WO2016156061A1 - Procédé de fabrication d'un module de cellules solaires ainsi que module de cellules solaires - Google Patents

Procédé de fabrication d'un module de cellules solaires ainsi que module de cellules solaires Download PDF

Info

Publication number
WO2016156061A1
WO2016156061A1 PCT/EP2016/055905 EP2016055905W WO2016156061A1 WO 2016156061 A1 WO2016156061 A1 WO 2016156061A1 EP 2016055905 W EP2016055905 W EP 2016055905W WO 2016156061 A1 WO2016156061 A1 WO 2016156061A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover element
solar
edge
transparent cover
rear cover
Prior art date
Application number
PCT/EP2016/055905
Other languages
German (de)
English (en)
Inventor
Hansjürg Leibundgut
Niklaus HALLER
Original Assignee
Bs2 Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bs2 Ag filed Critical Bs2 Ag
Publication of WO2016156061A1 publication Critical patent/WO2016156061A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for
  • Cover element a rear cover element and a
  • Photovoltaic layers and cells are typically provided with specially doped semiconductors and are constructed to generate electrical current when exposed to sunlight. Because the layer thickness such as
  • Photovoltaic layers are very low, they must be mechanically protected against external influences - such as wind, rain, snow, hail, etc. Further are
  • Photovoltaic cells are susceptible to water, which means that they must be encapsulated in a water vapor diffusion-tight manner.
  • the cover layer facing the sun must be transparent, which is why the front cover of a solar cell module usually consists of glass.
  • the back cover is often used primarily a Kunststofffolie.
  • Kunststofffolien inserted between the different layers and a multi-layer composite
  • Such a solar cell module is described for example in US 2015/0011039 AI.
  • An object of the present invention is a method of manufacturing a solar cell module
  • the invention initially relates to a method for
  • Cover element a rear cover element and a
  • Cover element and the rear cover element is positioned such that in an edge region both the transparent cover element and the rear cover element via a lateral edge of the
  • Sealing process allows the targeted energy input and thus reduced energy consumption during manufacture. A surface heating is not required, so that the components are not an excessive heat load get abandoned. Moreover, a gas-tight encapsulation of the solar element with high quality
  • a variant of the inventive method is characterized in that the thickness of the edge strip substantially corresponds to that of the solar element, so that the solar element itself as a spacer between the transparent cover element and the rear
  • the ceiling elements are thus widely supported, which promotes the compactness but also the mechanical stability.
  • Sealing of the edge region is prepared at least one opening to the solar element, by the after sealing of the edge region a not by the solar element
  • Pipe sections form external electrical connection points.
  • Still further embodiments of the inventive method are characterized, - that before sealing at least one more
  • Cover element is positioned, wherein a spacing is accomplished by means of spacers,
  • Still further embodiments of the inventive method are characterized in that the rear cover element consists of a metal, wherein at least in the region of the solar element or at least to the
  • an electrical insulation layer is provided, which is arranged between the solar element and the rear cover element.
  • edge strip consists of a metal strip with recesses which are filled with magnetizable material, and that to the rear cover element and the transparent
  • the present invention relates to a
  • a solar cell module comprising a preferably made of glass transparent cover element, a rear cover element and a solar element, wherein the solar element between the transparent cover member and the rear cover element is arranged, characterized in that a metal-made diffusion-tight
  • the present invention relates to a solar cell module, which is characterized by the abovementioned
  • FIG. 1 shows a cross section of a solar cell module according to the present invention, wherein the sectional plane is laid perpendicular to cover elements
  • Fig. 2 shows an edge strip which is used for diffusion-proof sealing of the cover elements in an edge region, in plan view
  • Fig. 3 shows a section across the edge strip according to
  • Embodiment of the inventive solar cell module with electrical contact points on a rear cover element Embodiment of the inventive solar cell module with electrical contact points on a rear cover element.
  • FIG. 1 shows a cross section through a solar cell module according to the invention, which consists of a transparent cover element 1, a solar element 3 and a rear cover element 2.
  • the solar element 3 for example consisting of a wafer or other photovoltaic layers and the required electrical connection lines, is in
  • Solar element 3 also serves as a spacer
  • a thickness D of the solar element 3 (and thus the distance between the transparent cover element 1 and the rear cover element 2) is 0.15 mm.
  • a polymer is suitable as a material for the protective films or for the colored film.
  • the transparent cover element 1 and the rear cover element 2 protrude beyond a lateral edge of the solar element 3, so that in this
  • Edge region 5 an edge strip 4 can be arranged, which ensures a diffusion-tight and stable edge bond of the solar cell module. The production of this
  • a not filled by the solar element 3 volume 7 between the two cover elements 1 and 2 is in one
  • Embodiment at least partially evacuated, for example, to a partial pressure of 50 Pascal, wherein at
  • the solar element 3 is a maximum of
  • nitrogen can be used as the inert gas.
  • it is provided to provide an additional seal 6 on the outwardly directed side of the edge strip 4.
  • the additional seal consists for example
  • the transparent cover element 1 consists for example of glass or a glass-like material
  • Sheet metal consist. In the latter case, care must be taken that no short circuits in the solar element 3 can occur. This is accomplished for example by a protective film of a non-conductive polymer, wherein the protective film between the solar element 3 and the
  • Rear cover element 2 is arranged made of metal.
  • Cover element 2 covers.
  • Edge connection is received in the edge region 5, where the lateral closure of the solar cell module is made by a diffusion-tight seal.
  • the sealing takes place after the positioning of the
  • Edge strip 4 is present. Because at least parts of the
  • Edge strip 4 made of a magnetizable material, the edge strip 4 can be by means of
  • a first embodiment variant for an edge strip 4, which is used in the edge region 5, consists of a magnetizable strip which is provided on both sides with a
  • Lot Mrs which has a lower melting point than the strip itself.
  • the strip is probably heated a lot, but not beyond the melting point of the strip, so that the strip itself is not
  • FIGS. 2 and 3 A further embodiment variant for an edge strip 4 is shown in FIGS. 2 and 3, FIG. 2 a Top view and Fig. 3 is a section transverse to
  • Embodiment variant consists of a metal strip 14 with recesses 8, which are produced for example by a punching process. These recesses 8 are provided with a magnetizable material 12, for example a
  • the magnetizable material 12 has a lower melting point than the metal strip 14. This also applies to a solder layer 13, which is applied according to FIG. 3 on the side facing the cover elements 1 and 2 sides.
  • the magnetizable material 12 is heated.
  • the heat transfer melt the solder layers 13 and also material of the cover elements 1 and 2 in the region of
  • Edge strip 4 which - after cooling - a stable and diffusion-tight edge connection is obtained.
  • the space between the cover elements 1 and 2 (also referred to as residual volume or volume 7) is at least partially evacuated, whereby the mechanical
  • Fig. 4 shows a cross section through a
  • Embodiment of a solar cell module in which two openings 9 are provided in the rear cover element.
  • the evacuation of the volume 7 takes place after sealing the edge regions 5 via the openings 9 fitted
  • Pipe sections 10 which are positioned so that the upper end of the pipe sections each abuts an electrical conductor track 11 of the solar element 3. The upper edge of the
  • Tube section 10 is curved so that a connection between the volume 7 and the environment of the
  • the volume 7 is first flushed through the pipe sections 10 with an inert gas - for example, pure nitrogen - and then parts evacuated, for example, to 50 Pascal. After this
  • a further embodiment of the invention consists in that 2 electrical contacts for the solar element 3 are printed on the transparent cover element 1 and / or on the rear cover element. At this
  • Embodiment of the present invention therefore, instead of conventional, launched and soldered electrical conductors (grid, single strings, etc.), the electrical contacts on the front of glass
  • Printing on printed conductors depends on the cell type, the cell and module size as well as the desired module voltage, which can be achieved by appropriate serial and / or parallel connection.
  • a further embodiment of the invention consists in that on the transparent cover element 1 (FIG. 1) at least one further transparent cover element
  • Glass balls used, for example, have a diameter of about 0.5 mm and in a grid of about 4 times 4 cm are arranged.
  • the spacers are included
  • a solar cell module produced in this way is suitable
  • Anchors (not shown in the figures) can be glued to the rear cover element 2, with which the solar cell module is attached to a heat-dissipating construction. This construction simultaneously assumes the function of heat dissipation and the attachment of the solar cell module.
  • Multilayer glass (with different properties, i.e., for example, with different refractive indices) or as a single-layer glass with special surface finish for refractive index adjustment is formed.
  • Different refractive indices in the transition between glass and solar element can, for example, with a Coating of the solar element or with a over the solar element (or parts thereof) laid film can be obtained.
  • the film covers only cells of the solar element, but not the outer conductor tracks.
  • the film (laminate film) or the coating is, in addition to the adhesive, an optical scattering lens and reduces the loss by reflection.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un module de cellules solaires comportant un élément de couverture (1) transparent composé de préférence de verre, un élément de couverture au dos (2) et un élément solaire (3), caractérisé - en ce que l'élément solaire (3) est positionné entre l'élément de couverture transparent (1) et l'élément de couverture au dos (2) de manière que, dans un secteur de bordure (5), aussi bien l'élément de couverture transparent (1) que l'élément de couverture au dos (2) font saillie d'un bord de l'élément solaire (3), - en ce qu'une bande (4) est positionnée dans le secteur de bordure (5), au moins des parties de la bande (4) étant composées d'un matériau magnétisable, et - en ce que pour rendre étanche le secteur de bordure (5), la bande (4) est chauffée par induction électrique si fortement qu'au moins une partie de la bande (4) fond et se lie aussi bien à l'élément de couverture transparent (1) qu'à l'élément de couverture au dos (2). On obtient de cette façon un module de cellules solaires qui présente une très grande robustesse et une très grande longévité, et dont la fabrication nécessite en outre de moindres dépenses d'énergie.
PCT/EP2016/055905 2015-04-01 2016-03-18 Procédé de fabrication d'un module de cellules solaires ainsi que module de cellules solaires WO2016156061A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CHCH/00466/15 2015-04-01
CH00466/15A CH710936A2 (de) 2015-04-01 2015-04-01 Verfahren zur Herstellung eines Solarzellenmoduls sowie ein Solarzellenmodul.

Publications (1)

Publication Number Publication Date
WO2016156061A1 true WO2016156061A1 (fr) 2016-10-06

Family

ID=55646545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/055905 WO2016156061A1 (fr) 2015-04-01 2016-03-18 Procédé de fabrication d'un module de cellules solaires ainsi que module de cellules solaires

Country Status (2)

Country Link
CH (1) CH710936A2 (fr)
WO (1) WO2016156061A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900220A (zh) * 2020-07-27 2020-11-06 泰州隆基乐叶光伏科技有限公司 一种光伏组件层压方法和光伏组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343723A (ja) * 1992-06-10 1993-12-24 Matsushita Electric Ind Co Ltd 平面状素子の封止方法
WO2010068936A2 (fr) * 2008-12-11 2010-06-17 Robert Stancel Dispositif photovoltaïque à barrière d’humidité de métal à verre
US20120103397A1 (en) * 2010-10-30 2012-05-03 Robert Burkle Gmbh Photovoltaic module and method for the production thereof
US20140299256A1 (en) * 2011-09-13 2014-10-09 Ferro Corporation Induction Sealing of Inorganic Substrates
WO2014170137A1 (fr) 2013-04-18 2014-10-23 Bs2 Ag Panneau de façadou de toiture
US20150011039A1 (en) 2013-07-04 2015-01-08 Shin-Etsu Chemical Co., Ltd. Manufacture of solar cell module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05343723A (ja) * 1992-06-10 1993-12-24 Matsushita Electric Ind Co Ltd 平面状素子の封止方法
WO2010068936A2 (fr) * 2008-12-11 2010-06-17 Robert Stancel Dispositif photovoltaïque à barrière d’humidité de métal à verre
US20120103397A1 (en) * 2010-10-30 2012-05-03 Robert Burkle Gmbh Photovoltaic module and method for the production thereof
US20140299256A1 (en) * 2011-09-13 2014-10-09 Ferro Corporation Induction Sealing of Inorganic Substrates
WO2014170137A1 (fr) 2013-04-18 2014-10-23 Bs2 Ag Panneau de façadou de toiture
US20150011039A1 (en) 2013-07-04 2015-01-08 Shin-Etsu Chemical Co., Ltd. Manufacture of solar cell module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900220A (zh) * 2020-07-27 2020-11-06 泰州隆基乐叶光伏科技有限公司 一种光伏组件层压方法和光伏组件

Also Published As

Publication number Publication date
CH710936A2 (de) 2016-10-14

Similar Documents

Publication Publication Date Title
DE19680505C2 (de) Peltier-Effekt-Modul und Verfahren zu seiner Herstellung
EP3743584B1 (fr) Dispositif d'écartement pour vitrages isolants doté du câble plat intégré
DE69833862T2 (de) Solarzellenmodul
DE69508524T2 (de) Gruppe von Solarzellen, Solarzellenmodul und Herstellungsverfahren
EP2879869B1 (fr) Plaque de verre feuilletée avec mise en contact électrique
EP0440869A1 (fr) Elément photovoltaique destiné à transformer la radiation solaire en électricité et batterie photo-électrique
WO2000048212A1 (fr) Cellule photovoltaique et procede de fabrication de ladite cellule
WO2011012371A1 (fr) Procédé de fabrication d’un élément comportant au moins un matériau organique et élément comportant au moins un matériau organique
DE10249992C1 (de) Durchsichtige Scheibe mit einer undurchsichtigen Kontaktfläche für eine Lötverbindung
WO2010043461A1 (fr) Procédé de mise en contact de cellules solaires à couche mince et d'un module solaire à couche mince
EP2517530A1 (fr) Vitrage muni d'un élément de raccordement électrique
DE19960450C1 (de) Scheibenelement und Verfahren zu seiner Herstellung
EP3204182A1 (fr) Procédé de production d'un disque présentant un revêtement électroconducteur et sur lequel est soudée une bande métallique, et disque correspondant
EP0933626B1 (fr) Procédé de fabrication d'un capteur de température électrique et capteur de température électrique
WO2016156061A1 (fr) Procédé de fabrication d'un module de cellules solaires ainsi que module de cellules solaires
DE102005039952A1 (de) Photovoltaisches Solarmodul
DE102008046480A1 (de) Verfahren zur Herstellung einer lötbaren LFC-Solarzellenrückseite und aus derartigen LFC-Solarzellen verschaltetes Solarmodul
DE10124770C1 (de) Verfahren zur Kontaktierung eines elektrischen Bauelementes mit einem eine Leiterstruktur aufweisenden Substrat
DE212011100108U1 (de) Photovoltaik-Modul
DE102011052318A1 (de) Solarmodul und Solarmodul-Herstellungsverfahren
EP2867925A1 (fr) Procédé d'étanchéisation d'un trou de contact d'un module photovoltaïque
DE102008014583A1 (de) Solarmodul und Verfahren zu seiner Herstellung
DE102008031836A1 (de) Lotkontakt
DE102011088476A1 (de) Solarmodul und Verfahren zur Herstellung eines solchen
DE202023103308U1 (de) Photovoltaikmodul

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16713338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16713338

Country of ref document: EP

Kind code of ref document: A1