WO2016158276A1 - プロセッサ装置及びその作動方法並びに内視鏡システム及びその作動方法 - Google Patents

プロセッサ装置及びその作動方法並びに内視鏡システム及びその作動方法 Download PDF

Info

Publication number
WO2016158276A1
WO2016158276A1 PCT/JP2016/057484 JP2016057484W WO2016158276A1 WO 2016158276 A1 WO2016158276 A1 WO 2016158276A1 JP 2016057484 W JP2016057484 W JP 2016057484W WO 2016158276 A1 WO2016158276 A1 WO 2016158276A1
Authority
WO
WIPO (PCT)
Prior art keywords
image signal
wavelength band
correlation
oxygen saturation
light
Prior art date
Application number
PCT/JP2016/057484
Other languages
English (en)
French (fr)
Inventor
孝明 齋藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP16772160.4A priority Critical patent/EP3278710B1/en
Priority to JP2017509482A priority patent/JP6412252B2/ja
Publication of WO2016158276A1 publication Critical patent/WO2016158276A1/ja
Priority to US15/720,448 priority patent/US10264955B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/044Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for absorption imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths

Definitions

  • the present invention relates to a processor device for calculating the oxygen saturation of an observation target, an operating method thereof, an endoscope system, and an operating method thereof.
  • diagnosis is generally performed using an endoscope system including a light source device, an endoscope, and a processor device.
  • an endoscope system including a light source device, an endoscope, and a processor device.
  • signal processing such as spectral estimation processing on the image signal obtained by imaging the observation target
  • an endoscope system that obtains biological function information based on an image signal obtained by imaging an observation target. For example, a lesion is being diagnosed using the oxygen saturation of blood hemoglobin.
  • a method for acquiring oxygen saturation for example, as shown in Patent Document 1, a plurality of image signals including at least an image signal obtained by irradiating an observation target with light in a wavelength band having different absorption coefficients of oxyhemoglobin and reduced hemoglobin.
  • a method of calculating the oxygen saturation using the correlation between the image signal and the oxygen saturation is a method for a plurality of image signals including at least an image signal obtained by irradiating an observation target with light in a wavelength band having different absorption coefficients of oxyhemoglobin and reduced hemoglobin.
  • the correlation between multiple image signals as described above and oxygen saturation may differ depending on various factors such as various parts of the esophagus, stomach, large intestine, etc., and differences in patients such as men and women, adults, and children. is there.
  • the pre-photographing which images a normal part among observation objects is performed, and oxygen saturation is pre-measured.
  • a difference between the pre-measured oxygen saturation and a reference value (for example, 70%) of the oxygen saturation in the normal part is calculated, and the correlation is corrected based on the calculated difference.
  • the reference value of the oxygen saturation in the normal part is set to a constant value such as 70%.
  • the reference value of the oxygen saturation in the normal part may differ depending on various parts and patients.
  • the correlation is corrected after washing mucus or the like containing a yellow (or tan) pigment such as bilirubin or stercobilin.
  • a yellow (or tan) pigment such as bilirubin or stercobilin.
  • mucus such as a yellow pigment cannot be completely washed. In this case, it is difficult to accurately calculate the oxygen saturation even if the correlation is corrected.
  • the present invention relates to a processor device capable of accurately calculating oxygen saturation even in a situation where various pigments and patients are different, and in a situation where a yellow pigment or the like exists in an observation target, an operating method thereof, an endoscope system, and It aims at providing the operating method.
  • the processor device of the present invention includes a first image signal corresponding to a first wavelength band in which the amount of light absorption changes according to the concentration of a dye other than hemoglobin among the dyes included in the observation target, and oxygen of hemoglobin included in the observation target.
  • the second image signal corresponding to the second wavelength band in which the amount of light absorption changes according to the degree of saturation, the first wavelength band and the wavelength longer than the second wavelength band, and the amount of light absorption changes according to the blood volume.
  • An image signal acquisition unit for acquiring a third image signal corresponding to the third wavelength band and a fourth image signal corresponding to a fourth wavelength band longer than the third wavelength band; a second image signal;
  • a correlation storage unit that stores a correlation between the first calculation value obtained by the specific calculation based on the three image signals and the fourth image signal, and the oxygen saturation; a first image signal; a second image signal; Based on 3 image signal and 4th image signal It calculates a correction amount of correlation Te, and a correlation correcting unit for correcting the correlation based on the correction amount.
  • the correlation correction unit includes a first signal ratio between the first image signal and the third image signal, a second signal ratio between the second image signal and the third image signal, and the fourth image signal and the third image signal.
  • An in-vivo information calculation unit that calculates in-vivo information of an observation target based on the third signal ratio; a correction amount calculation unit that calculates a correction amount based on predetermined reference information and in-vivo information; It is preferable to have a correction unit that corrects the correlation based on the correction amount.
  • the reference information is distributed on the reference line.
  • the in-vivo information is preferably distributed on an actual measurement line at a position different from the reference line, and the correction amount is preferably calculated based on a difference between the reference line and the actual measurement line.
  • the reference information is information obtained when there is no influence of a dye other than hemoglobin, and is information that does not change depending on the oxygen saturation, and the in-vivo information is information that changes according to the concentration of the dye other than hemoglobin. It is preferable that the information is constant with respect to the oxygen saturation.
  • the first wavelength band is preferably an isosbestic wavelength where the extinction coefficients of oxyhemoglobin and reduced hemoglobin are the same.
  • the pigment other than hemoglobin is preferably a yellow pigment.
  • the first wavelength band is preferably 450 ⁇ 10 nm
  • the second wavelength band is 470 ⁇ 10 nm
  • the third wavelength band is 540 ⁇ 20 nm
  • the fourth wavelength band is preferably 640 ⁇ 20 nm.
  • the image signal acquisition unit acquires the first image signal, the second image signal, the third image signal, and the fourth image signal in the calibration mode for correcting the correlation, and performs oxygen saturation mode for calculating oxygen saturation.
  • the second image signal, the third image signal, and the fourth image signal are acquired, and the correlation is performed based on the first image signal, the second image signal, the third image signal, and the fourth image signal acquired in the calibration mode.
  • the relationship correction unit the correction amount is calculated and the correlation is corrected, and the corrected correlation is referred to based on the second image signal, the third image signal, and the fourth image signal acquired in the oxygen saturation mode. And it is preferable to calculate oxygen saturation in an oxygen saturation calculation part.
  • An endoscope system includes the processor device according to the present invention described above, and includes a first semiconductor light source that emits light in a first wavelength band, a second semiconductor light source that emits light in a second wavelength band, and a third.
  • a light source device having a third semiconductor light source that emits light in a wavelength band and a fourth semiconductor light source that emits light in a fourth wavelength band;
  • An endoscope system of the present invention includes the processor device of the present invention described above, a broadband light source that emits white light, a first filter that transmits light in the first wavelength band of white light, and white light
  • a second filter that transmits light in the second wavelength band, a third filter that transmits light in the third wavelength band of white light, and a fourth filter that transmits light in the fourth wavelength band of white light are provided.
  • the image signal acquisition unit includes the first image signal corresponding to the first wavelength band in which the amount of light absorption changes according to the concentration of the dye other than hemoglobin among the dyes included in the observation target.
  • the second image signal corresponding to the second wavelength band in which the amount of absorption changes according to the oxygen saturation of hemoglobin contained in the observation object, the first wavelength band and the wavelength longer than the second wavelength band, and blood
  • the correlation correction unit calculates the correction amount of the correlation between the first calculation value and the oxygen saturation obtained by the specific calculation based on the second image signal, the third image signal, and the fourth image signal as the first image signal.
  • Second image signal, third image signal, Beauty calculated based on the fourth image signal, and a step of correcting the correlation based on the correction amount.
  • the image signal acquisition unit acquires the first image signal, the second image signal, the third image signal, and the fourth image signal in the calibration mode for correcting the correlation, and corrects the correlation.
  • the correlation correction unit calculates a correction amount and corrects the correlation based on the first image signal, the second image signal, the third image signal, and the fourth image signal acquired in the calibration mode.
  • the image signal acquisition unit acquires the second image signal, the third image signal, and the fourth image signal in the oxygen saturation mode for calculating the oxygen saturation.
  • the signal acquisition step and the oxygen saturation calculation unit have been corrected based on the second image signal, the third image signal, and the fourth image signal acquired in the oxygen saturation mode. Referring to correlation, it is preferable to have an oxygen saturation calculating step of calculating the oxygen saturation.
  • the light source device includes the light in the first wavelength band in which the amount of absorption changes according to the concentration of the dye other than hemoglobin among the dyes included in the observation target, and the observation target.
  • an image signal acquisition unit including a first image signal corresponding to the first wavelength band; Obtaining a second image signal corresponding to the two wavelength band, a third image signal corresponding to the third wavelength band, and a fourth image signal corresponding to the fourth wavelength band; and a correlation correction unit, Based on the second image signal, the third image signal, and the fourth image signal. Calculating a correction amount of a correlation between the first calculation value obtained by a specific calculation and the oxygen saturation based on the first image signal, the second image signal, the third image signal, and the fourth image signal; Correcting the correlation based on the correction amount.
  • the image signal acquisition unit acquires the first image signal, the second image signal, the third image signal, and the fourth image signal in the calibration mode for correcting the correlation, and corrects the correlation.
  • the correlation correction unit calculates a correction amount and corrects the correlation based on the first image signal, the second image signal, the third image signal, and the fourth image signal acquired in the calibration mode.
  • the image signal acquisition unit acquires the second image signal, the third image signal, and the fourth image signal in the oxygen saturation mode for calculating the oxygen saturation.
  • the second image signal acquisition step and the oxygen saturation calculation unit corrected based on the second image signal, the third image signal, and the fourth image signal acquired in the oxygen saturation mode.
  • the oxygen saturation can be accurately calculated not only when various parts and patients are different, but also in a situation where a yellow pigment or the like exists in the observation target.
  • the endoscope system 10 includes an endoscope 12, a light source device 14, a processor device 16, a monitor 18, and a console 19.
  • the endoscope 12 is optically connected to the light source device 14 and electrically connected to the processor device 16.
  • the endoscope 12 includes an insertion portion 12a to be inserted into the body to be observed, an operation portion 12b provided at the proximal end portion of the insertion portion 12a, a bending portion 12c provided at the distal end side of the insertion portion 12a, and a distal end. Part 12d.
  • the bending portion 12c bends by operating the angle knob 12e of the operation portion 12b.
  • the distal end portion 12d is directed in a desired direction by the bending operation of the bending portion 12c.
  • the tip portion 12d is provided with an ejection port (not shown) that ejects the cleaning liquid toward the observation target.
  • the operation unit 12b includes a mode switching SW (mode switching switch) 12f used for an observation mode switching operation, and a still image acquisition instruction unit 12g used for an instruction to acquire a still image to be observed. Is provided.
  • mode switching SW mode switching switch
  • still image acquisition instruction unit 12g used for an instruction to acquire a still image to be observed. Is provided.
  • the endoscope system 10 has three observation modes: a normal mode, an oxygen saturation mode, and a calibration mode.
  • a normal mode an image having a natural hue (hereinafter referred to as a normal image) obtained by capturing an observation target using white light as illumination light is displayed on the monitor 18.
  • the oxygen saturation mode the oxygen saturation of the observation target is measured using the correlation between the oxygen saturation and the image signal obtained by imaging the observation target, and the measured oxygen saturation is imaged by a pseudo color or the like.
  • the converted image (hereinafter referred to as an oxygen saturation image) is displayed on the monitor 18.
  • the pre-photographing of the observation object is performed before the oxygen saturation measurement is performed in the oxygen saturation mode, and the correlation used when measuring the oxygen saturation from the image signal obtained by the pre-photographing.
  • the correction amount ⁇ D is calculated.
  • the correlation is corrected based on the correction amount ⁇ D.
  • the processor device 16 is electrically connected to the monitor 18 and the console 19.
  • the monitor 18 outputs and displays an image to be observed and information attached to the image to be observed.
  • the console 19 functions as a user interface that receives input operations such as function settings.
  • the processor device 16 may be connected to an external recording unit (not shown) for recording images and image information.
  • the light source device 14 includes a light source 20 and a light source control unit 21 that controls the light source 20.
  • the light source 20 includes, for example, a plurality of semiconductor light sources, which are turned on or off, and when illuminated, emit light that illuminates the observation target by controlling the light emission amount of each semiconductor light source.
  • the light source 20 includes a BS-LED (Blue Short-wavelength Light Emitting Diode) 20a, a BL-LED (Blue Long-wavelength Light Emitting Diode) 20b, a G-LED (Green Light Light Emitting Diode) 20c, and R.
  • -LED Red ⁇ Light Emitting Diode 20d has four colors LED.
  • the BS-LED 20a (corresponding to the “first semiconductor light source” of the present invention) emits first blue light BS having a wavelength band of 450 ⁇ 10 nm.
  • the BL-LED 20b (corresponding to the “second semiconductor light source” of the present invention) emits second blue light BL having a wavelength band of 470 ⁇ 10 nm.
  • the G-LED 20c (corresponding to the “third semiconductor light source” of the present invention) emits green light G having a wavelength band of 540 ⁇ 10 nm.
  • the R-LED 20d (corresponding to the “fourth semiconductor light source” of the present invention) emits red light R having a wavelength band of 640 ⁇ 20 nm. Note that the center wavelength and the peak wavelength in each of the LEDs 20a to 20d may be the same or different.
  • the light source control unit 21 independently controls the lighting and extinction of each LED 20a to 20d, the light emission amount at the time of lighting, and the like by inputting a control signal to each LED 20a to 20d independently.
  • the on / off control in the light source control unit 21 differs depending on each mode.
  • the first blue light BS, the green light G, and the red light R are simultaneously emitted by simultaneously lighting the BS-LED 20a, the G-LED 20c, and the R-LED 20d.
  • the oxygen saturation mode the first blue light is emitted by simultaneously turning on the BS-LED 20a, the G-LED 20c, and the R-LED 20d by emitting the second blue light BL by turning on the BL-LED 20b.
  • the second measurement emission mode for simultaneously emitting BS, green light G, and red light R is repeated alternately.
  • the first blue light BS, the second blue light BL, the green light G, and the red light R are sequentially emitted by sequentially lighting the BS-LED 20a, the BL-LED 20b, the G-LED 20c, and the R-LED 20d.
  • the mode for emitting the first blue light BS is set as the first calibration emission mode
  • the mode for emitting the second blue light BL is set as the second calibration emission mode
  • the mode for emitting the green light G is set.
  • the third calibration emission mode is set
  • the mode for emitting the red light R is set as the fourth calibration emission mode.
  • the light emitted from each of the LEDs 20a to 20d is incident on the light guide 25 through the optical path coupling unit 23 constituted by a mirror, a lens, and the like.
  • the light guide 25 is built in the endoscope 12 and the universal cord (a cord connecting the endoscope 12, the light source device 14, and the processor device 16).
  • the light guide 25 propagates light from the light guide 25 to the distal end portion 12 d of the endoscope 12.
  • the distal end portion 12d of the endoscope 12 is provided with an illumination optical system 30a and an imaging optical system 30b.
  • the illumination optical system 30 a has an illumination lens 32, and the illumination light propagated by the light guide 25 is irradiated to the observation object via the illumination lens 32.
  • the imaging optical system 30 b includes an objective lens 42 and an imaging sensor 44. The light from the observation target irradiated with the illumination light enters the image sensor 44 through the objective lens 42. As a result, an image to be observed is formed on the image sensor 44.
  • the imaging sensor 44 is a color imaging sensor that images an observation target under illumination with illumination light.
  • Each pixel of the image sensor 44 includes a B pixel (blue pixel) having a B (blue) color filter, a G pixel (green pixel) having a G (green) color filter, and an R pixel having an R (red) color filter ( One of the red pixels) is provided.
  • the B color filter mainly transmits light in the blue band, specifically, light in the wavelength band of 380 to 560 nm.
  • the peak wavelength at which the transmittance is maximum exists in the vicinity of 460 to 470 nm.
  • the G color filter mainly transmits light in the green band, specifically, light having a wavelength band of 450 to 630 nm.
  • the R color filter mainly transmits light in the red band, specifically, light of 580 to 760 nm.
  • CMOS Complementary Metal-Oxide Semiconductor
  • CMYG four-color image signals are output.
  • the imaging sensor 44 is driven and controlled by the imaging control unit 45.
  • Control in the imaging control unit 45 differs depending on each mode. As illustrated in FIG. 4, in the normal mode, the imaging control unit 45 captures the observation target under illumination with the first blue light BS, the green light G, and the red light R for each frame. To control. Thereby, a Bc image signal is output from the B pixel of the imaging sensor 44, a Gc image signal is output from the G pixel, and an Rc image signal is output from the R pixel.
  • the imaging control unit 45 controls the imaging sensor 44 to take an image of the observation target being illuminated with the second blue light BL for one frame in the first measurement light emission mode.
  • the first measurement imaging mode and the second measurement imaging mode for imaging one frame of the observation target under illumination with the first blue light BS, the green light G, and the red light R in the second measurement emission mode alternately. Try to repeat.
  • the B1 image signal is output from the B pixel of the imaging sensor 44
  • the G1 image signal is output from the G pixel
  • the R1 image signal is output from the R pixel.
  • the B2 image signal is output from the B pixel of the imaging sensor 44
  • the G2 image signal is output from the G pixel
  • the R2 image signal is output from the R pixel.
  • the imaging control unit 45 controls the imaging sensor 44 to capture a first frame of the observation target under illumination with the first blue light BS in the first calibration emission mode. Illumination with the green light G in the calibration imaging mode, the second calibration imaging mode for imaging one frame of the observation target under illumination with the second blue light BL in the second calibration emission mode, and the third calibration emission mode A third calibration imaging mode for imaging one observation object in the middle and a fourth calibration imaging mode for imaging one frame of the observation object under illumination with red light R in the fourth calibration light emission mode are sequentially performed. To.
  • the Bp image signal is output from the B pixel of the imaging sensor 44, the Gp image signal is output from the G pixel, and the Rp image signal is output from the R pixel.
  • a Bq image signal is output from the B pixel of the imaging sensor 44, a Gq image signal is output from the G pixel, and an Rq image signal is output from the R pixel.
  • the Br image signal is output from the B pixel of the imaging sensor 44
  • the Gr image signal is output from the G pixel
  • the Rr image signal is output from the R pixel.
  • a Bs image signal is output from the B pixel of the imaging sensor 44, a Gs image signal is output from the G pixel, and an Rs image signal is output from the R pixel.
  • a CDS / AGC (CorrelatedampSampling / Automatic Gain Control) circuit 46 performs correlated double sampling (CDS) and automatic gain control (AGC) on an analog image signal obtained from the image sensor 44. .
  • the image signal that has passed through the CDS / AGC circuit 46 is converted into a digital image signal by an A / D (Analog / Digital) converter 48.
  • the digital image signal after A / D conversion is input to the processor device 16.
  • the processor device 16 includes an image signal acquisition unit 50, a DSP (Digital Signal Processor) 52, a noise reduction unit 54, an image processing switching unit 56, a normal image generation unit 58, an oxygen saturation image generation unit 60, A correlation correction unit 62 and a video signal generation unit 64 are provided.
  • the image signal acquisition unit 50 receives an image signal input from the endoscope 12 and transmits the received image signal to the DSP 52.
  • the DSP 52 performs various signal processing such as defect correction processing, offset processing, gain correction processing, linear matrix processing, gamma conversion processing, demosaic processing, and YC conversion processing on the received image signal.
  • defect correction process the signal of the defective pixel of the image sensor 44 is corrected.
  • offset process the dark current component is removed from the image signal subjected to the defect correction process, and an accurate zero level is set.
  • gain correction process the signal level of each image signal is adjusted by multiplying the image signal of each color after the offset process by a specific gain. The image signal of each color after the gain correction processing is subjected to linear matrix processing that improves color reproducibility.
  • each image signal After that, the brightness and saturation of each image signal are adjusted by gamma conversion processing.
  • the image signal after the linear matrix processing is subjected to demosaic processing (also referred to as isotropic processing or simultaneous processing), and a color signal with missing pixels is generated by interpolation. Through the demosaic processing, all pixels have signals of RGB colors.
  • the DSP 52 performs YC conversion processing on each image signal after the demosaic processing, and outputs the luminance signal Y, the color difference signal Cb, and the color difference signal Cr to the noise reduction unit 54.
  • the noise reduction unit 54 performs noise reduction processing by, for example, a moving average method or a median filter method on the image signal subjected to demosaic processing or the like by the DSP 56.
  • the image signal with reduced noise is input to the image processing switching unit 56.
  • the image processing switching unit 56 sets the transmission destination of the image signal from the noise reduction unit 54 to any one of the normal image generation unit 58, the oxygen saturation image generation unit 60, and the correlation correction unit 62 depending on the set mode. Switch. Specifically, when the normal mode is set, the image signal from the noise reduction unit 54 is input to the normal image generation unit 58. When the oxygen saturation mode is set, the image signal from the noise reduction unit 54 is input to the oxygen saturation image generation unit 60. When the calibration mode is set, the image signal from the noise reduction unit 54 is input to the correlation correction unit 62.
  • the normal image generation unit 58 further performs 3 ⁇ 3 matrix processing, tone conversion processing, and three-dimensional LUT (Look Up Table) processing on the input Rc image signal, Gc image signal, and Bc image signal for one frame.
  • the color conversion process is performed.
  • various color enhancement processes are performed on the RGB image data subjected to the color conversion process.
  • Structure enhancement processing such as spatial frequency enhancement is performed on the RGB image data that has been subjected to the color enhancement processing.
  • the RGB image data subjected to the structure enhancement process is input to the video signal generation unit 64 as a normal image.
  • the oxygen saturation image generation unit 60 is a B1 image signal (corresponding to the “second image signal” of the present invention), a G2 image signal (the “third image of the present invention”).
  • the oxygen saturation is calculated using the correlation between the R2 image signal (corresponding to the “signal”), the R2 image signal (corresponding to the “fourth image signal” of the present invention), and the oxygen saturation. A method for calculating the oxygen saturation will be described later.
  • An oxygen saturation image obtained by imaging the calculated oxygen saturation with a pseudo color or the like is generated. This oxygen saturation image is input to the video signal generator 64.
  • the correlation correction unit 62 corrects the correlation used when calculating the oxygen saturation in order to eliminate the influence of the yellow pigment in addition to the difference in the observation target region and patient.
  • the correlation correcting unit 62 includes a Bp image signal (corresponding to the “first image signal” of the present invention) and a Bq image signal (corresponding to the “first image signal” of the present invention) among the image signals obtained in the calibration mode.
  • Bp image signal correspond to the “first image signal” of the present invention
  • Bq image signal corresponding to the “first image signal” of the present invention
  • Correction amount ⁇ D is calculated, and the correlation is corrected based on the calculated correction amount ⁇ D. A method for correcting the correlation will be described later.
  • the video signal generator 64 enables full-color display of the image data of the normal image from the normal image generator 58 or the image data of the oxygen saturation image from the oxygen saturation image generator 60 on the monitor 18. Convert to video signal. The converted video signal is input to the monitor 18. As a result, a normal image or an oxygen saturation image is displayed on the monitor 18.
  • the oxygen saturation image generation unit 60 includes a signal ratio calculation unit 70, a correlation storage unit 72, an oxygen saturation calculation unit 74, and an image generation unit 76.
  • the signal ratio calculation unit 70 calculates a signal ratio used by the oxygen saturation calculation unit 74 to calculate the oxygen saturation. Specifically, the signal ratio calculation unit 70 calculates the signal ratio B1 / G2 between the B1 image signal and the G2 image signal, the signal ratio R2 / G2 between the R2 image signal and the G2 image signal, and the G2 image signal and the B2 image signal.
  • the signal ratio G2 / B2 is calculated for each pixel.
  • the correlation storage unit 72 stores the correlation between each signal ratio calculated by the signal ratio calculation unit 70 and the oxygen saturation in a storage unit such as a LUT (Look Up Table).
  • a storage unit such as a LUT (Look Up Table).
  • LUT Look Up Table
  • An isoline connecting portions having the same oxygen saturation is formed substantially along the horizontal axis direction.
  • the isoline is located on the lower side with respect to the vertical axis direction as the oxygen saturation increases. For example, an isoline 83 with an oxygen saturation of 100% is located below an isoline 84 with an oxygen saturation of 0%.
  • the correlation storage unit 72 stores the correlation between the signal ratios B1 / G2, R2 / G2 and the oxygen saturation, but is not limited to the correlation between the signal ratios B1 / G2, R2 / G2, You may make it memorize
  • the above correlation is closely related to the light absorption characteristics and light scattering characteristics of oxyhemoglobin (graph 80) and reduced hemoglobin (graph 81) shown in FIG.
  • the wavelength band where the difference in the extinction coefficient between oxyhemoglobin and reduced hemoglobin is large such as the wavelength band 470 ⁇ 10 nm of the second blue light BL
  • the amount of absorption changes depending on the oxygen saturation of hemoglobin.
  • the oxygen saturation can be calculated by using the signal ratio B1 / G2 including the B1 image signal corresponding to the light of the second blue light BL having the center wavelength of 470 nm.
  • the signal ratio B1 / G2 is highly dependent not only on the oxygen saturation but also on the blood volume.
  • the wavelength band 540 ⁇ 20 nm of the green light included in the G2 image signal is a wavelength band in which the amount of light absorption is likely to change depending on the blood volume because the absorption coefficient of hemoglobin is relatively high.
  • the oxygen saturation calculation unit 74 refers to the correlation stored in the correlation storage unit 72 and calculates the oxygen saturation corresponding to the signal ratios B1 / G2 and R2 / G2 for each pixel. For example, as shown in FIG. 10, when referring to the correlation stored in the correlation storage unit 72, the oxygen saturation corresponding to the signal ratios B1 * / G2 * , R2 * / G2 * of the specific pixel is “40% It is. Therefore, the oxygen saturation calculation unit 74 calculates the oxygen saturation as “40%”.
  • the signal ratios B1 / G2 and R2 / G2 are hardly increased or decreased very little. That is, the combinations of the values of the signal ratios B1 / G2 and R2 / G2 are distributed below the upper limit isoline 83 (see FIG. 8) of the oxygen saturation 100%, or conversely, the oxygen saturation 0 There is almost no distribution above the isoline 84 (see FIG. 8) at the lower limit of%. However, if the oxygen saturation is distributed below the upper limit isoline 83, the oxygen saturation is set to 100%. If the oxygen saturation is distributed above the lower limit isoline 84, the oxygen saturation calculator 74 sets the oxygen saturation to 0. %.
  • the image generation unit 76 uses the oxygen saturation calculated by the oxygen saturation calculation unit 74 to generate an oxygen saturation image obtained by imaging the oxygen saturation. Specifically, the image generation unit 76 acquires the B2 image signal, the G2 image signal, and the R2 image signal, and applies a gain corresponding to the oxygen saturation to these image signals for each pixel. Then, RGB image data is generated using the gained B2 image signal, G2 image signal, and R2 image signal. For example, the image generation unit 76 multiplies all of the B2 image signal, the G2 image signal, and the R2 image signal by the same gain “1” for a pixel having an oxygen saturation of 60% or more.
  • the B2 image signal is multiplied by a gain less than “1”, and the G2 image signal and the R2 image signal are multiplied by a gain of “1” or more.
  • RGB image data generated using the B2 image signal, G2 image signal, and R2 image signal after the gain processing is an oxygen saturation image.
  • the high oxygen region (region where the oxygen saturation is 60 to 100%) is expressed in the same color as the normal observation image.
  • a low oxygen region where the oxygen saturation is lower than a specific value (region where the oxygen saturation is 0 to 60%) is represented by a color (pseudo color) different from that of the normal observation image.
  • the image generation unit 76 multiplies the gain for pseudo-coloring only the low oxygen region, but the gain corresponding to the oxygen saturation is applied even in the high oxygen region, and the entire oxygen saturation image is obtained.
  • a pseudo color may be used.
  • the low oxygen region and the high oxygen region are separated at an oxygen saturation of 60%, this boundary is also arbitrary.
  • the correlation correction unit 62 includes an in-vivo information calculation unit 90, a correction amount calculation unit 92, and a correction unit 93.
  • the in-vivo information calculation unit 90 has in-vivo information that has information on the yellow pigment in the living body and is not affected by the oxygen saturation from the input Bp image signal, Bq image signal, Gr image signal, and Rs image signal. calculate. Specifically, the signal ratio Bp / Gr (corresponding to the “first signal ratio” of the present invention) between the Bp image signal and the Gr image signal is calculated for each pixel, and the signal ratio Bq between the Bq image signal and the Gr image signal is calculated.
  • Bp in the signal ratio Bp / Gr is an image signal corresponding to the first blue light BS.
  • the wavelength band 450 ⁇ 10 nm of the first blue light BS belongs to the blue band in which the absorption coefficient of hemoglobin is relatively high, and the absorption coefficient of oxyhemoglobin and reduced hemoglobin is the same isosbestic wavelength.
  • the wavelength band 450 ⁇ 10 nm of the first blue light BS has an absorption peak wavelength at which the extinction coefficient of the yellow dye is the highest, so that the first blue light BS absorbs light depending on the concentration of the yellow dye.
  • the wavelength band is easy to change.
  • the signal value of the signal ratio Bp / Gr does not change depending on the oxygen saturation, but the signal value changes depending on the concentration of the yellow pigment and the blood volume.
  • the wavelength band 540 ⁇ 20 nm of the green light included in the Gr image signal is a wavelength band in which the amount of light absorption easily changes according to the blood volume as described above.
  • the wavelength band 470 ⁇ 10 nm of the second blue light BL belongs to the blue band in which the absorption coefficient of hemoglobin is relatively high, and is a different absorption wavelength in which the absorption coefficients of oxyhemoglobin and reduced hemoglobin are different (see FIG. 9), the light absorption is easily changed depending on the oxygen saturation of hemoglobin.
  • the center wavelength 470 nm of the second blue light BL has a large absorption coefficient compared to other wavelength bands although the absorption coefficient is slightly lower than the absorption peak wavelength of the yellow pigment (see FIG. 12).
  • the signal value of the signal ratio Bq / Gr varies depending on the oxygen saturation, the concentration of the yellow pigment, and the blood volume.
  • the signal value hardly changes depending on the oxygen saturation and the concentration of the yellow pigment, and the signal value changes depending on the blood volume.
  • the in-vivo information calculation unit 90 adjusts ⁇ so that the second calculation value obtained by the correction calculation based on the following formula A is constant even when the oxygen saturation changes.
  • Information including the second calculated value after ⁇ adjustment and the signal ratio Rs / Gr is used as in-vivo information.
  • the correction amount calculation unit 92 calculates the correction amount ⁇ D from predetermined reference information and the in vivo information calculated by the in vivo information calculation unit 90.
  • the reference information is defined as information that is obtained without a yellow pigment and does not change depending on the oxygen saturation. Specifically, the reference information is constant even if the oxygen saturation changes, in a state in which the influence of the yellow pigment is excluded (that is, in a state where there is no yellow pigment). Thus, ⁇ is adjusted.
  • the vertical axis corresponds to the “first axis” of the present invention
  • the horizontal axis corresponds to the “second axis” of the present invention.
  • the reference line 94 indicating the distribution of the reference information not affected by the yellow pigment and the in-vivo affected by the yellow pigment.
  • the actual measurement lines 96 in which information is distributed are formed substantially along the horizontal axis direction. In the measured line 96, the density of the yellow pigment is the same density line. In the second feature space, the reference line 94 is located above the actual measurement line 96. Further, in the second feature space, as the influence of the yellow pigment increases, the actual measurement line 96 is positioned below, and the difference between the reference line 94 and the actual measurement line 96 increases.
  • the correction amount calculation unit 92 calculates a difference ⁇ Z between the reference line 94 and the actual measurement line 96.
  • the correction amount ⁇ D may be calculated by a conversion process that combines matrix processing and 1D-LUT (1 dimensional Look UP Tabel) for the Bp image signal, Bq image signal, Gr image signal, and Rs image signal. .
  • the correction unit 93 corrects the correlation stored in the correlation storage unit 72 based on the correction amount ⁇ D calculated using the correction amount calculation unit 92. Specifically, in the first feature space, the correction amount ⁇ D is added to the value of Log (B1 / G2) on the vertical axis. Thereby, in the first feature space, an isoline connecting portions having the same oxygen saturation moves along the direction of the vertical axis Log (B1 / G2). By calculating the oxygen saturation using this corrected correlation, the oxygen saturation can be accurately calculated not only when the various parts and patients are different, but also under the influence of the yellow pigment on the observation target. be able to
  • the mode switching SW 12f is operated to set the calibration mode.
  • the cleaning liquid is ejected from the distal end portion 12d of the endoscope 12 to the observation target. Thereby, most of the yellow pigment and the like on the observation target are removed.
  • the first blue light BS, the second blue light BL, the green light G, and the red light R are sequentially emitted by sequentially lighting the LEDs 20a to 20d. These four colors of light are applied to the observation target and imaged by the imaging sensor 44. An image to be observed is displayed on the monitor 18 based on the image signal output from the imaging sensor.
  • a Bp image signal, a Bq image signal, a Gr image signal, and an Rs image signal are transmitted to the correlation correction unit 62.
  • the in-vivo information calculation unit 90 calculates the signal ratio Bp / Gr between the Bp image signal and the Gr image signal for each pixel, and calculates the signal ratio Bq / Gr between the Bq image signal and the Gr image signal as a pixel.
  • the signal ratio Rs / Gr between the Rs image signal and the Gr image signal is calculated for each pixel.
  • in vivo information is calculated based on these three signal ratios Bp / Gr, Bq / Gr, and Rs / Gr.
  • the correction amount calculation unit 92 calculates the correction amount ⁇ D from predetermined reference information and the in-vivo information calculated by the in-vivo information calculation unit 90. Based on the calculated correction amount ⁇ D, the correction unit 93 corrects the correlation stored in the correlation storage unit 72. Thereby, the calibration mode is completed.
  • “processing from the calculation of the correction amount ⁇ D to the correction of the correlation” corresponds to the “correlation correction step” of the present invention.
  • the normal image may be displayed by simultaneously emitting the first blue light, the green light, and the red light before the pre-photographing by the operation of the still image acquisition instruction unit 12g.
  • the calibration mode is completed, it is automatically switched to the oxygen saturation mode.
  • the mode is switched to the oxygen saturation mode, the second blue light BS and the light including the first blue light BL, the green light G, and the red light R are alternately emitted, and imaging is performed for each emission.
  • a B1 image signal, a G2 image signal, and an R2 image signal used for calculation of oxygen saturation are obtained (corresponding to the “second image signal acquisition step” of the present invention).
  • a signal ratio B1 / G2 between the B1 image signal and the G2 image signal and a signal ratio R2 / G2 between the R2 image signal and the G2 image signal are calculated.
  • the oxygen saturation corresponding to the signal ratios B1 / G2 and R2 / G2 is calculated by referring to the correlation corrected by the correcting unit 93 (corresponding to the “oxygen saturation calculating step” of the present invention).
  • the observation object is illuminated using a broadband light source such as a xenon lamp and a rotary filter instead of the four-color LEDs 20a to 20d shown in the first embodiment.
  • a broadband light source such as a xenon lamp and a rotary filter
  • the observation target is imaged by a monochrome image sensor. The rest is the same as in the first embodiment.
  • the light source device 14 is provided with a broadband light source 102, a rotary filter 104, and a filter switching unit 105 instead of the four-color LEDs 20a to 20d.
  • the imaging optical system 30b is provided with a monochrome imaging sensor 106 without a color filter, instead of the color imaging sensor 44.
  • the broadband light source 102 is a xenon lamp, a white LED, or the like, and emits white light having a wavelength range from blue to red.
  • the rotary filter 104 includes an inner filter 108 provided on the inner side and an outer filter 109 provided on the outer side (see FIG. 16).
  • the filter switching unit 105 moves the rotary filter 104 in the radial direction.
  • the filter switching unit 105 inserts the inner filter 108 of the rotary filter 104 into the optical path of white light, and oxygen saturation
  • the outer filter 109 of the rotary filter 104 is inserted into the white light path.
  • the inner filter 108 includes a B1 filter 108 a that transmits the first blue light BS in the white light, a G filter 108 b that transmits the green light G in the white light, and white An R filter 108c that transmits red light R out of the light is provided. Therefore, in the normal mode, the first blue light BS, the green light G, and the red light R are alternately irradiated on the observation target by the rotation of the rotary filter 104.
  • the outer filter 109 includes, along the circumferential direction, a B1 filter 109a (corresponding to the “first filter” of the present invention) that transmits the first blue light BS of the white light, and a second blue light of the white light.
  • a B2 filter 109b that transmits BL (corresponding to the “second filter” of the present invention)
  • a G filter 109c that transmits green light G of white light corresponding to the “third filter” of the present invention
  • An R filter 109d (corresponding to the “fourth filter” of the present invention) that transmits red light R of white light is provided. Therefore, in the oxygen saturation mode or the calibration mode, the rotation filter 104 is rotated, so that the first blue light BS, the second blue light BL, the green light G, and the red light R are alternately irradiated on the observation target.
  • the observation target is imaged by the monochrome imaging sensor 106 every time the observation target is illuminated with the first blue light BS, the green light G, and the red light R. Thereby, a Bc image signal, a Gc image signal, and an Rc image signal are obtained. Then, based on the image signals of these three colors, a normal image is generated by the same method as in the first embodiment.
  • the observation object is imaged by the monochrome imaging sensor 106 every time the observation object is illuminated by the first blue light BS, the second blue light BL, the green light G, and the red light R.
  • a B2 image signal, a B1 image signal, a G2 image signal, and an R2 image signal are obtained.
  • an oxygen saturation image is generated by the same method as in the first embodiment.
  • a Bp image signal, a Bq image signal, a Gr image signal, and an Rs image signal are obtained. Based on these four color image signals, the correlation is corrected by the same method as in the first embodiment.
  • the first blue light BS having a wavelength band of 450 ⁇ 10 nm is used to correct the correlation in the calibration mode.
  • light having a wavelength band in which the extinction coefficient of the yellow pigment is larger than that of other wavelength bands may be used.
  • green narrowband light having a wavelength band of 500 ⁇ 10 nm may be used instead of the first blue light BS.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

観察対象に黄色色素などが存在する状況においても酸素飽和度を正確に算出することができるプロセッサ装置及びその作動方法並びに内視鏡システム及びその作動方法を提供する。画像信号取得部50は、第1波長帯域に対応する第1画像信号と、第2波長帯域に対応する第2画像信号と、第3波長帯域に対応する第3画像信号と、第4波長帯域に対応する第4画像信号と、を取得する。相関関係記憶部72は、第2画像信号、第3画像信号、及び第4画像信号に基づく特定の演算により得られる第1演算値と、酸素飽和度との相関関係を記憶する。相関関係補正部62は、第1画像信号、第2画像信号、第3画像信号、及び第4画像信号に基づいて相関関係の補正量を算出し、補正量に基づいて相関関係を補正する。

Description

プロセッサ装置及びその作動方法並びに内視鏡システム及びその作動方法
 本発明は、観察対象の酸素飽和度を算出するプロセッサ装置及びその作動方法並びに内視鏡システム及びその作動方法に関する。
 医療分野においては、光源装置、内視鏡、及びプロセッサ装置を備える内視鏡システムを用いて診断することが一般的になっている。特に、単に観察対象を撮像するだけでなく、観察対象に照射する照明光の波長を工夫したり、観察対象を撮像して得た画像信号に分光推定処理等の信号処理を施したりすることによって、血管や腺管構造等の特定の組織や構造を強調した観察画像を得る内視鏡システムが普及している。
 また、近年においては、観察対象を撮像して得られる画像信号に基づいて生体機能情報を得る内視鏡システムもある。例えば、血中ヘモグロビンの酸素飽和度を用いた病変部の診断が行われつつある。酸素飽和度を取得する方法としては、例えば、特許文献1に示すように、酸化ヘモグロビンと還元ヘモグロビンの吸光係数が異なる波長帯域の光を観察対象に照射して得られる画像信号を少なくとも含む複数の画像信号と酸素飽和度との相関関係を用いて、酸素飽和度を算出する方法がある。
 上記のような複数の画像信号と酸素飽和度との相関関係については、食道、胃、大腸などの各種部位や、男女、大人と子供などの患者の違いなどの様々な要因によって、異なる場合がある。これに対して、特許文献1では、実際に酸素飽和度による体内の観察を行う前に、観察対象の中でも正常部を撮像するプレ撮影を行って、酸素飽和度をプレ測定している。そして、プレ測定した酸素飽和度と、正常部における酸素飽和度の基準値(例えば、70%)との差分を算出し、この算出した差分に基づいて相関関係を補正している。このような相関関係の補正を行うことにより、部位や患者の影響を受けることなく正確に酸素飽和度を算出することが可能となる。
特開2013-22341号公報(特許5426620号公報)
 特許文献1では、正常部における酸素飽和度の基準値については、70%などの一定の値に定めている。しかしながら、この正常部における酸素飽和度の基準値についても、各種部位や患者の違いによって異なることがある。また、特許文献1では、ビリルビンやステルコビリン等の黄色(あるいは黄褐色)の色素を含む粘液等の洗浄を行ってから、相関関係の補正を行っている。しかしながら、黄色色素等の粘液等を完全に洗浄することができない場合もあり、この場合には、相関関係の補正を行っても、正確に酸素飽和度を算出することが難しい。
 本発明は、各種部位や患者が異なる場合の他、観察対象に黄色色素などが存在する状況においても、酸素飽和度を正確に算出することができるプロセッサ装置及びその作動方法並びに内視鏡システム及びその作動方法を提供することを目的とする。
 本発明のプロセッサ装置は、観察対象に含まれる色素のうちヘモグロビン以外の色素の濃度に応じて吸光量が変化する第1波長帯域に対応する第1画像信号と、観察対象に含まれるヘモグロビンの酸素飽和度に応じて吸光量が変化する第2波長帯域に対応する第2画像信号と、第1波長帯域及び第2波長帯域よりも長波長であり、且つ血液量に応じて吸光量が変化する第3波長帯域に対応する第3画像信号と、第3波長帯域よりも長波長の第4波長帯域に対応する第4画像信号と、を取得する画像信号取得部と、第2画像信号、第3画像信号、及び第4画像信号に基づく特定の演算により得られる第1演算値と、酸素飽和度との相関関係を記憶する相関関係記憶部と、第1画像信号、第2画像信号、第3画像信号、及び第4画像信号に基づいて相関関係の補正量を算出し、補正量に基づいて相関関係を補正する相関関係補正部と、を備える。
 相関関係補正部は、第1画像信号と第3画像信号との第1信号比、第2画像信号と第3画像信号との第2信号比、及び第4画像信号と第3画像信号との第3信号比に基づいて、観察対象の生体内情報を算出する生体内情報算出部と、予め定められた基準情報と生体内情報とに基づいて、補正量を算出する補正量算出部と、補正量に基づいて相関関係を補正する補正部とを有することが好ましい。
 第1信号比と第2信号比に基づく補正用演算により得られる第2演算値を第1軸とし、第3信号比を第2軸とする補正用特徴空間において、基準情報は基準線に分布し、生体内情報は基準線と異なる位置にある実測線に分布し、補正量は、基準線と実測線との差分に基づいて算出されることが好ましい。
 基準情報は、ヘモグロビン以外の色素の影響が無い場合に得られる情報であって、且つ酸素飽和度によって変化しない情報であり、生体内情報は、ヘモグロビン以外の色素の濃度に応じて変化する情報であって、且つ酸素飽和度に対し一定となる情報であることが好ましい。
 第1波長帯域は、酸化ヘモグロビンと還元ヘモグロビンの吸光係数が同じである等吸収波長であることが好ましい。ヘモグロビン以外の色素は黄色色素であることが好ましい。第1波長帯域は450±10nmであり、第2波長帯域は470±10nmであり、第3波長帯域は540±20nmであり、第4波長帯域は640±20nmであることが好ましい。
 画像信号取得部は、相関関係を補正するキャリブレーションモードにおいて第1画像信号、第2画像信号、第3画像信号、及び第4画像信号を取得し、酸素飽和度を算出する酸素飽和度モードにより第2画像信号、第3画像信号、及び第4画像信号を取得し、キャリブレーションモードにおいて取得した第1画像信号、第2画像信号、第3画像信号、及び第4画像信号に基づいて、相関関係補正部において、補正量の算出と相関関係の補正を行い、酸素飽和度モードにおいて取得した第2画像信号、第3画像信号、及び第4画像信号に基づいて、補正済みの相関関係を参照して、酸素飽和度算出部において、酸素飽和度を算出することが好ましい。
 本発明の内視鏡システムは、上記記載の本発明のプロセッサ装置を備えており、第1波長帯域の光を発する第1半導体光源、第2波長帯域の光を発する第2半導体光源、第3波長帯域の光を発する第3半導体光源、及び第4波長帯域の光を発する第4半導体光源を有する光源装置を備える。
 本発明の内視鏡システムは、上記記載の本発明のプロセッサ装置を備えており、白色光を発する広帯域光源と、白色光のうち第1波長帯域の光を透過させる第1フィルタ、白色光のうち第2波長帯域の光を透過させる第2フィルタ、白色光のうち第3波長帯域の光を透過させる第3フィルタ、及び白色光のうち第4波長帯域の光を透過させる第4フィルタが設けられた回転フィルタとを有する光源装置を備える。
 本発明のプロセッサ装置の作動方法は、画像信号取得部が、観察対象に含まれる色素のうちヘモグロビン以外の色素の濃度に応じて吸光量が変化する第1波長帯域に対応する第1画像信号と、観察対象に含まれるヘモグロビンの酸素飽和度に応じて吸光量が変化する第2波長帯域に対応する第2画像信号と、第1波長帯域及び第2波長帯域よりも長波長であり、且つ血液量に応じて吸光量が変化する第3波長帯域に対応する第3画像信号と、第3波長帯域よりも長波長の第4波長帯域に対応する第4画像信号と、を取得するステップと、相関関係補正部が、第2画像信号、第3画像信号、及び第4画像信号に基づく特定の演算により得られる第1演算値と酸素飽和度との相関関係の補正量を、第1画像信号、第2画像信号、第3画像信号、及び第4画像信号に基づいて算出し、補正量に基づいて相関関係を補正するステップと、を有する。
 第1画像信号取得ステップでは、画像信号取得部が、相関関係を補正するキャリブレーションモードにおいて第1画像信号、第2画像信号、第3画像信号、及び第4画像信号を取得し、相関関係補正ステップでは、相関関係補正部が、キャリブレーションモードにおいて取得した第1画像信号、第2画像信号、第3画像信号、及び第4画像信号に基づいて、補正量の算出と相関関係の補正を行う上記記載の本発明プロセッサ装置の作動方法において、画像信号取得部が、酸素飽和度を算出する酸素飽和度モードにおいて第2画像信号、第3画像信号、及び第4画像信号を取得する第2画像信号取得ステップと、酸素飽和度算出部が、酸素飽和度モードにおいて取得した第2画像信号、第3画像信号、及び第4画像信号に基づいて、補正済みの相関関係を参照して、酸素飽和度を算出する酸素飽和度算出ステップとを有することが好ましい。
 本発明の内視鏡システムの作動方法は、光源装置が、観察対象に含まれる色素のうちヘモグロビン以外の色素の濃度に応じて吸光量が変化する第1波長帯域の光と、観察対象に含まれるヘモグロビンの酸素飽和度に応じて吸光量が変化する第2波長帯域の光と、第1波長帯域及び第2波長帯域よりも長波長であり、且つ血液量に応じて吸光量が変化する第3波長帯域の光と、第3波長帯域よりも長波長の第4波長帯域の光とを、順次発するステップと、画像信号取得部が、第1波長帯域に対応する第1画像信号と、第2波長帯域に対応する第2画像信号と、第3波長帯域に対応する第3画像信号と、第4波長帯域に対応する第4画像信号と、を取得するステップと、相関関係補正部が、第2画像信号、第3画像信号、及び第4画像信号に基づく特定の演算により得られる第1演算値と酸素飽和度との相関関係の補正量を、第1画像信号、第2画像信号、第3画像信号、及び第4画像信号に基づいて算出し、補正量に基づいて相関関係を補正するステップと、を有する。
 第1画像信号取得ステップでは、画像信号取得部が、相関関係を補正するキャリブレーションモードにおいて第1画像信号、第2画像信号、第3画像信号、及び第4画像信号を取得し、相関関係補正ステップでは、相関関係補正部が、キャリブレーションモードにおいて取得した第1画像信号、第2画像信号、第3画像信号、及び第4画像信号に基づいて、補正量の算出と相関関係の補正を行う上記記載の本発明の内視鏡システムの作動方法において、画像信号取得部が、酸素飽和度を算出する酸素飽和度モードにおいて第2画像信号、第3画像信号、及び第4画像信号を取得する第2画像信号取得ステップと、酸素飽和度算出部が、酸素飽和度モードにおいて取得した第2画像信号、第3画像信号、及び第4画像信号に基づいて、補正済みの相関関係を参照して、酸素飽和度を算出する酸素飽和度算出ステップとを有することが好ましい。
 本発明によれば、各種部位や患者が異なる場合の他、観察対象に黄色色素などが存在する状況においても、酸素飽和度を正確に算出することができる。
内視鏡システムの外観図である。 第1実施形態の内視鏡システムの機能を示すブロック図である。 撮像センサの分光感度を示すグラフである。 通常モードにおける照明光の発光及び観察対象の撮像を示す説明図である。 酸素飽和度モードにおける照明光の発光及び観察対象の撮像を示す説明図である。 キャリブレーションモードにおける照明光の発光及び観察対象の撮像を示す説明図である。 酸素飽和度画像生成部の機能を示すブロック図である。 縦軸がLog(B1/G2)、横軸がLog(R2/G2)である第1特徴空間における酸素飽和度の等値線の位置を示すグラフである。 酸化ヘモグロビンと還元ヘモグロビンの吸光係数を示すグラフである。 酸素飽和度の算出方法を示す説明図である。 相関関係補正部の機能を示すブロック図である。 黄色色素の吸光係数を示すグラフである。 縦軸が第2演算値、横軸がLog(Rs/Gr)である第2特徴空間における基準線と実測線の位置を示すグラフである。 本発明における一連の流れを示すフローチャートである。 第2実施形態の内視鏡システムの機能を示すブロック図である。 回転フィルタの平面図である。
 [第1実施形態]
 図1において、内視鏡システム10は、内視鏡12と、光源装置14と、プロセッサ装置16と、モニタ18と、コンソール19とを有する。内視鏡12は、光源装置14と光学的に接続されるとともに、プロセッサ装置16と電気的に接続される。内視鏡12は、観察対象の体内に挿入される挿入部12aと、挿入部12aの基端部分に設けられた操作部12bと、挿入部12aの先端側に設けられた湾曲部12c及び先端部12dとを有している。湾曲部12cは、操作部12bのアングルノブ12eを操作することにより湾曲動作する。先端部12dは、湾曲部12cの湾曲動作によって所望の方向に向けられる。なお、先端部12dには、観察対象に向けて洗浄液を噴射する噴射口(図示しない)が設けられている。
 また、操作部12bには、アングルノブ12eの他、観察モードの切り替え操作に用いるモード切替SW(モード切替スイッチ)12fと、観察対象の静止画の取得指示に用いられる静止画取得指示部12gとが設けられている。
 内視鏡システム10は、通常モード、酸素飽和度モード、キャリブレーションモードの3つの観察モードを有している。通常モードは、照明光に白色光を用いて観察対象を撮像して得た自然な色合いの画像(以下、通常画像という)をモニタ18に表示する。酸素飽和度モードは、観察対象を撮像して得られる画像信号と酸素飽和度との相関関係を用いて、観察対象の酸素飽和度を測定するとともに、測定した酸素飽和度を擬似カラーなどにより画像化した画像(以下、酸素飽和度画像という)をモニタ18に表示する。キャリブレーションモードでは、酸素飽和度モードにより酸素飽和度の測定を行う前に観察対象を撮影するプレ撮影を行うとともに、このプレ撮影により得られた画像信号から、酸素飽和度の測定時に用いる相関関係の補正量ΔDを算出する。また、キャリブレーションモードでは、補正量ΔDに基づいて、相関関係を補正する。
 プロセッサ装置16は、モニタ18及びコンソール19と電気的に接続される。モニタ18は、観察対象の画像や、観察対象の画像に付帯する情報などを出力表示する。コンソール19は、機能設定などの入力操作を受け付けるユーザインタフェースとして機能する。なお、プロセッサ装置16には、画像や画像情報などを記録する外付けの記録部(図示省略)を接続してもよい。
 図2において、光源装置14は、光源20と、光源20を制御する光源制御部21とを備えている。光源20は、例えば、複数の半導体光源を有し、これらをそれぞれ点灯または消灯し、点灯する場合には各半導体光源の発光量を制御することにより、観察対象を照明する照明光を発する。本実施形態では、光源20は、BS-LED(Blue Short -wavelength Light Emitting Diode)20a、BL-LED(Blue Long-wavelength Light Emitting Diode)20b、G-LED(Green Light Emitting Diode)20c、及びR-LED(Red Light Emitting Diode)20dの4色のLEDを有する。
 BS-LED20a(本発明の「第1半導体光源」に対応する)は、波長帯域450±10nmの第1青色光BSを発する。BL-LED20b(本発明の「第2半導体光源」に対応する)は、波長帯域470±10nmの第2青色光BLを発する。G-LED20c(本発明の「第3半導体光源」に対応する)は、波長帯域540±10nmの緑色光Gを発する。R-LED20d(本発明の「第4半導体光源」に対応する)は、波長帯域640±20nmの赤色光Rを発する。なお、各LED20a~20dにおける中心波長とピーク波長は、同じであってもよく、異なっても良い。
 光源制御部21は、各LED20a~20dに対して独立に制御信号を入力することによって、各LED20a~20dの点灯や消灯、点灯時の発光量などを独立に制御する。光源制御部21における点灯又は消灯制御は、各モードによって異なっている。通常モードでは、BS-LED20a、G-LED20c、R-LED20dを同時に点灯することによって、第1青色光BS、緑色光G、赤色光Rを同時に発光する。酸素飽和度モードでは、BL-LED20bの点灯により第2青色光BLを発光する第1測定用発光モードと、BS-LED20a、G-LED20c、R-LED20dを同時に点灯することによって、第1青色光BS、緑色光G、赤色光Rを同時に発光する第2測定用発光モードを交互に繰り返す。
 キャリブレーションモードでは、BS-LED20a、BL-LED20b、G-LED20c、R-LED20dを順次点灯することによって、第1青色光BS、第2青色光BL、緑色光G、赤色光Rを順次発光する。このキャリブレーションモードにおいて、第1青色光BSを発光するモードを第1校正用発光モードとし、第2青色光BLを発光するモードを第2校正用発光モードとし、緑色光Gを発光するモードを第3校正用発光モードとし、赤色光Rを発光するモードを第4校正用発光モードとする。
 各LED20a~20dが発する光は、ミラーやレンズなどにより構成される光路結合部23を介して、ライトガイド25に入射される。ライトガイド25は、内視鏡12及びユニバーサルコード(内視鏡12と、光源装置14及びプロセッサ装置16を接続するコード)に内蔵されている。ライトガイド25は、ライトガイド25からの光を、内視鏡12の先端部12dまで伝搬する。
 内視鏡12の先端部12dには、照明光学系30aと撮像光学系30bが設けられている。照明光学系30aは照明レンズ32を有しており、ライトガイド25によって伝搬した照明光は照明レンズ32を介して観察対象に照射される。撮像光学系30bは、対物レンズ42、撮像センサ44を有している。照明光が照射された観察対象からの光は、対物レンズ42を介して撮像センサ44に入射する。これにより、撮像センサ44に観察対象の像が結像される。
 撮像センサ44は、照明光により照明中の観察対象を撮像するカラー撮像センサである。撮像センサ44の各画素には、B(青色)カラーフィルタを有するB画素(青色画素)、G(緑色)カラーフィルタを有するG画素(緑色画素)、R(赤色)カラーフィルタを有するR画素(赤色画素)のいずれかが設けられている。図3に示すように、Bカラーフィルタは、主として青色帯域の光、具体的には、波長帯域が380~560nmの光を透過させる。透過率が最大となるピーク波長は460~470nm付近に存在する。Gカラーフィルタは、主として緑色帯域の光、具体的には、波長帯域が450~630nmの光を透過させる。Rカラーフィルタは、主として赤色帯域の光、具体的には580~760nmの光を透過させる。
 撮像センサ44としては、CCD(Charge Coupled Device)撮像センサやCMOS(Complementary Metal-Oxide Semiconductor)撮像センサを利用可能である。また、原色の撮像センサ44の代わりに、C(シアン)、M(マゼンタ)、Y(イエロー)及びG(グリーン)の補色フィルタを備えた補色撮像センサを用いても良い。補色撮像センサを用いる場合には、CMYGの4色の画像信号が出力されるので、補色-原色色変換によって、CMYGの4色の画像信号をRGBの3色の画像信号に変換することにより、撮像センサ44と同様のRGB各色の画像信号を得ることができる。
 撮像センサ44は、撮像制御部45によって駆動制御される。撮像制御部45における制御は、各モードによって異なっている。図4に示すように、通常モードでは、撮像制御部45は、第1青色光BS、緑色光G、及び赤色光Rにより照明中の観察対象を1フレーム毎に撮像するように、撮像センサ44を制御する。これにより、撮像センサ44のB画素からBc画像信号が出力され、G画素からGc画像信号が出力され、R画素からRc画像信号が出力される。
 図5に示すように、酸素飽和度モードでは、撮像制御部45は撮像センサ44に対する制御により、第1測定用発光モードにおいて第2青色光BLで照明中の観察対象を1フレーム分撮像する第1測定用撮像モードと、第2測定用発光モードにおいて第1青色光BS、緑色光G、及び赤色光Rにより照明中の観察対象を1フレーム分撮像する第2測定用撮像モードとを交互に繰り返すようにする。これにより、第1測定用撮像モード時には、撮像センサ44のB画素からB1画像信号が出力され、G画素からG1画像信号が出力され、R画素からR1画像信号が出力される。また、第2測定用撮像モード時には、撮像センサ44のB画素からB2画像信号が出力され、G画素からG2画像信号が出力され、R画素からR2画像信号が出力される。
 図6に示すように、キャリブレーションモードでは、撮像制御部45は撮像センサ44に対する制御により、第1校正用発光モードにおいて第1青色光BSにより照明中の観察対象を1フレーム分撮像する第1校正用撮像モードと、第2校正用発光モードにおいて第2青色光BLにより照明中の観察対象を1フレーム分撮像する第2校正用撮像モードと、第3校正用発光モードにおいて緑色光Gにより照明中の観察対象を1フレーム分撮像する第3校正用撮像モードと、第4校正用発光モードにおいて赤色光Rにより照明中の観察対象を1フレーム分撮像する第4校正用撮像モードを順次行うようにする。
 これにより、第1校正用撮像モード時には、撮像センサ44のB画素からBp画像信号が出力され、G画素からGp画像信号が出力され、R画素からRp画像信号が出力される。また、第2校正用撮像モード時には、撮像センサ44のB画素からBq画像信号が出力され、G画素からGq画像信号が出力され、R画素からRq画像信号が出力される。また、第3校正用撮像モード時には、撮像センサ44のB画素からBr画像信号が出力され、G画素からGr画像信号が出力され、R画素からRr画像信号が出力される。また、第4校正用撮像モード時には、撮像センサ44のB画素からBs画像信号が出力され、G画素からGs画像信号が出力され、R画素からRs画像信号が出力される。
 図2に示すように、CDS/AGC(Correlated Double Sampling/Automatic Gain Control)回路46は、撮像センサ44から得られるアナログの画像信号に相関二重サンプリング(CDS)や自動利得制御(AGC)を行う。CDS/AGC回路46を経た画像信号は、A/D(Analog/Digital)コンバータ48により、デジタルの画像信号に変換される。A/D変換後のデジタル画像信号がプロセッサ装置16に入力される。
 プロセッサ装置16は、画像信号取得部50と、DSP(Digital Signal Processor)52と、ノイズ低減部54と、画像処理切替部56と、通常画像生成部58と、酸素飽和度画像生成部60と、相関関係補正部62と、映像信号生成部64とを備えている。画像信号取得部50は、内視鏡12から入力される画像信号を受信し、受信した画像信号をDSP52に送信する。
 DSP52は、受信した画像信号に対して、欠陥補正処理、オフセット処理、ゲイン補正処理、リニアマトリクス処理、ガンマ変換処理、デモザイク処理、及びYC変換処理等の各種信号処理を行う。欠陥補正処理では、撮像センサ44の欠陥画素の信号が補正される。オフセット処理では、欠陥補正処理を施した画像信号から暗電流成分を除かれ、正確な零レベルを設定される。ゲイン補正処理は、オフセット処理後の各色の画像信号に特定のゲインを乗じることにより各画像信号の信号レベルを整える。ゲイン補正処理後の各色の画像信号には、色再現性を高めるリニアマトリクス処理が施される。
 その後、ガンマ変換処理によって、各画像信号の明るさや彩度が整えられる。リニアマトリクス処理後の画像信号には、デモザイク処理(等方化処理,同時化処理とも言う)が施され、補間により各画素の欠落した色の信号を生成される。デモザイク処理によって、全画素がRGB各色の信号を有するようになる。DSP52は、デモザイク処理後の各画像信号にYC変換処理を施し、輝度信号Yと色差信号Cb及び色差信号Crをノイズ低減部54に出力する。
 ノイズ低減部54は、DSP56でデモザイク処理等を施した画像信号に対して、例えば移動平均法やメディアンフィルタ法等によるノイズ低減処理を施す。ノイズを低減した画像信号は、画像処理切替部56に入力される。
 画像処理切替部56は、設定されているモードによって、ノイズ低減部54からの画像信号の送信先を、通常画像生成部58、酸素飽和度画像生成部60、相関関係補正部62のいずれかに切り替える。具体的には、通常モードにセットされている場合には、ノイズ低減部54からの画像信号を通常画像生成部58に入力する。また、酸素飽和度モードに設定されている場合、ノイズ低減部54からの画像信号を酸素飽和度画像生成部60に入力する。また、キャリブレーションモードに設定されている場合、ノイズ低減部54からの画像信号を相関関係補正部62に入力する。
 通常画像生成部58は、入力した1フレーム分のRc画像信号、Gc画像信号、Bc画像信号に対して、さらに3×3のマトリックス処理、階調変換処理、3次元LUT(Look Up Table)処理等の色変換処理を施す。そして、色変換処理済みのRGB画像データに対して、各種色彩強調処理を施す。この色彩強調処理済みのRGB画像データに対して、空間周波数強調等の構造強調処理を施す。構造強調処理を施したRGB画像データは、通常画像として映像信号生成部64に入力される。
 酸素飽和度画像生成部60は、酸素飽和度モード時に得られる画像信号のうち、B1画像信号(本発明の「第2画像信号」に対応する)、G2画像信号(本発明の「第3画像信号」に対応する)、R2画像信号(本発明の「第4画像信号」に対応する)と酸素飽和度との相関関係を用いて、酸素飽和度を算出する。酸素飽和度の算出方法については後述する。算出した酸素飽和度を疑似カラーなどで画像化した酸素飽和度画像を生成する。この酸素飽和度画像は、映像信号生成部64に入力される。
 相関関係補正部62は、観察対象の部位や患者の違いの他、黄色色素の影響を無くすために、酸素飽和度の算出の際に用いる相関関係を補正する。具体的には、相関関係補正部62は、キャリブレーションモード時に得られる画像信号のうち、Bp画像信号(本発明の「第1画像信号」に対応する)、Bq画像信号(本発明の「第2画像信号」に対応する)、Gr画像信号(本発明の「第3画像信号」に対応する)、Rs画像信号(本発明の「第4画像信号」に対応する)に基づいて、相関関係の補正量ΔDを算出し、この算出した補正量ΔDに基づいて相関関係を補正する。相関関係の補正方法については後述する。
 映像信号生成部64は、通常画像生成部58からの通常画像の画像データ、又は酸素飽和度画像生成部60からの酸素飽和度画像の画像データを、モニタ18上においてフルカラーの表示を可能にする映像信号に変換する。変換済みの映像信号はモニタ18に入力される。これにより、モニタ18には通常画像または酸素飽和度画像が表示される。
 図7に示すように、酸素飽和度画像生成部60は、信号比算出部70と、相関関係記憶部72と、酸素飽和度算出部74と、画像生成部76と、を備えている。信号比算出部70は、酸素飽和度算出部74で酸素飽和度の算出のために用いる信号比を算出する。具体的には、信号比算出部70は、B1画像信号とG2画像信号の信号比B1/G2と、R2画像信号とG2画像信号の信号比R2/G2と、G2画像信号とB2画像信号の信号比G2/B2とをそれぞれ画素毎に算出する。
 相関関係記憶部72は、信号比算出部70が算出する各信号比と、酸素飽和度との相関関係を、LUT(Look Up Table)などの記憶手段に記憶している。この相関関係を、縦軸Log(B1/G2)、横軸Log(R2/G2)で形成される第1特徴空間上で表した場合、図8に示すように、第1特徴空間上において、酸素飽和度が同じ部分を繋ぎあわせた等値線が、ほぼ横軸方向に沿って、形成されている。また、等値線は、酸素飽和度が大きくなるほど、縦軸方向に対して、より下方側に位置している。例えば、酸素飽和度が100%の等値線83は、酸素飽和度が0%の等値線84よりも下方に位置している。
 なお、第1特徴空間における等値線の位置及び形状は、光散乱の物理的なシミュレーションによって予め得られる。また、相関関係記憶部72では、信号比B1/G2、R2/G2と酸素飽和度との相関関係を記憶しているが、信号比B1/G2、R2/G2との相関関係に限らず、B1画像信号、G2画像信号、R2画像信号に基づく特定の演算(例えば、差分処理)を行って得られる第1演算値と酸素飽和度との相関関係を記憶するようにしてもよい。
 上記相関関係は、図9に示す酸化ヘモグロビン(グラフ80)や還元ヘモグロビン(グラフ81)の吸光特性や光散乱特性と密接に関連し合っている。例えば、第2青色光BLの波長帯域470±10nmのように、酸化ヘモグロビンと還元ヘモグロビンの吸光係数の差が大きい波長帯域では、ヘモグロビンの酸素飽和度によって吸光量が変化するため、酸素飽和度の情報を取り扱いやすい。したがって、中心波長470nmの第2青色光BLの光に対応するB1画像信号を含む信号比B1/G2を用いることで、酸素飽和度の算出が可能となる。しかしながら、信号比B1/G2は酸素飽和度だけでなく、血液量にも依存度が高い。そこで、信号比B1/G2に加えて、主として血液量に依存して変化する信号比R2/G2を用いることで、血液量に影響されることなく、酸素飽和度を正確に求めることができる。なお、G2画像信号に含まれる緑色光の波長帯域540±20nmは、ヘモグロビンの吸光係数が比較的高いため、血液量によって吸光量が変化しやすい波長帯域である。
 酸素飽和度算出部74は、相関関係記憶部72に記憶した相関関係を参照し、信号比B1/G2,R2/G2に対応する酸素飽和度を画素毎に算出する。例えば、図10に示すように、相関関係記憶部72に記憶した相関関係を参照した場合、特定画素の信号比B1/G2,R2/G2に対応する酸素飽和度は「40%」である。したがって、酸素飽和度算出部74は、酸素飽和度を「40%」と算出する。
 なお、信号比B1/G2,R2/G2が極めて大きくなったり、極めて小さくなったりすることはほとんどない。すなわち、信号比B1/G2、R2/G2の各値の組み合わせが、酸素飽和度100%の上限の等値線83(図8参照)よりも下方に分布したり、反対に、酸素飽和度0%の下限の等値線84(図8参照)よりも上方に分布したりすることはほとんどない。但し、上限の等値線83より下方に分布する場合には酸素飽和度を100%とし、下限の等値線84より上方に分布する場合には酸素飽和度算出部74は酸素飽和度を0%とする。また、信号比B1/G2,R2/G2に対応する点が上限の等値線83と下限の等値線84との間に分布しない場合には、その画素における酸素飽和度の信頼度が低いことが分かるように表示をし、酸素飽和度を算出しないようにしても良い。
 画像生成部76は、酸素飽和度算出部74で算出した酸素飽和度を用いて、酸素飽和度を画像化した酸素飽和度画像を生成する。具体的には、画像生成部76は、B2画像信号,G2画像信号,及びR2画像信号を取得し、これらの画像信号に対して酸素飽和度に応じたゲインを画素毎に施す。そして、ゲインを施したB2画像信号,G2画像信号,及びR2画像信号を用いてRGB画像データを生成する。例えば、画像生成部76は、酸素飽和度が60%以上の画素ではB2画像信号,G2画像信号,及びR2画像信号のいずれにも同じゲイン「1」を乗じる。これに対して、酸素飽和度が60%未満の画素では、B2画像信号に対して「1」未満のゲインを乗じ、G2画像信号及びR2画像信号に対しては「1」以上のゲインを乗じる。このゲイン処理後のB2画像信号,G2画像信号,及びR2画像信号を用いて生成したRGB画像データが酸素飽和度画像である。
 画像生成部76が生成した酸素飽和度画像では、高酸素の領域(酸素飽和度が60~100%の領域)では、通常観察画像と同様の色で表される。一方、酸素飽和度が特定値を下回る低酸素の領域(酸素飽和度が0~60%の領域)は、通常観察画像とは異なる色(疑似カラー)により表される。
 なお、本実施形態では、画像生成部76は、低酸素の領域のみ疑似カラー化するゲインを乗じているが、高酸素領域でも酸素飽和度に応じたゲインを施し、酸素飽和度画像の全体を疑似カラー化しても良い。また、低酸素領域と高酸素領域を酸素飽和度60%において分けているがこの境界も任意である。
 図11に示すように、相関関係補正部62は、生体内情報算出部90と、補正量算出部92と、補正部93とを備えている。生体内情報算出部90は、入力したBp画像信号、Bq画像信号、Gr画像信号、Rs画像信号から、生体内における黄色色素に関する情報を持ち、且つ酸素飽和度によって影響を受けない生体内情報を算出する。具体的には、Bp画像信号とGr画像信号の信号比Bp/Gr(本発明の「第1信号比」に対応する)を画素毎に算出し、Bq画像信号とGr画像信号の信号比Bq/Gr(本発明の「第2信号比」に対応する)を画素毎に算出し、Rs画像信号とGr画像信号との信号比Rs画像信号とGr画像信号の信号比Rs/Gr(本発明の「第3信号比」に対応する)を画素毎に算出する。
 ここで、信号比Bp/GrのうちBpについては第1青色光BSに対応する画像信号である。この第1青色光BSの波長帯域450±10nmは、図9に示すように、ヘモグロビンの吸光係数が比較的高い青色帯域に属し、且つ酸化ヘモグロビンと還元ヘモグロビンの吸光係数が同じ等吸収波長である。また、第1青色光BSの波長帯域450±10nmは、図12に示すように、黄色色素の吸光係数が最も高くなる吸収ピーク波長を有していることから、黄色色素の濃度に応じて吸光量が変化しやすい波長帯域である。したがって、信号比Bp/Grは、酸素飽和度によって信号値は変化しないものの、黄色色素の濃度や血液量によって信号値が変化する。なお、Gr画像信号に含まれる緑色光の波長帯域540±20nmは、上記したように、血液量に応じて吸光量が変化しやすい波長帯域である。
 信号比Bq/GrのうちBqについては第2青色光BLに対応する画像信号である。この第2青色光BLの波長帯域470±10nmは、上記したように、ヘモグロビンの吸光係数が比較的高い青色帯域に属し、且つ酸化ヘモグロビンと還元ヘモグロビンの吸光係数が異なる異吸収波長である(図9参照)ことから、ヘモグロビンの酸素飽和度によって吸光量が変化しやすい波長帯域である。また、第2青色光BLの中心波長470nmは、黄色色素の吸収ピーク波長からはやや吸収係数が低くなるものの、他の波長帯域と比較すると大きな吸収係数を有している(図12参照)。したがって、信号比Bq/Grは、酸素飽和度、黄色色素の濃度、血液量によって信号値が変化する。これに対して、信号比Rs/Grについては、酸素飽和度及び黄色色素の濃度によって信号値はほとんど変化せず、血液量によって信号値が変化する。
 生体内情報算出部90は、下記式Aに基づく補正用演算により得られる第2演算値が、酸素飽和度が変化しても一定になるように、φを調整する。このφ調整後の第2演算値と信号比Rs/Grからなる情報を、生体内情報とする。この生体内情報は、黄色色素の濃度に応じて変化する情報であり、且つ酸素飽和度によって変化しない情報である。
(式A)第2演算値=信号比Bp/Gr×cosφ-信号比Bq/Gr×sinφ
 補正量算出部92は、予め定められた基準情報と、生体内情報算出部90により算出した生体内情報とから、補正量ΔDを算出する。基準情報については、黄色色素が無い状態で得られ、且つ酸素飽和度によって変化しない情報として定められている。具体的には、基準情報は、黄色色素による影響を排除した状態(即ち、黄色色素が無い状態)において、下記式Aに基づく第2演算値が、酸素飽和度が変化しても一定になるように、φを調整したものである。補正量算出部92を用いる補正量ΔDの算出については、縦軸が式(A)に基づく第2演算値(=信号比Bp/Gr×cosφ-信号比Bq/Gr×sinφ)で、横軸がLog(Rs/Gr)で形成される第2特徴空間(本発明の「補正用特徴空間」に対応する)を用いて、以下説明する。なお、第2特徴空間において、縦軸は本発明の「第1軸」に対応し、横軸は本発明の「第2軸」に対応する。
 第2特徴空間上において基準情報と生体内情報を表した場合、図13に示すように、黄色色素の影響が無い基準情報の分布を示す基準線94と、黄色色素の影響を受けた生体内情報が分布する実測線96とは、それぞれ、ほぼ横軸方向にそって形成されている。実測線96においては、黄色色素の濃度は同じである等濃度線となっている。また、第2特徴空間において、基準線94は実測線96よりも上方に位置している。また、第2特徴空間において、黄色色素の影響が大きくなるほど、実測線96は下方に位置するようになって、基準線94と実測線96との差が大きくなる。
 補正量算出部92では、基準線94と実測線96との差分ΔZを算出する。この算出した差分ΔZに係数αを掛け合わせることによって、補正量ΔDを算出する(補正量ΔD=差分ΔZ×係数α)。なお、補正量ΔDは、Bp画像信号、Bq画像信号、Gr画像信号、Rs画像信号に対してマトリックス処理と1D-LUT(1 dimensional Look UP Tabel)とを組み合わせた変換処理によって算出してもよい。
 補正部93は、補正量算出部92を用いて算出した補正量ΔDに基づいて、相関関係記憶部72に記憶した相関関係を補正する。具体的には、第1特徴空間において、縦軸のLog(B1/G2)の値に対して、補正量ΔDを加える。これにより、第1特徴空間において、酸素飽和度が同じ部分を繋ぎあわせた等値線が、縦軸Log(B1/G2)方向に沿って、移動する。この補正後の相関関係を用いて酸素飽和度を算出することにより、各種部位や患者が異なる場合の他、観察対象上において黄色色素の影響がある状況においても、酸素飽和度を正確に算出することができる
 次に、本発明の一連の流れについて、図14のフローチャートに沿って説明する。モード切替SW12fを操作して、キャリブレーションモードに設定する。キャリブレーションモードに設定されると、内視鏡12の先端部12dから洗浄液が観察対象に対して噴射される。これにより、観察対象上の黄色色素などの大部分が除去される。また、各LED20a~20dの順次点灯により、第1青色光BS、第2青色光BL、緑色光G、赤色光Rが順次発光される。これら4色の光は観察対象に照射され、撮像センサ44によって撮像される。撮像センサから出力される画像信号に基づいて、観察対象の画像がモニタ18に表示される。
 そして、静止画取得指示部12gの操作により、洗浄済みの観察対象のプレ撮影を行い、画像信号を取得する(本発明の「第1画像信号取得ステップ」に対応する)。このプレ撮影により得られた画像信号のうちBp画像信号、Bq画像信号、Gr画像信号、Rs画像信号が相関関係補正部62に送信される。相関関係補正部62では、生体内情報算出部90が、Bp画像信号とGr画像信号の信号比Bp/Grを画素毎に算出し、Bq画像信号とGr画像信号の信号比Bq/Grを画素毎に算出し、Rs画像信号とGr画像信号との信号比Rs画像信号とGr画像信号の信号比Rs/Grを画素毎に算出する。そして、これら3つの信号比Bp/Gr、Bq/Gr、Rs/Grに基づいて、生体内情報を算出する。
 補正量算出部92は、予め定められた基準情報と、生体内情報算出部90で算出した生体内情報とから、補正量ΔDを算出する。この算出した補正量ΔDに基づいて、補正部93によって、相関関係記憶部72に記憶した相関関係を補正する。これにより、キャリブレーションモードが完了する。ここで、「補正量ΔDの算出から相関関係の補正までの処理」については、本発明の「相関関係補正ステップ」に対応している。なお、キャリブレーションモードでは、静止画取得指示部12gの操作によるプレ撮影前においては、第1青色光、緑色光、赤色光の同時発光を行い、通常画像を表示するようにしてもよい。
 キャリブレーションモードが完了すると、酸素飽和度モードに自動的に切り替えられる。酸素飽和度モードに切り替えられると、第2青色光BSと、第1青色光BL、緑色光G、赤色光Rを含む光とが交互に発光され、それぞれの発光毎に撮像が行われる。この撮像により、酸素飽和度の算出に用いられるB1画像信号、G2画像信号、R2画像信号が得られる(本発明の「第2画像信号取得ステップ」に対応する)。次に、B1画像信号とG2画像信号の信号比B1/G2と、R2画像信号とG2画像信号の信号比R2/G2を算出する。そして、補正部93により補正した相関関係の参照により、信号比B1/G2及びR2/G2に対応する酸素飽和度を算出する(本発明の「酸素飽和度算出ステップ」に対応する)。
 [第2実施形態]
 第2実施形態では、上記第1実施形態で示した4色のLED20a~20dの代わりに、キセノンランプなどの広帯域光源と回転フィルタを用いて観察対象の照明を行う。また、カラーの撮像センサ44に代えて、モノクロの撮像センサにより観察対象の撮像を行う。それ以外については、第1実施形態と同様である。
 図15に示すように、第2実施形態の内視鏡システム100では、光源装置14において、4色のLED20a~20dに代えて、広帯域光源102、回転フィルタ104、フィルタ切替部105が設けられている。また、撮像光学系30bには、カラーの撮像センサ44の代わりに、カラーフィルタが設けられていないモノクロの撮像センサ106が設けられている。
 広帯域光源102はキセノンランプ、白色LEDなどであり、波長域が青色から赤色に及ぶ白色光を発する。回転フィルタ104は、内側に設けられた内側フィルタ108と、外側に設けられた外側フィルタ109とを備えている(図16参照)。フィルタ切替部105は、回転フィルタ104を径方向に移動させるものであり、モード切替SW12fにより通常モードにセットしたときに、回転フィルタ104の内側フィルタ108を白色光の光路に挿入し、酸素飽和度モード又はキャリブレーションモードにセットしたときに、回転フィルタ104の外側フィルタ109を白色光の光路に挿入する。
 図16に示すように、内側フィルタ108には、周方向に沿って、白色光のうち第1青色光BSを透過させるB1フィルタ108a、白色光のうち緑色光Gを透過させるGフィルタ108b、白色光のうち赤色光Rを透過させるRフィルタ108cが設けられている。したがって、通常モード時には、回転フィルタ104の回転により、第1青色光BS、緑色光G、赤色光Rが交互に観察対象に照射される。
 外側フィルタ109には、周方向に沿って、白色光のうち第1青色光BSを透過させるB1フィルタ109a(本発明の「第1フィルタ」に対応する)と、白色光のうち第2青色光BLを透過させるB2フィルタ109b(本発明の「第2フィルタ」に対応する)と、白色光のうち緑色光Gを透過させるGフィルタ109c(本発明の「第3フィルタ」に対応する)と、白色光のうち赤色光Rを透過させるRフィルタ109d(本発明の「第4フィルタ」に対応する)とが設けられている。したがって、酸素飽和度モード又はキャリブレーションモード時には、回転フィルタ104が回転することにより、第1青色光BS、第2青色光BL、緑色光G、赤色光Rが交互に観察対象に照射される。
 内視鏡システム100では、通常モード時には、第1青色光BS、緑色光G、及び赤色光Rにより観察対象が照明される毎にモノクロの撮像センサ106により観察対象を撮像する。これにより、Bc画像信号、Gc画像信号、及びRc画像信号が得られる。そして、それら3色の画像信号に基づいて、上記第1実施形態と同様の方法により、通常画像が生成される。
 一方、酸素飽和度モード時には、第1青色光BS、第2青色光BL、緑色光G、及び赤色光Rにより観察対象が照明される毎にモノクロの撮像センサ106により観察対象を撮像する。これにより、B2画像信号と、B1画像信号、G2画像信号、及びR2画像信号が得られる。これら4色の画像信号に基づいて、第1実施形態と同様の方法により、酸素飽和度画像の生成が行われる。また、キャリブレーションモード時には、Bp画像信号、Bq画像信号、Gr画像信号、及びRs画像信号が得られる。これら4色の画像信号に基づいて、第1実施形態と同様の方法で、相関関係の補正が行われる。
 なお、上記実施形態では、キャリブレーションモードにおいて相関関係の補正を行うために、波長帯域が450±10nmの第1青色光BSを用いているが、酸化ヘモグロビンと還元ヘモグロビンの吸光係数が同じ波長帯域であり、且つ、黄色色素の吸光係数が他の波長帯域と比較して大きい波長帯域の光を用いてもよい。例えば、第1青色光BSの代わりに、波長帯域が500±10nmの緑色狭帯域光を用いてもよい。
10 内視鏡システム
12 内視鏡
12a 挿入部
12b 操作部
12c 湾曲部
12d 先端部
12e アングルノブ
12f モード切替SW
12g 静止画取得指示部
14 光源装置
16 プロセッサ装置
18 モニタ
19 コンソール
20 光源
20a BS-LED
20b BL-LED
20c G-LED
20d R-LED
21 光源制御部
23 光路結合部
25 ライトガイド
30a 照明光学系
30b 撮像光学系
32 照明レンズ
42 対物レンズ
44 撮像センサ
45 撮像制御部
46 CDS/AGC回路
48 A/Dコンバータ
50 画像信号取得部
52 DSP
54 ノイズ低減部
56 画像処理切替部
58 通常画像生成部
60 酸素飽和度画像生成部
62 相関関係補正部
64 映像信号生成部
70 信号比算出部
72 相関関係記憶部
74 酸素飽和度算出部
76 画像生成部
80 グラフ
81 グラフ
83 等値線
84 等値線
90 生体内情報算出部
92 補正量算出部
93 補正部
94 基準線
96 実測線
102 広帯域光源
104 回転フィルタ
105 フィルタ切替部
106 撮像センサ
108 内側フィルタ
108a B1フィルタ
108b Gフィルタ
108c Rフィルタ
109 外側フィルタ
109a B1フィルタ
109b B2フィルタ
109c Gフィルタ
109d Rフィルタ

Claims (14)

  1.  観察対象に含まれる色素のうちヘモグロビン以外の色素の濃度に応じて吸光量が変化する第1波長帯域に対応する第1画像信号と、前記観察対象に含まれるヘモグロビンの酸素飽和度に応じて吸光量が変化する第2波長帯域に対応する第2画像信号と、前記第1波長帯域及び前記第2波長帯域よりも長波長であり、且つ血液量に応じて吸光量が変化する第3波長帯域に対応する第3画像信号と、前記第3波長帯域よりも長波長の第4波長帯域に対応する第4画像信号と、を取得する画像信号取得部と、
     前記第2画像信号、前記第3画像信号、及び前記第4画像信号に基づく特定の演算により得られる第1演算値と、前記酸素飽和度との相関関係を記憶する相関関係記憶部と、
     前記第1画像信号、前記第2画像信号、前記第3画像信号、及び前記第4画像信号に基づいて前記相関関係の補正量を算出し、前記補正量に基づいて前記相関関係を補正する相関関係補正部と、
     を備えるプロセッサ装置。
  2.  前記相関関係補正部は、
     前記第1画像信号と前記第3画像信号との第1信号比、前記第2画像信号と前記第3画像信号との第2信号比、及び前記第4画像信号と前記第3画像信号との第3信号比に基づいて、前記観察対象の生体内情報を算出する生体内情報算出部と、
     予め定められた基準情報と前記生体内情報とに基づいて、前記補正量を算出する補正量算出部と、
     前記補正量に基づいて前記相関関係を補正する補正部とを有する請求項1記載のプロセッサ装置。
  3.  前記第1信号比と前記第2信号比に基づく補正用演算により得られる第2演算値を第1軸とし、前記第3信号比を第2軸とする補正用特徴空間において、前記基準情報は基準線に分布し、前記生体内情報は前記基準線と異なる位置にある実測線に分布し、
     前記補正量は、前記基準線と前記実測線との差分に基づいて算出される請求項2記載のプロセッサ装置。
  4.  前記基準情報は、前記ヘモグロビン以外の色素の影響が無い場合に得られる情報であって、且つ前記酸素飽和度によって変化しない情報であり、
     前記生体内情報は、前記ヘモグロビン以外の色素の濃度に応じて変化する情報であって、且つ前記酸素飽和度に対し一定となる情報である請求項2または3記載のプロセッサ装置。
  5.  前記第1波長帯域は、酸化ヘモグロビンと還元ヘモグロビンの吸光係数が同じである等吸収波長である請求項1ないし4いずれか1項記載のプロセッサ装置。
  6.  前記ヘモグロビン以外の色素は黄色色素である請求項1ないし5いずれか1項記載のプロセッサ装置。
  7.  前記第1波長帯域は450±10nmであり、前記第2波長帯域は470±10nmであり、前記第3波長帯域は540±20nmであり、前記第4波長帯域は640±20nmである請求項1ないし6いずれか1項記載のプロセッサ装置。
  8.  前記画像信号取得部は、前記相関関係を補正するキャリブレーションモードにおいて前記第1画像信号、前記第2画像信号、前記第3画像信号、及び前記第4画像信号を取得し、前記酸素飽和度を算出する酸素飽和度モードにおいて前記第2画像信号、前記第3画像信号、及び前記第4画像信号を取得し、
     前記キャリブレーションモードにおいて取得した前記第1画像信号、前記第2画像信号、前記第3画像信号、及び前記第4画像信号に基づいて、前記相関関係補正部において、前記補正量の算出と前記相関関係の補正を行い、
     前記酸素飽和度モードにおいて取得した前記第2画像信号、前記第3画像信号、及び前記第4画像信号に基づいて、補正済みの相関関係を参照して、酸素飽和度算出部において、前記酸素飽和度を算出する請求項1ないし7いずれか1項記載のプロセッサ装置。
  9.  請求項1ないし8いずれか1項記載のプロセッサ装置を備える内視鏡システムにおいて、
     前記第1波長帯域の光を発する第1半導体光源、前記第2波長帯域の光を発する第2半導体光源、前記第3波長帯域の光を発する第3半導体光源、及び前記第4波長帯域の光を発する第4半導体光源を有する光源装置を備える内視鏡システム。
  10.  請求項1ないし8いずれか1項記載のプロセッサ装置を備える内視鏡システムにおいて、
     白色光を発する広帯域光源と、
     前記白色光のうち前記第1波長帯域の光を透過させる第1フィルタ、前記白色光のうち前記第2波長帯域の光を透過させる第2フィルタ、前記白色光のうち前記第3波長帯域の光を透過させる第3フィルタ、及び前記白色光のうち前記第4波長帯域の光を透過させる第4フィルタが設けられた回転フィルタとを有する光源装置を備える内視鏡システム。
  11.  画像信号取得部が、観察対象に含まれる色素のうちヘモグロビン以外の色素の濃度に応じて吸光量が変化する第1波長帯域に対応する第1画像信号と、前記観察対象に含まれるヘモグロビンの酸素飽和度に応じて吸光量が変化する第2波長帯域に対応する第2画像信号と、前記第1波長帯域及び前記第2波長帯域よりも長波長であり、且つ血液量に応じて吸光量が変化する第3波長帯域に対応する第3画像信号と、前記第3波長帯域よりも長波長の第4波長帯域に対応する第4画像信号と、を取得する第1画像信号取得ステップと、
     相関関係補正部が、前記第2画像信号、前記第3画像信号、及び前記第4画像信号に基づく特定の演算により得られる第1演算値と前記酸素飽和度との相関関係の補正量を、前記第1画像信号、前記第2画像信号、前記第3画像信号、及び前記第4画像信号に基づいて算出し、前記補正量に基づいて前記相関関係を補正する相関関係補正ステップと、
    を有するプロセッサ装置の作動方法。
  12.  前記第1画像信号取得ステップでは、前記画像信号取得部が、前記相関関係を補正するキャリブレーションモードにおいて前記第1画像信号、前記第2画像信号、前記第3画像信号、及び前記第4画像信号を取得し、
     前記相関関係補正ステップでは、前記相関関係補正部が、前記キャリブレーションモードにおいて取得した前記第1画像信号、前記第2画像信号、前記第3画像信号、及び前記第4画像信号に基づいて、前記補正量の算出と前記相関関係の補正を行う請求項11記載のプロセッサ装置の作動方法において、
     前記画像信号取得部が、前記酸素飽和度を算出する酸素飽和度モードにおいて前記第2画像信号、前記第3画像信号、及び前記第4画像信号を取得する第2画像信号取得ステップと、
     酸素飽和度算出部が、前記酸素飽和度モードにおいて取得した前記第2画像信号、前記第3画像信号、及び前記第4画像信号に基づいて、補正済みの相関関係を参照して、前記酸素飽和度を算出する酸素飽和度算出ステップとを有するプロセッサ装置の作動方法。
  13.  光源装置が、観察対象に含まれる色素のうちヘモグロビン以外の色素の濃度に応じて吸光量が変化する第1波長帯域の光と、前記観察対象に含まれるヘモグロビンの酸素飽和度に応じて吸光量が変化する第2波長帯域の光と、前記第1波長帯域及び前記第2波長帯域よりも長波長であり、且つ血液量に応じて吸光量が変化する第3波長帯域の光と、前記第3波長帯域よりも長波長の第4波長帯域の光とを、順次発する発光ステップと、
     画像信号取得部が、前記第1波長帯域に対応する第1画像信号と、前記第2波長帯域に対応する第2画像信号と、前記第3波長帯域に対応する第3画像信号と、前記第4波長帯域に対応する第4画像信号と、を取得する第1画像信号取得ステップと、
     相関関係補正部が、前記第2画像信号、前記第3画像信号、及び前記第4画像信号に基づく特定の演算により得られる第1演算値と前記酸素飽和度との相関関係の補正量を、前記第1画像信号、前記第2画像信号、前記第3画像信号、及び前記第4画像信号に基づいて算出し、前記補正量に基づいて前記相関関係を補正する相関関係補正ステップと、
    を有する内視鏡システムの作動方法。
  14.  前記第1画像信号取得ステップでは、前記画像信号取得部が、前記相関関係を補正するキャリブレーションモードにおいて前記第1画像信号、前記第2画像信号、前記第3画像信号、及び前記第4画像信号を取得し、
     前記相関関係補正ステップでは、前記相関関係補正部が、前記キャリブレーションモードにおいて取得した前記第1画像信号、前記第2画像信号、前記第3画像信号、及び前記第4画像信号に基づいて、前記補正量の算出と前記相関関係の補正を行う請求項13記載の内視鏡システムの作動方法において、
     前記画像信号取得部が、前記酸素飽和度を算出する酸素飽和度モードにおいて前記第2画像信号、前記第3画像信号、及び前記第4画像信号を取得する第2画像信号取得ステップと、
     酸素飽和度算出部が、前記酸素飽和度モードにおいて取得した前記第2画像信号、前記第3画像信号、及び前記第4画像信号に基づいて、補正済みの相関関係を参照して、前記酸素飽和度を算出する酸素飽和度算出ステップとを有する内視鏡システムの作動方法。
PCT/JP2016/057484 2015-04-02 2016-03-10 プロセッサ装置及びその作動方法並びに内視鏡システム及びその作動方法 WO2016158276A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16772160.4A EP3278710B1 (en) 2015-04-02 2016-03-10 Processor device and endoscopic system
JP2017509482A JP6412252B2 (ja) 2015-04-02 2016-03-10 プロセッサ装置及び内視鏡システム
US15/720,448 US10264955B2 (en) 2015-04-02 2017-09-29 Processor device and method for operating same, and endoscopic system and method for operating same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-075888 2015-04-02
JP2015075888 2015-04-02
JP2016-005911 2016-01-15
JP2016005911 2016-01-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/720,448 Continuation-In-Part US10264955B2 (en) 2015-04-02 2017-09-29 Processor device and method for operating same, and endoscopic system and method for operating same

Publications (1)

Publication Number Publication Date
WO2016158276A1 true WO2016158276A1 (ja) 2016-10-06

Family

ID=57006719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057484 WO2016158276A1 (ja) 2015-04-02 2016-03-10 プロセッサ装置及びその作動方法並びに内視鏡システム及びその作動方法

Country Status (4)

Country Link
US (1) US10264955B2 (ja)
EP (1) EP3278710B1 (ja)
JP (1) JP6412252B2 (ja)
WO (1) WO2016158276A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159083A1 (ja) * 2017-03-03 2018-09-07 富士フイルム株式会社 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法
WO2018163570A1 (ja) * 2017-03-06 2018-09-13 富士フイルム株式会社 内視鏡システム及びその作動方法
WO2018181953A1 (ja) * 2017-03-31 2018-10-04 国立大学法人九州大学 ヘモグロビン定量装置、ヘモグロビン定量方法及びヘモグロビン定量プログラム、並びに施術支援装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6196900B2 (ja) * 2013-12-18 2017-09-13 オリンパス株式会社 内視鏡装置
WO2015093295A1 (ja) * 2013-12-20 2015-06-25 オリンパス株式会社 内視鏡装置
EP3278710B1 (en) * 2015-04-02 2020-04-22 FUJIFILM Corporation Processor device and endoscopic system
JP6408457B2 (ja) 2015-12-22 2018-10-17 富士フイルム株式会社 内視鏡システム及び内視鏡システムの作動方法
JP6866531B2 (ja) * 2018-03-06 2021-04-28 富士フイルム株式会社 医療画像処理システム及び内視鏡システム
WO2022255072A1 (ja) * 2021-06-01 2022-12-08 富士フイルム株式会社 プロセッサ装置及びその作動方法並びに内視鏡システム
WO2023132188A1 (ja) * 2022-01-05 2023-07-13 富士フイルム株式会社 内視鏡システム及びその作動方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143398A (ja) * 2011-01-12 2012-08-02 Fujifilm Corp 内視鏡システム及び画像生成方法
JP2013022341A (ja) * 2011-07-25 2013-02-04 Fujifilm Corp 内視鏡システムおよび内視鏡システムの駆動方法
JP2015054062A (ja) * 2013-09-11 2015-03-23 富士フイルム株式会社 内視鏡システム、プロセッサ装置及び光源装置並びに作動方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003334162A (ja) * 2002-03-14 2003-11-25 Olympus Optical Co Ltd 内視鏡画像処理装置
US7850305B2 (en) * 2004-12-03 2010-12-14 Topcon Corporation Apparatus and method for measuring spectrum image data of eyeground
JP5191329B2 (ja) * 2008-09-19 2013-05-08 富士フイルム株式会社 画像取得装置
EP2389099A1 (en) * 2009-01-23 2011-11-30 Lev T. Perelman Endoscopic polarized multispectral light scattering scanning method
JP5634755B2 (ja) * 2010-06-08 2014-12-03 富士フイルム株式会社 電子内視鏡システム、電子内視鏡用のプロセッサ装置、及び電子内視鏡システムの作動方法
JP2012069063A (ja) 2010-09-27 2012-04-05 Hitachi Automotive Systems Ltd P−run信号出力装置、組込制御装置
JP5466182B2 (ja) * 2011-01-11 2014-04-09 富士フイルム株式会社 内視鏡システムおよび内視鏡システムの作動方法
JP5642619B2 (ja) * 2011-05-12 2014-12-17 富士フイルム株式会社 医療装置システム及び医療装置システムの作動方法
JP5620932B2 (ja) * 2012-02-14 2014-11-05 富士フイルム株式会社 内視鏡システム、内視鏡システムのプロセッサ装置、及び内視鏡システムの作動方法
JP6039639B2 (ja) * 2014-02-27 2016-12-07 富士フイルム株式会社 内視鏡システム、内視鏡システム用プロセッサ装置、内視鏡システムの作動方法、及び内視鏡システム用プロセッサ装置の作動方法
JP6204314B2 (ja) * 2014-09-03 2017-09-27 Hoya株式会社 電子内視鏡システム
EP3278710B1 (en) * 2015-04-02 2020-04-22 FUJIFILM Corporation Processor device and endoscopic system
CN107427186B (zh) * 2016-01-08 2019-07-12 Hoya株式会社 内窥镜装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143398A (ja) * 2011-01-12 2012-08-02 Fujifilm Corp 内視鏡システム及び画像生成方法
JP2013022341A (ja) * 2011-07-25 2013-02-04 Fujifilm Corp 内視鏡システムおよび内視鏡システムの駆動方法
JP2015054062A (ja) * 2013-09-11 2015-03-23 富士フイルム株式会社 内視鏡システム、プロセッサ装置及び光源装置並びに作動方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3278710A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159083A1 (ja) * 2017-03-03 2018-09-07 富士フイルム株式会社 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法
JPWO2018159083A1 (ja) * 2017-03-03 2019-12-26 富士フイルム株式会社 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法
JP7021183B2 (ja) 2017-03-03 2022-02-16 富士フイルム株式会社 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法
US11259692B2 (en) 2017-03-03 2022-03-01 Fujifilm Corporation Endoscope system, processor device, and method for operating endoscope system
WO2018163570A1 (ja) * 2017-03-06 2018-09-13 富士フイルム株式会社 内視鏡システム及びその作動方法
JPWO2018163570A1 (ja) * 2017-03-06 2019-12-26 富士フイルム株式会社 内視鏡システム及びその作動方法
EP3593703A4 (en) * 2017-03-06 2020-03-11 Fujifilm Corporation ENDOSCOPIC SYSTEM AND METHOD FOR THE OPERATION THEREOF
US11478136B2 (en) 2017-03-06 2022-10-25 Fujifilm Corporation Endoscope system and operation method therefor
WO2018181953A1 (ja) * 2017-03-31 2018-10-04 国立大学法人九州大学 ヘモグロビン定量装置、ヘモグロビン定量方法及びヘモグロビン定量プログラム、並びに施術支援装置
JPWO2018181953A1 (ja) * 2017-03-31 2020-04-30 株式会社シーアイラボ ヘモグロビン定量装置、ヘモグロビン定量方法及びヘモグロビン定量プログラム、並びに施術支援装置
US11344233B2 (en) 2017-03-31 2022-05-31 Tetsuo Ikeda Hemoglobin quantification device, hemoglobin quantification method, hemoglobin quantification program, and surgical assistance device
JP7131831B2 (ja) 2017-03-31 2022-09-06 哲夫 池田 ヘモグロビン定量装置、ヘモグロビン定量方法及びヘモグロビン定量プログラム、並びに施術支援装置

Also Published As

Publication number Publication date
EP3278710B1 (en) 2020-04-22
JPWO2016158276A1 (ja) 2018-01-25
JP6412252B2 (ja) 2018-10-24
EP3278710A1 (en) 2018-02-07
US20180020903A1 (en) 2018-01-25
EP3278710A4 (en) 2018-05-23
US10264955B2 (en) 2019-04-23

Similar Documents

Publication Publication Date Title
JP6412252B2 (ja) プロセッサ装置及び内視鏡システム
JP6561000B2 (ja) 内視鏡システム及びその作動方法
JP6461739B2 (ja) 画像処理装置及び内視鏡システム並びに画像処理装置の作動方法
JP6362274B2 (ja) 内視鏡システム及び内視鏡システムの作動方法
JP6039639B2 (ja) 内視鏡システム、内視鏡システム用プロセッサ装置、内視鏡システムの作動方法、及び内視鏡システム用プロセッサ装置の作動方法
US20220322974A1 (en) Endoscope system and method of operating endoscope system
JPWO2018159083A1 (ja) 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法
WO2017154325A1 (ja) 内視鏡システム、プロセッサ装置、及び、内視鏡システムの作動方法
JP6979510B2 (ja) 内視鏡システム及びその作動方法
JP6731110B2 (ja) 内視鏡システム及びその作動方法
JP6392486B1 (ja) 内視鏡システム
JP6706283B2 (ja) 内視鏡システム、及び、内視鏡システムの作動方法
JP7196016B2 (ja) 情報処理装置及びその作動方法並びに内視鏡システム及びその作動方法
WO2022255072A1 (ja) プロセッサ装置及びその作動方法並びに内視鏡システム
WO2023119856A1 (ja) 内視鏡システム及びその作動方法
WO2023119795A1 (ja) 内視鏡システム及びその作動方法
WO2023132138A1 (ja) プロセッサ装置及びその作動方法並びに内視鏡システム
JP6276149B2 (ja) 内視鏡システム及びその作動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509482

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016772160

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE