WO2016157449A1 - Gas compressor - Google Patents

Gas compressor Download PDF

Info

Publication number
WO2016157449A1
WO2016157449A1 PCT/JP2015/060244 JP2015060244W WO2016157449A1 WO 2016157449 A1 WO2016157449 A1 WO 2016157449A1 JP 2015060244 W JP2015060244 W JP 2015060244W WO 2016157449 A1 WO2016157449 A1 WO 2016157449A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
flow path
gas compressor
screw rotors
port
Prior art date
Application number
PCT/JP2015/060244
Other languages
French (fr)
Japanese (ja)
Inventor
大嗣 堀内
笠原 雅之
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to PCT/JP2015/060244 priority Critical patent/WO2016157449A1/en
Priority to JP2017508956A priority patent/JP6482649B2/en
Publication of WO2016157449A1 publication Critical patent/WO2016157449A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type

Definitions

  • the present invention relates to a gas compressor.
  • an oil-free screw compressor that is one of gas compressors (specifically, the compressor chamber is operated without oil supply) is capable of rotating two screw rotors that mesh with each other and two screw rotors.
  • a plurality of bearings for supporting each, a plurality of timing gears for rotating the two screw rotors in a non-contact manner, and a casing are provided.
  • the casing accommodates the tooth portions of the two screw rotors and forms a plurality of compression chambers in the tooth gaps, a suction passage for sucking gas into the compression chambers, and a compressed gas from the compression chambers.
  • a discharge channel for discharging.
  • the discharge flow path shown in FIG. 3 of Patent Document 1 is formed so as to be directed substantially in the rotor axial direction. Thereby, compared with the case where it forms so that it may go to a rotor radial direction, it is possible to suppress the change of the flow direction of compressed gas, and to aim at reduction of the pressure loss of a discharge flow path.
  • the discharge flow path shown in FIG. 3 of Patent Document 1 is formed so as not to interfere with the discharge-side timing gear and the bearing. That is, the discharge flow path is formed so that the discharge port which is the compression chamber side opening and the outlet port which is the outlet side opening do not overlap with the axial projection surfaces of the timing gear and the bearing. Therefore, there has been a limit to reducing the compression loss of the discharge flow path.
  • the present invention has been made in view of the above matters, and an object of the present invention is to improve the performance by reducing the pressure loss of the discharge flow path.
  • the gas compressor of the present invention includes a plurality of means for solving the above-described problems.
  • at least two screw rotors that mesh with each other and each of the at least two screw rotors can rotate.
  • At least a part of each of the discharge port that is a side opening and the outlet port that is an outlet side opening of the discharge flow path is the timing It is formed so as to overlap with the projected area in the axial direction of Ya.
  • the present invention compared with the case where the discharge port and the outlet port do not overlap with the axial projection surface of the timing gear, it is possible to reduce the pressure loss of the discharge flow path and improve the performance.
  • FIG. 2 is a vertical sectional view taken along section II-II in FIG.
  • FIG. 3 is a partial enlarged cross-sectional view of a part III in FIG. 2 and shows a structure of a discharge channel in the first embodiment of the present invention.
  • It is a three-dimensional figure showing the structure of the lower half of the compressor main body main casing in the 1st Embodiment of this invention.
  • It is a three-dimensional figure showing the structure of the lower half of the compressor main body main casing in the 1st Embodiment of this invention.
  • FIG. 20 is a vertical sectional view taken along section XX-XX in FIG. It is a three-dimensional figure showing the structure of the lower half of the compressor main body main casing in the 3rd Embodiment of this invention. It is a three-dimensional figure showing the structure of the lower half of the compressor main body main casing in the 3rd Embodiment of this invention. It is a horizontal sectional view showing the structure of the gas compressor in a 4th embodiment of the present invention.
  • FIG. 1 is a horizontal sectional view showing the structure of the gas compressor in the present embodiment.
  • 2 is a vertical cross-sectional view taken along a section II-II in FIG. 1
  • FIG. 3 is a partially enlarged cross-sectional view of a portion III in FIG. 4 and 5 are three-dimensional views showing the structure of the lower half of the compressor main body main casing in the present embodiment.
  • FIG. 6 is an axial projection showing the positional relationship among the discharge port, the outlet port, the storage chamber, the bearing, and the timing gear in the present embodiment.
  • the gas compressor of the present embodiment includes a compressor body 1 and a motor 2 that drives the compressor body 1, and the compressor body 1 and the motor 2 are integrated.
  • the compressor body 1 and the motor 2 are placed horizontally so that the rotation shaft of the compressor body 1 and the rotation shaft of the motor 2 described later extend in the horizontal direction, and the compressor body 1 and The motor 2 is connected in the horizontal direction.
  • the motor 2 includes a rotating shaft 3, a rotor core 4 attached to the rotating shaft 3, a stator core 5 disposed on the outer peripheral side of the rotor core 4, a motor casing 6 to which the stator core 5 is attached, and an axial direction of the motor casing 6 And a motor bracket 7 connected to one side (the right side in FIGS. 1 and 2).
  • a motor cooling jacket 8 is formed on the outer peripheral side of the stator core 5 in the motor casing 6.
  • the motor 2 is cooled by circulating a coolant (oil in this embodiment) through the motor cooling jacket 8.
  • a coolant oil in this embodiment
  • a part of the oil supplied to the motor cooling jacket 8 is supplied to a bearing and a timing gear described later.
  • Compressor body 1 is an oil-free screw compressor.
  • the compressor body 1 includes a pair of male and female screw rotors 10A and 10B that are engaged with each other, a compressor main body casing 12 that houses the tooth portions 11A of the male rotor 10A and the tooth portions 11B of the female rotor 10B, and the main body of the compressor.
  • a compressor main body suction side casing 13 connected to one axial side of the casing 12 (right side in FIGS. 1 and 2) is provided.
  • the portion on the other side in the axial direction of motor casing 6 (left side in FIGS. 1 and 2) is a portion corresponding to a gear casing, and stores compressor body suction side casing 13 and the like, and also includes a compressor body main casing. 12 is connected.
  • the shaft portion 14A (rotating shaft) of the male rotor 10A is provided only on one side in the axial direction (in other words, the suction side) with respect to the tooth portion 11A, and is integrally formed with the rotating shaft 3 of the motor 2.
  • the shaft portion 14A of the male rotor 10A is rotatably supported by a bearing 15A provided on the compressor body suction side casing 13, and the rotating shaft 3 of the motor 2 is rotatable by a bearing 16A provided on the motor bracket 7. It is supported. That is, the shaft portion 14A of the male rotor 10A is indirectly supported by the bearing 16A so as to be rotatable.
  • the bearing 15A supports a radial load
  • the bearing 16A supports a radial load and a thrust load.
  • the male rotor 10 ⁇ / b> A is rotated by driving the motor 2.
  • the shaft portion 14B (rotating shaft) of the female rotor 10B is provided only on one side in the axial direction (in other words, the suction side) with respect to the tooth portion 11B.
  • the shaft portion 14B of the female rotor 10B is rotatably supported by a bearing 15B provided in the compressor main body suction side casing 13 and a bearing 16B provided in the motor casing 6.
  • the bearing 15B supports a radial load
  • the bearing 16B supports a radial load and a thrust load.
  • Timing shafts 17A and 17B are provided on the shaft portion 14A of the male rotor 10A and the shaft portion 14B of the female rotor 10B, and the rotational force of the male rotor 10A is transmitted to the female rotor 10B by the engagement of the timing gears 17A and 17B. As a result, the male rotor 10A and the female rotor 10B rotate synchronously without contact.
  • the compressor body main casing 12 accommodates the tooth portion 11A of the male rotor 10A and the tooth portion 11B of the female rotor 10B, and forms a plurality of compression chambers S in the tooth gaps (in detail, a part of Two cylindrical bores), and a discharge passage 19 for discharging compressed gas from the compression chamber S.
  • the discharge port 20, which is the compression chamber side opening of the discharge flow channel 19, is formed only in the rotor axial direction with respect to the compression chamber S.
  • An outlet port 21 that is an outlet side opening of the discharge flow channel 19 is formed on a side surface of the casing 12.
  • the discharge flow path 19 is formed to extend linearly in the rotor axial direction. As shown in FIG. 6, a part of each of the discharge port 20 and the outlet port 21 is formed so as to overlap with the axial projection surfaces of the timing gears 17A and 17B or the bearings 15A and 15B.
  • the casings 12 and 13 of the compressor body 1 have suction passages 22A and 22B for sucking gas into the compression chamber S.
  • the suction port 23 that is the compression chamber side opening of the suction passage 22B is formed only in the rotor axial direction with respect to the compression chamber S.
  • An inlet port 24 that is an inlet side opening of the suction flow path 22 ⁇ / b> A is formed on the upper surface of the casing 12.
  • the compression chamber S moves in the rotor axial direction. At this time, the compression chamber S sucks gas (specifically, for example, air) from the suction flow paths 22A and 22B via the suction port 23, compresses the gas, and enters the discharge flow path 19 via the discharge port 20. Compressed gas is discharged.
  • gas specifically, for example, air
  • a compressor main body cooling jacket 25 is formed on the outer peripheral portion (except for the suction flow path 22 ⁇ / b> A) of the tooth portion 11 ⁇ / b> A of the male rotor 10 ⁇ / b> A and the tooth portion 11 ⁇ / b> B of the female rotor 10 ⁇ / b> B.
  • the compressor main body 1 is cooled by circulating a coolant (oil in this embodiment) through the compressor main body cooling jacket 25.
  • the shaft portion 14A of the male rotor 10A is only on the suction side with respect to the tooth portion 11A
  • the shaft portion 14B of the female rotor 10B is only on the suction side with respect to the tooth portion 11B
  • the shaft portion on the discharge side is eliminated.
  • the structure on the discharge side of the casing 12 can be simplified, and the degree of freedom in design can be increased. Therefore, the discharge channel 19 is formed so that a part of each of the discharge port 20 and the outlet port 21 overlaps with the timing gears 17A and 17B or the axial projection surfaces of the bearings 15A and 15B.
  • the pressure loss of the discharge passage 19 is reduced and the performance is improved. Can do. Moreover, discharge noise can also be reduced.
