WO2016156629A1 - Sistema de control dosimétrico - Google Patents

Sistema de control dosimétrico Download PDF

Info

Publication number
WO2016156629A1
WO2016156629A1 PCT/ES2015/070256 ES2015070256W WO2016156629A1 WO 2016156629 A1 WO2016156629 A1 WO 2016156629A1 ES 2015070256 W ES2015070256 W ES 2015070256W WO 2016156629 A1 WO2016156629 A1 WO 2016156629A1
Authority
WO
WIPO (PCT)
Prior art keywords
dosimeter
radiation
sensor
control devices
dose
Prior art date
Application number
PCT/ES2015/070256
Other languages
English (en)
French (fr)
Inventor
Juan Manuel CAMPAYO ESTEBAN
José Ignacio ROSELLO GARCIA
José Enrique MOLINER SANCHEZ
Jesús Lacalle Bayo
Original Assignee
Ingenieria Y Marketing, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ingenieria Y Marketing, S.A. filed Critical Ingenieria Y Marketing, S.A.
Priority to PCT/ES2015/070256 priority Critical patent/WO2016156629A1/es
Priority to EP15887353.9A priority patent/EP3279695A4/en
Priority to US15/563,186 priority patent/US10234569B2/en
Publication of WO2016156629A1 publication Critical patent/WO2016156629A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/026Semiconductor dose-rate meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • G01T1/175Power supply circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Definitions

