WO2016155308A1 - 一种基于uwb与激光测距组合的动态定位方法及装置 - Google Patents

一种基于uwb与激光测距组合的动态定位方法及装置 Download PDF

Info

Publication number
WO2016155308A1
WO2016155308A1 PCT/CN2015/093619 CN2015093619W WO2016155308A1 WO 2016155308 A1 WO2016155308 A1 WO 2016155308A1 CN 2015093619 W CN2015093619 W CN 2015093619W WO 2016155308 A1 WO2016155308 A1 WO 2016155308A1
Authority
WO
WIPO (PCT)
Prior art keywords
uwb
sensor
wireless communication
positioning
ultra
Prior art date
Application number
PCT/CN2015/093619
Other languages
English (en)
French (fr)
Inventor
刘万里
刘一鸣
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2015388821A priority Critical patent/AU2015388821B2/en
Publication of WO2016155308A1 publication Critical patent/WO2016155308A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning

Definitions

  • the invention relates to a method and a device for dynamic positioning, in particular to a dynamic positioning method and device based on UWB and laser ranging.
  • Positioning technology refers to the technique of measuring position information of a measurement target.
  • more and more targets need to be accurately positioned in various fields. Therefore, people have put forward higher requirements for positioning technology, especially the precise positioning of dynamic moving targets. It has gradually become a key issue for contemporary people.
  • some of the commonly used dynamic positioning methods can no longer meet the needs of the current increasingly precise positioning.
  • UWB positioning systems for ultra-wideband wireless communication have emerged, making dynamic targets Precise positioning is possible.
  • Ultra-wideband wireless communication UWB technology also known as Impulse Radio technology
  • Impulse Radio technology is a relatively advanced wireless communication technology. It realizes ultra-wideband and high-speed data transmission in a short distance.
  • the modulation method of UWB technology and the multiple access technology adopted make it have wider bandwidth, high-speed data transmission and lower than other wireless communication technologies.
  • the characteristics of power consumption and high security performance have attracted people's attention.
  • the infrared positioning method In the current dynamic positioning mode, there are mainly positioning methods such as infrared, Bluetooth, wireless, and Zigbee.
  • the infrared positioning method must be measured within the visible range. When the distance is large, it is not suitable, and the precision is low. It is often unable to reach the measurement requirements and is easily interfered by the measurement environment.
  • Bluetooth technology Although it can also meet the requirements of precise positioning, this technology is not fully mature, and it cannot be applied to actual positioning measurement on a large scale, and the communication speed is low.
  • Wireless and Zigbee positioning methods are mainly used for communication within a short distance. With low reliability and instability, the accuracy is often not met.
  • the ultra-wideband wireless communication UWB system For dynamic target positioning, it is necessary to first complete the base station arrangement, that is, the ultra-wideband wireless communication UWB sensor, as the base station is fixed, thereby realizing the measurement of the dynamic target.
  • the base station arrangement that is, the ultra-wideband wireless communication UWB sensor
  • the UWB system cannot automatically obtain the new coordinates of the base station after the movement, resulting in inaccurate positioning of the dynamic positioning target.
  • you want to perform dynamic target positioning in a large area, and the area exceeds the UWB system positioning range of ultra-wideband wireless communication at this time, if more UWB sensors are installed, the UWB sensor is not only greatly increased. The cost, and did not fundamentally solve the problem.
  • the object of the present invention is to provide a dynamic positioning method and device based on UWB and laser ranging, which solves the problem that the ultra-wideband wireless communication UWB sensor affects the dynamic measurement accuracy after moving, and realizes the dynamic positioning of the detection target.
  • the dynamic positioning device comprises: an ultra-wideband wireless communication UWB sensor, a UWB positioning tag, a laser ranging sensor, a host computer, a bracket and a POE switch; and a movable bracket is arranged in the area to be detected;
  • the broadband wireless communication UWB sensor is mounted on the bracket as a UWB base station;
  • the laser ranging sensor is fixed on the ultra-wideband wireless communication UWB sensor;
  • the UWB positioning tag is fixed on the target to be detected;
  • the POE switch is connected with the host computer;
  • the host computer is arranged at the control place, the detection area system model is established in the upper computer, the ultra-wideband wireless communication UWB sensor and the laser ranging sensor data are collected, and the data is analyzed and processed.
  • a dynamic positioning method based on UWB combined with laser ranging the steps are as follows:
  • the bracket is placed, and the UWB sensor of the UWB wireless communication is installed on the bracket as the UWB base station; the fixed UWB positioning label is installed on the detected target; the coordinate system is established according to the environment of the area to be detected, and each unit is measured.
  • the dynamic positioning system is operated, and the UWB positioning tag on the detection target is positioned by the TDOA algorithm, and the three-dimensional coordinates and the real-time position of the object to be detected are displayed;
  • the positioning data is stored in the database system in real time, and the motion track of the positioning target is drawn;
  • Ultra-wideband wireless communication UWB sensor base station moves, uses laser ranging sensor to measure distance, and recalibrates UWB sensor coordinates of ultra-wideband wireless communication;
  • the new ultra-wideband wireless communication UWB sensor coordinate input dynamic positioning detection model continue to detect the dynamic target real-time positioning, repeat step F-G;
  • the step A includes the following steps:
  • ultra-wideband wireless communication UWB sensors are arranged on the bracket in the detection area as the base station; one ultra-wideband wireless communication UWB sensor base station is used as the time source and the main sensor, and the other three ultra-wideband wireless communication UWB sensor base stations are used as the slave sensor;
  • the four ultra-wideband wireless communication UWB sensor base stations are arranged in a square area; at the same time, to minimize the error, the sensor arrangement height should be greater than the positioning target height by more than 2m;
  • the broadband wireless communication UWB sensor is tilted downward by about 25 degrees;
  • each location of the positioning tag signal in the area to be detected can be received by at least three ultra-wideband wireless communication UWB sensors;
  • the coordinate system is established.
  • the ultra-wideband wireless communication UWB sensor base station cannot be selected as the origin; the coordinates of each UWB sensor base station of the ultra-wideband wireless communication are obtained by the laser range finder.
  • the laser distance measuring sensor should be fastened to the ultra-wideband wireless communication UWB sensor and ensure that the laser ranging sensor should not be blocked; at the same time, two ultra-wideband wireless communication UWB are accurately measured.
  • the distance between the sensors, the laser emission end center point of the laser ranging sensor should be kept on the same horizontal line as the UWB sensor signal emission center point of the ultra-wideband wireless communication.
  • the step C includes the following steps:
  • the UWB sensor is connected by a star connection method; the time signal is output from any port set as a time source sensor, and is input to the port at the upper right corner of the slave sensor; since a total of 4 ultra-wideband wireless communication UWB sensors are selected, Then use the UWB sensor UWB sensor as the time source as the output port, and access the upper right corner input port of the other three ultra-wideband wireless communication UWB sensors to complete the signal synchronization;
  • connection line between the four ultra-wideband wireless communication UWB sensors must be a signal-shielded network cable to ensure that the time synchronization signal is not affected;
  • the C4.POE switch is connected to the host computer through the network cable, and provides an IP address for each UWB sensor and laser ranging sensor through the DHCP server.
  • the step D includes the following steps:
  • the positioning system model of the dynamic target to be detected is established in the upper computer to achieve the positioning requirement, and the position of the dynamic target is displayed in real time;
  • the UWB sensor signal of the ultra-wideband wireless communication in the detection area is collected; and the time synchronization of the ultra-wideband wireless communication UWB sensor is abnormal through the signal receiving information, and the ultra-wideband is obtained. Whether the wireless communication UWB sensor has established contact with the host computer system, and if there is a problem, check and correct;
  • D4. Determine the dynamic target positioning system and the sensor network to operate normally, set the noise threshold in the system to filter the interference signal and improve the detection accuracy.
  • the step E includes the following steps:
  • E2. Run the system to check whether the system can detect the UWB positioning label and give the coordinates. At the same time, compare the three-dimensional coordinates of the UWB positioning label with the actual UWB positioning label in the dynamic target positioning system, and check whether the positioning accuracy meets the accuracy. demand.
  • the ultra-wideband wireless communication UWB sensor uses the TDOA positioning algorithm to locate the UWB positioning tag for the UWB positioning tag;
  • the TDOA refers to the arrival time difference method, which measures the time difference between the UWB sensors receiving the same UWB positioning tag signal by different UWB wireless communication devices. Therefore, the distance difference between the UWB positioning tag and the UWB sensor of different ultra-wideband wireless communication is calculated, and the distance difference is used for calculation, and the hyperbolic positioning algorithm is generally used for positioning.
  • the method for positioning the UWB positioning tag by using the TDOA algorithm ensures that the position of the UWB positioning tag can be accurately located, and the UWB positioning tag signal should be received by at least three UWB wireless communication sensors simultaneously, and can be simultaneously.
  • the more ultra-wideband wireless communication UWB sensors receive the more accurate positioning accuracy; the algorithm targets the dynamic targets, provides accurate three-dimensional accuracy, and displays the target position in the dynamic target system model.
  • the detected real-time position information of the dynamic target is saved by the data collection library in the upper computer system, and the real-time position of the dynamic target and the motion trajectory of the dynamic target are provided according to the information.
  • the step H includes the following steps:
  • the host computer system model can not automatically obtain the new coordinates of the ultra-wideband wireless communication UWB sensor base station after moving, if artificial re-measurement is used
  • the way of coordinates is time-consuming and laborious and inconvenient; at this time, the distance between the ultra-wideband wireless communication UWB sensor after movement and the other three unmoved ultra-wideband wireless communication UWB sensors is obtained by using the laser ranging sensor, and the obtained 3 distances are stored in the host computer distance measurement system model;
  • the upper computer distance measurement system model uses the algorithm to calculate the coordinates of the UWB sensor after moving, and re-enters the dynamic target positioning model system to continue to realize the positioning of the dynamic target and repeat the F-G step.
  • the beneficial effect is that, by adopting the above scheme, the distance between the two objects can be measured by using the laser ranging sensor by: firstly, the laser diode in the sensor is aligned with the target to be tested to emit a laser pulse, and the target is reflected and then excited. Light scatters in all directions. Part of the scattered light is returned to the receiver within the sensor, which is received by the optical system and imaged onto the avalanche photodiode.
  • the avalanche photodiode is an optical sensor with an internal amplification function, so it can detect extremely weak optical signals, record and process the time elapsed from the time the light pulse is emitted until the return is received, and the target distance can be determined.
  • Laser ranging sensors are widely used in modern industrial fields to provide accurate distance measurement for industrial production, and to achieve accurate distance measurement that cannot be achieved by conventional ranging methods such as ultrasonic ranging.
  • Using laser ranging not only can accurately measure the distance between two objects, but also has the characteristics of fast response, small error and small interference. Therefore, combining the laser ranging sensor with the UWB sensor of UWB wireless communication can not only accurately locate the dynamic target, but also realize the re-measurement and calibration of the sensor position after UWB sensor movement of the ultra-wideband wireless communication, and obtain accurate coordinates. Continue to target dynamic targets.
  • UWB data rate can reach several tens of megabits per second to several hundred megabits per second, and the rate is greatly improved compared to other methods.
  • UWB uses bandwidths above 1 GHz, up to several GHz, and can work simultaneously with current narrowband communication systems without interfering with each other. This is today in the increasingly tense of frequency resources. A new time domain radio resource has been opened up.
  • the transmission power of ultra-wideband transmitters can usually be less than 1 mW. This helps the good coexistence between ultra-wideband and existing narrow-band communication, and has great significance for improving the utilization of wireless spectrum, and better alleviates the increasingly tight wireless spectrum resource problem.
  • the multipath resolution is extremely high: because UWB uses a narrow pulse with a very short duration, its temporal and spatial resolution is extremely strong, facilitating the development of ranging, positioning, tracking and other activities. .
  • the method of the invention is safe and reliable, convenient to install and operate, and avoids the situation of error in actual dynamic measurement, and has important reference value and practical significance.
  • FIG. 1 is a schematic view showing the spatial arrangement of a UWB sensor, a laser ranging sensor, and a positioning tag of the present invention.
  • FIG. 2 is a schematic view of a UWB sensor, a laser ranging sensor, and a bracket device of the present invention
  • FIG. 3 is a schematic view showing the wiring manner of the UWB sensor of the present invention.
  • Figure 5 is a schematic view showing the wiring manner of the laser ranging sensor of the present invention.
  • FIG. 6 is a schematic diagram of the principle of positioning and calibration of the laser ranging sensor of the present invention.
  • FIG. 7 is a flow chart of a dynamic positioning method based on UWB and laser ranging combination according to the present invention.
  • Embodiment 1 As can be seen from FIG. 1, FIG. 2, FIG. 3 and FIG. 5, a dynamic positioning device based on UWB combined with laser ranging comprises: 1. a bracket; 2. an ultra-wideband wireless communication UWB sensor, wherein ultra-wideband wireless The communication UWB main sensor 2-1 is selected as the time source and the main sensor, and the first slave communication sensor 2-2, the second slave communication sensor 2-3 and the third slave communication sensor 2-4 are ultra-wideband wireless communication UWB.
  • the laser ranging sensor 3 is a first laser ranging sensor 3-1, a second laser ranging sensor 3-2, a third laser ranging sensor 3-3, and a fourth Laser ranging sensor 3-4; UWB positioning tag 4, host computer 5, base 6 and POE switch 7.
  • a movable bracket is arranged in the area to be detected; an ultra-wideband wireless communication UWB sensor is fixedly mounted on the bracket as a UWB base station; a laser ranging sensor is installed and fixed on the ultra-wideband wireless communication UWB sensor; and a UWB positioning label is fixed on the target to be detected; Broadband wireless communication UWB sensor and laser ranging sensor are connected to the host computer through the POE switch.
  • the upper computer is arranged at the control place, the detection area system model is established in the upper computer, and the UWB sensor and the laser ranging sensor data of the ultra-wideband wireless communication are collected, and the data is analyzed and processed.
  • a spatial positioning device based on UWB and laser ranging combines the spatial arrangement of the detection area and the arrangement pattern of the UWB sensor, the laser ranging sensor, the bracket and the base.
  • the invention is based on a dynamic positioning method combining UWB and laser ranging, and comprises the following steps:
  • a bracket According to the environment in which the target to be detected is located, a bracket is placed, and an ultra-wideband wireless communication UWB sensor is installed on the bracket as a UWB base station. Install a fixed UWB positioning tag on the target to be tested. The coordinate system is established according to the environment of the area to be detected, and the three-dimensional coordinates of each UWB wireless communication UWB sensor are measured.
  • the dynamic positioning system is operated, and the UWB positioning tag on the detection target is positioned by the TDOA algorithm, and the three-dimensional coordinates and real-time position of the object to be detected are displayed.
  • the positioning data is stored in the database system in real time, and the motion track of the positioning target is drawn.
  • Ultra-wideband wireless communication UWB sensor base station moves, uses laser ranging sensor to measure distance, and recalibrates UWB sensor coordinates of ultra-wideband wireless communication.
  • the new ultra-wideband wireless communication UWB sensor coordinate input dynamic positioning detection model continue to detect the dynamic target real-time positioning, repeat the F-G step.
  • the step A includes the following steps:
  • ultra-wideband wireless communication UWB sensors are arranged on the bracket in the detection area as the base station.
  • One of the ultra-wideband wireless communication UWB sensor base stations is used as the time source and the main sensor, and the other three ultra-wideband wireless communication UWB sensor base stations are used as the slave sensors.
  • the ultra-wideband wireless communication UWB sensor base stations are arranged in a square area.
  • the sensor arrangement height should be more than 2m above the positioning target height; the ultra-wideband wireless communication UWB sensor should be tilted downward by about 25 degrees.
  • each location of the positioning tag signal in the area to be detected can be received by at least three UWB wireless UWB sensors.
  • the coordinate system is established according to the actual detection environment. In order to meet the positioning accuracy requirements, the ultra-wideband wireless communication UWB sensor base station cannot be selected as the origin. The coordinates of each ultra-wideband wireless communication UWB sensor base station are obtained by a laser range finder.
  • step B the laser distance measuring sensor should be fastened to the ultra-wideband wireless communication UWB sensor during installation, and the laser distance measuring sensor should not be blocked.
  • the center point of the laser transmitting end of the laser ranging sensor should be kept on the same horizontal line as the UWB sensor signal transmitting center point of the ultra-wideband wireless communication.
  • the step C includes the following steps:
  • UWB sensor of ultra-wideband wireless communication Connects the UWB sensor of ultra-wideband wireless communication with a star connection.
  • the time signal is output from any port set to the time source sensor and input to the port at the upper right corner of the slave sensor. Since a total of 4 ultra-wideband wireless communication UWB sensors are selected, three interfaces of ultra-wideband wireless communication UWB sensor as time source are used as output ports, and the upper right corner input ports of the other three ultra-wideband wireless communication UWB sensors are connected to complete the signal. Synchronize.
  • connection line between the four ultra-wideband wireless communication UWB sensors must be a signal-shielded network cable to ensure that the time synchronization signal is not affected.
  • the power supply mode is selected, and the POE switch is used for data transmission and power supply for the sensor.
  • the ultra-wideband wireless communication UWB sensor and the laser ranging sensor are connected to the POE switch through a network cable to establish an Ethernet network.
  • the C4.POE switch is connected to the host computer through the network cable, and provides an IP address for each UWB sensor and laser ranging sensor through the DHCP server.
  • the step D includes the following steps:
  • the positioning system model of the dynamic target to be detected is established in the upper computer to achieve the positioning requirement, and the position of the dynamic target is displayed in real time.
  • the UWB sensor signal of the ultra-wideband wireless communication in the detection area is collected by the positioning system model of the dynamic target in the upper computer. Through the receiving information of the signal, it is checked whether there is an abnormality in the time synchronization between the UWB sensors of the ultra-wideband wireless communication, and whether the ultra-wideband wireless communication UWB sensor has established contact with the upper computer system, and if there is a problem, the inspection is performed.
  • D4. Determine the dynamic target positioning system and the sensor network to operate normally, set the noise threshold in the system to filter the interference signal and improve the detection accuracy.
  • the step E includes the following steps:
  • E2. Run the system to check whether the system can detect the UWB positioning label and give the coordinates. At the same time, compare the three-dimensional coordinates of the UWB positioning label with the actual UWB positioning label in the dynamic target positioning system, and check whether the positioning accuracy meets the accuracy. demand.
  • the ultra-wideband wireless communication UWB sensor uses the TDOA positioning algorithm to locate the UWB positioning tag for the UWB positioning tag.
  • TDOA refers to the time difference of arrival method, which measures the time difference between different UWB sensors receiving the same UWB positioning tag signal, and calculates the distance difference between the UWB positioning tag and the UWB sensor of different UWB wireless communication, and calculates the distance difference.
  • the hyperbolic positioning algorithm is used for positioning.
  • the UWB positioning tag signal should be received by at least three UWB wireless communication sensors simultaneously, and the more can be received at the same time.
  • the ultra-wideband wireless communication UWB sensor receives the positioning accuracy more accurately.
  • the dynamic target is located by an algorithm to provide accurate three-dimensional accuracy, and the target position is displayed in the dynamic target system model.
  • the detected real-time position information of the dynamic target is saved by the data collection library in the upper computer system, and the real-time position of the dynamic target and the motion trajectory of the dynamic target are provided according to the information.
  • the step H includes the following steps:
  • the host computer system model can not automatically obtain the new coordinates of the ultra-wideband wireless communication UWB sensor base station after moving, if artificial re-measurement is used
  • the way of coordinates is time consuming, laborious and inconvenient.
  • the laser ranging sensor is used to obtain the distance between the ultra-wideband wireless communication UWB sensor after moving and the other three unmoved ultra-wideband wireless communication UWB sensors, and the obtained three distances are stored in the upper computer distance measuring system model. in.
  • the upper computer distance measurement system model uses the algorithm to calculate the coordinates of the UWB sensor after moving, and re-enters the dynamic target positioning model system to continue to realize the positioning of the dynamic target and repeat the F-G step.
  • the ultra-wideband wireless communication UWB sensor is the main sensor 2-1 and the time source, and the time synchronization line is connected from the arbitrary output port of the ultra-wideband wireless communication UWB main sensor 2-1, and is connected to the first slave communication sensor 2 -2, second slave communication sensor 2-3, third slave communication sensor 2-4 ultra-wideband wireless communication UWB sensor upper right corner input end, four ultra-wideband wireless communication UWB sensor complete time synchronization connection, as shown .
  • Fig. 3 and Fig. 5 It can be seen from Fig. 3 and Fig. 5 that four ultra-wideband wireless communication UWB sensors and four laser ranging sensors are connected to the POE switch through the network cable, and the POE switch allocates IP for the ultra-wideband wireless communication UWB sensor and the laser ranging sensor. The address is simultaneously powered, and the POE switch is connected to the host computer through the network cable to obtain the measured data received by the sensor.
  • UWB positioning tag transmission signal four ultra-wideband wireless communication by main communication sensor 2-1, first slave communication sensor 2-2, second slave communication sensor 2-3 and third slave communication sensor 2-4 UWB sensor reception.
  • the receiving times are respectively t1, t2, t3, and t4, and the distance between the UWB positioning tag and the four sensors can be expressed as ct1, ct2, ct3, and ct4, respectively, where c is the speed of light.
  • a dynamic positioning method based on UWB and laser ranging combines the new coordinates of the ultra-wideband wireless communication UWB sensor after it is moved by the laser ranging sensor.
  • the specific calculation method is:
  • a dynamic positioning method based on UWB and laser ranging combines an ultra-wideband wireless communication UWB sensor in a region to be detected, and a laser ranging sensor is fixedly mounted on the sensor.
  • Establish an Ethernet connection The regional positioning model is established in the upper computer, and the UWB sensor base station coordinates of the ultra-wideband wireless communication are measured, and the dynamic positioning system is calibrated by the UWB positioning tag. Normal operation system, using TDOA method for positioning. Perform dynamic positioning detection. Obtain the three-dimensional coordinates of the UWB positioning tag and store it in the database, and display the actual position of the UWB positioning tag in the system model.
  • the laser ranging sensor measures the distance between the UWB sensors of the ultra-wideband wireless communication, and the new coordinates calculated by the algorithm are re-entered into the system to continue the dynamic target. Positioning.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种基于UWB与激光测距组合的动态定位方法及装置,属于动态定位方法及装置。装置包括超宽带无线通讯UWB传感器(2)、UWB定位标签(4)、激光测距传感器(3)、上位机(5)和POE交换机(7);在待检测区域布置超宽带无线通讯UWB传感器(2)基站;激光测距传感器(3)安装固定在超宽带无线通讯UWB传感器(2)上;在待检测目标上固定UWB定位标签(4);超宽带无线通讯UWB传感器(2)、激光测距传感器(3)通过POE交换机(7)与上位机(5)连接。在每个超宽带无线通讯UWB传感器(2)上装有激光测距传感器(3)以获得两两超宽带无线通讯UWB传感器(2)之间的相对距离,从而重新确定或校准移动后超宽带无线通讯UWB传感器(2)的坐标,继续实现动态定位要求。优点:采用UWB与激光测距组合的动态定位方法,其定位精确,同时安全可靠且易于安装、操作方便。

Description

一种基于UWB与激光测距组合的动态定位方法及装置 技术领域
本发明涉及一种动态定位的方法及装置,特别是一种基于UWB与激光测距组合的动态定位方法及装置。
背景技术
定位技术,是指对测量目标进行位置信息测定的技术。随着现代社会日新月异的发展,在各个领域内,需要被精确定位的目标随之越来越多,因此人们对定位技术也提出了更高层次的要求,尤其是对动态移动目标的精确定位,逐渐成为了当代人们关注的关键问题。然而在现代社会某些领域中,一些我们常用的动态定位方式已经无法满足当前日益增强的精确定位的需求,在这种背景下,超宽带无线通讯UWB定位系统应运而生,使得对动态目标的精确定位成为可能。
超宽带无线通讯UWB技术,又称冲击无线电(Impulse Radio)技术,是目前比较先进的无线通讯技术。它实现了短距离内超宽带、高速的数据传输,同时UWB技术的调制方式以及采用的多址技术等特点使它相比于其他无线通信技术具有更宽的带宽、高速的数据传输、低的功耗、安全性能高等特点,因此引起了人们的重视。
在当前的动态定位方式中,主要存在红外、蓝牙、无线、Zigbee等定位方式。然而红外定位方式必须在可视范围内测量,当距离较大时并不适合,同时精度较低,往往无法到达测量要求,容易受到测量环境的干扰;蓝牙技术相对于其他几种定位方式而言虽然也能达到精确定位的要求,但这项技术并没有完全成熟,还无法大规模的应用在实际定位测量中,并且通讯速率低;无线和Zigbee定位方式主要作为短距离内的通讯,同时存在着可靠性低,不稳定等问题,因此往往造成精度达不到需求。
在使用超宽带无线通讯UWB系统进行动态目标定位时,需要首先完成基站布置,也就是超宽带无线通讯UWB传感器,作为基站固定不动,从而实现对动态目标的测量。但当其中某一个基站发生移动,也就意味着超宽带无线通讯UWB传感器坐标发生变化时,由于UWB系统不能自动得到移动后基站新的坐标,造成对动态定位目标定位不精确。同时,若想在某一个较大的区域内进行动态目标定位,并且该区域超过了超宽带无线通讯UWB系统定位的范围,此时,若是布置更多的超宽带无线通讯UWB传感器,不仅大大增加了成本,而且没有从根本上解决问题。
发明内容
本发明的目的是要提供一种基于UWB与激光测距组合的动态定位方法及装置,解决超宽带无线通讯UWB传感器移动后影响动态测量精度的问题,实现对检测目标的动态定位。
本发明的目的是这样实现的:该动态定位装置包括:超宽带无线通讯UWB传感器、UWB定位标签、激光测距传感器、上位机、支架和POE交换机;在待检测区域布置可移动的支架;超宽带无线通讯UWB传感器安装固定在支架上作为UWB基站;激光测距传感器安装固定在超宽带无线通讯UWB传感器上;在待检测目标上固定UWB定位标签;超宽带无线通讯UWB传感器、激光测距传感器通过POE交换机与上位机连接;在控制处布置上位机,在上位机中建立检测区域系统模型,收集超宽带无线通讯UWB传感器及激光测距传感器数据,进行数据的分析及处理。
一种基于UWB与激光测距组合的动态定位方法,步骤如下:
A.根据实际待检测目标所处环境,放置支架,在支架上安装超宽带无线通讯UWB传感器作为UWB基站;在被检测目标上安装固定UWB定位标签;根据待检测区域环境建立坐标系,测量各个超宽带无线通讯UWB传感器的三维坐标;
B.在超宽带无线通讯UWB传感器上安装固定激光测距传感器;
C.将超宽带无线通讯传感器、激光测距传感器按照系统要求连接,与上位机系统建立联系,组建以太网;
D.根据实际检测环境及所布置的超宽带无线通讯UWB传感器的实际位置,在上位机中建立动态定位检测模型;根据所布置的激光测距传感器的实际位置,在上位机中建立距离测量系统模型;
E.对超宽带无线通讯UWB传感器进行校准,检验安装过程是否出现差错,检验定位系统是否能够达到定位的精度要求;
F.动态定位系统运行,通过TDOA算法对待检测目标上的UWB定位标签进行定位,显示待检测目标的三维坐标及实时位置;
G.定位数据实时存入数据库系统,绘制定位目标的运动轨迹;
H.超宽带无线通讯UWB传感器基站移动,利用激光测距传感器测量距离,重新标定超宽带无线通讯UWB传感器坐标;
I.将新的超宽带无线通讯UWB传感器坐标输入动态定位检测模型,继续对待检测动态目标实时定位,重复步骤F-G;
J.当整个检测定位系统运行超过100小时或者超宽带无线通讯UWB传感器基站移动次数累计超过20次后,为保证动态目标的定位精确度,应再次对超宽带无线通讯UWB传感器位置进行人工校准,重复步骤E-G。
所述步骤A包括下列步骤:
A1.在带检测区域内支架上布置4个超宽带无线通讯UWB传感器作为基站;其中1个超宽带无线通讯UWB传感器基站作为时间源及主传感器,其余3个超宽带无线通讯UWB传感器基站作为从传感器;
A2.为保证测量精度达到动态目标定位的要求,将4个超宽带无线通讯UWB传感器基站布置为方形区域;同时为最大程度的减小误差,应满足传感器布置高度大于定位目标高度2m以上;超宽带无线通讯UWB传感器向下倾斜角度25度左右;
A3.保证待检测区域内的定位标签信号每一处位置都可以至少被三个超宽带无线通讯UWB传感器接收到;
A4.依据实际检测环境建立坐标系,为满足定位精度要求,超宽带无线通讯UWB传感器基站不能被选为原点;通过激光测距仪得到每一个超宽带无线通讯UWB传感器基站的坐标。
所述步骤B中注意安装中应保证激光测距传感器应紧固在超宽带无线通讯UWB传感器上,并保证激光测距传感器不应被遮挡;同时,为精确测得两个超宽带无线通讯UWB传感器之间的距离,激光测距传感器激光发射端中心点应同超宽带无线通讯UWB传感器信号发射中心点保持在同一水平直线上。
所述步骤C包括下列步骤:
C1.采用星型连接方式连接超宽带无线通讯UWB传感器;时间信号从设置为时间源传感器任意端口输出,分别输入到从传感器的右上角端口处;由于共选用4个超宽带无线通讯UWB传感器,则使用作为时间源的超宽带无线通讯UWB传感器3个接口作为输出口,接入另外3个超宽带无线通讯UWB传感器的右上角输入端口,完成信号同步;
C2.四个超宽带无线通讯UWB传感器之间其连接线必须为带信号屏蔽的网线,以保证时间同步信号不受影响;
C3.基于UWB与激光测距组合的动态定位系统,选用以太网供电方式,选用POE交 换机进行数据的传输及为传感器供电;超宽带无线通讯UWB传感器以及激光测距传感器通过网线与POE交换机接口连接,建立以太网;
C4.POE交换机通过网线与上位机相连,通过DHCP服务器,为每一个超宽带无线通讯UWB传感器、激光测距传感器提供IP地址。
所述步骤D包括下列步骤:
D1.依据实际的环境以及超宽带无线通讯UWB传感器基站坐标,在上位机中建立待检测动态目标的定位系统模型,以达到定位的要求,实时的显示动态目标的位置;
D2.建立激光测距传感器信息收集系统,以方便对移动后的超宽带无线通讯UWB传感器移动后坐标的计算;
D3.通过上位机中动态目标的定位系统模型,对检测区域内超宽带无线通讯UWB传感器信号进行采集;通过信号的接收信息,查看超宽带无线通信UWB传感器之间时间同步是否存在异常、超宽带无线通信UWB传感器是否已经与上位机系统建立联系,若存在问题,则进行检查校正;
D4.确定动态目标定位系统和传感器网络正常运行,在系统中设定噪音阈值,以过滤干扰信号,提高检测精度。
所述步骤E中包括下列步骤:
E1.选取定位区域内的一个点放置UWB定位标签,并测得该定位标签的三维坐标,在动态目标定位系统模型中添加校准点,将测得三维坐标信息输入上位机动态定位系统模型作为校准点三维坐标信息;
E2.运行系统,查看系统是否可以检测到UWB定位标签,并给出坐标;同时比对动态目标定位系统中给出UWB定位标签三维坐标与实际UWB定位标签三维坐标,查看其定位精度是否满足精度需求。
所述步骤F中超宽带无线通讯UWB传感器对于UWB定位标签采用TDOA定位算法对UWB定位标签进行定位;TDOA指到达时间差法,是测量不同超宽带无线通讯UWB传感器接收到同一UWB定位标签信号的时间差,并由此计算出UWB定位标签到不同超宽带无线通讯UWB传感器的距离差,通过距离差进行计算,一般采用双曲线定位算法定位。
所述的采用TDOA算法对UWB定位标签进行定位的方式,为保证UWB定位标签的位置能够被精确定位,UWB定位标签信号应至少可以被3个超宽带无线通讯UWB传感器同时接收到,同时能够被越多的超宽带无线通讯UWB传感器接收到定位精度越精确;通过算法对动态目标进行定位,提供精确的三维精度,在动态目标系统模型中显示目标位置。
所述步骤G中通过上位机系统中数据采集库,将检测到的动态目标实时位置信息进行保存,并依据信息提供动态目标实时的位置及绘制动态目标的运动轨迹。
所述步骤H包括下列步骤:
H1.当其中某一超宽带无线通讯UWB传感器基站移动后,其坐标发生变化,而上位机系统模型中不能自动获得超宽带无线通讯UWB传感器基站移动后新的坐标,此时若采用人工重新测量坐标的方式,费时费力且不方便进行;此时,利用激光测距传感器获得移动之后的超宽带无线通讯UWB传感器与另外3个未移动超宽带无线通讯UWB传感器之间的距离,将所得到的3个距离存入上位机距离测量系统模型中;
H2.上位机距离测量系统模型利用算法进行运算,求解移动后超宽带无线通讯UWB传感器的坐标,并重新输入动态目标定位模型系统中,以继续实现对动态目标的定位,重复F-G步骤。
有益效果,由于采用了上述方案,使用激光测距传感器可以测得两个物体之间的距离,其方式为:先由传感器内的激光二极管对准待测目标发射激光脉冲,目标反射后激 光向各方向散射。部分散射光返回到传感器内的接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号,记录并处理从光脉冲发出到返回被接收所经历的时间,即可测定目标距离。激光测距传感器被大量的应用在现代工业领域中,为工业生产提供精确地距离测量,实现以往如超声波测距等测距方式所不能实现的精确距离测量。
使用激光测距的方式,不仅可以精确地测量两个物体之间的距离,同时其还具有响应速度快、误差小、受干扰程度小等特点。因此,将激光测距传感器与超宽带无线通讯UWB传感器相结合,既可以精确的对动态目标进行定位,又可以实现超宽带无线通讯UWB传感器移动后对传感器位置的重新测定校准,得到精确的坐标继续对动态目标进行定位。
(1)抗干扰性能强:UWB信号,在发射时将微弱的无线电脉冲信号分散在宽阔的频带中,输出功率甚至低于普通设备产生的噪声。接收时将信号能量还原出来,在解扩过程中产生扩频增益。
(2)传输速率高:UWB的数据速率可以达到几十兆比特每秒到几百兆比特每秒,速率相比于其他方式有了极大的提高。
(3)带宽极宽:UWB使用的带宽在1GHz以上,高达几GHz,并且可以和目前的窄带通信系统同时工作而互不干扰。这在频率资源日益紧张的今天。开辟了一种新的时域无线电资源。
(4)频谱利用率高,UWB系统容量大:因为不需要产生正弦载波信号,直接发射冲激序列,因而UWB系统具有很宽的频谱和很低的平均功率,有利于与其他系统共存,从而提高频谱利用率。
(5)发射功率低:UWB在短距离的通信应用中,超宽带发射机的发射功率通常可做到低于1mW。这样有助于超宽带与现有窄带通信之间的良好共存,对于提高无线频谱的利用率具有很大的意义,更好的缓解日益紧张的无线频谱资源问题。
(6)多径分辨率极高:因为UWB采用的是持续时间极短的窄脉冲,所以其时间上和空间上的分辨率都是极强的,方便测距、定位、跟踪等活动的开展。
优点:
(1)选取超宽带无线通讯UWB传感器对动态目标进行实时定位,利用了UWB技术本身的优势,其高带宽、低功耗、抗干扰能力强、传输速率高、频谱利用率高、系统容量大、多径分辨率高等特点,保证了定位的精度,减少定位误差,符合动态定位的要求。
(2)使用激光测距的方式,不仅可以精确地测量两个物体之间的距离,同时其还具有响应速度快、误差小、受干扰程度小等特点。因此,将激光测距传感器与超宽带无线通讯UWB传感器相结合,既可以精确的对动态目标进行定位,又可以实现超宽带无线通讯UWB传感器移动后对传感器位置的重新测定校准,得到精确的坐标继续对动态目标进行定位。
(3)本发明方法使用,安全可靠,安装和操作方便,规避了在实际动态测量中产生误差的情形,具有重要的参考价值和实际意义。
附图说明:
图1是本发明UWB传感器、激光测距传感器及定位标签空间布置示意图。
图2是本发明UWB传感器、激光测距传感器及支架装置示意图;
图3是本发明UWB传感器接线方式示意图;
图4是本发明UWB传感器工作方式原理示意图;
图5是本发明激光测距传感器接线方式示意图;
图6是本发明激光测距传感器定位校准原理示意图;
图7是本发明基于UWB与激光测距组合的动态定位方法流程图;
图中:1、支架;2、超宽带无线通讯UWB传感器;2-1、超宽带无线通讯UWB主传感器,2-2、第一从通讯传感器;2-3、第二从通讯传感器;2-4、第三从通讯传感器;3、激光测距传感器;3-1、第一激光测距传感器;3-2、第二激光测距传感器;3-3、第三激光测距传感器;3-4、第四激光测距传感器;4、UWB定位标签;5、上位机;6、底座;7、POE交换机。
具体实施方式
下面结合附图对本发明做更进一步的说明:
实施例1:由图1、图2、图3、图5可知,一种基于UWB与激光测距组合的动态定位装置,包括1、支架;2、超宽带无线通讯UWB传感器,其中超宽带无线通讯UWB主传感器2-1为选定的作为时间源及主传感器,第一从通讯传感器2-2、第二从通讯传感器2-3和第三从通讯传感器2-4为超宽带无线通讯UWB从传感器;激光测距传感器3,所述的激光测距传感器分别为第一激光测距传感器3-1、第二激光测距传感器3-2、第三激光测距传感器3-3和第四激光测距传感器3-4;UWB定位标签4、上位机5、底座6和POE交换机7。在待检测区域布置可移动支架;超宽带无线通讯UWB传感器安装固定在支架上作为UWB基站;激光测距传感器安装固定在超宽带无线通讯UWB传感器上;在待检测目标上固定UWB定位标签;超宽带无线通讯UWB传感器、激光测距传感器通过POE交换机与上位机连接。在控制处布置上位机,在上位机中建立检测区域系统模型,收集超宽带无线通讯UWB传感器及激光测距传感器数据,进行数据的分析及处理。
由图1、图2可知,一种基于UWB与激光测距组合的动态定位装置在其检测区域的空间布置以及UWB传感器、激光测距传感器及支架、底座的布置样式。
本发明基于UWB与激光测距组合的动态定位方法,包括如下步骤:
A.根据实际待检测目标所处环境,放置支架,在支架上安装超宽带无线通讯UWB传感器作为UWB基站。在被检测目标上安装固定UWB定位标签。根据待检测区域环境建立坐标系,测量各个超宽带无线通讯UWB传感器的三维坐标。
B.在超宽带无线通讯UWB传感器上安装固定激光测距传感器。
C.将超宽带无线通讯传感器、激光测距传感器按照系统要求连接,与上位机系统建立联系,组建以太网。
D.根据实际检测环境及所布置的超宽带无线通讯UWB传感器的实际位置,在上位机中建立动态定位检测模型;根据所布置的激光测距传感器的实际位置,在上位机中建立距离测量系统模型。
E.对超宽带无线通讯UWB传感器进行校准,检验安装过程是否出现差错,检验定位系统是否能够达到定位的精度要求。
F.动态定位系统运行,通过TDOA算法对待检测目标上的UWB定位标签进行定位,显示待检测目标的三维坐标及实时位置。
G.定位数据实时存入数据库系统,绘制定位目标的运动轨迹。
H.超宽带无线通讯UWB传感器基站移动,利用激光测距传感器测量距离,重新标定超宽带无线通讯UWB传感器坐标。
I.将新的超宽带无线通讯UWB传感器坐标输入动态定位检测模型,继续对待检测动态目标实时定位,重复F-G步骤。
J.当整个检测定位系统运行超过100小时或者超宽带无线通讯UWB传感器基站移动次数累计超过20次后,为保证动态目标的定位精确度,应再次对超宽带无线通讯UWB传感器位置进行人工校准,重复步骤E-G。
所述步骤A包括下列步骤:
A1.在带检测区域内支架上布置4个超宽带无线通讯UWB传感器作为基站。其中1个超宽带无线通讯UWB传感器基站作为时间源及主传感器,其余3个超宽带无线通讯UWB传感器基站作为从传感器。
A2.为保证测量精度达到动态目标定位的要求,将4个超宽带无线通讯UWB传感器基站布置为方形区域。同时为最大程度的减小误差,应满足传感器布置高度大于定位目标高度2m以上;超宽带无线通讯UWB传感器向下倾斜角度25度左右。
A3.保证待检测区域内的定位标签信号每一处位置都可以至少被三个超宽带无线通讯UWB传感器接收到。
A4.依据实际检测环境建立坐标系,为满足定位精度要求,超宽带无线通讯UWB传感器基站不能被选为原点。通过激光测距仪得到每一个超宽带无线通讯UWB传感器基站的坐标。
所述步骤B中注意安装中应保证激光测距传感器应紧固在超宽带无线通讯UWB传感器上,并保证激光测距传感器不应被遮挡。同时,为精确测得两个超宽带无线通讯UWB传感器之间的距离,激光测距传感器激光发射端中心点应同超宽带无线通讯UWB传感器信号发射中心点保持在同一水平直线上。
所述步骤C包括下列步骤:
C1.采用星型连接方式连接超宽带无线通讯UWB传感器。时间信号从设置为时间源传感器任意端口输出,分别输入到从传感器的右上角端口处。由于共选用4个超宽带无线通讯UWB传感器,则使用作为时间源的超宽带无线通讯UWB传感器3个接口作为输出口,接入另外3个超宽带无线通讯UWB传感器的右上角输入端口,完成信号同步。
C2.四个超宽带无线通讯UWB传感器之间其连接线必须为带信号屏蔽的网线,以保证时间同步信号不受影响。
C3.基于UWB与激光测距组合的动态定位系统,选用以太网供电方式,选用POE交换机进行数据的传输及为传感器供电。超宽带无线通讯UWB传感器以及激光测距传感器通过网线与POE交换机接口连接,建立以太网。
C4.POE交换机通过网线与上位机相连,通过DHCP服务器,为每一个超宽带无线通讯UWB传感器、激光测距传感器提供IP地址。
所述步骤D包括下列步骤:
D1.依据实际的环境以及超宽带无线通讯UWB传感器基站坐标,在上位机中建立待检测动态目标的定位系统模型,以达到定位的要求,实时的显示动态目标的位置。
D2.建立激光测距传感器信息收集系统,以方便对移动后的超宽带无线通讯UWB传感器移动后坐标的计算。
D3.通过上位机中动态目标的定位系统模型,对检测区域内超宽带无线通讯UWB传感器信号进行采集。通过信号的接收信息,查看超宽带无线通信UWB传感器之间时间同步是否存在异常、超宽带无线通信UWB传感器是否已经与上位机系统建立联系,若存在问题,则进行检查校正。
D4.确定动态目标定位系统和传感器网络正常运行,在系统中设定噪音阈值,以过滤干扰信号,提高检测精度。
所述步骤E中包括下列步骤:
E1.选取定位区域内的一个点放置UWB定位标签,并测得该定位标签的三维坐标,在动态目标定位系统模型中添加校准点,将测得三维坐标信息输入上位机动态定位系统模型作为校准点三维坐标信息。
E2.运行系统,查看系统是否可以检测到UWB定位标签,并给出坐标;同时比对动态目标定位系统中给出UWB定位标签三维坐标与实际UWB定位标签三维坐标,查看其定位精度是否满足精度需求。
所述步骤F中超宽带无线通讯UWB传感器对于UWB定位标签采用TDOA定位算法对UWB定位标签进行定位。TDOA指到达时间差法,是测量不同超宽带无线通讯UWB传感器接收到同一UWB定位标签信号的时间差,并由此计算出UWB定位标签到不同超宽带无线通讯UWB传感器的距离差,通过距离差进行计算,一般采用双曲线定位算法定位。
采用TDOA算法对UWB定位标签进行定位的方式,为保证UWB定位标签的位置能够被精确定位,UWB定位标签信号应至少可以被3个超宽带无线通讯UWB传感器同时接收到,同时能够被越多的超宽带无线通讯UWB传感器接收到定位精度越精确。通过算法对动态目标进行定位,提供精确的三维精度,在动态目标系统模型中显示目标位置。
所述步骤G中通过上位机系统中数据采集库,将检测到的动态目标实时位置信息进行保存,并依据信息提供动态目标实时的位置及绘制动态目标的运动轨迹。
所述步骤H包括下列步骤:
H1.当其中某一超宽带无线通讯UWB传感器基站移动后,其坐标发生变化,而上位机系统模型中不能自动获得超宽带无线通讯UWB传感器基站移动后新的坐标,此时若采用人工重新测量坐标的方式,费时费力且不方便进行。此时,利用激光测距传感器获得移动之后的超宽带无线通讯UWB传感器与另外3个未移动超宽带无线通讯UWB传感器之间的距离,将所得到的3个距离存入上位机距离测量系统模型中。
H2.上位机距离测量系统模型利用算法进行运算,求解移动后超宽带无线通讯UWB传感器的坐标,并重新输入动态目标定位模型系统中,以继续实现对动态目标的定位,重复F-G步骤。
由图3可以得知,超宽带无线通讯UWB传感器为主传感器2-1及时间源,从超宽带无线通讯UWB主传感器2-1任意输出口连接时间同步线,连入第一从通讯传感器2-2、第二从通讯传感器2-3、第三从通讯传感器2-4超宽带无线通讯UWB传感器的右上角输入端,四个超宽带无线通讯UWB传感器完成时间同步连线,如图所示。
由图3、图5可以得知,四个超宽带无线通讯UWB传感器、4个激光测距传感器都通过网线与POE交换机相连接,POE交换机为超宽带无线通讯UWB传感器、激光测距传感器分配IP地址同时供电,POE交换机通过网线与上位机连接,以获取传感器所接收测量的数据。
由图4可以得知,超宽带无线通讯UWB传感器采用的TDOA算法具体算法过程:
(1)UWB定位标签发射信号,被主通讯传感器2-1、第一从通讯传感器2-2、第二从通讯传感器2-3和第三从通讯传感器2-4这四个超宽带无线通讯UWB传感器接收。接收时间分别为t1、t2、t3、t4,则UWB定位标签到四个传感器之间的距离分别可以表示为ct1、ct2、ct3、ct4,其中c为光速。
(2)根据测得的时间,又由于在每个位置UWB定位标签到每两个超宽带无线通讯UWB传感器之间的距离差为定值,建立方程,设UWB定位标签的坐标为(x,y,z),四个超宽带无线通讯UWB传感器坐标分别依次为:(x1,y1,z1)(x2,y2,z2)(x3,y3,z3)(x4,y4,z4)。
故方程为:
|ct1-ct2|=|((x-x1)^2+(y-y1)^2+(z-z1))^1/2-((x-x2)^2+(y-y2)^2+(z-z2)^2)^1/2|
|ct1-ct3|=|((x-x1)^2+(y-y1)^2+(z-z1))^1/2-((x-x3)^2+(y-y3)^2+(z-z3)^2)^1/2|
|ct1-ct4|=|((x-x1)^2+(y-y1)^2+(z-z1))^1/2-((x-x4)^2+(y-y4)^2+(z-z4)^2)^1/2|
……
故为双曲线表达式,双曲线交点即为坐标(x,y,z)。
(3)以上方程的解即为UWB定位标签的位置,再在系统中加入其它优化算法,对所得到的坐标进行优化校准,即得到UWB定位标签的精确位置。
由图6可以得知,一种基于UWB与激光测距组合的动态定位方法,当超宽带无线通讯UWB传感器坐标移动后,可通过激光测距传感器算的其新坐标。具体计算方式为:
(1)假设第三从通讯传感器2-4发生移动,则通过第四激光测距传感器3-4测得距离d3,d4,d5。则通过已知主通讯传感器2-1、第一从通讯传感器2-2和第二从通讯传感器2-3坐标(x1,y1,z1)(x2,y2,z2)(x3,y3,z3),计算第三从通讯传感器2-4坐标(x,y,z)。
即:
|d3|=|((x-x2)^2+(y-y2)^2+(z-z2))^1/2
|d4|=|((x-x3)^2+(y-y3)^2+(z-z3))^1/2
|d5|=|((x-x1)^2+(y-y1)^2+(z-z1))^1/2
(2)解上述方程的2-4超宽带无线通讯UWB坐标(x,y,z),输入动态目标定位系统模型继续实现动态目标定位。
由图7可以得知,一种基于UWB与激光测距组合的动态定位方法其流程为在待检测区域内布置超宽带无线通讯UWB传感器,并在传感器上固定安装激光测距传感器。建立以太网连接。上位机中建立区域定位模型,测得超宽带无线通讯UWB传感器基站坐标,通过UWB定位标签对动态定位系统进行校准。正常运行系统,采用TDOA方式进行定位。进行动态定位检测。获取UWB定位标签三维坐标存入数据库,并在系统模型中显示UWB定位标签的实际位置。其中,当超宽带无线通讯UWB传感器坐标发生改变时,激光测距传感器测得两两超宽带无线通讯UWB传感器之间的距离,经过算法算的新的坐标,重新输入系统,继续对动态目标进行定位。

Claims (10)

  1. 一种基于UWB与激光测距组合的动态定位装置,其特征是:该动态定位装置包括:超宽带无线通讯UWB传感器、UWB定位标签、激光测距传感器、上位机、支架和POE交换机;在待检测区域布置可移动的支架;超宽带无线通讯UWB传感器安装固定在支架上作为UWB基站;激光测距传感器安装固定在超宽带无线通讯UWB传感器上;在待检测目标上固定UWB定位标签;超宽带无线通讯UWB传感器、激光测距传感器通过POE交换机与上位机连接;在控制处布置上位机,在上位机中建立检测区域系统模型,收集超宽带无线通讯UWB传感器及激光测距传感器数据,进行数据的分析及处理。
  2. 权利要求1所述的一种基于UWB与激光测距组合的动态定位装置的方法,其特征是:动态定位方法,步骤如下:
    A.根据实际待检测目标所处环境,放置支架,在支架上安装超宽带无线通讯UWB传感器作为UWB基站;在被检测目标上安装固定UWB定位标签;根据待检测区域环境建立坐标系,测量各个超宽带无线通讯UWB传感器的三维坐标;
    B.在超宽带无线通讯UWB传感器上安装固定激光测距传感器;
    C.将超宽带无线通讯传感器、激光测距传感器按照系统要求连接,与上位机系统建立联系,组建以太网;
    D.根据实际检测环境及所布置的超宽带无线通讯UWB传感器的实际位置,在上位机中建立动态定位检测模型;根据所布置的激光测距传感器的实际位置,在上位机中建立距离测量系统模型;
    E.对超宽带无线通讯UWB传感器进行校准,检验安装过程是否出现差错,检验定位系统是否能够达到定位的精度要求;
    F.动态定位系统运行,通过TDOA算法对待检测目标上的UWB定位标签进行定位,显示待检测目标的三维坐标及实时位置;
    G.定位数据实时存入数据库系统,绘制定位目标的运动轨迹;
    H.超宽带无线通讯UWB传感器基站移动,利用激光测距传感器测量距离,重新标定超宽带无线通讯UWB传感器坐标;
    I.将新的超宽带无线通讯UWB传感器坐标输入动态定位检测模型,继续对待检测动态目标实时定位,重复步骤F-G;
    J.当整个检测定位系统运行超过100小时或者超宽带无线通讯UWB传感器基站移动次数累计超过20次后,为保证动态目标的定位精确度,应再次对超宽带无线通讯UWB传感器位置进行人工校准,重复步骤E-G。
  3. 根据权利要求2所述的一种基于UWB与激光测距组合的动态定位方法,其特征是:所述步骤A包括下列步骤:
    A1.在带检测区域内支架上布置4个超宽带无线通讯UWB传感器作为基站;其中1个超宽带无线通讯UWB传感器基站作为时间源及主传感器,其余3个超宽带无线通讯UWB传感器基站作为从传感器;
    A2.为保证测量精度达到动态目标定位的要求,将4个超宽带无线通讯UWB传感器基站布置为方形区域;同时为最大程度的减小误差,应满足传感器布置高度大于定位目标高度2m以上;超宽带无线通讯UWB传感器向下倾斜角度25度左右;
    A3.保证待检测区域内的定位标签信号每一处位置都可以至少被三个超宽带无线通讯UWB传感器接收到;
    A4.依据实际检测环境建立坐标系,为满足定位精度要求,超宽带无线通讯UWB传 感器基站不能被选为原点;通过激光测距仪得到每一个超宽带无线通讯UWB传感器基站的坐标。
  4. 根据权利要求2所述的一种基于UWB与激光测距组合的动态定位方法,其特征是:所述步骤B中注意安装中应保证激光测距传感器应紧固在超宽带无线通讯UWB传感器上,并保证激光测距传感器不应被遮挡;同时,为精确测得两个超宽带无线通讯UWB传感器之间的距离,激光测距传感器激光发射端中心点应同超宽带无线通讯UWB传感器信号发射中心点保持在同一水平直线上。
  5. 根据权利要求2所述的一种基于UWB与激光测距组合的动态定位方法,其特征是:所述步骤C包括下列步骤:
    C1.采用星型连接方式连接超宽带无线通讯UWB传感器;时间信号从设置为时间源传感器任意端口输出,分别输入到从传感器的右上角端口处;由于共选用4个超宽带无线通讯UWB传感器,则使用作为时间源的超宽带无线通讯UWB传感器3个接口作为输出口,接入另外3个超宽带无线通讯UWB传感器的右上角输入端口,完成信号同步;
    C2.四个超宽带无线通讯UWB传感器之间其连接线必须为带信号屏蔽的网线,以保证时间同步信号不受影响;
    C3.基于UWB与激光测距组合的动态定位系统,选用以太网供电方式,选用POE交换机进行数据的传输及为传感器供电;超宽带无线通讯UWB传感器以及激光测距传感器通过网线与POE交换机接口连接,建立以太网;
    C4.POE交换机通过网线与上位机相连,通过DHCP服务器,为每一个超宽带无线通讯UWB传感器、激光测距传感器提供IP地址。
  6. 根据权利要求2所述的一种基于UWB与激光测距组合的动态定位方法,其特征是:所述步骤D包括下列步骤:
    D1.依据实际的环境以及超宽带无线通讯UWB传感器基站坐标,在上位机中建立待检测动态目标的定位系统模型,以达到定位的要求,实时的显示动态目标的位置;
    D2.建立激光测距传感器信息收集系统,以方便对移动后的超宽带无线通讯UWB传感器移动后坐标的计算;
    D3.通过上位机中动态目标的定位系统模型,对检测区域内超宽带无线通讯UWB传感器信号进行采集;通过信号的接收信息,查看超宽带无线通信UWB传感器之间时间同步是否存在异常、超宽带无线通信UWB传感器是否已经与上位机系统建立联系,若存在问题,则进行检查校正;
    D4.确定动态目标定位系统和传感器网络正常运行,在系统中设定噪音阈值,以过滤干扰信号,提高检测精度。
  7. 根据权利要求2所述的一种基于UWB与激光测距组合的动态定位方法,其特征是:所述步骤E中包括下列步骤:
    E1.选取定位区域内的一个点放置UWB定位标签,并测得该定位标签的三维坐标,在动态目标定位系统模型中添加校准点,将测得三维坐标信息输入上位机动态定位系统模型作为校准点三维坐标信息;
    E2.运行系统,查看系统是否可以检测到UWB定位标签,并给出坐标;同时比对动态目标定位系统中给出UWB定位标签三维坐标与实际UWB定位标签三维坐标,查看其定位精度是否满足精度需求。
  8. 根据权利要求2所述的一种基于UWB与激光测距组合的动态定位方法,其特征是:所述步骤F中超宽带无线通讯UWB传感器对于UWB定位标签采用TDOA定位算法 对UWB定位标签进行定位;TDOA指到达时间差法,是测量不同超宽带无线通讯UWB传感器接收到同一UWB定位标签信号的时间差,并由此计算出UWB定位标签到不同超宽带无线通讯UWB传感器的距离差,通过距离差进行计算,一般采用双曲线定位算法定位;
    所述的采用TDOA算法对UWB定位标签进行定位的方式,为保证UWB定位标签的位置能够被精确定位,UWB定位标签信号应至少可以被3个超宽带无线通讯UWB传感器同时接收到,同时能够被越多的超宽带无线通讯UWB传感器接收到定位精度越精确;通过算法对动态目标进行定位,提供精确的三维精度,在动态目标系统模型中显示目标位置。
  9. 根据权利要求2所述的一种基于UWB与激光测距组合的动态定位方法,其特征是:所述步骤G中通过上位机系统中数据采集库,将检测到的动态目标实时位置信息进行保存,并依据信息提供动态目标实时的位置及绘制动态目标的运动轨迹。
  10. 根据权利要求2所述的一种基于UWB与激光测距组合的动态定位方法,其特征是:所述步骤H包括下列步骤:
    H1.当其中某一超宽带无线通讯UWB传感器基站移动后,其坐标发生变化,而上位机系统模型中不能自动获得超宽带无线通讯UWB传感器基站移动后新的坐标,此时若采用人工重新测量坐标的方式,费时费力且不方便进行;此时,利用激光测距传感器获得移动之后的超宽带无线通讯UWB传感器与另外3个未移动超宽带无线通讯UWB传感器之间的距离,将所得到的3个距离存入上位机距离测量系统模型中;
    H2.上位机距离测量系统模型利用算法进行运算,求解移动后超宽带无线通讯UWB传感器的坐标,并重新输入动态目标定位模型系统中,以继续实现对动态目标的定位,重复F-G步骤。
PCT/CN2015/093619 2014-12-09 2015-11-03 一种基于uwb与激光测距组合的动态定位方法及装置 WO2016155308A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2015388821A AU2015388821B2 (en) 2014-12-09 2015-11-03 Dynamic locating method and device based on UWB combined with laser ranging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510141734.6 2015-03-27
CN201510141734.6A CN104714209B (zh) 2015-03-27 2015-03-27 一种基于uwb与激光测距组合的动态定位方法及装置

Publications (1)

Publication Number Publication Date
WO2016155308A1 true WO2016155308A1 (zh) 2016-10-06

Family

ID=53413697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093619 WO2016155308A1 (zh) 2014-12-09 2015-11-03 一种基于uwb与激光测距组合的动态定位方法及装置

Country Status (3)

Country Link
CN (1) CN104714209B (zh)
AU (1) AU2015388821B2 (zh)
WO (1) WO2016155308A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111885705A (zh) * 2020-07-28 2020-11-03 广东艾罗照明科技股份有限公司 基于uwb的灯具定位系统、方法及装置
CN112584488A (zh) * 2020-12-07 2021-03-30 Oppo广东移动通信有限公司 定位方法、终端及计算机存储介质
CN113286360A (zh) * 2021-05-12 2021-08-20 重庆菲莫科技有限公司 一种地下矿用uwb定位系统和定位方法
CN114339595A (zh) * 2021-12-24 2022-04-12 北京理工大学重庆创新中心 一种基于多模型预测的超宽带动态反演定位方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104714209B (zh) * 2015-03-27 2017-04-26 中国矿业大学 一种基于uwb与激光测距组合的动态定位方法及装置
CN105044664A (zh) * 2015-06-18 2015-11-11 深圳市润安科技发展有限公司 一种监管场所禁区管控方法和系统
CN105682221B (zh) * 2016-02-17 2019-03-08 郑州联睿电子科技有限公司 基于超宽带的被动式定位系统及定位方法
CN105807775A (zh) * 2016-05-17 2016-07-27 上海酷哇机器人有限公司 具有自主跟随避障功能的移动机器人
CN108885384B (zh) * 2016-05-27 2020-08-25 深圳市莫孚康技术有限公司 基于激光雷达测距的图像调焦系统及方法
CN106211080A (zh) * 2016-09-28 2016-12-07 深圳市普渡科技有限公司 一种uwb基站坐标自校准方法
CN106643694B (zh) * 2016-11-04 2019-06-18 航天科工智能机器人有限责任公司 一种机器人室内定位方法
CN106932755B (zh) * 2017-03-30 2019-08-16 四川中电昆辰科技有限公司 定位系统
CN107064757B (zh) * 2017-04-17 2019-11-29 国网江苏省电力公司电力科学研究院 基于多传感器的变压器局部放电智能化检测装置及方法
CN106896342A (zh) * 2017-04-17 2017-06-27 国网江苏省电力公司电力科学研究院 基于uwb测距模块的变压器表面特征点定位装置及方法
CN109212566B (zh) * 2017-07-04 2024-01-16 黑龙江省科学院自动化研究所 一种消防定位装置的定位方法
CN107566065A (zh) * 2017-08-25 2018-01-09 中山大学深圳研究院 基于uwb的tof定位方法
CN107589401B (zh) * 2017-09-05 2020-12-04 成都精位科技有限公司 自适应组网方法、定位系统及定位基站
CN109839632A (zh) * 2017-11-29 2019-06-04 中国气象局气象探测中心 一种雷达天线馈源的定位方法和装置
CN108152792A (zh) * 2017-12-29 2018-06-12 同方威视技术股份有限公司 定位移动设备的方法、移动设备和定位系统
CN108931760A (zh) * 2018-06-06 2018-12-04 成都昊图新创科技有限公司 空间定位系统及方法
CN109557506A (zh) * 2018-11-09 2019-04-02 武汉伊莱维特电力科技有限公司 一种超宽带无人机精确定位方法
CN111347417B (zh) * 2018-12-24 2022-05-10 深圳市优必选科技有限公司 一种uwb定位设备的位置标定方法、装置及机器人
CN110691116B (zh) * 2019-08-18 2023-04-14 朗德万斯公司 用于管理网络设备的方法、定位设备及系统
CN110460960B (zh) * 2019-09-12 2023-07-25 南京工程学院 超宽带室内定位误差补偿方法
CN110996047A (zh) * 2019-11-18 2020-04-10 北京小米移动软件有限公司 宠物追踪拍摄方法、装置、系统及计算机可读存储介质
CN113411151B (zh) * 2019-11-18 2022-07-12 广东博智林机器人有限公司 一种超带宽定位系统
CN111142098A (zh) * 2019-12-24 2020-05-12 江苏云巅电子科技有限公司 基于uwb技术的动态三维测速系统及方法
CN110988829B (zh) * 2019-12-27 2023-03-21 福建汉特云智能科技有限公司 一种基于uwb定位的车辆传感器标定方法及系统
CN111123200B (zh) * 2020-01-02 2023-05-09 广东博智林机器人有限公司 一种基于无源物体的模型构建方法、装置、系统及介质
CN111240341B (zh) * 2020-02-14 2022-09-06 南京理工大学 一种基于uwb和激光雷达传感器的车辆全方位跟随方法
CN111474518B (zh) * 2020-05-25 2023-07-14 浙江大华技术股份有限公司 定位方法、融合定位基站及存储介质
EP3916419A1 (de) * 2020-05-27 2021-12-01 Siemens Aktiengesellschaft Verfahren zum betrieb eines funkortungssystems und basisstation
CN111800760B (zh) * 2020-06-29 2024-01-30 交控科技股份有限公司 轨道交通列车定位方法、装置及系统
CN111852456B (zh) * 2020-07-29 2023-04-07 中国矿业大学 基于因子图的鲁棒uwb井下锚杆钻孔定位方法
CN112309115B (zh) * 2020-10-27 2022-04-15 华中科技大学 基于多传感器融合的场内外连续位置检测与停车精确定位方法
CN112484625B (zh) * 2020-11-12 2021-09-17 西南交通大学 一种基于uwb信道脉冲响应的高精度位移测量方法
CN113154989A (zh) * 2020-12-25 2021-07-23 中国人民解放军战略支援部队信息工程大学 一种uwb系统的动态精度标定方法
CN113645581A (zh) * 2021-09-24 2021-11-12 国网上海市电力公司 一种室内巡检机器人超宽带时差法移动定位系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080090588A1 (en) * 2006-10-13 2008-04-17 Kenichi Mizugaki Positioning system
CN203120161U (zh) * 2013-03-02 2013-08-07 山东电力集团公司济宁供电公司 基于超宽带无线通信技术的室内定位系统
CN103458503A (zh) * 2013-09-10 2013-12-18 西安嵌牛电子科技有限公司 基于rssi和aoa的单基站三维定位系统及定位方法
CN104612682A (zh) * 2014-12-09 2015-05-13 中国矿业大学 一种基于uwb采煤机绝对位置精确校准方法及装置
CN104714209A (zh) * 2015-03-27 2015-06-17 中国矿业大学 一种基于uwb与激光测距组合的动态定位方法及装置
CN204595198U (zh) * 2015-03-27 2015-08-26 中国矿业大学 一种基于uwb与激光测距组合的动态定位装置
CN104869633A (zh) * 2015-04-30 2015-08-26 西南石油大学 应急演练人员定位及跟踪系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102209382A (zh) * 2011-05-18 2011-10-05 杭州电子科技大学 一种基于rssi的无线传感器网络节点定位方法
US9413418B2 (en) * 2012-07-12 2016-08-09 Datalogic Ip Tech S.R.L. Synchronization of a real-time UWB locating system
CN104244175A (zh) * 2013-06-14 2014-12-24 长沙恒茂电子信息技术有限公司 基于uwb技术的矿井环境监控与救援管理系统
CN103491630B (zh) * 2013-09-25 2016-06-08 昆明理工大学 一种基于tdoa的无线传感网络中节点定位方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080090588A1 (en) * 2006-10-13 2008-04-17 Kenichi Mizugaki Positioning system
CN203120161U (zh) * 2013-03-02 2013-08-07 山东电力集团公司济宁供电公司 基于超宽带无线通信技术的室内定位系统
CN103458503A (zh) * 2013-09-10 2013-12-18 西安嵌牛电子科技有限公司 基于rssi和aoa的单基站三维定位系统及定位方法
CN104612682A (zh) * 2014-12-09 2015-05-13 中国矿业大学 一种基于uwb采煤机绝对位置精确校准方法及装置
CN104714209A (zh) * 2015-03-27 2015-06-17 中国矿业大学 一种基于uwb与激光测距组合的动态定位方法及装置
CN204595198U (zh) * 2015-03-27 2015-08-26 中国矿业大学 一种基于uwb与激光测距组合的动态定位装置
CN104869633A (zh) * 2015-04-30 2015-08-26 西南石油大学 应急演练人员定位及跟踪系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111885705A (zh) * 2020-07-28 2020-11-03 广东艾罗照明科技股份有限公司 基于uwb的灯具定位系统、方法及装置
CN111885705B (zh) * 2020-07-28 2022-11-08 广东艾罗照明科技股份有限公司 基于uwb的灯具定位系统、方法及装置
CN112584488A (zh) * 2020-12-07 2021-03-30 Oppo广东移动通信有限公司 定位方法、终端及计算机存储介质
CN112584488B (zh) * 2020-12-07 2023-02-03 Oppo广东移动通信有限公司 定位方法、终端及计算机存储介质
CN113286360A (zh) * 2021-05-12 2021-08-20 重庆菲莫科技有限公司 一种地下矿用uwb定位系统和定位方法
CN114339595A (zh) * 2021-12-24 2022-04-12 北京理工大学重庆创新中心 一种基于多模型预测的超宽带动态反演定位方法
CN114339595B (zh) * 2021-12-24 2023-12-01 北京理工大学重庆创新中心 一种基于多模型预测的超宽带动态反演定位方法

Also Published As

Publication number Publication date
AU2015388821A1 (en) 2016-12-15
CN104714209A (zh) 2015-06-17
CN104714209B (zh) 2017-04-26
AU2015388821B2 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
WO2016155308A1 (zh) 一种基于uwb与激光测距组合的动态定位方法及装置
Xiao et al. Comparison and analysis of indoor wireless positioning techniques
WO2016091020A1 (zh) 一种基于uwb采煤机绝对位置精确校准方法及装置
CA2784389C (en) Location detection in a wireless network
CN106483500B (zh) 一种基于cdma调制的可见光通信三维定位方法
CN104780506B (zh) 一种基于置信水平的加权三边定位方法
CN105472566A (zh) 室内定位系统及方法
CN101498781A (zh) 独立定位器以及自治超声波定位系统和方法
US20210157323A1 (en) Positioning method and system, electronic device, and computer-readable storage medium
Liu et al. Towards real-time indoor localization in wireless sensor networks
CN106017479B (zh) 室内移动目标的三维实时追踪方法及系统
CN109031187A (zh) 一种基于uwb技术的无线定位监控系统及方法
CN103813448A (zh) 一种基于rssi的室内定位方法
KR20130085024A (ko) 실내 가시광 통신을 이용한 3차원 위치 측정 방법 및 그 시스템과, 위치 기반 서비스 제공 방법
CN203275645U (zh) 一种基于rfid射频技术的定位系统
Wang et al. Prototyping and experimental comparison of IR-UWB based high precision localization technologies
Hammer et al. Performance evaluation of 3d-position estimation systems
CN204595198U (zh) 一种基于uwb与激光测距组合的动态定位装置
CN203416427U (zh) 基于ZigBee技术的自组网定位系统
Campbell et al. Decawave: Exploring state of the art commercial localization
CN112964258B (zh) 一种基于tdoa的多单元协同定位系统
Chuenurajit et al. Implementation of RSSI-Based 3D indoor localization using wireless sensor networks based on ZigBee standard
Jang Utilization of ubiquitous computing for construction AR technology
CN110824422A (zh) 一种高精度室内定位装置定位方法
JP2008151533A (ja) 側位システムおよび無線通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015388821

Country of ref document: AU

Date of ref document: 20151103

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887262

Country of ref document: EP

Kind code of ref document: A1