  • the discharge path 19 extends in a straight line shape in the rotor axial direction, and each radial cross section from the discharge port 20 to the outlet port 21 (however, the discharge port 20 And the outlet port 21 are formed in the same shape and size, and the radial positions thereof are the same.
  • the present invention is not limited to this, and the gist and technology of the present invention Modifications can be made without departing from the concept. That is, it is sufficient that at least a part of each of the discharge port 20 and the outlet port 21 is formed so as to overlap with the axial projection surfaces of the timing gears 17A and 17B or the bearings 15A and 15B, and various modifications are possible. is there.
  • the discharge flow path 19 is formed so that the radial cross section gradually increases from the discharge port 20 toward the outlet port 21 as a whole. May be.
  • the discharge flow path 19 has a partial radial cross section from the discharge port 20 toward the outlet port 21 (in this modification, the lower portion is). You may form so that it may expand gradually.
  • the outlet port 21 when the outlet port 21 is projected in the axial direction, it overlaps with most of 80% or more of the discharge port 20.
  • the discharge flow path 19 may be formed to be slightly inclined with respect to the rotor axial direction.
  • the discharge channel 19 is formed so as to incline radially outward (downward in FIG. 9) from the discharge port 20 toward the outlet port 21. Therefore, the overlapping area between the outlet port 21 and the axial projection surfaces of the timing gears 17A and 17B is smaller than the overlapping area between the discharge port 20 and the axial projection surfaces of the timing gears 17A and 17B. Further, the overlapping area between the outlet port 21 and the axial projection surfaces of the bearings 15A and 15B is smaller than the overlapping area between the discharge port 20 and the axial projection surfaces of the bearings 15A and 15B.
  • the discharge flow path 19 may be formed so that the shapes of the discharge port 20 and the outlet port 21 are different and the shape of the radial cross section gradually changes. Good.
  • the pressure loss of the discharge flow path 19 can be reduced and the performance can be improved.
  • FIG. 11 is a partially enlarged sectional view showing the structure of the discharge flow path 19 in the present embodiment, and corresponds to FIG. 3 described above.
  • FIG.12 and FIG.13 is a three-dimensional figure showing the structure of the lower half of the compressor main body main casing 12 in this embodiment.
  • FIG. 14 is an axial projection showing the positional relationship among the discharge port, the outlet port, the storage chamber, the bearing, and the timing gear in the present embodiment.
  • an axial discharge port 20A that opens in the axial direction with respect to the compression chamber S and a radial discharge port 20B that opens in the radial direction with respect to the compression chamber S are provided.
  • the discharge flow path 19 includes a discharge pocket 26 formed outside the radial discharge port 20B, and is formed to extend linearly from the axial discharge port 20A and the discharge pocket 26 in the rotor axial direction.
  • each of discharge port 20A and exit port 21 is formed so that it may overlap with the axial direction projection surface of timing gear 17A, 17B or bearing 15A, 15B.
  • the discharge port 20A and the outlet port 21 are compared with the case where the timing gears 17A, 17B or the axial projection surfaces of the bearings 15A, 15B do not overlap.
  • the pressure loss of the discharge channel 19 can be reduced and the performance can be improved.
  • the discharge flow path 19 is, in detail, each radial cross section from the discharge port 20A to the outlet port 21 (however, the discharge port 19) so as to extend linearly in the rotor axial direction. 20A is included and the outlet port 21 is included), and the shape and size thereof are the same and the radial positions thereof are the same.
  • the present invention is not limited thereto, and the present invention is not limited thereto. Modifications are possible without departing from the spirit and technical idea of the present invention.
  • each of the discharge port 20A and the outlet port 21 is formed so as to overlap the axial projection surface of the timing gears 17A and 17B or the bearings 15A and 15B, and various modifications are possible. is there.
  • the discharge flow path 19 gradually increases in overall radial cross section from the discharge port 20A toward the outlet port 21. May be formed.
  • the discharge flow path 19 has a partial radial cross section from the discharge port 20 ⁇ / b> A toward the outlet port 21 (in this modification, the lower portion is). You may form so that it may expand gradually.
  • most of the discharge port 20A is 80% or more. It is supposed to overlap.
  • the discharge flow path 19 may be formed to be slightly inclined with respect to the rotor axial direction.
  • the shape and size of each radial section from the discharge port 20A to the outlet port 21 are the same, their radial positions are It may be formed to change.
  • the discharge channel 19 is formed so as to incline radially outward (downward in FIG. 18) from the discharge port 20A toward the outlet port 21.
  • the overlapping area between the outlet port 21 and the axial projection surfaces of the timing gears 17A and 17B is smaller than the overlapping area between the discharge port 20A and the axial projection surfaces of the timing gears 17A and 17B. Further, the overlapping area between the outlet port 21 and the axial projection surfaces of the bearings 15A and 15B is smaller than the overlapping area between the discharge port 20A and the axial projection surfaces of the bearings 15A and 15B.
  • the pressure loss of the discharge flow path 19 can be reduced and the performance can be improved.
  • a third embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the description of the same parts as in the first embodiment will be omitted as appropriate.
  • FIG. 19 is a horizontal sectional view showing the structure of the gas compressor in the present embodiment.
  • 20 is a vertical sectional view taken along a section XX-XX in FIG. FIG.21 and FIG.22 is a three-dimensional figure showing the structure of the lower half of the compressor main body main casing in this embodiment.
  • the structure on the discharge side of the casing 12 can be simplified, and the degree of freedom in design can be increased, so the cooling jacket 25A is enlarged. That is, the cooling jacket 25A includes not only the outer peripheral portion of the tooth portion 11A of the male rotor 10A and the tooth portion 11B of the female rotor 10B (however, the portion excluding the suction flow path 22A), as well as the tooth portion 11A of the male rotor 10A.
  • the upper end surface and the upper end surface of the tooth portion 11B of the female rotor 10B are also formed in a portion (however, a portion excluding the discharge passage 19).
  • the discharge side portion can be efficiently cooled, and the discharge side gap caused by thermal expansion can be reduced. Therefore, the gas leakage from the compression chamber S on the discharge side can be suppressed and the performance can be improved.
  • a fourth embodiment of the present invention will be described with reference to FIG. In the present embodiment, the description of the same parts as in the first embodiment will be omitted as appropriate.
  • FIG. 23 is a horizontal sectional view showing the structure of the gas compressor in the present embodiment.
  • the gas compressor of the present embodiment includes a flat motor 2A having a shaft dimension smaller than the diameter dimension.
  • the motor 2A is, for example, an axial gap type, and includes two rotor cores 4A attached to the rotation shaft 3A and a stator core 5A disposed between the two rotor cores 4A.
  • This flat motor 2A it is possible to reduce the axial dimension of the entire compressor.
  • the distance between the bearings 15B and 16B that support the female rotor 10B can be increased, and thereby the swing of the female rotor 10B may be suppressed.
  • the case where the structure of the discharge channel 19 of the first embodiment is adopted is illustrated as an example, but the present invention is not limited to this, and the second embodiment and the first to first embodiments are illustrated. You may employ
  • the case where the compressor body 1 is an oil-free type and the male rotor 10A and the female rotor 10B are rotated in a non-contact manner by the timing gears 17A and 17B has been described as an example. Not limited to this. That is, for example, the compressor body 1 is an oil supply type or a water supply type (specifically, the compressor chamber S is operated in an oil supply state or a water supply state), and the male rotor 10A and the female rotor are not provided without the timing gears 17A and 17B. 10B may be contacted and rotated. In this case as well, the discharge channel 19 is formed so that at least a part of each of the discharge port 20 (or 20A) and the outlet port 21 overlaps the axial projection surface of the bearings 15A and 15B. An effect can be obtained.
  • the shaft portion 14A of the male rotor 10A is integrally formed with the rotating shaft 3 of the motor 2
  • the present invention is not limited to this. That is, although the shaft portion 14A of the male rotor 10A and the rotating shaft 3 of the motor 2 are molded separately, they may be connected coaxially. Further, instead of the shaft portion 14A of the male rotor 10A, the shaft portion 14B of the female rotor 10B may be integrally formed with the rotating shaft 3 of the motor 2 or connected coaxially.
  • the compressor body 1 and the shaft portion 14A of the male rotor 10A, the shaft portion 14B of the female rotor 10B, and the rotating shaft 3 of the motor 2 extend in the horizontal direction.
  • the case where the motor 2 is placed horizontally has been described as an example, but is not limited thereto. That is, the compressor body 1 and the motor 2 are placed vertically so that the shaft portion 14A of the male rotor 10A, the shaft portion 14B of the female rotor 10B, and the rotating shaft 3 of the motor 2 extend in the vertical direction, and the compressor The main body 1 may be disposed on the upper side of the motor 2. In this case, the same effect as described above can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a gas compressor that can realize improved performance by reducing pressure loss in a discharge passage. The gas compressor comprises: screw rotors (10A, 10B) that engage with each other; a plurality of bearings (15A, 15B, 16A, 16B) that respectively and rotatably support the screw rotors (10A, 10B); timing gears (17A, 17B) that are for causing the screw rotors (10A, 10B) to rotate without contacting each other; and a casing (12, 13). The casing (12, 13) includes: a housing chamber (18) that houses a tooth part (11A) of the male rotor (10A) and a tooth part (11B) of the female rotor (10B) and forms a plurality of compression chambers (S); intake passages (22A, 22B) that are for introducing a gas into the compression chambers (S); and a discharge passage (19) that is for discharging a compressed gas from the compression chambers (S). The discharge passage (19) is formed such that at least part of a discharge port (20) and part of an outlet port (21) overlap projection planes of the timing gears (17A, 17B) in an axial direction.

Description

ガス圧縮機Gas compressor
 本発明は、ガス圧縮機に関する。 The present invention relates to a gas compressor.
 例えば、ガス圧縮機の一つであるオイルフリー式の(詳細には、圧縮室内を無給油状態で運転する)スクリュー圧縮機は、互いに噛み合う2つのスクリューロータと、2つのスクリューロータを回転可能にそれぞれ支持する複数の軸受と、2つのスクリューロータを互いに非接触で回転させるための複数のタイミングギヤと、ケーシングとを備えている。ケーシングは、2つのスクリューロータの歯部を収納するとともにそれらの歯溝に複数の圧縮室を形成する収納室と、圧縮室にガスを吸入するための吸入流路と、圧縮室から圧縮ガスを吐出するための吐出流路とを有している。 For example, an oil-free screw compressor that is one of gas compressors (specifically, the compressor chamber is operated without oil supply) is capable of rotating two screw rotors that mesh with each other and two screw rotors. A plurality of bearings for supporting each, a plurality of timing gears for rotating the two screw rotors in a non-contact manner, and a casing are provided. The casing accommodates the tooth portions of the two screw rotors and forms a plurality of compression chambers in the tooth gaps, a suction passage for sucking gas into the compression chambers, and a compressed gas from the compression chambers. A discharge channel for discharging.
 ここで、特許文献1の図3で示された吐出流路は、ほぼロータ軸方向に向かうように形成されている。これにより、ロータ径方向に向かうように形成された場合と比べ、圧縮ガスの流れ方向の変化を抑制して、吐出流路の圧力損失の低減を図ることが可能である。 Here, the discharge flow path shown in FIG. 3 of Patent Document 1 is formed so as to be directed substantially in the rotor axial direction. Thereby, compared with the case where it forms so that it may go to a rotor radial direction, it is possible to suppress the change of the flow direction of compressed gas, and to aim at reduction of the pressure loss of a discharge flow path.
特開2005-232979号公報Japanese Patent Application Laid-Open No. 2005-232979
 しかし、特許文献1の図3で示された吐出流路は、吐出側のタイミングギヤ及び軸受と干渉しないように形成されている。すなわち、吐出流路は、圧縮室側開口である吐出ポート及び出口側開口である出口ポートの夫々が、タイミングギヤ及び軸受の軸方向投影面と重複しないように形成されている。そのため、吐出流路の圧縮損失の低減には限界があった。 However, the discharge flow path shown in FIG. 3 of Patent Document 1 is formed so as not to interfere with the discharge-side timing gear and the bearing. That is, the discharge flow path is formed so that the discharge port which is the compression chamber side opening and the outlet port which is the outlet side opening do not overlap with the axial projection surfaces of the timing gear and the bearing. Therefore, there has been a limit to reducing the compression loss of the discharge flow path.
 本発明は、上記事柄に鑑みてなされたものであり、吐出流路の圧力損失を低減して性能の向上を図ることを課題の一つとするものである。 The present invention has been made in view of the above matters, and an object of the present invention is to improve the performance by reducing the pressure loss of the discharge flow path.
 上記課題を解決するために、特許請求の範囲に記載の構成を適用する。本発明のガス圧縮機は、上記課題を解決するための手段を複数含んでいるが、その一例を挙げるならば、互いに噛み合う少なくとも2つのスクリューロータと、前記少なくとも2つのスクリューロータを回転可能にそれぞれ支持する複数の軸受と、前記少なくとも2つのスクリューロータを互いに非接触で回転させるための複数のタイミングギヤと、前記少なくとも2つのスクリューロータの歯部を収納するとともに複数の圧縮室を形成する収納室、前記圧縮室にガスを吸入するための吸入流路、及び前記圧縮室から圧縮ガスを吐出するための吐出流路を有するケーシングとを備え、前記吐出流路は、前記吐出流路の圧縮室側開口である吐出ポート及び前記吐出流路の出口側開口である出口ポートの夫々の少なくとも一部が、前記タイミングギヤの軸方向投影面と重複するように形成される。 In order to solve the above problems, the configuration described in the claims is applied. The gas compressor of the present invention includes a plurality of means for solving the above-described problems. To give an example, at least two screw rotors that mesh with each other and each of the at least two screw rotors can rotate. A plurality of bearings for supporting, a plurality of timing gears for rotating the at least two screw rotors in a non-contact manner, and a storage chamber for storing the teeth of the at least two screw rotors and forming a plurality of compression chambers A suction flow path for sucking gas into the compression chamber, and a casing having a discharge flow path for discharging compressed gas from the compression chamber, wherein the discharge flow path is a compression chamber of the discharge flow path At least a part of each of the discharge port that is a side opening and the outlet port that is an outlet side opening of the discharge flow path is the timing It is formed so as to overlap with the projected area in the axial direction of Ya.
 本発明によれば、吐出ポート及び出口ポートがタイミングギヤの軸方向投影面と重複しない場合に比べ、吐出流路の圧力損失を低減して性能の向上を図ることができる。 According to the present invention, compared with the case where the discharge port and the outlet port do not overlap with the axial projection surface of the timing gear, it is possible to reduce the pressure loss of the discharge flow path and improve the performance.
 なお、上記以外の課題、構成、及び効果は、以下の説明により明らかにされる。 In addition, problems, configurations, and effects other than the above will be clarified by the following description.
本発明の第1の実施形態におけるガス圧縮機の構造を表す水平断面図である。It is a horizontal sectional view showing the structure of the gas compressor in a 1st embodiment of the present invention. 図1中断面II-IIによる鉛直断面図である。FIG. 2 is a vertical sectional view taken along section II-II in FIG. 図2中III部の部分拡大断面図であり、本発明の第1の実施形態における吐出流路の構造等を示す。FIG. 3 is a partial enlarged cross-sectional view of a part III in FIG. 2 and shows a structure of a discharge channel in the first embodiment of the present invention. 本発明の第1の実施形態における圧縮機本体メインケーシングの下側半分の構造を表す立体図である。It is a three-dimensional figure showing the structure of the lower half of the compressor main body main casing in the 1st Embodiment of this invention. 本発明の第1の実施形態における圧縮機本体メインケーシングの下側半分の構造を表す立体図である。It is a three-dimensional figure showing the structure of the lower half of the compressor main body main casing in the 1st Embodiment of this invention. 本発明の第1の実施形態における吐出ポート、出口ポート、収納室、軸受、及びタイミングギヤの位置関係を表す軸方向投影図である。It is an axial direction projection figure showing the positional relationship of the discharge port in the 1st Embodiment of this invention, an exit port, a storage chamber, a bearing, and a timing gear. 本発明の第1の変形例における吐出流路の構造を示す部分拡大断面図である。It is a partial expanded sectional view which shows the structure of the discharge flow path in the 1st modification of this invention. 本発明の第2の変形例における吐出流路の構造を示す部分拡大断面図である。It is a partial expanded sectional view which shows the structure of the discharge flow path in the 2nd modification of this invention. 本発明の第3の変形例における吐出流路の構造を示す部分拡大断面図である。It is a partial expanded sectional view which shows the structure of the discharge flow path in the 3rd modification of this invention. 本発明の第4の変形例における吐出ポート、出口ポート、収納室、軸受、及びタイミングギヤの位置関係を表す軸方向投影図である。It is an axial direction projection figure showing the positional relationship of the discharge port in the 4th modification of this invention, an exit port, a storage chamber, a bearing, and a timing gear. 本発明の第2の実施形態における吐出流路の構造を示す部分拡大断面図である。It is a partial expanded sectional view which shows the structure of the discharge flow path in the 2nd Embodiment of this invention. 本発明の第2の実施形態における圧縮機本体メインケーシングの下側半分の構造を表す立体図である。It is a three-dimensional figure showing the structure of the lower half of the compressor main body main casing in the 2nd Embodiment of this invention. 本発明の第2の実施形態における圧縮機本体メインケーシングの下側半分の構造を表す立体図である。It is a three-dimensional figure showing the structure of the lower half of the compressor main body main casing in the 2nd Embodiment of this invention. 本発明の第2の実施形態における吐出ポート、出口ポート、収納室、軸受、及びタイミングギヤの位置関係を表す軸方向投影図である。It is an axial direction projection figure showing the positional relationship of the discharge port in the 2nd Embodiment of this invention, an exit port, a storage chamber, a bearing, and a timing gear. 本発明の第5の変形例における吐出流路の構造を示す部分拡大断面図である。It is a partial expanded sectional view which shows the structure of the discharge flow path in the 5th modification of this invention. 本発明の第5の変形例における吐出ポート、出口ポート、収納室、軸受、及びタイミングギヤの位置関係を表す軸方向投影図である。It is an axial direction projection figure showing the positional relationship of the discharge port in the 5th modification of this invention, an exit port, a storage chamber, a bearing, and a timing gear. 本発明の第6の変形例における吐出流路の構造を示す部分拡大断面図である。It is a partial expanded sectional view which shows the structure of the discharge flow path in the 6th modification of this invention. 本発明の第7の変形例における吐出流路の構造を示す部分拡大断面図である。It is a partial expanded sectional view which shows the structure of the discharge flow path in the 7th modification of this invention. 本発明の第3の実施形態におけるガス圧縮機の構造を表す水平断面図である。It is a horizontal sectional view showing the structure of the gas compressor in a 3rd embodiment of the present invention. 図19中断面XX-XXによる鉛直断面図である。FIG. 20 is a vertical sectional view taken along section XX-XX in FIG. 本発明の第3の実施形態における圧縮機本体メインケーシングの下側半分の構造を表す立体図である。It is a three-dimensional figure showing the structure of the lower half of the compressor main body main casing in the 3rd Embodiment of this invention. 本発明の第3の実施形態における圧縮機本体メインケーシングの下側半分の構造を表す立体図である。It is a three-dimensional figure showing the structure of the lower half of the compressor main body main casing in the 3rd Embodiment of this invention. 本発明の第4の実施形態におけるガス圧縮機の構造を表す水平断面図である。It is a horizontal sectional view showing the structure of the gas compressor in a 4th embodiment of the present invention.
 本発明の第1の実施形態を、図1~図5を用いて説明する。 A first embodiment of the present invention will be described with reference to FIGS.
 図1は、本実施形態におけるガス圧縮機の構造を表す水平断面図である。図2は、図1中断面II-IIによる鉛直断面図であり、図3は、図2中III部の部分拡大断面図である。図4及び図5は、本実施形態における圧縮機本体メインケーシングの下側半分の構造を表す立体図である。図6は、本実施形態における吐出ポート、出口ポート、収納室、軸受、及びタイミングギヤの位置関係を表す軸方向投影図である。 FIG. 1 is a horizontal sectional view showing the structure of the gas compressor in the present embodiment. 2 is a vertical cross-sectional view taken along a section II-II in FIG. 1, and FIG. 3 is a partially enlarged cross-sectional view of a portion III in FIG. 4 and 5 are three-dimensional views showing the structure of the lower half of the compressor main body main casing in the present embodiment. FIG. 6 is an axial projection showing the positional relationship among the discharge port, the outlet port, the storage chamber, the bearing, and the timing gear in the present embodiment.
