WO2016156760A1 - Appareil de chirurgie ophtalmique - Google Patents

Appareil de chirurgie ophtalmique Download PDF

Info

Publication number
WO2016156760A1
WO2016156760A1 PCT/FR2016/050754 FR2016050754W WO2016156760A1 WO 2016156760 A1 WO2016156760 A1 WO 2016156760A1 FR 2016050754 W FR2016050754 W FR 2016050754W WO 2016156760 A1 WO2016156760 A1 WO 2016156760A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
optical
focal point
eye
axis
Prior art date
Application number
PCT/FR2016/050754
Other languages
English (en)
Inventor
Bruno Chassagne
Florent Deloison
David TOUBOUL
François Salin
Pierre DESLANDES
Original Assignee
Alphanov Centre Technologique Optique Et Lasers
Centre Hospitalier Universitaire De Bordeaux
Moria Lase
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alphanov Centre Technologique Optique Et Lasers, Centre Hospitalier Universitaire De Bordeaux, Moria Lase filed Critical Alphanov Centre Technologique Optique Et Lasers
Priority to SG11201707901RA priority Critical patent/SG11201707901RA/en
Priority to BR112017021162A priority patent/BR112017021162A2/pt
Priority to EP16719450.5A priority patent/EP3277238A1/fr
Priority to KR1020177028144A priority patent/KR20180008407A/ko
Priority to CA2981222A priority patent/CA2981222A1/fr
Priority to JP2017551584A priority patent/JP2018513733A/ja
Priority to CN201680031672.6A priority patent/CN107864618A/zh
Priority to US15/562,125 priority patent/US20180214306A1/en
Priority to AU2016239837A priority patent/AU2016239837A1/en
Publication of WO2016156760A1 publication Critical patent/WO2016156760A1/fr
Priority to HK18104616.6A priority patent/HK1245066A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • A61F9/0084Laser features or special beam parameters therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/009Auxiliary devices making contact with the eyeball and coupling in laser light, e.g. goniolenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2035Beam shaping or redirecting; Optical components therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/0087Lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00885Methods or devices for eye surgery using laser for treating a particular disease
    • A61F2009/00887Cataract
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00897Scanning mechanisms or algorithms

Definitions

  • the present invention relates to ophthalmic surgical apparatus. More specifically, the invention relates to a surgical apparatus of the anterior segment of the eye. In particular, the invention relates to a surgical apparatus for the treatment of cataracts.
  • Cataract is an eye disease, primarily age-related, which affects hundreds of thousands of people worldwide each year. Cataract produces a gradual opacification of the lens.
  • the lens is an optic medium, normally transparent, of the eye that is in the form of a biconvex lens located between the cornea and the retina.
  • the lens contains a capsule, also called crystalline sac, and a nucleus placed in the center of the capsule.
  • the capsule is connected by ligaments to muscles that modify the curvature of the lens. The lens thus allows accommodation, that is to say the formation of images on the retina as a function of the distance of vision.
  • Surgical treatment of cataracts is probably the most common microsurgery procedure in the world. This treatment usually involves extracting the lens or part of the opacified lens, and replacing it with a synthetic lens implant.
  • a first type of surgical treatment relies on the use of conventional surgical tools, such as scalpels and a phacoemulsification probe. This classic technique requires the surgeon a long learning gesture and a high level of expertise to achieve satisfactory results.
  • a typical cataract surgery is divided into several stages, performed using one or more hand tools.
  • a cutting tool for example a scalpel, is used to form one or two mini-incisions, generally less than 2 mm long, at the periphery of the cornea, to allow the introduction of other surgical instruments at most. near the lens.
  • the capsulorhexis step, or circular capsulotomy consists of making a circular or curvilinear cut of the anterior capsule of the crystalline lens. This cutting is conventionally performed manually by means of a special clamp.
  • the diameter of the capsulorhexis is in principle 5.5 mm. In manual cutting, the exact diameter of this capsulorhexis may be difficult to control and good circularity is difficult to obtain.
  • This capsulorhexis step conditions the safety of the next step of extracting the nucleus of the fragmented crystal by ultrasound.
  • an ultrasonic phacoemulsification probe is introduced inside the crystalline capsule in order to fragment the nucleus.
  • a suction system removes the fragments from the nucleus.
  • an intraocular lens implant is placed in the posterior part of the capsule.
  • the circularity of the cut and its precise diameter are very important elements in the precise positioning of the implant, especially for the new multifocal implants called premium implants. This technique has benefited from technological advances in phacoemulsifiers and intraocular implants.
  • This technique applies not only to the treatment of cataracts, but also to refractive lens surgery.
  • special implants so-called premium implants, that can correct certain vision defects such as astigmatism, presbyopia, hyperopia or myopia.
  • a second type of surgical treatment of the eye relies on the use of femtosecond lasers.
  • Femtosecond lasers are commonly used in ophthalmic surgery in the LASIK corneal cutting technique for the treatment of myopia.
  • a femtosecond laser is a laser that delivers pulses of duration between 1 and a few hundred femtoseconds. Femtosecond lasers deliver ultra-short pulses and high power, which allow cutting ocular tissues without local heating. Coupled with a three-dimensional imaging system and a micrometric precision robotic motion system, a femtosecond laser can assist, optimize, and secure lens excision surgery. An ophthalmic surgery system using a femtosecond laser ensures a centering accuracy and a reproducibility of capsulorhexis diameter much higher than those obtained by manual operations.
  • the femtosecond laser allows cutting of the anterior capsule of the lens in a pre-established, often circular, trajectory and fragmentation of the lens nucleus.
  • the successive laser impacts can produce a cut whose edge has a serrated (or postage stamped) appearance due to the focusing of the laser beam and the spatial shift of the beam between the impacts of the laser. femtosecond.
  • Some femtosecond lasers also allow corneal incisions to be made for the passage of surgical instruments or corneal limb incisions to treat refractive errors, such as astigmatism.
  • Such a femtosecond laser is generally coupled to a phacoemulsification probe which fragments the nucleus into fragments small enough to be aspirated via a probe.
  • the FLAC technique theoretically directs the energy of the laser in an extremely focused way.
  • this focusing of the laser beam is in practice limited by the presence of optical and / or diffusion aberrations due to the optical mediums traversed, for example in the case of so-called "white" cataracts.
  • the FLAC technique requires prior recognition by imaging of the dimensions and positions of the cornea, the iris and the thickness of the lens. This information is essential for determining the position of the focal point of the three-dimensional laser beam to avoid damage to the posterior surface of the capsule or posterior capsule.
  • this analysis requires the implementation of a special three-dimensional imaging device and the processing of acquired images currently takes several minutes.
  • the surgeon validates the laser's target markers and triggers the laser. During these two operations, the laser must remain coupled to the patient's eye through a complex eye / machine adaptation interface. The eye is immobilized beforehand and the pupil is dilated by injection of drops on the eye.
  • Delayed image processing does not allow for real-time control of eye or pupil movements, which can be difficult in the event of uncontrolled eye movement or inadvertent contraction of the pupil.
  • the size and rigidity of the machine to which the coupling system is attached to the eye does not allow a flexible and rapid movement of this machine relative to the eye.
  • the object of the present invention is to overcome these drawbacks and concerns an ophthalmic surgical device comprising a laser source adapted to deliver a laser pulse beam, a focusing optical system disposed on the optical path of the laser pulse beam, the optical focusing system being adapted to focus said laser pulse beam at a focal point to be positioned on a portion of the anterior segment of an eye and a laser pulse beam moving system configured to displace said next focal point a predetermined trajectory.
  • the laser source generates a laser pulse beam having a duration of the order of one picosecond to one nanosecond
  • the focusing optical system is configured to focus the laser pulse beam into a laser beam.
  • the beam displacement system of laser pulse comprises a single degree of freedom in rotation about an axis of rotation substantially parallel to the optical axis of symmetry of the anterior segment so as to move said focal point along a curvilinear trajectory located in an annular zone around the axis mirror of the anterior segment of the eye
  • the optical focusing system is configured, for example by means of a limited numerical aperture, so as to limit the optical aberrations geometric ticks at the focal point and over the entire curvilinear path in said annular zone around the optical axis of symmetry of the anterior segment of the eye.
  • the ophthalmic surgical device allows a circular cut for example of the anterior capsule of the crystalline lens. Cutting is very fast because it involves only one rotation movement. The quality of this cut is excellent because of the limitation of the optical field to a single point of focus on the entire curvilinear trajectory which greatly facilitates the correction of optical aberrations.
  • This device also allows the operator or surgeon to perform, via a binocular microscope, a real-time control of the smooth running of the intervention.
  • the displacement system of the laser pulse beam comprises an optical system disposed on an optical path of the laser beam upstream or downstream of the focusing lens or mirror, the optical system being adapted to receive the laser beam incident and configured to form a laser beam angularly deflected or translated relative to the incident laser beam, and wherein said optical system comprises at least one optical component mounted for rotation about said axis of rotation so as to produce a rotation of the beam laser.
  • the displacement system of the laser pulse beam comprises a prism disposed on an optical path of the laser pulse beam, said prism being rotatably mounted about an axis of rotation.
  • the laser pulse beam displacement system comprises at least one mirror disposed on an optical path of the laser pulse beam, so as to induce an angular deflection and / or a lateral shift of the laser beam.
  • laser pulses, and said at least one mirror being rotatably mounted about an axis of rotation.
  • the displacement system of the laser pulse beam is configured to move said focal point along a circular path of determined radius.
  • the displacement system of the laser pulse beam further comprises a degree of freedom in translation along a translation axis parallel to the axis of rotation, and the displacement system is configured for moving said focal point along a helical path of circular section and determined radius.
  • the curvilinear trajectory is of elliptical section, and of determined and possibly variable dimensions.
  • the ophthalmic surgical device comprises, firstly, a manual tool comprising the optical focusing system and the laser pulse beam displacement system, and, secondly, a fiber optic link. disposed between the laser source and the hand tool.
  • the ophthalmic surgical device can be adjusted quickly in position and angle with respect to the optical axis of the eye by the single hand of the surgeon so as to move, in position and / or angle, the curvilinear trajectory inside the anterior segment of the eye in directly moving the manual tool located at the end of the optical fiber and only this manual tool, which is thus a real surgical instrument.
  • the hand tool comprises a semi-reflecting mirror or a dichroic mirror disposed in the optical path of the laser beam and wherein the hand tool is adapted to optically combine a binocular microscope so as to provide a real-time visual control. of the anterior segment of the eye.
  • this optical fiber connection between the laser and the focusing system can be flexible and wired, allowing the laser source to be offset.
  • An optical fiber link also allows the flexibility of the focusing system which can then be integrated in a manual tool that can be directly held in hand by the operator.
  • the ophthalmic surgical device further comprises an adaptation interface device comprising a plane-parallel plate and / or a plane-concave plate, the adaptation interface device having at least an optical surface configured to correct optical aberrations at the focal point and on said path of said focal point.
  • the device may include a system adapted to exert a suction of low pressure on the eye.
  • the ophthalmic surgical device may be disposed on the eye to be treated, the adaptation interface device being on the eyeball of the eye.
  • the ophthalmic surgical device further comprises a triggering device for firing the laser source and the laser pulse beam displacement system.
  • the laser source emits laser pulses at a wavelength between 700 nm and 1350 nm, preferably between 1025 nm and 1080 nm.
  • the laser source emits laser pulses at a repetition rate of between 20 kHz and 1 MHz, and preferably greater than or equal to 240 kHz.
  • the ideally transverse pulsed laser source is adapted to deliver a laser pulse beam of duration between 1 picosecond and 100 ps.
  • the ideally pulsed single-mode laser source comprises a semiconductor laser or other laser adapted to deliver a laser pulse beam of duration between 1 picosecond and 30 ps.
  • the duration (measured at mid-height of their temporal profile) of the pulses at the focal point is between 1 ps and 5 ps.
  • the ideally transverse pulsed laser source is adapted to deliver a laser pulse beam of duration between 0.1 nanoseconds and 10 ns.
  • the invention will find a particularly advantageous application in an ophthalmic surgery apparatus of the anterior segment of the eye.
  • the present invention also relates to the features which will emerge in the course of the description which follows and which will have to be considered individually or in all their technically possible combinations.
  • FIG. 1 shows schematically a general view of an ophthalmic surgical apparatus according to one embodiment of the invention
  • FIG. 2 schematically represents a sectional view of an adaptation interface device between the laser system and the eye to be treated
  • FIG. 3 shows schematically a first embodiment of a laser beam displacement system based on a rotating prism
  • FIGS. 4A-4E illustrate the combination of a focusing optical system and a rotating prism in different orientations of the prism and the corresponding positions of the focal point;
  • FIG. 5 shows schematically a second embodiment of a laser beam displacement system based on a mirror system comprising a rotating mirror
  • FIGS. 6 and 7 show examples of images taken by binocular microscopy after a capsulorhexis procedure performed using an apparatus according to one embodiment of the invention
  • FIG. 8 represents an example of a scanning electron microscope image showing the banks of a rhexis in the crystalline capsule.
  • a femtosecond laser is here understood to mean a laser that delivers light pulses with a duration of between 1 and a few hundred femtoseconds.
  • the minimization of the duration of the pulses is generally recommended for the cutting of the transparent tissues of the anterior segment of the eye. Indeed, the longer the duration of the laser pulses, the higher the energy deposition and may cause thermal effects. It is essential to minimize energy deposition and avoid overheating ocular tissues that may cause irreparable damage.
  • a finding that is part of the present invention is that all systems using a femtosecond laser for cataract surgery are based on a beam-shifting device configured to focus the beam at any point in a beam. volume corresponding to a very large part of the lens.
  • the method used in these laser systems of the prior art requires immobilization of the eye for a much longer duration than the second, and in any case greater than the time during which a patient can maintain his eye immobile.
  • All prior systems based on femtosecond lasers therefore use an adaptation interface device that applies suction pressure sufficient to immobilize the eye during 3D image acquisition and during cataract surgery. Therefore, the immobilization of the eye lasts in practice from several tens of seconds to several minutes.
  • the suction pressure exerted on the eye is known to induce numerous side effects, including hemorrhages, a deleterious increase in intraocular pressure or, in some cases, the appearance of ulcers.
  • the present disclosure proposes an ophthalmic surgical device dedicated in particular to the cutting of the anterior capsule of the lens also called capsulorhexis.
  • this device is based on the use of a pulse laser preferably of picosecond or nanosecond duration, instead of a femtosecond laser.
  • the device can also work with a femtosecond laser, but the device is then more expensive.
  • picosecond laser a laser that delivers light pulses of duration between 0.1 picosecond and about 100 ps.
  • nanosecond laser is intended to mean a laser that delivers light pulses with a duration of between 0.1 nanoseconds and about 100 ns.
  • the laser 1 is preferably a transverse monomode laser.
  • the laser beam displacement system is limited to a system having a single rotational degree of freedom.
  • the laser beam displacement system can have one, two or three degrees of freedom in translation, of limited amplitude.
  • the displacement of the laser beam is limited to a curvilinear trajectory located in a restricted volume, preferably of annular or toric shape.
  • the mechanical movement system is thereby greatly simplified and the cost of the apparatus is reduced.
  • the limitation of the trajectory of the point of focus to a circle (which corresponds optically to a field limited to a single point) makes it possible to correct the optical aberrations at the focal point over the entire trajectory of the laser beam because if the we place our in the reference frame of the focal point the rotating element is immobile.
  • a two-dimensional imaging system of the binocular microscope type such as those classically present in the operating room is sufficient for monitoring and real-time control of the focusing of the laser beam over the entire trajectory.
  • All the elements located in the path of the beam after deflection can advantageously be symmetrical of revolution with respect to the axis of the laser at any point of the trajectory of the latter when it has an interface with a change of direction. significant index.
  • a surface located after the focusing lens for example may take the form of a truncated cone whose angle is such that the main beam is always perpendicular to the incident surface at any point of its trajectory.
  • FIG. 1 schematically shows an ophthalmic surgical apparatus 100 according to one embodiment of the invention.
  • the device is disposed vis-à-vis an eye 4 for a surgical procedure of cutting the anterior lens capsule.
  • FIG. 1 schematically a sectional view of the eye 4 of a patient showing some anatomical elements of the eye 4: the cornea 24, the limb 7 around the cornea, the iris 26 and the crystalline lens.
  • the iris 26 is dilated to the maximum.
  • An optical axis 21 of lens symmetry is defined as being the axis passing through the center of the iris 26 or the center of the blade 7 or a point situated between these two centers and this optical axis 21 being substantially perpendicular to the surface of the lens. the anterior capsule of the lens.
  • the ophthalmic surgical device comprises a laser source 1 preferably connected by optical fiber 15 to a hand tool 40.
  • the optical fiber 15 allows easy manipulation of the hand tool, while leaving the laser source 1 fixed and away from the patient.
  • the optical fiber thus makes it possible to clear the space around the patient's eye 4.
  • the laser 1 is advantageously a picosecond or nanosecond pulsed laser.
  • Such a laser is compatible with the transmission via an optical fiber 15, unlike a femtosecond laser which delivers a power of pulses capable of destroying the optical fiber 15.
  • the hand tool 40 comprises an optical system 10 for shaping the laser beam and a focusing optical system 20 for focusing the laser beam 8 at an intraocular focal point 6 and more precisely at a point in the anterior segment of the eye 4 of the patient.
  • the optical system 10, 20 comprises for example one or two afocal lens optical systems.
  • the focusing optical system 20 is configured to focus the focal point 6 close to the surface of the anterior capsule of the lens and so that the focal point 6 of the laser beam 8 is eccentric with respect to the optical axis 21 of symmetry of the lens.
  • the incident laser beam 8 on the eye propagates through different optical media off axis of the anterior segment of the eye. More precisely, the laser beam 8 is refracted by an off-axis part of the cornea 24 and transmitted through the aqueous humor situated between the posterior surface of the cornea and the anterior capsule of the lens 5.
  • the hand tool 40 also comprises a displacement system 30 of the laser beam 8 adapted to move the focal point 6 relative to an axis of rotation. More particularly, the displacement system 30 of the focal point 6 of the laser beam is configured to constrain the focal point 6 to follow a curvilinear trajectory 16 about an axis of rotation.
  • the surgeon disposes the manual tool 40 so as to align the axis of rotation on the optical axis 21 of symmetry of the lens. It is assumed here that the eye 4 remains fixed, without necessarily being immobilized.
  • the trajectory 16 of the focal point 6 of the laser beam 8 is situated on the surface of a cylinder or on a helicoid having an axial symmetry, for example of elliptical or circular cross section and of determined dimensions or diameter. axis of the cylinder being centered on the optical axis 21 of symmetry of the lens.
  • this trajectory 16 can begin in the volume of the lens 5 and finish between the surface of the anterior capsule of the lens and the cornea 24.
  • the manual tool 40 comprises an adaptation interface device 60 placed in contact with the eye to be treated, which makes it possible to reduce the angle of incidence of the beam 8 on the cornea 24.
  • the patient's eye may be free or immobilized for a short time (usually less than 1 second) by means of a low suction.
  • the manual tool 40 to which the adaptation interface device 60 is attached thus forms an ophthalmic surgical instrument connected by optical fiber to the laser source, which allows easy manipulation by the surgeon.
  • the manual tool 40 also comprises a semi-transparent plate or a dichroic plate, arranged on the optical path of the laser beam 8 and which makes it possible to directly visualize the anterior capsule of the crystalline lens and the focal point 6 laser beam or optically couple a binocular microscope to the optical path of the laser beam.
  • a binocular microscope makes it possible to simultaneously view the anterior lens capsule and the focal point 6 of the laser beam.
  • the binocular microscope thus makes it possible to control in real time the alignment of the manual tool 40 with respect to the optical axis 21 of symmetry of the lens, the focusing of the laser beam 8 and the cutting of the anterior capsule of the lens.
  • the direct visualization by the surgeon offers the advantage of allowing a precise manual alignment of the ophthalmic surgical instrument in an extremely short time and the realization of rhexis cutting in a total time of less than a few seconds or even more. 'a second.
  • Figure 2 shows an enlarged sectional view of a portion of an adapter interface device placed in contact with the anterior portion of a patient's eye.
  • the adaptation interface device here comprises, for example, a plano-concave lens 61 whose face disposed facing the cornea 24 has a radius of curvature greater than or equal to the radius of
  • the adaptation interface device comprises a plate with flat and parallel faces in place of the plano-concave lens 61.
  • the adaptation interface device may be made of a solid material or a liquid material or a combination of solid and liquid materials. These materials must be transparent to the wavelength of the laser. It is important to center the optical axis of the adaptation interface device 60 on the optical axis 21 passing through the center of the limb and / or the center of the iris.
  • a liquid or a gel may be placed between the surface of the cornea 24 and the plane-concave lens 61 or the plane-face plate of the adaptation interface device, in order to limit the deviation of the laser beam 8 by refraction. on the interfaces between optical media of different refractive index.
  • the lower surface of the interface 61 is spherical or quasi-spherical and has a radius of curvature slightly greater than that of the cornea, generally between 9 mm and 1 1 mm and preferably 10 mm.
  • the contact between the ophthalmic surgical instrument and the eye is reduced to a single point or to a very small quasi-flat surface, which allows a maximum lateral displacement of typically +/- 0.5mm to +/- 1 mm in order to to compensate for an eccentricity of the iris with respect to the apex of the cornea while maintaining an optical contact with the cornea.
  • the alignment adjustment of the surgical instrument is performed by the surgeon by manually moving the ophthalmic surgical instrument over the eye and not by moving the laser beam inside the apparatus as it is the case in systems based on the use of scanner-type beam scanning system.
  • the laser beam describes a circle whose position and orientation in the eye can be adjusted by the surgeon by a simple modification of the angle and position of the ophthalmic surgical instrument on the surface of the eye in a time less than the characteristic time of the movements of the eye. It is not necessary to immobilize the eye.
  • the laser beam 8 passes successively through the plane-concave lens 61, the medium (air or index liquid medium) situated between the cornea 24 and the concave face of the lens 61, the cornea 24 and the aqueous humor present in the anterior chamber of the eye.
  • the laser beam 8 is focused at a focal point 6. It is observed that the laser beam 8 passes through the lens 61 and the cornea eccentrically relative to the optical axis of revolution symmetry of these optical components, which is here confused with the optical axis 21.
  • the numerical aperture of the laser beam 8 is limited so that the area crossed by the laser beam 8 has a very small spatial extent on the lens 61 and on the cornea 24.
  • the optical thickness of the plane-concave lens 61 or the optical system constituting the adaptation interface device in contact with the eye can be very large.
  • the optical thickness of the adaptation interface device can reach 90% to 98% of the focal length of the focusing optical system. This thickness can even reach 100% in the case where the focusing element is not moving or only makes slow movements as in the case where it is the prism that allows the deviation for example.
  • the immersed surface allows the focusing and or also to correct the aberrations, it is necessary to keep a sufficient ⁇ between the index of the focusing element and that of the immersion medium.
  • the filling of the space separating the optical focussing system from the eye by a medium of refractive index greater than 1 and advantageously close to that of the cornea (whose refractive index is of the order of 1. 38) makes it possible to increase the draft, that is to say the distance from the focal point to the apex of a lens, for a given focusing system without increasing the physical size of the focal spot.
  • the fact that the optical focusing system combined with the adaptation interface device works at a single point of the field makes it possible to compensate geometric aberrations accurately for the entire circular trajectory, including for a concave plane lens 61 of very small diameter. thick.
  • the adaptation interface device comprises a plano-concave lens or a multi-diopter optical system formed of a continuous assembly of thick lenses or blades composed of several materials whose adjacent surfaces coincide and whose indices are close to each other.
  • the index jump ⁇ between two successive diopters is less than 0.1.
  • One or more thick optical assembly interfaces may be made of a liquid or gel to maintain optical continuity. Since the optical focusing system only works at a single point of the optical field, it is possible to perfectly compensate for spherical aberration at this single point in the optical field despite the multiplicity of optical media traversed.
  • the focal point 6 of the laser beam 8 is positioned at a point on the surface of the anterior capsule of the lens 5, located at a determined distance d from the optical axis 21.
  • the distance d between the focal point 6 and the optical axis 21 is equal to 2.5 mm.
  • the distance d is adjustable according to the specific needs of a patient before starting the laser firing.
  • the distance d is adjustable between 1 and 4 mm.
  • the combination of the optical components of the ophthalmic surgical device with the part of the Anterior segment of the eye located between the anterior capsule and the anterior surface of the cornea thus forms a complete optical system. More specifically, the optical systems 10, 20, the plano-convex lens 61 and the different media and optical interfaces of the eye situated between the plano-convex lens 61 and the focal point 6 determine the position and properties of the focal point 6 in terms of geometrical optics.
  • the geometrical optical performances of the complete optical system are easily limited by diffraction for large numerical apertures (ON at least equal to 0.4) and a fortiori for small numerical apertures (ON typically less than 0.2, preferably between 0.05 and 0.15, for example of the order of 0.1), because the focusing in the image plane has a single field while having a large working distance (eg working distance between the optical system of the hand tool 40 and the focal point 6 greater than 20 mm for an ON greater than or equal to 0.4).
  • the spatial extent of the laser beam 8 through the plane-concave lens 61 and the middle of the anterior segment of the eye is very small (see FIG. 2). It is thus possible to reduce or even cancel the geometric aberrations at the focal point 6.
  • the ophthalmic surgical device comprises a laser beam displacement system 8 adapted to move the focal point 6 with respect to an axis 36.
  • the laser beam displacement system 30 is an opto system. - beam displacement mechanics. More particularly, the displacement system 30 of the focal point 6 of the laser beam is configured to constrain the focal point 6 to follow a curvilinear trajectory which has a symmetry of revolution about an axis of rotation 36.
  • the surgeon disposes of the manual tool 40 so as to align the axis of rotation 36 on the optical axis 21 passing through the center of the iris 26 and / or limb 7. It is assumed here that the eye 4 remains fixed, without necessarily being immobilized.
  • the trajectory of the focal point 6 of the laser beam 8 is located on the surface of a cylinder or on a helicoid having an axial symmetry, for example of elliptical or circular cross section and of determined dimensions or diameter, the axis of the cylinder 20 being centered on the center of the iris and / or limb.
  • the optical system 10 or at least one element of the optical system 10 is mounted on a mobile mount allowing the rotation of the beam about an axis of rotation with translation and / or inclination of the laser beam relative to to this axis of rotation.
  • the laser beam 8 rotates about the optical axis 21 of symmetry of the lens.
  • the displacement system is configured so that the focal point 6 moves in a circular path of diameter equal to 4 mm and centered on the optical axis 21.
  • the trajectory of the focal point 6 thus remains in a plane transverse to the axis of rotation 36 of the deviated laser beam. It is thus possible to make a circular cut of the surface 25 of the anterior capsule of the lens 5.
  • the rotation at a speed of between 30 Hz and 350 Hz, is combined with an axial translation, at a displacement speed in z of 100 ⁇ / s at 1250 ⁇ / s.
  • the trajectory of the laser beam thus performs a helicoid of 200 ⁇ high over a duration of about 150 ms, with a pulse repetition rate greater than or equal to 240 kHz, for example 500 kHz.
  • the laser beam 8 passes through the plane-concave lens 61 in an annular zone at a constant distance from the optical axis of this plane-concave lens. 61.
  • the laser beam passes through each interface or optical medium of the anterior segment of the eye at a distance from the optical axis 21 which remains constant, regardless of the focal point 6 over the entire trajectory of the optical beam centered on this optical axis 21.
  • the areas crossed by the laser beam in the various components and optical media are centro-symmetrical with respect to the optical axis 21.
  • the displacement of the focal point along a path centered on the optical axis 21 ensures that the focal point 6 has the same geometrical optical properties along the entire trajectory. It is thus possible to minimize or even correct the geometric aberrations not only at a focusing point 6, but over an entire curvilinear trajectory centered on the optical axis 21.
  • This specificity makes it possible to obtain a focal spot of dimension very close to the diffraction limit (typically of diameter less than 1.2 times the diffraction limit) while using a limited numerical aperture while maintaining a focal spot size less than 6 ⁇ .
  • the adaptation interface device 60 comprises at least one annular zone, on which the laser beam 8 is incident, this annular zone contributing to the correction of the geometric optical aberrations at the intraocular focal point 6.
  • the apparatus is perfectly corrected for optical aberrations at the focal point 6, over the entire trajectory of the laser beam, this trajectory being an annular trajectory of determined diameter.
  • FIG. 3 represents a laser beam displacement system according to a first embodiment, based on a rotating prism.
  • a bonus 31 is placed inside the hand tool 40 on the optical path of the laser beam 8.
  • the prism 31 receives an incident laser beam 8 and transmits a deflected laser beam 38. Indeed, the crossing of the prism 31 induces a deviation of the laser beam, the angle of this deviation being determined by the geometric optical properties of the prism: apex angle of the prism 31 and refractive index of the material forming this prism 31.
  • the prism 31 is rotatably mounted about an axis of rotation 36, for example on a turntable.
  • the axis of rotation 36 of the prism is parallel to the optical axis of the incident laser beam 8 on the rotating prism 31.
  • the rotation of the prism 31 around the axis of rotation 36 causes a rotation R of the laser beam 38 deflected by the prism. Consequently, in a plane traverses the axis of rotation 36, the trajectory 28 of the laser beam 38 deflected by the rotating prism 31 is a circular trajectory around the axis of rotation 36. In a plane transverse to the axis of rotation rotation, the radius of the circular path of the beam is equal to d.
  • FIG. 4A illustrates the combination of a focusing system 10 and a rotating prism 31.
  • the optical system 10 forms the image of a source point 18 at a focal point 6.
  • the optical system 10 comprises two lenses arranged to form an afocal optical system.
  • An end of optical fiber 15, the other end of which is connected to the laser source 1 constitutes for example the source point 18.
  • the afocal system 10 can be configured to produce a determined magnification between the source point 18 and the focal point 6
  • the rotating prism 31 is disposed between the focusing system 10 and the focal point 6.
  • the prism 31 causes a deflection of the laser beam 38, and therefore a shift of the focal point with respect to the optical axis of the laser beam incident on the prism. Consequently, the rotation of the rotating prism 31 around the axis of the laser beam 8 causes a displacement of the focal point 6 along a circular path in a plane transverse to the axis of rotation 36 of the prism 31.
  • FIGS. 4B-4E illustrate in detail the combination of a focusing system 10 and a rotating prism 31, in different orientations of the rotating prism 31, in projection in the plane of FIGS. 4B-4E.
  • the angle of rotation of the prism 31 around the axis of rotation 36 is equal to 0 degrees
  • the focal point 6 is situated in the plane of FIG. 4B, above the axis of rotation 36
  • the angle of rotation of the prism 31 about the axis of rotation 36 is equal to 90 degrees
  • the focal point 6 is located in a plane transverse to the plane of FIG. 4C.
  • the angle of rotation of the prism 31 about the axis of rotation 36 is equal to 135 degrees
  • the focal point 6 is located in the plane forming an angle of 135 degrees with the plane of FIG. 4D.
  • the angle of rotation of the prism 31 around the axis of rotation 36 is equal to 180 degrees
  • the focal point 6 is situated in the plane of FIG. 4E, below the axis of rotation 36
  • the deflected laser beam 38 is focused at a focal point 6 which moves around the axis of rotation 36, as a function of the angle of rotation of the rotating prism 31.
  • the rotation R of the rotating prism 31 causes a displacement of the focal point 6 in a plane transverse to the axis of rotation 36.
  • the focal point 6 remains at a constant distance from the axis 36. Moreover the numerical aperture of the incident beam on the prism and the apex angle of said prism being small, the geometric aberrations due to the prism remain weak and constant along the path 16 which allows their compensation.
  • FIG. 5 represents a beam displacement system according to a second embodiment, based on an opto-mechanical rotating mirror system.
  • the displacement system of FIG. 5 comprises a mirror system comprising a first plane mirror 34 and a second concave mirror 35 of conical type.
  • the plane mirror 34 is inclined with respect to the optical axis of the incident laser beam, so as to return the laser beam 8 to the second concave mirror 35.
  • the second concave mirror 35 reflects the laser beam received from the first mirror 34, and forms a laser beam 38 which is thus shifted and / or deviated with respect to the optical axis of the incident laser beam 8.
  • the first mirror 34 is rotatably mounted about an axis of rotation 36, preferably aligned with the optical axis of the incident laser beam 8 and aligned with the axis of the second conical mirror.
  • the rotation of the mirror 34 causes the laser beam 38 to rotate around the axis of rotation 36.
  • the second mirror 35 reflects the laser beam centro-symmetrically with respect to the axis of rotation 36.
  • the focal point 6 follows a circular path 16 about the axis of rotation 36 with the same rotational speed R as the speed of rotation of the first mirror 34.
  • the combination of an angular deflection of the laser beam and a rotation of this deviated laser beam produces a displacement of the laser beam 38 deflected along a cone of circular section.
  • the focal point 6 of the laser pulse beam follows a curvilinear trajectory 16 inside an annular zone around the optical axis 21 of the lens.
  • This annular zone is limited by a defined volume, on the one hand, between two coaxial cones of circular sections and of different diameters, the axis of these cones being merged and, on the other hand, between two planes transverse to the axis said cones.
  • the focusing system comprises an eccentric aspherical lens.
  • the lens of the interface device has a flat surface on the side of the focusing system.
  • the geometric aberrations are reduced essentially to spherical aberration and a negligible eccentric coma residue.
  • the aspherical lens of the focusing system can be configured to perfectly correct these aberrations at any point of the circular trajectory 16 of the focal point.
  • a focussing system comprising an aspherical lens working off axis and a patient interface device comprising a very thick lens having a flat upper surface makes it possible to increase the draw of the imaging system. focus of about 40% and thus strongly distance the focusing system from the eye.
  • this lens can even be cut off eccentrically with respect to the optical axis of the lens.
  • the eccentricity of the optical axis of the lens relative to the axis of rotation of the frame is approximately equal to the radius of the circle that is to be described.
  • This element can be rotated around its geometrical center which then corresponds to the optical axis of the incident beam because it is always the same surface of the lens which is traversed by the incident ray.
  • the ophthalmic surgical instrument thus obtained is very compact and ergonomic.
  • the ophthalmic surgical instrument can be used by the surgeon, whether right or left handed, on the right eye as on the left eye, passing over the cheekbone, the brow bone or even over the the patient's nose while preserving a direct, vertical, unaltered view of the patient's eye.
  • the rotation speed of a turntable is generally between 10 Hertz and several hundred Hertz. In an exemplary embodiment, the rotation speed is equal to 250 Hertz, which makes it possible to perform one revolution in 4 milliseconds.
  • the apparatus may include a synchronized triggering device for the emission of the laser pulses and the laser beam displacement system.
  • the synchronization device may for example be controlled by the operator by means of a pedal.
  • the rotation of the displacement system 30 is initiated at a defined rotational frequency, for example a few tens of Hertz. Then, the operator triggers the laser pulse shots in combination with the rotation of the laser beam.
  • the beam shaping optical system comprises a field diaphragm which determines the numerical aperture of the beam between the laser beam displacement system and the focal point 6.
  • the numerical aperture is adjusted between the values 0.05 and 0.45. Since the distance between the focal point and the adaptation interface is less than or equal to approximately 20 mm, the spatial extent of the laser beam 8 on the optical components of the adaptation interface is limited, which makes it possible to reduce the geometric optical aberrations at the focal point 6.
  • the ophthalmic surgical device thus formed makes it possible to obtain a focal point 6 having dimensions close to the diffraction limit over the entire trajectory 16. It is observed in practice that, over the entire trajectory 16, the laser beam at the focal point 6 is symmetrical with respect to the axis of the adaptation interface device.
  • the beam size at the focal point at 1 / e 2 is between a few microns and a few tens of microns depending on the chosen numerical aperture. For example, for a numerical aperture of 0.12, the size of the focal spot in the eye is about 6 microns.
  • the rotational speed is chosen to be of the order of 100 Hz and the speed of displacement in translation parallel to the axis of rotation of 1 mm / s in the eye this limits the total duration of the surgical procedure to about 1 s, which is less than the typical time of the movements of a normal eye.
  • This device makes it possible to make regular circular cuts, continuous, ultra fast and reproducible.
  • the microscopy analysis shows a more regular and less rough cutting quality than that obtained with current commercial femtosecond lasers.
  • This laser surgery apparatus thus makes it possible to produce a circular cut of the anterior capsule of the crystalline lens in a lapse of time of less than one second, or even less than one-tenth of a second duration.
  • a laser ophthalmic surgery apparatus thus dedicated to rhexis cutting is relatively inexpensive because it does not require a three-dimensional image acquisition and processing system.
  • Figures 6 to 8 illustrate exemplary embodiments of crystalline capsule cuts made on a whole pig eye taken post-mortem.
  • capsulorhexis rests are reputed to be at the origin of a large part of the immediate or subsequent complications of this type of intervention.
  • the capsulorhexis splint can have very harmful consequences on the extraction of the lens or the placement of the intraocular implant and its stability over time.
  • These cuts 150, 250 are of excellent quality and have no slits.
  • the cuts are regular and generally very smooth. Even at high magnification, no roughness that could be due to a postage stamp laser cut effect is observed, contrary to what has often been observed for femtosecond laser cutting.
  • the recovery ratio is defined as the ratio between the intersection area between two adjacent laser impacts and the impact surface of one of these laser shots.
  • the recovery rate depends in particular on the impact surface of a laser shot, the rate of repetition of the laser pulses and the rotational speed of the displacement of the laser beam. Even with a recovery rate of less than about 50%, the cut remains continuous and regular.
  • the duration of the picosecond or nanosecond pulses makes it possible to take advantage at the same time of the mechanical disruption effects, related to the energy of the laser pulses, and the small localized thermal effects, related to the thermal deposition of these laser pulses.
  • femtosecond pulses produce only disruption effects, which would explain the irregular edges produced by femtosecond laser cutting. Nevertheless, the thermal effects remain limited enough not to damage the ocular tissues around the cut.
  • the laser source is configured to produce a small but non-negligible portion (typically 5 to 40%) of its energy in a time support of duration between 50 ps and 500 ps.
  • the laser source produces pulses of which 60% to 90% of the energy is included in a time profile of less than 5 ps duration and the rest of the energy spreads in a roughly Gaussian profile over a period of between 50 ps and 100 ps.
  • the results obtained for the cutting of crystalline capsule are of excellent quality.
  • a cut is obtained which has banks that are practically as regular as manual cutting, the cut being curvilinear, with a constant or almost constant curvature radius over the entire trajectory and comparable aesthetically to manual cutting and therefore more regular than cutouts obtained by femtosecond laser.
  • the cut has the circularity advantages similar to those obtained with a femtosecond laser.
  • Cutting is fast and can be completed in a time ranging from 150 ms to a few hundred milliseconds.
  • the device does not require an expensive and time-consuming three-dimensional imaging system. Thus, the intervention is faster than with a femtosecond laser surgery device.
  • this picosecond or nanosecond laser device can find applications for interventions on the cornea to correct presbyopia, astigmatism or in operations of transplant or implantation of intra-corneal rings.
  • nanosecond or picosecond laser source considerably reduces the cost of the source.
  • nanosecond or picosecond laser technologies are moreover proven, integrated and therefore generally more and more robust.
  • the use of a nanosecond or picosecond laser source is compatible with a fiber output, unlike a fs laser.
  • the use of a fiber laser source makes it possible to improve the spatial quality of the laser beam.
  • the use of a fiber laser source makes it possible to provide a compact and flexible device.
  • the adjustment of the speed of displacement of the laser beam according to the rate of repetition of the laser and the duration of the laser pulses makes it possible to ensure a good overlap of the focused laser spots, and thus to obtain a continuous cut without slitting. .

Abstract

La présente invention concerne un appareil de chirurgie ophtalmique comprenant une source laser (1) adaptée pour délivrer un faisceau d'impulsions laser (8) de durée comprise entre la picoseconde et la nanoseconde; un système optique de focalisation (10) pour focaliser ledit faisceau d'impulsions laser en un point focal (6); et un système de déplacement du faisceau d'impulsions laser configuré pour déplacer ledit point focal (6) suivant une trajectoire prédéterminée. Selon l'invention, la source laser (1) génère un faisceau d'impulsions laser (8) picoseconde à nanoseconde, focalisé au voisinage d'une surface (25) du segment antérieur de l'œil (4), le point focal (6) étant situé à une distance d non nulle d'un axe optique (21 ) de symétrie du segment antérieur de l'œil (4), le système de déplacement (30) du faisceau d'impulsions laser comporte un seul degré de liberté en rotation autour d'un axe de rotation (36) de manière à déplacer ledit point focal (6) suivant une trajectoire (16) curviligne située dans une zone annulaire autour de l'axe optique (21) de symétrie du segment antérieur de l'œil (4); et l'appareil de chirurgie ophtalmique configuré avec une ouverture numérique de manière à limiter les aberrations optiques géométriques au point focal (6) et sur toute la trajectoire curviligne (16) dans ladite zone annulaire autour de l'axe optique (21) de symétrie du segment antérieur de l'œil (4).

Description

Appareil de chirurgie ophtalmique
Domaine technique
La présente invention se rapporte aux appareils de chirurgie ophtalmique. Plus précisément, l'invention concerne un appareil de chirurgie du segment antérieur de l'œil. En particulier, l'invention concerne un appareil de chirurgie pour le traitement de la cataracte.
Etat de la technique
La cataracte est une maladie de l'œil, principalement liée à l'âge, qui atteint chaque année des centaines de milliers de personnes dans le monde. La cataracte produit une opacification progressive du cristallin. Le cristallin est un milieu optique, normalement transparent, de l'œil qui se présente sous la forme d'une lentille biconvexe située entre la cornée et la rétine. Le cristallin comporte une capsule, aussi appelée sac cristallin, et un noyau placé au centre de la capsule. La capsule est reliée par des ligaments à des muscles qui permettent de modifier la courbure du cristallin. Le cristallin permet ainsi l'accommodation, c'est-à-dire la formation d'images sur la rétine en fonction de la distance de vision.
Le traitement chirurgical de la cataracte est sans doute l'acte de microchirurgie le plus pratiqué au monde. Ce traitement consiste généralement à extraire le cristallin ou une partie du cristallin opacifié, et à le remplacer par un implant de cristallin synthétique.
Un premier type de traitement chirurgical repose sur l'utilisation d'outils classiques de chirurgie, tels que scalpels et sur une sonde de phacoémulsification. Cette technique classique demande au chirurgien un long apprentissage du geste et un niveau d'expertise élevé pour parvenir à des résultats satisfaisants.
Une opération classique de la cataracte se décompose en plusieurs étapes, réalisées au moyen d'un ou de plusieurs outils manuels. Un outil de découpe, par exemple un scalpel, est utilisé pour former une ou deux mini-incisions, en général de moins de 2 mm de long, en périphérie de la cornée, afin de permettre l'introduction des autres instruments de chirurgie au plus près du cristallin. L'étape de capsulorhexis, ou capsulotomie circulaire, consiste à réaliser une découpe circulaire ou curviligne de la capsule antérieure du cristallin. Cette découpe est classiquement réalisée manuellement au moyen d'une pince spéciale. Le diamètre du capsulorhexis est en principe de 5.5 mm. Lors d'une découpe manuelle, le diamètre exact de ce capsulorhexis peut être difficile à contrôler et une bonne circularité est difficile à obtenir. Cette étape de capsulorhexis conditionne la sécurité de l'étape suivante de l'extraction du noyau du cristallin fragmenté par ultrasons. A cet effet, une sonde de phacoémulsification par ultrasons est introduite à l'intérieur de la capsule cristalline afin de fragmenter le noyau. Un système d'aspiration retire les fragments du noyau. Puis un implant intraoculaire de cristallin est mis en place dans la partie postérieure de la capsule. La circularité de la découpe et son diamètre précis sont des éléments très importants dans le positionnement précis de l'implant en particulier pour les nouveaux implants multifocaux dits implants premium. Cette technique a bénéficié des avancées technologiques portant sur les phaco- émulsificateurs et sur les implants intraoculaires.
Cette technique s'applique non seulement au traitement de la cataracte, mais aussi à la chirurgie réfractive du cristallin. Il existe en effet des implants spéciaux, dits implants premium, qui permettent de corriger certains défauts de vision tels que l'astigmatisme, la presbytie, l'hypermétropie ou la myopie.
Un deuxième type de traitement chirurgical de l'œil repose sur l'utilisation de lasers femtoseconde.
Les lasers femtoseconde sont couramment utilisés en chirurgie ophtalmique dans la technique LASIK de découpe de la cornée pour le traitement de la myopie.
Plus récemment sont apparus des appareils de chirurgie de la cataracte basés sur un laser femtoseconde. Un laser femtoseconde est un laser qui délivre des impulsions de durée comprise entre 1 et quelques centaines de femtosecondes. Les lasers femtoseconde délivrent des impulsions ultra-brèves et de forte puissance, qui permettent une découpe des tissus oculaires sans échauffement local. Couplé à un système d'imagerie en trois dimensions et à un système robotisé de déplacement de précision micrométrique, un laser femtoseconde permet d'assister, d'optimiser, de sécuriser la chirurgie d'exérèse du cristallin. Un système de chirurgie ophtalmique utilisant un laser femtoseconde garantit une précision du centrage et une reproductibilité du diamètre de capsulorhexis nettement supérieurs à ceux obtenus par des opérations manuelles.
En chirurgie de la cataracte assistée par laser femtoseconde (FLAC), le laser femtoseconde permet de réaliser la découpe de la capsule antérieure du cristallin selon une trajectoire pré-établie, souvent circulaire, et une fragmentation du noyau cristallinien. Cependant, dans certains cas particuliers, on observe que les impacts laser successifs peuvent produire une découpe dont le bord présente un aspect dentelé (ou en timbre poste) du fait de la focalisation du faisceau laser et du décalage spatial du faisceau entre les impacts du laser femtoseconde.
Certains lasers femtoseconde permettent aussi la réalisation d'incisions cornéennes destinées au passage des instruments chirurgicaux ou la réalisation d'incisions limbiques cornéennes visant à traiter des défauts de réfraction, tels que l'astigmatisme. Un tel laser femtoseconde est en général couplé à une sonde de phacoémulsification qui fragmente le noyau en fragments suffisamment petits pour pouvoir être aspirés via une sonde.
La technique FLAC permet en théorie de diriger l'énergie du laser de manière extrêmement focalisée. Cependant, cette focalisation du faisceau laser est en pratique limitée par la présence d'aberrations optiques et/ou de diffusion dues aux milieux optiques traversés, par exemple dans le cas de cataractes dites « blanches ».
De plus, la technique FLAC nécessite une reconnaissance préalable par imagerie des dimensions et positions de la cornée, de l'iris et de l'épaisseur du cristallin. Ces informations sont essentielles pour déterminer la position du point focal du faisceau laser en trois dimensions afin d'éviter d'endommager la face postérieure de la capsule ou capsule postérieure. Or cette analyse nécessite la mise en œuvre d'un appareil spécial d'imagerie en trois dimensions et le traitement des images acquises prend actuellement plusieurs minutes. Une fois l'acquisition et le traitement d'image tridimensionnelle terminés, le chirurgien valide les repères cibles du laser et déclenche le laser. Pendant ces deux opérations, le laser doit rester couplé à l'œil du patient par une interface d'adaptation œil/machine complexe. L'œil est au préalable immobilisé et la pupille est dilatée par injection de gouttes sur l'œil. Le traitement d'image en différé ne permet pas un contrôle en temps réel des mouvements de l'œil ou de la pupille, ce qui peut poser des difficultés en cas de mouvement incontrôlé de l'œil ou de contraction inopinée de la pupille. De plus la dimension et la rigidité même de la machine à laquelle est attaché le système de couplage à l'œil ne permet pas un déplacement souple et rapide de cette machine relativment à l'œil.
Enfin, le coût des systèmes de chirurgie de la cataracte assistés par laser femtoseconde reste très élevé, sans réduction notable de la durée de l'intervention chirurgicale.
Problème technique
Il existe donc un besoin d'un système de chirurgie ophtalmique, appliqué en particulier au traitement de la cataracte, permettant d'améliorer la qualité et la sécurité des systèmes de chirurgie ophtalmique tout en réduisant la durée d'une intervention de chirurgie ophtalmique et le coût d'une telle intervention.
La présente invention a pour but de remédier à ces inconvénients et concerne un appareil de chirurgie ophtalmique comprenant une source laser adaptée pour délivrer un faisceau d'impulsions laser, un système optique de focalisation disposé sur le trajet optique du faisceau d'impulsions laser, le système optique de focalisation étant adapté pour focaliser ledit faisceau d'impulsions laser en un point focal destiné à être positionné sur une partie du segment antérieur d'un œil et un système de déplacement du faisceau d'impulsions laser configuré pour déplacer ledit point focal suivant une trajectoire prédéterminée.
Selon l'invention, de préférence, la source laser génère un faisceau d'impulsions laser ayant une durée de l'ordre d'une picoseconde à une nanoseconde, le système optique de focalisation est configuré pour focaliser le faisceau d'impulsions laser en un point focal au voisinage d'une surface du segment antérieur de l'œil, le point focal étant situé à une distance d non nulle d'un axe optique de symétrie du segment antérieur de l'œil, le système de déplacement du faisceau d'impulsions laser comporte un seul degré de liberté en rotation autour d'un axe de rotation essentiellement parallèle à l'axe optique de symétrie du segment antérieur de manière à déplacer ledit point focal suivant une trajectoire curviligne située dans une zone annulaire autour de l'axe optique de symétrie du segment antérieur de l'œil et le système optique de focalisation est configuré, par exemple au moyen d'une ouverture numérique limitée, de manière à limiter les aberrations optiques géométriques au point focal et sur toute la trajectoire curviligne dans ladite zone annulaire autour de l'axe optique de symétrie du segment antérieur de l'œil. Ainsi, l'appareil de chirurgie ophtalmique permet une découpe circulaire par exemple de la capsule antérieure du cristallin. La découpe est très rapide, car elle ne fait intervenir qu'un seul mouvement de rotation. La qualité de cette découpe est excellente du fait de la limitation du champ optique à un unique point de focalisation sur toute la trajectoire curviligne qui facilite grandement la correction des aberrations optiques. Cet appareil permet en outre à l'opérateur ou au chirurgien d'effectuer, via un microscope binoculaire, un contrôle en temps réel du bon déroulement de l'intervention.
De façon particulièrement avantageuse, le système de déplacement du faisceau d'impulsions laser comporte un système optique, disposé sur un chemin optique du faisceau laser en amont ou en aval de la lentille ou du miroir de focalisation, le système optique étant adapté pour recevoir le faisceau laser incident et configuré pour former un faisceau laser dévié angulairement ou translaté par rapport au faisceau laser incident, et dans lequel ledit système optique comporte au moins un composant optique monté mobile en rotation autour dudit axe de rotation de manière à produire une rotation du faisceau laser.
Selon un autre mode de réalisation, le système de déplacement du faisceau d'impulsions laser comporte un prisme disposé sur un chemin optique du faisceau d'impulsions laser, ledit prisme étant monté mobile en rotation autour d'un axe de rotation.
Selon un autre mode de réalisation, le système de déplacement du faisceau d'impulsions laser comporte au moins un miroir disposé sur un chemin optique du faisceau d'impulsions laser, de manière à induire une déviation angulaire et/ou un décalage latéral du faisceau d'impulsions laser, et ledit au moins un miroir étant monté mobile en rotation autour d'un axe de rotation.
De façon avantageuse, le système de déplacement du faisceau d'impulsions laser est configuré pour déplacer ledit point focal suivant une trajectoire circulaire de rayon déterminé.
Selon un aspect particulier et avantageux de l'invention, le système de déplacement du faisceau d'impulsions laser comporte en outre un degré de liberté en translation suivant un axe de translation parallèle à l'axe de rotation, et le système de déplacement est configuré pour déplacer ledit point focal suivant une trajectoire hélicoïdale de section circulaire et de rayon déterminé.
De façon alternative, la trajectoire curviligne est de section elliptique, et de dimensions déterminées et possiblement variables.
De façon particulièrement avantageuse, l'appareil de chirurgie ophtalmique comporte d'une part, un outil manuel comprenant le système optique de focalisation et le système de déplacement du faisceau d'impulsions laser, et, d'autre part, une liaison à fibre optique disposée entre la source laser et l'outil manuel.
Ainsi, l'appareil de chirurgie ophtalmique peut être ajusté rapidement en position et en angle par rapport à l'axe optique de l'œil par la seule main du chirurgien de manière à déplacer, en position et/ou en angle, la trajectoire curviligne à l'intérieur du segment antérieur de l'œil en déplaçant directement l'outil manuel situé à l'extrémité de la fibre optique et uniquement cet outil manuel, qui constitue ainsi un véritable instrument de chirurgie.
De préférence, l'outil manuel comporte un miroir semi-réfléchissant ou un miroir dichroïque disposé sur le trajet optique du faisceau laser et dans lequel l'outil manuel est adapté pour combiner optiquement un microscope binoculaire de manière à fournir un contrôle visuel en temps réel du segment antérieur de l'œil.
En particulier, cette liaison à fibre optique entre le laser et le système de focalisation peut être souple et filaire, permettant le déport de la source laser. Une liaison à fibre optique permet en outre la flexibilité du système de focalisation qui peut alors être intégré dans un outil manuel pouvant notamment être directement tenu en main par l'opérateur.
Selon un aspect particulier de l'invention, l'appareil de chirurgie ophtalmique comporte en outre un dispositif interface d'adaptation comprenant une lame à faces planes et parallèles et/ou une lame plan-concave, le dispositif interface d'adaptation ayant au moins une surface optique configurée de manière à corriger les aberrations optiques au point focal et sur ladite trajectoire dudit point focal. En option, le dispositif peut comprendre un système adapté pour exercer une succion de faible pression sur l'œil.
Ainsi, l'appareil de chirurgie ophtalmique peut être disposé sur l'œil à traiter, le dispositif interface d'adaptation étant sur le globe oculaire de l'œil.
Avantageusement, l'appareil de chirurgie ophtalmique comporte en outre un dispositif de déclenchement des tirs de la source laser et du système de déplacement du faisceau d'impulsions laser.
Dans un exemple de réalisation, la source laser émet des impulsions laser à une longueur d'onde comprise entre 700 nm et 1350 nm, de préférence entre 1025 nm et 1080 nm.
Avantageusement, la source laser émet des impulsions laser à une cadence de répétition comprise entre 20 kHz et 1 MHz, et de préférence supérieure ou égale à 240 kHz.
Selon un mode de réalisation, la source laser idéalement monomode transverse puisée est adaptée pour délivrer un faisceau d'impulsions laser de durée comprise entre 1 picoseconde et 100 ps. De façon particulièrement avantageuse, la source laser idéalement monomode puisé comporte un laser à semiconducteurs ou autre laser adapté pour délivrer un faisceau d'impulsions laser de durée comprise entre 1 picoseconde et 30 ps. De façon optimale la durée (mesurée à mi-hauteur de leur profil temporel) des impulsions au point focal est comprise entre 1 ps et 5 ps.
Selon un autre mode de réalisation, la source laser idéalement monomode transverse puisée est adaptée pour délivrer un faisceau d'impulsions laser de durée comprise entre 0.1 nanoseconde et 10 ns.
L'invention trouvera une application particulièrement avantageuse dans un appareil de chirurgie ophtalmique du segment antérieur de l'œil. La présente invention concerne également les caractéristiques qui ressortiront au cours de la description qui va suivre et qui devront être considérées isolément ou selon toutes leurs combinaisons techniquement possibles.
Cette description donnée à titre d'exemple non limitatif fera mieux comprendre comment l'invention peut être réalisée en référence aux dessins annexés sur lesquels :
- la figure 1 représente schématiquement une vue générale d'un appareil de chirurgie ophtalmique selon un mode de réalisation de l'invention ;
- la figure 2 représente schématiquement une vue en coupe d'un dispositif interface d'adaptation entre le système laser et l'œil à traiter ;
- la figure 3 représente schématiquement un premier exemple de réalisation d'un système de déplacement du faisceau laser basé sur un prisme tournant ;
- les figures 4A-4E illustrent la combinaison d'un système optique de focalisation et d'un prisme tournant dans différentes orientations du prisme et les positions correspondantes du point focal ;
- la figure 5 représente schématiquement un deuxième exemple de réalisation d'un système de déplacement du faisceau laser basé sur un système de miroirs comprenant un miroir tournant ;
- les figures 6 et 7 représentent des exemples d'images prises par microscopie binoculaire après une intervention de capsulorhexis réalisée au moyen d'un appareil selon un mode de réalisation de l'invention ;
- la figure 8 représente un exemple d'image de microscopie électronique à balayage montrant les berges d'un rhexis dans la capsule cristallinienne.
Description détaillée
Dispositif
De nombreux appareils de chirurgie de la cornée, du type LASIK, ou appareils de chirurgie de la cataracte (FLAC) sont basés sur un laser femtoseconde. On entend ici par laser femtoseconde un laser qui délivre des impulsions lumineuses de durée comprise entre 1 et quelques centaines de femtosecondes. La minimisation de la durée des impulsions est généralement préconisée pour la découpe des tissus transparents du segment antérieur de l'œil. En effet, plus la durée des impulsions laser est longue, plus le dépôt d'énergie est important et risque d'engendrer des effets thermiques. Il est essentiel de minimiser le dépôt d'énergie et d'éviter un échauffement des tissus oculaires susceptible d'entraîner leur endommagement irrémédiable.
Une constatation faisant partie de la présente invention est que l'ensemble des systèmes utilisant un laser femtoseconde pour la chirurgie de la cataracte sont basés sur un dispositif de déplacement de faisceau configuré pour permettre de focaliser le faisceau en n'importe quel point d'un volume correspondant à une très grande partie du cristallin.
Ces systèmes de l'art antérieur utilisent, d'une part, un système mécanique de déplacement du point focal à six degrés de liberté (trois degrés de liberté en rotation et trois degrés de liberté en translation) et, d'autre part, un système optique d'imagerie en trois dimensions. Cependant, il est très difficile voire impossible d'obtenir une focalisation exempte d'aberrations optiques géométriques sur un champ image aussi étendu que le volume du cristallin. Des systèmes optiques complexes peuvent être utilisés pour tenter de compenser les aberrations optiques mais on peut aisément montrer qu'il est en pratique impossible de compenser parfaitement l'ensemble des aberrations optiques sur un champ de diamètre variable.
De plus la méthode utilisée dans ces systèmes laser de l'art antérieur nécessite une immobilisation de l'œil pendant une durée très supérieure à la seconde, et en tous cas supérieure à la durée pendant laquelle un patient peut maintenir son œil immobile. Tous les systèmes antérieurs à base de laser femtoseconde utilisent donc un dispositif interface d'adaptation qui applique une pression par succion suffisante pour immobiliser l'œil pendant l'acquisition d'image en 3D et durant l'intervention de chirurgie de la cataracte. Par conséquent, l'immobilisation de l'œil dure en pratique de plusieurs dizaines de secondes jusqu'à plusieurs minutes. Or, la pression de succion exercée sur l'œil est connue pour induire de nombreux effets secondaires dont des hémorragies, une augmentation délétère de la pression intraoculaire ou, dans certains cas, l'apparition d'ulcères.
La présente divulgation propose un appareil de chirurgie ophtalmique dédié en particulier à la découpe de la capsule antérieure du cristallin aussi appelée capsulorhexis.
D'une part, cet appareil repose sur l'utilisation d'un laser à impulsions de préférence de durée picoseconde ou nanoseconde, au lieu d'un laser femtoseconde. L'appareil peut aussi fonctionner avec un laser femtoseconde, mais l'appareil est alors plus onéreux.
On entend ici par laser picoseconde, un laser qui délivre des impulsions lumineuses de durée comprise entre 0.1 picoseconde et environ 100 ps. Enfin, on entend par laser nanoseconde, un laser qui délivre des impulsions lumineuses de durée comprise entre 0.1 nanoseconde et environ 100 ns.
Le laser 1 est de préférence un laser monomode transverse.
D'autre part, selon la présente divulgation, le système de déplacement du faisceau laser est limité à un système ayant un seul degré de liberté en rotation. En option, le système de déplacement du faisceau laser peut avoir un, deux ou trois degrés de liberté en translation, d'amplitude limitée. Ainsi, le déplacement du faisceau laser est limité à une trajectoire curviligne située dans un volume restreint, de préférence de forme annulaire ou torique. Le système mécanique de déplacement s'en trouve extrêmement simplifié et le coût de l'appareil s'en trouve réduit. De plus, la limitation de la trajectoire du point de focalisation à un cercle (ce qui correspond optiquement à un champ limité à un point unique) permet de corriger les aberrations optiques au point focal sur la totalité de la trajectoire du faisceau laser car si l'on se place dans le référentiel du point focal l'élément en rotation est immobile. Enfin, la limitation de la trajectoire à un volume restreint permet de supprimer le besoin d'un système d'imagerie en trois dimensions. Un système d'imagerie à deux dimensions de type microscope binoculaire tel que ceux classiquement présents en salle d'opération suffit pour le suivi et le contrôle en temps réel de la focalisation du faisceau laser sur la totalité de la trajectoire.
En particulier, en limitant la trajectoire du point focal à un cercle centré sur l'axe optique du faisceau laser avant sa déviation par un prisme ou une lentille de focalisation excentrée par exemple, il est possible d'avoir en tout point de la trajectoire exactement le même front d'onde. Il est alors particulièrement facile de corriger le front d'onde puisque la correction en un point entraîne la même corrections pour tous les points à condition de faire tourner l'élément de déviation ou déflexion du laser autour de l'axe optique du laser avant déviation.
L'ensemble des éléments situés sur le trajet du faisceau après déviation peuvent avantageusement être à symétrie de révolution par rapport à l'axe du laser en tout point de la trajectoire de celui-ci dès lors qu'il présente une interface avec un changement d'indice significatif. Une telle surface située après la lentille de focalisation par exemple peut prendre la forme d'un tronc de cône dont l'angle est tel que le rayon principal est toujours perpendiculaire à la surface incidente en tout point de sa trajectoire.
La figure 1 représente schématiquement un appareil de chirurgie ophtalmique 100 selon un mode de réalisation de l'invention. L'appareil est disposé vis-à-vis d'un œil 4 pour une intervention chirurgicale de découpe de la capsule antérieure du cristallin. On a représenté schématiquement une vue en coupe de l'œil 4 d'un patient faisant apparaître quelques éléments anatomiques de l'œil 4 : la cornée 24, le limbe 7 autour de la cornée, l'iris 26 et le cristallin 5. En général, pendant une intervention de capsulorhexis, l'iris 26 est dilaté au maximum. On définit un axe optique 21 de symétrie du cristallin comme étant l'axe passant par le centre de l'iris 26 ou le centre du limbe 7 ou un point situé entre ces deux centres et cet axe optique 21 étant substantiellement perpendiculaire à la surface de la capsule antérieure du cristallin.
L'appareil de chirurgie ophtalmique comporte une source laser 1 reliée de préférence par fibre optique 15 à un outil manuel 40. La fibre optique 15 permet une manipulation aisée de l'outil manuel, tout en laissant la source laser 1 fixe et à distance du patient. La fibre optique permet ainsi de dégager l'espace autour de l'œil 4 du patient. Un opérateur, ou un chirurgien, place l'outil manuel 40 à proximité ou en contact de la cornée 24 de l'œil 4 du patient.
Le laser 1 est avantageusement un laser à impulsions picoseconde ou nanoseconde.
Un tel laser est compatible avec la transmission via une fibre optique 15, contrairement à un laser femtoseconde qui délivre une puissance d'impulsions susceptible de détruire la fibre optique 15.
L'outil manuel 40 comporte un système optique 10 de mise en forme du faisceau laser et un système optique 20 de focalisation pour focaliser le faisceau laser 8 en un point focal 6 intraoculaire et plus précisément en un point du segment antérieur de l'œil 4 du patient.
Le système optique 10, 20 comporte par exemple un ou deux systèmes optiques afocaux à lentilles. Le système optique 20 de focalisation est configuré pour focaliser le point focal 6 à proximité de la surface de la capsule antérieure du cristallin et de manière à ce que le point focal 6 du faisceau laser 8 soit excentré par rapport à l'axe optique 21 de symétrie du cristallin. Ainsi, le faisceau laser 8 incident sur l'œil se propage à travers différents milieux optiques hors d'axe du segment antérieur de l'œil. Plus précisément, le faisceau laser 8 est réfracté par une partie hors d'axe de la cornée 24 et transmis à travers l'humeur aqueuse située entre la face postérieure de la cornée et la capsule antérieure du cristallin 5.
L'outil manuel 40 comporte aussi un système de déplacement 30 du faisceau laser 8 adapté pour déplacer le point focal 6 par rapport à un axe de rotation. Plus particulièrement, le système de déplacement 30 du point focal 6 du faisceau laser est configuré pour contraindre le point focal 6 à suivre une trajectoire 16 curviligne autour d'un axe de rotation. De préférence, le chirurgien dispose l'outil manuel 40 de manière à aligner l'axe de rotation sur l'axe optique 21 de symétrie du cristallin. On suppose ici que l'œil 4 reste fixe, sans nécessairement être immobilisé. De façon particulièrement avantageuse, la trajectoire 16 du point focal 6 du faisceau laser 8 est située sur la surface d'un cylindre ou sur un hélicoïde présentant une symétrie axiale, par exemple de section elliptique ou circulaire et de dimensions ou de diamètre déterminés, l'axe du cylindre étant centré sur l'axe optique 21 de symétrie du cristallin.
En particulier cette trajectoire 16 peut commencer dans le volume du cristallin 5 et finir entre la surface 25 de la capsule antérieure du cristallin et la cornée 24.
De façon avantageuse, l'outil manuel 40 comporte un dispositif interface d'adaptation 60 placé au contact de l'œil à traiter, qui permet de réduire l'angle d'incidence du faisceau 8 sur la cornée 24. L'œil du patient peut être libre ou immobilisé pour une courte durée (en général moins de 1 seconde) au moyen d'une faible succion. L'outil manuel 40 auquel est fixé le dispositif interface d'adaptation 60 forme ainsi un instrument de chirurgie ophtalmique relié par fibre optique à la source laser, ce qui permet une manipulation aisée par le chirurgien.
Dans un mode de réalisation particulièrement avantageux, l'outil manuel 40 comporte aussi une lame semi-transparente ou une lame dichroïque, disposée sur le chemin optique du faisceau laser 8 et qui permet de visualiser directement la capsule antérieure du cristallin et le point focal 6 du faisceau laser ou de coupler optiquement un microscope binoculaire sur le chemin optique du faisceau laser. Un tel microscope binoculaire permet de visualiser simultanément la capsule antérieure du cristallin et le point focal 6 du faisceau laser. Le microscope binoculaire permet ainsi de contrôler en temps réel l'alignement de l'outil manuel 40 par rapport à l'axe optique 21 de symétrie du cristallin, la focalisation du faisceau laser 8 et la découpe de la capsule antérieure du cristallin. Toutefois, la visualisation directe par le chirurgien offre l'avantage de permettre un alignement manuel précis de l'instrument de chirurgie ophtalmique en un temps extrêmement court et la réalisation de la découpe du rhexis en un temps total de moins de quelques secondes ou même d'une seconde.
La figure 2 représente une vue en coupe agrandie d'une partie d'un dispositif interface d'adaptation mis en place au contact de la partie antérieure de l'œil d'un patient. Le dispositif interface d'adaptation comporte ici par exemple une lentille plan-concave 61 dont la face disposée en regard de la cornée 24 a un rayon de courbure supérieur ou égal au rayon de courbure moyen de la cornée 24. Dans un autre mode de réalisation, le dispositif interface d'adaptation comporte une lame à faces planes et parallèles à la place de la lentille plan- concave 61 . Le dispositif interface d'adaptation peut être constitué d'un matériau solide ou d'un matériau liquide ou d'une combinaison de matériaux solide et liquide. Ces matériaux doivent être transparents à la longueur d'onde du laser. Il est important de centrer l'axe optique du dispositif interface d'adaptation 60 sur l'axe optique 21 passant par le centre du limbe et/ou le centre de l'iris. De façon avantageuse, un liquide ou un gel peut être placé entre la surface de la cornée 24 et la lentille plan-concave 61 ou la lame à faces planes du dispositif interface d'adaptation, afin de limiter la déviation du faisceau laser 8 par réfraction sur les interfaces entre milieux optiques d'indice de réfraction différents.
De préférence, la surface inférieure de l'interface 61 est sphérique ou quasi-sphérique et de rayon de courbure légèrement plus grand que celui de la cornée, généralement compris entre 9 mm et 1 1 mm et préférentiellement de 10 mm. Ainsi, le contact entre l'instrument de chirurgie ophtalmique et l'oeil est réduit à un seul point ou à une toute petite surface quasi plane ce qui permet un déplacement latéral maximal de typiquement +/- 0.5mm à +/- 1 mm afin de compenser un excentrement de l'iris par rapport à l'apex de la cornée tout en maintenant un contact optique avec la cornée. Le réglage d'alignement de l'instrument de chirurgie est effectué par le chirurgien par déplacement manuel de l'instrument de chirurgie ophtalmique sur l'oeil et non pas par déplacement du faisceau laser à l'intérieur de l'appareil comme c'est le cas dans les systèmes basés sur l'utilisation de système de balayage de faisceau de type scanner. Ainsi le faisceau laser décrit un cercle dont la position et l'orientation dans l'oeil peuvent être ajustés par le chirurgien par une simple modification de l'angle et de la position de l'instrument de chirurgie ophtalmique à la surface de l'oeil en un temps inférieur au temps caractéristique des mouvements de l'œil. Il n'est donc pas nécessaire d'immobiliser l'œil.
Sur le schéma de la figure 2, le faisceau laser 8 traverse successivement la lentille plan- concave 61 , le milieu (air ou milieu liquide d'indice) situé entre la cornée 24 et la face concave de la lentille 61 , la cornée 24 et l'humeur aqueuse présente dans la chambre antérieure de l'œil. Le faisceau laser 8 est focalisé en un point focal 6. On observe que le faisceau laser 8 traverse la lentille 61 et la cornée de manière excentrée par rapport à l'axe optique de symétrie de révolution de ces composants optiques, qui est ici confondu avec l'axe optique 21 . Toutefois, l'ouverture numérique du faisceau laser 8 est limitée si bien que la zone traversée par le faisceau laser 8 a une étendue spatiale très réduite sur la lentille 61 et sur la cornée 24.
L'épaisseur optique de la lentille plan-concave 61 ou du système optique constituant du dispositif interface d'adaptation en contact avec l'oeil peut être très grande. En pratique, l'épaisseur optique du dispositif interface d'adaptation peut atteindre 90% à 98% de la longueur focale du système optique de focalisation. Cette épaisseur peut même atteindre 100% dans le cas ou l'élément de focalisation n'est pas en mouvement ou ne fait que des mouvements lents comme dans le cas ou c'est le prisme qui permet la déviation par exemple. Dans le cas ou la surface immergée permet la focalisation et ou également de corriger les aberrations, il faut conserver un Δη suffisant entre l'indice de l'élément de focalisation et celui du milieu d'immersion. Le remplissage de l'espace séparant la système optique de focalisation de l'oeil par un milieu d'indice de réfraction supérieur à 1 et avantageusement proche de celui de la cornée (dont l'indice de réfraction est de l'ordre de 1 .38) permet d'augmenter le tirage, c'est-à- dire la distance du point focal à l'apex d'une lentille, pour un système de focalisation donné sans augmenter la taille physique de la tache focale. De plus, le fait que le système optique de focalisation combiné au dispositif interface d'adaptation travaille en un point unique du champ permet de compenser précisément les aberrations géométriques sur l'ensemble de la trajectoire circulaire y compris pour une lentille plan concave 61 de très forte épaisseur.
Dans un mode réalisation, le dispositif interface d'adaptation comporte une lentille plan- concave ou un système optique à plusieurs dioptres formé d'un assemblage continu de lentilles ou de lames 61 épaisses composé de plusieurs matériaux dont les surfaces adjacentes coïncident et dont les indices sont proches les uns des autres. Préférentiellement le saut d'indice Δη entre deux dioptres successifs est inférieur à 0.1 . De plus, les matériaux sont choisis pour avoir un indice de réfraction proche de celui de la cornée (n=1 .38) typiquement compris entre 1 .3 et 1 .5, afin de créer un assemblage épais continu optiquement, c'est-à-dire sans interface avec l'air hormis pour l'interface la plus éloignée de l'œil. De manière préférentielle les matériaux solides sont choisis parmi de la silice fondue (n=1 .45) ou des verres à bas indice (n<1 .51 ) ou des polymères tels que le PMMA (n=1 .49) ou l'acrylic (n=1 .49), et les matériaux liquides sont choisis parmi de l'eau (n=1 .33), de l'eau salée ou sucrée (n=1 .33 à 1 .45) ou des gels à base aqueuse. Une ou plusieurs interfaces de assemblage optique épais peuvent être constituées d'un liquide ou d'un gel afin de conserver la continuité optique. Le système optique de focalisation ne travaillant qu'en un seul point du champ optique, il est possible de compenser parfaitement l'aberration sphérique en cet unique point du champ optique malgré la multiplicité des milieux optiques traversés.
Le point focal 6 du faisceau laser 8 est positionné en un point sur la surface de la capsule antérieure du cristallin 5, situé à une distance déterminée d de l'axe optique 21 . Par exemple, la distance d entre le point focal 6 et l'axe optique 21 est égale à 2.5 mm. De façon avantageuse, la distance d est ajustable selon les besoins spécifiques d'un patient avant le démarrage des tirs lasers. Par exemple, la distance d est ajustable entre 1 et 4 mm.
Tous les composants optiques et milieux optiques disposés sur le chemin optique du faisceau laser entre la source laser 1 et le point focal 6 participent à la formation du point focal 6. La combinaison des composants optiques de l'appareil de chirurgie ophtalmique avec la partie du segment antérieur de l'œil située entre la capsule antérieure et la face antérieure de la cornée forme ainsi un système optique complet. Plus précisément, les systèmes optiques 10, 20, la lentille plan-convexe 61 et les différents milieux et interfaces optiques de l'œil situés entre la lentille plan-convexe 61 et le point focal 6 déterminent la position et les propriétés du point focal 6 en termes d'optique géométrique. Les performances optiques géométriques du système optique complet sont facilement limitées par diffraction pour de fortes ouvertures numériques (O.N. au moins égale à 0.4) et a fortiori pour de faibles ouvertures numériques (O.N. typiquement inférieure à 0.2, de préférence comprise entre 0.05 et 0.15 par exemple de l'ordre de 0.1 ), car la focalisation dans le plan image a un champ unique tout en ayant une distance de travail importante (par exemple distance de travail entre le système optique de l'outil manuel 40 et le point focal 6 supérieure à 20 mm pour une ON supérieure ou égale à 0.4).
En pratique, l'étendue spatiale du faisceau laser 8 à travers la lentille plan-concave 61 et les milieux du segment antérieur de l'œil est très faible (voir figure 2). Il est ainsi possible de réduire ou même d'annuler les aberrations géométriques au point focal 6.
Comme indiqué plus haut, l'appareil de chirurgie ophtalmique comporte un système de déplacement 30 du faisceau laser 8 adapté pour déplacer le point focal 6 par rapport à un axe 36. Par exemple, système de déplacement 30 du faisceau laser 8 est un système opto- mécanique de déplacement de faisceau. Plus particulièrement, le système de déplacement 30 du point focal 6 du faisceau laser est configuré pour contraindre le point focal 6 à suivre une trajectoire curviligne qui présente une symétrie de révolution autour d'un axe de rotation 36. De préférence, le chirurgien dispose l'outil manuel 40 de manière à aligner l'axe de rotation 36 sur l'axe optique 21 passant par le centre de l'iris 26 et/ou du limbe 7. On suppose ici que l'œil 4 reste fixe, sans nécessairement être immobilisé. De façon particulièrement avantageuse, la trajectoire du point focal 6 du faisceau laser 8 est située sur la surface d'un cylindre ou sur une hélicoïde présentant une symétrie axiale, par exemple de section elliptique ou circulaire et de dimensions ou de diamètre/ déterminés, l'axe du cylindre 20 étant centré sur le centre de l'iris et/ou du limbe.
Dans un mode de réalisation, le système optique 10 ou au moins un élément du système optique 10 est monté sur une monture mobile permettant la rotation du faisceau autour d'un axe de rotation avec une translation et/ou une inclinaison du faisceau laser par rapport à cet axe de rotation. En alignant l'axe de rotation 36 du faisceau laser sur l'axe optique 21 du cristallin, le faisceau laser 8 effectue une rotation autour l'axe optique 21 de symétrie du cristallin.
A titre d'exemple, le système de déplacement est configuré pour que le point focal 6 se déplace suivant une trajectoire circulaire de diamètre égal à 4 mm et centrée sur l'axe optique 21 . La trajectoire du point focal 6 reste ainsi dans un plan transverse à l'axe de rotation 36 du faisceau laser dévié. On peut ainsi réaliser une découpe circulaire de la surface 25 de la capsule antérieure du cristallin 5. La rotation, à une vitesse comprise entre 30 Hz et 350 Hz est combinée à une translation axiale, à une vitesse de déplacement en z de 100 μηι/s à 1250 μηι/s. La trajectoire du faisceau laser effectue ainsi un hélicoïde de 200 μηι de hauteur sur une durée d'environ 150 ms, avec une cadence de répétition des impulsions supérieure ou égale à 240kHz, par exemple de 500 kHz. De cette manière, lors du déplacement du point focal 6 du faisceau laser 38 suivant une trajectoire circulaire, le faisceau laser 8 traverse la lentille plan-concave 61 dans une zone annulaire située à une distance constante de l'axe optique cette lentille plan-concave 61 . De manière analogue, le faisceau laser traverse chaque interface ou milieu optique du segment antérieur de l'œil à une distance de l'axe optique 21 qui reste constante, quel que soit le point focal 6 sur toute la trajectoire du faisceau optique centrée sur cet axe optique 21 . Ainsi, les zones traversées par le faisceau laser dans les différents composants et milieux optiques sont centro-symétriques par rapport à l'axe optique 21 . Le déplacement du point focal suivant une trajectoire centrée sur l'axe optique 21 permet d'assurer que le point focal 6 présente les mêmes propriétés optiques géométriques sur toute la trajectoire. Il est ainsi possible de minimiser ou même de corriger les aberrations géométriques non seulement en un point de focalisation 6, mais sur toute une trajectoire curviligne centrée sur l'axe optique 21 . Cette spécificité permet d'obtenir une tache focale de dimension très proche de la limite de diffraction (typiquement de diamètre inférieur à 1 .2 fois la limite de diffraction) tout en utilisant une ouverture numérique limitée tout en conservant une dimension de tache focale inférieure à 6 μηι.
De façon particulièrement avantageuse, le dispositif interface d'adaptation 60 comporte au moins une zone annulaire, sur laquelle le faisceau laser 8 est incident, cette zone annulaire contribuant à la correction des aberrations optiques géométriques au niveau du point focal 6 intraoculaire.
Ainsi, l'appareil est parfaitement corrigé des aberrations optiques au point focal 6, sur toute la trajectoire du faisceau laser, cette trajectoire étant une trajectoire annulaire de diamètre déterminé.
La figure 3 représente un système de déplacement du faisceau laser selon un premier mode de réalisation, basé sur un prisme tournant. Un prime 31 est placé, à l'intérieur de l'outil manuel 40, sur le chemin optique du faisceau laser 8. Le prisme 31 reçoit un faisceau laser 8 incident et transmet un faisceau laser 38 dévié. En effet, la traversée du prisme 31 induit une déviation du faisceau laser, l'angle de cette déviation étant déterminé par les propriétés optiques géométriques du prisme : angle au sommet du prisme 31 et indice de réfraction du matériau formant ce prisme 31 . Le prisme 31 est monté mobile en rotation autour d'un axe de rotation 36, par exemple sur une platine tournante. De préférence, l'axe de rotation 36 du prisme est parallèle à l'axe optique du faisceau laser 8 incident sur le prisme tournant 31 . La rotation du prisme 31 autour de l'axe de rotation 36 entraîne une rotation R du faisceau laser 38 dévié par le prisme. Par conséquent, dans un plan traverse à l'axe de rotation 36, la trajectoire 28 du faisceau laser 38 dévié par le prisme tournant 31 est une trajectoire circulaire autour de l'axe de rotation 36. Dans un plan transverse à l'axe de rotation, le rayon de la trajectoire circulaire du faisceau est égal à d.
La figure 4A illustre la combinaison d'un système de focalisation 10 et d'un prisme tournant 31 . Le système optique 10 forme l'image d'un point source 18 en un point focal 6. A titre d'exemple, le système optique 10 comprend deux lentilles disposées de manière à former un système optique afocal. Une extrémité de fibre optique 15, dont l'autre extrémité est reliée à la source laser 1 , constitue par exemple le point source 18. Le système afocal 10 peut être configuré pour produire un grandissement déterminé entre le point source 18 et le point focal 6. Le prisme tournant 31 est disposé entre le système de focalisation 10 et le point focal 6. Le prisme 31 entraîne une déviation du faisceau laser 38, et donc un décentrement du point focal par rapport à l'axe optique du faisceau laser incident sur le prisme. Par conséquent, la rotation du prisme tournant 31 autour de l'axe du faisceau laser 8 entraîne un déplacement du point focal 6 suivant une trajectoire circulaire dans un plan transverse à l'axe de rotation 36 du prisme 31 .
Les figures 4B-4E illustrent de manière détaillée la combinaison d'un système de focalisation 10 et d'un prisme tournant 31 , dans différentes orientations du prisme tournant 31 , en projection dans le plan des figures 4B-4E. Sur la figure 4B, l'angle de rotation du prisme 31 autour de l'axe de rotation 36 est égal à 0 degré, le point focal 6 est situé dans le plan de la figure 4B, au dessus de l'axe de rotation 36. Sur la figure 4C, l'angle de rotation du prisme 31 autour de l'axe de rotation 36 est égal à 90 degrés, le point focal 6 est situé dans un plan transverse au plan de la figure 4C. Sur la figure 4D, l'angle de rotation du prisme 31 autour de l'axe de rotation 36 est égal à 135 degrés, le point focal 6 est situé dans le plan formant un angle de 135 degrés avec le plan de la figure 4D. Sur la figure 4E, l'angle de rotation du prisme 31 autour de l'axe de rotation 36 est égal à 180 degrés, le point focal 6 est situé dans le plan de la figure 4E, au dessous de l'axe de rotation 36. Sur chaque figure 4B-4E, le faisceau laser 38 dévié est focalisé en un point focal 6 qui se déplace autour de l'axe de rotation 36, en fonction de l'angle de rotation du prisme tournant 31 . La rotation R du prisme tournant 31 entraîne un déplacement du point focal 6 dans un plan transverse à l'axe de rotation 36. Quel que soit l'angle de rotation du prisme, le point focal 6 reste à une distance constante de l'axe 36. De plus l'ouverture numérique du faisceau incident sur le prisme et l'angle au sommet dudit prisme étant faibles, les aberrations géométriques dues au prisme restent faibles et constantes le long de la trajectoire 16 ce qui permet leur compensation.
La figure 5 représente un système de déplacement du faisceau selon un deuxième mode de réalisation, basé sur un système opto-mécanique à miroir tournant. A titre d'exemple, le système de déplacement de la figure 5 comporte un système de miroirs comprenant un premier miroir plan 34 et un second miroir concave 35 de type conique. Le miroir plan 34 est incliné par rapport à l'axe optique du faisceau laser incident, de manière à renvoyer le faisceau laser 8 vers le second miroir concave 35. Le second miroir concave 35 réfléchit le faisceau laser reçu du premier miroir 34, et forme un faisceau laser 38 qui est ainsi décalé et/ou dévié par rapport à l'axe optique du faisceau laser 8 incident. Le premier miroir 34 est monté mobile en rotation autour d'un axe de rotation 36, de préférence aligné sur l'axe optique du faisceau laser 8 incident et aligné sur l'axe du second miroir 35 conique. La rotation du miroir 34 entraîne la rotation du faisceau laser 38 autour de l'axe de rotation 36. Le second miroir 35 réfléchit le faisceau laser de manière centro-symétrique par rapport à l'axe de rotation 36. Ainsi, le point focal 6 suit une trajectoire circulaire 16 autour de l'axe de rotation 36 avec la même vitesse de rotation R que la vitesse de rotation du premier miroir 34.
Dans les cas illustrés sur les figures 3 à 5, la combinaison d'une déviation angulaire du faisceau laser et d'une rotation de ce faisceau laser dévié produit un déplacement du faisceau laser 38 dévié suivant un cône de section circulaire. Le point focal 6 du faisceau d'impulsions laser suit une trajectoire 16 curviligne à l'intérieur d'une zone annulaire autour de l'axe optique 21 du cristallin. Cette zone annulaire est limitée par un volume délimité, d'une part, entre deux cônes coaxiaux de sections circulaires et de diamètres différents, l'axe de ces cônes étant confondu et, d'autre part, entre deux plans transverses à l'axe desdits cônes.
Dans un autre mode de réalisation, le système de focalisation comporte une lentille asphérique excentrée. De préférence, la lentille du dispositif d'interface a une surface plane du côté du système de focalisation. Dans ce cas, les aberrations géométriques sont réduites essentiellement à de l'aberration sphérique et un résidu négligeable de coma d'excentrement. La lentille asphérique du système de focalisation peut être configurée pour corriger parfaitement ces aberrations en tout point de la trajectoire circulaire 16 du point focal.
De façon particulièrement avantageuse, la combinaison d'un système de focalisation comportant une lentille asphérique travaillant hors d'axe et d'un dispositif d'interface patient comportant une lentille très épaisse présentant une surface supérieure plane permet d'augmenter le tirage du système de focalisation d'environ 40 % et ainsi d'éloigner fortement le système de focalisation de l'œil. Avantageusement, cette lentille peut même être détourée de manière excentrée par rapport à l'axe optique de la lentille. Par exemple, l'excentrement de l'axe optique de la lentille par rapport à l'axe de rotation de la monture est environ égal au rayon du cercle que l'on souhaite décrire. On peut aisni faire tourner cet élément autour de son centre géométrique qui correspond alors à l'axe optique du faisceau incident car c'est toujours la même surface de la lentille qui est traversée par le rayon incident L'instrument de chirugie ophtalmique ainsi obtenu est très compact et ergonomique. L'instrument de chirugie ophtalmique peut ainsi être utilisé par le chirurgien, qu'il soit droitier ou gaucher, sur l'oeil droit comme sur l'oeil gauche, en passant par dessus la pommette, l'arcade sourcilière ou même au dessus du nez du patient tout en préservant une vision directe, à la verticale, non altérée de l'oeil du patient.
La vitesse de rotation d'une platine tournante est en général comprise entre 10 Hertz et plusieurs centaines de Hertz. Dans un exemple de réalisation, la vitesse de rotation est égale à 250 Hertz, ce qui permet de réaliser un tour en 4 millisecondes.
L'appareil peut comporter un dispositif de déclenchement synchronisé de l'émission des impulsions laser et du système de déplacement du faisceau laser. Le dispositif de synchronisation peut par exemple être commandé par l'opérateur au moyen d'une pédale. De façon alternative, la rotation du système de déplacement 30 est lancée à une fréquence de rotation définie, par exemple de quelques dizaines de Hertz. Puis, l'opérateur déclenche les tirs d'impulsions laser en combinaison avec la rotation du faisceau laser.
Avantageusement, le système optique de mise en forme du faisceau comporte un diaphragme de champ qui détermine l'ouverture numérique du faisceau entre le système de déplacement du faisceau laser et le point focal 6. En pratique, l'ouverture numérique est ajustée entre les valeurs de 0,05 et 0,45. La distance entre le point focal et l'interface d'adaptation étant inférieure ou égale à environ 20 mm, l'étendue spatiale du faisceau laser 8 sur les composants optiques de l'interface d'adaptation est limitée, ce qui permet de réduire les aberrations optiques géométriques au point focal 6.
L'appareil de chirurgie ophtalmique ainsi formé permet d'obtenir un point focal 6 ayant des dimensions proches de la limite de diffraction sur toute la trajectoire 16. On observe en pratique que, sur toute la trajectoire 16, le faisceau laser au point focal 6 est symétrique par rapport à l'axe du dispositif interface d'adaptation. La taille du faisceau au point focal à 1/e2 est comprise entre quelques microns et quelques dizaines de microns en fonction de l'ouverture numérique choisie. Par exemple, pour une ouverture numérique de 0.12, la dimension de la tache focale dans l'oeil est d'environ 6 micromètres. Afin de conserver une superposition des impacts laser pour assurer une découpe lisse, la vitesse de rotation est choisie de l'ordre de 100 Hz et la vitesse de déplacement en translation parallèlement à l'axe de rotation de 1 mm/s dans l'œil ce qui permet de limiter la durée totale de l'intervention chirurgicale à environ 1 s, ce qui est inférieur au temps caractéristique des mouvements d'un oeil normal.
Cet appareil permet de réaliser des découpes circulaires régulières, continues, ultra rapides et reproductibles. L'analyse de microscopie montre une qualité de découpe plus régulière et moins rugueuse que celle obtenue avec les lasers femtoseconde commerciaux actuels. Cet appareil de chirurgie laser permet ainsi de réaliser une découpe circulaire de la capsule antérieure du cristallin en un laps de temps d'une durée inférieure à une seconde, voire inférieure à un dixième de seconde.
Un appareil de chirurgie ophtalmique à laser ainsi dédié à la découpe du rhexis est relativement peu coûteux, car il ne requiert pas de système d'acquisition et de traitement d'image en trois dimensions.
Les figures 6 à 8 illustrent des exemples de réalisation de découpes de capsule cristallinienne réalisées sur un œil de porc entier prélevé post-mortem.
Sur les images par microscope binoculaire des figures 6 à 8, les cristallins ont été colorés, ce qui a pour effet de colorer uniquement la capsule et d'augmenter le contraste avec les autres éléments du cristallin. Sur ces figures 6-8, on observe la partie supérieure 25 de la capsule cristallinienne, l'intérieur du cristallin 50 et le rhexis 51 dans la partie centrale. Les cercles en tirets indiquent la position idéale de cercles parfaits correspondant respectivement à la découpe de la capsule 150, la découpe du cristallin 250 et les bords du rhexis 350. Les découpes illustrées sur les figures 6 à 8 ont ensuite été déshydratés pour être observées au microscope binoculaire. On observe que les découpes répondent aux critères de précision, de reproductibilité et de qualité recherchés. L'écart entre la découpe réelle et un cercle parfait est faible. Même dans le cas où les découpes ne sont pas parfaitement circulaires (Figure 9), les découpes sont extrêmement régulières. Les découpes de la capsule du cristallin sont continues et ne présentent pas de refends apparents.
Or les refends du capsulorhexis sont réputés être à l'origine d'une grande partie des complications immédiates ou ultérieures de ce type d'intervention. Le refend de capsulorhexis peut avoir des conséquences très néfastes sur l'extraction du cristallin ou la mise en place de l'implant intraoculaire et sa stabilité dans le temps.
A fort grossissement (x1000), sur la figure 8, on observe les berges 150 de la capsule et la tranche 250 découpée dans l'épaisseur du cristallin.
Ces découpes 150, 250 sont d'excellente qualité et ne présentent aucun refend. Les découpes sont régulières et globalement bien lisses. Même à fort grossissement, aucune rugosité qui pourrait être due à un effet de découpe laser en timbre-poste n'est observé, contrairement à ce qui a souvent été constaté pour une découpe au laser femtoseconde.
Dans certains cas, on observe quelques irrégularités de surface. La tranche de la découpe reste cependant de très bonne qualité dans l'épaisseur de la capsule. Parfois, le rhexis peut paraître encore accroché cependant une très légère traction au moyen d'une pince permet facilement l'extraction de ce rhexis.
Différents essais ont été réalisés, avec une cadence de tirs laser de 100kHz et une vitesse de rotation du faisceau laser de 40 Hz par exemple. On définit le taux de recouvrement comme étant le rapport entre la surface d'intersection entre deux impacts laser adjacents et la surface d'impact d'un de ces tirs laser. Le taux de recouvrement dépend notamment de la surface d'impact d'un tir laser, de la cadence de répétition des impulsions laser et de la vitesse de rotation du déplacement du faisceau laser. Même avec un taux de recouvrement inférieur à environ 50%, la découpe reste continue et régulière.
La compréhension actuelle de ces résultats est que la durée des impulsions picoseconde ou nanoseconde permet de mettre à profit simultanément des effets mécaniques de disruption, liés à l'énergie des impulsions laser, et des faibles effets thermiques très localisés, liées au dépôt thermique de ces impulsions laser. Au contraire, des impulsions femtoseconde produisent des effets uniquement de disruption, ce qui expliquerait les bords irréguliers produits par une découpe par laser femtoseconde. Néanmoins, les effets thermiques restent suffisamment limités pour ne pas endommager les tissus oculaires situés autour de la découpe. De manière préférentielle la source laser est configurée pour produire une partie faible mais non-négligeable (typiquement 5 à 40%) de son énergie dans un support temporel de durée comprise entre 50 ps et 500 ps. Avantageusement la source laser produit des impulsions dont 60% à 90% de l'énergie est comprise dans un profil temporel de durée inférieure à 5 ps et dont le reste de l'énergie s'étale selon un profil grossièrement gaussien sur une durée comprise entre 50 ps et 100 ps.
Des essais de reproductibilité ont été menés sur de nombreux échantillons tests, prélevés sur des animaux post-mortem.
Les résultats obtenus pour la découpe de capsule cristallinienne sont d'excellente qualité. On obtient en effet une découpe qui présente des berges pratiquement aussi régulières qu'une découpe manuelle, la découpe étant curviligne, avec un rayon de courbure constant ou quasiment constant sur toute la trajectoire et comparable esthétiquement à une découpe manuelle et donc plus régulières que des découpes obtenues par laser femtoseconde. De plus, la découpe présente les avantages de circularité analogues à celles obtenues avec un laser femtoseconde.
La découpe est rapide et peut être terminée dans une durée comprise entre 150 ms à quelques centaines de millisecondes.
Le dispositif ne requiert pas de système d'imagerie en trois dimensions coûteux et chronophage. Ainsi, l'intervention est plus rapide qu'avec un appareil de chirurgie laser femtoseconde.
D'autres applications de cet appareil laser picoseconde ou nanoseconde à la chirurgie ophtalmique sont envisagées pour la chirurgie du segment antérieur de l'œil. En particulier, cet appareil laser peut trouver des applications pour les interventions sur la cornée visant à corriger la presbytie, l'astigmatisme ou encore dans les opérations de greffe ou d'implantation d'anneaux intra-cornéens.
L'utilisation d'une source laser nanoseconde ou picoseconde réduit considérablement le coût de la source. D'autre part, les technologies de laser nanoseconde ou picoseconde sont de plus éprouvées, intégrées et donc généralement de plus en plus robustes.
D'autre part, l'utilisation d'une source laser nanoseconde ou picoseconde est compatible avec une sortie fibrée, contrairement à un laser fs. L'utilisation d'une source laser fibrée permet d'améliorer la qualité spatiale du faisceau laser. De plus, l'utilisation d'une source laser fibrée permet de proposer un appareil compact et flexible.
L'ajustement de la vitesse de déplacement du faisceau laser en fonction de la cadence de répétition du laser et de la durée des impulsions laser permet d'assurer un bon recouvrement des spots laser focalisés, et ainsi d'obtenir une découpe continue, sans refend.

Claims

REVENDICATIONS
Appareil de chirurgie ophtalmique (100) comprenant :
- une source laser (1 ) adaptée pour délivrer un faisceau d'impulsions laser (8) ;
- un système optique de focalisation (10, 20) pour focaliser le faisceau d'impulsions laser (8) en un point focal (6) du segment antérieur d'un œil (4); et
- un système de déplacement (30) du faisceau d'impulsions laser configuré pour déplacer le point focal (6) suivant une trajectoire (16) prédéterminée ; caractérisé en ce que :
- la source laser (1 ) génère un faisceau d'impulsions laser (8) ayant une durée de l'ordre d'une picoseconde à une nanoseconde ;
- le système optique de focalisation (10, 20) est configuré pour focaliser le faisceau d'impulsions laser (8) en un point focal (6) au voisinage d'une surface (25) du segment antérieur de l'œil (4), le point focal (6) étant situé à une distance d non nulle d'un axe optique (21 ) de symétrie du segment antérieur de l'œil (4) ;
- le système de déplacement (30) du faisceau d'impulsions laser comporte un seul degré de liberté en rotation autour d'un axe de rotation (36) de manière à déplacer ledit point focal (6) suivant une trajectoire (16) curviligne située dans une zone annulaire autour de l'axe optique (21 ) de symétrie du segment antérieur de l'œil (4) ; et
- le système optique de focalisation (10, 20) étant configuré de manière à limiter les aberrations optiques géométriques au point focal (6) et sur toute la trajectoire curviligne (16) dans ladite zone annulaire autour de l'axe optique (21 ) de symétrie du segment antérieur de l'œil (4).
Appareil de chirurgie ophtalmique (100) selon la revendication 1 dans lequel le système de déplacement (30) du faisceau d'impulsions laser comporte un système optique (31 , 34, 35) disposé sur un chemin optique du faisceau laser (8), le système optique (31 , 34, 35) étant adapté pour recevoir le faisceau laser (8) incident et configuré pour former un faisceau laser (38) dévié angulairement ou translaté par rapport au faisceau laser (8) incident, et dans lequel ledit système optique (31 , 34, 35) comporte au moins un composant optique (31 , 34) monté mobile en rotation autour dudit axe de rotation (36) de manière à produire une rotation du faisceau laser (38).
Appareil de chirurgie ophtalmique (100) selon la revendication 2 dans lequel le système de déplacement (30) du faisceau d'impulsions laser comporte un prisme (31 ) disposé sur un chemin optique du faisceau d'impulsions laser (8), ledit prisme (31 ) étant monté mobile en rotation autour d'un axe de rotation (36).
4. Appareil de chirurgie ophtalmique (100) selon la revendication 2 dans lequel le système de déplacement (30) du faisceau d'impulsions laser (8) comporte au moins un miroir (34) disposé sur un chemin optique du faisceau d'impulsions laser (8), de manière à induire une déviation angulaire et/ou un décalage latéral du faisceau d'impulsions laser (8), et ledit au moins un miroir (34) étant monté mobile en rotation autour d'un axe de rotation (36).
5. Appareil de chirurgie ophtalmique (100) selon l'une des revendications 1 à 4, dans lequel le système de déplacement (30) du faisceau d'impulsions laser (8) est configuré pour déplacer ledit point focal (6) suivant une trajectoire (16) circulaire de rayon déterminé.
6. Appareil de chirurgie ophtalmique (100) selon l'une des revendications 1 à 5, dans lequel le système de déplacement (30) du faisceau d'impulsions laser comporte en outre un degré de liberté en translation suivant un axe de translation parallèle à l'axe de rotation (36), et dans lequel le système de déplacement est configuré pour déplacer ledit point focal (6) suivant une trajectoire hélicoïdale de section circulaire et de rayon déterminé.
7. Appareil de chirurgie ophtalmique (100) selon l'une des revendications 1 à 6, comprenant, d'une part , un outil manuel (40) comprenant le système optique de focalisation (10, 20) et le système de déplacement (30) du faisceau d'impulsions laser, et, d'autre part, une liaison à fibre optique (15) disposée entre la source laser (1 ) et l'outil manuel (40). .
8. Appareil de chirurgie ophtalmique (100) selon la revendication 7, dans lequel l'outil manuel (40) comporte un miroir semi-réfléchissant ou un miroir dichroïque disposé sur le trajet optique du faisceau laser (8) et dans lequel l'outil manuel (40) est adapté pour combiner optiquement un microscope binoculaire de manière à fournir un contrôle visuel en temps réel du segment antérieur de l'œil (4).
9. Appareil de chirurgie ophtalmique (100) selon l'une des revendications 1 à 8, comportant en outre un dispositif interface d'adaptation (60) comprenant une lame à faces planes et parallèles et/ou une lame plan-concave (61 ), le dispositif interface d'adaptation (60) ayant au moins une surface optique configurée de manière à corriger les aberrations optiques au point focal (6) et sur ladite trajectoire (16) dudit point focal (6).
10. Appareil de chirurgie ophtalmique (100) selon l'une des revendications 1 à 9, comprenant en outre un dispositif de déclenchement des tirs de la source laser (1 ) et du système de déplacement (60) du faisceau d'impulsions laser.
1 1 . Appareil de chirurgie ophtalmique (100) selon l'une des revendications 1 à 10, dans lequel la source laser (1 ) émet des impulsions laser à une longueur d'onde comprise entre 700 nm et 1350 nm, de préférence entre 1025 nm et 1080 nm.
12. Appareil de chirurgie ophtalmique (100) selon l'une des revendications 1 à 1 1 , dans lequel la source laser (1 ) émet des impulsions laser à une cadence de répétition comprise entre 20 kHz et 1 MHz.
PCT/FR2016/050754 2015-04-01 2016-04-01 Appareil de chirurgie ophtalmique WO2016156760A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
SG11201707901RA SG11201707901RA (en) 2015-04-01 2016-04-01 Ophthalmic surgical apparatus
BR112017021162A BR112017021162A2 (pt) 2015-04-01 2016-04-01 aparelho cirúrgico oftalmológico
EP16719450.5A EP3277238A1 (fr) 2015-04-01 2016-04-01 Appareil de chirurgie ophtalmique
KR1020177028144A KR20180008407A (ko) 2015-04-01 2016-04-01 안과용 수술 장치
CA2981222A CA2981222A1 (fr) 2015-04-01 2016-04-01 Appareil de chirurgie ophtalmique
JP2017551584A JP2018513733A (ja) 2015-04-01 2016-04-01 眼科手術装置
CN201680031672.6A CN107864618A (zh) 2015-04-01 2016-04-01 眼科手术装置
US15/562,125 US20180214306A1 (en) 2015-04-01 2016-04-01 Ophthalmic surgical apparatus
AU2016239837A AU2016239837A1 (en) 2015-04-01 2016-04-01 Ophthalmic surgical apparatus
HK18104616.6A HK1245066A1 (zh) 2015-04-01 2018-04-09 眼科手術裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1552791A FR3034310A1 (fr) 2015-04-01 2015-04-01 Appareil de chirurgie ophtalmique
FR1552791 2015-04-01

Publications (1)

Publication Number Publication Date
WO2016156760A1 true WO2016156760A1 (fr) 2016-10-06

Family

ID=53496775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/050754 WO2016156760A1 (fr) 2015-04-01 2016-04-01 Appareil de chirurgie ophtalmique

Country Status (12)

Country Link
US (1) US20180214306A1 (fr)
EP (1) EP3277238A1 (fr)
JP (1) JP2018513733A (fr)
KR (1) KR20180008407A (fr)
CN (1) CN107864618A (fr)
AU (1) AU2016239837A1 (fr)
BR (1) BR112017021162A2 (fr)
CA (1) CA2981222A1 (fr)
FR (1) FR3034310A1 (fr)
HK (1) HK1245066A1 (fr)
SG (1) SG11201707901RA (fr)
WO (1) WO2016156760A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3287105A1 (fr) * 2016-08-26 2018-02-28 Fritz Ruck Ophthalmologische Systeme GmbH Systeme laser destine a executer des interventions ophtalmologiques
US11771596B2 (en) 2010-05-10 2023-10-03 Ramot At Tel-Aviv University Ltd. System and method for treating an eye

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3079742B1 (fr) * 2018-04-06 2023-01-13 Keranova Appareil de traitement d’un tissu incluant des systemes optiques originaux de deviation et de focalisation d’un faisceau l.a.s.e.r.
US11638661B2 (en) * 2018-11-20 2023-05-02 Mark Lobanoff Intelligent topographic corneal procedure advisor
EP4028120A4 (fr) * 2019-09-12 2023-09-13 Belkin Vision Ltd. Stimulation laser sélective de cellules souches cornéennes
DE102020114212B3 (de) * 2020-05-27 2021-10-14 Schwind Eye-Tech-Solutions Gmbh Verfahren zum Bestimmen der Position des Laserfokus eines Laserstrahls eines augenchirurgischen Lasers, sowie Behandlungsvorrichtung
DE102021100509A1 (de) * 2021-01-13 2022-07-14 Schwind Eye-Tech-Solutions Gmbh Verfahren zur Steuerung eines augenchirurgischen Lasers, Computerprogrammprodukt sowie Behandlungsvorrichtung
CN116369840B (zh) * 2023-06-05 2023-08-01 广东麦特维逊医学研究发展有限公司 一种无亮斑投影照明系统及其工作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010022298A1 (de) * 2010-05-27 2011-12-01 Carl Zeiss Meditec Ag Vorrichtung und Verfahren zur Kataraktchirurgie
WO2012170966A1 (fr) * 2011-06-09 2012-12-13 Christopher Horvath Système de distribution de laser pour une chirurgie oculaire
WO2013000487A1 (fr) * 2011-06-27 2013-01-03 Wavelight Gmbh Appareil et procédé pour une chirurgie de l'œil
US20130158530A1 (en) * 2011-12-19 2013-06-20 Ilya Goldshleger Intra-surgical optical coherence tomographic imaging of cataract procedures
WO2014018104A1 (fr) * 2012-07-25 2014-01-30 Elenza, Inc. Procédé et appareil pour réaliser une capsulotomie postérieure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU8432491A (en) * 1990-08-13 1992-03-17 Phoenix Laser Systems, Inc. Laser focus adjustment system
CN2393514Y (zh) * 1999-09-16 2000-08-30 中外合资苏州视可佳医疗器械有限公司 准分子激光眼科治疗机上的激光光路装置
EP2695016B1 (fr) * 2011-04-01 2017-05-03 Lensar, Inc. Système pour des incisions de lentilles cornéenne et cristalline générées par laser à l'aide d'un système optique à f/ variable avec interface de contact asphérique avec la cornée ou optiques rotatives et adaptatives

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010022298A1 (de) * 2010-05-27 2011-12-01 Carl Zeiss Meditec Ag Vorrichtung und Verfahren zur Kataraktchirurgie
WO2012170966A1 (fr) * 2011-06-09 2012-12-13 Christopher Horvath Système de distribution de laser pour une chirurgie oculaire
WO2013000487A1 (fr) * 2011-06-27 2013-01-03 Wavelight Gmbh Appareil et procédé pour une chirurgie de l'œil
US20130158530A1 (en) * 2011-12-19 2013-06-20 Ilya Goldshleger Intra-surgical optical coherence tomographic imaging of cataract procedures
WO2014018104A1 (fr) * 2012-07-25 2014-01-30 Elenza, Inc. Procédé et appareil pour réaliser une capsulotomie postérieure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11771596B2 (en) 2010-05-10 2023-10-03 Ramot At Tel-Aviv University Ltd. System and method for treating an eye
EP3287105A1 (fr) * 2016-08-26 2018-02-28 Fritz Ruck Ophthalmologische Systeme GmbH Systeme laser destine a executer des interventions ophtalmologiques

Also Published As

Publication number Publication date
EP3277238A1 (fr) 2018-02-07
JP2018513733A (ja) 2018-05-31
HK1245066A1 (zh) 2018-08-24
SG11201707901RA (en) 2017-10-30
BR112017021162A2 (pt) 2018-07-03
CA2981222A1 (fr) 2016-10-06
FR3034310A1 (fr) 2016-10-07
AU2016239837A1 (en) 2017-10-19
KR20180008407A (ko) 2018-01-24
CN107864618A (zh) 2018-03-30
US20180214306A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
EP3277238A1 (fr) Appareil de chirurgie ophtalmique
US20220168148A1 (en) Systems and methods for lenticular laser incision
JP6657285B2 (ja) 眼内レンズ
US20090137991A1 (en) Methods and Apparatus for Laser Treatment of the Crystalline Lens
AU2015204287A1 (en) System for modifying eye tissue and intraocular lenses
EP3203949B1 (fr) Dispositif pour la decoupe d&#39;une cornee ou d&#39;un cristallin
AU2017280237A1 (en) Improved methods for lenticular laser incision
EP1945402A2 (fr) Microtome laser femtoseconde pour decoupe par faisceau laser d&#39;une tranche de matiere, notamment dans une cornee
WO2021205111A1 (fr) Appareil de chirurgie ophtalmique
FR2685629A1 (fr) Dispositif d&#39;usinage, notamment d&#39;un lenticule corneen.
FR2477399A1 (fr) Dispositif pour l&#39;observation en vue du traitement de l&#39;oeil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16719450

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016719450

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11201707901R

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2017551584

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2981222

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20177028144

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017021162

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016239837

Country of ref document: AU

Date of ref document: 20160401

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15562125

Country of ref document: US

ENP Entry into the national phase

Ref document number: 112017021162

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171002