  • the present invention consists of a personal dosimeter for the control of the doses of ionizing radiation received by persons routinely subjected to said radiation, which normally comprises a radiation sensor, in which the doses of received radiation of sinusoidal type are recorded instantaneously or by impacts ⁇ (gamma) and X, and possibly a second sensor identical to the previous one, particularly for the detection of square wave X radiation, and also comprises an electronic circuit with a discriminator of the doses as a function of its wavelength and / or energy intensity, a memory bank in which the history and nature of said doses are stored, a rechargeable electric accumulator and a communications module.
  • a radiation sensor in which the doses of received radiation of sinusoidal type are recorded instantaneously or by impacts ⁇ (gamma) and X, and possibly a second sensor identical to the previous one, particularly for the detection of square wave X radiation
  • an electronic circuit with a discriminator of the doses as a function of its wavelength and / or energy intensity, a memory bank in
  • the device also comprises a reading device for dosimeters.
  • Ionizing radiations are radiations with enough energy to pluck one or more electrons from an atom or a molecule, separating them from their bonding state to the atom or molecule that contains them.
  • Said radiations may be formed by particles, such as alpha particles or beta particles, or by electromagnetic radiation, such as gamma rays or x-rays.
  • the ionizing radiations come from artificial sources, such as generators of x-rays or particle accelerators.
  • X radiation waves are sinusoidal, and those of ⁇ (gamma) radiation take place by peaks or impacts.
  • devices especially in electromedicine which generate X radiation in the form of a square wave.
  • the dosimeters are instruments for measuring the absorbed dose in a radiological protection context.
  • feather dosimeters (named for their size and shape), in which an electric charge and the voltage of a capacitor is modified with the received ionizing radiation.
  • the reading of said radiation is displayed mechanically in a scaled viewer.
  • the magnitude of the reading is reset in each cycle.
  • these devices only serve to know the precise dose, but not they are designed or can not record the radiation received over time.
  • the displayed value can be reset to zero with a new recharge.
  • the feather dosimeters can record X-ray radiation and ⁇ (gamma) radiation as well as (with losses that vary according to the penetrability capacity of beta radiation of the material) beta radiation.
  • the film dosimeters consist of a sealed radiographic plate in which a veiling of the film accumulates over time due to the impact on said film of the radiation received.
  • Dosimeter films are regularly developed in the laboratory at more or less regular periods of time. These dosimeters are very personal because if they were used by two different people it could not be determined which of the people has received what dose.
  • the plate is disposable, requiring a new plate after each development.
  • each person must have at least two dosimeters, since while it is proceeding to the development it is necessary that the user has another unit for the dosimetric control.
  • the dose received is not known until the full time of the cycle has elapsed and the results are obtained from the laboratory.
  • thermoluminescence dosimeters have an essentially inverse operation to the film dosimeters (passive), since that in these is the emissivity what is measured. They are formed by a crystal, usually calcium fluoride or lithium fluoride, which vary their emissivity depending on the amount of radiation received. They require a photomultiplier to perform a reliable reading, and have the drawbacks also described above for film dosimeters. Although its duration is greater than a film dosimeter, it is very limited in time. An example of realization of this type of dosimeters can be seen in US 1978 0 892 813.
  • the digital dosimeters have electronic sensors and signal processing. They can provide information about the point dose as well as the cumulative dose.
  • EP 0 487 432 discloses an installation of individual electronic dosimetry, with individual dosimeters composed of at least two subsets, of which a first subset constitutes an electronic dosimeter proper, as well as an identification member, and a second subset constitutes a device of transmissions by carrier wave capable of exchanging or transmitting data between this first subset and an electronic reading device placed at each access to this area.
  • the dosimeter is provided with a second sub-assembly comprising a carrier-wave transmission device capable of transmitting and / or exchanging data between the first sub-assembly and an electronic reading device placed at each access in this area, said electronic device comprising reading, with means for processing the measurement and identification data transmitted to it by each dosimeter, and means for transmitting to the dosimeter a control signal, mainly of proximity, intended to activate the second sub-assembly to trigger the transmission by carrier wave of the measurement and identification data.
  • EP A 0 450 992 describes a portable electronic dosimeter for measuring the dose flow by means of a detection circuit associated with a microprocessor.
  • a coupling device cooperates with the microprocessor, and comprises an emmisor and receiver set, as well as a switch that allows to choose the mode of operation in reception or emmission.
  • ES 0 297 495 describes a personal dosimeter fi lter system for the quantitative determination of radioactive exposures, which comprises a tantalum filter of sufficient thickness to block x-rays, rays and (gamma) energies of less than 35 Kev approx. and beta radiation; an iron fi lter; a plastic fi lter, with iron and plastic filters thick enough to provide an equal attenuation of hard beta radiation; and an open window; providing said iron and plastic filters and said open window an equal attenuation of photonic energies greater than 50 Kev. approximately.
  • ES 0 482 308 When it discloses a procedure for automatic reading of the irradiation dose of a portable ionization chamber dosimeter, in which it has a capacity Ci that consists in measuring for each reading the value of the charge of the chamber of ionization, and memorizes the load value of the ionization chamber for each reading, and then, at any instant, calculates the irradiation dose D from one of the previously memorized values and the value of the charge of the camera in that moment.
  • Ci consists in measuring for each reading the value of the charge of the chamber of ionization, and memorizes the load value of the ionization chamber for each reading, and then, at any instant, calculates the irradiation dose D from one of the previously memorized values and the value of the charge of the camera in that moment.
  • NL 1951 0 163 643 discloses a portable dosimeter for radioactive radiation comprising an ionization chamber, one of whose electrodes is connected to an electrometer with the ionization chamber and the electrometer housed in a common envelope and said electrode being together with all the parts conductively connected with it disposed within the characterized envelope because two other electrodes are arranged inside the envelope and are driven to the outside.
  • ES 2 215 490 Al describes a host port that houses a passive dosimeter, as well as a radiation alarm, so that when the received radiation exceeds a certain level, the acoustic and light signals that the alarm emits provide the user with an instantaneous assessment of the amount of radiation you are receiving at each moment,
  • ES 8704641 discloses a radiation dosimeter comprising a chip having a microcomputer, an analog-digitai converter which is connected to a data line, a voltage threshold detector (vtd) connected to the stroke resistor and electrical switches with individual control lines, a triple sensor with capacitive sensors with anode and cathode ducts, a replaceable power source, a visual display device, and a sound alarm.
  • vtd voltage threshold detector
  • dosimeters are generally of a limited spectrum, since there is a range of frequencies in which it is reliable but the radiation received at other frequencies is not reliable, since it provides a distant information from reality.
  • ⁇ (gamma) and X type radiations since the tested sensors behave in a linear manner for doses of type ⁇ (gamma), the reliability in X radiation is substantially zero , because the X radiation is of the sinusoidal type, while the ⁇ (gamma) type radiation is of the cadencial type, that is, by peaks or impacts.
  • some of these dosimeters comprise different sensors for the different ranges, and it is their combination that gives the information of the dose received.
  • the degree of reliability is relatively low for low intensity radiation, especially in the X range.
  • a single sensor to receive x-radiation sinusoidally and ⁇ (gamma) radiation minimizes these inconveniences and makes personnel exposed to moderate levels of radiation (personnel classified as category B), can be monitored and controlled dosimetrically by use of these devices; however, within the scope of the invention, provision is made for the dosimeter to comprise more than one sensor and / or more than one amplifying stage that discriminates to process in a different manner the intensity of the sinusoidal X or ⁇ (gamma) signal received, by one part and the square wave X signal, on the other.
  • the subject of the present invention is a dosimeter comprising: s A single sensor, provided with its corresponding amplification stage of sinusoidal X radiation and (gamma) radiation; preferably a PIN-type diode is used as the sensor;
  • a radiation sensor filter transparent to radiation and (gamma), but sensitive to X radiation, so that it corrects the values received in the X range at a value contained within the permissible error margins;
  • a memory module in which the information of the dose received in the given period is stored
  • a recharging circuit of the electric accumulator which may be provided with a coil or induction circuit for a wireless recharge when the dosimeter is placed on a recharge base; however, it is also provided that the recharging circuit may be powered by cable;
  • a communications module can be wired or wireless;
  • ⁇ the communications module and the recharging module can be shared in a single multipolar cable in case the connection of both is wireless;
  • a waterproof envelope usually made of plastic material
  • one or more indicators integrated or internal in the waterproof envelope that allow to indicate different parameters of the dosimeter, such as the state of the battery, the need to place the dosimeter in its control base for data download , or indication of the value of the accumulated dose; said indicators will be disposed internally in the envelope, and may be, for example, in transparent areas of said envelope, or in areas with walls or walls of smaller thickness that make them translucent;
  • the dosimeter comprises a second sensor, identical to the first, equipped with its corresponding stage of amplification or a second stage of amplification different from that of the first sensor, which processes differently the received signal when it is square wave, on the one hand or sinusoidal or cadential, on the other, so that it corrects the deficiencies that could occur in the case of dosimeters of a single sensor with a single amplification stage;
  • the described is also compatible with the presence in the dosimeter of an acoustic warning of battery discharge or the need to download data contained therein.
  • the invention is extended to a dosimeter control device which in turn comprises:
  • a base for recharging the dosimeter can be by means of cable or other physical connection, or by induction;
  • a communications module wired or wireless, with the dosimeter
  • a communications module with an external database, usually an intranet; or with a PC in local mode, which allows the recording of detected radiation levels, as well as establish communication with the user, indicating, among other functions, the status of the device (load level, alarm levels, calibration or verification needs) , etc.
  • Each of the elements of the system is provided with software or firmware that controls and processes the different elements involved.
  • the dosimeter is a personal user, being specially designed to constitute the radiological monitoring and control system of exposed personnel a moderate risk of radiation: classified personnel of category B, as defined in directive 80/836 / Euratom.
  • classified personnel of category B as defined in directive 80/836 / Euratom.
  • the system supports other compatible uses, such as the operational surveillance of the exposed personnel, both of category B and A, or the optimization of processes with risk of exposure, etc.
  • the dosimeter that proposes is a personal dosimeter, in that it stores accumulated doses.
  • the information is transferred to a data bank, once the information is transferred the internal memory is reinitialized, so, although it will usually be used by only one person, a dosimeter can also be used by different people in different periods, after reinitialization and corresponding registration (emptying of memory banks) in the user change.
  • the dosimeter receives a set of excitation signals from a single sensor, corresponding to the different types of ionizing radiation, so that the sensor receives signals of excitation of the radiation ⁇
  • Said copper foil has no attenuating effect on the Y (gamma) radiation, and corrects and ionizes the X radiation ranges, approximating them, in terms of dose, to the corresponding ⁇ (gamma) radiation received. It can, however, be arranged , of a second sensor identical to the previous one and / or a second amplification stage, different from the previous one, to send to the signal receiving circuit the information of X-radiation waves, which may be eliminated or underestimated by the first sensor, although penalizes the electric consumption, it does so in a small measure whenever the signal processor will normally receive the accumulated information of the two sensors.
  • the dose is the cumulative radiation received.
  • the dose values considered as the sum of X radiation and gamma radiation (gamma) are measured at regular time intervals, the sum of said values being interpreted and converted to dose and stored value in the memory of the dosimeter.
  • the electronic circuit associated with the sensor is powered by an electric accumulator.
  • the electric accumulator is of small size, so do not force the dosimeter to be large, for that reason it has been achieved with a basic configuration to obtain a minimum size and a maximum duration, estimated in more than 100 hours. But obviously the electric accumulator is discharged and it is necessary to recharge it periodically. However, preferably, the dosimeter should be sealed and as far as possible avoid physical connectors that can accumulate dirt, impair the operation of the device and make it more expensive.
  • the dosimeter has been provided with an induction recharging circuit when said dosimeter is detected by a load base; the recharging simultaneously activates the communication circuit to which it also feeds in the recharging phase, since said communication circuit in ordinary operation is deactivated, and therefore does not consume any energy.
  • the communication module is activated, the data is transmitted to the reading device of the charging base, and the memory data is re-initiated for a new cycle, in which the dosimeter can be used by the same person or by another, by means of the corresponding identification of said other person.
  • the charging base reader will be connected directly or indirectly, by cable or by wireless means, to a base of management data, usually a remote database from an external radiological control center,
  • Figure 1 shows a basic scheme of the dosimeter of the invention
  • Figure 2 shows a diagram of the set of devices of the dosimeter, including the external elements for recharging and storing data
  • Figure 3 shows a graph of a standard reception of ⁇ (gamma) radiation
  • Figure 4 shows a graph with a detail of the received signal represented in Figure 3 with an enlarged scale division
  • Figure 5 shows a graph of a standard reception of X radiation
  • Figure 6 shows a graph with a detail of the received signal represented in Figure 3 with an enlarged scale division
  • Figure 7 shows a graph showing the correction of the X radiation area and the ⁇ (gamma) radiation zone, with different correction factors according to the filter used;
  • Figure 8 shows a graph of square wave X radiation. Description of the embodiments of the invention
  • a dosimeter is therefore described for the personal control of the dose of ionizing radiation to which a user is subjected due to his usual activity.
  • the dosimeter preferably, is formed by a watertight body that comprises inside
  • ⁇ A sensor with an amplification stage, that transmits to an electronic circuit the signal received from sinusioidal X radiation and ⁇ radiation (gamma);
  • a filter of said sensor which corrects the overexpression of the X range in the received radiation; said filter consists of a copper foil that covers the sensor
  • An electronic circuit for transforming the signal provided with a corresponding software; said electronic circuit receives the signal of the amplification stage for processing;
  • a memory circuit said memory circuit may be part of an integrated circuit or constitute a separate module;
  • a communication circuit activated and / or powered by the recharging circuit of the electric accumulator, so that said communication circuit has no consumption during use, maximizing the operating time of the apparatus.
  • the dosimeter receives radiation hits, which are filtered and measured at regular intervals, in the order of microseconds or at intervals of even less than a microsecond, by the sensor, so that with the copper filter used they are corrected , in terms of dose, the intensity of the X radiation and ⁇ (gamma) radiation received.
  • the received signal is evaluated by the electronic signal transformation circuit, as a function of the intensity of the preceding radiation impacts, transforming the received signal into dose data or interpretable as doses. These data are recorded cumulatively in the memory circuit.
  • the memory stores only the accumulated dose since the last period in which the device has been reinitialized.
  • said dosimeter may have a second sensor, identical to the previous one, and / or a second amplification stage, which will transform of the received excitation signal in a manner different from that of the first amplification stage, the corresponding data being introduced in the electronic circuit, in a single input preferably, but possibly also in different inputs, for a single processing of the radiation received and its transformation to dose terms.
  • said second sensor may also be provided with a filter identical to that of the first sensor, or a filter different from that of the first sensor.
  • the dosimeter cooperates with a dosimeter control device, which comprises:
  • ⁇ A base for recharging the dosimeter can be by means of cable or other physical connection, or by induction;
  • a communications module with an external database usually an intranet
  • the charging base of the dosimeter and the communication module with the dosimeter are integrated in a single unit.
  • said recharging base comprises an inductor circuit for the wireless recharging of the electric accumulator, but it is provided and within the scope of the invention that the recharging connection is via a conventional cable connection.
  • the data downloading device is provided with wireless communication means, for example by Bluetooth.
  • the data communication can be via a connection cable.
  • the user Since the duration of the electric accumulator is limited, the user must recharge it every so often. However, if the recharging and downloading of data has not been done, the user is notified by the dosimeter or by the recharging unit (or by means of external dosimetric control services connected to the recharging unit, for example by sending from an SMS to a registered number) that the electric accumulator of the dosimeter must be recharged and the data downloaded to the data download device.
  • Said data download base stores and / or transmits the information to a database of external dosimetric control services, which will keep a record of the dose received by each user, and may issue reports to take corrective or isolate the user from radiation sources, if a high radiation threshold has been reached.
  • the load base of the dosimeter and data download can be connected to a PC, and it is said PC that maintains the communication with the dosimetric control services,
  • the load base of the dosimeter can be independent of a PC, but the data download and reset of the memory circuit can be performed by the wireless communication system of the PC.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Comprenden un dosímetro con al menos un sensor de radiación para y un acumulador eléctrico recargable; el dosímetro comprende un único sensor de radiación X sinusoidal y de radiación γ (gamma), un filtro del sensor de radiación, una primera etapa de amplificación del sensor; un circuito de tratamiento de la señal recibida por el sensor, y conversión de dicha señal a un valor de dosis o interpretable como dosis; un módulo de memoria en el que se almacena la información de la dosis recibida en el periodo determinado; un circuito de recarga del acumulador eléctrico; y un módulo de comunicaciones; Comprenden también un dispositivo de control del dosímetro, que comprende al menos una base de recarga del dosímetro con un circuito de recarga, y un sistema de comunicación con el dosímetro.

Description

SISTEMA DE CONTROL DOSIMÉTRICO
La presente invención consiste en un dosímetro personal para el control de las dosis de radiación ionizante recibidas por personas sometidas de modo habitual a dichas radiaciones, que comprende normalmente un sensor de radiación, en que se registran instantáneamente las dosis de radiación recibida de tipo sinusoidal o por impactos γ (gamma) y X, y posiblemente un segundo sensor idéntico al anterior, particularmente para la detección de radiación X de onda cuadrada, y comprende también un circuito electrónico con un discriminador de las dosis en función de su longitud de onda y/o intensidad energética, un banco de memoria en el que se almacena el historial y naturaleza de dichas dosis, un acumulador eléctrico recargable y un módulo de comunicaciones.
Comprende también la presente invención un dispositivo lector de los dosímetros.
Las radiaciones ionizantes son radiaciones con energía suficiente para arrancar de un átomo o de una molécula uno o más electrones desligándolos de su estado de vinculación al átomo o molécula que lo contiene. Dichas radiaciones pueden estar formadas por partículas, tales como partículas alfa o partículas beta, o por radiación electromagnética, tales como rayos γ (gamma) o rayos x.
De forma natural existen fuentes generadoras de radiaciones ionizantes en la corteza terrestre, y también procedente del exterior, éstas últimas filtradas por las distintas capas de la atmósfera terrestre. Las radiaciones ionizantes, además, proceden de fuentes artificiales, tales como generadores de rayos x o de aceleradores de partículas.
Normalmente las ondas de radiación X son sinusoidales, y las de radiación γ (gamma) tienen lugar por picos o impactos. Además existen aparatos especialmente en electromedicina, que generan radiación X en forma de onda cuadrada.
La exposición habitual de personas a radiaciones ionizantes debe estar controlada conforme a las normas regulatorias correspondientes. Dichas normas establecen también la necesidad de establecer una red nacional centralizada de exposición a la radiación, o un documento individual de seguimiento radiológico a cada trabajador exterior.
Así, es necesario que las personas habitualmente expuestas a radiación ionizante dispongan de un dispositivo de control y evaluación de las dosis recibidas, de manera que se establezcan también las medidas correctoras correspondientes, por ejemplo mediante la realización de actividades no sometidas a radiación ionizante o bien incrementando los dispositivos de protección radiológica tales como trajes de protección.
Los dosímetros son instrumentos de medida de la dosis absorbida en un contexto de protección radiológica.
Estado de la técnica
Existen dosímetros de pluma (denominados así por su tamaño y forma), en ios que se modifica una carga eléctrica y el voltaje de un condensador con la radiación ionizante recibida. La lectura de dicha radiación se exhibe de forma mecánica en un visor escalado. La magnitud de la lectura se reinicia en cada ciclo. Sin embargo, dichos dispositivos sirven únicamente para conocer la dosis puntual, pero no están concebidos ni pueden realizar un registro de la radiación recibida a So largo del tiempo.
El valor mostrado se puede reiniciar a cero con una nueva recarga. Los dosímetros de pluma pueden registrar radiación de rayos X y radiaciones γ (gamma) así como (con pérdidas que varían según la capacidad de penetrabilidad de radiación beta del material) radiaciones beta.
Los dosímetros de película consisten en una placa radiográfica sellada en la que a lo largo del tiempo va acumulándose un velado de la misma por efecto del impacto sobre dicha película de la radiación recibida. Las películas dosímetros son regularmente reveladas en laboratorio a periodos más o menos regulares de tiempo. Estos dosímetros son personalísimos ya que si ios utilizaran dos personas distintas no podría determinarse cual de las personas ha recibido qué dosis. Además, la placa es desechable, requiriéndose una nueva placa tras cada revelado. Por otra parte, cada persona debe tener al menos dos dosímetros, ya que mientras se está procediendo al revelado es necesario que el usuario disponga de otra unidad para el control dosímétrico. Por otra parte, no se tiene conocimiento de la dosis recibida hasta que ha transcurrido ei tiempo completo del ciclo y se obtienen los resultados desde el laboratorio. Ello requiere además ei registro manual de los datos obtenidos en la base de datos correspondiente en la que se registran las dosis individuales. Un cambio de laboratorio y/o de suministrador de ios dispositivos puede suponer que no se conozca de una manera fiable y directa ia dosis acumulada por una persona, con ios riesgos correspondientes para la salud. Otra característica es que la película no discrimina la intensidad o variedad de ia radiación recibida, sino únicamente la cantidad acumulada.
Los dosímetros de termoluminiscencia (TLD) tienen un funcionamiento esencialmente inverso a de los dosímetros de película (pasivos), ya que en éstos es la emisividad lo que se mide. Están formados por un cristal, normalmente de fluoruro de calcio o de fluoruro de litio, que varían su emisividad en función de la cantidad de radiación recibida. Requieren un fotomuitipiicador para realizar una lectura fiable, y tiene los inconvenientes también descritos anteriormente para los dosímetros de película. Aunque su duración es mayor un dosímetro de película, es muy limitada en el tiempo. Un ejemplo de realización de este tipo de dosímetros podemos verlo en US 1978 0 892 813.
Los dosímetros digitales tienen sensores electrónicos y de procesamiento de señales. Pueden proporcionar información acerca de la dosis puntual así como de la dosis acumulada.
EP 0 487 432 divulga una instalación de dosimetría electrónica individual, con dosímetros individuales compuestos al menos por dos subconjuntos, de los que un primer subconjunto constituye un dosímetro electrónico propiamente dicho, así como un órgano de identificación, y un segundo subconjunto constituye un dispositivo de transmisiones por onda portadora capaz de realizar intercambios o transmisiones de datos entre este primer subconjunto y un dispositivo electrónico de lectura colocado en cada acceso a esta zona. El dosímetro está dotado de un segundo subconjunto que comprende un dispositivo de transmisión por ondas portadoras capaz de realizar transmisiones y/o intercambios de datos entre el primer subconjunto y un dispositivo electrónico de lectura colocado en cada acceso de esta zona, comprendiendo dicho dispositivo electrónico de lectura, con medios para tratar los datos de medición y de identificación que le son transmitidos por cada dosímetro, y medios para transmitir hacia el dosímetro una señal de control, fundamentalmente de proximidad destinada a activar el segundo subconjunto para desencadenar la transmisión por onda portadora de los datos de medición e identificación. EP A 0 450 992 descri be dosímetro electrónico portátil para medi r el flujo de dosis por medio de un ci rcuito de detección asociado a un microprocesador. Un dispositivo de acoplam iento coopera con el microprocesador, y com prende un conjunto em isor y receptor, así como un conm utador que permite elegi r el modo de funcionamiento en recepción o en em isión .
ES 0 297 495 describe un sistema de fi ltro dosímetro personal para la determ inación cuantitativa de exposiciones radiactivas, que com prende un filtro de tantal io de suficiente espesor para bloquear rayos X, rayos y (gamma) de energías i nferiores a 35 Kev aproxi madamente y radiación beta; un fi ltro de hierro; un fi ltro de plástico, cono los filtros de hierro y plástico suficientemente gruesos para proporcionar una igual atenuación de radiación beta dura ; y una ventana abierta; proporcionando los citados filtros de hierro y plástico y la referida ventana abierta una igual atenuación de energías fotónicas superiores a 50 Kev. aproxi madamente.
ES 0 482 308 Al divulga un procedi miento de lectura automática de la dosis de i rradiación de un dosímetro portátil de cámara de ionización, en el que presenta una capacidad Ci que consiste en medir para cada lectura el valor de la carga de la cámara de ionización, y memoriza para cada lectura el valor de la carga de la cámara de ionización, y, posteriormente, calcula en un instante cualquiera la dosis D de irradiación a parti r de uno de los valores previamente memorizados y del valor de la carga de la cámara en ese i nstante.
N L 1951 0 163 643 descri be un dosímetro portátil para la radiación radio-activa que com prende una cámara de ionización, uno de cuyos electrodos está conectado a un electrómetro estando la cámara de ionización y el electrómetro alojados en una envolvente común y estando dicho electrodo junto con todas las partes conductivamente conectadas con él dispuesto dentro de la envolvente caracterizado porque se disponen otros dos electrodos dentro de la envolvente y son conducidos al exterior.
ES 2 215 490 Al describe un portadosírnetro que aloja un dosímetro pasivo, así como una alarma de radiación, de forma que cuando la radiación recibida sobrepasa un nivel determinado, las señales acústicas y luminosas que emite la alarma proporcionan ai usuario una valoración instantánea de la cantidad de radiación que está recibiendo en cada momento,
ES 8704641 divulga un dosímetro de radiación que comprende un chip que tiene un microordenador, un convertidor analógico-digitaí que se conecta a una línea de datos, un detector de umbral de la tensión (vtd) conectado a la resistencia de carrera y unos conmutadores eléctricos con líneas de control individuales, un sensor triple con sensores capacitivos con conductos de ánodo y de cátodo, una fuente de energía recambiable, un dispositivo de representación visual, y una alarma sonora.
Uno de los problemas de los dosímetros es que son en general de un espectro limitado, ya que existe un rango de frecuencias en que es fiable pero la radiación recibida en otras frecuencias no es fiable, ya que proporciona una información distante de la realidad. En particular- no se utilizan sensores únicos para radiaciones de tipo γ (gamma) y X, ya que los sensores ensayados si bien se comportan de una manera lineal para dosis de tipo γ (gamma), la fiabilidad en la radiación X es sustancialmente nula, debido a que la radiación X es de tipo sinusoidal, mientras que la radiación de tipo γ (gamma) es de tipo cadencial, esto es, por picos o impactos. Esto dificulta el uso de un único sensor o un único tipo de sensor en instrumentos de medida de la dosis de radiación. Así, alguno de estos dosímetros comprende sensores distintos para los distintos rangos, y es su combinación la que da la información de la dosis recibida , Además, el grado de fiabiíidad es relativamente bajo para las radiaciones de baja intensidad, especialmente en el rango X.
Es deseable la utilización de un único sensor, ya que la utilización de múltiples sensores para distintos tipos de radiación presenta varios inconvenientes :
La radiación ambiental, que se ve detectada por todos ellos;
El consumo eléctrico que supone alimentar dos o más sensores multiplicando la energía requerida, y penalizando la duración de los medios acumuladores eléctricos, por una parte, y exigiendo un mayor tamaño y carga del acumulador;
La necesidad de disponer un circuito electrónico que combine las señales recibidas de los múltiples sensores, que también aumenta los requerimientos en potencia y consumo eléctrico;
Tamaño y peso del dosímetro ,
Si bien la utilización de un único sensor es deseable, para evaluar correctamente la radiación X podrá ser necesario disponer de sensores y/o etapas de amplificación distintas para la radiación recibida en forma sinusoidal y en forma de onda cuadrada .
El uso de un sensor único para recibir la radiación X de forma sinusoidal y la radiación γ (gamma) minimiza estos inconvenientes y hace que personal expuesto a niveles moderados de radiación (personal clasificado como de categoría B), pueda ser vigilado y controlado dosimétricamente haciendo uso de estos dispositivos; no obstante, dentro del alcance de la invención, está previsto que el dosímetro comprenda más de un sensor y/o más de una etapa de amplificación que discrimine procese de manera distinta la intensidad de la señal X sinusoidal o γ (gamma) recibida, por una parte y de la señal X de onda cuadrada, por otra. Descripción de la invención
La presente invención tiene por objeto un dosímetro que comprende: s Un único sensor, provisto de su correspondiente etapa de amplificación de radiación X sinusoidal y de radiación y (gamma); de preferencia se utiliza como sensor un diodo de tipo PIN ;
Un filtro del sensor de radiación, transparente a la radiación y (gamma), pero sensible a la radiación X, de modo que corrige los valores recibidos en el rango X a un valor contenido dentro de los márgenes de error admisibles;
Un circuito de recepción de la señal recibida por el sensor de radiación, y conversión de dicha señal a un valor de dosis o interpretable como dosis de radiación ionizante; dicho circuito comprende un elemento medidor de la señal instantánea en intervalos regulares de alta frecuencia, dicho circuito estará provisto de un identificador único; el elemento medidor de la señal instantánea evalúa la intensidad de la señal recibida, y establece una corrección del valor de dicha señal en función de los valores de las lecturas precedentes, de modo que en función de dicha corrección puede determinarse el tipo de radiación recibida, y con ella un valor de dosis bastante preciso;
un acumulador eléctrico recargable;
un módulo de memoria en el que se almacena la información de la dosis recibida en el periodo determinado;
un circuito de recarga del acumulador eléctrico, que puede estar provisto de una bobina o circuito de inducción para una recarga inalámbrica cuando el dosímetro se sitúa sobre una base de recarga; no obstante, está previsto también que el circuito de recarga pueda estar alimentado por cable;
un módulo de comunicaciones; el módulo de comunicaciones puede ser por cable o inalámbrico; el módulo de comunicaciones y el módulo de recarga pueden estar compartidos en un único cable multipolar en caso de que la conexión de ambos sea inalámbrica;
Una envoltura estanca, normalmente realizada en material plástico;
De forma opcional, uno o más indicadores (LED) integrados o internos en la envoltura estanca que permiten indicar distintos parámetros del dosímetro, tales como el estado de la batería, la necesidad de colocar el dosímetro en su base de control para descarga de datos, o indicación del valor de la dosis acumulada; dichos indicadores estarán dispuestos interiormente en la envoltura, y pueden estar, por ejemplo en zonas transparentes de dicha envoltura, o en zonas con paredes o con paredes de menor grosor que las hagan translúcidas;
De forma opcional, un segundo de radiación X de onda cuadrada; por cuanto existen aparatos que generan radiación X en forma de onda cuadrada que pueden plantear problemas en la fiabilidad de la lectura se ha previsto que el dosímetro comprenda un segundo sensor, idéntico al primero, dotado de su correspondiente etapa de amplificación o de una segunda etapa de amplificación distinta a la del primer sensor, que procese de manera distinta la señal recibida cuando ésta es de onda cuadrada, por una parte o sinusoidal o cadencial, por otra, de modo que corrija las deficiencias que pudieran darse en el caso de dosímetros de un único sensor con una única etapa de amplificación;
Lo descrito es compatible también con la presencia en el dosímetro de un avisador acústico de descarga de batería o de la necesidad de realizar una descarga de los datos contenidos en él. Se extiende la invención a un dispositivo de control del dosímetro que comprende a su vez:
Una unidad de proceso;
Un módulo de memoria;
Normalmente, un reloj integrado;
Una base de recarga del dosímetro; dicha base de recarga puede ser por medio de cable u otra conexión física, o por inducción;
Un módulo de comunicaciones, por cable o inalámbrico, con el dosímetro;
Un módulo de comunicaciones con una base de datos externa, normalmente de una intranet; o con un PC en modo local, que permite el registro de los niveles de radiación detectados, así como establecer comunicación con el usuario indicando, entre otras funciones, el estado del dispositivo (nivel de carga, niveles de alarma, necesidad de calibración o verificación, etc.
Cada uno de los elementos del sistema está provisto de un software o un firmware que controla y procesa los distintos elementos involucrados.
El dosímetro es personal de un usuario, estando especialmente diseñado para que constituya el sistema de vigilancia y control radiológico del personal expuesto un moderado riesgo de radiación : personal clasificado de categoría B, según se define en la directiva 80/836/Euratom. Si bien el sistema admite otros usos compatibles, como por ejemplo la vigilancia operacional del personal expuesto, tanto de categoría B como A, o la optimización de procesos con riesgo de exposición, etc.
Un usuario sometido a riesgo de radiación ionizante debe llevar un dispositivo medidor de la radiación recibida. El dosímetro que se propone es un dosímetro personal, por cuanto almacena dosis acumuladas. Sin embargo, por cuanto la información es transferida a un banco de datos, una vez transferida la información la memoria interna es reinicializada, por lo que, aunque habitualmente será utlizado por una sola persona, un dosímetro puede ser también utilizado por distintas personas en distintos periodos, tras la reinicialización y correspondiente registro (vaciado de los bancos de memoria) en el cambio de usuario.
El dosímetro recibe un conjunto de señales de excitación de un único sensor, correspondientes a los diferentes tipos de radiación ionizante, de modo que el sensor recibe señales de excitación de la radiación γ
(gamma) cadencíales (en cadencia irregular o regular), es decir, que no es una señal continua sino que se manifiesta como picos o "golpes" de radiación. Por otra parte, también se reciben señales de radiación X. Sin embargo dicha radiación X se manifiesta como una señal continua de forma sinusoidal, por lo que no puede medirse de la misma manera que la radiación γ (gamma), Además, para un determinado tipo de sensores, la radiación X está sobreexpresada, de modo que siendo en términos de dosis de un valor mucho menor se manifiesta de un modo más intenso del debido, lo que da lugar a valores incorrectos de dosis. A tai efecto, ei sensor ha sido provisto de un filtro atenuador de la radiación X consistente en una lámina de cobre. Dicha lámina de cobre no tiene efecto atenuador en la radiación Y (gamma), y corrige y iinealiza los rangos de radiación X, aproximándolos, en términos de dosis, a los correspondientes de la radiación γ (gamma) recibida, Puede disponer, no obstante, de un segundo sensor idéntico al anterior y/o una segunda etapa de amplificación, distinta a la anterior, para enviar al circuito receptor de señal la información de ondas de radiación X, que puedan resultar eliminadas o infravaloradas por el primer sensor, que aunque penaliza ei consumo eléctrico, lo hace en pequeña medida toda vez que el procesador de la señal recibirá normalmente la información acumulada de los dos sensores.
La dosis es la radiación acumulada recibida. Así, conforme a la invención, se miden a intervalos de tiempo regulares ios valores de dosis considerada como la suma de radiación X y radiación γ (gamma), siendo la suma de dichos valores la que es interpretada y convertida a valor de dosis y almacenada en la memoria del dosímetro.
El circuito electrónico asociado al sensor está alimentado por un acumulador eléctrico. El acumulador eléctrico es de reducido tamaño, de modo no obligue a que el dosímetro sea grande, por esa razón se ha logrado con una configuración básica obtener un mínimo tamaño y una máxima duración, estimada en más de 100 horas. Pero obviamente el acumulador eléctrico se descarga y es necesario recargarlo periódicamente. Sin embargo, de manera preferente, el dosímetro deberá estar sellado y en la medida de lo posible evitar conectores físicos que pueden acumular suciedad, perjudicar el funcionamiento del aparato y encarecerlo. Por ello, se ha provisto al dosímetro de un circuito de recarga por inducción cuando dicho dosímetro es detectado por una base de carga; la recarga activa simultáneamente el circuito de comunicaciones al que alimenta también en la fase de recarga, ya que dicho circuito de comunicaciones en el funcionamiento ordinario se encuentra desactivado, y por lo tanto no consume ninguna energía. Cuando se activa el módulo de comunicaciones se transmiten los datos ai dispositivo lector de la base de carga, y se reiniciaiizan ios datos de memoria para un nuevo ciclo, en el que el dosímetro podrá ser utilizado por la misma persona o por otra, mediante la identificación correspondiente de dicha otra persona.
El lector de la base de carga estará conectado directa o indirectamente, por cable o por medios inalámbricos, a una base de datos gestora, normalmente una base de datos remota de un centro de control radiológico externo,
Breve descripción de las figuras
Con objeto de ¡lustrar la explicación que va a seguir, adjuntamos a la presente memoria descriptiva, cuatro hojas de dibujos y/o diagramas, en los que en ocho figuras e representa, a título de ejemplo y sin carácter limitativo, el objeto de la presente invención, y en los que:
La figura 1 muestra un esquema básico del dosímetro de la invención;
La figura 2 muestra un diagrama del conjunto de dispositivos del dosímetro, incluyendo los elementos externos de recarga y almacenamiento de datos;
La figura 3 muestra una gráfica de una recepción estándar de radiación γ (gamma);
La figura 4 muestra una gráfica con un detalle de la señal recibida representada en la figura 3 con una división de escala ampliada;
La figura 5 muestra una gráfica de una recepción estándar de radiación X;
La figura 6 muestra una gráfica con un detalle de la señal recibida representada en la figura 3 con una división de escala ampliada;
La figura 7 muestra una gráfica que muestra la corrección de la zona de radiación X y la zona de radiación γ (gamma), con distintos factores de corrección según el filtro empleado; y
La figura 8 muestra una gráfica de radiación X de onda cuadrada. Descripción de los modos de realización de la invención
Se describe por tanto un dosímetro para el control personal de la dosis de radiación ionizante a la que un usuario está sometido por causa de su actividad habitual.
Como se ha indicado, el dosímetro, de manera preferente, está formado por un cuerpo estanco que comprende en su interior
Un sensor, con una etapa de amplificación, que transmite a un circuito electrónico la señal recibida de radiación X sinusioidal y de radiación γ (gam ma);
Un filtro de dicho sensor, que corrige la sobreexpresión de del rango X en la radiación recibida; dicho filtro consiste en una lámina de cobre que recubre el sensor
Un circuito electrónico de transformación de la señal, provisto de un software correspondiente; dicho circuito electrónico recibe la señal de la etapa de amplificación para su procesamiento;
Un circuito de memoria; dicho circuito de memoria puede formar parte de un circuito integrado o constituir un módulo separado;
Un acumulador eléctrico recargable;
Un circuito de recarga del acumulador eléctrico, y
Un circuito de comunicaciones activado y/o alimentado con el circuito de recarga del acumulador eléctrico, de modo que dicho circuito de comunicaciones no tiene consumo alguno durante la utilización, maximizando el tiempo operativo del aparato.
Durante el uso, el dosímetro recibe impactos de radiación, que son filtrados y medidos a intervalos regulares, en el orden de microsegundos o a intervalos de tiempo incluso menores a un microsegundo, por el sensor, de modo que con el filtro de cobre empleado se corrigen, en términos de dosis, la intensidad de la radiación X y la radiación γ (gamma) recibidas. La señal recibida es evaluada por el circuito electrónico de transformación de la señal, en función de la intensidad de los impactos de radiación precedentes, transformando la señal recibida en datos de dosis o interpretables como dosis. Esos datos se graban en forma acumulativa en el circuito de memoria. Así, la memoria guarda únicamente la dosis acumulada desde el último periodo en que el dispositivo ha sido reinicializado.
Cuando el dosímetro esté sometido radiación X de onda cuadrada,, con el fin de proporcionar una mayor precisión a la información obtenida, dicho dosímetro podrá disponer de un segundo sensor, idéntico al anterior, y/o de una segunda etapa de amplicación, que transformará de la señal de excitación recibida de manera distinta a como lo hace la primera etapa de amplificación, introduciéndose los correspondientes datos en el circuito electrónico, en una única entrada de manera preferente, pero posiblemente también en entradas distintas, para un procesado único de la radiación recibida y su transformación a términos de dosis. Cuando se utiliza un segundo sensor, dicho segundo sensor podrá estar provisto también de un filtro idéntico al del primer sensor, o de un filtro distinto al del primer sensor.
Cuando la batería está próxima a alcanzar un umbral mínimo de carga, está previsto que se active un indicador luminoso o acústico para que el usuario proceda a la carga del aparato.
El dosímetro coopera con un dispositivo de control del dosímetro, que comprende:
Una unidad de proceso;
Normalmente un módulo de memoria;
Normalmente, un reloj integrado;
Una base de recarga del dosímetro; dicha base de recarga puede ser por medio de cable u otra conexión física, o por inducción; Un módulo de comunicaciones, por cable o inalámbrico, con el dosímetro;
Un módulo de comunicaciones con una base de datos externa, normalmente de una intranet;
Según una forma preferente de la invención la base de recarga del dosímetro y el módulo de comunicaciones con el dosímetro están integrados en una única unidad.
De preferencia dicha base de recarga comprende un circuito inductor para la recarga inalámbrica del acumulador eléctrico, pero está previsto y dentro del ámbito de la invención que la conexión de recarga sea mediante una conexión de cable convencional .
Además, el dispositivo de descarga de datos está provisto de medios de comunicación inalámbrica, por ejemplo mediante Bluetooth. No obstante, está comprendido dentro del ámbito de la invención que la comunicación de datos pueda ser mediante un cable de conexión .
Por cuanto la duración del acumulador eléctrico es limitada, el usuario debe recargarlo cada cierto tiempo. No obstante, si la recarga y descarga de datos no se ha realizado, el usuario es avisado por el dosímetro o por la unidad de recarga (o por medio de servicios externos de control dosimétrico conectados a la unidad de recarga, por ejemplo mediante el envío de un SMS a un número registrado) que el acumulador eléctrico del dosímetro debe ser recargado y los datos descargados al dispositivo de descarga de datos.
Dicha base de descarga de datos almacena y/o transmite la información a una base de datos de los servicios externos de control dosimétrico, que mantendrá un registro de la dosis recibida por cada usuario, y podrá emitir informes para tomar acciones correctoras o aislar al usuario de fuentes de radiación, si se hubiera alcanzado un umbral de radiación elevado.
De acuerdo una realización particular de la invención, la base de carga del dosímetro y descarga de datos puede estar conectada a un PC, y ser dicho PC el que mantenga la comunicación con los servicios de control dosimétricos,
Según otra realización, menos preferida, la base de carga del dosímetro puede ser independiente de un PC, pero la descarga de datos y reinicialización del circuito de memoria puede realizarse mediante el sistema de comunicación inalámbrico del PC.

Claims

REIVIN DICACIONES
1. - Dispositivos de control dosimétrico, que comprenden un dosímetro con al menos un sensor de radiación y un acumulador eléctrico recargable, caracterizados por que el dosímetro comprende:
* Un único sensor de radiación X sinusoidal y de radiación γ
(gamma);
Un filtro del sensor de radiación, transparente a la radiación
Y (gamma), pero sensible a la radiación X, que corrige los valores sobreexpresados recibidos en el rango X a un valor contenido dentro de los márgenes de error admisibles;
Una primera etapa de amplificación del primer sensor;
Un circuito de tratamiento de la señal recibida por e! sensor de radiación, y conversión de dicha seña! a un valor de dosis o interpretable como dosis;
un módulo de memoria en el que se almacena la información de la dosis recibida en el periodo determinado;
un circuito de recarga del acumulador eléctrico;
un módulo de comunicaciones;
y caracterizados también porque los dispositivos comprenden también un dispositivo de control del dosímetro, que comprende al menos una base de recarga del dosímetro con un circuito de recarga, y un sistema de comunicación con el dosímetro.
2. - Dispositivos de control dosimétrico, según la reivindicación 1, caracterizados por que el sensor consiste en un diodo de tipo PIN .
3. - Dispositivos de control dosimétrico, según cualquiera de las reivindicaciones 1 a 2, caracterizados por que el dosímetro comprende un segundo sensor de radiación X de onda cuadrada, con una correspondiente etapa de amplificación siendo dicho segundo sensor idéntico al primer sensor, y dicha segunda etapa de amplificación distinta a la del primer sensor.
4. - Dispositivos de control dosimétrico, según cualquiera de las reivindicaciones 1 a 2, caracterizados por que el dosímetro comprende una segunda etapa de amplificación de la radiación X de onda cuadrada, conectada al primer sensor de radiación X siendo dicha segunda etapa de amplificación distinta a la primera etapa de amplificación.
5. - Dispositivos de control dosimétrico, según cualquiera de las reivindicaciones 1 a 4, caracterizados por que el dispositivo de control del dosímetro comprende además un módulo de comunicaciones con una base de datos externa.
6. - Dispositivos de control dosimétrico, según cualquiera de las reivindicaciones 1 a 5, caracterizados por que el dispositivo de control del dosímetro comprende además:
Una unidad de proceso;
Un módulo de memoria.
Un módulo de comunicaciones con el dosímetro.
7. - Dispositivos de control dosimétrico, según cualquiera de las reivindicaciones 1 a 6, caracterizados por que el sensor de radiación ionizante comprende un medidor de la intensidad de la seña! instantánea en intervalos regulares de alta frecuencia.
8. - Dispositivos de control dosimétrico, según cualquiera de las reivindicaciones 1 a 7, caracterizados por que el circuito de recarga del acumulador eléctrico del dosímetro y el circuito de recarga de la base de recarga consisten respectivamente en sendas bobinas que realizan la recarga inalámbrica por inducción.
9. - Dispositivos de control dosimétrico, según cualquiera de las reivindicaciones 1 a 8, caracterizados por que el módulo de comunicaciones del dosímetro y el módulo de la base de recarga de comunicaciones con el dosímetro son de tipo inalámbrico, tal como Bluetooth.
10. - Dispositivos de control dosimétrico, según cualquiera de las reivindicaciones 1 a 9, caracterizados por que el dosímetro comprende una envoltura externa estanca.
11. - Dispositivos de control dosimétrico, según la reivindicación 10, caracterizados por que el dosímetro comprende dispuestos exteriormente o visibles/o audibles a través de en su envoltura un conjunto de indicadores visuales o acústicos, de indicación de distintos parámetros, tales como estado de la batería y/o necesidad de carga; necesidad de descarga de datos; o valor de la dosis acumulada.
PCT/ES2015/070256 2015-03-31 2015-03-31 Sistema de control dosimétrico WO2016156629A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/ES2015/070256 WO2016156629A1 (es) 2015-03-31 2015-03-31 Sistema de control dosimétrico
EP15887353.9A EP3279695A4 (en) 2015-03-31 2015-03-31 Dosimetric control system
US15/563,186 US10234569B2 (en) 2015-03-31 2015-03-31 Dosimetric control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2015/070256 WO2016156629A1 (es) 2015-03-31 2015-03-31 Sistema de control dosimétrico

Publications (1)

Publication Number Publication Date
WO2016156629A1 true WO2016156629A1 (es) 2016-10-06

Family

ID=57003950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070256 WO2016156629A1 (es) 2015-03-31 2015-03-31 Sistema de control dosimétrico

Country Status (3)

Country Link
US (1) US10234569B2 (es)
EP (1) EP3279695A4 (es)
WO (1) WO2016156629A1 (es)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4461952A (en) * 1980-10-24 1984-07-24 Commissariat A L'energie Atomique Portable computing device for measuring radiations
US6031454A (en) * 1997-11-13 2000-02-29 Sandia Corporation Worker-specific exposure monitor and method for surveillance of workers
US20020079439A1 (en) * 1997-08-11 2002-06-27 Siemens Plc And Chiyoda Technol Corporation Personal radiation dosimeters
US20040129888A1 (en) * 2001-05-14 2004-07-08 Subramaniam Kannan Low cost digital pocket dosemeter
US20100156193A1 (en) * 2008-12-23 2010-06-24 Mark Rhodes Inductively coupled data and power transfer system and apparatus
FR2973116A1 (fr) * 2011-03-22 2012-09-28 Gregory Jean Dispositif avertisseur de detection de radioactivite, contenu dans un porte-clefs, pour alarmer d'un danger de radiation nucleaire couple a un panneau solaire et ou un systeme de recharge usb
US20140299783A1 (en) * 2012-06-01 2014-10-09 Landauer, Inc. Energy harvester for wireless, motion and position-sensing, integrating radiation sensor for occupational and environmental dosimetry

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES205121A1 (es) 1951-08-29 1952-10-16 Philips Nv UN DOSiMETRO PORTáTIL PARA LA RADIACIoN RADIOACTIVA
US3202821A (en) 1963-03-11 1965-08-24 Leo F Kocher Film badge system and method of using
US4240992A (en) 1978-04-03 1980-12-23 Westinghouse Electric Corp. Technique for fabricating radiation sensitive dosimeters
FR2431138A1 (fr) 1978-07-12 1980-02-08 Commissariat Energie Atomique Procede de lecture automatique de la dose d'irradiation d'un dosimetre portatif a chambre d'ionisation et dispositif mettant en oeuvre ce procede
US4605858A (en) 1984-11-09 1986-08-12 General Electric Company Personal radiation dosimeter
GB8912812D0 (en) * 1989-06-03 1989-07-19 Nat Radiological Protection Bo Radiation meter
FR2660761B1 (fr) 1990-04-06 1995-10-06 Thomson Csf Dispositif de detection de rayonnements dangereux pour les etres vivants.
FR2669424B1 (fr) 1990-11-21 1995-10-20 Merlin Gerin Installation de dosimetrie electronique individuelle.
US5444756A (en) * 1994-02-09 1995-08-22 Minnesota Mining And Manufacturing Company X-ray machine, solid state radiation detector and method for reading radiation detection information
US7109859B2 (en) * 2002-12-23 2006-09-19 Gentag, Inc. Method and apparatus for wide area surveillance of a terrorist or personal threat
ES2215490B1 (es) 2004-04-19 2005-10-16 Jose Maria Rodriguez San Pedro Pico Soporte portadosimetros con alarma de radiacion incorporada.
US7378954B2 (en) * 2005-10-21 2008-05-27 Barry Myron Wendt Safety indicator and method
JP2007225535A (ja) * 2006-02-27 2007-09-06 Fuji Electric Systems Co Ltd 線量計充電通信システム
MX354903B (es) * 2012-06-27 2018-03-23 Treefrog Dev Inc Seguimiento y control de efectos personales.
FR3023624B1 (fr) * 2014-07-11 2022-07-15 Conseils Et Etudes En Radioprotection Procede et dispositif pour le suivi spatial et temporel de l’exposition a des risques

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4461952A (en) * 1980-10-24 1984-07-24 Commissariat A L'energie Atomique Portable computing device for measuring radiations
US20020079439A1 (en) * 1997-08-11 2002-06-27 Siemens Plc And Chiyoda Technol Corporation Personal radiation dosimeters
US6031454A (en) * 1997-11-13 2000-02-29 Sandia Corporation Worker-specific exposure monitor and method for surveillance of workers
US20040129888A1 (en) * 2001-05-14 2004-07-08 Subramaniam Kannan Low cost digital pocket dosemeter
US20100156193A1 (en) * 2008-12-23 2010-06-24 Mark Rhodes Inductively coupled data and power transfer system and apparatus
FR2973116A1 (fr) * 2011-03-22 2012-09-28 Gregory Jean Dispositif avertisseur de detection de radioactivite, contenu dans un porte-clefs, pour alarmer d'un danger de radiation nucleaire couple a un panneau solaire et ou un systeme de recharge usb
US20140299783A1 (en) * 2012-06-01 2014-10-09 Landauer, Inc. Energy harvester for wireless, motion and position-sensing, integrating radiation sensor for occupational and environmental dosimetry

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279695A4 *

Also Published As

Publication number Publication date
US10234569B2 (en) 2019-03-19
EP3279695A4 (en) 2018-08-08
EP3279695A1 (en) 2018-02-07
US20180341026A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
AU2011302713B2 (en) Radiation dosimeter detection system and method
US8693633B2 (en) Systems, devices, and methods including implants for managing cumulative x-ray radiation dosage
EP2616843B1 (en) Portable dosimeter
US20150237419A1 (en) Radiation exposure monitoring device and system
ES2923858T3 (es) Sistema para la detección de radiación gamma de un analito radiactivo
US20150346353A1 (en) Radiology device
RU2413243C2 (ru) Устройство и установка для измерения и отображения излучения
WO2013036730A1 (en) Systems, devices, and methods including implants for managing cumulative x-ray radiation dosage
RU2593820C1 (ru) Многофункциональный инновационный модульный дозиметр
JPWO2013118866A1 (ja) 携行型放射線線量計
KR20120059179A (ko) 알파 방사선을 방출하는 기체의 농도 계측기 및 계측 방법
US6998632B2 (en) Energy compensation, wide beam width radiation sensor, for remote dosimetry, and dosimetry device using this sensor
JP5431122B2 (ja) 線量計
US20020117614A1 (en) Methods and devices for measuring radiation using luminescence
WO2016156629A1 (es) Sistema de control dosimétrico
JP2023508156A (ja) 電子放射線量計
CN103185890A (zh) 一种直读式X、γ个人剂量计
JP2013061203A (ja) 線量監視システム
KR101239868B1 (ko) 계측기 및 공조기를 이용한 공기정화 제어 시스템 및 방법
Rajan et al. Radiation monitoring instruments
Das et al. Ion recombination and polarity effect of ionization chambers in kilovoltage x‐ray exposure measurements
G. Alberts et al. Development of electronic personal neutron dosemeters: A european co-operation
JP2011099793A (ja) 生体情報検出システム及び方法
ES2215490B1 (es) Soporte portadosimetros con alarma de radiacion incorporada.
US20170023680A1 (en) Portable and wearable composite dosimeter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887353

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15563186

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE