WO2016158250A1 - Vehicular air-conditioning unit - Google Patents

Vehicular air-conditioning unit Download PDF

Info

Publication number
WO2016158250A1
WO2016158250A1 PCT/JP2016/057229 JP2016057229W WO2016158250A1 WO 2016158250 A1 WO2016158250 A1 WO 2016158250A1 JP 2016057229 W JP2016057229 W JP 2016057229W WO 2016158250 A1 WO2016158250 A1 WO 2016158250A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
door
air flow
vehicle
passage
Prior art date
Application number
PCT/JP2016/057229
Other languages
French (fr)
Japanese (ja)
Inventor
康裕 関戸
加藤 慎也
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2017509466A priority Critical patent/JP6265303B2/en
Publication of WO2016158250A1 publication Critical patent/WO2016158250A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/08Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator

Definitions

  • This disclosure relates to a vehicle air-conditioning unit that blows air-conditioned air into a passenger compartment.
  • the vehicle air conditioning unit described in Patent Document 1 adjusts the temperature of the conditioned air blown from the vehicle air conditioning unit by a slide door.
  • the vehicle air conditioning unit of Patent Document 1 includes a hot air passage, an air conditioning case that forms a cold air passage provided in parallel with the hot air passage, a heating heat exchanger, and a cooling heat exchange. And an air mix door.
  • the heating heat exchanger is disposed in the hot air passage and heats the air.
  • the cooling heat exchanger is disposed on the upstream side of the air flow with respect to the hot air passage and the cold air passage, and cools the air.
  • the air mix door adjusts the amount of air flowing through the hot air passage and the amount of air flowing through the cold air passage.
  • the air mix door is a slide door that is slid in the door opening / closing direction by a slide mechanism, and is arranged on the upstream side of the air flow with respect to the heat exchanger for heating.
  • the air mix door is a sliding door as described above.
  • Patent Document 1 does not clearly describe the mechanical structure for guiding the sliding door in the door opening / closing direction, but the door guide portion for guiding the sliding door in the door opening / closing direction has at least a sliding door and a heating purpose. It is necessary between the heat exchanger.
  • the door guide portion slides the slide door on the slide door side of the door guide portion.
  • the door guide portion is also disposed on the upstream side of the air flow with respect to the door guide portion. Slide on the upstream side of the air flow. Therefore, the door guide side for guiding the slide door in the door guide portion, specifically, the door sliding side on which the slide door slides in the door guide portion is the air flow upstream side. For example, if the part of the door guide portion on which the sliding door slides is a sliding surface, the sliding surface faces the upstream side of the air flow and faces the air flow in the air conditioning case.
  • FIG. 11 shows the sliding surface 901 of the door guide portion 90 and the inside of the air conditioning case in a configuration in which the slide door 92 is arranged on the upstream side of the air flow with respect to the heat exchanger for heating as in the vehicle air conditioning unit of Patent Document 1. It is the figure which showed typically the relationship with the air flow.
  • the sliding surface 901 faces the upstream side of the air flow as described above, and the sliding door 92 slides on the sliding surface 901 and slides as indicated by arrows SL1 and SL2.
  • a vehicle air conditioning unit includes: A first air passage that allows air to flow toward the passenger compartment, and an air conditioning case that forms a second air passage that bypasses the first air passage and flows air toward the passenger compartment.
  • a door opening / closing direction that is arranged on the downstream side of the air flow with respect to the heating heat exchanger in the reference air flow direction that is the direction of the air flow from the air inflow surface to the air outflow surface and intersects the reference air flow direction
  • a sliding door that opens and closes the first air passage by sliding to In the air conditioning case, it is arranged on the downstream side of the air flow with respect to the heat exchanger for heating in the reference air flow direction, and includes a door guide portion that guides the sliding door in the door opening and closing direction, The door guide unit guides the slide door in the door opening / closing direction on the downstream side of the air flow in the reference air flow direction with respect to the door guide unit.
  • the door guide unit guides the slide door in the door opening / closing direction on the downstream side of the air flow in the reference air flow direction with respect to the door guide unit. Therefore, the door guide side which guides a slide door among door guide parts turns into an air flow downstream. Therefore, compared with the configuration in which the door guide side (for example, the door sliding side) of the door guide portion is on the upstream side of the air flow as in the vehicle air conditioning unit of Patent Document 1, the air flow in the air conditioning case is mixed. There is a merit that the foreign matter is not easily attached to a part of the door guide portion on the door guide side.
  • FIG. 12 illustrates one configuration to which the above disclosure is applied.
  • FIG. 12 shows the example which a slide door slides on a door guide part, the above-mentioned disclosure is not limited to a slide door sliding on a door guide part.
  • FIG. 2 is a sectional view taken along line II-II in FIG. It is sectional drawing which extracted the air-conditioning case from FIG. 2, and displayed the air-conditioning case alone. It is the figure which showed the state at the time of the maximum cooling of the vehicle air conditioning unit in the comparative example compared with 1st Embodiment, Comprising: It is sectional drawing cut
  • FIG. 5 is a view showing a state of the vehicle air conditioning unit during temperature control in the comparative example of FIG. 4, and is a cross-sectional view cut along the same cross section as FIG. 1. It is the figure which showed the state at the time of temperature control of the vehicle air conditioner unit in 1st Embodiment, Comprising: It is sectional drawing cut
  • FIG. 12 is a view corresponding to FIG. 11, and conversely to FIG. 11, in a configuration in which the slide door is arranged on the downstream side of the air flow with respect to the heat exchanger for heating, the sliding surface of the door guide portion and the air conditioning case It is the figure which showed typically the relationship with an air flow.
  • FIG. 1 is a diagram illustrating a main configuration of a vehicle air conditioning unit 10 in the present embodiment, and is a cross-sectional view of the vehicle air conditioning unit 10 viewed from the vehicle width direction.
  • arrows DR1, DR2, and DR3 on the top, bottom, front, back, left and right indicate directions in a vehicle mounted state in which the vehicle air conditioning unit 10 is mounted on the vehicle. That is, the arrow DR1 in FIG. 1 indicates the vehicle vertical direction DR1, the arrow DR2 indicates the vehicle longitudinal direction DR2, and the arrow DR3 in FIG. 2 indicates the vehicle width direction DR3 (in other words, the vehicle horizontal direction DR3).
  • the vehicle vertical direction DR1, the vehicle longitudinal direction DR2, and the vehicle width direction DR3 are directions orthogonal to each other.
  • a vehicle air conditioning unit 10 shown in FIG. 1 constitutes a part of a vehicle air conditioner including a compressor, a condenser, and the like disposed in an engine room of the vehicle.
  • the vehicle air conditioning unit 10 is disposed inside an instrument panel provided in the foremost part of the vehicle interior.
  • the vehicle air conditioning unit 10 includes an air conditioning case 12, an evaporator 16, a heater core 18, an air mix door 20, a door guide unit 22, a door drive unit 24, a blower (not shown), and the like.
  • a blower is disposed on the upstream side of the air flow with respect to the evaporator 16, and the blower blows air to the evaporator 16 as indicated by an arrow FLin.
  • the air conditioning case 12 is a resin member that forms the outer shell of the vehicle air conditioning unit 10, and has a substantially rectangular parallelepiped outer shape extending in the vehicle longitudinal direction DR2.
  • FIG. 1 a main part related to the present disclosure is extracted from the entire air conditioning case 12 and illustrated.
  • the air conditioning case 12 forms an upstream air passage 121, a hot air passage 122 as a first air passage, and a cold air passage 123 as a second air passage inside the air conditioning case 12.
  • the upstream air passage 121, the hot air passage 122, and the cold air passage 123 are all air passages that allow air to flow into the vehicle interior.
  • the upstream air passage 121 is provided on the upstream side of the air flow with respect to the hot air passage 122 and the cold air passage 123. That is, the warm air passage 122 and the cold air passage 123 are connected in parallel to each other on the downstream side of the upstream air passage 121. Therefore, the cold air passage 123 causes the air from the upstream air passage 121 to flow around the hot air passage 122.
  • outside air that is air outside the passenger compartment or inside air that is air inside the passenger compartment is introduced into the upstream air passage 121 by an air blower as indicated by an arrow FLin.
  • the cold air passage 123 is disposed above the hot air passage 122.
  • the evaporator 16 constitutes a well-known refrigeration cycle apparatus that circulates refrigerant together with a compressor, a condenser, and an expansion valve (not shown).
  • the evaporator 16 cools the air passing through the evaporator 16 by evaporation of the refrigerant.
  • the evaporator 16 is disposed in the upstream air passage 121. That is, the evaporator 16 is a cooling heat exchanger that cools the air flowing through the upstream air passage 121, in other words, a cooler. Therefore, the evaporator 16 cools the outside air or the inside air flowing into the upstream air passage 121 as indicated by the arrow FLin, and then flows it to one or both of the hot air passage 122 and the cold air passage 123.
  • the evaporator 16 is disposed in the upstream air passage 121 so that all of the air flowing through the upstream air passage 121 passes through the evaporator 16.
  • the structure of the evaporator 16 is the same as a well-known evaporator generally used in a vehicle air conditioner. Specifically, the evaporator 16 is connected to a core portion 161 and both ends of the core portion 161.
  • the first header tank unit 162 and the second header tank unit 163 are configured.
  • the core portion 161 of the evaporator 16 includes a plurality of refrigerant tubes each having a flat cross-sectional shape that communicates with the header tank portions 162 and 163, and a plurality of corrugated fins that are provided between the refrigerant tubes and formed into a wave shape. It is composed of
  • the core portion 161 has a structure in which refrigerant tubes and corrugated fins are alternately stacked in the vehicle width direction DR3 (see FIG. 2).
  • the core part 161 is divided into a plurality of fine air passages by the refrigerant tube and the corrugated fin, in the core part 161, air flows exclusively in the thickness direction of the core part 161.
  • the refrigerant tube of the evaporator 16 extends in the vehicle vertical direction DR1, and the thickness direction of the core portion 161 is the vehicle longitudinal direction DR2.
  • the heater core 18 is disposed in the hot air passage 122. That is, the heater core 18 is a heating heat exchanger that heats the air that flows out of the evaporator 16 and flows through the hot air passage 122 with engine cooling water that is hot water, in other words, a heater.
  • the heater core 18 is disposed in the hot air passage 122 so that all of the air flowing through the hot air passage 122 passes through the heater core 18.
  • the structure of the heater core 18 is the same as a known heat exchanger for heating generally used in a vehicle air conditioner. Specifically, the heater core 18 includes a core portion 181 and a first header tank portion 182 and a second header tank portion 183 connected to both ends of the core portion 181.
  • the core portion 181 of the heater core 18 is composed of a plurality of hot water tubes each having a flat cross-sectional shape communicating with the header tank portions 182 and 183, and a plurality of corrugated fins provided between the hot water tubes and formed in a wave shape. It is configured.
  • the core portion 181 has a structure in which hot water tubes and corrugated fins are alternately stacked in the vehicle width direction DR3 (see FIG. 2). With such a structure, the air flowing into the core portion 181 passes through the core portion 181 while being heated.
  • the outer shape of the core portion 181 of the heater core 18 is a rectangular parallelepiped shape as shown in FIG. 1, the surface on the upstream side of the air flow of the core portion 181 becomes an air inflow surface 181 a through which air flows, and the core portion 181 The surface on the downstream side of the air flow becomes an air outflow surface 181b through which air flows out. That is, the core portion 181 is configured between the air inflow surface 181a and the air outflow surface 181b.
  • the heater core 18 exchanges heat between the high-temperature engine cooling water flowing in the hot water tube and the air flowing into the core portion 181 from the air inflow surface 181a, thereby heating the air, and the air outflow surface. It is made to flow out from 181b.
  • the core part 181 is divided into a plurality of fine air passages by the hot water tube and the corrugated fin, in the core part 181, the air flows exclusively in the thickness direction of the core part 181.
  • the hot water tube of the heater core 18 extends in the vehicle up-down direction DR1, and the first header tank portion 182 is located above the second header tank portion 183. That is, the first header tank portion 182 is the upper end portion of the heater core 18, and the second header tank portion 183 is the lower end portion of the heater core 18.
  • the air conditioning case 12 includes a first tank support portion 124 that supports the first header tank portion 182 of the heater core 18 and a second tank support portion 125 that supports the second header tank portion 183 of the heater core 18.
  • the heater core 18 has a first header tank part 182 fitted in a U-shaped groove formed by the first tank support part 124, and a second header tank part in the U-shaped groove formed by the second tank support part 125. When 183 is fitted, it is supported with respect to the air conditioning case 12.
  • the air mix door 20 is a slide door disposed in the air conditioning case 12.
  • the air mix door 20 is disposed downstream of the heater core 18 in the flow direction of the air passing through the heater core 18. More specifically, the air mix door 20 is disposed on the downstream side of the air flow with respect to the heater core 18 in the reference air flow direction FLhc that is the air flow direction FLhc from the air inflow surface 181a to the air outflow surface 181b of the heater core 18. ing.
  • the air mix door 20 opens and closes the air outflow surface 181b of the heater core 18 by sliding in the door opening / closing direction DRoc. In short, the warm air passage 122 is opened and closed.
  • the door opening / closing direction DRoc of the air mix door 20 is a direction intersecting the reference air flow direction FLhc, for example, a direction along the air outflow surface 181b of the heater core 18.
  • the direction along the air outflow surface 181b includes not only a direction parallel to the air outflow surface 181b but also a substantially parallel direction in view of technical common sense.
  • the door opening / closing direction DRoc is a direction along the vehicle vertical direction DR1.
  • the air mix door 20 since the slide range of the air mix door 20 extends from the hot air passage 122 to the cold air passage 123, the air mix door 20 opens and closes the hot air passage 122 by sliding movement in the door opening / closing direction DRoc. The cold air passage 123 is also opened and closed. Therefore, the air mix door 20 adjusts the air volume ratio between the air flowing through the hot air passage 122 and the air flowing through the cold air passage 123 according to the slide position.
  • the air mix door 20 has the maximum cooling air passage 122 fully opened and the cold air passage 123 fully closed from the maximum cooling position where the hot air passage 122 is fully closed and the cold air passage 123 is fully opened. It is moved continuously between the heating position.
  • the maximum cooling position of the air mix door 20 is also called a max cool position.
  • the air mix door 20 reaches the maximum cooling position, the entire amount of air that has passed through the evaporator 16 flows to the cool air passage 123.
  • the air mix door 20 is positioned at the maximum cooling position during maximum cooling when the vehicle air conditioning unit 10 is most powerfully cooled.
  • the maximum heating position of the air mix door 20 is also called a maximum hot position.
  • the air mix door 20 reaches the maximum heating position, the entire amount of air that has passed through the evaporator 16 flows to the hot air passage 122.
  • the air mix door 20 is positioned at the maximum heating position during the maximum heating when the vehicle air conditioning unit 10 is heated most strongly.
  • the air mix door 20 may be positioned at an intermediate position between the maximum cooling position and the maximum heating position.
  • the air that has passed through the evaporator 16 corresponds to the slide position of the air mix door 20. It flows to the hot air passage 122 and the cold air passage 123 respectively at the air volume ratio.
  • An air mix space 126 is formed in the air conditioning case 12 through which the warm air heated by the heater core 18 through the warm air passage 122 and the cold air that has passed through the cool air passage 123 are merged. It is mixed in and blown out into the passenger compartment. Therefore, the temperature of the air flowing into the air conditioning case 12 as indicated by the arrow FLin is adjusted according to the slide position of the air mix door 20 and blown out into the passenger compartment.
  • the air mix door 20 has a rack 201 on the air flow downstream surface of the air mix door 20 in the reference air flow direction FLhc in order to receive the operating force from the door drive unit 24. That is, the rack 201 is arranged on the air flow downstream side of the air mix door 20 in the reference air flow direction FLhc.
  • two racks 201 of the air mix door 20 are provided as shown in FIG. 2 which is a cross-sectional view taken along the line II-II of FIG. Specifically, the two racks 201 are respectively arranged at the edges on both sides of the air mix door 20 in the vehicle width direction DR3 to form a pair. Each of the two racks 201 is formed to extend over the entire length of the air mix door 20 in the vehicle vertical direction DR1.
  • the door guide portion 22 is provided in the air conditioning case 12 so as to extend from the hot air passage 122 to the cold air passage 123, and guides the air mix door 20 in the door opening / closing direction DRoc. .
  • the door guide portion 22 is disposed in the air flow case 12 on the downstream side of the air flow with respect to the heater core 18 in the reference air flow direction FLhc. More specifically, the air mix door 20 is disposed upstream of the air flow.
  • the door guide portion 22 is provided between the heater core 18 and the air mix door 20 in the reference air flow direction FLhc. Therefore, the door guide unit 22 guides the air mix door 20 in the door opening / closing direction DRoc by sliding the air mix door 20 on the downstream side of the air flow in the reference air flow direction FLhc.
  • the door guide portion 22 includes ribs 221, 222, and 223 protruding inside the air conditioning case 12, a downstream portion 124a of the first tank support portion 124, and a downstream portion 125a of the second tank support portion 125. It consists of and.
  • the downstream portion 124a of the first tank support portion 124 is a portion constituting the downstream side of the air flow in the reference air flow direction FLhc in the first tank support portion 124.
  • the downstream portion 125a of the second tank support 125 is a portion of the second tank support 125 that constitutes the downstream side of the air flow in the reference air flow direction FLhc.
  • the door guide portion 22 is configured to overlap the first tank support portion 124 and the second tank support portion 125 in a part thereof.
  • the door guide part 22 forms the sliding surface 22a which faced the air flow downstream in the reference
  • the first sliding surface 221a of the sliding surface 22a of the door guide portion 22 is a surface formed by the first rib 221 of the door guide portion 22. 2 and 3, the first sliding surface 221a is disposed in one of the vehicle width directions DR3 in the air conditioning case 12, and extends from the hot air passage 122 to the cold air passage 123 in the vehicle vertical direction DR1. It is extended to.
  • FIG. 3 is a cross-sectional view of the air conditioning case 12 extracted from FIG. 2 and displayed as a single unit.
  • 2nd sliding surface 222a is a surface which the 2nd rib 222 of the door guide part 22 forms.
  • the second sliding surface 222a is disposed in the air conditioning case 12 on the side opposite to the first sliding surface 221a side in the vehicle width direction DR3, and extends from the hot air passage 122 to the cold air passage 123 in the vehicle vertical direction DR1. It is extended to.
  • the third sliding surface 223 a is a surface formed by the third rib 223 of the door guide portion 22.
  • the third sliding surface 223a is disposed in the air conditioning case 12 on the opposite side of the warm air passage 122 along the vehicle vertical direction DR1 with respect to the cold air passage 123, and extends in the vehicle width direction DR3. Yes.
  • One end of the third sliding surface 223a in the vehicle width direction DR3 is connected to the first sliding surface 221a, and the other end of the third sliding surface 223a is connected to the second sliding surface 222a.
  • the fourth sliding surface 124b is a surface formed by the downstream portion 124a of the first tank support portion 124.
  • the fourth sliding surface 124b is disposed at the boundary between the hot air passage 122 and the cold air passage 123 in the air conditioning case 12, and extends in the vehicle width direction DR3.
  • One end of the fourth sliding surface 124b in the vehicle width direction DR3 is connected to the first sliding surface 221a, and the other end of the third sliding surface 223a is connected to the second sliding surface 222a.
  • the fifth sliding surface 125b is a surface formed by the downstream portion 125a of the second tank support 125.
  • the fifth sliding surface 125b is disposed on the opposite side of the cold air passage 123 along the vehicle vertical direction DR1 with respect to the hot air passage 122, and extends in the vehicle width direction DR3. Yes.
  • One end of the fifth sliding surface 125b in the vehicle width direction DR3 is connected to the first sliding surface 221a, and the other end of the fifth sliding surface 125b is connected to the second sliding surface 222a.
  • the air mix door 20 slides on the sliding surface 22a configured as described above, and thereby slides in the door opening / closing direction DRoc.
  • the peripheral portion of the air mix door 20 includes a fourth sliding surface 124b, a fifth sliding surface 125b, a first sliding surface 221a, and
  • the second sliding surface 222a comes into contact with a sliding surface formed of a portion provided between the fourth sliding surface 124b and the fifth sliding surface 125b.
  • the air mix door 20 opens the cold air passage 123 and blocks the air flow through the hot air passage 122.
  • the peripheral portion of the air mix door 20 includes the third sliding surface 223a, the fourth sliding surface 124b, and the first sliding surface. It contacts with the sliding surface which consists of the part provided between the 3rd sliding surface 223a and the 4th sliding surface 124b among 221a and the 2nd sliding surface 222a. As a result, the air mix door 20 opens the hot air passage 122 and blocks the air flow through the cold air passage 123.
  • the door drive unit 24 is a door operating mechanism that slides the air mix door 20.
  • the door drive unit 24 includes a rotating shaft 241 and a pair of gears 242.
  • the door driving unit 24 is disposed in the air conditioning case 12. That is, the rotating shaft 241 and the gear 242 are also arranged in the air conditioning case 12.
  • the rotation shaft 241 of the door drive unit 24 is a cylindrical member that rotates around the door drive unit axis CLdr, which is a single axis along the vehicle width direction DR3.
  • the rotating shaft 241 is connected to, for example, a motor (not shown) attached to the outer wall surface of the air conditioning case 12, and is rotated by the motor.
  • the pair of gears 242 of the door drive unit 24 are respectively fixed to the rotation shaft 241 and rotate around the door drive unit axis CLdr together with the rotation shaft 241.
  • the pair of gears 242 mesh with a pair of racks 201 provided on the air mix door 20.
  • both the rotation shaft 241 and the gear 242 of the door drive unit 24 are arranged downstream of the air flow in the reference air flow direction FLhc with respect to the air mix door 20. Has been.
  • the door drive unit 24 is disposed at the center of the entire stroke of the air mix door 20 in the door opening / closing direction DRoc. Therefore, the door drive unit 24 is provided closer to the first tank support unit 124 than the second tank support unit 125.
  • a part of the door driving unit 24, more specifically, most of the door driving unit 24, has a reference air flow with respect to the entire tank unit 26 including the first tank support unit 124 and the first header tank unit 182 of the heater core 18. It is provided so as to overlap the downstream side of the air flow in the flow direction FLhc.
  • the first header tank part 182 corresponds to the tank part of the heat exchanger for heating
  • the first tank support part 124 corresponds to the tank support part of the air conditioning case.
  • the rotation shaft 241 of the door drive unit 24 is arranged on the downstream side of the air flow in the reference air flow direction FLhc with respect to the entire tank unit 26.
  • the entire rotation shaft 241 overlaps the entire tank portion 26 in the reference air flow direction FLhc. Is provided. This is clear when the width WDtk of the entire tank portion 26 in the vehicle vertical direction DR1 is compared with the diameter of the rotating shaft 241.
  • the air mix door 20 is disposed so as to be sandwiched between the sliding surface 22a of the door guide portion 22 and the gear 242 of the door drive portion 24 in the reference air flow direction FLhc. Restrained in the flow direction FLhc.
  • the air conditioning case 12 has a hot air passage downstream side wall 127 that bends the hot air passage 122 to the cold air passage 123 side, that is, the upper side, on the downstream side of the air flow with respect to the heater core 18. Therefore, the hot air passage 122 extends to the downstream end 127a of the hot air passage downstream side wall 127, and the downstream end of the hot air passage 122 is represented by a two-dot chain line L1ed in FIG. Therefore, the rotating shaft 241 of the door driving unit 24 is disposed in the hot air passage 122. Note that, in FIG. 1, for example, in FIG.
  • all of the rotary shaft 241 may be disposed in the hot air passage 122, or the rotary shaft 241 may have a rotational axis 241 perpendicular to the door drive unit axis CLdr. A part may be only disposed in the hot air passage 122.
  • the air conditioning case 12 is formed with a plurality of air outlets 128, 129, and 130 for blowing out temperature-controlled conditioned air.
  • the plurality of air outlets 128, 129, and 130 are all connected to the air mix space 126, and the conditioned air that has passed through the air mix space 126 passes through one of the plurality of air outlets 128, 129, and 130. And blown out into the passenger compartment.
  • the plurality of air outlets 128, 129, and 130 are a face outlet 128, a foot outlet 129, and a defroster outlet 130.
  • the face air outlet 128 is an air outlet that blows conditioned air toward the upper body of the passenger in the vehicle interior.
  • the foot blower outlet 129 is a blower outlet which blows off air-conditioning wind toward a passenger
  • the defroster blower outlet 130 is a blower outlet which blows off air-conditioning wind toward the inner surface of a vehicle front window glass.
  • Each of the plurality of air outlets 128, 129, and 130 is provided with an opening / closing door (not shown), and the opening degree of the air outlets 128, 129, and 130 is changed by opening / closing the opening / closing door. The Thereby, a plurality of blowing modes are alternatively realized in the vehicle air conditioning unit 10.
  • the blowing mode there are a face mode, a foot mode, a defroster mode, a bi-level mode, a foot defroster mode, and the like.
  • face mode the face air outlet 128 is opened and the foot air outlet 129 and the defroster air outlet 130 are closed.
  • the foot mode the foot outlet 129 is opened and the face outlet 128 and the defroster outlet 130 are closed.
  • defroster mode the defroster outlet 130 is opened and the face outlet 128 and the foot outlet 129 are closed.
  • the bi-level mode both the face outlet 128 and the foot outlet 129 are opened and the defroster outlet 130 is closed.
  • foot defroster mode both the foot outlet 129 and the defroster outlet 130 are opened and the face outlet 128 is closed.
  • the door guide portion 22 slides the air mix door 20 on the downstream side of the air flow in the reference air flow direction FLhc with respect to the door guide portion 22.
  • the door sliding side on which the air mix door 20 slides that is, the side on which the sliding surface 22a is formed, is the downstream side of the air flow. Therefore, compared with the configuration in which the door sliding side is the air flow upstream side as in the vehicle air conditioning unit of Patent Document 1, the air flow in the air conditioning case 12 is mixed as described above with reference to FIG. There is an advantage that foreign matter is less likely to adhere to the sliding surface 22a on the door sliding side of the door guide portion 22.
  • the door guide portion 22 is provided in the air conditioning case 12 so as to extend from the hot air passage 122 to the cold air passage 123. Therefore, the air mix door 20 can be guided so that the air mix door 20 slides from the maximum cooling position to the maximum heating position. Since the sliding surface of the air mix door 20 that slides in contact with the door guide portion 22 is covered with the door guide portion 22 widely in the stroke of the air mix door 20, the sliding of the air mix door 20 correspondingly. Foreign matter is hard to adhere to the surface.
  • the first sliding surface 221a and the second sliding surface 222a are provided in the air conditioning case 12 extending from the hot air passage 122 to the cold air passage 123 in the door opening / closing direction DRoc, as shown in FIG. It extends so as to cover the entire width. Therefore, the sliding surface of the air mix door 20 that slides facing the first sliding surface 221a and the second sliding surface 222a is any position of the stroke from the maximum cooling position to the maximum heating position. Even if it exists, it will be covered with the 1st sliding surface 221a and the 2nd sliding surface 222a. Therefore, it is difficult for foreign matter to adhere to the sliding surface of the air mix door 20.
  • most of the door driving unit 24 is in the reference air flow direction FLhc with respect to the entire tank portion 26 including the first tank support portion 124 and the first header tank portion 182 of the heater core 18. It is provided so as to overlap the downstream side of the air flow. Therefore, the air flow in the cold air passage 123 is not easily obstructed by the door driving unit 24. This will be described with reference to FIGS.
  • a comparative example is assumed in which the door driving unit 24 is provided on the upstream side of the air flow in the reference air flow direction FLhc with respect to the entire tank unit 26.
  • the result is as shown in FIG. That is, in the comparative example shown in FIG. 4, the cold air flowing out from the evaporator 16 flows as shown by the arrow FLmc.
  • the air mix door 20 when the air mix door 20 is in the maximum cooling position in the present embodiment, it is as shown in FIG. That is, in the present embodiment, when the air mix door 20 is at the maximum cooling position as shown in FIG. 5, the cool air flowing out from the evaporator 16 flows as indicated by the arrow FLmc.
  • the door drive part 24 becomes the arrangement
  • the rotating shaft 241 and the gear 242 of the door driving unit 24 are arranged on the downstream side of the air flow in the reference air flow direction FLhc with respect to the air mix door 20.
  • the rack 201 of the air mix door 20 is disposed on the air flow downstream side of the air mix door 20 in the reference air flow direction FLhc. Accordingly, the rotating shaft 241, the gear 242, and the rack 201 are arranged so as to be hidden behind the air mix door 20 with respect to the evaporator 16, so that the foreign matter contained in the air blown from the evaporator 16 has its rotating shaft 241, It is difficult to adhere to the gear 242 and the rack 201.
  • the rotation shaft 241 of the door drive unit 24 is disposed on the downstream side of the air flow in the reference air flow direction FLhc with respect to the entire tank unit 26.
  • all of the rotation shaft 241 is provided so as to overlap the entire tank portion 26 in the reference air flow direction FLhc. Therefore, at the time of maximum cooling of the air conditioning unit 10 for the vehicle, as shown in FIG. 5, the rotating shaft 241 hardly disturbs the flow of the cold air, and it is possible to suppress a decrease in the air volume due to the arrangement of the rotating shaft 241.
  • the rotating shaft 241 of the door driving unit 24 is disposed in the warm air passage 122. More specifically, the rotating shaft 241 is disposed on the downstream side of the air flow with respect to the heater core 18 in the air flow in the air conditioning case 12. Therefore, during the temperature control in which the air mix door 20 is positioned at an intermediate position between the maximum cooling position and the maximum heating position, the warm air flowing through the warm air passage 122 is agitated by passing around the rotation shaft 241. This will be described with reference to FIGS.
  • FIG. 6 shows a state at the time of temperature control of the vehicle air conditioning unit 10 in the comparative example of FIG. 4, that is, a state where the air mix door 20 is positioned at the intermediate position.
  • the cool air flowing out of the evaporator 16 flows through the cool air passage 123 as indicated by the arrow FL2mx, and at the same time, the hot air passage 122 as indicated by the arrow FL1mx. Flowing. Then, the cold air flowing into the hot air passage 122 is heated by the heater core 18 to become hot air, and merges and mixes with the cold air from the cold air passage 123 in the air mix space 126.
  • the rotary shaft 241 has its airflow indicated by the arrows FL1mx and FL2mx.
  • the effect of stirring the air flow is not so great. Accordingly, the hot air indicated by the arrow FL1mx and the cold air indicated by the arrow FL2mx are mixed in the air mix space 126, but the temperature mixing property of the conditioned air in the air mix space 126 is not good, that is, the temperature unevenness is large. Can occur. And if the temperature unevenness is large in the conditioned air blown out from the air mix space 126 into the vehicle interior as indicated by the arrows FLfc and FLft, the comfort of the passenger may be impaired.
  • the temperature of the vehicle air conditioning unit 10 in the present embodiment is controlled, it is as shown in FIG. That is, in this embodiment, when the air mix door 20 is in the intermediate position as shown in FIG. 7, the cold air flowing out from the evaporator 16 is the hot air passage 122 and the cold air passage 123 as indicated by arrows FL1mx and FL2mx. Each flowing. Then, the cold air flowing into the warm air passage 122 is heated by the heater core 18 to become warm air, and merges and mixes with the cold air from the cold air passage 123 in the air mix space 126.
  • FIG. 8 is a cross-sectional view showing a state of maximum heating of the vehicle air conditioning unit 10 in the present embodiment, and the blowing mode in FIG. 8 is a foot mode.
  • FIG. 9 is a cross-sectional view showing the main configuration of the vehicle air conditioning unit 10 in the present embodiment, and corresponds to FIG. 1 of the first embodiment.
  • the vehicle air conditioning unit 10 according to the present embodiment includes two air passage groups including a hot air passage 122 and a cold air passage 123 provided in parallel on the downstream side of the upstream air passage 121. Yes. This is different from the first embodiment.
  • the air conditioning case 12 includes first and second passage separation walls 131 and 132 that extend along the air flow on the downstream side of the air flow with respect to the evaporator 16.
  • An upper air passage group 133 including one hot air passage 122 and one cold air passage 123 is formed on the upper side of the passage separation walls 131 and 132, and below the passage separation walls 131 and 132.
  • the upper air passage group 133 and the lower air passage group 134 are provided in parallel with the passage separation walls 131 and 132 therebetween.
  • the hot air passage 122 is provided below the cold air passage 123.
  • the hot air passage 122 is connected to the cold air passage 123.
  • the hot air passage 122 of the upper air passage group 133 and the hot air passage 122 of the lower air passage group 134 are adjacent to each other via the passage separation walls 131 and 132.
  • the heater core 18 is disposed across the passage separation walls 131 and 132 so as to straddle the hot air passage 122 of the upper air passage group 133 and the hot air passage 122 of the lower air passage group 134. Accordingly, the first passage separation wall 131 is disposed on the upstream side of the air flow with respect to the heater core 18, and the second passage separation wall 132 is disposed on the downstream side of the air flow with respect to the heater core 18.
  • FIG. 9 shows the vehicle air conditioning unit 10 in the case of maximum cooling and the blowout mode is the face mode, and the arrow FLmc shows the air flow in the air conditioning case 12 at that time.
  • the same effects as those of the first embodiment which are obtained from the configuration common to the first embodiment.
  • FIG. 10 is a cross-sectional view showing the main configuration of the vehicle air conditioning unit 10 in the present embodiment, and corresponds to FIG. 9 of the second embodiment.
  • the air flow in the air conditioning case 12 is generally along the vehicle longitudinal direction DR2, and the evaporator 16 and the heater core 18 are arranged in parallel to each other. ing.
  • the door opening / closing direction DRoc of the air mix door 20 is oriented along the air outflow surface 181b of the heater core 18.
  • the evaporator 16 and the heater core 18 are arranged to be inclined with respect to the vehicle vertical direction DR1. This is different from the second embodiment. Therefore, in the present embodiment, the reference air flow direction FLhc is inclined with respect to the vehicle vertical direction DR1 and the vehicle front-rear direction DR2, and the door opening / closing direction DRoc of the air mix door 20 is also relative to the vehicle vertical direction DR1 and the vehicle front-rear direction DR2. Tilted.
  • FIG. 10 shows the vehicle air conditioning unit 10 during maximum cooling, and the arrow FLmc indicates the air flow in the air conditioning case 12 at that time.
  • a part of the door drive unit 24 is provided so as to overlap the entire tank unit 26 on the downstream side of the air flow in the reference air flow direction FLhc.
  • the entire rotation shaft 241 when viewed from the direction along the door drive unit axis CLdr, the entire rotation shaft 241 is in the reference air flow direction with respect to the entire tank unit 26. It is provided so as to overlap FLhc, which is preferable. However, this is an example, and a part of the rotating shaft 241 may be provided so as to overlap the entire tank portion 26 in the reference air flow direction FLhc. That is, it is only necessary that at least a part of the rotating shaft 241 is provided so as to overlap the entire tank portion 26 in the reference air flow direction FLhc.
  • the door guide portion 22 contacts the air mix door 20 on the sliding surface 22a of the door guide portion 22. Therefore, contact between the door guide portion 22 and the air mix door 20 is surface contact.
  • the door guide portion 22 has a guide rib that protrudes toward the air mix door 20 of the door guide portion 22 and extends in the door opening / closing direction DRoc, and the air mix door 20 is in contact with the tip of the guide rib while being in line contact. Even if it slides with respect to the guide part 22, it does not interfere.
  • the door guide portion 22 is disposed in the air conditioning case 12 on the downstream side of the air flow with respect to the heater core 18 in the reference air flow direction FLhc.
  • the entire door guide portion 22 is disposed on the downstream side of the air flow with respect to the heater core 18.
  • a portion of the entire door guide 22 that overlaps the hot air passage 122 may be on the downstream side of the air flow with respect to the heater core 18, and a portion that overlaps the cold air passage 123 may not be on the downstream side of the air flow with respect to the heater core 18.
  • the air mix door 20 moves in the door opening / closing direction DRoc by sliding a sliding portion of the air mix door 20 with respect to the sliding surface 22a of the door guide portion 22. Guided.
  • a sliding surface on the opposite side facing the sliding surface 22a across the sliding portion of the air mix door 20 may be provided.
  • the air mixing door 20 is guided in the door opening / closing direction DRoc by the sliding surface 22a and the sliding surface on the opposite side, but the role of guiding the air mixing door 20 is mainly sliding. It becomes the surface 22a. Accordingly, since the area of the sliding surface on the opposite side can be remarkably reduced compared to the sliding surface 22a, the adhesion of foreign matter to the sliding surface on the opposite side does not become a big problem.
  • the vehicle air conditioning unit 10 includes the evaporator 16.
  • the vehicle air conditioning unit 10 is used in an environment where it is not necessary to cool the air introduced into the air conditioning case 12, for example. If it is possible, the evaporator 16 may be omitted.
  • the sliding surface 22a of the door guide portion 22 forms a continuous flat surface, but may be a curved surface.
  • the door opening / closing direction DRoc of the air mix door 20 is described parallel to the air outflow surface 181b of the heater core 18, but the door opening / closing direction DRoc is the air outflow surface.
  • the direction may be inclined with respect to 181b. The same applies to the second and third embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

An air-conditioning case of this vehicular air-conditioning unit forms a first air passage (122), and a second air passage (123) that bypasses the first air passage and makes air flow toward the vehicle interior. A heat exchanger for heating is arranged in the first air passage, and heats air that has flowed in from an air inflow surface (181a) and causes said air to flow out from an air outflow surface (181b). A slide door is arranged within the air-conditioning case on the downstream side of the airflow with respect to the heat exchanger for heating in a reference airflow direction (FLhc), which is from the air inflow surface to the air outflow surface, the slide door opening and closing the first air passage by sliding and moving along a door open/close direction (DRoc) that intersects with the reference airflow direction. A door guide part is arranged within the air-conditioning case on the downstream side of the airflow with respect to the heat exchanger for heating in the reference airflow direction, the door guide part guiding the slide door in the door open/close direction. Further, the door guide part guides the slide door in the door open/close direction on the downstream side of the airflow with respect to the door guide part in the reference airflow direction.

Description

車両用空調ユニットAir conditioning unit for vehicles 関連出願への相互参照Cross-reference to related applications
 本出願は、2015年4月2日に出願された日本特許出願番号2015-76155号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2015-76155 filed on April 2, 2015, the contents of which are incorporated herein by reference.
 本開示は、車室内へ空調風を吹き出す車両用空調ユニットに関するものである。 This disclosure relates to a vehicle air-conditioning unit that blows air-conditioned air into a passenger compartment.
 従来、この種の車両用空調ユニットとして、例えば特許文献1に記載されたものがある。この特許文献1に記載された車両用空調ユニットは、スライドドアにより、車両用空調ユニットから吹き出される空調風の温度調節を行うものである。具体的に、その特許文献1の車両用空調ユニットは、温風通路およびその温風通路と並列的に設けられた冷風通路を形成する空調ケースと、加熱用熱交換器と、冷却用熱交換器と、エアミックスドアとを備えている。その加熱用熱交換器は温風通路に配置され、空気を加熱する。また、冷却用熱交換器は温風通路および冷風通路に対する空気流れ上流側に配置され、空気を冷却する。 Conventionally, as this type of vehicle air conditioning unit, for example, there is one described in Patent Document 1. The vehicle air conditioning unit described in Patent Document 1 adjusts the temperature of the conditioned air blown from the vehicle air conditioning unit by a slide door. Specifically, the vehicle air conditioning unit of Patent Document 1 includes a hot air passage, an air conditioning case that forms a cold air passage provided in parallel with the hot air passage, a heating heat exchanger, and a cooling heat exchange. And an air mix door. The heating heat exchanger is disposed in the hot air passage and heats the air. The cooling heat exchanger is disposed on the upstream side of the air flow with respect to the hot air passage and the cold air passage, and cools the air.
 また、エアミックスドアは、温風通路を流れる風量と冷風通路を流れる風量とを調節する。そして、そのエアミックスドアは、スライド機構によってドア開閉方向へスライド移動させられるスライドドアであり、加熱用熱交換器に対し空気流れ上流側に配置されている。 Also, the air mix door adjusts the amount of air flowing through the hot air passage and the amount of air flowing through the cold air passage. The air mix door is a slide door that is slid in the door opening / closing direction by a slide mechanism, and is arranged on the upstream side of the air flow with respect to the heat exchanger for heating.
特開平11-105535号公報JP-A-11-105535
 特許文献1の車両用空調ユニットにおいてエアミックスドアは、上記したようにスライドドアである。特許文献1には、そのスライドドアをドア開閉方向へ案内する機械的な構造は明確には記載されていないが、そのスライドドアをドア開閉方向へ案内するドア案内部が少なくともスライドドアと加熱用熱交換器との間には必要となる。 In the vehicle air conditioning unit of Patent Document 1, the air mix door is a sliding door as described above. Patent Document 1 does not clearly describe the mechanical structure for guiding the sliding door in the door opening / closing direction, but the door guide portion for guiding the sliding door in the door opening / closing direction has at least a sliding door and a heating purpose. It is necessary between the heat exchanger.
 そのようにドア案内部がスライドドアと加熱用熱交換器との間に設けられるとすれば、そのドア案内部は、スライドドアをドア案内部のスライドドア側にて摺動させることとなる。 If the door guide portion is provided between the slide door and the heat exchanger for heating as described above, the door guide portion slides the slide door on the slide door side of the door guide portion.
 すなわち、そのスライドドアは加熱用熱交換器に対し空気流れ上流側に配置されることからドア案内部に対しても空気流れ上流側に配置されるので、ドア案内部は、スライドドアをドア案内部の空気流れ上流側にて摺動させる。従って、ドア案内部のうちスライドドアを案内するドア案内側、具体的にはドア案内部のうちスライドドアが摺動するドア摺動側は、空気流れ上流側になる。例えばスライドドアが摺動するドア案内部の部位が摺動面であるとするならば、その摺動面は空気流れ上流側を向き、空調ケース内の空気流れに対向した面になる。 That is, since the slide door is disposed on the upstream side of the air flow with respect to the heat exchanger for heating, the door guide portion is also disposed on the upstream side of the air flow with respect to the door guide portion. Slide on the upstream side of the air flow. Therefore, the door guide side for guiding the slide door in the door guide portion, specifically, the door sliding side on which the slide door slides in the door guide portion is the air flow upstream side. For example, if the part of the door guide portion on which the sliding door slides is a sliding surface, the sliding surface faces the upstream side of the air flow and faces the air flow in the air conditioning case.
 ここで、特許文献1の車両用空調ユニットについて図11を用いて説明する。図11は、特許文献1の車両用空調ユニットのようにスライドドア92が加熱用熱交換器に対し空気流れ上流側に配置される構成において、ドア案内部90の摺動面901と空調ケース内の空気流れとの関係を模式的に示した図である。この図11では、摺動面901は上記のように空気流れ上流側を向いており、スライドドア92がその摺動面901に対して摺動して矢印SL1、SL2のようにスライド移動する。 Here, the vehicle air conditioning unit of Patent Document 1 will be described with reference to FIG. FIG. 11 shows the sliding surface 901 of the door guide portion 90 and the inside of the air conditioning case in a configuration in which the slide door 92 is arranged on the upstream side of the air flow with respect to the heat exchanger for heating as in the vehicle air conditioning unit of Patent Document 1. It is the figure which showed typically the relationship with the air flow. In FIG. 11, the sliding surface 901 faces the upstream side of the air flow as described above, and the sliding door 92 slides on the sliding surface 901 and slides as indicated by arrows SL1 and SL2.
 この図11に示すように、特許文献1の車両用空調ユニットでは、スライドドア92が摺動する摺動面901は空調ケース内の空気流れに対向する。そのため、特許文献1の車両用空調ユニットでは、空調ケース内の空気流れに混入した異物94が摺動面901に付着しやすい。発明者らの詳細な検討の結果、以上のようなことが見出された。 As shown in FIG. 11, in the vehicle air conditioning unit of Patent Document 1, the sliding surface 901 on which the sliding door 92 slides faces the air flow in the air conditioning case. For this reason, in the vehicle air conditioning unit of Patent Document 1, foreign matter 94 mixed in the air flow in the air conditioning case is likely to adhere to the sliding surface 901. As a result of detailed studies by the inventors, the above has been found.
 本開示は上記点に鑑みて、空調ケース内の空気流れに混入した異物が、ドア案内部のうちスライドドアを案内するドア案内側に付着しにくい車両用空調ユニットを提供することを目的とする。 In view of the above points, it is an object of the present disclosure to provide a vehicle air conditioning unit in which foreign matter mixed in an air flow in an air conditioning case is less likely to adhere to a door guide side that guides a sliding door in a door guide portion. .
 上記目的を達成するため、本開示の1つの観点によれば、車両用空調ユニットは、
 車室内に向けて空気を流す第1空気通路、および、その第1空気通路を迂回させ且つ車室内に向けて空気を流す第2空気通路を形成する空調ケースと、
 第1空気通路に配置され、空気流入面と空気流出面とを有し、空気流入面から流入した空気を加熱して空気流出面から流出させる加熱用熱交換器と、
 空調ケース内において、空気流入面から空気流出面に至る空気流れの方向である基準空気流れ方向で加熱用熱交換器に対し空気流れ下流側に配置され、基準空気流れ方向に交差するドア開閉方向へスライド移動することで第1空気通路を開閉するスライドドアと、
 空調ケース内において基準空気流れ方向で加熱用熱交換器に対し空気流れ下流側に配置され、スライドドアをドア開閉方向へ案内するドア案内部とを備え、
 ドア案内部は、スライドドアを、ドア案内部に対し基準空気流れ方向での空気流れ下流側にて、ドア開閉方向へ案内する。
In order to achieve the above object, according to one aspect of the present disclosure, a vehicle air conditioning unit includes:
A first air passage that allows air to flow toward the passenger compartment, and an air conditioning case that forms a second air passage that bypasses the first air passage and flows air toward the passenger compartment.
A heating heat exchanger disposed in the first air passage, having an air inflow surface and an air outflow surface, heating the air flowing in from the air inflow surface and outflowing from the air outflow surface;
In the air conditioning case, a door opening / closing direction that is arranged on the downstream side of the air flow with respect to the heating heat exchanger in the reference air flow direction that is the direction of the air flow from the air inflow surface to the air outflow surface and intersects the reference air flow direction A sliding door that opens and closes the first air passage by sliding to
In the air conditioning case, it is arranged on the downstream side of the air flow with respect to the heat exchanger for heating in the reference air flow direction, and includes a door guide portion that guides the sliding door in the door opening and closing direction,
The door guide unit guides the slide door in the door opening / closing direction on the downstream side of the air flow in the reference air flow direction with respect to the door guide unit.
 上述の開示によれば、ドア案内部は、スライドドアを、ドア案内部に対し基準空気流れ方向での空気流れ下流側にて、ドア開閉方向へ案内する。そのため、ドア案内部のうちスライドドアを案内するドア案内側は空気流れ下流側になる。従って、特許文献1の車両用空調ユニットのようにドア案内部のドア案内側(例えば、上記ドア摺動側)が空気流れ上流側になる構成と比較して、空調ケース内の空気流れに混入した異物がドア案内部のうちドア案内側の部位に付着しにくいというメリットがある。 According to the above-described disclosure, the door guide unit guides the slide door in the door opening / closing direction on the downstream side of the air flow in the reference air flow direction with respect to the door guide unit. Therefore, the door guide side which guides a slide door among door guide parts turns into an air flow downstream. Therefore, compared with the configuration in which the door guide side (for example, the door sliding side) of the door guide portion is on the upstream side of the air flow as in the vehicle air conditioning unit of Patent Document 1, the air flow in the air conditioning case is mixed. There is a merit that the foreign matter is not easily attached to a part of the door guide portion on the door guide side.
 そのメリットを説明するために、例えば、スライドドア92が摺動するドア案内部90の部位が摺動面901であるとして上述の開示の一構成を模式的に表した図が図12として示されている。上述の開示では、図12に示すように、摺動面901が空気流れ下流側を向き、スライドドア92がその摺動面901に対して摺動して矢印SL1、SL2のようにスライド移動する。従って、空調ケース内の空気流れに混入した異物94は、摺動面901とは反対側に形成され空気流れ上流側を向いた面902に専ら付着し、その一方で、異物94は摺動面901に付着しにくい。なお、確認的に述べるが、図12は、上述の開示が適用された一構成を例示するものである。そして、図12は、スライドドアがドア案内部に摺動する例を示すが、上述の開示は、スライドドアがドア案内部に摺動することに限定されるものではない。 In order to explain the merits, for example, a diagram schematically showing one configuration of the above-described disclosure assuming that the portion of the door guide portion 90 on which the slide door 92 slides is the sliding surface 901 is shown in FIG. ing. In the above disclosure, as shown in FIG. 12, the sliding surface 901 faces the downstream side of the air flow, and the sliding door 92 slides on the sliding surface 901 and slides as indicated by arrows SL1 and SL2. . Accordingly, the foreign matter 94 mixed in the air flow in the air conditioning case adheres exclusively to the surface 902 formed on the opposite side of the sliding surface 901 and facing the upstream side of the air flow, while the foreign matter 94 is on the sliding surface. 901 hardly adheres. For confirmation, FIG. 12 illustrates one configuration to which the above disclosure is applied. And although FIG. 12 shows the example which a slide door slides on a door guide part, the above-mentioned disclosure is not limited to a slide door sliding on a door guide part.
第1実施形態において車両用空調ユニットの主要な構成を示す図であって、車両用空調ユニットを車両幅方向から視た断面図である。It is a figure which shows the main structures of the vehicle air conditioning unit in 1st Embodiment, Comprising: It is sectional drawing which looked at the vehicle air conditioning unit from the vehicle width direction. 図1におけるII-II断面図である。FIG. 2 is a sectional view taken along line II-II in FIG. 図2から空調ケースを抜粋して、空調ケースを単体で表示した断面図である。It is sectional drawing which extracted the air-conditioning case from FIG. 2, and displayed the air-conditioning case alone. 第1実施形態と比較される比較例において車両用空調ユニットの最大冷房時の状態を示した図であって、図1と同じ断面で切断した断面図である。It is the figure which showed the state at the time of the maximum cooling of the vehicle air conditioning unit in the comparative example compared with 1st Embodiment, Comprising: It is sectional drawing cut | disconnected by the same cross section as FIG. 第1実施形態において車両用空調ユニットの最大冷房時の状態を示した図であって、図1と同じ断面で切断した断面図である。It is the figure which showed the state at the time of the maximum cooling of the vehicle air conditioning unit in 1st Embodiment, Comprising: It is sectional drawing cut | disconnected by the same cross section as FIG. 図4の比較例において車両用空調ユニットの温度コントロール時の状態を示した図であって、図1と同じ断面で切断した断面図である。FIG. 5 is a view showing a state of the vehicle air conditioning unit during temperature control in the comparative example of FIG. 4, and is a cross-sectional view cut along the same cross section as FIG. 1. 第1実施形態において車両用空調ユニットの温度コントロール時の状態を示した図であって、図1と同じ断面で切断した断面図である。It is the figure which showed the state at the time of temperature control of the vehicle air conditioner unit in 1st Embodiment, Comprising: It is sectional drawing cut | disconnected by the same cross section as FIG. 第1実施形態において車両用空調ユニットの最大暖房時の状態を示した図であって、図1と同じ断面で切断した断面図である。It is the figure which showed the state at the time of the maximum heating of the vehicle air conditioning unit in 1st Embodiment, Comprising: It is sectional drawing cut | disconnected by the same cross section as FIG. 第2実施形態において車両用空調ユニットの主要な構成を示す断面図であって、第1実施形態の図1に相当する図である。It is sectional drawing which shows the main structures of the air conditioning unit for vehicles in 2nd Embodiment, Comprising: It is a figure equivalent to FIG. 1 of 1st Embodiment. 第3実施形態において車両用空調ユニットの主要な構成を示す断面図であって、第2実施形態の図9に相当する図である。It is sectional drawing which shows the main structures of the vehicle air conditioning unit in 3rd Embodiment, Comprising: It is a figure corresponded in FIG. 9 of 2nd Embodiment. 特許文献1の車両用空調ユニットのようにスライドドアが加熱用熱交換器に対し空気流れ上流側に配置される構成において、ドア案内部の摺動面と空調ケース内の空気流れとの関係を模式的に示した図である。In the configuration in which the sliding door is disposed on the upstream side of the air flow with respect to the heat exchanger for heating as in the vehicle air conditioning unit of Patent Document 1, the relationship between the sliding surface of the door guide portion and the air flow in the air conditioning case is as follows. It is the figure shown typically. 図11に相当する図であって、その図11とは逆にスライドドアが加熱用熱交換器に対し空気流れ下流側に配置される構成において、ドア案内部の摺動面と空調ケース内の空気流れとの関係を模式的に示した図である。FIG. 12 is a view corresponding to FIG. 11, and conversely to FIG. 11, in a configuration in which the slide door is arranged on the downstream side of the air flow with respect to the heat exchanger for heating, the sliding surface of the door guide portion and the air conditioning case It is the figure which showed typically the relationship with an air flow.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
 (第1実施形態)
 図1は、本実施形態において車両用空調ユニット10の主要な構成を示す図であって、車両用空調ユニット10を車両幅方向から視た断面図である。図1および後述の図2において上下前後左右の各矢印DR1、DR2、DR3は、車両用空調ユニット10が車両に搭載された車両搭載状態での向きを示す。すなわち、図1の矢印DR1は車両上下方向DR1を示し、矢印DR2は車両前後方向DR2を示し、図2の矢印DR3は車両幅方向DR3(言い換えれば、車両左右方向DR3)を示している。車両上下方向DR1、車両前後方向DR2、および車両幅方向DR3は互いに直交する方向である。
(First embodiment)
FIG. 1 is a diagram illustrating a main configuration of a vehicle air conditioning unit 10 in the present embodiment, and is a cross-sectional view of the vehicle air conditioning unit 10 viewed from the vehicle width direction. In FIG. 1 and FIG. 2 described later, arrows DR1, DR2, and DR3 on the top, bottom, front, back, left and right indicate directions in a vehicle mounted state in which the vehicle air conditioning unit 10 is mounted on the vehicle. That is, the arrow DR1 in FIG. 1 indicates the vehicle vertical direction DR1, the arrow DR2 indicates the vehicle longitudinal direction DR2, and the arrow DR3 in FIG. 2 indicates the vehicle width direction DR3 (in other words, the vehicle horizontal direction DR3). The vehicle vertical direction DR1, the vehicle longitudinal direction DR2, and the vehicle width direction DR3 are directions orthogonal to each other.
 図1に示す車両用空調ユニット10は、車両のエンジンルームに配設されたコンプレッサおよびコンデンサ等を含む車両用空調装置の一部を構成する。車両用空調ユニット10は、車室内最前部に設けられたインストルメントパネルの内側に配置されている。 A vehicle air conditioning unit 10 shown in FIG. 1 constitutes a part of a vehicle air conditioner including a compressor, a condenser, and the like disposed in an engine room of the vehicle. The vehicle air conditioning unit 10 is disposed inside an instrument panel provided in the foremost part of the vehicle interior.
 図1に示すように、車両用空調ユニット10は、空調ケース12、蒸発器16、ヒータコア18、エアミックスドア20、ドア案内部22、ドア駆動部24、および不図示の送風機等を備えている。本実施形態の車両用空調ユニット10では、例えば送風機が蒸発器16に対して空気流れ上流側に配置され、その送風機は矢印FLinのように蒸発器16へ送風する。 As shown in FIG. 1, the vehicle air conditioning unit 10 includes an air conditioning case 12, an evaporator 16, a heater core 18, an air mix door 20, a door guide unit 22, a door drive unit 24, a blower (not shown), and the like. . In the vehicle air conditioning unit 10 of the present embodiment, for example, a blower is disposed on the upstream side of the air flow with respect to the evaporator 16, and the blower blows air to the evaporator 16 as indicated by an arrow FLin.
 空調ケース12は、車両用空調ユニット10の外殻を成す樹脂製の部材であり、車両前後方向DR2に延びたほぼ直方体状の外形を成している。図1では、空調ケース12全体のうち本開示に関わる主要部分が抜粋されて図示されている。 The air conditioning case 12 is a resin member that forms the outer shell of the vehicle air conditioning unit 10, and has a substantially rectangular parallelepiped outer shape extending in the vehicle longitudinal direction DR2. In FIG. 1, a main part related to the present disclosure is extracted from the entire air conditioning case 12 and illustrated.
 空調ケース12は、その空調ケース12の内側に、上流側空気通路121と、第1空気通路としての温風通路122と、第2空気通路としての冷風通路123とを形成している。上流側空気通路121、温風通路122、および冷風通路123は何れも、車室内に向けて空気を流す空気通路である。 The air conditioning case 12 forms an upstream air passage 121, a hot air passage 122 as a first air passage, and a cold air passage 123 as a second air passage inside the air conditioning case 12. The upstream air passage 121, the hot air passage 122, and the cold air passage 123 are all air passages that allow air to flow into the vehicle interior.
 上流側空気通路121は、温風通路122および冷風通路123に対して空気流れ上流側に設けられている。すなわち、温風通路122および冷風通路123は上流側空気通路121の空気流れ下流側に互いに並列的に接続されている。そのため、冷風通路123は、上流側空気通路121からの空気を温風通路122を迂回させて流す。また、上流側空気通路121には、送風機によって、車室外の空気である外気または車室内の空気である内気が矢印FLinのように導入される。なお、本実施形態では、冷風通路123は、温風通路122よりも上側に配置されている。 The upstream air passage 121 is provided on the upstream side of the air flow with respect to the hot air passage 122 and the cold air passage 123. That is, the warm air passage 122 and the cold air passage 123 are connected in parallel to each other on the downstream side of the upstream air passage 121. Therefore, the cold air passage 123 causes the air from the upstream air passage 121 to flow around the hot air passage 122. In addition, outside air that is air outside the passenger compartment or inside air that is air inside the passenger compartment is introduced into the upstream air passage 121 by an air blower as indicated by an arrow FLin. In the present embodiment, the cold air passage 123 is disposed above the hot air passage 122.
 蒸発器16は、不図示のコンプレッサ、コンデンサ、および膨張弁とともに、冷媒を循環させる周知の冷凍サイクル装置を構成している。蒸発器16は、蒸発器16を通過する空気を冷媒の蒸発により冷却する。 The evaporator 16 constitutes a well-known refrigeration cycle apparatus that circulates refrigerant together with a compressor, a condenser, and an expansion valve (not shown). The evaporator 16 cools the air passing through the evaporator 16 by evaporation of the refrigerant.
 具体的に、蒸発器16は上流側空気通路121に配置されている。すなわち、蒸発器16は、上流側空気通路121を流れる空気を冷却する冷却用熱交換器、言い換えれば冷却器である。従って、蒸発器16は、矢印FLinのように上流側空気通路121へ流入した外気または内気を冷却してから温風通路122および冷風通路123の一方または両方へ流す。例えば、蒸発器16は、上流側空気通路121を流れる空気の全部が蒸発器16を通り抜けるように上流側空気通路121に配置されている。 Specifically, the evaporator 16 is disposed in the upstream air passage 121. That is, the evaporator 16 is a cooling heat exchanger that cools the air flowing through the upstream air passage 121, in other words, a cooler. Therefore, the evaporator 16 cools the outside air or the inside air flowing into the upstream air passage 121 as indicated by the arrow FLin, and then flows it to one or both of the hot air passage 122 and the cold air passage 123. For example, the evaporator 16 is disposed in the upstream air passage 121 so that all of the air flowing through the upstream air passage 121 passes through the evaporator 16.
 蒸発器16の構造は、車両用空調装置に一般的に用いられる周知の蒸発器と同じであり、具体的に蒸発器16は、コア部161と、そのコア部161の両端にそれぞれ接続された第1ヘッダタンク部162および第2ヘッダタンク部163とから構成されている。蒸発器16のコア部161は、ヘッダタンク部162、163にそれぞれ連通し扁平断面形状を有する複数本の冷媒チューブと、その冷媒チューブ同士の間に設けられ波状に成形された複数のコルゲートフィンとから構成されている。そして、そのコア部161は、車両幅方向DR3(図2参照)に冷媒チューブとコルゲートフィンとが交互に積層された構造になっている。 The structure of the evaporator 16 is the same as a well-known evaporator generally used in a vehicle air conditioner. Specifically, the evaporator 16 is connected to a core portion 161 and both ends of the core portion 161. The first header tank unit 162 and the second header tank unit 163 are configured. The core portion 161 of the evaporator 16 includes a plurality of refrigerant tubes each having a flat cross-sectional shape that communicates with the header tank portions 162 and 163, and a plurality of corrugated fins that are provided between the refrigerant tubes and formed into a wave shape. It is composed of The core portion 161 has a structure in which refrigerant tubes and corrugated fins are alternately stacked in the vehicle width direction DR3 (see FIG. 2).
 蒸発器16では、冷媒チューブ内を流れる低温の冷媒とコア部161を通り抜ける空気とが熱交換され、それによってその空気が冷却される。また、コア部161は冷媒チューブとコルゲートフィンとによって複数の細かな空気通路に区切られているので、コア部161では、空気は専らコア部161の厚み方向へ流れる。本実施形態では、蒸発器16の冷媒チューブは車両上下方向DR1に延び、そのコア部161の厚み方向は車両前後方向DR2になっている。 In the evaporator 16, heat exchange is performed between the low-temperature refrigerant flowing in the refrigerant tube and the air passing through the core portion 161, thereby cooling the air. Moreover, since the core part 161 is divided into a plurality of fine air passages by the refrigerant tube and the corrugated fin, in the core part 161, air flows exclusively in the thickness direction of the core part 161. In the present embodiment, the refrigerant tube of the evaporator 16 extends in the vehicle vertical direction DR1, and the thickness direction of the core portion 161 is the vehicle longitudinal direction DR2.
 ヒータコア18は温風通路122に配置されている。すなわち、ヒータコア18は、蒸発器16から流出し温風通路122を流れる空気を、温水であるエンジン冷却水により加熱する加熱用熱交換器、言い換えれば加熱器である。例えば、ヒータコア18は、温風通路122を流れる空気の全部がヒータコア18を通り抜けるように温風通路122に配置されている。 The heater core 18 is disposed in the hot air passage 122. That is, the heater core 18 is a heating heat exchanger that heats the air that flows out of the evaporator 16 and flows through the hot air passage 122 with engine cooling water that is hot water, in other words, a heater. For example, the heater core 18 is disposed in the hot air passage 122 so that all of the air flowing through the hot air passage 122 passes through the heater core 18.
 ヒータコア18の構造は、車両用空調装置に一般的に用いられる周知の加熱用熱交換器と同じである。具体的にヒータコア18は、コア部181と、そのコア部181の両端にそれぞれ接続された第1ヘッダタンク部182および第2ヘッダタンク部183とから構成されている。 The structure of the heater core 18 is the same as a known heat exchanger for heating generally used in a vehicle air conditioner. Specifically, the heater core 18 includes a core portion 181 and a first header tank portion 182 and a second header tank portion 183 connected to both ends of the core portion 181.
 ヒータコア18のコア部181は、ヘッダタンク部182、183にそれぞれ連通し扁平断面形状を有する複数本の温水チューブと、その温水チューブ同士の間に設けられ波状に成形された複数のコルゲートフィンとから構成されている。そして、そのコア部181は、車両幅方向DR3(図2参照)に温水チューブとコルゲートフィンとが交互に積層された構造になっている。このような構造により、コア部181に流入した空気は加熱されつつコア部181を通過する。 The core portion 181 of the heater core 18 is composed of a plurality of hot water tubes each having a flat cross-sectional shape communicating with the header tank portions 182 and 183, and a plurality of corrugated fins provided between the hot water tubes and formed in a wave shape. It is configured. The core portion 181 has a structure in which hot water tubes and corrugated fins are alternately stacked in the vehicle width direction DR3 (see FIG. 2). With such a structure, the air flowing into the core portion 181 passes through the core portion 181 while being heated.
 このヒータコア18のコア部181の外形を図1のように直方体形状と見れば、コア部181の空気流れ上流側の面は、空気が流入する空気流入面181aになり、且つ、コア部181の空気流れ下流側の面は、空気が流出する空気流出面181bになる。すなわち、コア部181は、その空気流入面181aと空気流出面181bとの間に構成されている。 If the outer shape of the core portion 181 of the heater core 18 is a rectangular parallelepiped shape as shown in FIG. 1, the surface on the upstream side of the air flow of the core portion 181 becomes an air inflow surface 181 a through which air flows, and the core portion 181 The surface on the downstream side of the air flow becomes an air outflow surface 181b through which air flows out. That is, the core portion 181 is configured between the air inflow surface 181a and the air outflow surface 181b.
 このような構成から、ヒータコア18は、温水チューブ内を流れる高温のエンジン冷却水と空気流入面181aからコア部181へ流入した空気とを熱交換させ、それによってその空気を加熱し、空気流出面181bから流出させる。 With such a configuration, the heater core 18 exchanges heat between the high-temperature engine cooling water flowing in the hot water tube and the air flowing into the core portion 181 from the air inflow surface 181a, thereby heating the air, and the air outflow surface. It is made to flow out from 181b.
 また、コア部181は温水チューブとコルゲートフィンとによって複数の細かな空気通路に区切られているので、コア部181では、空気は専らコア部181の厚み方向へ流れる。本実施形態では、ヒータコア18の温水チューブは車両上下方向DR1に延び、第1ヘッダタンク部182が第2ヘッダタンク部183よりも上方に位置している。すなわち、第1ヘッダタンク部182がヒータコア18の上端部となっており、第2ヘッダタンク部183がヒータコア18の下端部となっている。 Moreover, since the core part 181 is divided into a plurality of fine air passages by the hot water tube and the corrugated fin, in the core part 181, the air flows exclusively in the thickness direction of the core part 181. In the present embodiment, the hot water tube of the heater core 18 extends in the vehicle up-down direction DR1, and the first header tank portion 182 is located above the second header tank portion 183. That is, the first header tank portion 182 is the upper end portion of the heater core 18, and the second header tank portion 183 is the lower end portion of the heater core 18.
 また、空調ケース12は、ヒータコア18の第1ヘッダタンク部182を支持する第1タンク支持部124と、ヒータコア18の第2ヘッダタンク部183を支持する第2タンク支持部125とを空調ケース12内に有している。ヒータコア18は、第1タンク支持部124が形成するU字状の溝に第1ヘッダタンク部182が嵌り込むと共に、第2タンク支持部125が形成するU字状の溝に第2ヘッダタンク部183が嵌り込むことにより、空調ケース12に対して支持される。 The air conditioning case 12 includes a first tank support portion 124 that supports the first header tank portion 182 of the heater core 18 and a second tank support portion 125 that supports the second header tank portion 183 of the heater core 18. Have in. The heater core 18 has a first header tank part 182 fitted in a U-shaped groove formed by the first tank support part 124, and a second header tank part in the U-shaped groove formed by the second tank support part 125. When 183 is fitted, it is supported with respect to the air conditioning case 12.
 エアミックスドア20は、空調ケース12内に配置されたスライドドアである。エアミックスドア20は、ヒータコア18に対し、ヒータコア18を通過する空気の流れ方向において下流側に配置されている。詳細に言えば、エアミックスドア20は、ヒータコア18の空気流入面181aから空気流出面181bに至る空気流れの方向FLhcである基準空気流れ方向FLhcにおいて、ヒータコア18に対し空気流れ下流側に配置されている。そして、エアミックスドア20はドア開閉方向DRocへスライド移動することにより、ヒータコア18の空気流出面181bを開閉する。要するに、温風通路122を開閉する。 The air mix door 20 is a slide door disposed in the air conditioning case 12. The air mix door 20 is disposed downstream of the heater core 18 in the flow direction of the air passing through the heater core 18. More specifically, the air mix door 20 is disposed on the downstream side of the air flow with respect to the heater core 18 in the reference air flow direction FLhc that is the air flow direction FLhc from the air inflow surface 181a to the air outflow surface 181b of the heater core 18. ing. The air mix door 20 opens and closes the air outflow surface 181b of the heater core 18 by sliding in the door opening / closing direction DRoc. In short, the warm air passage 122 is opened and closed.
 エアミックスドア20のドア開閉方向DRocは、基準空気流れ方向FLhcに交差する方向、例えばヒータコア18の空気流出面181bに沿った方向である。その空気流出面181bに沿った方向とは、空気流出面181bと平行な方向に限らず技術常識に鑑みて概ね平行な方向を含んでいる。本実施形態ではヒータコア18に対する上側に冷風通路123が配置されているので、ドア開閉方向DRocは車両上下方向DR1に沿った方向となっている。 The door opening / closing direction DRoc of the air mix door 20 is a direction intersecting the reference air flow direction FLhc, for example, a direction along the air outflow surface 181b of the heater core 18. The direction along the air outflow surface 181b includes not only a direction parallel to the air outflow surface 181b but also a substantially parallel direction in view of technical common sense. In the present embodiment, since the cold air passage 123 is arranged on the upper side with respect to the heater core 18, the door opening / closing direction DRoc is a direction along the vehicle vertical direction DR1.
 詳細には、エアミックスドア20のスライド範囲が温風通路122から冷風通路123に跨っているので、エアミックスドア20は、ドア開閉方向DRocへのスライド移動により、温風通路122を開閉すると共に冷風通路123も開閉する。従って、エアミックスドア20はそのスライド位置に応じて、温風通路122を流れる空気と冷風通路123を流れる空気との風量割合を調節する。 Specifically, since the slide range of the air mix door 20 extends from the hot air passage 122 to the cold air passage 123, the air mix door 20 opens and closes the hot air passage 122 by sliding movement in the door opening / closing direction DRoc. The cold air passage 123 is also opened and closed. Therefore, the air mix door 20 adjusts the air volume ratio between the air flowing through the hot air passage 122 and the air flowing through the cold air passage 123 according to the slide position.
 具体的に、エアミックスドア20は、温風通路122を全閉にすると共に冷風通路123を全開にする最大冷房位置から、温風通路122を全開にすると共に冷風通路123を全閉にする最大暖房位置までの間で連続的に移動させられる。そのエアミックスドア20の最大冷房位置とはマックスクール位置とも呼ばれ、エアミックスドア20が最大冷房位置になると、蒸発器16を通過した空気の全量が冷風通路123へ流れる。すなわち、車両用空調ユニット10が最も強力に冷房する最大冷房時には、エアミックスドア20は最大冷房位置に位置決めされる。 Specifically, the air mix door 20 has the maximum cooling air passage 122 fully opened and the cold air passage 123 fully closed from the maximum cooling position where the hot air passage 122 is fully closed and the cold air passage 123 is fully opened. It is moved continuously between the heating position. The maximum cooling position of the air mix door 20 is also called a max cool position. When the air mix door 20 reaches the maximum cooling position, the entire amount of air that has passed through the evaporator 16 flows to the cool air passage 123. In other words, the air mix door 20 is positioned at the maximum cooling position during maximum cooling when the vehicle air conditioning unit 10 is most powerfully cooled.
 その一方で、エアミックスドア20の最大暖房位置とはマックスホット位置とも呼ばれ、エアミックスドア20が最大暖房位置になると、蒸発器16を通過した空気の全量が温風通路122へ流れる。すなわち、車両用空調ユニット10が最も強力に暖房する最大暖房時には、エアミックスドア20は最大暖房位置に位置決めされる。 On the other hand, the maximum heating position of the air mix door 20 is also called a maximum hot position. When the air mix door 20 reaches the maximum heating position, the entire amount of air that has passed through the evaporator 16 flows to the hot air passage 122. In other words, the air mix door 20 is positioned at the maximum heating position during the maximum heating when the vehicle air conditioning unit 10 is heated most strongly.
 エアミックスドア20は最大冷房位置と最大暖房位置との間の中間位置に位置決めされることもあり、その場合には、蒸発器16を通過した空気は、エアミックスドア20のスライド位置に応じた風量割合で、温風通路122と冷風通路123とへそれぞれ流れる。そして、温風通路122を通りヒータコア18で加熱された温風と冷風通路123を通った冷風とが、空調ケース12内に形成され温風通路122と冷風通路123とが合流するエアミックス空間126にて混ざり合い、車室内へ吹き出される。従って、矢印FLinのように空調ケース12内に流入した空気は、エアミックスドア20のスライド位置に応じて温度調節されて車室内へ吹き出される。 The air mix door 20 may be positioned at an intermediate position between the maximum cooling position and the maximum heating position. In this case, the air that has passed through the evaporator 16 corresponds to the slide position of the air mix door 20. It flows to the hot air passage 122 and the cold air passage 123 respectively at the air volume ratio. An air mix space 126 is formed in the air conditioning case 12 through which the warm air heated by the heater core 18 through the warm air passage 122 and the cold air that has passed through the cool air passage 123 are merged. It is mixed in and blown out into the passenger compartment. Therefore, the temperature of the air flowing into the air conditioning case 12 as indicated by the arrow FLin is adjusted according to the slide position of the air mix door 20 and blown out into the passenger compartment.
 また、エアミックスドア20は、ドア駆動部24からの作動力を受けるために、基準空気流れ方向FLhcにおいてエアミックスドア20の空気流れ下流側の面にラック201を有している。すなわち、そのラック201は、エアミックスドア20のうち基準空気流れ方向FLhcにおいて空気流れ下流側に配置されている。また、エアミックスドア20のラック201は、図1のII-II断面図である図2に示すように2本設けられている。詳細にはその2本のラック201は、エアミックスドア20のうち車両幅方向DR3の両側の縁部にそれぞれ配置され一対を成している。また、2本のラック201はそれぞれ、車両上下方向DR1におけるエアミックスドア20の全長に亘って延びるように形成されている。 In addition, the air mix door 20 has a rack 201 on the air flow downstream surface of the air mix door 20 in the reference air flow direction FLhc in order to receive the operating force from the door drive unit 24. That is, the rack 201 is arranged on the air flow downstream side of the air mix door 20 in the reference air flow direction FLhc. Further, two racks 201 of the air mix door 20 are provided as shown in FIG. 2 which is a cross-sectional view taken along the line II-II of FIG. Specifically, the two racks 201 are respectively arranged at the edges on both sides of the air mix door 20 in the vehicle width direction DR3 to form a pair. Each of the two racks 201 is formed to extend over the entire length of the air mix door 20 in the vehicle vertical direction DR1.
 図1および図2に示すように、ドア案内部22は、空調ケース12内において温風通路122から冷風通路123に及ぶように設けられており、エアミックスドア20をドア開閉方向DRocへ案内する。ドア案内部22は、空調ケース12内において基準空気流れ方向FLhcでヒータコア18に対し空気流れ下流側に配置されている。更に言えば、エアミックスドア20に対し空気流れ上流側に配置されている。要するに、ドア案内部22は、基準空気流れ方向FLhcにおいてヒータコア18とエアミックスドア20との間に設けられている。従って、ドア案内部22は、エアミックスドア20をドア案内部22に対し基準空気流れ方向FLhcでの空気流れ下流側にて摺動させることにより、ドア開閉方向DRocへ案内する。 As shown in FIGS. 1 and 2, the door guide portion 22 is provided in the air conditioning case 12 so as to extend from the hot air passage 122 to the cold air passage 123, and guides the air mix door 20 in the door opening / closing direction DRoc. . The door guide portion 22 is disposed in the air flow case 12 on the downstream side of the air flow with respect to the heater core 18 in the reference air flow direction FLhc. More specifically, the air mix door 20 is disposed upstream of the air flow. In short, the door guide portion 22 is provided between the heater core 18 and the air mix door 20 in the reference air flow direction FLhc. Therefore, the door guide unit 22 guides the air mix door 20 in the door opening / closing direction DRoc by sliding the air mix door 20 on the downstream side of the air flow in the reference air flow direction FLhc.
 具体的に、ドア案内部22は、空調ケース12の内側に突き出たリブ221、222、223と、第1タンク支持部124の下流側部位124aと、第2タンク支持部125の下流側部位125aとから構成されている。その第1タンク支持部124の下流側部位124aは、第1タンク支持部124のうち基準空気流れ方向FLhcでの空気流れ下流側を構成する部位である。また、第2タンク支持部125の下流側部位125aは、第2タンク支持部125のうち基準空気流れ方向FLhcでの空気流れ下流側を構成する部位である。 Specifically, the door guide portion 22 includes ribs 221, 222, and 223 protruding inside the air conditioning case 12, a downstream portion 124a of the first tank support portion 124, and a downstream portion 125a of the second tank support portion 125. It consists of and. The downstream portion 124a of the first tank support portion 124 is a portion constituting the downstream side of the air flow in the reference air flow direction FLhc in the first tank support portion 124. The downstream portion 125a of the second tank support 125 is a portion of the second tank support 125 that constitutes the downstream side of the air flow in the reference air flow direction FLhc.
 すなわち、ドア案内部22は、その一部分において第1タンク支持部124および第2タンク支持部125と重複して構成されている。 That is, the door guide portion 22 is configured to overlap the first tank support portion 124 and the second tank support portion 125 in a part thereof.
 そして、ドア案内部22は、基準空気流れ方向FLhcでの空気流れ下流側を向いた摺動面22aを形成している。その摺動面22aは、詳細に言えば、第1~第5摺動面221a、222a、223a、124b、125bから構成されており、例えば連続した一平面を成している。 And the door guide part 22 forms the sliding surface 22a which faced the air flow downstream in the reference | standard air flow direction FLhc. More specifically, the sliding surface 22a includes first to fifth sliding surfaces 221a, 222a, 223a, 124b, and 125b, and forms, for example, a continuous flat surface.
 ドア案内部22の摺動面22aのうちの第1摺動面221aは、ドア案内部22の第1リブ221が形成する面である。そして、第1摺動面221aは、図2および図3に示すように、空調ケース12内において車両幅方向DR3の一方に配置され、温風通路122から冷風通路123に亘って車両上下方向DR1に延設されている。図3は、図2から空調ケース12を抜粋して、空調ケース12を単体で表示した断面図である。 The first sliding surface 221a of the sliding surface 22a of the door guide portion 22 is a surface formed by the first rib 221 of the door guide portion 22. 2 and 3, the first sliding surface 221a is disposed in one of the vehicle width directions DR3 in the air conditioning case 12, and extends from the hot air passage 122 to the cold air passage 123 in the vehicle vertical direction DR1. It is extended to. FIG. 3 is a cross-sectional view of the air conditioning case 12 extracted from FIG. 2 and displayed as a single unit.
 第2摺動面222aは、ドア案内部22の第2リブ222が形成する面である。そして、第2摺動面222aは、空調ケース12内において車両幅方向DR3の第1摺動面221a側とは反対側に配置され、温風通路122から冷風通路123に亘って車両上下方向DR1に延設されている。 2nd sliding surface 222a is a surface which the 2nd rib 222 of the door guide part 22 forms. The second sliding surface 222a is disposed in the air conditioning case 12 on the side opposite to the first sliding surface 221a side in the vehicle width direction DR3, and extends from the hot air passage 122 to the cold air passage 123 in the vehicle vertical direction DR1. It is extended to.
 第3摺動面223aは、ドア案内部22の第3リブ223が形成する面である。そして、第3摺動面223aは、空調ケース12内において、冷風通路123に対し車両上下方向DR1に沿って温風通路122側とは反対側に配置され、車両幅方向DR3に延設されている。車両幅方向DR3における第3摺動面223aの一端は第1摺動面221aに連結し、第3摺動面223aの他端は第2摺動面222aに連結している。 The third sliding surface 223 a is a surface formed by the third rib 223 of the door guide portion 22. The third sliding surface 223a is disposed in the air conditioning case 12 on the opposite side of the warm air passage 122 along the vehicle vertical direction DR1 with respect to the cold air passage 123, and extends in the vehicle width direction DR3. Yes. One end of the third sliding surface 223a in the vehicle width direction DR3 is connected to the first sliding surface 221a, and the other end of the third sliding surface 223a is connected to the second sliding surface 222a.
 第4摺動面124bは、第1タンク支持部124の下流側部位124aが形成する面である。そして、第4摺動面124bは、空調ケース12内において温風通路122と冷風通路123との境目に配置され、車両幅方向DR3に延設されている。車両幅方向DR3における第4摺動面124bの一端は第1摺動面221aに連結し、第3摺動面223aの他端は第2摺動面222aに連結している。 The fourth sliding surface 124b is a surface formed by the downstream portion 124a of the first tank support portion 124. The fourth sliding surface 124b is disposed at the boundary between the hot air passage 122 and the cold air passage 123 in the air conditioning case 12, and extends in the vehicle width direction DR3. One end of the fourth sliding surface 124b in the vehicle width direction DR3 is connected to the first sliding surface 221a, and the other end of the third sliding surface 223a is connected to the second sliding surface 222a.
 第5摺動面125bは、第2タンク支持部125の下流側部位125aが形成する面である。そして、第5摺動面125bは、空調ケース12内において、温風通路122に対し車両上下方向DR1に沿って冷風通路123側とは反対側に配置され、車両幅方向DR3に延設されている。車両幅方向DR3における第5摺動面125bの一端は第1摺動面221aに連結し、第5摺動面125bの他端は第2摺動面222aに連結している。 The fifth sliding surface 125b is a surface formed by the downstream portion 125a of the second tank support 125. In the air conditioning case 12, the fifth sliding surface 125b is disposed on the opposite side of the cold air passage 123 along the vehicle vertical direction DR1 with respect to the hot air passage 122, and extends in the vehicle width direction DR3. Yes. One end of the fifth sliding surface 125b in the vehicle width direction DR3 is connected to the first sliding surface 221a, and the other end of the fifth sliding surface 125b is connected to the second sliding surface 222a.
 エアミックスドア20は、このように構成された摺動面22aを摺動し、それによりドア開閉方向DRocへスライド移動する。例えば、エアミックスドア20が最大冷房位置に位置決めされた場合には、エアミックスドア20の周縁部分は、第4摺動面124bと、第5摺動面125bと、第1摺動面221aおよび第2摺動面222aのうち第4摺動面124bと第5摺動面125bとの間に設けられた部分とから成る摺動面と接触する。これにより、エアミックスドア20は、冷風通路123を開放すると共に、温風通路122を通る空気流れを遮断する。 The air mix door 20 slides on the sliding surface 22a configured as described above, and thereby slides in the door opening / closing direction DRoc. For example, when the air mix door 20 is positioned at the maximum cooling position, the peripheral portion of the air mix door 20 includes a fourth sliding surface 124b, a fifth sliding surface 125b, a first sliding surface 221a, and The second sliding surface 222a comes into contact with a sliding surface formed of a portion provided between the fourth sliding surface 124b and the fifth sliding surface 125b. As a result, the air mix door 20 opens the cold air passage 123 and blocks the air flow through the hot air passage 122.
 その一方で、エアミックスドア20が最大暖房位置に位置決めされた場合には、エアミックスドア20の周縁部分は、第3摺動面223aと、第4摺動面124bと、第1摺動面221aおよび第2摺動面222aのうち第3摺動面223aと第4摺動面124bとの間に設けられた部分とから成る摺動面と接触する。これにより、エアミックスドア20は、温風通路122を開放すると共に、冷風通路123を通る空気流れを遮断する。 On the other hand, when the air mix door 20 is positioned at the maximum heating position, the peripheral portion of the air mix door 20 includes the third sliding surface 223a, the fourth sliding surface 124b, and the first sliding surface. It contacts with the sliding surface which consists of the part provided between the 3rd sliding surface 223a and the 4th sliding surface 124b among 221a and the 2nd sliding surface 222a. As a result, the air mix door 20 opens the hot air passage 122 and blocks the air flow through the cold air passage 123.
 図1および図2に示すように、ドア駆動部24は、エアミックスドア20をスライド移動させるドア作動機構である。ドア駆動部24は、回転軸241と一対のギヤ242とを含んで構成されている。そして、ドア駆動部24は空調ケース12内に配置されている。すなわち、回転軸241およびギヤ242も空調ケース12内に配置されている。 As shown in FIGS. 1 and 2, the door drive unit 24 is a door operating mechanism that slides the air mix door 20. The door drive unit 24 includes a rotating shaft 241 and a pair of gears 242. The door driving unit 24 is disposed in the air conditioning case 12. That is, the rotating shaft 241 and the gear 242 are also arranged in the air conditioning case 12.
 ドア駆動部24の回転軸241は、車両幅方向DR3に沿った一軸心であるドア駆動部軸心CLdrまわりに回転する円柱形状の部材である。回転軸241は、例えば、空調ケース12の外壁面に取り付けられた不図示のモータに連結されており、そのモータによって回転駆動される。 The rotation shaft 241 of the door drive unit 24 is a cylindrical member that rotates around the door drive unit axis CLdr, which is a single axis along the vehicle width direction DR3. The rotating shaft 241 is connected to, for example, a motor (not shown) attached to the outer wall surface of the air conditioning case 12, and is rotated by the motor.
 ドア駆動部24の一対のギヤ242はそれぞれ回転軸241に固定され、回転軸241と共にドア駆動部軸心CLdrまわりに回転する。また、一対のギヤ242はそれぞれ、エアミックスドア20に設けられた一対のラック201と噛み合っている。 The pair of gears 242 of the door drive unit 24 are respectively fixed to the rotation shaft 241 and rotate around the door drive unit axis CLdr together with the rotation shaft 241. The pair of gears 242 mesh with a pair of racks 201 provided on the air mix door 20.
 そして、ドア駆動部24とエアミックスドア20との位置関係では、ドア駆動部24の回転軸241およびギヤ242は何れも、エアミックスドア20に対し基準空気流れ方向FLhcにおいて空気流れ下流側に配置されている。 In the positional relationship between the door drive unit 24 and the air mix door 20, both the rotation shaft 241 and the gear 242 of the door drive unit 24 are arranged downstream of the air flow in the reference air flow direction FLhc with respect to the air mix door 20. Has been.
 また、ドア駆動部24は、ドア開閉方向DRocにおいてエアミックスドア20のストローク全長の中の中央に配置されている。従って、ドア駆動部24は、第2タンク支持部125よりも第1タンク支持部124に近接して設けられている。そして、ドア駆動部24の一部、詳細にはドア駆動部24の殆どの部分は、第1タンク支持部124とヒータコア18の第1ヘッダタンク部182とから成るタンク全体部26に対し基準空気流れ方向FLhcにおいて空気流れ下流側に重ねて設けられている。なお、本実施形態では第1ヘッダタンク部182は加熱用熱交換器のタンク部に対応し、第1タンク支持部124は空調ケースのタンク支持部に対応する。 Further, the door drive unit 24 is disposed at the center of the entire stroke of the air mix door 20 in the door opening / closing direction DRoc. Therefore, the door drive unit 24 is provided closer to the first tank support unit 124 than the second tank support unit 125. A part of the door driving unit 24, more specifically, most of the door driving unit 24, has a reference air flow with respect to the entire tank unit 26 including the first tank support unit 124 and the first header tank unit 182 of the heater core 18. It is provided so as to overlap the downstream side of the air flow in the flow direction FLhc. In the present embodiment, the first header tank part 182 corresponds to the tank part of the heat exchanger for heating, and the first tank support part 124 corresponds to the tank support part of the air conditioning case.
 ドア駆動部24の配置に関して更に述べると、図1に示すように、ドア駆動部24の回転軸241は、タンク全体部26に対し基準空気流れ方向FLhcにおいて空気流れ下流側に配置されている。そして、ドア駆動部軸心CLdrに沿った向きから見た場合、例えば図1に示す断面で見た場合に、回転軸241の全部は、タンク全体部26に対し基準空気流れ方向FLhcに重ねて設けられている。このことは、車両上下方向DR1におけるタンク全体部26の幅WDtkと回転軸241の直径とを比較すれば明らかである。 The arrangement of the door drive unit 24 will be further described. As shown in FIG. 1, the rotation shaft 241 of the door drive unit 24 is arranged on the downstream side of the air flow in the reference air flow direction FLhc with respect to the entire tank unit 26. When viewed from the direction along the door drive unit axis CLdr, for example, when viewed in the cross section shown in FIG. 1, the entire rotation shaft 241 overlaps the entire tank portion 26 in the reference air flow direction FLhc. Is provided. This is clear when the width WDtk of the entire tank portion 26 in the vehicle vertical direction DR1 is compared with the diameter of the rotating shaft 241.
 また、エアミックスドア20は、基準空気流れ方向FLhcにおいてドア案内部22の摺動面22aとドア駆動部24のギヤ242とに挟まれるように配置され、それにより空調ケース12に対して基準空気流れ方向FLhcに拘束されている。 Further, the air mix door 20 is disposed so as to be sandwiched between the sliding surface 22a of the door guide portion 22 and the gear 242 of the door drive portion 24 in the reference air flow direction FLhc. Restrained in the flow direction FLhc.
 空調ケース12は、ヒータコア18に対する空気流れ下流側において温風通路122を冷風通路123側すなわち上側に曲げる温風通路下流側壁127を有している。そのため、温風通路122は、温風通路下流側壁127の下流端127aにまで延びており、温風通路122の下流端は図1の二点鎖線L1edによって表される。従って、ドア駆動部24の回転軸241は温風通路122内に配置されている。なお、ドア駆動部軸心CLdrに直交し温風通路122を切断する仮想断面たとえば図1において、回転軸241の全部が温風通路122内に配置されていてもよいし、その回転軸241の一部が温風通路122内に配置されているだけであってもよい。 The air conditioning case 12 has a hot air passage downstream side wall 127 that bends the hot air passage 122 to the cold air passage 123 side, that is, the upper side, on the downstream side of the air flow with respect to the heater core 18. Therefore, the hot air passage 122 extends to the downstream end 127a of the hot air passage downstream side wall 127, and the downstream end of the hot air passage 122 is represented by a two-dot chain line L1ed in FIG. Therefore, the rotating shaft 241 of the door driving unit 24 is disposed in the hot air passage 122. Note that, in FIG. 1, for example, in FIG. 1, all of the rotary shaft 241 may be disposed in the hot air passage 122, or the rotary shaft 241 may have a rotational axis 241 perpendicular to the door drive unit axis CLdr. A part may be only disposed in the hot air passage 122.
 空調ケース12には、温度調節された空調風を吹き出す複数の空気吹出口128、129、130が形成されている。その複数の空気吹出口128、129、130は何れもエアミックス空間126に接続されており、エアミックス空間126を経た空調風は、その複数の空気吹出口128、129、130の何れかを介して車室内へ吹き出される。 The air conditioning case 12 is formed with a plurality of air outlets 128, 129, and 130 for blowing out temperature-controlled conditioned air. The plurality of air outlets 128, 129, and 130 are all connected to the air mix space 126, and the conditioned air that has passed through the air mix space 126 passes through one of the plurality of air outlets 128, 129, and 130. And blown out into the passenger compartment.
 具体的に、その複数の空気吹出口128、129、130は、フェイス吹出口128、フット吹出口129、およびデフロスタ吹出口130である。そのフェイス吹出口128は、車室内の乗員の上半身に向けて空調風を吹き出す吹出口である。また、フット吹出口129は、乗員の足元に向けて空調風を吹き出す吹出口である。また、デフロスタ吹出口130は、車両前面窓ガラスの内側面に向けて空調風を吹き出す吹出口である。 Specifically, the plurality of air outlets 128, 129, and 130 are a face outlet 128, a foot outlet 129, and a defroster outlet 130. The face air outlet 128 is an air outlet that blows conditioned air toward the upper body of the passenger in the vehicle interior. Moreover, the foot blower outlet 129 is a blower outlet which blows off air-conditioning wind toward a passenger | crew's step. Moreover, the defroster blower outlet 130 is a blower outlet which blows off air-conditioning wind toward the inner surface of a vehicle front window glass.
 また、複数の空気吹出口128、129、130にはそれぞれ、不図示の開閉ドアが設けられており、その開閉ドアの開閉動作によってその空気吹出口128、129、130の開度がそれぞれ変更される。これにより、車両用空調ユニット10において複数の吹出モードが択一的に実現される。 Each of the plurality of air outlets 128, 129, and 130 is provided with an opening / closing door (not shown), and the opening degree of the air outlets 128, 129, and 130 is changed by opening / closing the opening / closing door. The Thereby, a plurality of blowing modes are alternatively realized in the vehicle air conditioning unit 10.
 例えば、その吹出モードとしては、フェイスモード、フットモード、デフロスタモード、バイレベルモード、フットデフロスタモードなどがある。フェイスモードでは、フェイス吹出口128が開放され且つフット吹出口129およびデフロスタ吹出口130が閉塞される。フットモードでは、フット吹出口129が開放され且つフェイス吹出口128およびデフロスタ吹出口130が閉塞される。デフロスタモードでは、デフロスタ吹出口130が開放され且つフェイス吹出口128およびフット吹出口129が閉塞される。バイレベルモードでは、フェイス吹出口128とフット吹出口129との両方が開かれ且つデフロスタ吹出口130が閉塞される。フットデフロスタモードでは、フット吹出口129とデフロスタ吹出口130との両方が開かれ且つフェイス吹出口128が閉塞される。 For example, as the blowing mode, there are a face mode, a foot mode, a defroster mode, a bi-level mode, a foot defroster mode, and the like. In the face mode, the face air outlet 128 is opened and the foot air outlet 129 and the defroster air outlet 130 are closed. In the foot mode, the foot outlet 129 is opened and the face outlet 128 and the defroster outlet 130 are closed. In the defroster mode, the defroster outlet 130 is opened and the face outlet 128 and the foot outlet 129 are closed. In the bi-level mode, both the face outlet 128 and the foot outlet 129 are opened and the defroster outlet 130 is closed. In the foot defroster mode, both the foot outlet 129 and the defroster outlet 130 are opened and the face outlet 128 is closed.
 上述したように、本実施形態によれば、図1に示すように、ドア案内部22は、エアミックスドア20をドア案内部22に対し基準空気流れ方向FLhcでの空気流れ下流側にて摺動させることにより、ドア開閉方向DRocへ案内する。そのため、ドア案内部22のうちエアミックスドア20が摺動するドア摺動側すなわち摺動面22aが形成されている側は空気流れ下流側になる。従って、特許文献1の車両用空調ユニットのように上記ドア摺動側が空気流れ上流側になる構成と比較して、図12を用いて前述したように、空調ケース12内の空気流れに混入した異物がドア案内部22のうちドア摺動側の摺動面22aに付着しにくいというメリットがある。 As described above, according to the present embodiment, as shown in FIG. 1, the door guide portion 22 slides the air mix door 20 on the downstream side of the air flow in the reference air flow direction FLhc with respect to the door guide portion 22. By moving, it guides in the door opening / closing direction DRoc. Therefore, the door sliding side on which the air mix door 20 slides, that is, the side on which the sliding surface 22a is formed, is the downstream side of the air flow. Therefore, compared with the configuration in which the door sliding side is the air flow upstream side as in the vehicle air conditioning unit of Patent Document 1, the air flow in the air conditioning case 12 is mixed as described above with reference to FIG. There is an advantage that foreign matter is less likely to adhere to the sliding surface 22a on the door sliding side of the door guide portion 22.
 また、本実施形態によれば、図1に示すように、ドア案内部22は、空調ケース12内において温風通路122から冷風通路123に及ぶように設けられている。従って、エアミックスドア20が最大冷房位置から最大暖房位置までスライド移動するようにエアミックスドア20を案内することができる。そして、ドア案内部22に接触して摺動するエアミックスドア20の摺動面がエアミックスドア20のストロークにおいて幅広くドア案内部22に覆われるので、その分、そのエアミックスドア20の摺動面にも異物が付着しにくい。 Further, according to the present embodiment, as shown in FIG. 1, the door guide portion 22 is provided in the air conditioning case 12 so as to extend from the hot air passage 122 to the cold air passage 123. Therefore, the air mix door 20 can be guided so that the air mix door 20 slides from the maximum cooling position to the maximum heating position. Since the sliding surface of the air mix door 20 that slides in contact with the door guide portion 22 is covered with the door guide portion 22 widely in the stroke of the air mix door 20, the sliding of the air mix door 20 correspondingly. Foreign matter is hard to adhere to the surface.
 また、本実施形態によれば、第1摺動面221aおよび第2摺動面222aは、図2に示すように、ドア開閉方向DRocにおいて、温風通路122から冷風通路123にわたる空調ケース12内の全幅に及ぶように延設されている。従って、第1摺動面221aおよび第2摺動面222aに対向して摺動するエアミックスドア20の摺動面は、エアミックスドア20が最大冷房位置から最大暖房位置までストロークの何れの位置にあっても、第1摺動面221aと第2摺動面222aとに覆われる。そのため、そのエアミックスドア20の摺動面に異物が付着しにくい。 Further, according to the present embodiment, the first sliding surface 221a and the second sliding surface 222a are provided in the air conditioning case 12 extending from the hot air passage 122 to the cold air passage 123 in the door opening / closing direction DRoc, as shown in FIG. It extends so as to cover the entire width. Therefore, the sliding surface of the air mix door 20 that slides facing the first sliding surface 221a and the second sliding surface 222a is any position of the stroke from the maximum cooling position to the maximum heating position. Even if it exists, it will be covered with the 1st sliding surface 221a and the 2nd sliding surface 222a. Therefore, it is difficult for foreign matter to adhere to the sliding surface of the air mix door 20.
 また、本実施形態によれば、ドア駆動部24の殆どの部分は、第1タンク支持部124とヒータコア18の第1ヘッダタンク部182とから成るタンク全体部26に対し基準空気流れ方向FLhcにおいて空気流れ下流側に重ねて設けられている。従って、冷風通路123の空気流れがドア駆動部24によって妨げられにくい。このことを、図4および図5を用いて説明する。 In addition, according to the present embodiment, most of the door driving unit 24 is in the reference air flow direction FLhc with respect to the entire tank portion 26 including the first tank support portion 124 and the first header tank portion 182 of the heater core 18. It is provided so as to overlap the downstream side of the air flow. Therefore, the air flow in the cold air passage 123 is not easily obstructed by the door driving unit 24. This will be described with reference to FIGS.
 例えば、本実施形態とは逆にドア駆動部24がタンク全体部26に対し基準空気流れ方向FLhcにおいて空気流れ上流側に重ねて設けられている比較例を想定する。その比較例においてエアミックスドア20が最大冷房位置にある場合には、図4に示すようになる。すなわち、図4に示す比較例では、蒸発器16から流出する冷風は矢印FLmcのように流れる。 For example, in contrast to the present embodiment, a comparative example is assumed in which the door driving unit 24 is provided on the upstream side of the air flow in the reference air flow direction FLhc with respect to the entire tank unit 26. In the comparative example, when the air mix door 20 is at the maximum cooling position, the result is as shown in FIG. That is, in the comparative example shown in FIG. 4, the cold air flowing out from the evaporator 16 flows as shown by the arrow FLmc.
 そして、その矢印FLmcで示される冷風の流通経路にドア駆動部24の回転軸241が存在するので、その冷風の風量が低下してしまう。更に、図4に示す比較例では、ドア駆動部24およびラック201は蒸発器16からの吹出空気に対し直接的に晒されるので、ドア駆動部24のギヤ242およびエアミックスドア20のラック201に異物が付着しやすい。 And since the rotating shaft 241 of the door drive part 24 exists in the distribution path | route of the cold wind shown by the arrow FLmc, the air volume of the cold wind will fall. Further, in the comparative example shown in FIG. 4, the door drive unit 24 and the rack 201 are directly exposed to the air blown from the evaporator 16, so that the gear 242 of the door drive unit 24 and the rack 201 of the air mix door 20 are exposed. Foreign matter is likely to adhere.
 これに対し、本実施形態においてエアミックスドア20が最大冷房位置にある場合には、図5に示すようになる。すなわち、本実施形態では、エアミックスドア20が図5に示すように最大冷房位置にある場合には、蒸発器16から流出する冷風は矢印FLmcのように流れる。 On the other hand, when the air mix door 20 is in the maximum cooling position in the present embodiment, it is as shown in FIG. That is, in the present embodiment, when the air mix door 20 is at the maximum cooling position as shown in FIG. 5, the cool air flowing out from the evaporator 16 flows as indicated by the arrow FLmc.
 そして、ドア駆動部24は、その矢印FLmcで示される冷風の流れを妨げにくい配置となっているので、ドア駆動部24が設けられていることに起因した冷風の風量低下を抑えることが可能である。更に、本実施形態では、ドア駆動部24およびラック201は蒸発器16からの吹出空気に対しタンク全体部26の背後に隠れるので、ドア駆動部24のギヤ242およびエアミックスドア20のラック201に異物が付着しにくい。なお、図4および図5における吹出モードは何れもフェイスモードである。 And since the door drive part 24 becomes the arrangement | positioning which cannot hinder the flow of the cold wind shown by the arrow FLmc, it is possible to suppress the air volume fall of the cold wind resulting from the door drive part 24 being provided. is there. Further, in the present embodiment, the door drive unit 24 and the rack 201 are hidden behind the entire tank portion 26 against the air blown from the evaporator 16, so that the gear 242 of the door drive unit 24 and the rack 201 of the air mix door 20 are hidden. Foreign matter is difficult to adhere. Note that the blowing modes in FIGS. 4 and 5 are both face modes.
 また、本実施形態によれば、図1に示すように、ドア駆動部24の回転軸241およびギヤ242は、エアミックスドア20に対し基準空気流れ方向FLhcにおいて空気流れ下流側に配置されている。そして、エアミックスドア20のラック201は、エアミックスドア20のうち基準空気流れ方向FLhcにおいて空気流れ下流側に配置されている。従って、蒸発器16に対し回転軸241、ギヤ242、およびラック201がエアミックスドア20の背後に隠れるように配置されるので、蒸発器16からの吹出空気に含まれる異物がその回転軸241、ギヤ242、およびラック201へ付着しにくい。 Further, according to the present embodiment, as shown in FIG. 1, the rotating shaft 241 and the gear 242 of the door driving unit 24 are arranged on the downstream side of the air flow in the reference air flow direction FLhc with respect to the air mix door 20. . The rack 201 of the air mix door 20 is disposed on the air flow downstream side of the air mix door 20 in the reference air flow direction FLhc. Accordingly, the rotating shaft 241, the gear 242, and the rack 201 are arranged so as to be hidden behind the air mix door 20 with respect to the evaporator 16, so that the foreign matter contained in the air blown from the evaporator 16 has its rotating shaft 241, It is difficult to adhere to the gear 242 and the rack 201.
 また、本実施形態によれば、図1に示すように、ドア駆動部24の回転軸241は、タンク全体部26に対し基準空気流れ方向FLhcにおいて空気流れ下流側に配置されている。そして、ドア駆動部軸心CLdrに沿った向きから見た場合に、その回転軸241の全部は、タンク全体部26に対し基準空気流れ方向FLhcに重ねて設けられている。従って、車両用空調ユニット10の最大冷房時には、図5に示すように、回転軸241が冷風の流れを妨げにくく、その回転軸241の配置に起因した風量低下を抑えることが可能である。 Further, according to the present embodiment, as shown in FIG. 1, the rotation shaft 241 of the door drive unit 24 is disposed on the downstream side of the air flow in the reference air flow direction FLhc with respect to the entire tank unit 26. When viewed from the direction along the door drive unit axis CLdr, all of the rotation shaft 241 is provided so as to overlap the entire tank portion 26 in the reference air flow direction FLhc. Therefore, at the time of maximum cooling of the air conditioning unit 10 for the vehicle, as shown in FIG. 5, the rotating shaft 241 hardly disturbs the flow of the cold air, and it is possible to suppress a decrease in the air volume due to the arrangement of the rotating shaft 241.
 また、本実施形態によれば、ドア駆動部24の回転軸241は、温風通路122内に配置されている。詳細に言えば、その回転軸241は、空調ケース12内の空気流れにおいてヒータコア18に対して空気流れ下流側に配置されている。従って、エアミックスドア20が最大冷房位置と最大暖房位置との間の中間位置に位置決めされる温度コントロール時には、温風通路122を流れる温風が回転軸241周りを通過することによって撹拌される。このことを、図6および図7を用いて説明する。 Further, according to the present embodiment, the rotating shaft 241 of the door driving unit 24 is disposed in the warm air passage 122. More specifically, the rotating shaft 241 is disposed on the downstream side of the air flow with respect to the heater core 18 in the air flow in the air conditioning case 12. Therefore, during the temperature control in which the air mix door 20 is positioned at an intermediate position between the maximum cooling position and the maximum heating position, the warm air flowing through the warm air passage 122 is agitated by passing around the rotation shaft 241. This will be described with reference to FIGS.
 例えば、図4を用いて説明した比較例においてエアミックスドア20が中間位置に位置決めされる温度コントロール時を想定する。図6は、図4の比較例における車両用空調ユニット10の温度コントロール時の状態、すなわちエアミックスドア20が中間位置に位置決めされた状態を示している。この図6に示すように、比較例での温度コントロール時には、蒸発器16から流出する冷風は、矢印FL2mxのように冷風通路123を流れると共に、それと並行して矢印FL1mxのように温風通路122を流れる。そして、温風通路122へ流入した冷風はヒータコア18で加熱され温風となって、冷風通路123からの冷風とエアミックス空間126にて合流し混合される。 For example, it is assumed that the air mix door 20 is positioned at an intermediate position in the comparative example described with reference to FIG. FIG. 6 shows a state at the time of temperature control of the vehicle air conditioning unit 10 in the comparative example of FIG. 4, that is, a state where the air mix door 20 is positioned at the intermediate position. As shown in FIG. 6, at the time of temperature control in the comparative example, the cool air flowing out of the evaporator 16 flows through the cool air passage 123 as indicated by the arrow FL2mx, and at the same time, the hot air passage 122 as indicated by the arrow FL1mx. Flowing. Then, the cold air flowing into the hot air passage 122 is heated by the heater core 18 to become hot air, and merges and mixes with the cold air from the cold air passage 123 in the air mix space 126.
 このとき、図6の矢印FL1mx、FL2mxに対するドア駆動部24の回転軸241の位置関係から判るように、その回転軸241は、矢印FL1mx、FL2mxで示される空気流れの何れに対しても、その空気流れを撹拌する作用をあまり生じない。従って、矢印FL1mxで示される温風と矢印FL2mxで示される冷風とはエアミックス空間126にて混じり合うものの、エアミックス空間126における空調空気の温度混合性が良くないこと、すなわち温度むらが大きいことが生じ得る。そして、エアミックス空間126から矢印FLfc、FLftのように車室内へ吹き出される空調空気において温度むらが大きいと、乗員の快適性が損なわれるおそれがある。 At this time, as can be seen from the positional relationship of the rotary shaft 241 of the door drive unit 24 with respect to the arrows FL1mx and FL2mx in FIG. 6, the rotary shaft 241 has its airflow indicated by the arrows FL1mx and FL2mx. The effect of stirring the air flow is not so great. Accordingly, the hot air indicated by the arrow FL1mx and the cold air indicated by the arrow FL2mx are mixed in the air mix space 126, but the temperature mixing property of the conditioned air in the air mix space 126 is not good, that is, the temperature unevenness is large. Can occur. And if the temperature unevenness is large in the conditioned air blown out from the air mix space 126 into the vehicle interior as indicated by the arrows FLfc and FLft, the comfort of the passenger may be impaired.
 これに対し、本実施形態における車両用空調ユニット10の温度コントロール時には、図7に示すようになる。すなわち、本実施形態では、エアミックスドア20が図7に示すように中間位置にある場合には、蒸発器16から流出する冷風は、矢印FL1mx、FL2mxのように温風通路122および冷風通路123をそれぞれ流れる。そして、その温風通路122へ流入した冷風はヒータコア18で加熱され温風となって、冷風通路123からの冷風とエアミックス空間126にて合流し混合される。 On the other hand, when the temperature of the vehicle air conditioning unit 10 in the present embodiment is controlled, it is as shown in FIG. That is, in this embodiment, when the air mix door 20 is in the intermediate position as shown in FIG. 7, the cold air flowing out from the evaporator 16 is the hot air passage 122 and the cold air passage 123 as indicated by arrows FL1mx and FL2mx. Each flowing. Then, the cold air flowing into the warm air passage 122 is heated by the heater core 18 to become warm air, and merges and mixes with the cold air from the cold air passage 123 in the air mix space 126.
 このとき、本実施形態では上記の比較例とは異なり、矢印FL1mxのように温風通路122を流れヒータコア18から流出した空気の一部は回転軸241に衝突して矢印FL1swのように撹拌され例えば渦または乱れ等を生じる。従って、矢印FL1mxで示される温風と矢印FL2mxで示される冷風とがエアミックス空間126にてよく混じり合う。その結果、エアミックス空間126から矢印FLfc、FLftのように車室内へ吹き出される空調空気の温度混合性を例えば上記比較例に比して向上させることが可能である。言い換えれば、その空調空気の均質化が図られ温度むらを低減することが可能である。なお、図6および図7における吹出モードは何れもバイレベルモードである。 At this time, in this embodiment, unlike the comparative example described above, a part of the air flowing through the hot air passage 122 and flowing out of the heater core 18 as shown by the arrow FL1mx collides with the rotating shaft 241 and is stirred as shown by the arrow FL1sw. For example, vortex or turbulence is generated. Accordingly, the hot air indicated by the arrow FL1mx and the cold air indicated by the arrow FL2mx are mixed well in the air mix space 126. As a result, the temperature mixing property of the conditioned air blown out from the air mix space 126 into the vehicle interior as indicated by arrows FLfc and FLft can be improved as compared with, for example, the above comparative example. In other words, it is possible to homogenize the conditioned air and reduce temperature unevenness. Note that the blowing modes in FIGS. 6 and 7 are both bi-level modes.
 なお、本実施形態では、上記の図7を用いて説明したように温度コントロール時には空調空気の温度混合性を向上させるという効果が得られる。その一方で、最大暖房時には、図8に示すように、蒸発器16からの吹出空気は矢印FLmhのように温風通路122を流れる。すなわち、ドア駆動部24の回転軸241は温風通路122内に配置されているので、その矢印FLmhで示す空気流れを乱す一因となり得る。しかし、最大暖房時には最大冷房時と比較して、車室内へ吹き出される風量を大きくする必要がないので、大きな問題とはならない。図8は、本実施形態における車両用空調ユニット10の最大暖房時の状態を示した断面図であり、図8における吹出モードはフットモードである。 In addition, in this embodiment, as demonstrated using said FIG. 7, the effect of improving the temperature mixing property of air-conditioning air at the time of temperature control is acquired. On the other hand, at the time of maximum heating, as shown in FIG. 8, the air blown from the evaporator 16 flows through the warm air passage 122 as indicated by an arrow FLmh. That is, since the rotating shaft 241 of the door drive unit 24 is disposed in the hot air passage 122, it can be a cause of disturbing the air flow indicated by the arrow FLmh. However, since it is not necessary to increase the amount of air blown into the passenger compartment during maximum heating compared to during maximum cooling, this is not a big problem. FIG. 8 is a cross-sectional view showing a state of maximum heating of the vehicle air conditioning unit 10 in the present embodiment, and the blowing mode in FIG. 8 is a foot mode.
 (第2実施形態)
 次に、第2実施形態について説明する。本実施形態では、前述の第1実施形態と異なる点を主として説明する。また、前述の実施形態と同一または均等な部分については省略または簡略化して説明する。後述の第3実施形態でも同様である。
(Second Embodiment)
Next, a second embodiment will be described. In the present embodiment, differences from the first embodiment will be mainly described. Further, the same or equivalent parts as those of the above-described embodiment will be described by omitting or simplifying them. The same applies to a third embodiment described later.
 図9は、本実施形態において車両用空調ユニット10の主要な構成を示す断面図であって、第1実施形態の図1に相当する図である。この図9に示すように、本実施形態の車両用空調ユニット10は、温風通路122と冷風通路123とから成る空気通路群が上流側空気通路121の下流側に並列に2つ設けられている。この点が第1実施形態と異なる。 FIG. 9 is a cross-sectional view showing the main configuration of the vehicle air conditioning unit 10 in the present embodiment, and corresponds to FIG. 1 of the first embodiment. As shown in FIG. 9, the vehicle air conditioning unit 10 according to the present embodiment includes two air passage groups including a hot air passage 122 and a cold air passage 123 provided in parallel on the downstream side of the upstream air passage 121. Yes. This is different from the first embodiment.
 具体的に本実施形態では、空調ケース12は、蒸発器16に対する空気流れ下流側において空気流れの沿って延びる第1および第2通路分離壁131、132を有している。そして、その通路分離壁131、132の上側には、1本の温風通路122と1本の冷風通路123とから成る上側空気通路群133が形成され、通路分離壁131、132の下側には、1本の温風通路122と1本の冷風通路123とから成る下側空気通路群134が形成されている。その上側空気通路群133および下側空気通路群134は通路分離壁131、132を挟んで並列に設けられている。 Specifically, in the present embodiment, the air conditioning case 12 includes first and second passage separation walls 131 and 132 that extend along the air flow on the downstream side of the air flow with respect to the evaporator 16. An upper air passage group 133 including one hot air passage 122 and one cold air passage 123 is formed on the upper side of the passage separation walls 131 and 132, and below the passage separation walls 131 and 132. Is formed with a lower air passage group 134 composed of one hot air passage 122 and one cold air passage 123. The upper air passage group 133 and the lower air passage group 134 are provided in parallel with the passage separation walls 131 and 132 therebetween.
 また、上側空気通路群133の中では、温風通路122は冷風通路123に対して下側に設けられ、逆に、下側空気通路群134の中では、温風通路122は冷風通路123に対して上側に設けられている。すなわち、上側空気通路群133の温風通路122と下側空気通路群134の温風通路122とは通路分離壁131、132を介して互いに隣接している。そして、ヒータコア18は通路分離壁131、132を横切って上側空気通路群133の温風通路122と下側空気通路群134の温風通路122とに跨るように配設されている。従って、第1通路分離壁131はそのヒータコア18に対して空気流れ上流側に配置され、第2通路分離壁132はそのヒータコア18に対して空気流れ下流側に配置されている。 In the upper air passage group 133, the hot air passage 122 is provided below the cold air passage 123. Conversely, in the lower air passage group 134, the hot air passage 122 is connected to the cold air passage 123. On the other hand, it is provided on the upper side. That is, the hot air passage 122 of the upper air passage group 133 and the hot air passage 122 of the lower air passage group 134 are adjacent to each other via the passage separation walls 131 and 132. The heater core 18 is disposed across the passage separation walls 131 and 132 so as to straddle the hot air passage 122 of the upper air passage group 133 and the hot air passage 122 of the lower air passage group 134. Accordingly, the first passage separation wall 131 is disposed on the upstream side of the air flow with respect to the heater core 18, and the second passage separation wall 132 is disposed on the downstream side of the air flow with respect to the heater core 18.
 また、図9は、最大冷房時であって且つ吹出モードがフェイスモードである場合の車両用空調ユニット10を示しており、矢印FLmcはそのときの空調ケース12内の空気流れを示している。 FIG. 9 shows the vehicle air conditioning unit 10 in the case of maximum cooling and the blowout mode is the face mode, and the arrow FLmc shows the air flow in the air conditioning case 12 at that time.
 本実施形態では、前述の第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。例えば、最大冷房時にドア駆動部24の回転軸241が冷風の流れを妨げにくいという効果、および、異物が摺動面22a、回転軸241、ギヤ242、およびラック201へ付着しにくいという効果などを、第1実施形態と同様に得ることができる。 In this embodiment, it is possible to obtain the same effects as those of the first embodiment, which are obtained from the configuration common to the first embodiment. For example, the effect that the rotating shaft 241 of the door driving unit 24 hardly obstructs the flow of cold air at the maximum cooling, and the effect that foreign matter hardly adheres to the sliding surface 22a, the rotating shaft 241, the gear 242, and the rack 201. It can obtain similarly to 1st Embodiment.
 (第3実施形態)
 次に、第3実施形態について説明する。本実施形態では、前述の第2実施形態と異なる点を主として説明する。
(Third embodiment)
Next, a third embodiment will be described. In the present embodiment, differences from the second embodiment will be mainly described.
 図10は、本実施形態において車両用空調ユニット10の主要な構成を示す断面図であって、第2実施形態の図9に相当する図である。この図10に示すように、本実施形態の車両用空調ユニット10では、空調ケース12内の空気流れは全体として車両前後方向DR2に沿っており、蒸発器16およびヒータコア18は互いに平行に配置されている。そして、エアミックスドア20のドア開閉方向DRocはヒータコア18の空気流出面181bに沿った向きになっている。これらの点では、第2実施形態と同様である。 FIG. 10 is a cross-sectional view showing the main configuration of the vehicle air conditioning unit 10 in the present embodiment, and corresponds to FIG. 9 of the second embodiment. As shown in FIG. 10, in the vehicle air conditioning unit 10 of the present embodiment, the air flow in the air conditioning case 12 is generally along the vehicle longitudinal direction DR2, and the evaporator 16 and the heater core 18 are arranged in parallel to each other. ing. The door opening / closing direction DRoc of the air mix door 20 is oriented along the air outflow surface 181b of the heater core 18. These points are the same as in the second embodiment.
 しかし、本実施形態の車両用空調ユニット10では、蒸発器16およびヒータコア18は車両上下方向DR1に対して傾斜して配置されている。この点が第2実施形態と異なる。従って、本実施形態においては、基準空気流れ方向FLhcは車両上下方向DR1および車両前後方向DR2に対して傾き、エアミックスドア20のドア開閉方向DRocも車両上下方向DR1および車両前後方向DR2に対して傾いている。 However, in the vehicle air conditioning unit 10 of the present embodiment, the evaporator 16 and the heater core 18 are arranged to be inclined with respect to the vehicle vertical direction DR1. This is different from the second embodiment. Therefore, in the present embodiment, the reference air flow direction FLhc is inclined with respect to the vehicle vertical direction DR1 and the vehicle front-rear direction DR2, and the door opening / closing direction DRoc of the air mix door 20 is also relative to the vehicle vertical direction DR1 and the vehicle front-rear direction DR2. Tilted.
 なお、図10では、各空気吹出口128、129、130は図9と同様であるので、その図示が省略されている。また、図10は、最大冷房時の車両用空調ユニット10を示しており、矢印FLmcはそのときの空調ケース12内の空気流れを示している。 In addition, in FIG. 10, since each air outlet 128,129,130 is the same as that of FIG. 9, the illustration is abbreviate | omitted. FIG. 10 shows the vehicle air conditioning unit 10 during maximum cooling, and the arrow FLmc indicates the air flow in the air conditioning case 12 at that time.
 本実施形態では、前述の第2実施形態と共通の構成から奏される効果を第2実施形態と同様に得ることができる。 In this embodiment, it is possible to obtain the same effect as that of the second embodiment, which is obtained from the configuration common to the second embodiment.
 (他の実施形態)
 (1)上述の第1実施形態において、ドア駆動部24の一部はタンク全体部26に対し基準空気流れ方向FLhcにおいて空気流れ下流側に重ねて設けられている。しかしながら、これは一例であり、ドア駆動部24の一部ではなく全部が、タンク全体部26に対し基準空気流れ方向FLhcにおいて空気流れ下流側に重ねて設けられていても差し支えない。すなわち、ドア駆動部24の少なくとも一部が、タンク全体部26に対し基準空気流れ方向FLhcにおいて空気流れ下流側に重ねて設けられていればよい。
(Other embodiments)
(1) In the first embodiment described above, a part of the door drive unit 24 is provided so as to overlap the entire tank unit 26 on the downstream side of the air flow in the reference air flow direction FLhc. However, this is only an example, and not all of the door drive unit 24 but a part of the door drive unit 24 may be provided on the downstream side of the air flow in the reference air flow direction FLhc. That is, it is only necessary that at least a part of the door driving unit 24 is provided on the downstream side of the air flow in the reference air flow direction FLhc with respect to the entire tank unit 26.
 (2)上述の各実施形態において、例えば図1に示すように、ドア駆動部軸心CLdrに沿った向きから見た場合に、回転軸241の全部がタンク全体部26に対し基準空気流れ方向FLhcに重ねて設けられており、その方が好ましい。しかしながら、これは一例であり、回転軸241の一部分がタンク全体部26に対し基準空気流れ方向FLhcに重ねて設けられているだけでもよい。すなわち、回転軸241の少なくとも一部が、タンク全体部26に対し基準空気流れ方向FLhcに重ねて設けられておればよい。 (2) In each of the above-described embodiments, for example, as shown in FIG. 1, when viewed from the direction along the door drive unit axis CLdr, the entire rotation shaft 241 is in the reference air flow direction with respect to the entire tank unit 26. It is provided so as to overlap FLhc, which is preferable. However, this is an example, and a part of the rotating shaft 241 may be provided so as to overlap the entire tank portion 26 in the reference air flow direction FLhc. That is, it is only necessary that at least a part of the rotating shaft 241 is provided so as to overlap the entire tank portion 26 in the reference air flow direction FLhc.
 (3)上述の各実施形態において、ドア案内部22はそのドア案内部22の摺動面22aにおいてエアミックスドア20に接触するので、ドア案内部22とエアミックスドア20との接触は面接触であるが、面接触に限定される必要はない。例えば、ドア案内部22は、ドア案内部22のエアミックスドア20側に突き出ると共にドア開閉方向DRocに延びる案内リブを有し、エアミックスドア20は、その案内リブの先端と線接触しつつドア案内部22に対して摺動しても差し支えない。 (3) In each of the above-described embodiments, the door guide portion 22 contacts the air mix door 20 on the sliding surface 22a of the door guide portion 22. Therefore, contact between the door guide portion 22 and the air mix door 20 is surface contact. However, it need not be limited to surface contact. For example, the door guide portion 22 has a guide rib that protrudes toward the air mix door 20 of the door guide portion 22 and extends in the door opening / closing direction DRoc, and the air mix door 20 is in contact with the tip of the guide rib while being in line contact. Even if it slides with respect to the guide part 22, it does not interfere.
 (4)上述の各実施形態において、ドア案内部22は、空調ケース12内において基準空気流れ方向FLhcでヒータコア18に対し空気流れ下流側に配置されている。これに関し、そのドア案内部22の全体がヒータコア18に対し空気流れ下流側に配置されている必要はない。例えば、ドア案内部22全体のうち、温風通路122に重なる部分がヒータコア18に対する空気流れ下流側にあればよく、冷風通路123に重なる部分はヒータコア18に対する空気流れ下流側になくてもよい。 (4) In each of the embodiments described above, the door guide portion 22 is disposed in the air conditioning case 12 on the downstream side of the air flow with respect to the heater core 18 in the reference air flow direction FLhc. In this regard, it is not necessary that the entire door guide portion 22 is disposed on the downstream side of the air flow with respect to the heater core 18. For example, a portion of the entire door guide 22 that overlaps the hot air passage 122 may be on the downstream side of the air flow with respect to the heater core 18, and a portion that overlaps the cold air passage 123 may not be on the downstream side of the air flow with respect to the heater core 18.
 (5)上述の各実施形態において、エアミックスドア20は、そのエアミックスドア20のうちの摺動部分がドア案内部22の摺動面22aに対して摺動することでドア開閉方向DRocへ案内される。これに関し、その摺動面22aに対してエアミックスドア20の摺動部分を挟んで対向する反対側の摺動面が設けられていても差し支えない。そのようにした場合、その摺動面22aと反対側の摺動面とによってエアミックスドア20がドア開閉方向DRocへ案内されるが、エアミックスドア20を案内する役割を果たすのは主として摺動面22aの方になる。従って、摺動面22aに比して上記反対側の摺動面の面積を格段に小さくできるので、その反対側の摺動面への異物の付着は大きな問題とならない。 (5) In each of the above-described embodiments, the air mix door 20 moves in the door opening / closing direction DRoc by sliding a sliding portion of the air mix door 20 with respect to the sliding surface 22a of the door guide portion 22. Guided. In this regard, a sliding surface on the opposite side facing the sliding surface 22a across the sliding portion of the air mix door 20 may be provided. In such a case, the air mixing door 20 is guided in the door opening / closing direction DRoc by the sliding surface 22a and the sliding surface on the opposite side, but the role of guiding the air mixing door 20 is mainly sliding. It becomes the surface 22a. Accordingly, since the area of the sliding surface on the opposite side can be remarkably reduced compared to the sliding surface 22a, the adhesion of foreign matter to the sliding surface on the opposite side does not become a big problem.
 (6)上述の各実施形態において、車両用空調ユニット10は蒸発器16を備えているが、例えば空調ケース12に導入される空気を冷却する必要がない環境で車両用空調ユニット10が使用されるのであれば、蒸発器16は無くても差し支えない。 (6) In each of the above-described embodiments, the vehicle air conditioning unit 10 includes the evaporator 16. However, the vehicle air conditioning unit 10 is used in an environment where it is not necessary to cool the air introduced into the air conditioning case 12, for example. If it is possible, the evaporator 16 may be omitted.
 (7)上述の各実施形態において、ドア案内部22の摺動面22aは、連続した一平面を成しているが、曲面であっても差し支えない。 (7) In each of the embodiments described above, the sliding surface 22a of the door guide portion 22 forms a continuous flat surface, but may be a curved surface.
 (8)上述の第1実施形態の図1において、エアミックスドア20のドア開閉方向DRocはヒータコア18の空気流出面181bに対し平行に記載されているが、そのドア開閉方向DRocは空気流出面181bに対して傾いた方向であっても差し支えない。このことは、第2および第3実施形態についても同様である。 (8) In FIG. 1 of the first embodiment described above, the door opening / closing direction DRoc of the air mix door 20 is described parallel to the air outflow surface 181b of the heater core 18, but the door opening / closing direction DRoc is the air outflow surface. The direction may be inclined with respect to 181b. The same applies to the second and third embodiments.
 なお、本開示は上記した実施形態に限定されるものではない。本開示は、様々な変形例や均等範囲内の変形をも包含する。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。
 
Note that the present disclosure is not limited to the above-described embodiment. The present disclosure includes various modifications and modifications within the equivalent range. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes. Further, in each of the above embodiments, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is clearly limited to a specific number when clearly indicated as essential and in principle. The number is not limited to the specific number except for the case. In each of the above embodiments, when referring to the material, shape, positional relationship, etc. of the constituent elements, etc., unless otherwise specified, or in principle limited to a specific material, shape, positional relationship, etc. The material, shape, positional relationship, etc. are not limited.

Claims (13)

  1.  車両用空調ユニットであって、
     車室内に向けて空気を流す第1空気通路(122)、および、該第1空気通路を迂回させ且つ前記車室内に向けて空気を流す第2空気通路(123)を形成する空調ケース(12)と、
     前記第1空気通路に配置され、空気流入面(181a)と空気流出面(181b)とを有し、前記空気流入面から流入した空気を加熱して前記空気流出面から流出させる加熱用熱交換器(18)と、
     前記空調ケース内において、前記空気流入面から前記空気流出面に至る空気流れの方向である基準空気流れ方向(FLhc)で前記加熱用熱交換器に対し空気流れ下流側に配置され、前記基準空気流れ方向に交差するドア開閉方向(DRoc)へスライド移動することで前記第1空気通路を開閉するスライドドア(20)と、
     前記空調ケース内において前記基準空気流れ方向で前記加熱用熱交換器に対し空気流れ下流側に配置され、前記スライドドアを前記ドア開閉方向へ案内するドア案内部(22)とを備え、
     前記ドア案内部は、前記スライドドアを、前記ドア案内部に対し前記基準空気流れ方向での空気流れ下流側にて、前記ドア開閉方向へ案内する車両用空調ユニット。
    An air conditioning unit for a vehicle,
    A first air passage (122) for flowing air toward the passenger compartment and an air conditioning case (12) that forms a second air passage (123) that bypasses the first air passage and flows air toward the passenger compartment. )When,
    Heat exchange for heating, which is disposed in the first air passage, has an air inflow surface (181a) and an air outflow surface (181b), and heats air flowing in from the air inflow surface to flow out of the air outflow surface. A vessel (18),
    In the air conditioning case, a reference air flow direction (FLhc) that is a direction of air flow from the air inflow surface to the air outflow surface is disposed on the downstream side of the air flow with respect to the heat exchanger for heating, and the reference air A sliding door (20) that opens and closes the first air passage by sliding in a door opening / closing direction (DRoc) intersecting the flow direction;
    A door guide portion (22) disposed downstream of the heating heat exchanger in the reference air flow direction in the air conditioning case and guiding the slide door in the door opening and closing direction;
    The said door guide part is a vehicle air-conditioning unit which guides the said slide door to the said door opening / closing direction in the air flow downstream in the said reference air flow direction with respect to the said door guide part.
  2.  前記ドア案内部は、前記基準空気流れ方向での空気流れ下流側を向いた摺動面(22a)を形成し、前記スライドドアは該摺動面を摺動する請求項1に記載の車両用空調ユニット。 The vehicle door according to claim 1, wherein the door guide portion forms a sliding surface (22a) facing the downstream side of the air flow in the reference air flow direction, and the sliding door slides on the sliding surface. Air conditioning unit.
  3.  前記ドア案内部は、前記空調ケース内において前記第1空気通路から前記第2空気通路に及ぶように設けられている請求項1または2に記載の車両用空調ユニット。 The vehicle air conditioning unit according to claim 1 or 2, wherein the door guide portion is provided so as to extend from the first air passage to the second air passage in the air conditioning case.
  4.  前記空調ケース内に配置され、前記スライドドアをスライド移動させるドア駆動部(24)を備え、
     前記加熱用熱交換器は、前記空気流入面と前記空気流出面との間に構成され空気が加熱されつつ通過するコア部(181)と、該コア部に接続されたタンク部(182)とを有し、
     前記空調ケースは、前記タンク部を支持するタンク支持部(124)を前記空調ケース内に有し、
     前記ドア駆動部の少なくとも一部は、前記タンク部と前記タンク支持部とから成るタンク全体部(26)に対し前記基準空気流れ方向において空気流れ下流側に重ねて設けられている請求項1ないし3のいずれか1つに記載の車両用空調ユニット。
    A door drive unit (24) disposed in the air conditioning case and slidably moving the slide door;
    The heating heat exchanger includes a core portion (181) configured between the air inflow surface and the air outflow surface, through which air passes while being heated, and a tank portion (182) connected to the core portion. Have
    The air conditioning case has a tank support part (124) for supporting the tank part in the air conditioning case,
    The at least part of the door driving part is provided so as to overlap the downstream side of the air flow in the reference air flow direction with respect to the entire tank part (26) composed of the tank part and the tank support part. The vehicle air conditioning unit according to any one of 3 above.
  5.  前記ドア駆動部は、一軸心(CLdr)まわりに回転する回転軸(241)と、該回転軸に固定され前記一軸心まわりに回転するギヤ(242)とを含んで構成され、
     前記スライドドアは、前記ギヤと噛み合うラック(201)を有している請求項4に記載の車両用空調ユニット。
    The door driving unit includes a rotating shaft (241) that rotates about a single axis (CLdr), and a gear (242) that is fixed to the rotating shaft and rotates about the single axis,
    The vehicle air conditioning unit according to claim 4, wherein the sliding door includes a rack (201) that meshes with the gear.
  6.  前記ドア駆動部の回転軸およびギヤは、前記スライドドアに対し前記基準空気流れ方向において空気流れ下流側に配置され、
     前記ラックは、前記スライドドアのうち前記基準空気流れ方向において空気流れ下流側に配置されている請求項5に記載の車両用空調ユニット。
    The rotation shaft and the gear of the door drive unit are arranged on the downstream side of the air flow in the reference air flow direction with respect to the slide door,
    The vehicle air conditioning unit according to claim 5, wherein the rack is arranged on the downstream side of the air flow in the reference air flow direction in the slide door.
  7.  前記回転軸は、前記タンク全体部に対し前記基準空気流れ方向において空気流れ下流側に配置され、
     前記一軸心に沿った向きから見た場合に、前記回転軸の少なくとも一部は、前記タンク全体部に対し前記基準空気流れ方向に重ねて設けられている請求項5または6に記載の車両用空調ユニット。
    The rotating shaft is disposed on the downstream side of the air flow in the reference air flow direction with respect to the entire tank portion,
    7. The vehicle according to claim 5, wherein at least a part of the rotating shaft is provided so as to overlap the entire tank portion in the reference air flow direction when viewed from the direction along the one axis. Air conditioning unit.
  8.  前記回転軸は、前記タンク全体部に対し前記基準空気流れ方向において空気流れ下流側に配置され、
     前記一軸心に沿った向きから見た場合に、前記回転軸の全部は、前記タンク全体部に対し前記基準空気流れ方向に重ねて設けられている請求項5または6に記載の車両用空調ユニット。
    The rotating shaft is disposed on the downstream side of the air flow in the reference air flow direction with respect to the entire tank portion,
    7. The vehicle air conditioner according to claim 5, wherein when viewed from the direction along the one axis, all of the rotating shafts are provided so as to overlap the entire tank portion in the reference air flow direction. unit.
  9.  前記回転軸は、前記タンク全体部に対し前記基準空気流れ方向において空気流れ下流側に配置され、
     前記回転軸の少なくとも一部は、前記タンク全体部に対し前記基準空気流れ方向に重ねて設けられている請求項5または6に記載の車両用空調ユニット。
    The rotating shaft is disposed on the downstream side of the air flow in the reference air flow direction with respect to the entire tank portion,
    7. The vehicle air conditioning unit according to claim 5, wherein at least a part of the rotation shaft is provided so as to overlap the entire tank portion in the reference air flow direction.
  10.  前記回転軸は、前記タンク全体部に対し前記基準空気流れ方向において空気流れ下流側に配置され、
     前記回転軸の全部は、前記タンク全体部に対し前記基準空気流れ方向に重ねて設けられている請求項5または6に記載の車両用空調ユニット。
    The rotating shaft is disposed on the downstream side of the air flow in the reference air flow direction with respect to the entire tank portion,
    7. The vehicle air conditioning unit according to claim 5, wherein all of the rotation shafts are provided so as to overlap the entire tank portion in the reference air flow direction.
  11.  前記回転軸は前記第1空気通路内に配置されている請求項5ないし10のいずれか1つに記載の車両用空調ユニット。 The vehicle air conditioning unit according to any one of claims 5 to 10, wherein the rotation shaft is disposed in the first air passage.
  12.  前記スライドドアは、前記第1空気通路を開閉すると共に前記第2空気通路も開閉し、前記第1空気通路を流れる空気と前記第2空気通路を流れる空気との風量割合を調節する請求項1ないし11のいずれか1つに記載の車両用空調ユニット。 The slide door opens and closes the first air passage and also opens and closes the second air passage, and adjusts the air volume ratio between the air flowing through the first air passage and the air flowing through the second air passage. The vehicle air conditioning unit according to any one of 1 to 11.
  13.  前記加熱用熱交換器は、前記空気流入面から流入した空気をエンジン冷却水との熱交換によって加熱する請求項1ないし12のいずれか1つに記載の車両用空調ユニット。 The vehicle air conditioning unit according to any one of claims 1 to 12, wherein the heating heat exchanger heats air flowing in from the air inflow surface by heat exchange with engine cooling water.
PCT/JP2016/057229 2015-04-02 2016-03-08 Vehicular air-conditioning unit WO2016158250A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017509466A JP6265303B2 (en) 2015-04-02 2016-03-08 Air conditioning unit for vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-076155 2015-04-02
JP2015076155 2015-04-02

Publications (1)

Publication Number Publication Date
WO2016158250A1 true WO2016158250A1 (en) 2016-10-06

Family

ID=57004196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057229 WO2016158250A1 (en) 2015-04-02 2016-03-08 Vehicular air-conditioning unit

Country Status (2)

Country Link
JP (1) JP6265303B2 (en)
WO (1) WO2016158250A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020059485A (en) * 2018-10-10 2020-04-16 株式会社クボタ Work vehicle
WO2021038154A1 (en) * 2019-08-28 2021-03-04 Valeo Systemes Thermiques Heating, ventilation and/or air-conditioning device for a motor vehicle
WO2021038153A1 (en) * 2019-08-28 2021-03-04 Valeo Systemes Thermiques Heating, ventilation and/or air-conditioning device for a motor vehicle
CN113993729A (en) * 2019-06-07 2022-01-28 翰昂汽车零部件有限公司 Sliding temperature door structure for HVAC module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350056A (en) * 2004-06-07 2005-12-22 Denso Corp Vehicle air-conditioner
JP2009504499A (en) * 2006-04-21 2009-02-05 株式会社デンソー Automotive air conditioner and air mixing device
JP2015123834A (en) * 2013-12-26 2015-07-06 カルソニックカンセイ株式会社 Slide door device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350056A (en) * 2004-06-07 2005-12-22 Denso Corp Vehicle air-conditioner
JP2009504499A (en) * 2006-04-21 2009-02-05 株式会社デンソー Automotive air conditioner and air mixing device
JP2015123834A (en) * 2013-12-26 2015-07-06 カルソニックカンセイ株式会社 Slide door device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020059485A (en) * 2018-10-10 2020-04-16 株式会社クボタ Work vehicle
US11370267B2 (en) 2018-10-10 2022-06-28 Kubota Corporation Working vehicle
JP7301616B2 (en) 2018-10-10 2023-07-03 株式会社クボタ work vehicle
CN113993729A (en) * 2019-06-07 2022-01-28 翰昂汽车零部件有限公司 Sliding temperature door structure for HVAC module
WO2021038154A1 (en) * 2019-08-28 2021-03-04 Valeo Systemes Thermiques Heating, ventilation and/or air-conditioning device for a motor vehicle
WO2021038153A1 (en) * 2019-08-28 2021-03-04 Valeo Systemes Thermiques Heating, ventilation and/or air-conditioning device for a motor vehicle
FR3100312A1 (en) * 2019-08-28 2021-03-05 Valeo Systemes Thermiques Heating, ventilation and / or air conditioning device for a motor vehicle
FR3100311A1 (en) * 2019-08-28 2021-03-05 Valeo Systemes Thermiques Heating, ventilation and / or air conditioning device for a motor vehicle

Also Published As

Publication number Publication date
JP6265303B2 (en) 2018-01-24
JPWO2016158250A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
US7931074B2 (en) Heat exchanger and air conditioner
JP6390278B2 (en) Air conditioner for vehicles
JP5980692B2 (en) Multi-function door for air conditioning and air conditioner for vehicle
JP6265303B2 (en) Air conditioning unit for vehicles
JP3965753B2 (en) Air conditioner for vehicles
JP2001058511A (en) Air conditioner for automobile
JP6094095B2 (en) Air conditioner for vehicles
JP5859427B2 (en) Air conditioning unit for vehicles
WO2016166957A1 (en) Vehicle air-conditioning unit
JP6221890B2 (en) Air conditioning unit for vehicles
JP3714000B2 (en) Air conditioner for vehicles
WO2015146058A1 (en) Vehicle air-conditioning unit
JP2010018248A (en) Air conditioner for vehicle
WO2017098680A1 (en) Air conditioning device for vehicle
WO2014156061A1 (en) Vehicular air conditioner
JP2004136772A (en) Air-conditioning device for vehicle
WO2016170878A1 (en) Vehicle air-conditioning unit
JP2010070173A (en) Air conditioner for vehicle
JP2008265447A (en) Vehicular air-conditioner
JP4007158B2 (en) Air conditioner for vehicles
JP6282091B2 (en) Air conditioner for vehicles
JP2007245957A (en) Vehicular air conditioner
JP4496668B2 (en) Air conditioner for vehicles
JP2001287534A (en) Vehicular air conditioner
JP2002264633A (en) Device for opening/closing air passage and vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509466

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772134

Country of ref document: EP

Kind code of ref document: A1