As a result of intensive studies, the present inventors have found that spreadability and low shrinkage ratio are compatible in a powder having a ratio (D60 / D10) of 1.0 or more and less than 10.0. The ratio (D60 / D10) is more preferably 2.0 or more, and particularly preferably 5.0 or more. The ratio (D60 / D10) is more preferably 8.0 or less, and particularly preferably 6.0 or less.
 粉末の粒子径D10、D50及びD60の測定では、粉末の全体積が100%とされて、累積カーブが求められる。このカーブ上の、累積体積が10%である点の粒子径が、D10である。このカーブ上の、累積体積が50%である点の粒子径が、D50である。このカーブ上の、累積体積が60%である点の粒子径が、D60である。粒子径D10、D50及びD60は、レーザー回折散乱法によって測定される。この測定に適した装置として、日機装社のレーザー回折・散乱式粒子径分布測定装置「マイクロトラックMT3000」が挙げられる。この装置のセル内に、粉末が純水と共に流し込まれ、粒子の光散乱情報に基づいて、粒子径が検出される。 In the measurement of the particle diameters D10, D50, and D60 of the powder, the total volume of the powder is 100%, and a cumulative curve is obtained. The particle diameter at the point where the cumulative volume is 10% on this curve is D10. The particle diameter at the point where the cumulative volume is 50% on this curve is D50. The particle diameter at the point where the cumulative volume is 60% on this curve is D60. The particle diameters D10, D50 and D60 are measured by a laser diffraction scattering method. An apparatus suitable for this measurement is Nikkiso Co., Ltd.'s laser diffraction / scattering particle size distribution measuring apparatus “Microtrack MT3000”. The powder is poured into the cell of this apparatus together with pure water, and the particle diameter is detected based on the light scattering information of the particles.
 本発明に係る金属粉末では、粒子径D50とモード径Dmとの比(D50/Dm)は、0.80以上1.20以下が好ましい。比(D50/Dm)がこの範囲内である粉末の粒度分布は、対数正規分布に近い。この粉末は、流動性に優れる。従ってこの粉末は、取り扱い性に優れる。この粉末から得られた造形物は、高強度である。この粉末から得られた被覆層は、耐摩耗性に優れる。これらの観点から、比(D50/Dm)は0.85以上1.15以下がより好ましく、0.90以上1.10以下が特に好ましい。 In the metal powder according to the present invention, the ratio of the particle diameter D50 to the mode diameter Dm (D50 / Dm) is preferably 0.80 or more and 1.20 or less. The particle size distribution of a powder having a ratio (D50 / Dm) within this range is close to a lognormal distribution. This powder is excellent in fluidity. Therefore, this powder is excellent in handleability. A shaped article obtained from this powder has high strength. The coating layer obtained from this powder is excellent in wear resistance. From these viewpoints, the ratio (D50 / Dm) is more preferably 0.85 or more and 1.15 or less, and particularly preferably 0.90 or more and 1.10 or less.
 モード径Dmの測定では、体積が基準とされて粒度分布の頻度曲線が求められる。この頻度曲線において頻度が最大となる粒子径が、モード径Dmである。粒度分布の頻度曲線は、レーザー回折散乱法によって求められる。この測定に適した装置として、日機装社のレーザー回折・散乱式粒子径分布測定装置「マイクロトラックMT3000」が挙げられる。 In the measurement of the mode diameter Dm, the frequency curve of the particle size distribution is obtained based on the volume. The particle diameter at which the frequency is maximum in this frequency curve is the mode diameter Dm. The frequency curve of the particle size distribution is obtained by a laser diffraction scattering method. An apparatus suitable for this measurement is Nikkiso Co., Ltd.'s laser diffraction / scattering particle size distribution measuring apparatus “Microtrack MT3000”.
 本発明に係る金属粉末では、粒子の総数に対する、その円形度が0.95以上である粒子の数の比率P2は、50%以上が好ましい。この粉末は、流動性及び充填性に優れる。この粉末が、積層造形法又は溶射法に供されるとき、円滑にかつ密に、敷き詰められ得る。さらに、この粉末から得られた造形物及び被覆層は、強度に優れる。これらの観点から、比率P2は70%以上がより好ましく、80%以上が特に好ましい。円形度の測定方法には画像解析装置が用いられる。粉末を上部から写真撮影し、粉末の輪郭から画像解析装置にて円形度を算出する。粉末が球体で輪郭が円形となるとき、円形度は1となり、凹凸が存在するとき、円形度は0以上1未満の数字となる。 In the metal powder according to the present invention, the ratio P2 of the number of particles having a circularity of 0.95 or more with respect to the total number of particles is preferably 50% or more. This powder is excellent in fluidity and filling properties. When this powder is subjected to additive manufacturing or thermal spraying, it can be spread smoothly and densely. Furthermore, the molded article and coating layer obtained from this powder are excellent in strength. From these viewpoints, the ratio P2 is more preferably 70% or more, and particularly preferably 80% or more. An image analysis apparatus is used as a method for measuring the circularity. The powder is photographed from above, and the circularity is calculated by the image analyzer from the powder outline. When the powder is a sphere and the contour is circular, the circularity is 1, and when there is unevenness, the circularity is a number from 0 to less than 1.
 円形度Roは、下記数式によって算出される。
  Ro=4πS/L
 この数式において、Sは粒子又はその断面の投影面積であり、Lはこの投影像の輪廓長である。投影面積S及び輪廓長Lの測定には、例えば画像解析装置が用いられる。
The circularity Ro is calculated by the following mathematical formula.
Ro = 4πS / L 2
In this equation, S is the projected area of the particle or its cross section, and L is the ring length of this projected image. For example, an image analysis device is used to measure the projection area S and the ring length L.
 本発明に係る金属粉末では、酸素濃度は、1000ppm未満が好ましい。この酸素濃度は、粉末に含まれる酸化物の量と相関する。酸素濃度が1000ppm未満である粉末から得られた造形物及び被覆層は、強度に優れる。これらの観点から、酸素濃度は500ppm以下が特に好ましい。酸素濃度の測定方法としては分散型赤外線吸収法が用いられる。測定装置としては、例えば、堀場製作所製のEMGA-930が用いられる。 In the metal powder according to the present invention, the oxygen concentration is preferably less than 1000 ppm. This oxygen concentration correlates with the amount of oxide contained in the powder. A shaped article and a coating layer obtained from a powder having an oxygen concentration of less than 1000 ppm are excellent in strength. From these viewpoints, the oxygen concentration is particularly preferably 500 ppm or less. A dispersion type infrared absorption method is used as a method for measuring the oxygen concentration. As the measuring device, for example, EMGA-930 manufactured by Horiba Seisakusho is used.
 本発明に係る金属粉末は密に敷き詰めることができるので、特開2001-152204に開示された、造形物への低融点金属の含浸は、不要である。この粉末から得られた造形物が高温環境下で使用されても、低融点金属の溶融は生じない。この造形物は、高温環境下での使用に適している。もちろん、造形物に低融点金属が含浸されてもよい。 Since the metal powder according to the present invention can be densely spread, impregnation of the low melting point metal into the molded article disclosed in Japanese Patent Application Laid-Open No. 2001-152204 is unnecessary. Even if a shaped article obtained from this powder is used in a high temperature environment, melting of the low melting point metal does not occur. This shaped object is suitable for use in a high temperature environment. Of course, the molded object may be impregnated with a low melting point metal.
 本発明に係る金属粉末は流動性に優れるので、特開2006-321711公報に開示された凝集防止粒子は不要である。凝集防止粒子を含まない粉末では、この凝集防止粒子が粒子同士の結合を阻害しない。従って、この粉末から得られた造形物及び被覆層は、強度に優れる。もちろん、この粉末が凝集防止粒子を含んでもよい。 Since the metal powder according to the present invention is excellent in fluidity, the aggregation preventing particles disclosed in JP-A-2006-321711 are not necessary. In a powder containing no aggregation preventing particles, the aggregation preventing particles do not hinder the bonding between the particles. Therefore, the molded article and the coating layer obtained from this powder are excellent in strength. Of course, this powder may contain anti-agglomeration particles.
 本発明に係る金属粉末から得られた造形物及び被覆層は強度に優れるので、特開2011-21218公報に開示されたレーザー吸収剤の、この粉末への混合は、不要である。従って、レーザー吸収剤に起因する欠陥は生じない。もちろん、この粉末にレーザー吸収剤が混合されてもよい。 Since the molded article and the coating layer obtained from the metal powder according to the present invention are excellent in strength, it is not necessary to mix the laser absorber disclosed in JP2011-21218A with this powder. Therefore, defects due to the laser absorber do not occur. Of course, a laser absorber may be mixed with this powder.
 前述の通り、本発明に係る金属粉末の値Yは7.5以上24.0以下である。この粉末に含まれる粒子は、球に近い形状を有する。この粉末は流動性及び充填性に優れるので、溶融時の体積収縮が小さい。この粉末から得られた造形物及び被覆層には、空孔が少ない。この粉末から、強度に優れた造形物及び被覆層が得られうる。強度の観点から、値Yは18.0以下がより好ましく、12.0以下が特に好ましい。 As described above, the value Y of the metal powder according to the present invention is 7.5 or more and 24.0 or less. The particles contained in this powder have a shape close to a sphere. Since this powder is excellent in fluidity and filling property, volume shrinkage at the time of melting is small. The shaped product and the coating layer obtained from this powder have few pores. From this powder, a molded article and a coating layer excellent in strength can be obtained. From the viewpoint of strength, the value Y is more preferably 18.0 or less, and particularly preferably 12.0 or less.
 粒子がサテライトになりにくいとの観点から、粒子径D10は5μm以上が好ましく、10μm以上が特に好ましい。粒子径D10は、15μm以下が好ましい。 From the viewpoint of preventing the particles from becoming satellites, the particle diameter D10 is preferably 5 μm or more, and particularly preferably 10 μm or more. The particle diameter D10 is preferably 15 μm or less.
 造形物及び被覆層への汎用性の観点から、粒子径D50は15μm以上50μm以下が好ましく、20μm以上30μm以下が特に好ましい。 From the viewpoint of versatility to a shaped article and a coating layer, the particle diameter D50 is preferably 15 μm or more and 50 μm or less, and particularly preferably 20 μm or more and 30 μm or less.
 汎用性の観点から、粒子径D60は18μm以上70μm以下が好ましく、24μm以上45m以下が特に好ましい。 From the viewpoint of versatility, the particle diameter D60 is preferably 18 μm or more and 70 μm or less, and particularly preferably 24 μm or more and 45 m or less.
 本発明に係る金属粉末は、種々の方法で製造されうる。製造方法の具体例として、水アトマイズ法、ガスアトマイズ法、プラズマアトマイズ法、回転電極法、ディスクアトマイズ法、メルトスピニング法、機械的粉砕法及び化学的還元法が挙げられる。好ましい製造方法は、水アトマイズ法、ガスアトマイズ法及びディスクアトマイズ法である。特に、ガスアトマイズ法が好ましい。複数の製造方法が組み合わされてもよい。例えば、水アトマイズ法で得られた粉末が機械的に粉砕されてもよい。 The metal powder according to the present invention can be produced by various methods. Specific examples of the production method include a water atomization method, a gas atomization method, a plasma atomization method, a rotating electrode method, a disk atomization method, a melt spinning method, a mechanical grinding method, and a chemical reduction method. Preferable manufacturing methods are a water atomizing method, a gas atomizing method and a disk atomizing method. In particular, the gas atomization method is preferable. A plurality of manufacturing methods may be combined. For example, powder obtained by the water atomization method may be mechanically pulverized.
 水アトマイズ法の一例では、底部に細孔を有する坩堝の中に、原料が投入される。この原料が、大気、アルゴンガス又は窒素ガスの雰囲気中で、高周波誘導炉によって加熱され、溶融する。細孔から流出する原料に、水が噴射される。原料は急冷されて凝固し、粉末が得られる。 In an example of the water atomization method, raw materials are put into a crucible having pores at the bottom. This raw material is heated and melted by a high frequency induction furnace in the atmosphere of air, argon gas or nitrogen gas. Water is jetted onto the raw material flowing out from the pores. The raw material is rapidly cooled and solidified to obtain a powder.
 ガスアトマイズ法の一例では、底部に細孔を有する坩堝の中に、原料が投入される。この原料が、大気、アルゴンガス又は窒素ガスの雰囲気中で、高周波誘導炉によって加熱され、溶融する。細孔から流出する原料に、ヘリウムガス、アルゴンガス又は窒素ガスが噴射される。原料は急冷されて凝固し、粉末が得られる。 In an example of the gas atomization method, raw materials are put into a crucible having pores at the bottom. This raw material is heated and melted by a high frequency induction furnace in the atmosphere of air, argon gas or nitrogen gas. Helium gas, argon gas or nitrogen gas is injected into the raw material flowing out from the pores. The raw material is rapidly cooled and solidified to obtain a powder.
 アトマイズの条件が調整されることにより、Y値が適正な粉末が得られうる。アトマイズによって得られた粉末から、粒子径、密度及び比表面積が適正な粒子が選択されてもよい。選択の方法の一例として、メッシュによる篩い分けが挙げられる。 The powder with proper Y value can be obtained by adjusting the atomizing conditions. Particles having an appropriate particle size, density, and specific surface area may be selected from the powder obtained by atomization. One example of the selection method is sieving with a mesh.
 以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。 Hereinafter, the effects of the present invention will be clarified by examples. However, the present invention should not be interpreted in a limited manner based on the description of the examples.
 実施例及び比較例において、金属粉末に関する各種パラメータは以下の通り求めた。
[粒子径D10、D50及びD60並びにモード径Dm]
 粒子径D10、D50及びD60並びにモード径Dmは、日機装社のレーザー回折・散乱式粒子径分布測定装置「マイクロトラックMT3000」を使用し、レーザー回折散乱法によって測定された粒子径分布に基づいて求めた。マイクロトラックMT3000を使用した粒子径分布の測定では、この装置のセル内に、粉末が純水と共に流し込まれ、粒子の光散乱情報に基づいて、粒子径が検出される。
[真密度ρ]
 真密度ρは、島津製作所社の乾式自動密度測定器「AccuPyc II1340」を使用し、気相置換法により測定した。
[比表面積S]
 比表面積Sは、島津製作所社の流動式比表面積自動測定装置「フローソーブIII2305」を使用して、ガス吸着法により測定した。
[値Y]
 値Yは、次式により算出した。
  Y=D50×ρ×S
 この数式において、D50は粉末の累積50体積%粒子径であり、ρは粉末の真密度であり、Sは粉末の比表面積である。
[比率P2]
 粉末の円形度は画像解析装置にて粒子500個分の円形度をそれぞれ測定し、その中の円形度0.95以上の粒子の個数を測定し、全体の個数に占める割合をP2とした。
[酸素濃度]
 粉末の酸素濃度は堀場製作所製の測定装置「EMGA-930」を使用して分散型赤外線吸収法にて測定した。
In the examples and comparative examples, various parameters related to the metal powder were determined as follows.
[Particle diameters D10, D50 and D60 and mode diameter Dm]
The particle diameters D10, D50 and D60 and the mode diameter Dm are obtained based on the particle diameter distribution measured by the laser diffraction scattering method using a Nikkiso laser diffraction / scattering particle diameter distribution measuring device “Microtrack MT3000”. It was. In the measurement of the particle size distribution using the Microtrac MT3000, the powder is poured into the cell of this apparatus together with pure water, and the particle size is detected based on the light scattering information of the particles.
[True density ρ]
The true density ρ was measured by a gas phase substitution method using a dry automatic density measuring device “AccuPyc II1340” manufactured by Shimadzu Corporation.
[Specific surface area S]
The specific surface area S was measured by a gas adsorption method using a flow type specific surface area automatic measuring device “Flowsorb III2305” manufactured by Shimadzu Corporation.
[Value Y]
The value Y was calculated by the following formula.
Y = D50 × ρ × S
In this equation, D50 is the cumulative 50 volume% particle size of the powder, ρ is the true density of the powder, and S is the specific surface area of the powder.
[Ratio P2]
As for the circularity of the powder, the circularity of 500 particles was measured with an image analyzer, the number of particles having a circularity of 0.95 or more was measured, and the ratio of the total number of particles was defined as P2.
[Oxygen concentration]
The oxygen concentration of the powder was measured by a dispersive infrared absorption method using a measuring device “EMGA-930” manufactured by Horiba.
[実験1]
[合金の準備]
 下記の表1に示された組成IからIXを有する合金を準備した。なお、表1中、「Bal.」は、残部(balance)を意味する。
[Experiment 1]
[Preparation of alloy]
Alloys having compositions I to IX shown in Table 1 below were prepared. In Table 1, “Bal.” Means the balance.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[粉末の製作]
 表1に示された9種の合金から、表2-10に示された、実施例1-162及び比較例1-54の金属粉末を得た。各粉末は、多数の粒子に、篩いによる分級が施されることで得られた。この粒子は、水アトマイズ法、ガスアトマイズ法又はディスクアトマイズ法により得られた。以下に示す通り、「JIS Z 2502」の規定に準拠して各粉末の流動度を測定し、流動性を評価した。この流動性は、造形物及び被覆層の強度と相関する。
[Production of powder]
From the nine alloys shown in Table 1, the metal powders of Example 1-162 and Comparative Example 1-54 shown in Table 2-10 were obtained. Each powder was obtained by classifying a large number of particles by sieving. The particles were obtained by a water atomization method, a gas atomization method, or a disk atomization method. As shown below, the fluidity of each powder was measured in accordance with the rules of “JIS Z 2502,” and the fluidity was evaluated. This fluidity correlates with the strength of the shaped article and the coating layer.
[組成I]
 組成Iを有する合金から得られた実施例1-18及び比較例1-6の粉末の流動度を測定し、下記の基準に従って格付けした。
  S:20.0s/50g未満
  A:20.0s/50g以上22.0s/50g未満
  B:22.0s/50g以上24.0s/50g未満
  C:24.0s/50g以上26.0s/50g未満
  F:26.0s/50g以上(又は流動せず)
 この結果が、下記の表2に示されている。
[Composition I]
The fluidity of the powders of Examples 1-18 and Comparative Examples 1-6 obtained from alloys having composition I were measured and rated according to the following criteria.
S: 20.0 s / 50 g or less A: 20.0 s / 50 g or more and less than 22.0 s / 50 g B: 22.0 s / 50 g or more and less than 24.0 s / 50 g C: 24.0 s / 50 g or more and less than 26.0 s / 50 g F: 26.0 s / 50 g or more (or does not flow)
The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[組成II]
 組成IIを有する合金から得られた実施例19-36及び比較例7-12の粉末の流動度を測定し、下記の基準に従って格付けした。
  S:21.0s/50g未満
  A:21.0s/50g以上23.0s/50g未満
  B:23.0s/50g以上25.0s/50g未満
  C:25.0s/50g以上27.0s/50g未満
  F:27.0s/50g以上(又は流動せず)
 この結果が、下記の表3に示されている。
[Composition II]
The fluidity of the powders of Examples 19-36 and Comparative Examples 7-12 obtained from alloys having composition II were measured and rated according to the following criteria.
S: Less than 21.0 s / 50 g A: 21.0 s / 50 g or more and less than 23.0 s / 50 g B: 23.0 s / 50 g or more and less than 25.0 s / 50 g C: 25.0 s / 50 g or more and less than 27.0 s / 50 g F: 27.0 s / 50 g or more (or not flowing)
The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[組成III]
 組成IIIを有する合金から得られた実施例37-54及び比較例13-18の粉末の流動度を測定し、下記の基準に従って格付けした。
  S:21.0s/50g未満
  A:21.0s/50g以上23.0s/50g未満
  B:23.0s/50g以上25.0s/50g未満
  C:25.0s/50g以上27.0s/50g未満
  F:27.0s/50g以上(又は流動せず)
 この結果が、下記の表4に示されている。
[Composition III]
The fluidity of the powders of Examples 37-54 and Comparative Examples 13-18 obtained from alloys having composition III were measured and rated according to the following criteria.
S: Less than 21.0 s / 50 g A: 21.0 s / 50 g or more and less than 23.0 s / 50 g B: 23.0 s / 50 g or more and less than 25.0 s / 50 g C: 25.0 s / 50 g or more and less than 27.0 s / 50 g F: 27.0 s / 50 g or more (or not flowing)
The results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
[組成IV]
 組成IVを有する合金から得られた実施例55-72及び比較例19-24の粉末の流動度を測定し、下記の基準に従って格付けした。
  S:17.0s/50g未満
  A:17.0s/50g以上19.0s/50g未満
  B:19.0s/50g以上21.0s/50g未満
  C:21.0s/50g以上23.0s/50g未満
  F:23.0s/50g以上(又は流動せず)
 この結果が、下記の表5に示されている。
[Composition IV]
The fluidity of the powders of Examples 55-72 and Comparative Examples 19-24 obtained from alloys having composition IV were measured and rated according to the following criteria.
S: 17.0 s / 50 g or less A: 17.0 s / 50 g or more and less than 19.0 s / 50 g B: 19.0 s / 50 g or more and less than 21.0 s / 50 g C: 21.0 s / 50 g or more and less than 23.0 s / 50 g F: 23.0 s / 50 g or more (or not flowing)
The results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[組成V]
 組成Vを有する合金から得られた実施例73-90及び比較例25-30の粉末の流動度を測定し、下記の基準に従って格付けした。
  S:25.0s/50g未満
  A:25.0s/50g以上27.0s/50g未満
  B:27.0s/50g以上29.0s/50g未満
  C:31.0s/50g以上33.0s/50g未満
  F:33.0s/50g以上(又は流動せず)
 この結果が、下記の表6に示されている。
[Composition V]
The fluidity of the powders of Examples 73-90 and Comparative Examples 25-30 obtained from alloys having composition V were measured and rated according to the following criteria.
S: 25.0 s / 50 g or less A: 25.0 s / 50 g or more and less than 27.0 s / 50 g B: 27.0 s / 50 g or more and less than 29.0 s / 50 g C: 31.0 s / 50 g or more and less than 33.0 s / 50 g F: 33.0 s / 50 g or more (or not flowing)
The results are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
[組成VI]
 組成VIを有する合金から得られた実施例91-108及び比較例31-36の粉末の流動度を測定し、下記の基準に従って格付けした。
  S:15.0s/50g未満
  A:15.0s/50g以上17.0s/50g未満
  B:17.0s/50g以上19.0s/50g未満
  C:21.0s/50g以上23.0s/50g未満
  F:23.0s/50g以上(又は流動せず)
 この結果が、下記の表7に示されている。
[Composition VI]
The fluidity of the powders of Examples 91-108 and Comparative Examples 31-36 obtained from alloys having composition VI were measured and rated according to the following criteria.
S: Less than 15.0 s / 50 g A: 15.0 s / 50 g or more and less than 17.0 s / 50 g B: 17.0 s / 50 g or more and less than 19.0 s / 50 g C: 21.0 s / 50 g or more and less than 23.0 s / 50 g F: 23.0 s / 50 g or more (or not flowing)
The results are shown in Table 7 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
[組成VII]
 組成VIIを有する合金から得られた実施例109-126及び比較例37-42の粉末の流動度を測定し、下記の基準に従って格付けした。
  S:27.0s/50g未満
  A:27.0s/50g以上29.0s/50g未満
  B:29.0s/50g以上31.0s/50g未満
  C:33.0s/50g以上35.0s/50g未満
  F:35.0s/50g以上(又は流動せず)
 この結果が、下記の表8に示されている。
[Composition VII]
The fluidity of the powders of Examples 109-126 and Comparative Examples 37-42 obtained from alloys having composition VII were measured and rated according to the following criteria.
S: 27.0 s / 50 g or less A: 27.0 s / 50 g or more and less than 29.0 s / 50 g B: 29.0 s / 50 g or more and less than 31.0 s / 50 g C: 33.0 s / 50 g or more and less than 35.0 s / 50 g F: 35.0 s / 50 g or more (or not flowing)
The results are shown in Table 8 below.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
[組成VIII]
 組成VIIIを有する合金から得られた実施例127-144及び比較例43-48の粉末の流動度を測定し、下記の基準に従って格付けした。
  S:18.0s/50g未満
  A:18.0s/50g以上20.0s/50g未満
  B:20.0s/50g以上22.0s/50g未満
  C:22.0s/50g以上24.0s/50g未満
  F:24.0s/50g以上(又は流動せず)
 この結果が、下記の表9に示されている。
[Composition VIII]
The fluidity of the powders of Examples 127-144 and Comparative Examples 43-48 obtained from alloys having composition VIII were measured and rated according to the following criteria.
S: 18.0 s / 50 g or less A: 18.0 s / 50 g or more and less than 20.0 s / 50 g B: 20.0 s / 50 g or more and less than 22.0 s / 50 g C: 22.0 s / 50 g or more and less than 24.0 s / 50 g F: 24.0 s / 50 g or more (or does not flow)
The results are shown in Table 9 below.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[組成IX]
 組成IXを有する合金から得られた実施例145-162及び比較例49-54の粉末の流動度を測定し、下記の基準に従って格付けした。
  S:12.0s/50g未満
  A:12.0s/50g以上14.0s/50g未満
  B:14.0s/50g以上16.0s/50g未満
  C:16.0s/50g以上18.0s/50g未満
  F:18.0s/50g以上(又は流動せず)
 この結果が、下記の表10に示されている。
[Composition IX]
The fluidity of the powders of Examples 145-162 and Comparative Examples 49-54 obtained from alloys with composition IX were measured and rated according to the following criteria.
S: Less than 12.0 s / 50 g A: 12.0 s / 50 g or more and less than 14.0 s / 50 g B: 14.0 s / 50 g or more and less than 16.0 s / 50 g C: 16.0 s / 50 g or more and less than 18.0 s / 50 g F: 18.0 s / 50 g or more (or does not flow)
The results are shown in Table 10 below.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表2-10に示されるように、各実施例の粉末は、総合評価に優れている。この結果から、本発明の優位性は明かである。 As shown in Table 2-10, the powder of each example is excellent in comprehensive evaluation. From this result, the superiority of the present invention is clear.
[実験2]
[合金の準備]
 下記の表11に示された組成I-1からIX-2を有する合金を、準備した。なお、表11中、「Bal.」は、残部(balance)を意味する。
[Experiment 2]
[Preparation of alloy]
Alloys having compositions I-1 to IX-2 shown in Table 11 below were prepared. In Table 11, “Bal.” Means the balance.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
[粉末の製作]
 表11示された18種の合金から、表12-14に示された、実施例163-252及び比較例55-72の金属粉末を得た。各粉末は、多数の粒子に、篩いによる分級が施されることで得られた。この粒子は、水アトマイズ法、ガスアトマイズ法又はディスクアトマイズ法により得られた。以下に示す通り、「JIS Z 2502」の規定に準拠して各粉末の流動度を測定し、流動性を評価した。この流動性は、造形物及び被覆層の強度と相関する。
[Production of powder]
The metal powders of Examples 163 to 252 and Comparative Examples 55 to 72 shown in Table 12-14 were obtained from the 18 alloys shown in Table 11. Each powder was obtained by classifying a large number of particles by sieving. The particles were obtained by a water atomization method, a gas atomization method, or a disk atomization method. As shown below, the fluidity of each powder was measured in accordance with the rules of “JIS Z 2502,” and the fluidity was evaluated. This fluidity correlates with the strength of the shaped article and the coating layer.
[組成I-1、I-2、II-1、II-2、III-1及びIII-2]
 実施例163-192及び比較例55-60の粉末の流動度を測定し、下記の基準に従って格付けした。
  S:20.0s/50g未満
  A:20.0s/50g以上22.0s/50g未満
  B:22.0s/50g以上24.0s/50g未満
  C:24.0s/50g以上26.0s/50g未満
  F:26.0s/50g以上(又は流動せず)
 この結果が、下記の表12に示されている。
[Compositions I-1, I-2, II-1, II-2, III-1 and III-2]
The fluidity of the powders of Examples 163-192 and Comparative Examples 55-60 were measured and rated according to the following criteria.
S: 20.0 s / 50 g or less A: 20.0 s / 50 g or more and less than 22.0 s / 50 g B: 22.0 s / 50 g or more and less than 24.0 s / 50 g C: 24.0 s / 50 g or more and less than 26.0 s / 50 g F: 26.0 s / 50 g or more (or does not flow)
The results are shown in Table 12 below.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
[組成IV-1、IV-2、V-1、VI-2、VI-1及びVI-2]
 実施例193-222及び比較例61-66の粉末の流動度を測定し、下記の基準に従って格付けした。
  S:22.0s/50g以下
  A:22.0s/50gを超えて24.0s/50g以下
  B:24.0s/50g以上26.0s/50g以下
  C:26.0s/50gを超えて28.0s/50g以下
  F:28.0s/50gを超える(又は流動せず)
 この結果が、下記の表13に示されている。
[Compositions IV-1, IV-2, V-1, VI-2, VI-1 and VI-2]
The fluidity of the powders of Examples 193-222 and Comparative Examples 61-66 were measured and rated according to the following criteria.
S: 22.0 s / 50 g or less A: Over 22.0 s / 50 g and 24.0 s / 50 g or less B: 24.0 s / 50 g or more and 26.0 s / 50 g or less C: Over 26.0 s / 50 g 28. 0 s / 50 g or less F: exceeds 28.0 s / 50 g (or does not flow)
The results are shown in Table 13 below.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
[組成VII-1、VII-2、VIII-1、VIII-2、IX-1及びIX-2]
 実施例223-252及び比較例67-72の粉末の流動度を測定し、下記の基準に従って格付けした。
  S:18.0s/50g未満
  A:18.0s/50g以上20.0s/50g未満
  B:20.0s/50g以上22.0s/50g未満
  C:22.0s/50g以上24.0s/50g未満
  F:24.0s/50g以上(又は流動せず)
 この結果が、下記の表14に示されている。
[Compositions VII-1, VII-2, VIII-1, VIII-2, IX-1 and IX-2]
The fluidity of the powders of Examples 223-252 and Comparative Examples 67-72 was measured and rated according to the following criteria.
S: 18.0 s / 50 g or less A: 18.0 s / 50 g or more and less than 20.0 s / 50 g B: 20.0 s / 50 g or more and less than 22.0 s / 50 g C: 22.0 s / 50 g or more and less than 24.0 s / 50 g F: 24.0 s / 50 g or more (or does not flow)
The results are shown in Table 14 below.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表12-14に示されるように、各実施例の粉末は、総合評価に優れている。この結果から、本発明の優位性は明かである。 As shown in Tables 12-14, the powder of each example is excellent in comprehensive evaluation. From this result, the superiority of the present invention is clear.
 本発明に係る粉末は、ノズルから粉末が噴射されるタイプの3Dプリンターにも適している。この粉末は、ノズルから粉末が噴射されるタイプのレーザーコーティング法にも適している。 The powder according to the present invention is also suitable for a 3D printer of a type in which powder is ejected from a nozzle. This powder is also suitable for a laser coating method in which the powder is sprayed from a nozzle.

Claims (7)

  1.  多数の球状粒子からなり、
     Ni、Fe及びCoのうちの少なくとも1種を含んでおり、かつこのNi、Fe及びCoの合計含有率(T.C.)が、50質量%以上であり、
     累積10体積%粒子径D10が、1.0μm以上であり、
     下記数式によって算出される値Yが、7.5以上24.0以下である金属粉末。
      Y=D50×ρ×S
    (上記数式において、D50は上記粉末の累積50体積%粒子径であり、ρは上記粉末の真密度であり、Sは上記粉末の比表面積である。)
    Consisting of many spherical particles,
    At least one of Ni, Fe and Co is included, and the total content (TC) of Ni, Fe and Co is 50% by mass or more,
    Cumulative 10 volume% particle diameter D10 is 1.0 μm or more,
    The metal powder whose value Y calculated by the following numerical formula is 7.5 or more and 24.0 or less.
    Y = D50 × ρ × S
    (In the above formula, D50 is the cumulative 50 volume% particle size of the powder, ρ is the true density of the powder, and S is the specific surface area of the powder.)
  2.  上記Ni、Fe及びCoの3種以外の残部が、C、Si、Cr、Mo、Al、Ti、V、W、Nb、Zn、Ta、B、Ag、Cu及びSnのうちの少なくとも1種並びに不可避不純物である請求項1に記載された粉末。 The balance other than the three kinds of Ni, Fe and Co is at least one of C, Si, Cr, Mo, Al, Ti, V, W, Nb, Zn, Ta, B, Ag, Cu and Sn, and The powder according to claim 1, which is an inevitable impurity.
  3.  上記粒子径D10に対する、累積60体積%粒子径D60の比(D60/D10)が、1.0以上10.0未満である請求項1又は2に記載された粉末。 The powder according to claim 1 or 2, wherein a ratio of the cumulative 60 volume% particle diameter D60 to the particle diameter D10 (D60 / D10) is 1.0 or more and less than 10.0.
  4.  上記粒子径D50とモード径Dmとの比(D50/Dm)が、0.80以上1.20以下である請求項1から3のいずれか一項に記載された粉末。 The powder according to any one of claims 1 to 3, wherein a ratio of the particle diameter D50 to the mode diameter Dm (D50 / Dm) is 0.80 or more and 1.20 or less.
  5.  上記粒子の総数に対する、その円形度が0.95以上である粒子の数の比率P2が、50%以上である請求項1から4のいずれか一項に記載された粉末。 The powder according to any one of claims 1 to 4, wherein a ratio P2 of the number of particles having a circularity of 0.95 or more to the total number of the particles is 50% or more.
  6.  上記比率P2が80%以上である請求項5に記載された粉末。 The powder according to claim 5, wherein the ratio P2 is 80% or more.
  7.  その酸素濃度が1000ppm未満である請求項1から6のいずれか一項に記載された粉末。 The powder according to any one of claims 1 to 6, wherein the oxygen concentration is less than 1000 ppm.
PCT/JP2016/059444 2015-03-31 2016-03-24 Metal powder composed of spherical particles WO2016158687A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/562,600 US10350680B2 (en) 2015-03-31 2016-03-24 Metal powder composed of spherical particles
EP16772568.8A EP3278907B1 (en) 2015-03-31 2016-03-24 Metal powder composed of spherical particles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015071902 2015-03-31
JP2015-071902 2015-03-31
JP2016-019607 2016-02-04
JP2016019607A JP6620029B2 (en) 2015-03-31 2016-02-04 Metal powder consisting of spherical particles

Publications (1)

Publication Number Publication Date
WO2016158687A1 true WO2016158687A1 (en) 2016-10-06

Family

ID=57004649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059444 WO2016158687A1 (en) 2015-03-31 2016-03-24 Metal powder composed of spherical particles

Country Status (1)

Country Link
WO (1) WO2016158687A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019038909A1 (en) * 2017-08-25 2019-02-28 福田金属箔粉工業株式会社 Evaluation method of powder for laminate molding, and powder for laminate molding
WO2020179766A1 (en) * 2019-03-04 2020-09-10 日立金属株式会社 Ni-based alloy member comprising additively manufactured article, method for manufacturing ni-based alloy member, and product using ni-based alloy member
JPWO2019038910A1 (en) * 2017-08-25 2020-10-01 福田金属箔粉工業株式会社 Evaluation method of powder for laminated molding and its powder for laminated molding
WO2023176450A1 (en) * 2022-03-17 2023-09-21 株式会社プロテリアル Composite material, method for producing composite material, and mold

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233090A (en) * 1985-08-02 1987-02-13 Daido Steel Co Ltd Alloy powder for building up of powder
JPH05279701A (en) * 1992-02-06 1993-10-26 Ngk Insulators Ltd Metallic powder and its production as well as metallic molding formed by using this metallic powder and production of metallic honeycomb monolith
JP2001192703A (en) * 1999-10-22 2001-07-17 Mitsubishi Steel Mfg Co Ltd Metal power as feedstock suitable for metal injection molding
JP2005281761A (en) * 2004-03-29 2005-10-13 Toyota Motor Corp Powder for thermal spraying, and production method of powder for thermal spraying

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233090A (en) * 1985-08-02 1987-02-13 Daido Steel Co Ltd Alloy powder for building up of powder
JPH05279701A (en) * 1992-02-06 1993-10-26 Ngk Insulators Ltd Metallic powder and its production as well as metallic molding formed by using this metallic powder and production of metallic honeycomb monolith
JP2001192703A (en) * 1999-10-22 2001-07-17 Mitsubishi Steel Mfg Co Ltd Metal power as feedstock suitable for metal injection molding
JP2005281761A (en) * 2004-03-29 2005-10-13 Toyota Motor Corp Powder for thermal spraying, and production method of powder for thermal spraying

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3278907A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019038909A1 (en) * 2017-08-25 2019-02-28 福田金属箔粉工業株式会社 Evaluation method of powder for laminate molding, and powder for laminate molding
JPWO2019038910A1 (en) * 2017-08-25 2020-10-01 福田金属箔粉工業株式会社 Evaluation method of powder for laminated molding and its powder for laminated molding
JPWO2019038909A1 (en) * 2017-08-25 2020-10-01 福田金属箔粉工業株式会社 Evaluation method of powder for laminated molding and its powder for laminated molding
US11448578B2 (en) 2017-08-25 2022-09-20 Fukuda Metal Foil & Powder Co., Ltd. Lamination shaping powder evaluation method and lamination shaping powder therefor
US11644397B2 (en) 2017-08-25 2023-05-09 Fukuda Metal Foil & Powder Co., Ltd. Lamination shaping powder evaluation method and lamination shaping powder therefor
WO2020179766A1 (en) * 2019-03-04 2020-09-10 日立金属株式会社 Ni-based alloy member comprising additively manufactured article, method for manufacturing ni-based alloy member, and product using ni-based alloy member
CN113165077A (en) * 2019-03-04 2021-07-23 日立金属株式会社 Ni-based alloy member composed of laminated molded body, method for producing Ni-based alloy member, and product using Ni-based alloy member
JPWO2020179766A1 (en) * 2019-03-04 2021-11-11 日立金属株式会社 Ni-based alloy member made of laminated model, manufacturing method of Ni-based alloy member, and product using Ni-based alloy member
JP2022130403A (en) * 2019-03-04 2022-09-06 日立金属株式会社 Ni-BASED ALLOY MEMBER COMPRISING LAMINATED MOLDED BODY, PRODUCTION METHOD OF Ni-BASED ALLOY MEMBER, AND MANUFACTURE USING Ni-BASED ALLOY MEMBER
JP7323010B2 (en) 2019-03-04 2023-08-08 株式会社プロテリアル Ni-based alloy member made of laminate-molded body, method for manufacturing Ni-based alloy member, and product using Ni-based alloy member
TWI820307B (en) * 2019-03-04 2023-11-01 日商博邁立鋮股份有限公司 Ni-based alloy member composed of laminated molded body, manufacturing method of Ni-based alloy member, and product using Ni-based alloy member
WO2023176450A1 (en) * 2022-03-17 2023-09-21 株式会社プロテリアル Composite material, method for producing composite material, and mold

Similar Documents

Publication Publication Date Title
JP6620029B2 (en) Metal powder consisting of spherical particles
JP6475478B2 (en) Metal powder for modeling
CA2976065C (en) Titanium powder, and ingot and sintered article of titanium powder
WO2016158687A1 (en) Metal powder composed of spherical particles
CN110621796A (en) Method for manufacturing aluminum alloy parts
JP2021531398A (en) Manufacturing method of parts made of aluminum alloy
CN104607823A (en) Manufacturing method of spherical self-fluxing alloy solder
AU2018394139B2 (en) Use of alloy containing aluminium for additive manufacturing
CN113412172B (en) Method for manufacturing aluminum alloy parts
JP2010007100A (en) Alloy powder and method for producing the same
JP6794100B2 (en) Aluminum particle swarm and its manufacturing method
JP2010236009A (en) Powder of low melting metal and production method therefor
WO2021214106A1 (en) Additive manufacturing powders for use in additive manufacturing processes resulting in improved stability of steel melt-track
JP7425634B2 (en) Cu-based alloy powder
JP7386819B2 (en) Method for manufacturing parts made of aluminum alloy
JP6698367B2 (en) Metal powder consisting of spherical particles
JP2005076083A (en) Method for manufacturing iron-based amorphous spherical particle, and iron-based amorphous spherical type particle thereof
JP2022122462A (en) Carbon-fixed carbon steel powder
JP7494602B2 (en) Metal powder for molding and its manufacturing method
JP2023081771A (en) Lamination-molding metal powder mixed with oxide nano-particle and lamination-molded body
JP2008095180A (en) Method for producing metal sphere

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15562600

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE