EP1945402A2 - Microtome laser femtoseconde pour decoupe par faisceau laser d'une tranche de matiere, notamment dans une cornee - Google Patents

Microtome laser femtoseconde pour decoupe par faisceau laser d'une tranche de matiere, notamment dans une cornee

Info

Publication number
EP1945402A2
EP1945402A2 EP06841997A EP06841997A EP1945402A2 EP 1945402 A2 EP1945402 A2 EP 1945402A2 EP 06841997 A EP06841997 A EP 06841997A EP 06841997 A EP06841997 A EP 06841997A EP 1945402 A2 EP1945402 A2 EP 1945402A2
Authority
EP
European Patent Office
Prior art keywords
axis
cornea
microtome
laser beam
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP06841997A
Other languages
German (de)
English (en)
Inventor
François Salin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1945402A2 publication Critical patent/EP1945402A2/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0736Shaping the laser spot into an oval shape, e.g. elliptic shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • A61F9/00827Refractive correction, e.g. lenticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • A61F9/00836Flap cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/361Removing material for deburring or mechanical trimming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/55Working by transmitting the laser beam through or within the workpiece for creating voids inside the workpiece, e.g. for forming flow passages or flow patterns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • A61F9/00827Refractive correction, e.g. lenticle
    • A61F9/00829Correction of higher orders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Definitions

  • Femtosecond laser microtome for laser cutting a slice of material, especially in a cornea
  • the invention relates to a femtosecond laser microtome for cutting a slice of material in a block of material by means of a focused laser beam.
  • the material may be a cornea of an eye or any other material in which it is possible to obtain cleavage by producing bubbles in focusing areas of the laser beam such as in certain plastics. It has applications in particular in the field of micro-machining parts including optical or in the field of the treatment of visual defects of the eye. In this latter application, it allows in particular the creation of a cavity in the eye compatible with intra-stromal surgery, corneal surgery, correction of myopia, hyperopia or astigmatism.
  • the microtome is called a metal microkeratome. It allows to have a regular surface state that the ultraviolet laser can work.
  • the microkeratome has the disadvantage of requiring a material contact with the cornea and therefore a possibility of infection.
  • there remains a significant proportion of missed cuts due to variations in the corneal dimensional parameters from one patient to another.
  • the second uses a femtosecond laser in the axis of the eye to cut a slice of cornea but the surface state obtained is not satisfactory because the cleavage zone obtained by Bubbles within the cornea are relatively thick and irregular and a postage patch tear is obtained at the interface between the hood and the cornea.
  • the femtosecond laser has the advantage of not introducing any risk of infection because there is normally no material contact with the cornea during laser cutting. In practice, so far, it is preferred to use the metal microkeratome to obtain satisfactory results.
  • LASIK LAser In Situ Keratomyleusis
  • the first step of a LASIK is the cutting a corneal slice in the form of a superficial cover using a razor blade of a metal microkeratome. This cover must have a thickness of about 150 microns and a diameter of 7 to 9 mm, remains attached to the surface by a tissue hinge respected during cutting.
  • the hood is reclined time to perform ablation of surface using an excimer ultraviolet laser.
  • This laser emits ultraviolet radiation at 193 nm strongly absorbed at the surface of the cornea which is then volatilized.
  • the corneal curvature is thus remodeled by selective and internal thinning of the corneal stroma.
  • the hood is simply repositioned.
  • the femto-LASER microkeratome uses a femtosecond laser beam that is focused with a focus at about 150 ⁇ m below the surface of the cornea and has an optical axis substantially parallel to that of the eye and therefore corresponds to a frontal application to the cornea of the cornea. the eye of the laser beam.
  • the high intensity produced in the home produces a bubble of vaporized material that causes a local disruption of the cornea.
  • a laser beam is focused with a law of deposition of energy which is largely anisotropic.
  • the shape of the volume formed of points whose illumination is greater than half of the maximum illumination in the case of a Gaussian circular incident beam and of a focusing means with isotropic transfer function can be estimated at home.
  • the transverse dimension of this volume is related to the "waist" w 0 (radius 1 / e 2 ) and is of the order of 1, 18 W 0 for the points at half height of the maximum illumination.
  • this volume is an ellipsoid which is of revolution in the case of a symmetrical incident beam and an isotropic focusing means.
  • w 0 is much greater than ⁇
  • the ellipsoid will be very long longitudinally.
  • a ratio of the order of 18 is obtained. It is therefore very difficult to obtain a good longitudinal resolution, that is to say in the direction of the optical axis of the incident beam and the cleavage zone is very high and very irregular.
  • the solution for obtaining small longitudinal dimension bubbles is to use very open optics which complicate and increase the cost of the system and do not allow fields compatible with the LASIK application.
  • the invention therefore takes advantage of the ellipsoid shape of the focusing zone, which corresponds substantially to the shape of the bubble created by a laser pulse, on the one hand having the smallest axis of the ellipsoid which determines the height of the zone. cleavage (hence a good accuracy) and the largest axis of the ellipsoid which is in the general plane of the cleavage zone (hence a greater rapidity of cleavage, the bubbles extending widely in said plane of the cleavage zone).
  • the optical axis of the laser beam converging towards the focusing zone is arranged substantially laterally with respect to the slice of material to be produced, unlike conventional devices whose optical axis of the laser beam arrives perpendicularly. to the slice of matter.
  • the term “slice” designates an extended flat element or not and of relatively low thickness uniform or not as appropriate.
  • the invention relates to a femtosecond laser microtome for cutting by a focused laser beam of at least one slice of material in a block of material, the block having a front surface and the slice carrying said front surface, the slice extending to at least substantially in an X, Z plane perpendicular to a Y-axis of block thickness, the wafer being separated from the remainder of the block by a cleavage surface formed by the joining of a set of bubbles, each bubble being formed in a focusing zone of at least one pulse of the convergent laser beam of optical axis L.
  • the optical axis L of the convergent portion of the laser beam forms an angle of between -45 ° and + 45 ° relative to the X, Z plane.
  • the optical axis L of the beam forms an angle of between -10 ° and + 10 ° with respect to the X, Z plane and, preferably, the optical axis L of the beam is substantially in the X, Z plane,
  • the focused laser beam is obtained by focussing an incident laser beam of illumination cross-section defined by a focusing means
  • the illumination cross section is chosen from circular or elliptical shapes
  • the illumination cross section is circular
  • the illumination cross section is non-circular
  • the focusing means comprises at least one lens
  • the focusing means is a lens
  • the focusing means is a set of lenses
  • the optical transfer function of the focusing means is isotropic or anisotropic
  • the focusing means comprises a dynamically addressable wavefront correction system
  • the correction system comprises a means chosen from a deformable mirror, a mosaic of micro-mirrors or an optical liquid crystal valve,
  • the focusing zone has an isoenergetic distribution of bubble formation according to an ellipsoid, the smallest dimension of said ellipsoid being in a direction substantially parallel to the axis Y,
  • the ratio between the largest axis and the smallest axis of the ellipsoid is greater than 2 and, preferably greater than 10,
  • the block of material is a cornea of an eye, the Y axis substantially corresponding to the optical axis of the eye,
  • an adaptation piece in a material of optical index substantially equal to that of the cornea is disposed on and matches at least the frontal surface of the cornea, said piece having an entrance face for the convergent beam so that said beam convergent crosses elements having substantially the same optical index,
  • the input face of the adaptation piece is plane and is such that the axis L of the convergent beam is substantially perpendicular to said input face
  • the adapter piece compresses and deforms at least the cornea
  • the space between the input face of the adaptation piece and the focusing means is totally or partially filled with a fluid of index substantially equal to that of the adapter piece or the focusing means; , the focusing zone can be moved along at least the two axes X, Z by actuators under computer control,
  • the focusing zone is movable along the three axes X, Y, Z by actuators under computer control,
  • the microtome further comprises means for location, in principle, in at least one axis, of the possible position of the bubble by detecting a point of focus of a light beam that does not produce a bubble,
  • the microtome further comprises posterior location means in at least one axis, the position of the bubble by detecting the bubble plasma light.
  • the invention therefore makes it possible, in the application to corneal surgery, to produce micro-cavities of very low thickness (height) in the eye and thus the production of a very small and therefore precise thickness of the cleavage zone.
  • a focused laser beam whose optical axis is very far from the optical axis of the eye, the angle between the two axes being greater than 45 °. It is thus possible to make caps for LASIK treatment by cutting with a laser beam focused laterally to the cornea.
  • the quality and accuracy of the cutting approach the anterior surface of the cornea and produce covers whose thickness can be less than 100 .mu.m.
  • the invention also provides the possibility of making corrections of myopia without incision in the eye by producing macro-cavities by addition of bubbles in the cornea.
  • This type of treatment is still called intra-stromal correction of myopia.
  • the femtosecond laser has been proposed for an intra-stromal LASIK in order to cut inside the cornea a cavity whose collapse causes the variation of the curvature of the eye but the lack of precision of the traditional means frontal with optical axis parallel to the optical axis of the eye does not allow to obtain an accurate correction.
  • Corneal cuts can also be made for the insertion of implants into the cornea. We can also be satisfied with localized cuts in order to correct residual optical aberrations.
  • the invention also allows the micromachining of transparent materials, in particular for producing optical components or applied to micro-fluidics or micro-mechanics.
  • the invention finally relates to an adaptation piece for the microtome according to one or more of the preceding characteristics and which is made of a plastic material of optical index substantially equal to that of the cornea and disposable.
  • the adaptation piece may further comprise one or more of the previously listed characteristics relating to it.
  • FIG. 1 which schematically represents the convergence of a laser beam in a reference frame X, Y, Z
  • FIG. 2 which schematically represents in section a side view of the process of cutting a cover of material on the cornea of an eye
  • Figure 3 which shows schematically in front view the process of cutting a cover of material on the cornea of an eye
  • Figure 4 which schematically shows in section a side view of a variant of the process of cutting a cover of material on the cornea of an eye
  • Figure 5 which shows schematically the implementation of the invention with means for retrocontrol a posteriori of the position of the created bubble.
  • this cleavage zone may be higher or lower depending on the application, in particular of high height by stacking of bubbles in the case of producing a macro-cavity and in particular of low height by producing a single layer of bubbles in the case of a cut of a hood as in the following examples.
  • a macro-cavity it is possible to cut a core (two layers of bubbles separated by the nucleus of corneal material) which will then be expelled from the eye by an incision.
  • the shape of the nucleus can be lenticular (biconvex lens) in the case of the correction of the myopia or biconcave lens in the case of the correction of the hyperopia of revolution or not (if astigmatism to be corrected).
  • the general shape of the cleavage zone is related to the general shape of the cornea, in particular because, in the case of cutting a hood that is circular, the latter has a substantially constant thickness.
  • the shape of the cleavage zone will not necessarily be hemispherical but may be flat or have other types of shapes and shapes. in the case of making a wafer (detachable or not the object) its thickness may be constant or not.
  • the focusing zone is ellipsoid. It is also possible to accentuate the eccentricity of the ellipsoid or to create other forms of focusing zones and therefore of bubbles using other forms of incident laser beam illumination.
  • a laser beam whose transverse geometry is not circular. For example, by using an elliptical incident laser beam on the focusing means, a focal spot is obtained whose dimension is still very small in the direction of the optical axis of the eye (Y axis) and large in the other directions.
  • an incident laser beam 1 schematized as substantially elliptical passes through a focusing means 2, for example a diopter or lens with an isotropic spatial transfer function, enabling it to be focused towards a focusing zone corresponding to the focus 4 of the optical element.
  • a focusing means 2 for example a diopter or lens with an isotropic spatial transfer function, enabling it to be focused towards a focusing zone corresponding to the focus 4 of the optical element.
  • the laser beam is convergent 3 and of optical axis L.
  • the distribution curve of iso-illumination (or iso-energy) for a level of illumination given corresponding for example to the level of threshold illumination for the creation of a bubble (for example threshold of breakdown of the material)
  • the optical axis L of the convergent laser beam 3 is also substantially in the plane Z, X in FIG.
  • a laser pulse in the material will form a bubble whose shape will be close to an ellipsoid whose major axis will be in the plane Z, X. It is also understood that in the case of the realization of a hood on a cornea the slice of material forming the cover is substantially in a plane parallel to the Z, X plane and that the cleavage zone has a height along the Y axis as small as possible. Thus, not only the precision of the cut is obtained by the low height of the bubble corresponding to the small axis of the ellipsoid but the cutting efficiency is increased by the long length of the bubble corresponding to the major axis of the ellipsoid in the cleavage plane.
  • the Y axis is substantially parallel to the optical axis of the eye and the Z plane
  • X is substantially parallel to at least a portion the cleavage zone and hood so that the cleavage zone is as low as possible (corresponding to the small axis of the ellipsoid).
  • the focusing zone is progressively shifted to produce a two-dimensional array of rows x columns of bubbles (in the case where one would like to obtain a cover for the LASIK application) or three-dimensional if we want to achieve a macro-cavity (application to the in-situ treatment of myopia for example).
  • the displacement / trajectory of the focusing zone for producing this bubble matrix assembly is preferably starting with the production of bubbles in the portion farthest from the laser source and progressively approaching it so that the beam preferably converge passes through a portion of cornea not yet cleaved.
  • the bubbles starting with a scan along the X axis for a position on Z given but distant distance from the source, then reduce the distance on Z of a step and make a new scan according to X the along the X axis, and repeat iteratively by gradually reducing the distance on Z as shown schematically in Figure 3.
  • a macro-cavity we will make several scans at different positions along Y before decrementing the distance Z.
  • Other scanning possibilities are possible but they lead to that part of the converging beam passes through a portion of the cornea already having bubbles such as scanning Z in each case starting at a distance far from the source and incremental displacement on X.
  • the points will be made on a surface depending on the needs and for example for producing a substantially constant thickness cover of approximately 150 ⁇ m the cleavage zone 7 must substantially follow the shape of the outer surface of the cornea at least in its central part.
  • the focusing zone is then located at about 150 microns below the surface of the cornea.
  • the Z position is fixed by the position of the lens.
  • the hood which is circular can have a diameter of 9 mm for example. In the case of a hood that has to be folded down, we finish the cut by a circular movement accompanied by a displacement along the Y axis to cut the edges of the hood.
  • the focusing zone in order to cut a hood, it is possible to give the focusing zone a trajectory that follows the curvature of the cornea which may, in a variant, possibly be flattened by means of an adapter piece 8 whose index optic is close to or equal to that of the cornea as will be seen in relation with Figure 4.
  • the position of the focus is modified using a device allowing electronic control and computer to move the lens, more generally the focusing means or any other optical means placed on the path beam and can act on the position of the focus, at least along the Z axis and, preferably on all axes in order to move the focus area throughout the X, Y, Z.
  • An automatic feedback system a priori of the position of the focusing zone can also be implemented, either additional lighting is implemented in the path of the laser beam is that the power of the laser can be reduced to a level below the creation of bubbles and that an optical measuring device on the eye detects the position of the focussing zone (focus) thus illuminated by the additional illumination or the laser under low power and allows the comparing with an expected position and generating a possible correction signal to the device moving the position of the focus.
  • the additional lighting may be an LED or another laser but power not allowing the creation of bubbles.
  • additional lighting may allow the operator to see where the focus area is. We must take into account the possible difference between wavelengths of the laser and additional lighting and ensure that the optics used allow the same coincidence of focus for both wavelengths or that computer means take into account.
  • the feedback can also be done a posteriori by detecting the position of the plasma created during the creation of a bubble along at least the Z axis and, preferably along the three axes as shown in Figure 5 which will be explained later.
  • FIG. 4 shows a variant of the invention implementing an optical adaptation piece 8 which is in a material of optical index substantially equal to that of the cornea, that is to say an index of about 1, 33.
  • This piece 8 is for example plastic optionally disposable because in contact with the eye 5.
  • This piece 8 is disposed on the front part of the eye and marries at least the front surface of the cornea.
  • the part has a lateral plane entry face for the converging beam 3 such that the L axis of said converging beam is substantially perpendicular thereto.
  • the convergent beam passes through elements, piece and cornea, having substantially the same optical index which avoids or limits the effects of refraction.
  • the part 8 is preferably integral with the equipment comprising the focusing means 2 which has an optical index of approximately 1.55 in order to be able to maintain stable dimensional and structural relationships between all the optical elements.
  • the focusing means is here represented at a distance from the inlet face of the adaptation piece 8, between the two, an air gap is left, or, alternatively, a space filled with a gel or a optical adaptation liquid.
  • the adaptation piece 8 comprises the focusing means, the input face of said piece 8 being shaped to focus the laser beam.
  • the input face of the adapter part which is plane can be inclined with respect to the optical axis L of the convergent beam 3.
  • the input face of the adaptation piece is not plane but has a curvature in order to modify the convergence of the convergent beam 3.
  • the focusing means 2 may comprise more than one lens, in particular to improve the characteristics of the focal point and to guarantee a small extension along the Y axis in the whole of the XZ plane.
  • External means for modifying the wavefront can be introduced on the path of the beam 1 1 in order to correct the geometrical aberrations of the focusing means 2.
  • These means for modifying the wavefront can be in particular a deformable mirror, a mosaic of micro-mirrors or an optical liquid crystal valve.
  • These means for modifying the wavefront are then dynamically activated in relation to the position of the focal point in the field of the lens by a computer means as a function of information previously stored on the geometric aberrations of said focusing means 2.
  • the additional means shown in Figure 5 allow a retrospective identification of the position of the bubble that has just been created by detecting the light waves of the corresponding plasma.
  • An adaptation piece 8 is disposed on the cornea and the laser beam 1 1 arrives laterally passing through a blade 10, the focusing means 2, a space 9 optionally filled with a fluid (including gel) optical adaptation and the lateral entry face of the part 8.
  • the focusing means 2 is maintained in a stable relative position relative to the fitting part 8 by spacers and / or by a encapsulation also for confining the fluid in the space 9.
  • the plasma light waves are firstly detected forward by a beam 17 focused in 15 to a first detector 16 preferably matrix on two dimensions and at least 2x2 .
  • the light waves of the plasma are also detected by a second detector 14 preferably also matrix on two dimensions and at least 2x2, the corresponding beam 12 having been returned by the blade 10 and focused 13 on the second detector 14.
  • a second detector 14 preferably also matrix on two dimensions and at least 2x2, the corresponding beam 12 having been returned by the blade 10 and focused 13 on the second detector 14.
  • One or both detectors can be implemented.
  • the first detector 16 alone may be sufficient for three-dimensional bubble position detection, the two-dimensional array sensor and focusing adjustment means of the focused image on the depth detector.
  • the second detector 14 according to the same principle it is possible to obtain the position of the bubble in the three dimensions, but the axes given by the matrix sensor will be different from the first case because the observation is lateral rather than frontal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laser Surgery Devices (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Laser Beam Processing (AREA)

Abstract

L'invention concerne un microtome laser femtoseconde pour découpe par un faisceau laser focalisé d'au moins une tranche de matière dans un bloc de matériau, le bloc présentant une surface frontale et la tranche emportant ladite surface frontale, la tranche s'étendant au moins en partie sensiblement dans un plan X, Z perpendiculaire à un axe Y d'épaisseur du bloc, la tranche étant séparée du reste du bloc par une surface de clivage formée par la réunion d'un ensemble de bulles, chaque bulle étant formée dans une zone de focalisation d'au moins une impulsion du faisceau laser convergent d'axe optique L. Selon l'invention, l'axe optique L de la partie convergente (3) du faisceau laser fait un angle compris entre -45° et +45° par rapport au plan X, Z. La zone de focalisation de forme ellipsoïde a son plus petit axe dans la direction de l'axe Y.

Description

Microtome laser femtoseconde pour découpe par faisceau laser d'une tranche de matière, notamment dans une cornée
L'invention concerne un microtome laser femtoseconde destiné à découper dans un bloc de matière une tranche de matière grâce à un faisceau laser focalisé. La matière peut être une cornée d'un œil ou toute autre matière dans laquelle il est possible d'obtenir un clivage par réalisation de bulles dans des zones de focalisation du faisceau laser comme par exemple dans certaines matières plastiques. Elle a des applications notamment dans le domaine du micro-usinage de pièces notamment optiques ou dans le domaine du traitement des défauts visuels de l'œil. Dans cette dernière application, elle permet notamment la création d'une cavité dans l'œil compatible avec une chirurgie intra-stromale, la chirurgie cornéenne, la correction de la myopie, de l'hypermétropie ou de l'astigmatisme.
Une grande partie de la population mondiale souffre de défauts visuels. La plupart de ces défauts proviennent d'une déformation de l'œil qui n'est plus parfaitement sphérique. On utilise actuellement des lunettes ou des lentilles de contact pour corriger ces défauts. Depuis quelques années il est possible de corriger certains de ces défauts de vision en sculptant directement la cornée à l'aide d'un laser. Cette technique nécessite tout d'abord d'ouvrir un capot à la surface de la cornée afin de permettre ensuite l'action d'un laser ultraviolet qui permet de corriger la forme de la cornée. Enfin, on envisage même à terme de corriger directement la myopie sans ouvrir de capot.
Plusieurs méthodes existent pour réaliser l'ouverture de ce capot. La première utilise un microtome mécanique avec une lame de découpe d'une fine tranche de cornée. Dans cette méthode le microtome est appelé microkératome métallique. Elle permet d'avoir un état de surface régulier que le laser ultraviolet pourra travailler. Le microkératome métallique a toutefois l'inconvénient de nécessiter un contact matériel avec la cornée et donc une possibilité d'infection. De plus il reste une proportion non négligeable de découpes ratées à cause des variations des paramètres dimensionnels de la cornée d'un patient à l'autre.
La seconde, appelée microkératome femto-LASER, utilise un laser femtoseconde dans l'axe de l'œil pour découpe d'une tranche de cornée mais l'état de surface obtenu n'est pas satisfaisant car la zone de clivage obtenue par formations de bulles au sein de la cornée est relativement épaisse et irrégulière et on obtient une déchirure en timbre- poste à l'interface entre le capot et la cornée. Toutefois, le laser femtoseconde présente l'avantage de n'introduire aucun risque d'infection car il n'y a normalement pas de contact matériel avec la cornée lors de la découpe laser. En pratique, jusqu'à présent, on préfère utiliser le microkératome métallique pour obtenir des résultats satisfaisants.
Ainsi la méthode appelée LASIK (LAser In Situ Keratomyleusis) de correction de la myopie qui consiste à modifier la courbure de la cornée par ablation laser est l'intervention de chirurgie réfractive la plus pratiquée en 2002. Le premier temps d'un LASIK est la découpe d'une tranche de cornée sous forme d'un capot superficiel à l'aide d'une lame de rasoir d'un microkératome métallique. Ce capot qui doit présenter une épaisseur d'environ 150 μm et un diamètre de 7 à 9 mm, reste attaché à la surface par une charnière tissulaire respectée lors de la découpe. Dans un deuxième temps, le capot est récliné le temps de réaliser une ablation de surface à l'aide d'un laser excimère ultraviolet. Ce laser émet un rayonnement ultraviolet à 193 nm fortement absorbé en surface de la cornée qui est alors volatilisée. La courbure cornéenne est ainsi remodelée par amincissement sélectif et interne du stroma cornéen. En fin d'intervention, le capot est simplement repositionné. Le microkératome femto-LASER utilise un faisceau laser femtoseconde qui est focalisé avec un foyer à environ 150 μm sous la surface de la cornée et possède un axe optique sensiblement parallèle à celui de l'œil et correspond donc à une application frontale à la cornée de l'œil du faisceau laser. La grande intensité produite au foyer produit une bulle de matière vaporisée qui provoque une disruption locale de la cornée. En déplaçant le foyer latéralement on peut ainsi créer un tapis de bulles jointives formant une zone de clivage au sein de la cornée. La découpe du capot par laser est obtenue en effectuant une découpe sagittale depuis le plan de bulle jusqu'à la surface. Bien que cette méthode fonctionne, elle présente l'inconvénient de provoquer une zone de clivage nettement moins bien défini qu'avec un microkératome métallique et laisse une rugosité de surface qui est préjudiciable à la cicatrisation. La cause en est due à une localisation et forme imparfaite des bulles qui provient de la répartition spatiale anisotrope du dépôt d'énergie d'un faisceau laser autour de son foyer de focalisation.
En effet, par nature un faisceau laser se focalise avec une loi de déposition de l'énergie qui est largement anisotrope. On peut par exemple estimer au foyer la forme du volume formé des points dont l'éclairement est supérieur à la moitié de l'éclairement maximum dans le cas d'un faisceau incident circulaire gaussien et d'un moyen de focalisation à fonction de transfert isotrope. La dimension transversale de ce volume est en relation avec le « waist » w0 (rayon à 1 /e2) et est de l'ordre de 1 , 18 W0 pour les points à mi-hauteur du maximum d'éclairement. La dimension longitudinale de ce volume, c'est à dire dans la direction du faisceau focalisé, est donnée par la longueur de Rayleigh : zr = πw2 0/λ avec λ = λo/n. On constate alors que ce volume est un ellipsoïde qui est de révolution dans le cas d'un faisceau incident symétrique et un moyen de focalisation isotrope. Le rapport entre le petit et le grand axe est: zr/do = πwo/1 , 18λ . On voit donc que si w0 est très supérieur à λ, l'ellipsoïde sera très allongé longitudinalement. Par exemple pour un milieu d'indice n=1 ,3 et wo=5 μm on obtient un rapport de l'ordre de 18. Il est donc très difficile d'obtenir une bonne résolution longitudinale, c'est-à-dire dans la direction de l'axe optique du faisceau incident et la zone de clivage est donc très haute et très irrégulière.
La solution pour obtenir des bulles de petite dimension longitudinale est d'utiliser des optiques très ouvertes qui compliquent et renchérissent le système et ne permettent pas des champs compatibles avec l'application en LASIK.
La présente invention au lieu d'essayer de corriger ce défaut lié à l'existence d'un dépôt d'énergie selon une répartition iso-énergétique (=iso-lumineuse) anisotrope en ellipsoïde l'utilise au contraire pour faciliter et améliorer la qualité de la découpe. En effet, si on éclaire avec le laser l'œil par le coté, c'est-à-dire latéralement et non plus selon l'axe optique de l'œil comme précédemment, la hauteur de la zone de clivage est donnée par le petit axe de l'ellipsoïde soit quelques microns alors que la profondeur de champ, dans la direction longitudinale correspondant au plan général de découpe, c'est-à-dire le grand axe de l'ellipsoïde, facilite la réalisation de la zone de clivage. Ainsi pour des ouvertures optiques de l'ordre de 0,3 à 0,8, la hauteur de la zone de clivage qui correspond au petit axe, de direction transversale, peut être inférieure au micron.
L'invention tire donc profit de la forme ellipsoïde de la zone de focalisation qui correspond sensiblement à la forme de la bulle crée par une impulsion laser pour d'une part avoir le plus petit axe de l'ellipsoïde qui détermine la hauteur de la zone de clivage (d'où une bonne précision) et le plus grand axe de l'ellipsoïde qui est dans le plan général de la zone de clivage (d'où une plus grande rapidité de clivage, les bulles s'étendant largement dans ledit plan de la zone de clivage). Ainsi, dans le microtome de l'invention, l'axe optique du faisceau laser convergeant vers la zone de focalisation est disposé sensiblement latéralement par rapport à la tranche de matière à réaliser contrairement aux dispositifs traditionnels dont l'axe optique du faisceau laser arrive perpendiculairement à la tranche de matière. Le terme tranche désigne un élément étendu plan ou non et d'épaisseur relativement faible uniforme ou non selon les cas.
Ainsi l'invention concerne un microtome laser femtoseconde pour découpe par un faisceau laser focalisé d'au moins une tranche de matière dans un bloc de matériau, le bloc présentant une surface frontale et la tranche emportant ladite surface frontale, la tranche s'étendant au moins en partie sensiblement dans un plan X, Z perpendiculaire à un axe Y d'épaisseur du bloc, la tranche étant séparée du reste du bloc par une surface de clivage formée par la réunion d'un ensemble de bulles, chaque bulle étant formée dans une zone de focalisation d'au moins une impulsion du faisceau laser convergent d'axe optique L.
Selon l'invention, l'axe optique L de la partie convergente du faisceau laser fait un angle compris entre - 45° et +45° par rapport au plan X, Z.
Dans divers modes de mise en œuvre de l'invention, les moyens suivants pouvant être combinés selon toutes les possibilités techniquement possibles, sont employés :
- l'axe optique L du faisceau fait un angle compris entre -10° et +10° par rapport au plan X, Z et, de préférence, l'axe optique L du faisceau est sensiblement dans le plan X, Z,
- le faisceau laser focalisé est obtenu par focalisation d'un faisceau laser incident de section transversale d'éclairement définie par un moyen de focalisation,
- la section transversale d'éclairement est choisie parmi les formes circulaires ou elliptiques,
- la section transversale d'éclairement est circulaire,
- la section transversale d'éclairement est non circulaire, - le moyen de focalisation comporte au moins une lentille,
- le moyen de focalisation est une lentille,
- le moyen de focalisation est un ensemble de lentilles,
- la fonction de transfert optique du moyen de focalisation est isotrope ou anisotrope,
- le moyen de focalisation comporte un système de correction du front d'onde adressable dynamiquement,
- le système de correction comporte un moyen choisi parmi un miroir déformable, une mosaïque de micro-miroirs ou une valve optique à cristaux liquides,
- la zone de focalisation présente une répartition isoénergétique de formation de bulle selon un ellipsoïde, la plus petite dimension dudit ellipsoïde étant dans une direction sensiblement parallèle à l'axe Y,
- le rapport entre le plus grand axe et le plus petit axe de l'ellipsoïde est supérieur à 2 et, de préférence supérieur à 10,
- le bloc de matériau est une cornée d'un œil, l'axe Y correspondant sensiblement à l'axe optique de l'œil,
- une pièce d'adaptation dans une matière d'indice optique sensiblement égal à celui de la cornée est disposée sur et épouse au moins la surface frontale de la cornée, ladite pièce ayant une face d'entrée pour le faisceau convergent afin que ledit faisceau convergent traverse des éléments ayant sensiblement le même indice optique,
- la face d'entrée de la pièce d'adaptation est plane et est telle que l'axe L du faisceau convergent est sensiblement perpendiculaire à ladite face d'entrée,
- la pièce d'adaptation comprime et déforme au moins la cornée,
- l'espace entre la face d'entrée de la pièce d'adaptation et le moyen de focalisation est, totalement ou en partie, rempli par un fluide d'indice sensiblement égal à celui de la pièce d'adaptation ou du moyen de focalisation, - la zone de focalisation est déplaçable selon au moins les deux axes X, Z par des actionneurs sous contrôle informatique,
- la zone de focalisation est déplaçable selon les trois axes X, Y, Z par des actionneurs sous contrôle informatique,
- le microtome comporte en outre des moyens de localisation à priori selon au moins un axe, de la position possible de la bulle par détection d'un point de focalisation d'un faisceau lumineux ne produisant pas de bulle,
- le microtome comporte en outre des moyens de localisation a posteriori selon au moins un axe, de la position de la bulle par détection de la lumière du plasma de bulle.
L'invention permet donc dans l'application à la chirurgie cornéenne la réalisation de micro-cavités d'épaisseur (hauteur) très faible dans l'œil et donc la réalisation d'une zone de clivage d'épaisseur très faible et donc précise, en utilisant un faisceau laser focalisé dont l'axe optique est très éloigné de l'axe optique de l'œil, l'angle entre les deux axes étant supérieur à 45°. On peut ainsi réaliser des capots pour le traitement LASIK grâce à une découpe avec un faisceau laser focalisé latéralement à la cornée.
La qualité et la précision de la découpe permettent de se rapprocher de la surface antérieure de la cornée et de produire des capots dont l'épaisseur peut être inférieure à 100μm.
L'invention donne également la possibilité de faire des corrections de la myopie sans incision dans l'œil par réalisation de macro-cavités par addition de bulles dans la cornée. Ce type de traitement est encore appelé correction intra-stromale de la myopie. En effet, le laser femtoseconde a été proposé pour un LASIK intra-stromal afin de découper à l'intérieur de la cornée une cavité dont l'effondrement provoque la variation de la courbure de l'œil mais le manque de précision des moyens traditionnels frontaux à axe optique parallèle à l'axe optique de l'œil ne permet pas d'obtenir une correction précise.
On peut également réaliser des découpes de cornée pour l'insertion d'implants dans la cornée. On peut aussi se contenter de découpes localisées afin de corriger des aberrations optiques résiduelles.
L'invention permet également le micro-usinage de matériaux transparents, notamment pour réalisation de composants optiques ou appliqués à la micro-fluidique ou micro-mécanique.
L'invention concerne enfin une pièce d'adaptation pour le microtome selon l'une ou plusieurs des caractéristiques précédentes et qui est réalisée dans une matière plastique d'indice optique sensiblement égal à celui de la cornée et à usage unique. La pièce d'adaptation peut comporter en outre une ou plusieurs des caractéristiques précédemment listées la concernant.
La présente invention va maintenant être exemplifiée par la description qui suit, sans en être pour autant limitée, et en relation avec : la Figure 1 qui représente schématiquement la convergence d'un faisceau laser dans un référentiel X, Y, Z, la Figure 2 qui représente schématiquement en coupe une vue latérale du processus de découpe d'un capot de matière sur la cornée d'un œil, la Figure 3 qui représente schématiquement en vue frontale le processus de découpe d'un capot de matière sur la cornée d'un œil, la Figure 4 qui représente schématiquement en coupe une vue latérale d'une variante du processus de découpe d'un capot de matière sur la cornée d'un œil, la Figure 5 qui représente schématiquement la mise en œuvre de l'invention avec moyens permettant le rétrocontrôle à posteriori de la position de la bulle créé. L'essentiel des exemples de mise en œuvre de l'invention donnés à la suite concerne l'application au traitement de défauts visuels d'un œil avec réalisation d'un capot résultant d'une zone de clivage dans la cornée d'un œil. Plus généralement, cette zone de clivage peut être plus ou moins haute selon l'application, notamment de grande hauteur par empilement de bulles dans le cas de réalisation d'une macro-cavité et notamment de faible hauteur par réalisation d'une seule couche de bulles dans le cas d'une découpe d'un capot comme dans les exemples qui suivent. En alternative de la réalisation d'une macro-cavité, il est possible de découper un noyau (deux couches de bulles séparées par le noyau de matière de cornée) que l'on expulsera ensuite de l'œil par une incision. La forme du noyau peut être lenticulaire (lentille biconvexe) dans le cas de la correction de la myopie ou lentille biconcave dans le cas de la correction de l'hypermétropie de révolution ou non (si astigmatisme à corriger). De même, du fait que les exemples concernent un globe oculaire sensiblement hémisphérique, la forme générale de la zone de clivage est en rapport avec la forme générale de la cornée notamment parce que dans le cas de la découpe d'un capot qui est circulaire, ce dernier présente une épaisseur sensiblement constante. Cependant et plus généralement, par exemple dans le cas d'un micro-usinage d'un autre type d'objet, la forme de la zone de clivage ne sera pas forcement hémisphérique mais pourra être plane ou avoir d'autres types de formes et dans le cas de réalisation d'une tranche (détachable ou non de l'objet) son épaisseur pourra être constante ou non.
On a vu en introduction que déjà avec un faisceau gaussien incident, la zone de focalisation est ellipsoïde. On peut encore accentuer l'excentricité de l'ellipsoïde ou créer d'autres formes de zones de focalisation et donc de bulles en utilisant d'autres formes d'éclairement de faisceau laser incident. Ainsi, on peut utiliser un faisceau laser dont la géométrie transverse n'est pas circulaire. Par exemple, en utilisant un faisceau laser incident elliptique sur le moyen de focalisation on obtient une tache focale dont la dimension est encore très petite dans la direction de l'axe optique de l'œil (axe Y) et grande dans les autres directions. On peut donc créer de cette façon des bulles dont les dimensions sont petites, de quelques microns, dans une direction parallèle à l'axe optique de l'œil (selon Y) et grande dans les deux autres directions (selon X et Z). On réduit ainsi notablement le temps nécessaire à la découpe d'un capot en forme de disque. On comprend qu'outre la forme d'éclairement du faisceau incident arrivant sur le moyen de focalisation, une fonction de transfert spatial particulière dudit moyen de focalisation puisse à elle seule ou en combinaison avec la forme d'éclairement du faisceau incident permettre également d'obtenir un étalement de la zone de focalisation dans un plan correspondant au plan général de la zone de clivage et un resserrement dans un plan perpendiculaire au plan de clivage.
Arrivant par la partie gauche de la Figure 1 , un faisceau laser incident 1 schématisé comme sensiblement elliptique traverse un moyen de focalisation 2, par exemple dioptre ou lentille à fonction de transfert spatiale isotrope, permettant sa focalisation vers une zone de focalisation correspondant au foyer 4 de l'élément optique. Entre l'élément optique 2 et le foyer 4 le faisceau laser est convergent 3 et d'axe optique L. Dans la zone de focalisation, la courbe de répartition d'iso- éclairement (ou iso-énergie) pour un niveau d'éclairement donné, correspondant par exemple au niveau d'éclairement seuil permettant la création d'une bulle (par exemple seuil de claquage du matériau), a une forme sensiblement ellipsoïde dont le plus grand axe est sensiblement dans un plan Z, X et le plus petit axe sensiblement parallèle à l'axe Y d'un référentiel tridimensionnel X, Y, Z. On note également que l'axe optique L du faisceau laser convergent 3 est également sensiblement dans le plan Z, X sur la Figure 1 .
On comprend qu'une impulsion laser dans le matériau va former une bulle dont la forme va être voisine d'un ellipsoïde dont le grand axe sera dans le plan Z, X. On comprend également que dans le cas de la réalisation d'un capot sur une cornée la tranche de matière formant le capot est sensiblement dans un plan parallèle au plan Z, X et que la zone de clivage a une hauteur le long de l'axe Y la plus réduite possible. Ainsi, non seulement la précision de la découpe est obtenue par la faible hauteur de la bulle correspondant au petit axe de l'ellipsoïde mais l'efficacité de la découpe est augmentée par la longueur importante de la bulle correspondant au grand axe de l'ellipsoïde dans le plan de clivage.
Ainsi et comme appliqué à la cornée 6 d'un œil 5 et représenté sur la Figure 2, l'axe Y est sensiblement parallèle à l'axe optique de l'œil et le plan Z, X est sensiblement parallèle à au moins une partie de la zone de clivage et du capot afin que la zone de clivage soit la moins haute possible (correspondant au petit axe de l'ellipsoïde).
Sur la Figure 2, pour simplifier, on n'a pas tenu compte des effets de réfraction du fait qu'une partie du faisceau laser convergent 3 traverse une partie de la cornée 6 avant d'atteindre la zone de foyer 4. Toutefois, si l'on veut limiter ou éviter ces effets, on peut mettre en œuvre deux solutions, la première consistant à incliner l'axe optique L par rapport au plan Z, X et la seconde par mise en œuvre d'une pièce d'adaptation optique 8 comme cela sera expliqué en relation avec la Figure 4.
Pour obtenir une zone de clivage étendue, on déplace la zone de focalisation progressivement pour réaliser un ensemble matriciel à deux dimensions lignes x colonnes de bulles (dans le cas où l'on voudrait obtenir un capot pour l'application LASIK) ou à trois dimensions si l'on veut réaliser une macro-cavité (application au traitement in-situ de la myopie par exemple).
Le déplacement/trajectoire de la zone de focalisation pour réaliser cet ensemble matriciel de bulles se fait de préférence en commençant par la réalisation de bulles dans la portion la plus éloignée de la source laser et en s'en rapprochant progressivement afin que de préférence le faisceau convergent traverse une portion de cornée non encore clivée. Ainsi on peut réaliser les bulles en commençant avec un balayage le long de l'axe X pour une position sur Z donnée mais de distance éloignée de la source, puis réduire la distance sur Z d'un pas et faire un nouveau balayage selon X le long de l'axe X, et recommencer itérativement en réduisant progressivement la distance sur Z comme représenté schématiquement sur la Figure 3. Dans le cas où une macro-cavité est réalisée, on fera plusieurs balayages à des positions différentes selon Y avant de décrémenter la distance selon Z. D'autres possibilités de balayage sont possibles mais elles conduisent à ce qu'une partie du faisceau convergent traverse une partie de la cornée comportant déjà des bulles comme par exemple balayage selon Z en commençant à chaque fois à une distance éloignée de la source et déplacement incrémental sur X.
On comprend que dans le cas d'une cornée 6 qui est un corps courbé, les points seront réalisés sur une surface fonction des besoins et par exemple pour réalisation d'un capot d'épaisseur sensiblement constante d'environ 150μm la zone de clivage 7 doit sensiblement suivre la forme de la surface externe de la cornée au moins dans sa partie centrale. La zone de focalisation est donc alors située à environ 150μm sous la surface de la cornée. La position en Z est fixée par la position de la lentille. Le capot qui est circulaire peut avoir un diamètre de 9 mm par exemple. Dans le cas d'un capot qui doit être rabattu, on finit la découpe par un mouvement circulaire accompagné d'un déplacement selon l'axe Y pour découper les bords du capot.
Plus généralement, pour découper un capot on peut donner à la zone de focalisation une trajectoire qui suit la courbure de la cornée qui peut, dans une variante, être éventuellement aplatie à l'aide d'une pièce d'adaptation 8 dont l'indice optique est proche ou égal à celui de la cornée comme on le verra en relation avec la Figure 4.
Pour la mise en œuvre de l'invention, la position du foyer est modifiée à l'aide d'un dispositif permettant sous contrôle électronique et informatique de déplacer la lentille, plus généralement le moyen de focalisation ou tout autre moyen optique placé sur le chemin du faisceau et pouvant agir sur la position du foyer, au moins selon l'axe Z et, de préférence selon tous les axes afin de pouvoir déplacer la zone de focalisation dans tout l'espace X, Y, Z. Un système de rétrocontrôle automatique à priori de la position de la zone de focalisation peut également être mis en œuvre, soit qu'un éclairage supplémentaire soit mis en œuvre dans le chemin du faisceau du laser soit que la puissance du laser puisse être réduite à un niveau inférieur à la création de bulles et qu'un appareil de mesure optique sur l'œil détecte la position de la zone de focalisation (foyer) ainsi éclairée par l'éclairage supplémentaire ou le laser sous faible puissance et permette la comparaison d'avec une position attendue et la génération d'un éventuel signal de correction vers le dispositif déplaçant la position du foyer. L'éclairage supplémentaire peut être une DEL ou un autre laser mais de puissance ne permettant pas la création de bulles. Une fois la position de la zone de focalisation correcte, le laser femtoseconde est activé pour une ou plusieurs impulsions lumineuses créant la bulle. Indépendamment d'un système de rétrocontrôle automatique, l'utilisation d'un éclairage supplémentaire peut permettre à l'opérateur de voir où la zone de focalisation se trouve. On doit tenir compte de l'éventuelle différence entre les longueurs d'ondes du laser et de l'éclairage supplémentaire et s'assurer que les optiques mises en œuvres permettent une même coïncidence de foyer pour les deux longueurs d'ondes ou que des moyens informatiques en tiennent compte.
Le rétrocontrôle peut également se faire à posteriori par détection de la position du plasma créé lors de la création d'une bulle selon au moins l'axe Z et, de préférence selon les trois axes comme représenté sur la Figure 5 qui sera explicitée ultérieurement.
Sur la Figure 4 on a représenté une variante de l'invention mettant en œuvre une pièce 8 d'adaptation optique qui est dans une matière d'indice optique sensiblement égal à celui de la cornée, c'est-à-dire un indice d'environ 1 ,33. Cette pièce 8 est par exemple en matière plastique éventuellement à usage unique car au contact de l'œil 5. Cette pièce 8 est disposée sur la partie antérieure de l'œil et épouse au moins la surface frontale de la cornée. La pièce a une face d'entrée plane latérale pour le faisceau convergent 3 telle que l'axe L dudit faisceau convergent lui est sensiblement perpendiculaire. Ainsi, le faisceau convergent traverse des éléments, pièce et cornée, ayant sensiblement le même indice optique ce qui évite ou limite les effets de réfraction. La pièce 8 est de préférence solidaire de l'équipement comportant le moyen de focalisation 2 qui a un indice optique d'environ 1 ,55 afin de pouvoir conserver des relations dimensionnelles et structurales stables entre tous les éléments optiques. Le moyen de focalisation est ici représenté à distance de la face d'entrée de la pièce 8 d'adaptation, entre les deux on laisse un espace d'air ou, dans une variante, un espace rempli d'un gel ou d'un liquide d'adaptation optique. Dans une variante non représentée, la pièce 8 d'adaptation comporte le moyen de focalisation, la face d'entrée de ladite pièce 8 étant conformée pour focaliser le faisceau laser. Dans certains cas on peut utiliser une pièce 8 qui, en plus, comprime et déforme au moins la cornée de l'œil. Dans une variante, la face d'entrée de la pièce d'adaptation qui est plane peut être inclinée par rapport à l'axe optique L du faisceau convergent 3. Dans une variante, la face d'entrée de la pièce d'adaptation n'est pas plane mais présente une courbure afin de modifier la convergence du faisceau convergent 3.
On peut noter que le moyen de focalisation 2 peut comporter plus d'une lentille, notamment pour améliorer les caractéristiques du point focal et garantir une faible extension selon l'axe Y dans l'ensemble du plan XZ.
Des moyens externes de modification du front d'onde peuvent être introduits sur le chemin du faisceau 1 1 afin de corriger les aberrations géométriques du moyen de focalisation 2. Ces moyens de modification du front d'onde peuvent être en particulier un miroir déformable, une mosaïque de micro-miroirs ou une valve optique à cristaux liquides. Ces moyens de modification du front d'onde sont alors activés dynamiquement en relation avec la position du point focal dans le champ de la lentille par un moyen informatique en fonction d'informations préalablement stockées sur les aberrations géométriques dudit moyen de focalisation 2.
Les moyens supplémentaires représentés sur la Figure 5 permettent un repérage à posteriori de la position de la bulle qui vient d'être créée par détection des ondes lumineuses du plasma correspondant. Une pièce d'adaptation 8 est disposée sur la cornée et le faisceau laser 1 1 arrive latéralement passant à travers une lame 10, le moyen de focalisation 2, un espace 9 éventuellement rempli d'un fluide (gel notamment) d'adaptation optique et la face d'entrée latérale de la pièce 8. Le moyen de focalisation 2 est maintenu dans une position relative stable par rapport à la pièce 8 d'adaptation par des entretoises et/ou par un encapsulage permettant également de confiner le fluide dans l'espace 9. Les ondes lumineuses du plasma sont d'une part détectées vers l'avant par un faisceau 17 focalisé en 15 vers un premier détecteur 16 de préférence matriciel sur deux dimensions et au minimum 2x2. Les ondes lumineuses du plasma sont également détectées par un second détecteur 14 de préférence également matriciel sur deux dimensions et au minimum 2x2, le faisceau correspondant 12 ayant été renvoyé par la lame 10 et focalisé 13 sur le deuxième détecteur 14. Un ou les deux détecteurs peuvent être mis en œuvre. Le premier détecteur 16 pouvant être suffisant à lui seul pour détection de position de bulle dans les trois dimensions, le capteur matriciel donnant deux dimensions et un moyen de réglage de mise au point de l'image focalisée sur le détecteur donnant la profondeur. Pour le second détecteur 14, selon le même principe on peut obtenir la position de la bulle dans les trois dimensions mais les axes donnés par le capteur matriciel seront différents par rapport au premier cas du fait que l'observation est latérale et non plus frontale.
On comprend que ces exemples sont purement indicatifs et que l'invention peut être déclinée de diverses autres manières évidentes, sans pour cela que le technicien ait à faire oeuvre d'inventivité et sans sortir du cadre général de l'invention telle que délimitée par les revendications.

Claims

REVENDICATIONS
1 . Microtome laser femtoseconde pour découpe par un faisceau laser focalisé d'au moins une tranche de matière dans un bloc de matériau, le bloc présentant une surface frontale et la tranche emportant ladite surface frontale, la tranche s'étendant au moins en partie sensiblement dans un plan X, Z perpendiculaire à un axe Y d'épaisseur du bloc, la tranche étant séparée du reste du bloc par une surface de clivage formée par la réunion d'un ensemble de bulles, chaque bulle étant formée dans une zone de focalisation d'au moins une impulsion du faisceau laser convergent d'axe optique L, caractérisé en ce que l'axe optique L de la partie convergente (3) du faisceau laser arrive sensiblement latéralement par rapport au bloc en faisant un angle compris entre -45° et +45° par rapport au plan X, Z.
2. Microtome selon la revendication 1 , caractérisé en ce que l'axe optique L du faisceau fait un angle compris entre - 10° et +10° par rapport au plan X, Z et, de préférence, l'axe optique L du faisceau est sensiblement dans le plan X, Z.
3. Microtome selon la revendication 1 ou 2, caractérisé en ce qu'il comporte un moyen de focalisation (2) et que le faisceau laser focalisé (3) est obtenu par focalisation par ledit moyen de focalisation (2) d'un faisceau laser incident (1 ) ayant une section transversale d'éclairement définie.
4. Microtome selon la revendication 3, caractérisé en ce que le moyen de focalisation (2) comporte au moins une lentille.
5. Microtome selon la revendication 3 ou 4, caractérisé en ce qu'il comporte des moyens pour que la zone de focalisation présente une répartition iso-énergétique de formation de bulle selon un ellipsoïde, la plus petite dimension dudit ellipsoïde étant dans une direction sensiblement parallèle à l'axe Y.
6. Microtome selon la revendication 5, caractérisé en ce qu'il comporte des moyens pour que le rapport entre le plus grand axe et le plus petit axe de l'ellipsoïde soit supérieur à 2 et, de préférence supérieur à 10.
7. Microtome selon l'une des revendications 3 à 6, caractérisé en ce que le moyen de focalisation comporte un système de correction du front d'onde adressable dynamiquement.
8. Microtome selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte en outre des moyens de localisation à posteriori selon au moins un axe de la position de la bulle par détection de la lumière du plasma de bulle.
9. Microtome selon l'une quelconque des revendications précédentes, caractérisé en ce que le bloc de matériau est une cornée (6) d'un œil (5), l'axe Y correspondant sensiblement à l'axe optique de l'œil.
10. Microtome selon la revendication 9, caractérisé en ce qu'une pièce d'adaptation (8) dans une matière d'indice optique sensiblement égal à celui de la cornée est disposée sur et épouse au moins la surface frontale de la cornée, ladite pièce ayant une face d'entrée pour le faisceau convergent afin que ledit faisceau convergent traverse des éléments ayant sensiblement le même indice optique, la face d'entrée étant latérale.
1 1 . Microtome selon la revendication 10, caractérisé en ce que la face d'entrée de la pièce d'adaptation (8) est plane et est telle que l'axe L du faisceau convergent est sensiblement perpendiculaire à ladite face d'entrée.
12. Microtome selon la revendication 10 ou 1 1 , caractérisé en ce que la pièce d'adaptation (8) comprime et déforme au moins la cornée.
13. Microtome selon l'une quelconque des revendications 10 à 12 caractérisé en ce que l'espace entre la face d'entrée de la pièce d'adaptation (8) et le moyen de focalisation (2) est, totalement ou en partie, rempli par un fluide d'indice sensiblement égal à celui de la pièce d'adaptation (8) ou du moyen de focalisation (2).
14. Pièce d'adaptation (8) pour microtome, caractérisée en ce qu'elle est spécialement adaptée pour une mise en œuvre dans le microtome de l'une quelconque des revendications 9 à 13 et qu'elle est réalisée dans une matière plastique d'indice optique sensiblement égal à celui de la cornée, qu'elle est à usage unique, et qu'elle est destinée à être disposée sur et épouser au moins la surface frontale de la cornée, qu'elle a une face d'entrée pour une partie convergente d'un faisceau laser, ladite face d'entrée étant latérale.
EP06841997A 2005-11-04 2006-11-03 Microtome laser femtoseconde pour decoupe par faisceau laser d'une tranche de matiere, notamment dans une cornee Pending EP1945402A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0553345A FR2892962B1 (fr) 2005-11-04 2005-11-04 Microtome laser femtoseconde pour decoupe par faisceau laser d'une tranche de matiere, notamment dans une cornee
PCT/FR2006/051136 WO2007051951A2 (fr) 2005-11-04 2006-11-03 Microtome laser femtoseconde pour decoupe par faisceau laser d'une tranche de matiere, notamment dans une cornee

Publications (1)

Publication Number Publication Date
EP1945402A2 true EP1945402A2 (fr) 2008-07-23

Family

ID=36791002

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06841997A Pending EP1945402A2 (fr) 2005-11-04 2006-11-03 Microtome laser femtoseconde pour decoupe par faisceau laser d'une tranche de matiere, notamment dans une cornee

Country Status (5)

Country Link
US (1) US20090018532A1 (fr)
EP (1) EP1945402A2 (fr)
CA (1) CA2628597A1 (fr)
FR (1) FR2892962B1 (fr)
WO (1) WO2007051951A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013095695A1 (fr) * 2011-04-10 2013-06-27 Vanessa Vera Systèmes et procédés pour délivrer des impulsions laser dans l'œil
EP2717797A4 (fr) * 2011-06-09 2015-05-06 Kelo Tec Inc Système de distribution de laser pour une chirurgie oculaire
US8978660B2 (en) * 2011-07-21 2015-03-17 Amo Development, Llc Tilt compensation, measurement, and associated adjustment of refractive prescriptions during surgical and other treatments of the eye
KR101685600B1 (ko) * 2012-08-28 2016-12-12 웨이브라이트 게엠베하 불투명 버블 층을 감소시키기 위한 스캐닝 방법 및 시스템
US10449090B2 (en) 2015-07-31 2019-10-22 Allotex, Inc. Corneal implant systems and methods
EP3451969B1 (fr) * 2016-05-05 2023-11-22 David Muller Systèmes d'implant cornéen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6325792B1 (en) * 1991-11-06 2001-12-04 Casimir A. Swinger Ophthalmic surgical laser and method
US8186357B2 (en) * 2004-01-23 2012-05-29 Rowiak Gmbh Control device for a surgical laser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007051951A2 *

Also Published As

Publication number Publication date
CA2628597A1 (fr) 2007-05-10
WO2007051951B1 (fr) 2007-08-23
WO2007051951A3 (fr) 2007-06-28
FR2892962B1 (fr) 2009-06-05
US20090018532A1 (en) 2009-01-15
WO2007051951A2 (fr) 2007-05-10
FR2892962A1 (fr) 2007-05-11

Similar Documents

Publication Publication Date Title
CA2981222A1 (fr) Appareil de chirurgie ophtalmique
EP3203949B1 (fr) Dispositif pour la decoupe d'une cornee ou d'un cristallin
CA3020006C (fr) Scanner optique de balayage d'un appareil de decoupe d'un tissu humain ou animal
EP1945402A2 (fr) Microtome laser femtoseconde pour decoupe par faisceau laser d'une tranche de matiere, notamment dans une cornee
EP0299836A1 (fr) Système optique et appareil chirurgical comportant ledit système
WO2016097620A1 (fr) Procédé d'impression d'éléments biologiques par laser et dispositif pour sa mise en oeuvre
CA2922526A1 (fr) Dispositif et procede de marquage laser d'une lentille ophtalmique avec un laser pulse de longueur d'onde et energie par impulsion selectionnees
EP3585334B1 (fr) Interface de couplage entre une source laser et un tissu a traiter
FR2746000A1 (fr) Implant intraoculaire souple et ensemble de tels implants
EP3743025B1 (fr) Appareil de decoupe d'un tissu humain ou animal comportant un coupleur optique
FR3121349A1 (fr) Systeme de decoupe d’un tissu en portions par generation de bulles de gaz oblongues
EP4132439B1 (fr) Appareil de chirurgie ophtalmique
EP4236885A1 (fr) Systeme de decoupe d'un tissu oculaire en portions elementaires
EP3645207B1 (fr) Methode de structurisation d'un substrat, ensemble comprenant un substrat et un dispositif de structuration dudit substrat
FR3049848A1 (fr) Systeme optique de focalisation d'un appareil de decoupe d'un tissu humain ou animal
FR3049847A1 (fr) Motif de decoupe d'un appareil de decoupe d'un tissu humain ou animal
EP4185256B1 (fr) Dispositif d'aplanation destiné à être couplé à un système de chirurgie ophtalmologique laser
FR2685629A1 (fr) Dispositif d'usinage, notamment d'un lenticule corneen.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080604

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20110407

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS