WO2016155297A1 - 无线通信系统中的电子设备和无线通信方法 - Google Patents

无线通信系统中的电子设备和无线通信方法 Download PDF

Info

Publication number
WO2016155297A1
WO2016155297A1 PCT/CN2015/092838 CN2015092838W WO2016155297A1 WO 2016155297 A1 WO2016155297 A1 WO 2016155297A1 CN 2015092838 W CN2015092838 W CN 2015092838W WO 2016155297 A1 WO2016155297 A1 WO 2016155297A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
txru
wireless communication
electronic device
parameter
Prior art date
Application number
PCT/CN2015/092838
Other languages
English (en)
French (fr)
Inventor
李高斯
陈晋辉
张欣
韦再雪
李南希
Original Assignee
索尼公司
李高斯
陈晋辉
张欣
韦再雪
李南希
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司, 李高斯, 陈晋辉, 张欣, 韦再雪, 李南希 filed Critical 索尼公司
Priority to CA2978985A priority Critical patent/CA2978985A1/en
Priority to KR1020177030949A priority patent/KR20170132250A/ko
Priority to US15/560,853 priority patent/US10432277B2/en
Priority to EP15887251.5A priority patent/EP3280067A4/en
Priority to JP2017549053A priority patent/JP6690652B2/ja
Publication of WO2016155297A1 publication Critical patent/WO2016155297A1/zh
Priority to US16/538,829 priority patent/US11050471B2/en
Priority to US17/337,442 priority patent/US11943021B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • H04B7/0421Feedback systems utilizing implicit feedback, e.g. steered pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • the present disclosure relates to the technical field of wireless communications, and in particular to electronic devices in wireless communication systems and methods for wireless communication in wireless communication systems.
  • the TXRU is a radio transceiver unit with independent phase and amplitude.
  • the number of TXRUs is also variable, and the same number of TXRUs also correspond to different antenna configurations.
  • Different antenna configurations may result in different physical channel characteristics.
  • the base station should use different codebooks to reflect the physical channel characteristics.
  • different antenna configurations may also affect the manner in which the base station transmits reference signals and the manner in which the UE (User Equipment) measures and feedbacks the characteristics of the wireless channel. Therefore, in order to improve the transmission efficiency, it is necessary to notify the UE of the antenna configuration of the base station.
  • the original notification unit for the 1D antenna array information is no longer applicable.
  • An object of the present disclosure is to provide an electronic device in a wireless communication system and a method for wireless communication in a wireless communication system, such that the user equipment can know the antenna configuration of the base station, thereby estimating and measuring the channel at the user equipment. It can meet the configuration of the base station and improve the transmission performance of the 3D MIMO system.
  • an electronic device in a wireless communication system comprising one or more processing circuits, the processing circuit configured to perform an operation based on an antenna array corresponding to the electronic device Determining a corresponding transceiver unit TXRU configuration, wherein each TXRU is associated with a group of antenna elements having the same polarization direction, the antenna array having a plurality of antenna elements of M rows, N columns, and P-dimensional polarization directions, wherein M, N, and P are natural numbers; and antenna configuration information is added to the radio resource control RRC signaling for user equipment in the wireless communication system, wherein the antenna configuration information is used to obtain the antenna array The number of TXRUs in .
  • an electronic device in a wireless communication system including one or more processing circuits configured to perform operations from from the wireless communication system
  • Antenna configuration information is extracted from RRC signaling of a base station, wherein the antenna configuration information is used to obtain a number of transceiver units TXRU in an antenna array of the base station, wherein each TXRU has the same polarization direction
  • each TXRU has the same polarization direction
  • M, N, and P are natural numbers.
  • a method for wireless communication in a wireless communication system comprising: determining a respective transceiver unit TXRU configuration based on an antenna array corresponding to an electronic device in the wireless communication system Wherein each TXRU is associated with a set of antenna elements having the same polarization direction, the antenna array having a plurality of antenna elements of M rows, N columns, and P-dimensional polarization directions, wherein M, N, and P are natural numbers And adding antenna configuration information to the radio resource control RRC signaling for user equipment in the wireless communication system, wherein the antenna configuration information is used to derive the number of TXRUs in the antenna array.
  • a method for wireless communication in a wireless communication system comprising: extracting antenna configuration information from RRC signaling from a base station in the wireless communication system, wherein The antenna configuration information is used to obtain the number of transceiver units TXRU in the antenna array of the base station, wherein each TXRU is associated with a group of antenna elements having the same polarization direction, the antenna array having M rows , N columns, and P Multiple antenna elements in the direction of dimensional polarization, where M, N, and P are natural numbers.
  • antenna configuration information may be transmitted via RRC signaling, which may be used to obtain a TXRU in the antenna array number.
  • RRC signaling may be used to obtain a TXRU in the antenna array number.
  • the user equipment can know the antenna configuration of the base station, so that when the user equipment estimates and measures the channel, the configuration of the base station can be met, and the transmission performance of the 3D MIMO system is improved.
  • 1 is a diagram illustrating an example of a relationship between a TXRU and an antenna
  • FIG. 2 is a diagram illustrating another example of a relationship between a TXRU and an antenna
  • FIG. 3 is a schematic diagram illustrating a 2D cross-polarized antenna array
  • FIG. 4 is a block diagram illustrating a structure of an electronic device in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram illustrating an example of a TXRU configuration in an antenna array
  • FIG. 6 is a schematic diagram illustrating another example of a TXRU configuration in an antenna array
  • FIG. 7 is a block diagram illustrating a structure of an electronic device in a wireless communication system according to an embodiment of the present disclosure
  • FIG. 8 is a sequence diagram illustrating a method for performing wireless communication in a wireless communication system, according to an embodiment of the present disclosure
  • 8CSI-RS channel state information reference signal
  • FIG. 10 is a block diagram showing a first example of a schematic configuration of an eNB (evolution Node Base Station) applicable to the present disclosure
  • FIG. 11 is a block diagram showing a second example of a schematic configuration of an eNB suitable for the present disclosure
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a smartphone suitable for the present disclosure.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a car navigation device applicable to the present disclosure.
  • Example embodiments are provided so that this disclosure will be thorough, and the scope will be fully conveyed by those skilled in the art. Numerous specific details, such as specific components, devices, and methods, are set forth to provide a thorough understanding of the embodiments of the present disclosure. It will be apparent to those skilled in the art that ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; In some example embodiments, well-known processes, well-known structures, and well-known techniques are not described in detail.
  • a UE User Equipment
  • a terminal having a wireless communication function such as a mobile terminal, a computer, an in-vehicle device, or the like.
  • the UE involved in the present disclosure may also be the UE itself or a component thereof such as a chip.
  • the base station involved in the present disclosure may be, for example, an eNB (evolution Node Base Station) or a component such as a chip in an eNB.
  • a TXRU (transceiver unit) is a radio transceiver unit with independent phase and amplitude.
  • Figures 1 and 2 illustrate two examples of the relationship between a TXRU and an antenna.
  • q is a Tx signal vectors of the same polarization means at the M antennas within one of
  • w and W are broadband TXRU virtual weight vector and matrix
  • x is TXRU M TXRU a TXRU at Signal vector.
  • the parameter M TXRU indicates the number of TXRUs in each dimension of polarization of each column in the antenna array.
  • the number of antennas can be expressed as (M, N, P), where M is In each column, the number of antennas having the same polarization direction, N is the number of columns of the antenna array, and P is the dimension of the polarization direction of the antenna.
  • Figure 3 shows a cross-polarized 2D antenna array. As shown in FIG. 3, the antenna array has a plurality of antenna elements of M rows, N columns, and two-dimensional polarization directions. In the antenna unit shown in Fig. 3, a solid line indicates one polarization direction, and a broken line indicates another polarization direction.
  • the number of antennas (M, N, P) can be converted to the number of TXRUs (M TXRU , N, P).
  • M TXRU the number of antennas
  • N, P the number of TXRUs
  • the number of TXRUs can also vary from 4 to 64, and the same number of TXRUs also correspond to different antenna configurations. Different antenna configurations may result in different physical channel characteristics.
  • the base station should use different codebooks to reflect the physical channel characteristics.
  • different antenna configurations can also affect how the base station transmits reference signals and how the UE measures and feeds back wireless channel characteristics. Therefore, in order to improve the transmission efficiency, it is necessary to notify the UE of the antenna configuration of the base station. Accordingly, the present disclosure proposes a new base station to client antenna configuration transmission design to serve 2D antenna arrays and 3D MIMO systems.
  • FIG. 4 illustrates a structure of an electronic device 400 in a wireless communication system according to an embodiment of the present disclosure.
  • electronic device 400 can include processing circuitry 410. Need to explain Yes, the electronic device 400 can include either a processing circuit 410 or a plurality of processing circuits 410. In addition, the electronic device 400 may further include an antenna array 420, a communication unit 430, and the like.
  • the processing circuit 410 can be configured to perform an operation of determining a corresponding TXRU configuration based on the antenna array 420 corresponding to the electronic device 400.
  • each TXRU is associated with a group of antenna elements having the same polarization direction, the antenna array having a plurality of antenna elements of M rows, N columns, and P-dimensional polarization directions, where M, N And P is a natural number.
  • processing circuit 410 can include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • a determination unit may be included in the processing circuit 410, which may determine a corresponding TXRU configuration based on the antenna array 420.
  • the processing circuit 410 may be further configured to perform an operation of adding antenna configuration information to RRC (Radio Resource Control) signaling for use in a UE in a wireless communication system.
  • RRC Radio Resource Control
  • the antenna configuration information can be used to derive the number of TXRUs in the antenna array 420.
  • an adding unit (not shown) may be included in the processing circuit 410, which may add antenna configuration information to the RRC signaling.
  • antenna configuration information may be transmitted via RRC signaling, which may be used to obtain the number of TXRUs in the antenna array 420. Since the notification is performed through RRC signaling, the broadcast resource can be saved, and the UE that supports the TXRU transmission is notified to reduce the unnecessary resolution of the legacy UE. In this way, the effective transmission of the TXRU configuration information is achieved.
  • Figure 5 shows an example of a TXRU configuration in an antenna array.
  • the antenna array in the antenna array configuration (8, 4, 2, 16), the antenna array has a plurality of antenna elements of 8 rows, 4 columns, and 2D polarization directions, and has 16 TXRUs.
  • each dashed box belongs to the same TXRU, and the antenna array has a 2-dimensional polarization direction, each dashed box corresponds to two TXRUs.
  • the antenna array configuration (8, 4, 2, 32) the antenna array has a plurality of antenna elements of 8 rows, 4 columns, and 2D polarization directions, and has 32 TXRUs.
  • the antenna array configuration (8, 4, 2, 64) the antenna array has a plurality of antenna elements of 8 rows, 4 columns, and 2D polarization directions, and has 64 TXRUs.
  • the antenna configuration information can be used to derive information about at least the parameter M TXRU to indicate the number of TXRUs for each dimension of polarization of each column in the antenna array 420.
  • the parameter M TXRU refers to the number of TXRUs in each dimension of polarization of each column in the antenna array 420.
  • Figure 6 shows another example of a TXRU configuration in an antenna array.
  • the antenna array in the antenna array configuration (8, 4, 2, 2), the antenna array has a plurality of antenna elements of 8 rows, 4 columns, and 2D polarization directions, and each column in the antenna array
  • the one-dimensional polarization direction has two TXRUs. It should be noted that since the same polarization direction in each dashed box belongs to the same TXRU, and the antenna array has a 2-dimensional polarization direction, each dashed box corresponds to two TXRUs.
  • the antenna array has a plurality of antenna elements of 8 rows, 4 columns, and 2D polarization directions, and each dimension pole of each column in the antenna array The direction has 4 TXRUs.
  • the antenna array configuration (8, 4, 2, 8) the antenna array has a plurality of antenna elements of 8 rows, 4 columns, and 2D polarization directions, and each dimension of each column in the antenna array is polarized. Has 8 TXRUs.
  • the indications of the parameters M TXRU , M , N , and P of the antenna array configuration may be in various order, as long as the order is pre-uniformed on both sides.
  • the sequence of parameters in the example of FIG. 6 is (M, N, P, M TXRU ), and in the following description, the sequence of parameters (M TXRU , M, N, P) is taken as an example for illustration.
  • the value range of the parameter M TXRU may include at least 1, 2, 4, and 8 and the value of the parameter M TXRU is less than or equal to the value of the parameter M.
  • the value range of the parameter M TXRU and its relationship with the parameter M can also be obtained by the antenna configuration structure of Table 1.
  • the 3D MIMO (3-Dimension Multiple-Input Multiple-Output)/FD MIMO (Full-Dimension Multiple-Input Multiple-) may be included in the RRC signaling.
  • the antenna configuration information can both explicitly contain
  • the information of the line configuration parameters may in turn contain information about the antenna configuration parameters.
  • antenna information information elements are defined in the RRC information element as part of the radio resource control information.
  • the process and structure of the antenna notification information unit are as follows.
  • the content notified by the UE has an antenna port, a transmission mode, and a corresponding codebook subset. Constraint (codebook subset restriction). Since the antenna notification information element is part of a Radio Resource Control (RRC) information element, the antenna notification information should be transmitted to the UE during the UE's random access procedure.
  • RRC Radio Resource Control
  • the UE sends an RRC connection request signaling to the base station in the random access channel to establish an RRC connection.
  • the base station then transmits RRC connection setup signaling to the UE in the forward access channel, and the antenna notification information element is included therein.
  • the codebook subset constraint can also be transmitted in a CSI-Process information element.
  • the codebook subset constraints can still be transmitted in the CSI process information element.
  • the antenna configuration parameters included in the antenna configuration information may include one or more of a parameter M TXRU , a parameter M, a parameter N, a parameter P, and a combination thereof. More preferably, the antenna configuration parameters may include a parameter M TXRU , a parameter M, a parameter N, and a parameter P.
  • the processing circuit 410 may add antenna configuration information to an antenna notification information unit or a CSI-RS (channel state information reference signal) in RRC signaling. , channel state information reference signal) in the configuration information unit.
  • CSI-RS channel state information reference signal
  • a unit named antennaNumberCount can be added in AntennaInfoDedicated-r13.
  • This unit contains 4 parameters (M TXRU , M, N, P).
  • M may be equal to 4 or 8
  • N may be equal to 1
  • P may be equal to 1 or 2
  • the corresponding M TXRU may be derived from Table 1. Since this part is new, it should appear behind the traditional content.
  • the modified antenna notification information unit is as follows.
  • a function of the actual or actual value of the antenna configuration parameters may be represented by a predetermined number of bits. For example, 1 or 2 bits can be used to indicate these antenna parameters or to transmit the actual values of these antenna parameters. Further, since these antenna parameters are all in the form of an exponential power of 2, the base station may, for example, also choose to transmit these parameters in the form of log 2 (M TXRU , M, N, P).
  • the base station can use the parameter M/M TXRU instead of the parameter M TXRU or M.
  • the parameter M/M TXRU is fixed in one system, the parameter can be transmitted separately, which can reduce some system overhead.
  • the UE can obtain the total number of system antennas by the number of TXRUs, so that only two parameters need to be transmitted in the parameter sequence (M, N, P).
  • Another way to obtain the number of TXRUs is to define a new part called CSI-RS-Config-r13 in the CSI-RS-Config information element, including antennaPorts Count-r13. Since the number of TXRUs is equal to the number of ports of the antenna, the number of TXRUs can be obtained from this new part.
  • the modified CSI-RS-Config information unit is as follows.
  • the user can get the number of TXRUs.
  • the parameter sequence (M TXRU , M, N, P) can be reduced to (M, N, P), and the antenna parameters can be obtained after knowing the number of TXRUs.
  • the parameter sequence (M, N, P) can also be explicitly transmitted in CSI-RS-Config-r13.
  • processing circuitry 410 may utilize antenna code configuration constraints in RRC signaling to add antenna configuration information. More preferably, the processing circuit 410 (e.g., the adding unit included in the processing circuit 410) may express the antenna configuration information by adding a predetermined number of bits in the bit string for selecting the codebook in the codebook subset constraint. Alternatively, processing circuitry 410 (e.g., adding units included in processing circuitry 410) may also express antenna configuration information by adding a codebook index to the codebook subset constraints.
  • the present disclosure proposes a new transmission mode and uses codebook subset constraints to distinguish between different antenna configurations.
  • a new transmission mode that can be used for vertical beamforming/FD MIMO systems is first proposed.
  • This new transmission mode defines a codebook subset constraint that includes information on the number of antennas and the number of TXRUs.
  • the codebookSubsetRestriction portion the transmission condition is distinguished by the number of antenna ports. Therefore, in the new transmission mode, the transmission situation is still distinguished by the number of antenna ports. Also, since the number of antenna ports is equal to the number of TXRUs, it can also be said that the case of transmission is distinguished by the number of TXRUs.
  • the number of TXRUs can be equal to 4, 8, 16, 32 or 64.
  • a number of bits can be added in the bit string used to select the codebook to distinguish different antenna configuration states under the same number of TXRUs.
  • the modified antenna information transmission unit is as follows.
  • the UE Since different antenna configurations may be corresponding in the case of the same number of TXRUs in Table 1, several bits are added to the front end of the bit string to distinguish different antenna configurations.
  • the UE When the UE receives the bit string, the UE should intercept the added bits according to the number of antenna ports and judge the antenna configuration. For the case of a 4-antenna port, the length of its bit string is assumed to be 96. Meanwhile, in Table 1, there is only one antenna configuration for the case of 4TXRU, so the number of added bits is zero. For the case of an 8-antenna port, the bit string length is assumed to be 109. Also, since in Table 1, there are five antenna configurations for the 8TXRU, the number of added bits is three.
  • bit correspondence table of these three cases is composed in a similar manner to the case of the 8-antenna port, except that the size of the bit correspondence table becomes larger.
  • the number of corresponding added bits is 1, 1, and 0. Therefore, the bit string length corresponding to these three cases should be 219, 437, and 872.
  • Table 2 The relationship between the added bits and the antenna configuration is shown in Table 2.
  • Another method of designing the codebook subset constraint is to first design a codebook index for distinguishing the antenna configuration, and then use the bit correspondence table constrained by the codebook subset to select the corresponding codeword.
  • the modified antenna notification information unit is as follows.
  • the codebook subset constraint is only used to select the codeword and is no longer used to distinguish the antenna configuration, so the portion of the bit added in the previous design is no longer needed.
  • Table 1 there are six different antenna configurations without considering the number of TXRUs, so there are six indexes in the codebook selection. The correspondence between the codebook selection index and the antenna configuration is as shown in Table 3.
  • Codebook selection index Antenna configuration 000 (8,2,1) 001 (8,2,2) 010 (8,4,1) 011 (8,4,2) 100 (4,4,1) 101 (4,4,2)
  • the selection of the antenna configuration and the CSI-RS transmission mechanism are different in the two schemes.
  • the antenna configuration is (M, N, P).
  • M TXRU and N it is known that the total number of TXRUs is (M TXRU ⁇ N ⁇ P), so the number of CSI-RSs is (M TXRU ⁇ N ⁇ P).
  • M TXRU ⁇ N ⁇ P the number of CSI-RSs are distributed in the M TXRU row, the N column, and the P-dimensional polarization direction.
  • the number of TXRUs can be obtained by codebook subset constraints.
  • the antenna configuration it can be obtained by Table 2 or Table 3.
  • the number of CSI-RSs N CSI-RS (which is equal to the number of TXRUs) and the distribution of CSI-RSs can be determined.
  • 9 is an example of an 8CSI-RS distributed in 2 rows and 4 columns, which is used for antenna parameters of (1, 8, 4, 2), (2, 8, 4, 1), (1, 4, 4). , 2), (2, 4, 4, 1) 2D antenna array.
  • the wireless communication system as described above may be an LTE-A (Long Term Evolution-Advanced) cellular communication system
  • the electronic device 400 may be a base station in a wireless communication system.
  • the electronic device 400 may further include an antenna array 420, a communication unit 430, and the like.
  • the communication unit 430 can transmit, for example, RRC signaling or the like to the UE in the wireless communication system.
  • FIG. 7 illustrates a structure of an electronic device 700 in a wireless communication system according to an embodiment of the present disclosure.
  • electronic device 700 can include processing circuitry 710. It should be noted that the electronic device 700 may include one processing circuit 710 or multiple processing circuits 710. In addition, the electronic device 700 may further include a communication unit 720 or the like.
  • Processing circuitry 710 can extract antenna configuration information from RRC signaling from a base station in the wireless communication system.
  • processing circuit 710 may also include various discrete functional units to perform various different functions and/or operations. These functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • an extraction unit may be included in the processing circuit 710, which may extract antenna configuration information from RRC signaling from a base station in the wireless communication system.
  • the antenna configuration information can be used to derive the number of TXRUs in the antenna array of the base station.
  • each TXRU is associated with a group of antenna elements having the same polarization direction, and the antenna array has a plurality of antenna elements of M rows, N columns, and P-dimensional polarization directions, where M, N, and P are natural numbers.
  • the antenna configuration information can be used to derive information about at least the parameter M TXRU to indicate the number of TXRUs for each dimension of polarization of each column in the antenna array.
  • the value range of the parameter M TXRU may include at least 1, 2, 4, and 8 and the value of the parameter M TXRU is less than or equal to the value of the parameter M.
  • the processing circuit 710 may further extract information about the number of antenna ports available to the 3D MIMO/FD MIMO system from the RRC signaling to determine the number of TXRUs.
  • the antenna configuration parameters may include a parameter M TXRU , a parameter M, a parameter N, and a parameter P.
  • the processing circuit 710 may parse at least one of an antenna notification information unit, a CSI-RS configuration information unit, and a codebook subset constraint information unit in the RRC signaling to obtain antenna configuration information.
  • a parsing unit (not shown) may be included in the processing circuit 710, which may perform the aforementioned parsing operations.
  • the processing circuit 710 can select at least one of a CSI (channel state information) feedback codebook and a CSI feedback scheme based on the antenna configuration information. More preferably, processing circuit 710 can select both a CSI feedback codebook and CSI feedback based on antenna configuration information. Accordingly, a selection unit (not shown) may be included in the processing circuit 710, which may perform the aforementioned selection operation.
  • the wireless communication system as described above may be an LTE-A cellular communication system
  • the electronic device 700 may be a UE in a wireless communication system
  • the electronic device 700 may further include a receiver ( For example, communication unit 720) to receive RRC signaling.
  • the electronic device in the wireless communication system according to an embodiment of the present disclosure has been described above.
  • a method for wireless communication in a wireless communication system according to an embodiment of the present disclosure is described in detail below.
  • a method for wireless communication in a wireless communication system may include determining a corresponding TXRU configuration based on an antenna array corresponding to an electronic device in the wireless communication system.
  • each TXRU is related to a group of antenna elements having the same polarization direction, and the antenna array has M rows, N columns, and a plurality of antenna elements in a P-dimensional polarization direction, wherein M, N, and P are natural numbers.
  • the method can also include adding antenna configuration information to the RRC signaling for use by the UE in the wireless communication system.
  • the antenna configuration information can be used to obtain the number of TXRUs in the antenna array.
  • the antenna configuration information can be used to derive information about at least the parameter M TXRU to indicate the number of TXRUs for each dimension of polarization of each column in the antenna array.
  • the value range of the parameter M TXRU may include at least 1, 2, 4, and 8 and the value of the parameter M TXRU is less than or equal to the value of the parameter M.
  • information about the number of antenna ports available for the 3D MIMO/FD MIMO system may be included in the RRC signaling to indicate the number of TXRUs.
  • the antenna configuration information may explicitly contain information about antenna configuration parameters.
  • the antenna configuration parameters may include one or more of a parameter M TXRU , a parameter M, a parameter N, a parameter P, and combinations thereof. More preferably, the antenna configuration parameters may include a parameter M TXRU , a parameter M, a parameter N, and a parameter P.
  • the antenna configuration information may be added to an antenna notification information unit or a CSI-RS configuration information unit in the RRC signaling.
  • the actual or actual value of the antenna configuration parameters can be expressed in a predetermined number of bits.
  • the antenna configuration information may implicitly contain information about antenna configuration parameters.
  • the antenna configuration information can be added using codebook subset constraints in RRC signaling.
  • the antenna configuration information may be expressed by adding a predetermined number of bits in a bit string for selecting a codebook in a codebook subset constraint.
  • the antenna configuration information can be expressed by adding a codebook index to the codebook subset constraint.
  • a method for wireless communication in a wireless communication system may include extracting antenna configuration information from RRC signaling from a base station in a wireless communication system.
  • the antenna configuration information can be used to derive the number of transceiver units TXRU in the antenna array of the base station.
  • each TXRU is related to a group of antenna elements having the same polarization direction, and the antenna array has M rows, N columns, and a plurality of antenna elements in a P-dimensional polarization direction, wherein M, N, and P are natural numbers.
  • the antenna configuration information can be used to derive information about at least the parameter M TXRU to indicate the number of TXRUs for each dimension of polarization of each column in the antenna array.
  • the value range of the parameter M TXRU may include at least 1, 2, 4, and 8 and the value of the parameter M TXRU is less than or equal to the value of the parameter M.
  • the information about 3D MIMO/FD can be further extracted from the RRC signaling.
  • the information of the number of antenna ports of the MIMO system determines the number of TXRUs.
  • the antenna configuration parameters may include a parameter M TXRU , a parameter M, a parameter N, and a parameter P.
  • At least one of the antenna notification information unit, the CSI-RS configuration information unit, and the codebook subset constraint information unit in the RRC signaling may be parsed to obtain antenna configuration information.
  • At least one of a CSI feedback codebook and a CSI feedback scheme may be selected based on antenna configuration information. More preferably, both the CSI feedback codebook and the CSI feedback can be selected based on the antenna configuration information.
  • FIG. 8 is a sequence diagram illustrating a method for wireless communication in a wireless communication system, according to an embodiment of the present disclosure.
  • step S101 the user transmits an RRC connection request signaling to the base station to establish an RRC connection.
  • the base station sends an RRC connection setup signaling to the user, including an antenna notification information element and a codebook subset constraint.
  • the base station may select scheme 1 or scheme 2 to transmit antenna configuration information.
  • the parameter sequence (M TXRU , M, N, P) is explicitly transmitted.
  • the parameter sequence (M TXRU , M, N, P) can be obtained according to the codebook subset constraint and the added bit or codebook selection index.
  • step S103 the user determines a CSI feedback scheme and a codebook according to the antenna configuration information.
  • the CSI feedback scheme should apply to M TXRU ⁇ P ⁇ N CSI feedback.
  • step S104 the user transmits an RCC connection establishment completion signaling to the base station.
  • step S105 the base station transmits a CSI-RS to the user.
  • step S106 the user estimates the channel and calculates CSI feedback information according to the CSI feedback scheme and the codebook.
  • the number of CSI-RSs should be M TXRU ⁇ P ⁇ N and the user will calculate the corresponding CSI feedback information.
  • step S107 the user transmits CSI feedback information to the base station.
  • step S108 the base station obtains channel feedback and performs radio resource management and precoding.
  • steps S105-S108 are repeated.
  • the process of transmitting from CSI-RS signaling to the base station for radio resource management and precoding can be performed periodically.
  • the working mode of the present invention will be described below with reference to the example in which the base station antenna configuration in FIG. 9 is (1, 8, 4, 2) and (2, 4, 4, 1), and the base station transmits 8 CSI-RS using the 8-antenna port.
  • the base station transmits these parameter values to the user, and the user can know that the antenna configuration of the base station is (1, 8, 4, 2).
  • the signaling is as follows.
  • the signaling transmitted by the base station is as follows.
  • the base station chooses to use scheme 2 to implicitly transmit the antenna configuration. Since the number of antenna ports of the base station is 8, the base station should select n8TXAntenna-tm11-r13 for transmission in codebooksubsetrestriction-v13xx. Since the antenna configuration parameter is (8, 4, 2), according to Table 2, in the case of 8TXRU, the added bit should be 010 (or use the codebook) If you choose an index, the index in this case should be 011). In this way, the user can know that the antenna parameter is configured as (8, 4, 2) according to the information. In addition, the user has learned that the number of TXRUs of the base station is 8, and the user can know that the overall antenna configuration of the base station is (1, 8, 4, 2). The signaling is as follows.
  • the added bit should be 011 (or use the codebook to select the index, then the index should be 110 in this case), and the signaling transmitted by the base station is as follows: Shown.
  • the user When the user receives the antenna configurations of the two base stations, the user selects the corresponding codebook to perform CSI feedback.
  • the antenna of the base station is configured as (1, 8, 4, 2)
  • the user equipment determines, for example, that there are 8 TXRUs in the same horizontal direction, which is the same as the hypothetical antenna configuration of the current Rel-12, and selects the 8 antenna ports in the TM10.
  • Codebook ie
  • the user equipment feeds back a codeword index (eg, PMI) selected from the codebook to the base station.
  • a codeword index eg, PMI
  • the antenna of the base station is configured as (2, 4, 4, 1)
  • the user equipment determines, for example, two sets of TXRUs having different heights, wherein each set includes 4 TXRUs corresponding to 4 antenna ports, thereby selecting two sets.
  • 4 antenna port codebook in addition, because the two sets of TXRU are offset phase due to the height difference, there is correlation between the two sets of codebooks, and the user equipment, for example, uses the TM10's 4-antenna port codebook as the first set of codebooks.
  • the offset phase ⁇ is added to the codeword of the 4-antenna port codebook of the TM10 to obtain a second set of codebooks.
  • the user equipment feeds back the codeword index (e.g., PMI) and the offset phase selected from the above codebooks to the base station, respectively.
  • codeword index e.g., PMI
  • offset phase selected from the above codebooks
  • the base station when the antenna configuration of the base station is different, especially when the TXRU configuration is different, the user selects a distinct CSI feedback codebook according to the antenna configuration of the base station.
  • the user actually uses the two parameters of the M TXRU and the number of ports of the base station.
  • the base station only needs to send M TXRU and N ⁇ P signaling to the user without requiring separate M, N, and P information.
  • the base station since the total number of TXRUs at the base station can be determined by the number of ports of the antenna, the base station only needs to transmit one of the M TXRU and the N ⁇ P to enable the user to determine the corresponding antenna codebook. Therefore, in actual situations, the base station should transmit all or part of the transmission parameter sequence (M TXRU , M, N, P) to the user, which can also reduce the signaling overhead of the system.
  • the user sends an RRC connection request signaling to the base station to establish an RRC connection, and then the base station sends an RRC connection setup signaling to the user, where the base station can select the information about the antenna configuration according to the scheme 1 or scheme 2 as described above.
  • the base station can select the information about the antenna configuration according to the scheme 1 or scheme 2 as described above.
  • the user determines a scheme and a codebook for CSI feedback according to the received antenna configuration information, and then the user sends an RRC connection setup complete signaling to the base station. Thereafter, when the base station needs to perform channel estimation, the base station sends a CSI-RS as shown in FIG. 9 to the user.
  • the user After receiving the CSI-RS, the user performs channel measurement, and then determines CSI feedback information according to the previously determined CSI feedback scheme and codebook, and sends the CSI feedback information to the base station. After obtaining the CSI feedback, the base station completes the channel estimation and performs corresponding radio resource management and precoding.
  • the number of base station antennas and the number of TXRUs may be notified to the UE.
  • the parameter sequence M TXRU , M, N, P.
  • the base station can perform antenna configuration information transmission on the UE by using the modification of the antenna notification information unit and other compared information units, optimize the CSI feedback mechanism in the 3D MIMO system, and improve the 3D MIMO.
  • the transmission performance of the system can be performed by using the modification of the antenna notification information unit and other compared information units, optimize the CSI feedback mechanism in the 3D MIMO system, and improve the 3D MIMO.
  • a user in a 3D MIMO system is made aware of an antenna configuration of a base station.
  • the original notification unit for the 1D antenna array information is no longer applicable.
  • the antenna notification information unit is also necessary. Both schemes proposed by the present disclosure can be used for antenna notification information elements in a 3D MIMO system.
  • a CSI feedback flow in a 3D MIMO system can be completed. Due to the introduction of new vertical dimensions in 3D MIMO systems, the original CSI feedback flow is not applicable in 3D MIMO systems.
  • the user In order to implement the CSI feedback process of the 3D MIMO system, the user needs to understand the antenna configuration of the base station, and the antenna notification mechanism designed by the present disclosure can achieve this goal, thereby completing the CSI feedback process in the 3D MIMO system.
  • the antenna configuration notification scheme provided by the present disclosure is an indispensable part of a 3D MIMO system, thereby perfecting the 3D MIMO system.
  • the scheme has both explicit and implicit modes, and the relationship between the antenna configuration parameters to be indicated is fully considered. Therefore, the solution of the present disclosure has better flexibility, low signaling overhead, small changes to the standard, and easy extension to different combinations of antenna numbers in the future.
  • the base stations mentioned in this disclosure may be implemented as any type of evolved Node B (eNB), such as a macro eNB and a small eNB.
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • BTS base transceiver station
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • a body also referred to as a base station device
  • RRHs remote wireless headends
  • various types of terminals which will be described below, can operate as a base station by performing base station functions temporarily or semi-persistently.
  • the UE mentioned in the present disclosure may be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device) or an in-vehicle terminal. (such as car navigation equipment).
  • the UE may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the UE may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the above terminals.
  • FIG. 10 is a block diagram showing a first example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 1000 includes one or more antennas 1010 and a base station device 1020.
  • the base station device 1020 and each antenna 1010 may be connected to each other via an RF cable.
  • Each of the antennas 1010 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 1020 to transmit and receive wireless signals.
  • the eNB 1000 may include a plurality of antennas 1010.
  • multiple antennas 1010 can be compatible with multiple frequency bands used by eNB 1000.
  • FIG. 10 illustrates an example in which the eNB 1000 includes a plurality of antennas 1010, the eNB 1000 may also include a single antenna 1010.
  • the base station device 1020 includes a controller 1021, a memory 1022, a network interface 1023, and a wireless communication interface 1025.
  • the controller 1021 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 1020. For example, controller 1021 generates data packets based on data in signals processed by wireless communication interface 1025 and passes the generated points via network interface 1023. group. The controller 1021 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 1021 may have a logical function that performs control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 1022 includes a RAM and a ROM, and stores programs executed by the controller 1021 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 1023 is a communication interface for connecting base station device 1020 to core network 1024. Controller 1021 can communicate with a core network node or another eNB via network interface 1023. In this case, the eNB 1000 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 1023 may also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If network interface 1023 is a wireless communication interface, network interface 1023 can use a higher frequency band for wireless communication than the frequency band used by wireless communication interface 1025.
  • the wireless communication interface 1025 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the eNB 1000 via the antenna 1010.
  • Wireless communication interface 1025 may typically include, for example, a baseband (BB) processor 1026 and RF circuitry 1027.
  • the BB processor 1026 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 1026 may have some or all of the above described logic functions.
  • the BB processor 1026 may be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the functionality of the BB processor 1026 to change.
  • the module can be a card or blade that is inserted into a slot of base station device 1020. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1027 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1010.
  • the wireless communication interface 1025 can include a plurality of BB processors 1026.
  • multiple BB processors 1026 can be compatible with multiple frequency bands used by eNB 1000.
  • the wireless communication interface 1025 can include a plurality of RF circuits 1027.
  • multiple RF circuits 1027 can be compatible with multiple antenna elements.
  • FIG. 10 illustrates an example in which the wireless communication interface 1025 includes a plurality of BB processors 1026 and a plurality of RF circuits 1027, the wireless communication interface 1025 may also include a single BB processor 1026 or a single RF circuit 1027.
  • the eNB 11 is a second diagram showing a schematic configuration of an eNB to which the technology of the present disclosure may be applied.
  • the eNB 1130 includes one or more antennas 1140, a base station device 1150, and an RRH 1160.
  • the RRH 1160 and each antenna 1140 may be connected to each other via an RF cable.
  • the base station device 1150 and the RRH 1160 may be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 1140 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1160 to transmit and receive wireless signals.
  • the eNB 1130 may include a plurality of antennas 1140.
  • multiple antennas 1140 can be compatible with multiple frequency bands used by eNB 1130.
  • FIG. 11 illustrates an example in which the eNB 1130 includes multiple antennas 1140, the eNB 1130 may also include a single antenna 1140.
  • the base station device 1150 includes a controller 1151, a memory 1152, a network interface 1153, a wireless communication interface 1155, and a connection interface 1157.
  • the controller 1151, the memory 1152, and the network interface 1153 are the same as the controller 1021, the memory 1022, and the network interface 1023 described with reference to FIG.
  • the wireless communication interface 1155 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 1160 via the RRH 1160 and the antenna 1140.
  • Wireless communication interface 1155 can generally include, for example, BB processor 1156.
  • the BB processor 1156 is identical to the BB processor 1026 described with reference to FIG. 10 except that the BB processor 1156 is connected to the RF circuit 1164 of the RRH 1160 via the connection interface 1157.
  • the wireless communication interface 1155 can include a plurality of BB processors 1156.
  • multiple BB processors 1156 can be compatible with multiple frequency bands used by eNB 1130.
  • FIG. 11 illustrates an example in which the wireless communication interface 1155 includes a plurality of BB processors 1156, the wireless communication interface 1155 may also include a single BB processor 1156.
  • connection interface 1157 is an interface for connecting the base station device 1150 (wireless communication interface 1155) to the RRH 1160.
  • the connection interface 1157 may also be a communication module for communicating the base station device 1150 (wireless communication interface 1155) to the above-described high speed line of the RRH 1160.
  • the RRH 1160 includes a connection interface 1161 and a wireless communication interface 1163.
  • connection interface 1161 is an interface for connecting the RRH 1160 (wireless communication interface 1163) to the base station device 1150.
  • the connection interface 1161 may also be a communication module for communication in the above high speed line.
  • the wireless communication interface 1163 transmits and receives wireless signals via the antenna 1140.
  • Wireless communication interface 1163 can generally include, for example, RF circuitry 1164.
  • the RF circuit 1164 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1140.
  • the wireless communication interface 1163 can include a plurality of RF circuits 1164.
  • multiple RF circuits 1164 can support multiple antenna elements.
  • FIG. 11 illustrates an example in which the wireless communication interface 1163 includes a plurality of RF circuits 1164, the wireless communication interface 1163 may also include a single RF circuit 1164.
  • the communication unit 430 described by using FIG. 4 can be implemented by the wireless communication interface 1025 and the wireless communication interface 1155 and/or the wireless communication interface 1163. At least a portion of the functionality can also be implemented by controller 1021 and controller 1151.
  • FIG. 12 is a block diagram showing an example of a schematic configuration of a smartphone 1200 to which the technology of the present disclosure can be applied.
  • the smart phone 1200 includes a processor 1201, a memory 1202, a storage device 1203, an external connection interface 1204, an imaging device 1206, a sensor 1207, a microphone 1208, an input device 1209, a display device 1210, a speaker 1211, a wireless communication interface 1212, and one or more An antenna switch 1215, one or more antennas 1216, a bus 1217, a battery 1218, and an auxiliary controller 1219.
  • the processor 1201 may be, for example, a CPU or a system on chip (SoC), and controls the functions of the application layer and the other layers of the smartphone 1200.
  • the memory 1202 includes a RAM and a ROM, and stores data and programs executed by the processor 1201.
  • the storage device 1203 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1204 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 1200.
  • USB universal serial bus
  • the imaging device 1206 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 1207 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 1208 converts the sound input to the smartphone 1200 into an audio signal.
  • the input device 1209 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 1210, and receives an operation or information input from a user.
  • the display device 1210 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1200.
  • the speaker 1211 converts the audio signal output from the smartphone 1200 into sound.
  • the wireless communication interface 1212 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 1212 may generally include, for example, BB processor 1213 and RF circuitry 1214.
  • the BB processor 1213 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 1214 may include, for example, a mixer, a filter, and an amplifier, and via Antenna 1216 transmits and receives wireless signals.
  • the wireless communication interface 1212 can be a chip module on which the BB processor 1213 and the RF circuit 1214 are integrated. As shown in FIG.
  • the wireless communication interface 1212 can include a plurality of BB processors 1213 and a plurality of RF circuits 1214.
  • FIG. 12 illustrates an example in which the wireless communication interface 1212 includes a plurality of BB processors 1213 and a plurality of RF circuits 1214, the wireless communication interface 1212 may also include a single BB processor 1213 or a single RF circuit 1214.
  • wireless communication interface 1212 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1212 can include a BB processor 1213 and RF circuitry 1214 for each wireless communication scheme.
  • Each of the antenna switches 1215 switches the connection destination of the antenna 1216 between a plurality of circuits included in the wireless communication interface 1212, such as circuits for different wireless communication schemes.
  • Each of the antennas 1216 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 1212 to transmit and receive wireless signals.
  • smart phone 1200 can include multiple antennas 1216.
  • FIG. 12 illustrates an example in which smart phone 1200 includes multiple antennas 1216, smart phone 1200 may also include a single antenna 1216.
  • smart phone 1200 can include an antenna 1216 for each wireless communication scheme.
  • the antenna switch 1215 can be omitted from the configuration of the smartphone 1200.
  • the bus 1217 stores the processor 1201, the memory 1202, the storage device 1203, the external connection interface 1204, the imaging device 1206, the sensor 1207, the microphone 1208, the input device 1209, the display device 1210, the speaker 1211, the wireless communication interface 1212, and the auxiliary controller 1219 with each other. connection.
  • Battery 1218 provides power to various blocks of smart phone 1200 shown in FIG. 12 via feeders, which are partially shown as dashed lines in the figure.
  • the secondary controller 1219 operates the minimum required functions of the smartphone 1200, for example, in a sleep mode.
  • the communication unit 720 described by using FIG. 7 can be implemented by the wireless communication interface 1212. At least a portion of the functionality may also be implemented by processor 1201 or secondary controller 1219.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a car navigation device 1320 to which the technology of the present disclosure can be applied.
  • the car navigation device 1320 includes a processor 1321, a memory 1322, a global positioning system (GPS) module 1324, a sensor 1325, a data interface 1326, and a content broadcast.
  • GPS global positioning system
  • the processor 1321 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 1320.
  • the memory 1322 includes a RAM and a ROM, and stores data and programs executed by the processor 1321.
  • the GPS module 1324 measures the position (such as latitude, longitude, and altitude) of the car navigation device 1320 using GPS signals received from GPS satellites.
  • Sensor 1325 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 1326 is connected to, for example, the in-vehicle network 1341 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 1327 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 1328.
  • the input device 1329 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 1330, and receives an operation or information input from a user.
  • the display device 1330 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 1331 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1333 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 1333 may generally include, for example, BB processor 1334 and RF circuitry 1335.
  • the BB processor 1334 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 1335 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 1337.
  • the wireless communication interface 1333 can also be a chip module on which the BB processor 1334 and the RF circuit 1335 are integrated. As shown in FIG.
  • the wireless communication interface 1333 may include a plurality of BB processors 1334 and a plurality of RF circuits 1335.
  • FIG. 13 illustrates an example in which the wireless communication interface 1333 includes a plurality of BB processors 1334 and a plurality of RF circuits 1335, the wireless communication interface 1333 may also include a single BB processor 1334 or a single RF circuit 1335.
  • the wireless communication interface 1333 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1333 may include a BB processor 1334 and an RF circuit 1335 for each wireless communication scheme.
  • Each of the antenna switches 1336 switches the connection destination of the antenna 1337 between a plurality of circuits included in the wireless communication interface 1333, such as circuits for different wireless communication schemes.
  • Each of the antennas 1337 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 1333 to transmit and receive wireless signals.
  • car navigation device 1320 can include a plurality of antennas 1337.
  • FIG. 13 illustrates an example in which the car navigation device 1320 includes a plurality of antennas 1337, the car navigation device 1320 may also include a single antenna 1337.
  • car navigation device 1320 can include an antenna 1337 for each wireless communication scheme.
  • the antenna switch 1336 can be omitted from the configuration of the car navigation device 1320.
  • Battery 1338 provides power to various blocks of car navigation device 1320 shown in FIG. 13 via a feeder, which is partially shown as a dashed line in the figure. Battery 1338 accumulates power supplied from the vehicle.
  • the communication unit 720 described by using FIG. 7 can be implemented by the wireless communication interface 1333. At least a portion of the functionality can also be implemented by processor 1321.
  • the technology of the present disclosure may also be implemented as an onboard system (or vehicle) 1340 that includes one or more of the car navigation device 1320, the in-vehicle network 1341, and the vehicle module 1342.
  • vehicle module 1342 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 1341.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及无线通信系统中的电子设备和无线通信方法。该电子设备包括:一个或多个处理电路,所述处理电路被配置为执行以下操作:基于所述电子设备对应的天线阵列确定相应的收发单元TXRU配置,其中,每一TXRU与具有相同的极化方向的一组天线单元有关,所述天线阵列具有M行、N列以及P维极化方向的多个天线单元,其中M、N和P为自然数;以及将天线配置信息添加到无线资源控制RRC信令中以用于无线通信系统中的用户设备,其中,所述天线配置信息被用来得到所述天线阵列中的TXRU的数目。使用根据本公开的电子设备和无线通信方法,用户设备可以得知基站的天线配置,从而在用户设备对信道进行估计和测量时,能够符合基站的配置,提高3D MIMO系统的传输性能。

Description

无线通信系统中的电子设备和无线通信方法 技术领域
本公开涉及无线通信的技术领域,具体地涉及无线通信系统中的电子设备和用于在无线通信系统中进行无线通信的方法。
背景技术
这个部分提供了与本公开有关的背景信息,这不一定是现有技术。
随着通信技术的发展,开启了关于LTE(Long Term Evolution,长期演进)中垂直波束赋型/FD MIMO(Full-Dimension Multiple-Input Multiple-Output,全维多输入多输出)的研究。其中,垂直波束赋型/FD MIMO与传统传输系统之间的不同在于垂直维度的引入和使用更多的天线数目。
同时,随着垂直维度的引入,进一步提出了2D天线阵列。另外,为了方便描述大规模天线,TXRU(transceiver unit,收发单元)的概念也相应地被提出了。TXRU是独立相位和幅度的无线电收发机组。
在3D MIMO系统中,存在多种天线阵列的组合。同时,TXRU的数目也是可变的,而且相同的TXRU数目也对应着不同的天线配置。不同的天线配置又会导致物理信道特征的不同,这时基站应当选用不同的码本来反映物理信道特征。此外,不同的天线配置还会影响基站发送参考信号的方式以及UE(User Equipment,用户设备)测量和反馈无线信道特征的方式。所以,为了提高传输效率,向UE通知基站端的天线配置是十分必要的。
在3D MIMO系统中,由于使用了2D天线阵列,使得原有的用于1D天线阵列信息的通知单元不再适用。
因此,有必要提出一种新的基站到用户端的天线配置传输设计来为2D天线阵列和3D MIMO系统服务。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特 征的全面披露。
本公开的目的在于提供一种无线通信系统中的电子设备和用于在无线通信系统中进行无线通信的方法,使得用户设备可以得知基站的天线配置,从而在用户设备对信道进行估计和测量时,能够符合基站的配置,提高3D MIMO系统的传输性能。
根据本公开的一方面,提供了一种无线通信系统中的电子设备,该电子设备包括一个或多个处理电路,所述处理电路被配置为执行以下操作:基于所述电子设备对应的天线阵列确定相应的收发单元TXRU配置,其中,每一TXRU与具有相同的极化方向的一组天线单元有关,所述天线阵列具有M行、N列以及P维极化方向的多个天线单元,其中M、N和P为自然数;以及将天线配置信息添加到无线资源控制RRC信令中以用于所述无线通信系统中的用户设备,其中,所述天线配置信息被用来得到所述天线阵列中的TXRU的数目。
根据本公开的另一方面,提供了一种无线通信系统中的电子设备,该电子设备包括一个或多个处理电路,所述处理电路被配置为执行以下操作:从来自所述无线通信系统中的基站的RRC信令中提取天线配置信息,其中,所述天线配置信息被用来得到所述基站的天线阵列中的收发单元TXRU的数目,其中,每一TXRU与具有相同的极化方向的一组天线单元有关,所述天线阵列具有M行、N列以及P维极化方向的多个天线单元,其中M、N和P为自然数。
根据本公开的另一方面,提供了一种用于在无线通信系统中进行无线通信的方法,该方法包括:基于所述无线通信系统中的电子设备对应的天线阵列确定相应的收发单元TXRU配置,其中,每一TXRU与具有相同的极化方向的一组天线单元有关,所述天线阵列具有M行、N列以及P维极化方向的多个天线单元,其中M、N和P为自然数;以及将天线配置信息添加到无线资源控制RRC信令中以用于所述无线通信系统中的用户设备,其中,所述天线配置信息被用来得到所述天线阵列中的TXRU的数目。
根据本公开的另一方面,提供了一种用于在无线通信系统中进行无线通信的方法,该方法包括:从来自所述无线通信系统中的基站的RRC信令中提取天线配置信息,其中,所述天线配置信息被用来得到所述基站的天线阵列中的收发单元TXRU的数目,其中,每一TXRU与具有相同的极化方向的一组天线单元有关,所述天线阵列具有M行、N列以及P 维极化方向的多个天线单元,其中M、N和P为自然数。
使用根据本公开的无线通信系统中的电子设备和用于在无线通信系统中进行无线通信的方法,可以经由RRC信令传输天线配置信息,该天线配置信息可以用来得到天线阵列中的TXRU的数目。这样一来,用户设备可以得知基站的天线配置,从而在用户设备对信道进行估计和测量时,能够符合基站的配置,提高3D MIMO系统的传输性能。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是图示TXRU和天线之间的关系的例子的示图;
图2是图示TXRU和天线之间的关系的另一个例子的示图;
图3是图示2D交叉极化天线阵列的示意图;
图4是图示根据本公开的实施例的无线通信系统中的电子设备的结构的框图;
图5是图示天线阵列中的TXRU配置的例子的示意图;
图6是图示天线阵列中的TXRU配置的另一个例子的示意图;
图7是图示根据本公开的实施例的无线通信系统中的电子设备的结构的框图;
图8是图示根据本公开的实施例的用于在无线通信系统中进行无线通信的方法的序列图;
图9是示出排列在2行4列的8CSI-RS(channel state information reference signal,信道状态信息参考信号)的示例的示图;
图10是示出适用于本公开的eNB(evolution Node Base Station,演进节点基站)的示意性配置的第一示例的框图;
图11是示出适用于本公开的eNB的示意性配置的第二示例的框图;
图12是示出适用于本公开的智能电话的示意性配置的示例的框图;以及
图13是示出适用于本公开的汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
本公开所涉及的UE(User Equipment,用户设备)包括但不限于移动终端、计算机、车载设备等具有无线通信功能的终端。进一步,本公开所涉及的UE还可以是UE本身或其中的部件如芯片。此外,本公开中所涉及的基站可以例如是eNB(evolution Node Base Station,演进节点基站)或者是eNB中的部件如芯片。
TXRU(transceiver unit,收发单元)是具有独立相位和幅度的无线电收发机组。图1和2图示了TXRU和天线之间的关系的两个例子。在图1和2中,q是一列之内M个相同极化天线单元处的Tx信号向量,w和W分别是宽带TXRU虚拟化权重向量和矩阵,而x则是MTXRU个TXRU处的TXRU信号向量。参数MTXRU指示天线阵列中的每一列的每一维极化方向的TXRU的数目。
在2D天线阵列中,天线的数目可以表示为(M,N,P),其中,M是 在每一列具有相同极化方向的天线数,N是天线阵列的列数,并且P是天线极化方向的维数。图3示出了交叉极化的2D天线阵列。如图3所示,该天线阵列具有M行、N列以及2维极化方向的多个天线单元。在如图3所示的天线单元中,实线表示一个极化方向,而虚线则表示另一个极化方向。
结合TXRU的概念,天线数量(M,N,P)可以转化为TXRU的数量(MTXRU,N,P)。目前,在无线通信技术领域中已就MTXRU的取值达成了共识。进一步,目前在无线通信技术领域中对于TXRU设置也达成了共识,如表1所示。
表1 天线配置结构
Figure PCTCN2015092838-appb-000001
如从表1中可以看到的那样,在3D MIMO(3-Dimension Multiple-Input Multiple-Output,三维多输入多输出)系统中,有多种天线阵列的组合。同时,TXRU的数目也可以从4变化到64,而且相同的TXRU数目也对应着不同的天线配置。不同的天线配置又会导致物理信道特征的不同,这时基站应当选用不同的码本来反映物理信道特征。此外,不同的天线配置还会影响基站发送参考信号的方式以及UE测量和反馈无线信道特征的方式。所以,为了提高传输效率,向UE通知基站端的天线配置是十分必要的。因此,本公开提出了一种新的基站到用户端天线配置传输设计来为2D天线阵列和3D MIMO系统服务。
图4图示了根据本公开的实施例的无线通信系统中的电子设备400的结构。如图4所示,电子设备400可以包括处理电路410。需要说明的 是,电子设备400既可以包括一个处理电路410,也可以包括多个处理电路410。另外,电子设备400还可以包括天线阵列420和通信单元430等。
处理电路410可以被配置为执行以下操作:基于电子设备400对应的天线阵列420,确定相应的TXRU配置。如上面提到的那样,每一TXRU与具有相同的极化方向的一组天线单元有关,所述天线阵列具有M行、N列以及P维极化方向的多个天线单元,其中M、N和P为自然数。
本领域技术人员可以意识到的是,处理电路410可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
例如,在处理电路410中可以包括确定单元(未示出),该确定单元可以基于天线阵列420来确定相应的TXRU配置。
进一步,处理电路410还可以被配置为执行以下操作:将天线配置信息添加到RRC(Radio Resource Control,无线资源控制)信令中以用于无线通信系统中的UE。这里,天线配置信息可以被用来得到天线阵列420中的TXRU的数目。相应地,在处理电路410中可以包括添加单元(未示出),该添加单元可以将天线配置信息添加到RRC信令中。
使用根据本公开的实施例的电子设备400,可以经由RRC信令传输天线配置信息,该天线配置信息可以用来得到天线阵列420中的TXRU的数目。由于是通过RRC信令进行通知,所以可以节约广播资源,针对支持TXRU传输的UE进行通知而减少传统UE不必要的解析。这样一来就实现了TXRU配置信息的有效传输。
图5示出了天线阵列中的TXRU配置的例子。如图5所示,在天线阵列配置(8,4,2,16)中,天线阵列具有8行、4列以及2维极化方向的多个天线单元,并且具有16个TXRU。需要注意的是,由于每个虚线框中的同一极化方向属于同一个TXRU,并且天线阵列具有2维极化方向,所以每个虚线框对应于两个TXRU。类似地,在天线阵列配置(8,4,2,32)中,天线阵列具有8行、4列以及2维极化方向的多个天线单元,并且具有32个TXRU。而在天线阵列配置(8,4,2,64)中,天线阵列具有8行、4列以及2维极化方向的多个天线单元,并且具有64个TXRU。
如从图5中可以看到的那样,在2D天线阵列中,即使天线阵列的 配置(M,N,P)相同,也可能具有不同的TXRU数目。因此,TXRU配置信息的有效传输是有必要的。
根据本公开的优选实施例,天线配置信息可以被用来得到至少关于参数MTXRU的信息以指示天线阵列420中的每一列的每一维极化方向的TXRU的数目。换言之,参数MTXRU指的是天线阵列420中的每一列的每一维极化方向的TXRU的数目。
图6示出了天线阵列中的TXRU配置的另一个例子。如图6所示,在天线阵列配置(8,4,2,2)中,天线阵列具有8行、4列以及2维极化方向的多个天线单元,并且天线阵列中的每一列的每一维极化方向具有2个TXRU。需要注意的是,由于每个虚线框中的同一极化方向属于同一个TXRU,并且天线阵列具有2维极化方向,所以每个虚线框对应于两个TXRU。类似地,在天线阵列配置(8,4,2,4)中,天线阵列具有8行、4列以及2维极化方向的多个天线单元,并且天线阵列中的每一列的每一维极化方向具有4个TXRU。而在天线阵列配置(8,4,2,8)中,天线阵列具有8行、4列以及2维极化方向的多个天线单元,并且天线阵列中的每一列的每一维极化方向具有8个TXRU。
需要说明的是,天线阵列配置的参数MTXRU、M、N和P的指示可以有多种排列顺序,只要该顺序在收发双方是预先统一的即可。在图6的示例中参数的序列为(M,N,P,MTXRU),而在后续的描述中则以参数的序列(MTXRU,M,N,P)为例进行说明。
根据本公开的优选实施例,参数MTXRU的取值范围可以至少包括1、2、4以及8并且参数MTXRU的值小于或等于参数M的值。通过表1的天线配置结构也可以得到参数MTXRU的取值范围及其与参数M之间的关系。
根据本公开的优选实施例,可以在RRC信令中包含关于可用于3D MIMO(3-Dimension Multiple-Input Multiple-Output,3维多输入多输出)/FD MIMO(Full-Dimension Multiple-Input Multiple-Output,全维多输入多输出)系统的天线端口数的信息,以指示TXRU的数目。由于TXRU的数目与天线的端口数相等,所以当RRC信令中已经包含了关于天线端口数的信息时,可以将该信息用于3D MIMO/FD MIMO系统以指示TXRU的数目。
根据本公开的优选实施例,天线配置信息既可以显式地包含关于天 线配置参数的信息,又可以隐式地包含关于天线配置参数的信息。接下来,首先对天线配置信息显式地包含关于天线配置参数的信息的情况进行详细描述。
发明人已知的是,天线通知信息单元(antennainfo information elements)作为无线资源控制信息的一部分被定义在RRC信息单元中。天线通知信息单元的过程和结构如下所示。
Figure PCTCN2015092838-appb-000002
Figure PCTCN2015092838-appb-000003
可以看出,在上面的天线通知信息单元中,UE被通知的内容有天线端口数(antenna port)、传输模式(transmission mode)和对应的码本子集 约束(codebook subset restriction)。由于天线通知信息单元是无线资源控制(RRC)信息单元的一部分,所以天线通知信息应当在UE进行随机接入的过程中传输给UE。当UE在随机接入的过程中时,UE会在随机接入信道中向基站发送RRC连接请求信令来建立RRC连接。然后基站会在前向接入信道中向UE发送RRC连接建立信令,而天线通知信息单元就包含在其中。另外,码本子集约束也可以在CSI过程(CSI-Process)信息单元中传输。在这种情况下,码本子集约束仍然可以在CSI过程信息单元中进行传输。同时,为了保持当前天线通知信息单元的完整性,希望仅添加一些天线通信信息,而不去改变现有的信息单元。
根据本公开的优选实施例,天线配置信息中包含的天线配置参数可以包括参数MTXRU、参数M、参数N、参数P及其组合中的一个或多个。更优选地,天线配置参数可以包括参数MTXRU、参数M、参数N以及参数P。
另外,根据本公开的优选实施例,处理电路410(例如处理电路410中包括的添加单元)可以将天线配置信息添加到RRC信令中的天线通知信息单元或CSI-RS(channel state information reference signal,信道状态信息参考信号)配置信息单元中。
具体地,例如可以在AntennaInfoDedicated-r13中添加名为antennaNumberCount的单元。这个单元包含4个参数(MTXRU,M,N,P)。为了符合表1中的天线配置,M可以等于4或8,N可以等于1、2或4,P可以等于1或2,而对应的MTXRU可以从表1中得出。由于这部分是新添的内容,所以它应当出现在传统内容的后面,改动后的天线通知信息单元如下所示。
Figure PCTCN2015092838-appb-000004
当基站向UE通知这些参数时,可以以预定比特数来表示天线配置参数的实际值或实际值的函数。例如,可以用1或2比特来指示这些天线 参数,或者传输这些天线参数的实际值。进一步,由于这些天线参数都是2的指数幂的形式,所以基站例如也可以选择以log2(MTXRU,M,N,P)的形式传输这些参数。
同时,对于参数序列(MTXRU,M,N,P),基站可以使用参数M/MTXRU来代替参数MTXRU或者M。在这种方式下,如果在一个系统中,参数M/MTXRU是固定的,那么该参数可以单独传输,这样可以减少一些系统开销。同时,如果在一个TXRU中的天线数是固定的,那么UE可以通过TXRU数目获得系统天线总数,这样在参数序列(M,N,P)中只需要传输两个参数。
另一种获得TXRU数目的方法是可以在CSI-RS-Config信息单元定义一个名为CSI-RS-Config-r13的新部分,而其中包括antennaPorts Count-r13。由于TXRU的数目与天线的端口数相等,所以TXRU的数目可以从这个新部分获得。修改后的CSI-RS-Config信息单元如下所示。
Figure PCTCN2015092838-appb-000005
利用antennaPortsCount-r13,用户可以获得TXRU数目。于是, 在该方案中,参数序列(MTXRU,M,N,P)可以被简化为(M,N,P),而天线参数可以在得知TXRU数目之后获得。同时,参数序列(M,N,P)也可以在CSI-RS-Config-r13中显式传输。
接下来,对天线配置信息隐式地包含关于天线配置参数的信息的情况进行详细描述。
根据本公开的优选实施例,处理电路410(例如处理电路410中包括的添加单元)可以利用RRC信令中的码本子集约束来添加天线配置信息。更优选地,处理电路410(例如处理电路410中包括的添加单元)可以通过在码本子集约束中的用于选择码本的比特串中添加预定比特数来表达天线配置信息。代替地,处理电路410(例如处理电路410中包括的添加单元)也可以通过在码本子集约束中添加码本索引来表达天线配置信息。
具体地,本公开提出了一种新的传输模式,并利用码本子集约束区分不同的天线配置。首先提出一种可以用于垂直波束赋型/FD MIMO系统的新传输模式。这个新的传输模式定义了包含天线数目和TXRU数目信息的码本子集约束。在现有的天线通知信息单元中,可以看出在codebookSubsetRestriction部分,传输情况是由天线端口数目进行区分的。所以在新的传输模式中,传输的情况仍然由天线端口数目进行区分。又由于天线端口数目等于TXRU的数目,所以也可以说传输的情况由TXRU数目进行区分。如从表1中可以看到的那样,TXRU数目可以等于4、8、16、32或64。同时,可以利用在用于选择码本的比特串中添加若干比特来区分相同TXRU数目下的不同的天线配置状态。改动后的天线信息传输单元如下所示。
Figure PCTCN2015092838-appb-000006
Figure PCTCN2015092838-appb-000007
由于在表1中相同TXRU数目的情况下可能对应不同的天线配置,所以若干比特被加到比特串的前端用来区别不同的天线配置。当UE收到比特串时,UE应该根据天线端口数截取出添加的比特并且判断天线配置。对于4天线端口的情况,假定其比特串的长度为96。同时,在表1中,对于4TXRU的情况只有一种天线配置,所以添加的比特数为0。而对于8天线端口的情况,假定其比特串长度为109。又由于在表1中,对于8TXRU有5种天线配置,所以添加的比特数为3。对于16、32和64天线端口的情况,假设这三种情况的比特对应表的组成方式和8天线端口的情况类似,只是比特对应表的规模会变得更大。根据表1可知,对于16、32、64天线端口的情况,对应添加比特的数量为1、1、0。所以这三种情况对应的比特串长度应该为219、437、872。添加的比特和天线配置之间的关系如表2所示。
表2 添加的比特与天线配置之间的对应关系
Figure PCTCN2015092838-appb-000008
Figure PCTCN2015092838-appb-000009
另一种设计码本子集约束的方法是先设计用于区分天线配置的码本索引,然后用码本子集约束的比特对应表来选择对应的码字。改动后的天线通知信息单元如下所示。
Figure PCTCN2015092838-appb-000010
Figure PCTCN2015092838-appb-000011
在这个设计中,码本子集约束只是用于选择码字而不再用于区分天线配置,所以在之前设计中的添加比特的部分就不再需要了。在表1中,在不考虑TXRU数目的情况下,存在6种不同的天线配置,所以在码本选择中有6个索引。码本选择索引和天线配置之间的对应关系如表3所示。
表3 码本选择索引与天线配置之间的对应关系
码本选择索引 天线配置
000 (8,2,1)
001 (8,2,2)
010 (8,4,1)
011 (8,4,2)
100 (4,4,1)
101 (4,4,2)
如上所述,在两种方案中天线配置的选择和CSI-RS传输机制是不同的。在第一个方案中,由于参数序列(MTXRU,M,N,P)可以直接获得,天线配置即为(M,N,P)。同时,通过参数MTXRU和N,可知TXRU总数为(MTXRU×N×P),所以CSI-RS的数目为(MTXRU×N×P)。这些CSI-RS分布在MTXRU行、N列、P维极化方向上。然而,在第二个方案 中,TXRU的数目可以通过码本子集约束获得。而对于天线配置方面,可以通过表2或表3获得。通过TXRU总数和天线配置(M,N,P),可以确定CSI-RS的数量NCSI-RS(其与TXRU数目相等)以及CSI-RS的分布。图9是分布在2行、4列上的8CSI-RS的示例,其使用于天线参数为(1,8,4,2)、(2,8,4,1)、(1,4,4,2)、(2,4,4,1)的2D天线阵列。
需要说明的是,根据本公开的实施例,如上所述的无线通信系统可以是LTE-A(Long Term Evolution-Advanced,高级长期演进)蜂窝通信系统,电子设备400可以是无线通信系统中的基站,并且电子设备400还可以包括天线阵列420、通信单元430等。通信单元430例如可以将RRC信令等传送到无线通信系统中的UE。
上面描述了无线通信系统中的基站侧的电子设备。接下来详细地描述无线通信系统中的UE侧的电子设备。图7图示了根据本公开的实施例的无线通信系统中的电子设备700的结构。
如图7所示,电子设备700可以包括处理电路710。需要说明的是,电子设备700既可以包括一个处理电路710,也可以包括多个处理电路710。另外,电子设备700还可以包括通信单元720等。
处理电路710可以从来自无线通信系统中的基站的RRC信令中提取天线配置信息。
如上面提到的那样,同样地,处理电路710也可以包括各种分立的功能单元以执行各种不同的功能和/或操作。这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
例如,在处理电路710中可以包括提取单元(未示出),该提取单元可以从来自无线通信系统中的基站的RRC信令中提取天线配置信息。
如上面提到的那样,天线配置信息可以被用来得到基站的天线阵列中的TXRU的数目。同样地,每一TXRU与具有相同的极化方向的一组天线单元有关,并且天线阵列具有M行、N列以及P维极化方向的多个天线单元,其中M、N和P为自然数。
优选地,天线配置信息可以被用来得到至少关于参数MTXRU的信息以指示天线阵列中的每一列的每一维极化方向的TXRU的数目。
优选地,参数MTXRU的取值范围至少可以包括1、2、4以及8并且参数MTXRU的值小于或等于参数M的值。
优选地,处理电路710(例如处理电路710中包括的提取单元)可以进一步从RRC信令中提取关于可用于3D MIMO/FD MIMO系统的天线端口数的信息以确定TXRU的数目。
优选地,天线配置参数可以包括参数MTXRU、参数M、参数N以及参数P。
优选地,处理电路710可以解析RRC信令中的天线通知信息单元、CSI-RS配置信息单元以及码本子集约束信息单元中至少之一,以得到天线配置信息。相应地,在处理电路710中可以包括解析单元(未示出),该解析单元可以执行前述解析操作。
优选地,处理电路710可以基于天线配置信息选择CSI(channel state information,信道状态信息)反馈码本以及CSI反馈方案中至少之一。更优选地,处理电路710可以基于天线配置信息选择CSI反馈码本和CSI反馈两者。相应地,在处理电路710中可以包括选择单元(未示出),该选择单元可以执行前述选择操作。
需要说明的是,根据本公开的实施例,如上所述的无线通信系统可以是LTE-A蜂窝通信系统,电子设备700可以是无线通信系统中的UE,并且电子设备700还可以包括接收机(例如通信单元720)以收取RRC信令。
上面描述了根据本公开的实施例的无线通信系统中的电子设备。接下来详细地描述根据本公开的实施例的用于在无线通信系统中进行无线通信的方法。
根据本公开的实施例的用于在无线通信系统中进行无线通信的方法可以包括:基于无线通信系统中的电子设备对应的天线阵列确定相应的TXRU配置。其中,每一TXRU与具有相同的极化方向的一组天线单元有关,并且天线阵列具有M行、N列以及P维极化方向的多个天线单元,其中M、N和P为自然数。
该方法还可以包括:将天线配置信息添加到RRC信令中以用于无线通信系统中的UE。其中,天线配置信息可以被用来得到天线阵列中的TXRU的数目。
优选地,天线配置信息可以被用来得到至少关于参数MTXRU的信息以指示所述天线阵列中的每一列的每一维极化方向的TXRU的数目。
优选地,参数MTXRU的取值范围至少可以包括1、2、4以及8并 且参数MTXRU的值小于或等于参数M的值。
优选地,在RRC信令中可以包含关于可用于3D MIMO/FD MIMO系统的天线端口数的信息以指示TXRU的数目。
优选地,天线配置信息可以显式地包含关于天线配置参数的信息。
优选地,天线配置参数可以包括参数MTXRU、参数M、参数N、参数P及其组合中的一个或多个。更优选地,天线配置参数可以包括参数MTXRU、参数M、参数N以及参数P。
优选地,可以将天线配置信息添加到RRC信令中的天线通知信息单元或CSI-RS配置信息单元中。
优选地,可以以预定比特数来表示天线配置参数的实际值或实际值的函数。
优选地,天线配置信息可以隐式地包含关于天线配置参数的信息。
优选地,可以利用RRC信令中的码本子集约束来添加天线配置信息。
优选地,可以通过在码本子集约束中的用于选择码本的比特串中添加预定比特数来表达天线配置信息。
优选地,可以通过在码本子集约束中添加码本索引来表达天线配置信息。
另一方面,根据本公开的实施例的用于在无线通信系统中进行无线通信的方法可以包括:从来自无线通信系统中的基站的RRC信令中提取天线配置信息。
如上面提到的那样,天线配置信息可以被用来得到基站的天线阵列中的收发单元TXRU的数目。其中,每一TXRU与具有相同的极化方向的一组天线单元有关,并且天线阵列具有M行、N列以及P维极化方向的多个天线单元,其中M、N和P为自然数。
优选地,天线配置信息可以被用来得到至少关于参数MTXRU的信息以指示天线阵列中的每一列的每一维极化方向的TXRU的数目。
优选地,参数MTXRU的取值范围至少可以包括1、2、4以及8并且参数MTXRU的值小于或等于参数M的值。
优选地,可以进一步从RRC信令中提取关于可用于3D MIMO/FD  MIMO系统的天线端口数的信息以确定TXRU的数目。
优选地,天线配置参数可以包括参数MTXRU、参数M、参数N以及参数P。
优选地,可以解析RRC信令中的天线通知信息单元、CSI-RS配置信息单元以及码本子集约束信息单元中至少之一,以得到天线配置信息。
优选地,可以基于天线配置信息选择CSI反馈码本以及CSI反馈方案中至少之一。更优选地,可以基于天线配置信息选择CSI反馈码本和CSI反馈两者。
根据本公开的实施例的用于在无线通信系统中进行无线通信的方法的上述各个步骤的各种具体实施方式前面已经作过详细描述,在此不再重复说明。
下面进一步结合图8来详细地描述根据本公开的实施例的无线通信系统中的基站侧和用户侧之间的信号交互流程。
图8是图示根据本公开的实施例的用于在无线通信系统中进行无线通信的方法的序列图。
如图8所示,在步骤S101中,用户向基站发送RRC连接请求信令以建立RRC连接。
在步骤S102中,基站向用户发送RRC连接建立信令,其中包括了天线通知信息单元和码本子集约束。在传输的过程中,基站可以选择方案一或方案二来传输天线配置信息。在方案一中,参数序列(MTXRU,M,N,P)显式地被发送。在方案二中,参数序列(MTXRU,M,N,P)可以根据码本子集约束及添加的比特或码本选择索引获得。
在步骤S103中,用户根据天线配置信息确定CSI反馈方案及码本。CSI反馈方案应当适用于MTXRU×P×N个CSI反馈。
在步骤S104中,用户向基站发送RCC连接建立完成信令。
在步骤S105中,基站向用户发送CSI-RS。
在步骤S106中,用户对信道进行估计并根据CSI反馈方案和码本计算CSI反馈信息。CSI-RS的数目应该是MTXRU×P×N并且用户会计算对应的CSI反馈信息。
在步骤S107中,用户向基站发送CSI反馈信息。
在步骤S108中,基站获得信道反馈并进行无线资源管理和预编码。
最后,在S109步骤中,重复步骤S105-S108。从CSI-RS信令发送到基站进行无线资源管理和预编码之间的过程可以周期式地进行。
下面结合图9中基站天线配置为(1,8,4,2)和(2,4,4,1)、基站使用8天线端口传输8CSI-RS的例子来说明本发明的工作方式。
在天线配置为(1,8,4,2)的情况下,假定使用方案一将天线配置进行显式传输。在AntennaInfoDedicated-r13中,各天线配置参数对应的数值应当如下所示:antennaNumberCountM=8,antennaNumberCountN=4,antennaNumberCountP=2,antennaNumberCountMTXRU=1。基站将这些参数值传递给用户,用户就可以据此得知基站的天线配置为(1,8,4,2)。信令如下所示。
Figure PCTCN2015092838-appb-000012
同理,当天线配置为(2,4,4,1)时,基站传输的信令如下所示。
Figure PCTCN2015092838-appb-000013
或者基站选择使用方案二将天线配置进行隐式传输。由于基站的天线端口数为8,所以在codebooksubsetrestriction-v13xx中基站应当选择n8TXAntenna-tm11-r13进行传输。又由于天线配置参数为(8,4,2),根据表2,在8TXRU的情况下,添加的比特应为010(或者是使用码本选 择索引,则这种情况下的索引应为011)。这样用户可以根据该信息得知天线参数配置为(8,4,2)。再加上用户已经得知基站的TXRU数目为8,用户就可以得知基站的整体天线配置为(1,8,4,2)。信令如下所示。
Figure PCTCN2015092838-appb-000014
同理,当天线配置为(2,4,4,1)时,添加的比特应为011(或者使用码本选择索引,则这种情况下的索引应为110),基站传输的信令如下所示。
Figure PCTCN2015092838-appb-000015
Figure PCTCN2015092838-appb-000016
当用户收到这两种基站端的天线配置时,用户会选择对应的码本来进行CSI反馈。当基站端的天线配置为(1,8,4,2)时,用户设备例如判断在同一水平方向上有8个TXRU,与当前Rel-12的假设天线配置相同,而选择沿用TM10中8天线端口的码本,即
codebook(1,8,4,2)=codebook8-tm10
相应地,用户设备将从该码本中选择的码字索引(例如PMI)反馈至基站。而当基站端的天线配置为(2,4,4,1)时,用户设备例如判断存在高度不同的两套TXRU,其中,每套包含4个TXRU而对应于4天线端口,从而选择使用两套4天线端口的码本,此外由于两套TXRU是由于高度差造成了偏移相位,这两套码本之间存在关联性,用户设备例如将TM10的4天线端口码本作为第一套码本,在TM10的4天线端口码本的码字上加上偏移相位θ以得到第二套码本。即
Figure PCTCN2015092838-appb-000017
相应地,用户设备将从有关上述码本中选择的码字索引(例如PMI)以及偏移相位分别反馈至基站。
由此可以看出,当基站端的天线配置尤其是其中TXRU配置不同时,用户会根据基站端的天线配置选择截然不同的CSI反馈码本。同时,在该示例中,在用户端CSI码本反馈的确定的过程中,用户实际上使用了MTXRU和基站端的端口数这两个参数。基站端只需向用户发送MTXRU和N×P信令,而不需要单独的M、N、P的信息。同时由于可以通过天线的 端口数确定基站端的TXRU总数,所以基站只需要传输MTXRU和N×P其中之一便可以使用户确定对应的天线码本。所以在实际情况中,基站应该需要向用户传输发送参数序列(MTXRU,M,N,P)的全部或其中的一部分,这样也可以减少系统的信令开销。
在实际工作时,用户向基站发送RRC连接请求信令以建立RRC连接,随后基站向用户发送RRC连接建立信令,在其中基站可以按如上所述选择方案一或方案二将天线配置的相关信息添加到RRC连接建立信令中。用户根据接收到的天线配置信息确定用于CSI反馈的方案及码本,之后用户向基站发送RRC连接建立完成信令。之后,当基站需要进行信道估计时,基站会向用户发送如图9所示的CSI-RS。用户接收到CSI-RS后进行信道测量,然后根据之前确定的CSI反馈的方案及码本确定CSI反馈信息并发送给基站端。基站端获得CSI反馈后完成信道估计,并进行相应的无线资源管理和预编码。
根据本公开的实施例,在新的天线配置通知的设计中,可以将基站端天线的数量和TXRU的数量通知给UE。受到在2D天线阵列中对天线数目和TXRU数目的描述的启发,用参数序列(MTXRU,M,N,P)就足以向UE通知全部的天线配置。
根据本公开的实施例,可以利用对天线通知信息单元和其他相比信息单元的改动,来实现基站对UE进行天线配置信息的传输,优化了3D MIMO系统下的CSI反馈机制,提高了3D MIMO系统的传输性能。
根据本公开的实施例,使3D MIMO系统中的用户得知基站的天线配置。在3D MIMO系统中,由于使用了2D天线阵列,使得原有的用于1D天线阵列信息的通知单元不再适用。而在无线资源管理中,天线通知信息单元又是必须的。本公开提出的两种方案均可用于3D MIMO系统下的天线通知信息单元。
根据本公开的实施例,可以完成3D MIMO系统中的CSI反馈流程。由于在3D MIMO系统中引入新的垂直维度,原有的CSI反馈流程在3D MIMO系统中并不适用。为了实现3D MIMO系统的CSI反馈流程,用户需要了解基站端的天线配置,而本公开设计的天线通知机制可实现此目标,进而完成3D MIMO系统中的CSI反馈流程。
根据本公开的实施例,本公开所提供的天线配置通知方案是3D MIMO系统中必不可少的一部分,从而完善了3D MIMO系统。
根据本公开的实施例,方案具有显式和隐式两种方式,并且充分考虑了所要指示的天线配置参数之间的联系。因此,本公开的方案具有更好的灵活性,信令开销低,对标准的改动小,也容易扩展至未来不同的天线数量组合下使用。
本公开的技术能够应用于各种产品。例如,本公开中提到的基站可以被实现为任何类型的演进型节点B(eNB),诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的UE可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。UE还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,UE可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
图10是示出可以应用本公开的技术的eNB的示意性配置的第一示例的框图。eNB 1000包括一个或多个天线1010以及基站设备1020。基站设备1020和每个天线1010可以经由RF线缆彼此连接。
天线1010中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1020发送和接收无线信号。如图10所示,eNB 1000可以包括多个天线1010。例如,多个天线1010可以与eNB 1000使用的多个频带兼容。虽然图10示出其中eNB 1000包括多个天线1010的示例,但是eNB 1000也可以包括单个天线1010。
基站设备1020包括控制器1021、存储器1022、网络接口1023以及无线通信接口1025。
控制器1021可以为例如CPU或DSP,并且操作基站设备1020的较高层的各种功能。例如,控制器1021根据由无线通信接口1025处理的信号中的数据来生成数据分组,并经由网络接口1023来传递所生成的分 组。控制器1021可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1021可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1022包括RAM和ROM,并且存储由控制器1021执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1023为用于将基站设备1020连接至核心网1024的通信接口。控制器1021可以经由网络接口1023而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1000与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1023还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1023为无线通信接口,则与由无线通信接口1025使用的频带相比,网络接口1023可以使用较高频带用于无线通信。
无线通信接口1025支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1010来提供到位于eNB 1000的小区中的终端的无线连接。无线通信接口1025通常可以包括例如基带(BB)处理器1026和RF电路1027。BB处理器1026可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1021,BB处理器1026可以具有上述逻辑功能的一部分或全部。BB处理器1026可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1026的功能改变。该模块可以为插入到基站设备1020的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1027可以包括例如混频器、滤波器和放大器,并且经由天线1010来传送和接收无线信号。
如图10所示,无线通信接口1025可以包括多个BB处理器1026。例如,多个BB处理器1026可以与eNB 1000使用的多个频带兼容。如图10所示,无线通信接口1025可以包括多个RF电路1027。例如,多个RF电路1027可以与多个天线元件兼容。虽然图10示出其中无线通信接口1025包括多个BB处理器1026和多个RF电路1027的示例,但是无线通信接口1025也可以包括单个BB处理器1026或单个RF电路1027。
图11是示出可以应用本公开的技术的eNB的示意性配置的第二示 例的框图。eNB 1130包括一个或多个天线1140、基站设备1150和RRH 1160。RRH 1160和每个天线1140可以经由RF线缆而彼此连接。基站设备1150和RRH 1160可以经由诸如光纤线缆的高速线路而彼此连接。
天线1140中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1160发送和接收无线信号。如图11所示,eNB 1130可以包括多个天线1140。例如,多个天线1140可以与eNB 1130使用的多个频带兼容。虽然图11示出其中eNB 1130包括多个天线1140的示例,但是eNB 1130也可以包括单个天线1140。
基站设备1150包括控制器1151、存储器1152、网络接口1153、无线通信接口1155以及连接接口1157。控制器1151、存储器1152和网络接口1153与参照图10描述的控制器1021、存储器1022和网络接口1023相同。
无线通信接口1155支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1160和天线1140来提供到位于与RRH 1160对应的扇区中的终端的无线通信。无线通信接口1155通常可以包括例如BB处理器1156。除了BB处理器1156经由连接接口1157连接到RRH 1160的RF电路1164之外,BB处理器1156与参照图10描述的BB处理器1026相同。如图11所示,无线通信接口1155可以包括多个BB处理器1156。例如,多个BB处理器1156可以与eNB 1130使用的多个频带兼容。虽然图11示出其中无线通信接口1155包括多个BB处理器1156的示例,但是无线通信接口1155也可以包括单个BB处理器1156。
连接接口1157为用于将基站设备1150(无线通信接口1155)连接至RRH 1160的接口。连接接口1157还可以为用于将基站设备1150(无线通信接口1155)连接至RRH 1160的上述高速线路中的通信的通信模块。
RRH 1160包括连接接口1161和无线通信接口1163。
连接接口1161为用于将RRH 1160(无线通信接口1163)连接至基站设备1150的接口。连接接口1161还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1163经由天线1140来传送和接收无线信号。无线通信接口1163通常可以包括例如RF电路1164。RF电路1164可以包括例如混频器、滤波器和放大器,并且经由天线1140来传送和接收无线信号。 如图11所示,无线通信接口1163可以包括多个RF电路1164。例如,多个RF电路1164可以支持多个天线元件。虽然图11示出其中无线通信接口1163包括多个RF电路1164的示例,但是无线通信接口1163也可以包括单个RF电路1164。
在图10和图11所示的eNB 1000和eNB 1130中,通过使用图4所描述的通信单元430可以由无线通信接口1025以及无线通信接口1155和/或无线通信接口1163实现。功能的至少一部分也可以由控制器1021和控制器1151实现。
图12是示出可以应用本公开的技术的智能电话1200的示意性配置的示例的框图。智能电话1200包括处理器1201、存储器1202、存储装置1203、外部连接接口1204、摄像装置1206、传感器1207、麦克风1208、输入装置1209、显示装置1210、扬声器1211、无线通信接口1212、一个或多个天线开关1215、一个或多个天线1216、总线1217、电池1218以及辅助控制器1219。
处理器1201可以为例如CPU或片上系统(SoC),并且控制智能电话1200的应用层和另外层的功能。存储器1202包括RAM和ROM,并且存储数据和由处理器1201执行的程序。存储装置1203可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1204为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1200的接口。
摄像装置1206包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1207可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1208将输入到智能电话1200的声音转换为音频信号。输入装置1209包括例如被配置为检测显示装置1210的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1210包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1200的输出图像。扬声器1211将从智能电话1200输出的音频信号转换为声音。
无线通信接口1212支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1212通常可以包括例如BB处理器1213和RF电路1214。BB处理器1213可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1214可以包括例如混频器、滤波器和放大器,并且经由 天线1216来传送和接收无线信号。无线通信接口1212可以为其上集成有BB处理器1213和RF电路1214的一个芯片模块。如图12所示,无线通信接口1212可以包括多个BB处理器1213和多个RF电路1214。虽然图12示出其中无线通信接口1212包括多个BB处理器1213和多个RF电路1214的示例,但是无线通信接口1212也可以包括单个BB处理器1213或单个RF电路1214。
此外,除了蜂窝通信方案之外,无线通信接口1212可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1212可以包括针对每种无线通信方案的BB处理器1213和RF电路1214。
天线开关1215中的每一个在包括在无线通信接口1212中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1216的连接目的地。
天线1216中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1212传送和接收无线信号。如图12所示,智能电话1200可以包括多个天线1216。虽然图12示出其中智能电话1200包括多个天线1216的示例,但是智能电话1200也可以包括单个天线1216。
此外,智能电话1200可以包括针对每种无线通信方案的天线1216。在此情况下,天线开关1215可以从智能电话1200的配置中省略。
总线1217将处理器1201、存储器1202、存储装置1203、外部连接接口1204、摄像装置1206、传感器1207、麦克风1208、输入装置1209、显示装置1210、扬声器1211、无线通信接口1212以及辅助控制器1219彼此连接。电池1218经由馈线向图12所示的智能电话1200的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1219例如在睡眠模式下操作智能电话1200的最小必需功能。
在图12所示的智能电话1200中,通过使用图7所描述的通信单元720可以由无线通信接口1212实现。功能的至少一部分也可以由处理器1201或辅助控制器1219实现。
图13是示出可以应用本公开的技术的汽车导航设备1320的示意性配置的示例的框图。汽车导航设备1320包括处理器1321、存储器1322、全球定位系统(GPS)模块1324、传感器1325、数据接口1326、内容播 放器1327、存储介质接口1328、输入装置1329、显示装置1330、扬声器1331、无线通信接口1333、一个或多个天线开关1336、一个或多个天线1337以及电池1338。
处理器1321可以为例如CPU或SoC,并且控制汽车导航设备1320的导航功能和另外的功能。存储器1322包括RAM和ROM,并且存储数据和由处理器1321执行的程序。
GPS模块1324使用从GPS卫星接收的GPS信号来测量汽车导航设备1320的位置(诸如纬度、经度和高度)。传感器1325可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1326经由未示出的终端而连接到例如车载网络1341,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1327再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1328中。输入装置1329包括例如被配置为检测显示装置1330的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1330包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1331输出导航功能的声音或再现的内容。
无线通信接口1333支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1333通常可以包括例如BB处理器1334和RF电路1335。BB处理器1334可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1335可以包括例如混频器、滤波器和放大器,并且经由天线1337来传送和接收无线信号。无线通信接口1333还可以为其上集成有BB处理器1334和RF电路1335的一个芯片模块。如图13所示,无线通信接口1333可以包括多个BB处理器1334和多个RF电路1335。虽然图13示出其中无线通信接口1333包括多个BB处理器1334和多个RF电路1335的示例,但是无线通信接口1333也可以包括单个BB处理器1334或单个RF电路1335。
此外,除了蜂窝通信方案之外,无线通信接口1333可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1333可以包括BB处理器1334和RF电路1335。
天线开关1336中的每一个在包括在无线通信接口1333中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1337的连接目的地。
天线1337中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1333传送和接收无线信号。如图13所示,汽车导航设备1320可以包括多个天线1337。虽然图13示出其中汽车导航设备1320包括多个天线1337的示例,但是汽车导航设备1320也可以包括单个天线1337。
此外,汽车导航设备1320可以包括针对每种无线通信方案的天线1337。在此情况下,天线开关1336可以从汽车导航设备1320的配置中省略。
电池1338经由馈线向图13所示的汽车导航设备1320的各个块提供电力,馈线在图中被部分地示为虚线。电池1338累积从车辆提供的电力。
在图13示出的汽车导航设备1320中,通过使用图7所描述的通信单元720可以由无线通信接口1333实现。功能的至少一部分也可以由处理器1321实现。
本公开的技术也可以被实现为包括汽车导航设备1320、车载网络1341以及车辆模块1342中的一个或多个块的车载系统(或车辆)1340。车辆模块1342生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1341。
在本公开的系统和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。某些步骤可以并行或彼此独立地执行。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (24)

  1. 一种无线通信系统中的电子设备,包括:
    一个或多个处理电路,所述处理电路被配置为执行以下操作:
    基于所述电子设备对应的天线阵列确定相应的收发单元TXRU配置,其中,每一TXRU与具有相同的极化方向的一组天线单元有关,所述天线阵列具有M行、N列以及P维极化方向的多个天线单元,其中M、N和P为自然数;以及
    将天线配置信息添加到无线资源控制RRC信令中以用于所述无线通信系统中的用户设备,
    其中,所述天线配置信息被用来得到所述天线阵列中的TXRU的数目。
  2. 根据权利要求1所述的电子设备,其中,所述天线配置信息被用来得到至少关于参数MTXRU的信息以指示所述天线阵列中的每一列的每一维极化方向的TXRU的数目。
  3. 根据权利要求2所述的电子设备,其中,参数MTXRU的取值范围至少包括1、2、4以及8并且参数MTXRU的值小于或等于参数M的值。
  4. 根据权利要求1所述的电子设备,其中,在所述RRC信令中包含关于可用于三维多输入多输出3D MIMO/全维多输入多输出FD MIMO系统的天线端口数的信息以指示所述TXRU的数目。
  5. 根据权利要求2所述的电子设备,其中,所述天线配置信息显式地包含关于天线配置参数的信息。
  6. 根据权利要求5所述的电子设备,其中,所述天线配置参数包括参数MTXRU、参数M、参数N、参数P及其组合中的一个或多个。
  7. 根据权利要求6所述的电子设备,其中,所述天线配置参数包括参数MTXRU、参数M、参数N以及参数P。
  8. 根据权利要求5所述的电子设备,其中,所述处理电路将所述天线配置信息添加到所述RRC信令中的天线通知信息单元或信道状态信息参考信号CSI-RS配置信息单元中。
  9. 根据权利要求5所述的电子设备,其中,以预定比特数来表示所 述天线配置参数的实际值或所述实际值的函数。
  10. 根据权利要求2所述的电子设备,其中,所述天线配置信息隐式地包含关于天线配置参数的信息。
  11. 根据权利要求10所述的电子设备,其中,所述处理电路利用所述RRC信令中的码本子集约束来添加所述天线配置信息。
  12. 根据权利要求11所述的电子设备,其中,所述处理电路通过在所述码本子集约束中的用于选择码本的比特串中添加预定比特数来表达所述天线配置信息。
  13. 根据权利要求11所述的电子设备,其中,所述处理电路通过在所述码本子集约束中添加码本索引来表达所述天线配置信息。
  14. 根据权利要求1至13中任一项所述的电子设备,其中,所述无线通信系统为高级长期演进LTE-A蜂窝通信系统,所述电子设备为所述无线通信系统中的基站,并且所述电子设备还包括所述天线阵列。
  15. 一种无线通信系统中的电子设备,包括:
    一个或多个处理电路,所述处理电路被配置为执行以下操作:
    从来自所述无线通信系统中的基站的RRC信令中提取天线配置信息,
    其中,所述天线配置信息被用来得到所述基站的天线阵列中的收发单元TXRU的数目,其中,每一TXRU与具有相同的极化方向的一组天线单元有关,所述天线阵列具有M行、N列以及P维极化方向的多个天线单元,其中M、N和P为自然数。
  16. 根据权利要求15所述的电子设备,其中,所述天线配置信息被用来得到至少关于参数MTXRU的信息以指示所述天线阵列中的每一列的每一维极化方向的TXRU的数目。
  17. 根据权利要求16所述的电子设备,其中,参数MTXRU的取值范围至少包括1、2、4以及8并且参数MTXRU的值小于或等于参数M的值。
  18. 根据权利要求15所述的电子设备,其中,所述处理电路进一步从所述RRC信令中提取关于可用于三维多输入多输出3D MIMO/全维多输入多输出FD MIMO系统的天线端口数的信息以确定所述TXRU的数目。
  19. 根据权利要求16所述的电子设备,其中,所述天线配置参数包括参数MTXRU、参数M、参数N以及参数P。
  20. 根据权利要求16所述的电子设备,其中,所述处理电路被配置为解析所述RRC信令中的天线通知信息单元、信道状态信息参考信号CSI-RS配置信息单元以及码本子集约束信息单元中至少之一,以得到所述天线配置信息。
  21. 根据权利要求15所述的电子设备,其中,所述处理电路基于所述天线配置信息选择信道状态信息CSI反馈码本以及CSI反馈方案中至少之一。
  22. 根据权利要求15至21中任一项所述的电子设备,其中,所述无线通信系统为高级长期演进LTE-A蜂窝通信系统,所述电子设备为所述无线通信系统中的用户设备,并且所述电子设备还包括接收机以收取所述RRC信令。
  23. 一种用于在无线通信系统中进行无线通信的方法,包括:
    基于所述无线通信系统中的电子设备对应的天线阵列确定相应的收发单元TXRU配置,其中,每一TXRU与具有相同的极化方向的一组天线单元有关,所述天线阵列具有M行、N列以及P维极化方向的多个天线单元,其中M、N和P为自然数;以及
    将天线配置信息添加到无线资源控制RRC信令中以用于所述无线通信系统中的用户设备,
    其中,所述天线配置信息被用来得到所述天线阵列中的TXRU的数目。
  24. 一种用于在无线通信系统中进行无线通信的方法,包括:
    从来自所述无线通信系统中的基站的RRC信令中提取天线配置信息,
    其中,所述天线配置信息被用来得到所述基站的天线阵列中的收发单元TXRU的数目,其中,每一TXRU与具有相同的极化方向的一组天线单元有关,所述天线阵列具有M行、N列以及P维极化方向的多个天线单元,其中M、N和P为自然数。
PCT/CN2015/092838 2015-03-31 2015-10-26 无线通信系统中的电子设备和无线通信方法 WO2016155297A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2978985A CA2978985A1 (en) 2015-03-31 2015-10-26 Electronic apparatus and radio communication method in radio communication system
KR1020177030949A KR20170132250A (ko) 2015-03-31 2015-10-26 라디오 통신 시스템에서의 전자 장치 및 라디오 통신 방법
US15/560,853 US10432277B2 (en) 2015-03-31 2015-10-26 Electronic apparatus and radio communication method in radio communication system
EP15887251.5A EP3280067A4 (en) 2015-03-31 2015-10-26 Electronic apparatus and radio communication method in radio communication system
JP2017549053A JP6690652B2 (ja) 2015-03-31 2015-10-26 無線通信システムにおける電子機器及び無線通信方法
US16/538,829 US11050471B2 (en) 2015-03-31 2019-08-13 Electronic apparatus and radio communication method in radio communication system
US17/337,442 US11943021B2 (en) 2015-03-31 2021-06-03 Electronic apparatus and radio communication method in radio communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510147430.0 2015-03-31
CN201510147430.0A CN106160804B (zh) 2015-03-31 2015-03-31 无线通信系统中的电子设备和无线通信方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/560,853 A-371-Of-International US10432277B2 (en) 2015-03-31 2015-10-26 Electronic apparatus and radio communication method in radio communication system
US16/538,829 Continuation US11050471B2 (en) 2015-03-31 2019-08-13 Electronic apparatus and radio communication method in radio communication system

Publications (1)

Publication Number Publication Date
WO2016155297A1 true WO2016155297A1 (zh) 2016-10-06

Family

ID=57003871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092838 WO2016155297A1 (zh) 2015-03-31 2015-10-26 无线通信系统中的电子设备和无线通信方法

Country Status (7)

Country Link
US (3) US10432277B2 (zh)
EP (1) EP3280067A4 (zh)
JP (2) JP6690652B2 (zh)
KR (1) KR20170132250A (zh)
CN (2) CN106160804B (zh)
CA (1) CA2978985A1 (zh)
WO (1) WO2016155297A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020507950A (ja) * 2017-01-06 2020-03-12 テレフオンアクチーボラゲット エルエム エリクソン(パブル) マルチパネルアンテナアレイからの送信のプリコーディング

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160804B (zh) 2015-03-31 2021-08-27 索尼公司 无线通信系统中的电子设备和无线通信方法
CN106559121B (zh) * 2015-09-25 2021-07-09 华为技术有限公司 一种多天线信道测量方法和装置
CN114390573B (zh) * 2017-12-08 2024-03-05 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11394437B2 (en) * 2018-12-14 2022-07-19 Qualcomm Incorporated Beamforming codebook adaptation for flexible wireless devices
KR20210057576A (ko) * 2019-11-12 2021-05-21 삼성전자주식회사 밀리미터파 대역의 다중 모드 장치를 위한 송수신 방법 및 장치
US20210391953A1 (en) * 2020-06-12 2021-12-16 Qualcomm Incorporated Hybrid automatic repeat request feedback with multiple uplink channels
CN113872738B (zh) * 2020-06-30 2023-07-18 华为技术有限公司 一种天线阵列形态的指示方法、确定方法及通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888700A (zh) * 2009-05-15 2010-11-17 大唐移动通信设备有限公司 一种参数配置的方法和基站
CN102138361A (zh) * 2008-08-29 2011-07-27 交互数字专利控股公司 发送下行链路共享服务反馈和估计无线发射/接收单元数量的方法和设备

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082637B (zh) * 2010-09-16 2015-03-25 电信科学技术研究院 一种码本子集约束的处理方法及设备
EP3352380B1 (en) * 2010-10-04 2019-08-28 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving codebook subset restriction bitmap
JP6026082B2 (ja) * 2011-04-05 2016-11-16 シャープ株式会社 端末、基地局、通信方法および集積回路
CN102938688B (zh) * 2011-08-15 2015-05-27 上海贝尔股份有限公司 用于多维天线阵列的信道测量和反馈的方法和设备
CN104412520B (zh) * 2012-06-24 2017-11-21 Lg电子株式会社 在无线通信系统中报告信道状态信息的方法和装置
US9252852B2 (en) * 2012-07-09 2016-02-02 Lg Electronics Inc. Method for transmitting feedback by using codebook in wireless communication system and apparatus for same
US9438321B2 (en) * 2012-07-12 2016-09-06 Samsung Electronics Co., Ltd. Methods and apparatus for codebook subset restriction for two-dimensional advanced antenna systems
CN103580820A (zh) 2012-08-03 2014-02-12 上海贝尔股份有限公司 控制ri报告的方法及装置
CN103812545B (zh) * 2012-11-06 2018-11-16 上海诺基亚贝尔股份有限公司 信道状态信息的反馈方法与装置
JP5993518B2 (ja) 2012-11-09 2016-09-14 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてチャネル状態情報をフィードバックする方法及びそのための装置
WO2014088174A1 (ko) * 2012-12-03 2014-06-12 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
KR20150118166A (ko) * 2013-02-14 2015-10-21 엘지전자 주식회사 무선 통신 시스템에서 대규모 mimo를 위한 안테나 구성 정보 제공 방법 및 이를 위한 장치
US9285461B2 (en) * 2013-03-12 2016-03-15 Nokia Technologies Oy Steerable transmit, steerable receive frequency modulated continuous wave radar transceiver
BR112015024196B1 (pt) * 2013-04-03 2022-09-06 Huawei Technologies Co., Ltd Método para relatar e receber informação de estado de canal, equipamento de usuário e estação base
WO2014163397A1 (ko) * 2013-04-04 2014-10-09 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 보고 방법 및 장치
US9680552B2 (en) * 2013-04-16 2017-06-13 Lg Electronics Inc. Method and apparatus for reporting channel state information in wireless communication system
CN104144007B (zh) * 2013-05-09 2018-01-30 电信科学技术研究院 一种基于码本的信息反馈方法和装置
WO2014182339A1 (en) * 2013-05-09 2014-11-13 Intel IP Corporation Small data communications
JP6199654B2 (ja) * 2013-08-06 2017-09-20 株式会社Nttドコモ 無線基地局装置、およびスケジューリング方法
EP3054612A4 (en) * 2013-09-30 2017-08-09 Fujitsu Limited Information feedback method, codebook determination method, user equipment and base station
EP3080927B1 (en) * 2013-12-13 2021-08-25 Telefonaktiebolaget LM Ericsson (publ) Wireless device, network node, methods therein, for respectively sending and receiving a report on quality of transmitted beams
US20160005006A1 (en) * 2014-07-07 2016-01-07 Verizon Patent And Licensing Inc. Communication services resources evaluation and scheduling
US9344172B2 (en) * 2014-08-08 2016-05-17 Samsung Electronics Co., Ltd. Codebook design and structure for advanced wireless communication systems
US10804990B2 (en) * 2014-09-25 2020-10-13 Ntt Docomo, Inc. Base station and user equipment
US9825742B2 (en) * 2014-10-03 2017-11-21 Samsung Electronics Co., Ltd. Codebook design and structure for advanced wireless communication systems
US10084579B2 (en) * 2014-11-17 2018-09-25 Samsung Electronics Co., Ltd. CSI feedback for MIMO wireless communication systems with polarized active antenna array
US9654195B2 (en) * 2014-11-17 2017-05-16 Samsung Electronics Co., Ltd. Methods to calculate linear combination pre-coders for MIMO wireless communication systems
JP6479994B2 (ja) * 2015-01-14 2019-03-06 テレフオンアクチーボラゲット エルエム エリクソン(パブル) コードブックサブセット制約シグナリング
US10826577B2 (en) * 2015-01-19 2020-11-03 Qualcomm Incorporated Enhanced CSI feedback for FD-MIMO
US9900198B2 (en) * 2015-02-20 2018-02-20 Samsung Electronics Co., Ltd. Channel-state-information reference signals for advanced wireless systems
KR102483881B1 (ko) * 2015-03-13 2023-01-02 삼성전자주식회사 무선 통신 시스템에서 피드백 및 기준 신호를 송신하기 위한 장치 및 방법
US20160277091A1 (en) * 2015-03-22 2016-09-22 Lg Electronics Inc. Method and apparatus for transmitting feedback of single feedback chain-based channel status information for 3d mimo in a wireless communication system
WO2016153163A1 (en) * 2015-03-22 2016-09-29 Lg Electronics Inc. Method and apparatus for transmitting feedback of multi-feedback chain-based channel status information for 3d mimo in a wireless communication system
CN106160804B (zh) 2015-03-31 2021-08-27 索尼公司 无线通信系统中的电子设备和无线通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102138361A (zh) * 2008-08-29 2011-07-27 交互数字专利控股公司 发送下行链路共享服务反馈和估计无线发射/接收单元数量的方法和设备
CN101888700A (zh) * 2009-05-15 2010-11-17 大唐移动通信设备有限公司 一种参数配置的方法和基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3280067A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020507950A (ja) * 2017-01-06 2020-03-12 テレフオンアクチーボラゲット エルエム エリクソン(パブル) マルチパネルアンテナアレイからの送信のプリコーディング
US11038566B2 (en) 2017-01-06 2021-06-15 Telefonaktiebolaget Lm Ericsson (Publ) Precoding a transmission from a multi-panel antenna array
JP7017573B2 (ja) 2017-01-06 2022-02-08 テレフオンアクチーボラゲット エルエム エリクソン(パブル) マルチパネルアンテナアレイからの送信のプリコーディング
US11424795B2 (en) 2017-01-06 2022-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Precoding a transmission from a multi-panel antenna array
US11894895B2 (en) 2017-01-06 2024-02-06 Telefonaktiebolaget Lm Ericsson (Publ) Precoding a transmission from a multi-panel antenna array

Also Published As

Publication number Publication date
US10432277B2 (en) 2019-10-01
JP2020114014A (ja) 2020-07-27
CA2978985A1 (en) 2016-10-06
US20180123664A1 (en) 2018-05-03
CN106160804B (zh) 2021-08-27
CN106160804A (zh) 2016-11-23
EP3280067A4 (en) 2018-12-05
JP2018512800A (ja) 2018-05-17
KR20170132250A (ko) 2017-12-01
CN113708805A (zh) 2021-11-26
JP6690652B2 (ja) 2020-04-28
US11050471B2 (en) 2021-06-29
US20190363771A1 (en) 2019-11-28
EP3280067A1 (en) 2018-02-07
US11943021B2 (en) 2024-03-26
US20210297132A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
WO2016155297A1 (zh) 无线通信系统中的电子设备和无线通信方法
EP3352381B1 (en) Electronic device in wireless communication system, and wireless communication method
CN105471484B (zh) 无线通信设备和无线通信方法
CN107210791B (zh) 设备和方法
CN113572504B (zh) 用于通信的装置
WO2021088797A1 (zh) 网络侧设备、终端侧设备、通信方法、通信装置以及介质
CN106160823B (zh) 用于无线通信的装置和方法
JP7268676B2 (ja) 電子装置
CN110034798A (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2018095122A1 (zh) 无线通信方法和无线通信设备
US11496188B2 (en) Electronic device, communication method and medium
CN110140406A (zh) 终端设备、基站设备、方法和记录介质
WO2018223982A1 (zh) 无线通信系统中的装置和方法
CN114006640A (zh) 电子设备、无线通信方法和计算机可读存储介质
CN110313135B (zh) 电子设备以及无线通信方法
WO2022037467A1 (zh) 电子设备、无线通信方法和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2978985

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015887251

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017549053

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15560853

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177030949

Country of ref document: KR

Kind code of ref document: A