 本実施形態のガス圧縮機は、圧縮機本体1と、圧縮機本体1を駆動するモータ2とを備え、圧縮機本体1とモータ2を一体化している。なお、本実施形態では、後述する圧縮機本体1の回転軸及びモータ2の回転軸が水平方向に延在するように圧縮機本体1及びモータ2を横置きにするとともに、圧縮機本体1及びモータ2を水平方向に接続している。 The gas compressor of the present embodiment includes a compressor body 1 and a motor 2 that drives the compressor body 1, and the compressor body 1 and the motor 2 are integrated. In the present embodiment, the compressor body 1 and the motor 2 are placed horizontally so that the rotation shaft of the compressor body 1 and the rotation shaft of the motor 2 described later extend in the horizontal direction, and the compressor body 1 and The motor 2 is connected in the horizontal direction.
 モータ2は、回転軸3と、回転軸3に取付けられたロータコア4と、ロータコア4の外周側に配置されたステータコア5と、ステータコア5が取付けられたモータケーシング6と、モータケーシング6の軸方向一方側(図1及び図2中右側)に接続されたモータブラケット7とを備えている。モータケーシング6におけるステータコア5の外周側の部分にはモータ冷却ジャケット8が形成されている。そして、モータ冷却ジャケット8に冷却液(本実施形態では油)を流通させることにより、モータ2を冷却するようになっている。なお、本実施形態では、モータ冷却ジャケット8に供給された油の一部は、後述する軸受及びタイミングギヤに供給されるようになっている。 The motor 2 includes a rotating shaft 3, a rotor core 4 attached to the rotating shaft 3, a stator core 5 disposed on the outer peripheral side of the rotor core 4, a motor casing 6 to which the stator core 5 is attached, and an axial direction of the motor casing 6 And a motor bracket 7 connected to one side (the right side in FIGS. 1 and 2). A motor cooling jacket 8 is formed on the outer peripheral side of the stator core 5 in the motor casing 6. The motor 2 is cooled by circulating a coolant (oil in this embodiment) through the motor cooling jacket 8. In the present embodiment, a part of the oil supplied to the motor cooling jacket 8 is supplied to a bearing and a timing gear described later.
 圧縮機本体1は、オイルフリー式のスクリュー圧縮機である。この圧縮機本体1は、互いに噛み合う雌雄一対のスクリューロータ10A,10Bと、雄ロータ10Aの歯部11A及び雌ロータ10Bの歯部11Bを収納する圧縮機本体メインケーシング12と、この圧縮機本体メインケーシング12の軸方向一方側(図1及び図2中右側)に接続された圧縮機本体吸入側ケーシング13とを備えている。なお、モータケーシング6の軸方向他方側(図1及び図2中左側)の部分は、ギヤケーシングに相当する部分であり、圧縮機本体吸入側ケーシング13等を収納するとともに、圧縮機本体メインケーシング12に接続されている。 Compressor body 1 is an oil-free screw compressor. The compressor body 1 includes a pair of male and female screw rotors 10A and 10B that are engaged with each other, a compressor main body casing 12 that houses the tooth portions 11A of the male rotor 10A and the tooth portions 11B of the female rotor 10B, and the main body of the compressor. A compressor main body suction side casing 13 connected to one axial side of the casing 12 (right side in FIGS. 1 and 2) is provided. The portion on the other side in the axial direction of motor casing 6 (left side in FIGS. 1 and 2) is a portion corresponding to a gear casing, and stores compressor body suction side casing 13 and the like, and also includes a compressor body main casing. 12 is connected.
 雄ロータ10Aの軸部14A(回転軸)は、歯部11Aに対して軸方向一方側(言い換えれば、吸入側)だけに設けられており、モータ2の回転軸3と一体成形されている。雄ロータ10Aの軸部14Aは、圧縮機本体吸入側ケーシング13に設けられた軸受15Aで回転可能に支持され、モータ2の回転軸3は、モータブラケット7に設けられた軸受16Aで回転可能に支持されている。すなわち、雄ロータ10Aの軸部14Aは、間接的に軸受16Aで回転可能に支持されている。なお、軸受15Aは、ラジアル荷重を支持し、軸受16Aは、ラジアル荷重及びスラスト荷重を支持する。そして、モータ2の駆動によって、雄ロータ10Aが回転するようになっている。 The shaft portion 14A (rotating shaft) of the male rotor 10A is provided only on one side in the axial direction (in other words, the suction side) with respect to the tooth portion 11A, and is integrally formed with the rotating shaft 3 of the motor 2. The shaft portion 14A of the male rotor 10A is rotatably supported by a bearing 15A provided on the compressor body suction side casing 13, and the rotating shaft 3 of the motor 2 is rotatable by a bearing 16A provided on the motor bracket 7. It is supported. That is, the shaft portion 14A of the male rotor 10A is indirectly supported by the bearing 16A so as to be rotatable. The bearing 15A supports a radial load, and the bearing 16A supports a radial load and a thrust load. The male rotor 10 </ b> A is rotated by driving the motor 2.
 雌ロータ10Bの軸部14B(回転軸)は、歯部11Bに対して軸方向一方側(言い換えれば、吸入側)だけに設けられている。雌ロータ10Bの軸部14Bは、圧縮機本体吸入側ケーシング13に設けられた軸受15Bと、モータケーシング6に設けられた軸受16Bで回転可能に支持されている。なお、軸受15Bは、ラジアル荷重を支持し、軸受16Bは、ラジアル荷重及びスラスト荷重を支持する。 The shaft portion 14B (rotating shaft) of the female rotor 10B is provided only on one side in the axial direction (in other words, the suction side) with respect to the tooth portion 11B. The shaft portion 14B of the female rotor 10B is rotatably supported by a bearing 15B provided in the compressor main body suction side casing 13 and a bearing 16B provided in the motor casing 6. The bearing 15B supports a radial load, and the bearing 16B supports a radial load and a thrust load.
 雄ロータ10Aの軸部14A及び雌ロータ10Bの軸部14Bにはタイミングギヤ17A,17Bが設けられ、タイミングギヤ17A,17Bの噛み合いによって雄ロータ10Aの回転力が雌ロータ10Bに伝達される。これにより、雄ロータ10Aと雌ロータ10Bが非接触で同期回転するようになっている。 Timing shafts 17A and 17B are provided on the shaft portion 14A of the male rotor 10A and the shaft portion 14B of the female rotor 10B, and the rotational force of the male rotor 10A is transmitted to the female rotor 10B by the engagement of the timing gears 17A and 17B. As a result, the male rotor 10A and the female rotor 10B rotate synchronously without contact.
 圧縮機本体メインケーシング12は、雄ロータ10Aの歯部11A及び雌ロータ10Bの歯部11Bを収納してそれらの歯溝に複数の圧縮室Sを形成する収納室18(詳細には、一部が重複するものの2つの円筒状のボア)と、圧縮室Sから圧縮ガスを吐出するための吐出流路19とを有している。吐出流路19の圧縮室側開口である吐出ポート20は、圧縮室Sに対してロータ軸方向のみに形成されている。吐出流路19の出口側開口である出口ポート21は、ケーシング12の側面に形成されている。 The compressor body main casing 12 accommodates the tooth portion 11A of the male rotor 10A and the tooth portion 11B of the female rotor 10B, and forms a plurality of compression chambers S in the tooth gaps (in detail, a part of Two cylindrical bores), and a discharge passage 19 for discharging compressed gas from the compression chamber S. The discharge port 20, which is the compression chamber side opening of the discharge flow channel 19, is formed only in the rotor axial direction with respect to the compression chamber S. An outlet port 21 that is an outlet side opening of the discharge flow channel 19 is formed on a side surface of the casing 12.
 ここで本実施形態の大きな特徴の一つとして、吐出流路19は、ロータ軸方向に直線状に延在するように形成されている。そして、図6で示すように、吐出ポート20及び出口ポート21の夫々の一部が、タイミングギヤ17A,17B又は軸受15A,15Bの軸方向投影面と重複するように形成されている。 Here, as one of the major features of this embodiment, the discharge flow path 19 is formed to extend linearly in the rotor axial direction. As shown in FIG. 6, a part of each of the discharge port 20 and the outlet port 21 is formed so as to overlap with the axial projection surfaces of the timing gears 17A and 17B or the bearings 15A and 15B.
 圧縮機本体1のケーシング12,13は、圧縮室Sにガスを吸入するための吸入流路22A,22Bを有している。吸入流路22Bの圧縮室側開口である吸入ポート23は、圧縮室Sに対してロータ軸方向のみに形成されている。吸入流路22Aの入口側開口である入口ポート24は、ケーシング12の上面に形成されている。 The casings 12 and 13 of the compressor body 1 have suction passages 22A and 22B for sucking gas into the compression chamber S. The suction port 23 that is the compression chamber side opening of the suction passage 22B is formed only in the rotor axial direction with respect to the compression chamber S. An inlet port 24 that is an inlet side opening of the suction flow path 22 </ b> A is formed on the upper surface of the casing 12.
 そして、雄ロータ10A及び雌ロータ10Bの回転に伴い、圧縮室Sがロータ軸方向に移動する。このとき、圧縮室Sは、吸入ポート23を介して吸入流路22A,22Bからガス(詳細には、例えば空気)を吸入し、ガスを圧縮し、吐出ポート20を介して吐出流路19に圧縮ガスを吐出するようになっている。 And with the rotation of the male rotor 10A and the female rotor 10B, the compression chamber S moves in the rotor axial direction. At this time, the compression chamber S sucks gas (specifically, for example, air) from the suction flow paths 22A and 22B via the suction port 23, compresses the gas, and enters the discharge flow path 19 via the discharge port 20. Compressed gas is discharged.
 圧縮機本体メインケーシング12において、雄ロータ10Aの歯部11A及び雌ロータ10Bの歯部11Bの外周側の部分(但し、吸入流路22Aを除く部分)には、圧縮機本体冷却ジャケット25が形成されている。そして、圧縮機本体冷却ジャケット25に冷却液(本実施形態では油)を流通させることにより、圧縮機本体1を冷却するようになっている。 In the compressor main body 12, a compressor main body cooling jacket 25 is formed on the outer peripheral portion (except for the suction flow path 22 </ b> A) of the tooth portion 11 </ b> A of the male rotor 10 </ b> A and the tooth portion 11 </ b> B of the female rotor 10 </ b> B. Has been. The compressor main body 1 is cooled by circulating a coolant (oil in this embodiment) through the compressor main body cooling jacket 25.
 次に、本実施形態の作用効果を説明する。 Next, the function and effect of this embodiment will be described.
 本実施形態では、雄ロータ10Aの軸部14Aを歯部11Aに対して吸入側だけとし、雌ロータ10Bの軸部14Bを歯部11Bに対して吸入側だけとし、吐出側の軸部を無くすことにより、吐出側の軸部の周囲に設けるべき軸受やシール等も無くすことができる。そのため、ケーシング12の吐出側の構造を簡素化することができ、その設計自由度を高めることができる。それ故、吐出ポート20及び出口ポート21の夫々の一部がタイミングギヤ17A,17B又は軸受15A,15Bの軸方向投影面と重複するように、吐出流路19を形成している。したがって、吐出ポート20及び出口ポート21がタイミングギヤ17A,17B又は軸受15A,15Bの軸方向投影面と重複しない場合に比べ、吐出流路19の圧力損失を低減して、性能の向上を図ることができる。また、吐出騒音も低減することができる。 In the present embodiment, the shaft portion 14A of the male rotor 10A is only on the suction side with respect to the tooth portion 11A, the shaft portion 14B of the female rotor 10B is only on the suction side with respect to the tooth portion 11B, and the shaft portion on the discharge side is eliminated. As a result, it is possible to eliminate bearings and seals that should be provided around the shaft portion on the discharge side. Therefore, the structure on the discharge side of the casing 12 can be simplified, and the degree of freedom in design can be increased. Therefore, the discharge channel 19 is formed so that a part of each of the discharge port 20 and the outlet port 21 overlaps with the timing gears 17A and 17B or the axial projection surfaces of the bearings 15A and 15B. Therefore, compared with the case where the discharge port 20 and the outlet port 21 do not overlap with the axial projection surfaces of the timing gears 17A and 17B or the bearings 15A and 15B, the pressure loss of the discharge passage 19 is reduced and the performance is improved. Can do. Moreover, discharge noise can also be reduced.
 また、軸受を削減することにより、軸受による機械損失(回転損失)を低減することができる。また、吐出側の軸部を無くすことにより、その軸部の周囲に生じる隙間そのものを無くすため、吐出側の圧縮室Sからのガス漏洩を低減することができる。したがって、性能の向上を図ることができる。コストの低減も図ることができる。 Also, by reducing the number of bearings, mechanical loss (rotation loss) due to the bearings can be reduced. Further, by eliminating the discharge-side shaft portion, the gap itself generated around the shaft portion is eliminated, so that gas leakage from the discharge-side compression chamber S can be reduced. Therefore, the performance can be improved. Cost can also be reduced.
 なお、第1の実施形態において、吐出経路19は、ロータ軸方向に直線状に延在するように、詳細には、吐出ポート20から出口ポート21までの各径方向断面(但し、吐出ポート20及び出口ポート21を含む)の形状及び大きさが同じで、かつそれらの径方向位置が同じとなるように形成された場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、吐出ポート20及び出口ポート21の夫々の少なくとも一部が、タイミングギヤ17A,17B又は軸受15A,15Bの軸方向投影面と重複するように形成されていればよく、様々な変形が可能である。 In the first embodiment, in detail, the discharge path 19 extends in a straight line shape in the rotor axial direction, and each radial cross section from the discharge port 20 to the outlet port 21 (however, the discharge port 20 And the outlet port 21 are formed in the same shape and size, and the radial positions thereof are the same. However, the present invention is not limited to this, and the gist and technology of the present invention Modifications can be made without departing from the concept. That is, it is sufficient that at least a part of each of the discharge port 20 and the outlet port 21 is formed so as to overlap with the axial projection surfaces of the timing gears 17A and 17B or the bearings 15A and 15B, and various modifications are possible. is there.
 具体的には、例えば図7で示す第1の変形例のように、吐出流路19は、吐出ポート20から出口ポート21に向かって径方向断面が全体的に徐々に拡大するように形成されてもよい。あるいは、例えば図8で示す第2の変形例のように、吐出流路19は、吐出ポート20から出口ポート21に向かって径方向断面が部分的に(本変形例では、下側部分が)徐々に拡大するように形成されてもよい。なお、第1の実施形態並びに第1及び第2の変形例では、出口ポート21を軸方向に投影した場合に吐出ポート20の80%以上の大部分と重複するようになっている。 Specifically, for example, as in the first modification shown in FIG. 7, the discharge flow path 19 is formed so that the radial cross section gradually increases from the discharge port 20 toward the outlet port 21 as a whole. May be. Alternatively, for example, as in the second modification shown in FIG. 8, the discharge flow path 19 has a partial radial cross section from the discharge port 20 toward the outlet port 21 (in this modification, the lower portion is). You may form so that it may expand gradually. In the first embodiment and the first and second modified examples, when the outlet port 21 is projected in the axial direction, it overlaps with most of 80% or more of the discharge port 20.
 また、例えば図9で示す第3の変形例のように、吐出流路19は、ロータ軸方向に対して若干傾斜するように形成されてもよい。詳細には、吐出ポート20から出口ポート21までの各径方向断面(但し、吐出ポート20及び出口ポート21を含む)の形状及び大きさが同じであるものの、それらの径方向位置が変化するように形成されてもよい。なお、本変形例では、吐出流路19は、吐出ポート20から出口ポート21に向かって径方向外側(図9中下側)に傾斜するように形成されている。そのため、出口ポート21とタイミングギヤ17A,17Bの軸方向投影面との重複面積が、吐出ポート20とタイミングギヤ17A,17Bの軸方向投影面との重複面積より小さくなっている。また、出口ポート21と軸受15A,15Bの軸方向投影面との重複面積が、吐出ポート20と軸受15A,15Bの軸方向投影面との重複面積より小さくなっている。 Further, for example, as in the third modification shown in FIG. 9, the discharge flow path 19 may be formed to be slightly inclined with respect to the rotor axial direction. Specifically, although the shape and size of each radial cross section (including the discharge port 20 and the outlet port 21) from the discharge port 20 to the outlet port 21 are the same, their radial positions change. May be formed. In this modification, the discharge channel 19 is formed so as to incline radially outward (downward in FIG. 9) from the discharge port 20 toward the outlet port 21. Therefore, the overlapping area between the outlet port 21 and the axial projection surfaces of the timing gears 17A and 17B is smaller than the overlapping area between the discharge port 20 and the axial projection surfaces of the timing gears 17A and 17B. Further, the overlapping area between the outlet port 21 and the axial projection surfaces of the bearings 15A and 15B is smaller than the overlapping area between the discharge port 20 and the axial projection surfaces of the bearings 15A and 15B.
 また、例えば図10で示す第4の変形例のように、吐出流路19は、吐出ポート20と出口ポート21の形状が異なり、径方向断面の形状が徐々に遷移するように形成されてもよい。 Further, for example, as in the fourth modification shown in FIG. 10, the discharge flow path 19 may be formed so that the shapes of the discharge port 20 and the outlet port 21 are different and the shape of the radial cross section gradually changes. Good.
 上述した第1~第4の変形例においても、第1の実施形態と同様、吐出流路19の圧力損失を低減して、性能の向上を図ることができる。 Also in the first to fourth modifications described above, as in the first embodiment, the pressure loss of the discharge flow path 19 can be reduced and the performance can be improved.
 本発明の第2の実施形態を、図11~図14を用いて説明する。なお、本実施形態において、第1の実施形態と同等の部分は、適宜、説明を省略する。 A second embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the description of the same parts as in the first embodiment will be omitted as appropriate.
 図11は、本実施形態における吐出流路19の構造を表す部分拡大断面図であり、上述した図3に対応する。図12及び図13は、本実施形態における圧縮機本体メインケーシング12の下半分の構造を表す立体図である。図14は、本実施形態における吐出ポート、出口ポート、収納室、軸受、及びタイミングギヤの位置関係を表す軸方向投影図である。 FIG. 11 is a partially enlarged sectional view showing the structure of the discharge flow path 19 in the present embodiment, and corresponds to FIG. 3 described above. FIG.12 and FIG.13 is a three-dimensional figure showing the structure of the lower half of the compressor main body main casing 12 in this embodiment. FIG. 14 is an axial projection showing the positional relationship among the discharge port, the outlet port, the storage chamber, the bearing, and the timing gear in the present embodiment.
 本実施形態では、圧縮室Sに対して軸方向に開口するアキシャル吐出ポート20Aと、圧縮室Sに対して径方向に開口するラジアル吐出ポート20Bを有している。吐出流路19は、ラジアル吐出ポート20Bの外側に形成された吐出ポケット26を含み、アキシャル吐出ポート20A及び吐出ポケット26からロータ軸方向に直線状に延在するように形成されている。そして、図14で示すように、吐出ポート20A及び出口ポート21の夫々の一部が、タイミングギヤ17A,17B又は軸受15A,15Bの軸方向投影面と重複するように形成されている。 In this embodiment, an axial discharge port 20A that opens in the axial direction with respect to the compression chamber S and a radial discharge port 20B that opens in the radial direction with respect to the compression chamber S are provided. The discharge flow path 19 includes a discharge pocket 26 formed outside the radial discharge port 20B, and is formed to extend linearly from the axial discharge port 20A and the discharge pocket 26 in the rotor axial direction. And as shown in FIG. 14, each of discharge port 20A and exit port 21 is formed so that it may overlap with the axial direction projection surface of timing gear 17A, 17B or bearing 15A, 15B.
 以上のように構成された本実施形態においても、第1の実施形態と同様、吐出ポート20A及び出口ポート21がタイミングギヤ17A,17B又は軸受15A,15Bの軸方向投影面と重複しない場合に比べ、吐出流路19の圧力損失を低減して、性能の向上を図ることができる。 In the present embodiment configured as described above, similarly to the first embodiment, the discharge port 20A and the outlet port 21 are compared with the case where the timing gears 17A, 17B or the axial projection surfaces of the bearings 15A, 15B do not overlap. The pressure loss of the discharge channel 19 can be reduced and the performance can be improved.
 なお、第2の実施形態において、吐出流路19は、ロータ軸方向に直線状に延在するように、詳細には、吐出ポート20Aから出口ポート21までの各径方向断面(但し、吐出ポート20Aを含まず、出口ポート21を含む)の形状及び大きさが同じで、かつそれらの径方向位置が同じとなるように形成された場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、吐出ポート20A及び出口ポート21の夫々の少なくとも一部が、タイミングギヤ17A,17B又は軸受15A,15Bの軸方向投影面と重複するように形成されていればよく、様々な変形が可能である。 Note that, in the second embodiment, the discharge flow path 19 is, in detail, each radial cross section from the discharge port 20A to the outlet port 21 (however, the discharge port 19) so as to extend linearly in the rotor axial direction. 20A is included and the outlet port 21 is included), and the shape and size thereof are the same and the radial positions thereof are the same. However, the present invention is not limited thereto, and the present invention is not limited thereto. Modifications are possible without departing from the spirit and technical idea of the present invention. That is, it is sufficient that at least a part of each of the discharge port 20A and the outlet port 21 is formed so as to overlap the axial projection surface of the timing gears 17A and 17B or the bearings 15A and 15B, and various modifications are possible. is there.
 具体的には、例えば図15及び図16で示す第5の変形例のように、吐出流路19は、吐出ポート20Aから出口ポート21に向かって径方向断面が全体的に徐々に拡大するように形成されてもよい。あるいは、例えば図17で示す第6の変形例のように、吐出流路19は、吐出ポート20Aから出口ポート21に向かって径方向断面が部分的に(本変形例では、下側部分が)徐々に拡大するように形成されてもよい。なお、第2の実施形態並びに第5及び第6の変形例(並びに後述する第7の変形例)では、出口ポート21を軸方向に投影した場合に吐出ポート20Aの80%以上の大部分と重複するようになっている。 Specifically, as in the fifth modification shown in FIGS. 15 and 16, for example, the discharge flow path 19 gradually increases in overall radial cross section from the discharge port 20A toward the outlet port 21. May be formed. Alternatively, for example, as in the sixth modification shown in FIG. 17, the discharge flow path 19 has a partial radial cross section from the discharge port 20 </ b> A toward the outlet port 21 (in this modification, the lower portion is). You may form so that it may expand gradually. In the second embodiment and the fifth and sixth modified examples (and the seventh modified example described later), when the outlet port 21 is projected in the axial direction, most of the discharge port 20A is 80% or more. It is supposed to overlap.
 また、例えば図18で示す第7の変形例のように、吐出流路19は、ロータ軸方向に対して若干傾斜するように形成されてもよい。詳細には、吐出ポート20Aから出口ポート21までの各径方向断面(但し、吐出ポート20Aを含まず、出口ポート21を含む)の形状及び大きさが同じであるものの、それらの径方向位置が変化するように形成されてもよい。なお、本変形例では、吐出流路19は、吐出ポート20Aから出口ポート21に向かって径方向外側(図18中下側)に傾斜するように形成されている。そのため、出口ポート21とタイミングギヤ17A,17Bの軸方向投影面との重複面積が、吐出ポート20Aとタイミングギヤ17A,17Bの軸方向投影面との重複面積より小さくなっている。また、出口ポート21と軸受15A,15Bの軸方向投影面との重複面積が、吐出ポート20Aと軸受15A,15Bの軸方向投影面との重複面積より小さくなっている。 Further, for example, as in the seventh modification shown in FIG. 18, the discharge flow path 19 may be formed to be slightly inclined with respect to the rotor axial direction. In detail, although the shape and size of each radial section from the discharge port 20A to the outlet port 21 (but not including the discharge port 20A and including the outlet port 21) are the same, their radial positions are It may be formed to change. In the present modification, the discharge channel 19 is formed so as to incline radially outward (downward in FIG. 18) from the discharge port 20A toward the outlet port 21. Therefore, the overlapping area between the outlet port 21 and the axial projection surfaces of the timing gears 17A and 17B is smaller than the overlapping area between the discharge port 20A and the axial projection surfaces of the timing gears 17A and 17B. Further, the overlapping area between the outlet port 21 and the axial projection surfaces of the bearings 15A and 15B is smaller than the overlapping area between the discharge port 20A and the axial projection surfaces of the bearings 15A and 15B.
 上述した第5~第7の変形例においても、第2の実施形態と同様、吐出流路19の圧力損失を低減して、性能の向上を図ることができる。 Also in the fifth to seventh modified examples described above, as in the second embodiment, the pressure loss of the discharge flow path 19 can be reduced and the performance can be improved.
 本発明の第3の実施形態を、図19~図22を用いて説明する。なお、本実施形態において、第1の実施形態と同等の部分は、適宜、説明を省略する。 A third embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the description of the same parts as in the first embodiment will be omitted as appropriate.
 図19は、本実施形態におけるガス圧縮機の構造を表す水平断面図である。図20は、図19中断面XX-XXによる鉛直断面図である。図21及び図22は、本実施形態における圧縮機本体メインケーシングの下側半分の構造を表す立体図である。 FIG. 19 is a horizontal sectional view showing the structure of the gas compressor in the present embodiment. 20 is a vertical sectional view taken along a section XX-XX in FIG. FIG.21 and FIG.22 is a three-dimensional figure showing the structure of the lower half of the compressor main body main casing in this embodiment.
 本実施形態では、上述したようにケーシング12の吐出側の構造を簡素化することができ、その設計自由度を高めることができることから、冷却ジャケット25Aを拡大している。すなわち、冷却ジャケット25Aは、雄ロータ10Aの歯部11A及び雌ロータ10Bの歯部11Bの外周側の部分(但し、吸入流路22Aを除く部分)だけでなく、雄ロータ10Aの歯部11Aの上側端面及び雌ロータ10Bの歯部11Bの上側端面が対向する部分(但し、吐出流路19を除く部分)にも形成されている。 In this embodiment, as described above, the structure on the discharge side of the casing 12 can be simplified, and the degree of freedom in design can be increased, so the cooling jacket 25A is enlarged. That is, the cooling jacket 25A includes not only the outer peripheral portion of the tooth portion 11A of the male rotor 10A and the tooth portion 11B of the female rotor 10B (however, the portion excluding the suction flow path 22A), as well as the tooth portion 11A of the male rotor 10A. The upper end surface and the upper end surface of the tooth portion 11B of the female rotor 10B are also formed in a portion (however, a portion excluding the discharge passage 19).
 これにより、吐出側の部分を効率よく冷却することができ、熱膨張によって生じる吐出側の隙間を小さくすることができる。したがって、吐出側の圧縮室Sからのガス漏洩を抑えて、性能の向上を図ることができる。 Thereby, the discharge side portion can be efficiently cooled, and the discharge side gap caused by thermal expansion can be reduced. Therefore, the gas leakage from the compression chamber S on the discharge side can be suppressed and the performance can be improved.
 本発明の第4の実施形態を、図23を用いて説明する。なお、本実施形態において、第1の実施形態と同等の部分は、適宜、説明を省略する。 A fourth embodiment of the present invention will be described with reference to FIG. In the present embodiment, the description of the same parts as in the first embodiment will be omitted as appropriate.
 図23は、本実施形態におけるガス圧縮機の構造を表す水平断面図である。 FIG. 23 is a horizontal sectional view showing the structure of the gas compressor in the present embodiment.
 本実施形態のガス圧縮機は、軸寸法が直径寸法より小さい扁平型のモータ2Aを備えている。このモータ2Aは、例えばアキシャルギャップ型であり、回転軸3Aに取付けられた2つのロータコア4Aと、2つのロータコア4Aの間に配置されたステータコア5Aとを備えている。この扁平型のモータ2Aを採用することにより、圧縮機全体の軸寸法を小さくすることが可能である。あるいは、モータの軸方向寸法が小さくなるぶん、雌ロータ10Bを支持する軸受15B,16B間の距離を長くすることが可能となり、これによって雌ロータ10Bの振れ回りを抑制してもよい。 The gas compressor of the present embodiment includes a flat motor 2A having a shaft dimension smaller than the diameter dimension. The motor 2A is, for example, an axial gap type, and includes two rotor cores 4A attached to the rotation shaft 3A and a stator core 5A disposed between the two rotor cores 4A. By adopting this flat motor 2A, it is possible to reduce the axial dimension of the entire compressor. Alternatively, as the axial dimension of the motor becomes smaller, the distance between the bearings 15B and 16B that support the female rotor 10B can be increased, and thereby the swing of the female rotor 10B may be suppressed.
 なお、第3及び第4の実施形態においては、第1の実施形態の吐出流路19の構造を採用した場合を例にとって図示したが、これに限られず、第2の実施形態及び第1~第7の変形例のうちのいずれかにおける吐出流路の構造を採用してもよい。 In the third and fourth embodiments, the case where the structure of the discharge channel 19 of the first embodiment is adopted is illustrated as an example, but the present invention is not limited to this, and the second embodiment and the first to first embodiments are illustrated. You may employ | adopt the structure of the discharge flow path in either of the 7th modification.
 また、第1~第4の実施形態においては、圧縮機本体1がオイルフリー式であり、タイミングギヤ17A,17Bによって雄ロータ10Aと雌ロータ10Bを非接触で回転させる場合を例にとって説明したが、これに限られない。すなわち、例えば圧縮機本体1が給油式又は給水式(詳細には、圧縮室Sを給油状態又は給水状態で運転するもの)であり、タイミングギヤ17A,17Bを設けず、雄ロータ10Aと雌ロータ10Bを接触させて回転させてもよい。この場合も、吐出ポート20(又は20A)及び出口ポート21の夫々の少なくとも一部が軸受15A,15Bの軸方向投影面と重複するように、吐出流路19を形成することにより、上記同様の効果を得ることができる。 In the first to fourth embodiments, the case where the compressor body 1 is an oil-free type and the male rotor 10A and the female rotor 10B are rotated in a non-contact manner by the timing gears 17A and 17B has been described as an example. Not limited to this. That is, for example, the compressor body 1 is an oil supply type or a water supply type (specifically, the compressor chamber S is operated in an oil supply state or a water supply state), and the male rotor 10A and the female rotor are not provided without the timing gears 17A and 17B. 10B may be contacted and rotated. In this case as well, the discharge channel 19 is formed so that at least a part of each of the discharge port 20 (or 20A) and the outlet port 21 overlaps the axial projection surface of the bearings 15A and 15B. An effect can be obtained.
 また、第1~第4の実施形態においては、雄ロータ10Aの軸部14Aがモータ2の回転軸3と一体成形された場合を例にとって説明したが、これに限られない。すなわち、雄ロータ10Aの軸部14Aとモータ2の回転軸3が別体成形されるものの、それらが同軸で連結されてもよい。また、雄ロータ10Aの軸部14Aに代えて、雌ロータ10Bの軸部14Bがモータ2の回転軸3と一体成形されるか若しくは同軸で連結されてもよい。 In the first to fourth embodiments, the case where the shaft portion 14A of the male rotor 10A is integrally formed with the rotating shaft 3 of the motor 2 has been described as an example. However, the present invention is not limited to this. That is, although the shaft portion 14A of the male rotor 10A and the rotating shaft 3 of the motor 2 are molded separately, they may be connected coaxially. Further, instead of the shaft portion 14A of the male rotor 10A, the shaft portion 14B of the female rotor 10B may be integrally formed with the rotating shaft 3 of the motor 2 or connected coaxially.
 また、第1~第4の実施形態においては、雄ロータ10Aの軸部14A、雌ロータ10Bの軸部14B、及びモータ2の回転軸3が水平方向に延在するように圧縮機本体1及びモータ2を横置きにした場合を例にとって説明したが、これに限られない。すなわち、雄ロータ10Aの軸部14A、雌ロータ10Bの軸部14B、及びモータ2の回転軸3が鉛直方向に延在するように圧縮機本体1及びモータ2を縦置きにするとともに、圧縮機本体1をモータ2の上側に配置してもよい。この場合も、上記同様の効果を得ることができる。 In the first to fourth embodiments, the compressor body 1 and the shaft portion 14A of the male rotor 10A, the shaft portion 14B of the female rotor 10B, and the rotating shaft 3 of the motor 2 extend in the horizontal direction. The case where the motor 2 is placed horizontally has been described as an example, but is not limited thereto. That is, the compressor body 1 and the motor 2 are placed vertically so that the shaft portion 14A of the male rotor 10A, the shaft portion 14B of the female rotor 10B, and the rotating shaft 3 of the motor 2 extend in the vertical direction, and the compressor The main body 1 may be disposed on the upper side of the motor 2. In this case, the same effect as described above can be obtained.
 なお、以上においては、互いに噛み合う2つのスクリューロータ10A,10Bを有する場合を例にとって説明したが、これに限られず、互いに噛み合う3つ以上のスクリューロータを有してもよいことは言うまでもない。 In the above description, the case where the two screw rotors 10A and 10B mesh with each other has been described as an example. However, the present invention is not limited to this, and it is needless to say that three or more screw rotors meshing with each other may be included.
 2,2A…モータ、10A,10B…スクリューロータ、11A,11B…歯部、12…圧縮機本体メインケーシング、13…圧縮機本体吸入側ケーシング、14A,14B…軸部、15A,15B,16A,16B…軸受、17A,17B…タイミングギヤ、18…収納室、19…吐出流路、20…吐出ポート、20A…アキシャル吐出ポート、20B…ラジアル吐出ポート、21…出口ポート、22A,22B…吸入流路、25,25A…冷却ジャケット DESCRIPTION OF SYMBOLS 2,2A ... Motor, 10A, 10B ... Screw rotor, 11A, 11B ... Tooth part, 12 ... Compressor body main casing, 13 ... Compressor body suction side casing, 14A, 14B ... Shaft part, 15A, 15B, 16A, 16B ... Bearing, 17A, 17B ... Timing gear, 18 ... Storage chamber, 19 ... Discharge flow path, 20 ... Discharge port, 20A ... Axial discharge port, 20B ... Radial discharge port, 21 ... Outlet port, 22A, 22B ... Suction flow Road, 25, 25A ... Cooling jacket

Claims (10)

  1.  互いに噛み合う少なくとも2つのスクリューロータと、
     前記少なくとも2つのスクリューロータを回転可能にそれぞれ支持する複数の軸受と、
     前記少なくとも2つのスクリューロータにそれぞれ設けられ、前記少なくとも2つのスクリューロータを互いに非接触で回転させるための複数のタイミングギヤと、
     前記少なくとも2つのスクリューロータの歯部を収納するとともに複数の圧縮室を形成する収納室、前記圧縮室にガスを吸入するための吸入流路、及び前記圧縮室から圧縮ガスを吐出するための吐出流路を有するケーシングとを備え、
     前記吐出流路は、前記吐出流路の圧縮室側開口である吐出ポート及び前記吐出流路の出口側開口である出口ポートの夫々の少なくとも一部が、前記タイミングギヤの軸方向投影面と重複するように形成されたことを特徴とするガス圧縮機。
    At least two screw rotors meshing with each other;
    A plurality of bearings respectively rotatably supporting the at least two screw rotors;
    A plurality of timing gears respectively provided on the at least two screw rotors for rotating the at least two screw rotors without contact with each other;
    A storage chamber for storing the teeth of the at least two screw rotors and forming a plurality of compression chambers, a suction passage for sucking gas into the compression chamber, and a discharge for discharging compressed gas from the compression chamber A casing having a flow path,
    In the discharge flow path, at least a part of the discharge port that is the compression chamber side opening of the discharge flow path and the outlet port that is the outlet side opening of the discharge flow path overlaps the axial projection surface of the timing gear. A gas compressor characterized by being formed as described above.
  2.  互いに噛み合う少なくとも2つのスクリューロータと、
     前記少なくとも2つのスクリューロータを回転可能にそれぞれ支持する複数の軸受と、
     前記少なくとも2つのスクリューロータの歯部を収納するとともに複数の圧縮室を形成する収納室、前記圧縮室にガスを吸入するための吸入流路、及び前記圧縮室から圧縮ガスを吐出するための吐出流路を有するケーシングとを備え、
     前記吐出流路は、前記吐出流路の圧縮室側開口である吐出ポート及び前記吐出流路の出口側開口である出口ポートの夫々の少なくとも一部が、前記軸受の軸方向投影面と重複するように形成されたことを特徴とするガス圧縮機。
    At least two screw rotors meshing with each other;
    A plurality of bearings respectively rotatably supporting the at least two screw rotors;
    A storage chamber for storing the teeth of the at least two screw rotors and forming a plurality of compression chambers, a suction passage for sucking gas into the compression chamber, and a discharge for discharging compressed gas from the compression chamber A casing having a flow path,
    In the discharge flow path, at least a part of each of the discharge port which is the compression chamber side opening of the discharge flow path and the outlet port which is the outlet side opening of the discharge flow path overlaps the axial projection surface of the bearing. A gas compressor formed as described above.
  3.  請求項1記載のガス圧縮機において、
     前記吐出流路は、前記吐出ポートから前記出口ポートまでの各径方向断面の形状及び大きさが同じとなるように形成されたことを特徴とするガス圧縮機。
    The gas compressor according to claim 1, wherein
    The gas compressor, wherein the discharge flow path is formed so that the shape and size of each radial cross section from the discharge port to the outlet port are the same.
  4.  請求項1記載のガス圧縮機において、
     前記吐出流路は、前記吐出ポートから前記出口ポートに向かって径方向断面が徐々に大きくなるように形成されたことを特徴とするガス圧縮機。
    The gas compressor according to claim 1, wherein
    The gas compressor, wherein the discharge flow path is formed so that a radial cross section gradually increases from the discharge port toward the outlet port.
  5.  請求項1記載のガス圧縮機において、
     前記吐出流路は、前記出口ポートを軸方向に投影した場合に前記吐出ポートの80%以上の大部分と重複するように形成されたことを特徴とするガス圧縮機。
    The gas compressor according to claim 1, wherein
    The gas compressor according to claim 1, wherein the discharge passage is formed so as to overlap most of 80% or more of the discharge port when the outlet port is projected in the axial direction.
  6.  請求項1記載のガス圧縮機において、
     前記吐出流路は、前記出口ポートと前記タイミングギヤの軸方向投影面との重複面積が、前記吐出ポートと前記タイミングギヤの軸方向投影面との重複面積より小さくなるように形成されたことを特徴とするガス圧縮機。
    The gas compressor according to claim 1, wherein
    The discharge flow path is formed so that an overlapping area between the outlet port and the axial projection surface of the timing gear is smaller than an overlapping area between the discharge port and the axial projection surface of the timing gear. Characteristic gas compressor.
  7.  請求項2記載のガス圧縮機において、
     前記吐出流路は、前記出口ポートと前記軸受の軸方向投影面との重複面積が、前記吐出ポートと前記軸受の軸方向投影面との重複面積より小さくなるように形成されたことを特徴とするガス圧縮機。
    The gas compressor according to claim 2, wherein
    The discharge flow path is formed such that an overlapping area between the outlet port and the axial projection surface of the bearing is smaller than an overlapping area between the discharge port and the axial projection surface of the bearing. Gas compressor.
  8.  請求項1記載のガス圧縮機において、
     前記少なくとも2つのスクリューロータの軸部は、前記歯部に対して軸方向一方側である吸入側だけに設けられたことを特徴とするガス圧縮機。
    The gas compressor according to claim 1, wherein
    The gas compressor according to claim 1, wherein the shaft portion of the at least two screw rotors is provided only on the suction side which is one side in the axial direction with respect to the tooth portion.
  9.  請求項8記載のガス圧縮機において、
     前記ケーシングは、前記歯部の吐出側端面が対向する部分に少なくとも形成された冷却ジャケットを有することを特徴とする空気圧縮機。
    The gas compressor according to claim 8, wherein
    The said casing has a cooling jacket formed at least in the part which the discharge side end surface of the said tooth | gear part opposes, The air compressor characterized by the above-mentioned.
  10.  請求項8記載のガス圧縮機において
     前記モータは、前記モータの軸寸法が前記モータの直径寸法より小さい扁平型であることを特徴とするガス圧縮機。
    The gas compressor according to claim 8, wherein the motor is a flat type in which an axial dimension of the motor is smaller than a diameter dimension of the motor.
PCT/JP2015/060244 2015-03-31 2015-03-31 Gas compressor WO2016157449A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/060244 WO2016157449A1 (en) 2015-03-31 2015-03-31 Gas compressor
JP2017508956A JP6482649B2 (en) 2015-03-31 2015-03-31 Gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060244 WO2016157449A1 (en) 2015-03-31 2015-03-31 Gas compressor

Publications (1)

Publication Number Publication Date
WO2016157449A1 true WO2016157449A1 (en) 2016-10-06

Family

ID=57005326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060244 WO2016157449A1 (en) 2015-03-31 2015-03-31 Gas compressor

Country Status (2)

Country Link
JP (1) JP6482649B2 (en)
WO (1) WO2016157449A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106918U (en) * 1975-02-26 1976-08-26
JPS5918288A (en) * 1982-07-21 1984-01-30 Hitachi Ltd Screw compressor
JPS62247193A (en) * 1986-04-18 1987-10-28 Tokico Ltd Vacuum pump
JPH01237383A (en) * 1988-03-18 1989-09-21 Hitachi Ltd Screw vacuum pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106918U (en) * 1975-02-26 1976-08-26
JPS5918288A (en) * 1982-07-21 1984-01-30 Hitachi Ltd Screw compressor
JPS62247193A (en) * 1986-04-18 1987-10-28 Tokico Ltd Vacuum pump
JPH01237383A (en) * 1988-03-18 1989-09-21 Hitachi Ltd Screw vacuum pump

Also Published As

Publication number Publication date
JPWO2016157449A1 (en) 2017-12-14
JP6482649B2 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
JPWO2005113984A1 (en) Screw rotor and screw fluid machine
JP2006342742A (en) Screw compressor
JP6377839B2 (en) Gas compressor
JP2009243431A (en) Variable nozzle unit and variable capacity type turbocharger
CN102257276A (en) Scroll fluid machine
JP6108967B2 (en) Rotary compression mechanism
TWI728677B (en) Multi-stage screw compressor
JP6749811B2 (en) Double rotary scroll compressor and its design method
JP2007023776A (en) Scroll fluid machine
JP6053349B2 (en) Scroll compressor
WO2018150977A1 (en) Two-way-rotating scroll compressor and method for assembling same
JP2009150314A (en) Screw compressor
JP2010275995A (en) Screw compressor
CN104981611A (en) Scroll-type fluid machine
JP2011174453A (en) Scroll compressor
JP6482649B2 (en) Gas compressor
JP5421725B2 (en) Scroll type fluid device
JP6185297B2 (en) Scroll type fluid machine
JP2010242663A (en) Screw compressor
JP2017015000A (en) Scroll Type Fluid Machine
JP6377838B2 (en) Gas compressor
JP6873763B2 (en) Screw fluid machine
JP5791316B2 (en) Scroll type fluid machinery
JP5595782B2 (en) Dry vacuum pump device
JP2005188431A (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508956

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887601

Country of ref document: EP

Kind code of ref document: A1