WO2016157273A1 - ダウンホール圧縮機 - Google Patents

ダウンホール圧縮機 Download PDF

Info

Publication number
WO2016157273A1
WO2016157273A1 PCT/JP2015/059533 JP2015059533W WO2016157273A1 WO 2016157273 A1 WO2016157273 A1 WO 2016157273A1 JP 2015059533 W JP2015059533 W JP 2015059533W WO 2016157273 A1 WO2016157273 A1 WO 2016157273A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving fluid
downhole
turbine
compressor
ground surface
Prior art date
Application number
PCT/JP2015/059533
Other languages
English (en)
French (fr)
Inventor
和馬 廣坂
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/059533 priority Critical patent/WO2016157273A1/ja
Publication of WO2016157273A1 publication Critical patent/WO2016157273A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven

Definitions

  • the present invention relates to a downhole compressor.
  • the downhole compressor is a compressor that is installed in a gas well where the gas pressure is reduced and the production volume is reduced, and is used to increase the production volume of gas that is fossil fuel. Since the downhole compressor is installed near the bottom of the gas well, it needs to be operated in a corrosive environment such as hydrogen sulfide at a high temperature of about several hundred degrees or more. Many downhole compressors that use a motor that receives power supply from the ground surface using a power cable are used to rotate the impeller. It is necessary to stably achieve a target gas production volume by a downhole compressor composed of a motor and an impeller of a size that can fit within the diameter of the gas well.
  • the downhole compressor is a compressor installed in the deep underground of the gas oil well.
  • the depth is usually high due to geothermal heat, and the temperature is around a few hundred degrees.
  • the atmosphere contains corrosive gas such as hydrogen sulfide contained in fossil fuel.
  • many motor-driven downhole compressors that have been studied, there is a possibility that the terminal portions of the motor and the power cable are corroded in the environment, making stable long-term continuous operation impossible.
  • An object of the present invention is to provide a downhole compressor that does not include a motor by using a turbine as power for rotating an impeller.
  • the present invention is installed in a gas oil well underground, and in a downhole compressor used for discharging gas, the high pressure driving fluid fed from the ground surface is converted into a high speed flow by a nozzle, A rotational force for driving the pump is obtained by applying a high-speed flow to the turbine.
  • the present invention is characterized in that, in the downhole compressor, by using a divergent nozzle as the nozzle, the flow velocity on the nozzle outlet side is made a supersonic flow, and the rotational driving force received by the turbine is increased.
  • the turbine and the pump may be coupled by bolting, and the turbine and the pump may be separated by removing the bolt and removed from the casing. It is.
  • the present invention is characterized in that in the downhole compressor, the driving fluid introduced from the ground surface at high pressure, the driving fluid discharged toward the ground surface after driving the turbine, and the gas flow path are separated. is there.
  • the present invention is a downhole compressor, which compresses and feeds the driving fluid installed on the ground surface, and sucks the driving fluid discharged toward the ground surface installed on the ground surface.
  • An inhaler, a compressor for driving fluid, and a controller for controlling the inhaler are provided.
  • the pressure and flow conditions of the driving fluid are controlled, and the gas production amount is changed by changing the number of rotations of the downhole compressor according to the properties of the gas existing in the gas well. It is characterized by adjusting.
  • FIG. 1 It is an example of the external view of the downhole compressor by Example 1.
  • FIG. 2 It is an example of the attachment figure of a turbine and an impeller. It is an example of the external view from a nozzle part upper surface. It is an example of sectional drawing inside a nozzle. It is an example of the installation figure of the downhole compressor in an oil well. It is an example of the block diagram of the driving fluid control system of the ground surface. It is an example of the external view of the downhole compressor by Example 2.
  • FIG. 1 It is an example of the attachment figure of a turbine and an impeller. It is an example of the external view from a nozzle part upper surface. It is an example of sectional drawing inside a nozzle. It is an example of the installation figure of the downhole compressor in an oil well. It is an example of the block diagram of the driving fluid control system of the ground surface. It is an example of the external view of the downhole compressor by Example 2.
  • FIG. 2 It is an example of the attachment figure of a turbine and an impeller. It
  • FIG. 1 is a block diagram of a fluid-driven downhole compressor using the present invention.
  • a turbine 10 and an impeller 20 in the center, and a shaft 30 connecting them.
  • the driving fluid after passing through the turbine passes through the flow path 40 on the turbine outlet side toward the ground surface.
  • a nozzle 50 for converting a high-pressure driving fluid into a high-speed fluid is provided in a space between the turbine and the impeller and serving as a side surface of the shaft.
  • high-pressure driving fluid fed from the ground surface exists in the flow path 60 on the inlet side of the nozzle 50.
  • the driving fluid accelerated by the nozzle flows into the space 70 on the nozzle outlet side toward the turbine.
  • the cross-sectional area changes from the inlet side toward the outlet side, and the flow velocity of the driving fluid increases along the flow path of the nozzle.
  • the cross-sectional area shape of the nozzle 50 is reduced at the beginning along the flow path, but after passing through the minimum value, a divergent nozzle that increases toward the outlet is used, and the flow velocity at the nozzle outlet is supersonic. It is a flow.
  • a disk part 80 is provided on the outer peripheral side of the turbine, and the disk part 80 is held in the vertical direction by a thrust bearing 90 installed in the part.
  • a radial bearing 100 is provided on the side surface of the hole in which the shaft 30 is fitted, and the turbine and the impeller rotate stably by the thrust bearing 90 and the radial bearing 100.
  • the impeller discharges resources such as natural gas existing in the deep space 110 toward the ground surface.
  • the impeller 20 is a mixed flow or centrifugal impeller, and has a shape that feeds resources such as natural gas toward the gap 130 outside the casing 120.
  • the channel 60 is a channel through which high-pressure driving fluid from the ground surface passes.
  • the channel 40 is a channel through which the driving fluid discharged from the turbine passes.
  • the gap 130 is a flow path through which the gas discharged from the impeller passes. Since the three types of flow paths are separated from each other, there may be a pressure difference.
  • a material constituting the turbine 10 the impeller 20, the shaft 30, and the nozzle 50, a material such as stainless steel that is resistant to corrosion is used because it is a movable part and a high-speed driving fluid passes through.
  • Materials such as piping constituting the flow path 40 and the flow path 60 include materials such as carbon steel because some corrosion is allowed instead of moving parts and a large amount is used as a member.
  • the turbine 10, the impeller 20, and the shaft 30 are configured by an upper member 140 and a lower member 150, and can be configured by connecting them with a bolt 160.
  • a bolt 160 By removing the bolt 160, the turbine 10 and the impeller 20 can be separated, and the turbine 10 and the impeller 20 can be easily removed from the installation location.
  • Fig. 3 shows an arrow diagram from the point A-A shown in Fig. 1.
  • the nozzle 50 is arranged concentrically with the shaft 30, and each nozzle has the same shape. Since the nozzles 50 are arranged concentrically, the turbine blades receive a high-speed flow at equal intervals, reach a position where the speed is increased, and rotate stably.
  • the driving fluid is jetted obliquely upward at a slight angle from the horizontal direction in the circumferential direction in order to easily apply rotational energy to the turbine blade.
  • the nozzle 50 is configured with a curve, but the nozzle shape is configured with a straight line as long as it is between the turbine 10 and the impeller 20 and fits in the space on the side of the shaft 30. May be.
  • the nozzle 50 is a divergent nozzle as in this embodiment, the nozzle cross-sectional area increases along the downstream side from the position where the nozzle cross-sectional area is minimized, but as shown in FIG.
  • the angle ⁇ related to the rate of increase is about 5 planes so that the loss due to flow separation at the cross-sectional area enlarged portion is kept small so that the driving fluid has a necessary flow velocity at the nozzle outlet.
  • Figure 5 shows the installation diagram of the town hall compressor in the oil well.
  • the impeller 20 is installed outside the casing 120 constituting the flow path 60 and discharges natural gas in the oil well to the ground surface through the gap 130.
  • Fig. 6 shows the system configuration on the surface of the oil well. Natural gas discharged from the underground passes through the gap 130 and the flow path 170 and is collected on the ground surface. On the ground surface, a driving fluid compressor 180 is installed, and a high-pressure driving fluid is fed into the flow path 60. Examples of the driving fluid include nonflammable gas that can be easily procured, such as air and nitrogen. In the driving fluid, when the flow rate of the driving fluid is increased by the nozzle 50 inside the downhole compressor by removing the humidity before or after the compression by the driving fluid compressor 180, the driving fluid is increased. The temperature of the fluid decreases, and the possibility of moisture inside the fluid solidifies.
  • the driving fluid discharged from the turbine outlet is sucked by the intake device 200 installed at the surface outlet 190 of the flow path 40 and is discharged to the buffer tank 210 installed downstream of the intake device 200.
  • the intake device 200 reduces the pressure in the vicinity of the surface outlet of the flow path 40 so that the driving fluid discharged from the turbine easily returns to the ground surface and collects the driving fluid in the buffer tank.
  • the driving fluid may be directly discharged to the atmosphere without providing the intake device 200.
  • the buffer tank 210 is connected to the inlet side of the driving fluid compressor 180, and the driving fluid is the driving fluid compressor 180, the flow path 60, the nozzle 50, the turbine 10, the flow path 40, the intake device 200, and the buffer tank.
  • the structure circulates in the 210 closed loop.
  • the pressure and temperature of the driving fluid in the buffer tank 210 constant, the condition of the driving fluid that becomes the outlet condition of the intake device 200 and the inlet condition of the compressor for driving fluid 180 is stabilized, and the operation of the downhole compressor is performed.
  • the rotational speed of the turbine 10 and the impeller 20 of the downhole compressor is changed by changing the operating conditions such as the pressure in the buffer tank 210, the flow rate and pressure of the compressor 180 for the driving fluid, and the intake device 200.
  • a system that can optimize the operating speed of the downhole compressor corresponding to changes in the components and average density of natural gas in the oil well.
  • Example 2 is shown in FIG.
  • the nozzle flow path is arranged in a spiral shape to ensure the nozzle length, and the driving fluid Is sufficiently converted into a high-speed flow.
  • the number of nozzles 50 may be singular or plural. In the case of plural nozzles 50, the nozzles are of the same type, and the inlets and outlets are arranged at equal intervals on the circumference.
  • FIG. 7 illustrates a case where the nozzle inlet and the outlet are one.
  • the component 220 constituting the nozzle 50 can be manufactured by, for example, cutting a flow path portion of the driving fluid from a cylinder or casting it using a mold.
  • the casing 120 including the nozzle of the downhole compressor of the second embodiment can be manufactured by connecting the pipe to the member 220 by welding or the like.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本発明は、モータを用いることなく、長期間の安定した稼動が可能な、流体駆動式のダウンホール圧縮機を提供する。本発明のダウンホール圧縮機では、地表より高圧の駆動流体を送入し、それをダウンホール圧縮機内に設けられたノズルにより高速流に変換し、高速流体をタービンに当てることで回転力を得ると同時に、タービンに羽根車を連結し、羽根車を回転させることで、ガスを地表に排出することができる構造とする。

Description

ダウンホール圧縮機
 本発明はダウンホール圧縮機に関する。
 ダウンホール圧縮機は、ガスの圧力が低下し、生産量が低下したガス油井に設置され、化石燃料であるガスの生産量を高めるために用いられる圧縮機である。ダウンホール圧縮機はガス油井の底部近くに設置されるため、百数十度程度以上の高温で、硫化水素等の腐食環境下での運転が必要となる。また、ダウンホール圧縮機は、電源ケーブルを用いて地表より電力供給を受けるモータを用いて羽根車を回転させるものが多く検討されている。ガス油井の直径に収まる寸法のモータおよび羽根車で構成されたダウンホール圧縮機により、目標とするガス生産量を安定して達成することが必要となる。
米国特許第7278489号公報
 ダウンホール圧縮機は、ガス油井の地下大深度に設置される圧縮機である。大深度では通常地熱により高温となっており、温度は百数十度程度である。また、雰囲気中には化石燃料に含まれる硫化水素等の腐食性ガスが含まれている。数多く検討されているモータ駆動式ダウンホール圧縮機においては、モータや電源ケーブルの端子部が環境中で腐食され、安定した長期継続運転が不可能となる可能性が想定される。
 本発明の目的は、羽根車を回転させる動力として、タービンを用いることで、モータを備えないダウンホール圧縮機を提供することにある。
 上記課題を解決するために、本発明は
ガス油井の地下に設置し、ガスを排出するために用いるダウンホール圧縮機において、地表から送入した高圧駆動流体をノズルにて高速流に変換し、高速流をタービンに当てることでポンプを駆動する回転力を得ることを特徴とするものである。
 更に、本発明はダウンホール圧縮機において、前記ノズルとして末広ノズルを用いることで、ノズル出口側の流速を超音速流とし、タービンが受ける回転駆動力を大きくすることを特徴とするものである。
 更に、本発明はダウンホール圧縮機において、前記タービンと前記ポンプはボルト締めにて結合された構造とし、ボルトの取外しによりタービンとポンプを分離し、ケーシング内部より取り出すことができることを特徴とするものである。
 更に、本発明はダウンホール圧縮機において、高圧で地表より導入される駆動流体と、タービン駆動後に地表に向けて排出される駆動流体と、前記ガスの流路を分離したことを特徴するものである。
 更に、本発明はダウンホール圧縮機において、地表に設置された前記駆動流体を加圧し送入する駆動流体用圧縮機と、地表に設置された地表に向けて排出された前記駆動流体を吸入する吸入装置と、前記駆動流体用圧縮機と前記吸入装置を制御する制御装置を備えたことを特徴とするものである。
 更に、本発明はダウンホール圧縮機において、前記駆動流体の圧力や流量の条件を制御し、ガス油井に存在するガスの性状に合わせて、ダウンホール圧縮機の回転数を変化させガスの生産量を調整することを特徴とするものである。
 本発明によればモータを用いることなく、ダウンホール圧縮機を駆動させることが実現できる。
実施例1によるダウンホール圧縮機の外形図の例である。 タービンと羽根車の取付図の例である。 ノズル部上面からの外形図の例である。 ノズル内部の断面図の例である。 油井内のダウンホール圧縮機の設置図の例である。 地表の駆動流体制御システムの構成図の例である。 実施例2によるダウンホール圧縮機の外形図の例である。
 以下、本発明の実施例を図面を用いて説明する。
 以下本発明の一実施例を説明する。図1は本発明を用いた流体駆動式ダウンホール圧縮機の構成図である。中央にタービン10と羽根車20、それらをつなげる軸30が存在する。タービン出口側の流路40はタービン通過後の駆動流体が、地表に向かって通過する。タービンと羽根車の間にあり、かつ軸の側面となる空間には、高圧の駆動流体を高速流体に変換するノズル50が設けられる。ノズル50の入口側の流路60には、地表から送入された高圧の駆動流体が存在する。ノズル出口側の空間70には、ノズルによって増速された駆動流体が、タービンに向かって流れ込む。ノズル50内では、入口側から出口側に向かって断面積が変化する形となっており、ノズルの流路に沿って駆動流体の流速は増加する構造となっている。
 本実施例では、ノズル50の断面積形状が、流路に沿ってはじめは減少するが、最小値を経た後で、出口に向かって増加する末広ノズルとしており、ノズル出口の流速は、超音速流としている。タービンの外周側にはディスク部80が設けられており、ディスク部80は、当該部に設置されたスラスト軸受90により鉛直方向に保持されている。軸30がはめ込まれた穴の側面には、ラジアル軸受100が設けられており、スラスト軸受90およびラジアル軸受100により、タービンおよび羽根車は安定して回転する。羽根車は、大深度空間110に存在する天然ガス等の資源を地表に向けて排出する。
 本実施例では、羽根車20は、斜流または遠心タイプの羽根車とし、天然ガス等の資源を、ケーシング120の外側の隙間130に向けて送り込む形状となっている。流路60は地表からの高圧駆動流体が通る流路であり。流路40はタービンより排出された駆動流体が通る流路である。隙間130は羽根車より排出されたガスが通る流路である。3種類の流路はお互い隔てられているため、圧力差が存在してもよい。タービン10、羽根車20、軸30、ノズル50を構成する材料としては、可動部であることや、高速駆動流体が通過することから、腐食に強いステンレス鋼等の材料が挙げられる。流路40や流路60を構成する配管などの材料としては、可動部ではなく多少の腐食は許容されること、部材として多量に用いられることから、炭素鋼等の材料が挙げられる。
 図2に示すようにタービン10と羽根車20と軸30は、上側部材140と下側部材150から構成され、これらをボルト160にて結合することにより構成できる。ボルト160を取外すことにより、タービン10と羽根車20を分離することができ、タービン10と羽根車20を設置箇所から容易に取外すことができる。 図3に図1に示した点A-Aからの矢示図を示す。ノズル50は軸30と同心円状に配置され、各ノズルは同型とする。ノズル50が同心円状に配置されているため、タービン翼は等間隔で高速流を受け、増速される位置に至る構造となり、安定して回転する。ノズル出口においては、タービン翼に回転エネルギーを与えやすくするために、駆動流体は円周方向に向けて、水平方向からやや角度をもった斜め上方に噴射される。図1では、ノズル50は曲線にて構成されているが、タービン10と羽根車20の間であって、軸30の横側の空間に収まる形状であれば、ノズル形状は直線にて構成しても良い。本実施例のように、ノズル50を末広ノズルとする場合は、ノズル断面積が最小となる位置から下流側に沿ってノズル断面積は増加することになるが、図4に示すように断面積の増加率に係る角度θは5面程度とし、断面積拡大部における流れの剥離等による損失を小さく抑え、駆動流体がノズル出口にて必要な流速となるようにする。
 図5に、油井内でのタウンホール圧縮機の設置図を示す。羽根車20は流路60を構成するケーシング120の外側に設置されており、油井内の天然ガスを隙間130を通して地表へと排出する。
 図6に、油井の地表でのシステム構成図を示す。地下から排出された天然ガスは、隙間130と流路170を通り地表にて採取される。また地表では、駆動流体用圧縮機180が設置されており、高圧の駆動流体を流路60に送入する。駆動流体としては、例えば、空気や窒素等の、非可燃性であり、調達が容易な気体が挙げられる。また、駆動流体においては、駆動流体用圧縮機180での圧縮前または圧縮後にて、湿度を取り除くことで、ダウンホール圧縮機内部のノズル50にて駆動流体の流速を高めた際に、駆動流体の温度が低下し、流体内部の水分が固化する可能性を低下させる。
 タービン出口から排出された駆動流体は流路40の地表出口190に設置された吸気装置200により吸気され、吸気装置200の下流側に設置されたバッファタンク210に排出される。吸気装置200により、流路40の地表出口付近の圧力を低下させ、タービンより排出された駆動流体が地表に戻りやすくするとともに、駆動流体をバッファタンク内に回収しているが、流路40の地表出口付近の圧力を低下させることが不要である場合や、駆動流体が空気であり回収する必要がない場合は、吸気装置200を設けず、駆動流体を直接大気に放出しても構わない。バッファタンク210は駆動流体用圧縮機180の入口側に接続されており、駆動流体は、駆動流体用圧縮機180、流路60、ノズル50、タービン10、流路40、吸気装置200、バッファタンク210の閉ループ内を循環する構造となっている。バッファタンク210内の駆動流体の圧力や温度を一定に保つことにより、吸気装置200の出口条件および駆動流体用圧縮機180の入口条件となる駆動流体の状態を安定させ、ダウンホール圧縮機の運転を安定させる。尚、バッファタンク210内の圧力、駆動流体用圧縮機180や吸気装置200の流量や圧力等の運転条件を変化させることで、ダウンホール圧縮機のタービン10および羽根車20の回転数を変化させることを可能とし、油井内の天然ガスの成分や平均密度が変化することに対応したダウンホール圧縮機の運転回転数の適正化を可能とするシステムとする。
 図7に実施例2を示す。
 本実施例では、実施例1のダウンホール圧縮機の、高圧の駆動流体を高速流に変換するノズル50において、ノズルの流路をらせん状に配置することでノズル長さを確保し、駆動流体が十分に高速流に変換される構造とする。なお、ノズル50の個数は単数でも複数でも良いが、複数の場合は、各ノズルは同型とし、入口および出口は周上に等間隔に配置される。この図7では、ノズル入口と出口を1つとした場合を例示している。ノズル50を構成する部品220は、例えば、円柱から駆動流体の流路部分を削り出す、または、鋳型を用いて鋳造する方法で製作できる。部材220に配管を溶接等の方法で接続することで、実施例2のダウンホール圧縮機のノズルを含んだケーシング120は製作できる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
10…タービン
20…羽根車
30…軸
40…タービン出口側流路
50…ノズル
60…ノズル入口側流路
70…ノズル出口側空間
80…ディスク部
90…スラスト軸受
100…ラジアル軸受
110…大深度空間
120…ケーシング
130…隙間
140…上側部材
150…下側部材
160…ボルト
170…流路
180…駆動流体用圧縮機
190…流路40の地表出口
200…吸気装置
210…バッファタンク
220…ノズルを構成する部品

Claims (6)

  1. ガス油井の地下に設置し、ガスを排出するために用いるダウンホール圧縮機において、
    地表から送入した高圧駆動流体をノズルにて高速流に変換し、高速流をタービンに当てることでポンプを駆動する回転力を得ることを特徴とするダウンホール圧縮機。
  2. 請求項1のダウンホール圧縮機において、
    前記ノズルとして末広ノズルを用いることで、ノズル出口側の流速を超音速流とし、タービンが受ける回転駆動力を大きくすることを特徴としたダウンホール圧縮機。
  3. 請求項1のダウンホール圧縮機において、
    前記タービンと前記ポンプはボルト締めにて結合された構造とし、ボルトの取外しによりタービンとポンプを分離し、ケーシング内部より取り出すことができることを特徴としたダウンホール圧縮機。
  4. 請求項1のダウンホール圧縮機において、
    高圧で地表より導入される駆動流体と、タービン駆動後に地表に向けて排出される駆動流体と、前記ガスの流路を分離したことを特徴するダウンホール圧縮機。
  5. 請求項1のダウンホール圧縮機において、
    地表に設置された前記駆動流体を加圧し送入する駆動流体用圧縮機と、
    地表に設置された地表に向けて排出された前記駆動流体を吸入する吸入装置と、
    前記駆動流体用圧縮機と前記吸入装置を制御する制御装置を備えたことを特徴とするダウンホール圧縮機。
  6. 請求項5のダウンホール圧縮機において、
    前記駆動流体の圧力や流量の条件を制御し、ガス油井に存在するガスの性状に合わせて、ダウンホール圧縮機の回転数を変化させガスの生産量を調整することを特徴とするダウンホール圧縮機。
PCT/JP2015/059533 2015-03-27 2015-03-27 ダウンホール圧縮機 WO2016157273A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/059533 WO2016157273A1 (ja) 2015-03-27 2015-03-27 ダウンホール圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/059533 WO2016157273A1 (ja) 2015-03-27 2015-03-27 ダウンホール圧縮機

Publications (1)

Publication Number Publication Date
WO2016157273A1 true WO2016157273A1 (ja) 2016-10-06

Family

ID=57005159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059533 WO2016157273A1 (ja) 2015-03-27 2015-03-27 ダウンホール圧縮機

Country Status (1)

Country Link
WO (1) WO2016157273A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3171630A (en) * 1963-03-14 1965-03-02 Dresser Ind Well pump
GB2398837A (en) * 2001-10-09 2004-09-01 Burlington Resources Oil & Gas Downhole well pump
US20050011649A1 (en) * 2001-11-24 2005-01-20 Stewart Kenneth Roderick Downhole pump assembly and method of recovering well fluids

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3171630A (en) * 1963-03-14 1965-03-02 Dresser Ind Well pump
GB2398837A (en) * 2001-10-09 2004-09-01 Burlington Resources Oil & Gas Downhole well pump
US20050011649A1 (en) * 2001-11-24 2005-01-20 Stewart Kenneth Roderick Downhole pump assembly and method of recovering well fluids

Similar Documents

Publication Publication Date Title
CN103104688B (zh) 具有预加压部件的变速箱除油器
CN105308259B (zh) 耐磨气体分离器
SE525924C2 (sv) Munstycke samt metod för rengöring av gasturbinkompressorer
CA2543460A1 (en) Crossover two-phase flow pump
EP3023160B1 (en) A centrifugal separator
EP2339110A1 (en) Downhole tool for borehole cleaning or for moving fluid in a borehole
JP2012515876A (ja) 流体回転機械用のガス送入および取出可逆システム
US8491253B2 (en) Two-phase, axial flow, turbine apparatus
TWI685615B (zh) 圓柱形對稱式容積式機器
JP6001867B2 (ja) 湿潤ガス圧縮機システム
US10753187B2 (en) Downhole wet gas compressor processor
EP2628545B1 (en) A cleaning in place system and a method of cleaning a centrifugal separator
US20090274547A1 (en) Rotating unit for an axial-flow compressor
WO2016157273A1 (ja) ダウンホール圧縮機
JP2018162789A (ja) ターボチャージャのためのコンプレッサ
US20130266445A1 (en) Francis-Type Pump for a Hydroelectric Power Plant
JP2010236401A (ja) 遠心形流体機械
EP1532367A2 (en) Centrifugal impeller and pump apparatus
US20190085862A1 (en) Compressor
RU2539219C2 (ru) Консольный осевой компрессор, химический реактор и способ изготовления консольного осевого компрессора
CN203796618U (zh) 具有首级复合叶轮的卧式自平衡离心泵
JP2018132021A (ja) 遠心圧縮機及び遠心圧縮機の使用方法
CN103807180A (zh) 一种航空喷雾用风力透平驱动离心泵装置
CN212838588U (zh) 一种减轻潜水输沙泵磨损的螺旋式进口装置
CN102384104A (zh) 轴流叶轮

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP