WO2016153134A1 - Electric power generation device having multiple hydraulic machines - Google Patents

Electric power generation device having multiple hydraulic machines Download PDF

Info

Publication number
WO2016153134A1
WO2016153134A1 PCT/KR2015/009461 KR2015009461W WO2016153134A1 WO 2016153134 A1 WO2016153134 A1 WO 2016153134A1 KR 2015009461 W KR2015009461 W KR 2015009461W WO 2016153134 A1 WO2016153134 A1 WO 2016153134A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
generator
working fluid
hydraulic pump
power generation
Prior art date
Application number
PCT/KR2015/009461
Other languages
French (fr)
Korean (ko)
Inventor
최경식
박병철
김의현
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to CN201580078263.7A priority Critical patent/CN107407256B/en
Publication of WO2016153134A1 publication Critical patent/WO2016153134A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/26Reciprocating-piston liquid engines adapted for special use or combined with apparatus driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/061Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially in flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/06Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis
    • F03C1/0678Control
    • F03C1/0686Control by changing the inclination of the swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/20Gearless transmission, i.e. direct-drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/28Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a power generation device having a plurality of hydraulic devices, and more particularly, to a power generation device for converting rotational force into hydraulic pressure to drive a generator.
  • a hydraulic power generator using wind power includes a rotary blade 1, a hydraulic pump 2, a hydraulic motor 3, a generator 4, a transfer line 5, a return line 6, Controller 7, swash plate angle adjuster 8, and the like.
  • the torque is generated on the rotary blade 1, and the hydraulic pump 2, which is bitten by the same rotary shaft, discharges the working fluid.
  • the discharged working fluid is sent to the hydraulic motor 3 by the transfer line 5, and then the hydraulic motor rotates the generator 4 to produce electric power.
  • the controller 7 receives the speed of the wind coming from the anemometer 9 to obtain the maximum output from the wind and the hydraulic pump 2 or the hydraulic motor 3 through the swash plate angle adjuster 8 to maintain the optimum speed ratio. Adjust the angle of the swash plate.
  • the rotary blade 1 converts wind energy into rotating mechanical energy
  • the hydraulic pump 2 converts mechanical energy into energy of a fluid
  • the hydraulic motor 3 converts the energy of the fluid into rotating mechanical energy
  • the generator 4 converts the delivered mechanical energy into electrical energy.
  • Such a power generation device has a problem in that efficiency drops rapidly when energy is input from an energy source (wind, water, etc.) at a level of 20% or less of a capacity (rated output) of a hydraulic pump, a hydraulic motor, or a generator.
  • the present invention has a main object to provide a power generation device capable of efficiently utilizing energy even at low speed rotation in a power generation device for driving a generator by converting rotational force into hydraulic pressure.
  • the rotary blade At least one hydraulic pump driven by rotation of the rotary blade to flow a working fluid;
  • a transfer line connected to the discharge side of the hydraulic pump to form a flow path of the working fluid;
  • At least two hydraulic motors connected in parallel to the transfer line; And characterized in that it comprises a generator for converting the rotational force transmitted from the hydraulic motor into electric power.
  • the capacity of the hydraulic pump, the hydraulic motor, and the like is properly divided, so that there is an effect of efficiently generating power even at low wind speeds.
  • 1 is a configuration diagram schematically showing a conventional power generation device.
  • FIG. 2 is a configuration diagram schematically showing a power generation device according to a first embodiment of the present invention.
  • FIG. 3 is a configuration diagram schematically showing a power generation device according to a second embodiment of the present invention.
  • FIG. 4 is a configuration diagram schematically showing a power generation device according to a third embodiment of the present invention.
  • FIG. 5 is a configuration diagram schematically showing a power generation device according to a fourth embodiment of the present invention.
  • FIG. 6 is a view schematically illustrating a connection relationship between a switching unit and a generator illustrated in FIGS. 2 and 3.
  • the present invention at least one of the hydraulic pump, hydraulic motor or generator to solve the problem that the efficiency degradation occurs when the fluid as an energy source, such as wind or water, weakly blow or flow at a level of 20% or less of the desired output.
  • the fluid as an energy source, such as wind or water, weakly blow or flow at a level of 20% or less of the desired output.
  • FIG. 2 is a configuration diagram schematically showing a power generation device according to a first embodiment of the present invention.
  • the power generation apparatus As shown in Figure 2, the power generation apparatus according to the first embodiment of the present invention, the rotary blade 10; At least one hydraulic pump (21, 22) which is driven by the rotation of the rotary blade to flow the working fluid; A transfer line 50 connected to the discharge side of the hydraulic pump to form a flow path of the working fluid; At least two hydraulic motors 31 and 32 connected in parallel to the transfer line; And a generator 40 for converting the rotational force transmitted from the hydraulic motor into electric power.
  • the drive shaft of the hydraulic pump is connected to the rotary shaft of the rotary blade 10 together. Accordingly, the hydraulic pump may be driven by the rotation of the rotary blades.
  • FIG. 2 shows an example in which a plurality of hydraulic pumps 21 and 22 are connected to the rotary shaft of the rotary blade 10, and the driving shafts are coaxially connected to each other and to the rotary shaft of the rotary blade, but the present invention is not limited thereto.
  • the drive shafts may be connected in parallel by means such as a box.
  • the plurality of hydraulic pumps 21 and 22 have different capacities.
  • the capacity ratio of these hydraulic pumps may be 4: 1.
  • the hydraulic pumps 21 and 22 can be, for example, variable displacement pumps such as swash plate piston pumps.
  • the swash plate angle controller 80 for controlling the discharge amount of the hydraulic pump may be included.
  • the hydraulic pumps 21 and 22 may also be fixed capacity pumps.
  • the hydraulic pump and the flow path can be selected by installing a clutch on the drive shaft of the hydraulic pump or by installing a circulation line connected to each hydraulic pump.
  • the transfer line 50 connects the discharge side of the hydraulic pumps 21 and 22 to the suction side of the plurality of hydraulic motors 31 and 32.
  • the working fluid discharged from the hydraulic pump by the transfer line 50 is divided into each hydraulic motor and introduced.
  • an accumulator 51 may be provided which is connected to the transfer line 50 via the valve 52. Since the accumulator can store energy, the energy is stored when the wind is weak after the energy is stored. Power generation can generate high efficiency.
  • the plurality of hydraulic motors 31 and 32 have different capacities. For example, when the first hydraulic motor 31 has a larger capacity than the second hydraulic motor 32, the capacity ratio of these hydraulic motors may be 4: 1.
  • the hydraulic motors 31 and 32 driven by the operation of the hydraulic pump are preferably made of a variable displacement motor such as a swash plate piston motor.
  • the hydraulic motor can be adjusted in its capacity by the swash plate angle adjuster 80, respectively.
  • a return line 60 may be included to connect the suction side of the hydraulic pumps 21 and 22 to the discharge side of the hydraulic motors 31 and 32. At this time, the working fluid operated in the hydraulic motor is introduced into the hydraulic pump via a return line, and then the pressure is increased by the hydraulic pump to be discharged from the hydraulic pump.
  • the tank 61 may be provided in the return line 60, and a working fluid may be pumped through a separate supply pump 62 and transferred to the hydraulic motor.
  • Output shafts of the hydraulic motors 31 and 32 are connected together to the rotor of the generator 40. Accordingly, the rotor of the generator is rotated by the rotation of the hydraulic motor to produce AC power.
  • 2 shows an example where the output shafts are coaxially connected with each other and with the rotor of the generator, but are not necessarily limited thereto.
  • the generator 40 includes a rotor, a stator into which the rotor is inserted, and a plurality of coil parts 43 and 44 wound around the stator and divided to have different winding numbers.
  • a generator is the first coil part 43 of the generator in the switching unit 45 according to the output obtained from the anemometer 91 or the hydraulic system and the flow meter, the rotational angular velocity detector (not shown) of the rotary blade 10 (not shown).
  • at least one of the second coil units 44 may be selectively determined to increase power generation efficiency.
  • the turns ratio of these first coil parts and the second coil parts is increased.
  • the power generation apparatus of the present invention may include a controller 70.
  • This controller is connected to the swash plate angle adjuster 80 to adjust the angle of the swash plate, thereby maintaining the tip speed ratio (Tip Speed Ratio) so that the rotary blade 10 can obtain the maximum energy from the wind, the hydraulic pump
  • Tip Speed Ratio tip speed ratio
  • the controller 70 may be connected to the anemometer 91 or the hydraulic system and the flow meter, the rotational angular velocity detector of the rotary blade 10. According to the wind speed detected from the anemometer, the oil pressure and flow rate of the working fluid detected from the hydraulic system and the flow meter, the rotation angular velocity of the rotary blade detected from the rotation angle velocity detector, the controller may control the first hydraulic pump 21 or second hydraulic pump ( 22 may be connected to the flow path, and the second hydraulic motor 31 or the second hydraulic motor 32 may be connected to the flow path.
  • the controller 70 may be connected to the generator 40 via the switching unit 45.
  • the controller may be configured such that the switching unit 45 has the first coil part 43 or the second of the generator according to the output obtained from the anemometer 91 or the hydraulic system and the flowmeter, and the rotation angle velocity detector of the rotary blade 10. It is possible to selectively determine at least one of the coil parts 44 and to allow the selected coil part to be connected to the power system.
  • the rotary blade 10 converts wind energy into a rotational force, for example, and drives the hydraulic pumps 21 and 22 while the rotary shaft rotates.
  • the hydraulic pump operates to discharge the working fluid, and the working fluid is sent to the hydraulic motors 31 and 32 by the transfer line 50 to drive the hydraulic motor.
  • the rotor of the generator 40 rotates by the rotation of the hydraulic motors 31 and 32, and the generator produces AC power.
  • the working fluid discharged from the hydraulic motor is circulated by the return line 60 and sucked back to the hydraulic pumps 21 and 22. As such, the rotational force of the rotary blade 10 is transmitted through the hydraulic system is converted into power in the generator.
  • the winding of the generator 40 is divided to the first coil part ( 43 and the winding ratio of the second coil portion 44 is 4: 1, or by dividing the capacity of the hydraulic motor coaxially with the rotor of the generator, the first hydraulic motor 31 and the second hydraulic motor (
  • the capacity ratio of the first hydraulic pump 21 and the second hydraulic pump 22 is 4 by dividing the capacity of the hydraulic pump 32 coaxially with the rotary shaft of the rotary blade 10. Arrange so that it becomes: 1.
  • the controller 70 transmits a control signal to the switching unit 45 based on the set operating specification, when the detection signal from the anemometer 91, the hydraulic system, the flowmeter, or the rotational angular velocity detector is received. According to this control signal, the switching unit selectively switches the first coil part 43 or the second coil part 44 of the generator 40 to the power system so that stable and efficient power generation is implemented.
  • the working fluid when the wind blows less than 20% of the desired output, the working fluid can flow only to the second hydraulic motor 32 having a small capacity. In addition, when the wind blows to 20% or more of the desired output, the working fluid flows to the first hydraulic motor 31 having a large capacity. Moreover, when there is a strong wind, the working fluid flows to both the first hydraulic motor and the second hydraulic motor.
  • the controller 70 When a detection signal from the anemometer 91 or the hydraulic system and the flowmeter or the rotational angular velocity detector is received by the controller 70, the controller transmits a control signal to the swash plate angle adjuster 80 based on the set operating specification. According to this control signal, the swash plate angle adjuster 80 varies the angle of the swash plate to control the rotational angular speeds of the hydraulic motors 31 and 32.
  • the working fluid when the wind speed is reduced to less than 20% of the desired output, the working fluid does not flow to the first hydraulic motor 31, and the working fluid flows to the second hydraulic motor 32, thereby rotating at an appropriate rotational angular speed. have.
  • the working fluid when the wind speed increases to 20% or more of the desired output, the working fluid does not flow to the second hydraulic motor and the first hydraulic motor can be rotated.
  • both the first hydraulic motor and the second hydraulic motor can be rotated to operate at a desired output.
  • the working fluid can flow to the second hydraulic pump 22, which has a small capacity.
  • the working fluid flows to the first hydraulic pump 21 having a large capacity.
  • the working fluid flows to both the first hydraulic pump and the second hydraulic pump.
  • the controller 70 When a detection signal from the anemometer 91 or the hydraulic system and the flowmeter or the rotational angular velocity detector is received by the controller 70, the controller transmits a control signal to the swash plate angle adjuster 80 based on the set operating specification. According to this control signal, the swash plate angle adjuster 80 controls the rotational angular speeds of the hydraulic pumps 21 and 22 to maintain the tip speed ratio by varying the angle of the swash plate.
  • the controller 70 transmits a control signal to a clutch disposed on a drive shaft of the hydraulic pump or a valve disposed in a circulation line associated with each hydraulic pump. And euro can be selected.
  • the working fluid may flow from the second hydraulic pump to the second hydraulic motor 32.
  • the discharge amount of the second hydraulic pump 22 is eliminated, and the discharge amount of the first hydraulic pump 21 can be adjusted. Accordingly, the working fluid can flow from the first hydraulic pump to the first hydraulic motor 31.
  • the working fluid is discharged through both the first hydraulic pump 21 and the second hydraulic pump 22, and then flows to the first hydraulic motor 31 and the second hydraulic motor 32. do.
  • the generator 40 is driven to the desired output to the appropriate level of output, ultimately to maximize the power generation efficiency.
  • the valve 52 may be opened to store energy in the accumulator 51, in which case the supply pump 62 is operated to replenish the insufficient working fluid from the tank 61.
  • the working fluid can be supplied to the accumulator to store energy. After that, when the wind blows to less than 20% of the desired output, the generated energy can be released by generating power to increase the amount of power generated.
  • the accumulator 51 is replenished with working fluid, and then the stored energy is discharged and generated in a region where the efficiency of the generator is low, resulting in higher power generation efficiency.
  • the path of the working fluid is the second hydraulic motor (22) in the second hydraulic pump (22). 32) and the second coil portion 44 of the generator is operated.
  • the efficiency of the second hydraulic pump and the second hydraulic motor is 72%, respectively, and the efficiency of the generator is 87%.
  • the path of the working fluid is the first hydraulic motor (31) in the first hydraulic pump (21) ), And the first coil part 43 of the generator is operated. From this time, it can follow the efficiency curve of the hydraulic pump, the hydraulic motor or the generator and maintain the high efficiency.
  • FIG. 3 is a configuration diagram schematically showing a power generation device according to a second embodiment of the present invention.
  • a plurality of hydraulic pumps 20 are connected to the rotating shaft of the rotary blade 10, and the capacity ratio of these hydraulic pumps is 1: 1. Except for the points, the remaining components are the same as those of the first embodiment described above.
  • efficiency can be overcome by dividing a capacity into a plurality of hydraulic pumps 20 and setting the capacity ratio to 1: 1.
  • the power generating apparatus for example, when the average wind speed of the installation site is maintained at a level of 20% or more of the desired output, the winding of the generator 40 by dividing the first nose
  • the winding ratio of the portion 43 and the second coil portion 44 is 4: 1, or the capacity of the hydraulic motor connected coaxially with the rotor of the generator is divided so that the first hydraulic motor 31 and the second hydraulic pressure are divided.
  • the capacity ratio of the motor 32 is 4: 1, or the capacity ratio of the hydraulic pumps coaxially connected with the rotary shaft of the rotary blade 10 is divided so that the capacity ratio of the hydraulic pumps 20 is 1: 1.
  • Only one of the hydraulic pumps 20 allows the working fluid to flow when the wind blows at a range of flow rates. In strong winds, the working fluid flows to both sides of the hydraulic pumps.
  • the controller 70 When a detection signal from the anemometer 91 or the hydraulic system and the flowmeter or the rotational angular velocity detector is received by the controller 70, the controller transmits a control signal to the swash plate angle adjuster 80 based on the set operating specification. According to this control signal, the swash plate angle adjuster 80 controls the rotational angular speed of the hydraulic pump 20 to maintain the tip speed ratio by varying the angle of the swash plate.
  • the controller 70 transmits a control signal to a clutch disposed on a drive shaft of the hydraulic pump or a valve disposed in a circulation line connected to each hydraulic pump, so that the hydraulic pump and the flow path are controlled. Can be selected.
  • both hydraulic pumps 20 can be driven to the desired output.
  • the generator is operated at a desired output in consideration of the average wind speed, thereby ultimately maximizing power generation efficiency.
  • FIG. 4 is a configuration diagram schematically showing a power generation device according to a third embodiment of the present invention.
  • one of the first hydraulic motor 31 and the second hydraulic motor 32 must be idle due to its structural problems, and in the case of the generator 40, it is not used. In case of the coil part, loss of copper loss, inertia, friction loss, etc. as much as the winding ratio is caused.
  • the power generation apparatus According to the third embodiment of the present invention, unnecessary losses can be eliminated by dividing the capacity into a plurality of generators 41 and 42 and setting the capacity ratio to 4: 1.
  • the plurality of generators 41 and 42 may be connected to a power system, respectively, to supply the produced power.
  • a large first generator 41 is directly connected to an output shaft of a first hydraulic motor 31 having a relatively large capacity, and a second hydraulic pressure having a small capacity is used.
  • a small second generator 42 is directly connected to the output shaft of the motor 32.
  • the capacity of the generator may be divided so that the first generator 41 and The capacity ratio of the second generator 42 is 4: 1, or the capacity ratio of the first hydraulic motor 31 and the second hydraulic motor 32 is 4: 1 by varying the capacity of each hydraulic motor connected to each generator.
  • the capacity of the hydraulic pump connected coaxially with the rotating shaft of the rotary blade 10 is divided so that the capacity ratio of the first hydraulic pump 21 and the second hydraulic pump 22 is 4: 1.
  • the working fluid when the wind blows to less than 20% of the desired total power, the working fluid can flow only to the second hydraulic motor 32 having a small capacity. In addition, when the wind blows to 20% or more of the desired total output, the working fluid flows to the first hydraulic motor 31 having a large capacity. Moreover, when there is a strong wind, the working fluid flows to both the first hydraulic motor and the second hydraulic motor.
  • the controller 70 When a detection signal from the anemometer 91 or the hydraulic system and the flowmeter or the rotational angular velocity detector is received by the controller 70, the controller transmits a control signal to the swash plate angle adjuster 80 based on the set operating specification. In accordance with this control signal, the swash plate angle controller varies the angle of the swash plate to control the rotational angular speeds of the hydraulic motors 31 and 32.
  • the working fluid when the wind speed is reduced to less than 20% of the desired total output, the working fluid does not flow to the first hydraulic motor 31, and the working fluid flows to the second hydraulic motor 32 to rotate at an appropriate rotational angular speed. Can be.
  • the working fluid when the wind speed increases to 20% or more of the desired total output, the working fluid does not flow to the second hydraulic motor and the first hydraulic motor can be rotated.
  • both the first hydraulic motor and the second hydraulic motor can be rotated to operate at a desired output.
  • the working fluid can flow to the second hydraulic pump 22, which has a small capacity.
  • the working fluid flows to the large first hydraulic pump 21.
  • the working fluid flows to both the first hydraulic pump and the second hydraulic pump.
  • the controller 70 When a detection signal from the anemometer 91 or the hydraulic system and the flowmeter or the rotational angular velocity detector is received by the controller 70, the controller transmits a control signal to the swash plate angle adjuster 80 based on the set operating specification. According to this control signal, the swash plate angle controller controls the rotational angular speeds of the hydraulic pumps 21 and 22 to maintain the tip speed ratio by varying the angle of the swash plate.
  • the controller 70 transmits a control signal to a clutch disposed on a drive shaft of the hydraulic pump or a valve disposed in a circulation line associated with each hydraulic pump. And euro can be selected.
  • the wind speed is reduced to less than 20% of the desired total output, there is no discharge amount of the first hydraulic pump 21, and only the discharge amount of the second hydraulic pump 22 can be appropriately adjusted. Accordingly, the working fluid can flow from the second hydraulic pump to the second hydraulic motor 32, and eventually the second generator 42 is operated to generate small capacity.
  • the discharge amount of the second hydraulic pump 22 is eliminated, and the discharge amount of the first hydraulic pump 21 can be adjusted. Accordingly, the working fluid can flow from the first hydraulic pump to the first hydraulic motor 31, and eventually the first generator 41 is operated to generate large capacity.
  • the working fluid is discharged through both the first hydraulic pump 21 and the second hydraulic pump 22, and then flows to the first hydraulic motor 31 and the second hydraulic motor 31. do.
  • the first generator 41 and the second generator 42 is operated at the desired total output, thereby ultimately maximizing power generation efficiency.
  • the supply pump 62 may be operated to refill the working fluid from the tank 61, and then the valve 52 may be opened to store energy in the accumulator 51. After that, when the wind blows to less than 20% of the desired output, the generated energy can be released by generating power to increase the amount of power generated.
  • the accumulator 51 is replenished with working fluid, and then the stored energy is discharged and generated in a region where the efficiency of the generator is low, resulting in higher power generation efficiency.
  • the power generation apparatus can use energy as effectively as possible, and has the advantage of being simple and easy to configure and control without using complicated control means.
  • FIG. 5 is a configuration diagram schematically showing a power generation device according to a fourth embodiment of the present invention.
  • a plurality of hydraulic pumps 20 are connected to the rotary shaft of the rotary blade 10, and the capacity ratio of these hydraulic pumps is 1: 1. Except for the points, the remaining components are the same as those of the above-described third embodiment.
  • the power generation device according to the fourth embodiment of the present invention combines the features of the configuration of the power generation device according to the second embodiment and the power generation device according to the third embodiment.
  • the same components as those of the power generation device according to the second and third embodiments will be denoted by the same reference numerals, and detailed descriptions of the construction and functions thereof will be given. It will be omitted.
  • efficiency can be overcome by dividing the capacity into a plurality of hydraulic pumps 20 and setting the capacity ratio to 1: 1.
  • the power generator according to the fourth embodiment of the present invention for example, when the average wind speed of the installation site is maintained at the level of 20% or more of the desired output, the first generator 41 by dividing the capacity of the generator And the capacity ratio of the second generator 42 is 4: 1, or the capacity ratio of the first hydraulic motor 31 and the second hydraulic motor 32 is 4: by varying the capacity of each hydraulic motor connected to each generator. 1 or by dividing the capacity of the hydraulic pump 20 connected coaxially with the rotating shaft of the rotary blade 10 so that the capacity ratio of the hydraulic pump is 1: 1.
  • sharing the generator when generating power using two or more rotary blades has the advantage of not only to improve the efficiency of the generator 3 ⁇ 6%, but also to reduce the cost of the facility.
  • the present invention is an invention in which the energy can be efficiently used even for a low speed rotation in a power generation field for driving a generator by converting rotational force into hydraulic pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

The present invention relates to an electric power generation device having multiple hydraulic machines. The device comprises: a rotary fan; at least one hydraulic pump which is driven by the rotation of the rotating blade to enable a working fluid to flow; a transfer line connected to a discharge side of the hydraulic pump to form a flow path for the working fluid; at least two hydraulic motors connected to the transfer line in parallel; and an electric generator for converting rotation force transferred from the hydraulic motors into electric power. Therefore, the device can efficiently generate electric power even at a low wind speed by properly dividing capacities of the hydraulic pump and the hydraulic motors.

Description

복수의 유압 기기를 갖춘 발전 장치Power plant with multiple hydraulics
본 발명은 복수의 유압 기기를 갖춘 발전 장치에 관한 것으로, 더욱 상세하게는 회전력을 유압으로 변환하여 발전기를 구동하는 발전 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation device having a plurality of hydraulic devices, and more particularly, to a power generation device for converting rotational force into hydraulic pressure to drive a generator.
도 1은 종래의 발전 장치를 개략적으로 도시한 구성도이다. 도 1에 도시된 바와 같이 예컨대 풍력을 이용한 유압식 발전 장치는 회전날개(1), 유압펌프(2), 유압모터(3), 발전기(4), 이송라인(5), 복귀라인(6), 제어기(7), 사판각 조절기(8) 등을 포함하고 있다. 1 is a configuration diagram schematically showing a conventional power generation device. As shown in FIG. 1, for example, a hydraulic power generator using wind power includes a rotary blade 1, a hydraulic pump 2, a hydraulic motor 3, a generator 4, a transfer line 5, a return line 6, Controller 7, swash plate angle adjuster 8, and the like.
예를 들어, 바람이 불면 회전날개(1)에 토크가 발생하고, 같은 회전축에 물려있는 유압펌프(2)가 작동유체를 토출하게 된다. 토출된 작동유체는 이송라인(5)에 의해 유압모터(3)로 보내어지게 되고, 이어서 유압모터는 발전기(4)를 회전시켜 전력을 생산한다. For example, when the wind blows, the torque is generated on the rotary blade 1, and the hydraulic pump 2, which is bitten by the same rotary shaft, discharges the working fluid. The discharged working fluid is sent to the hydraulic motor 3 by the transfer line 5, and then the hydraulic motor rotates the generator 4 to produce electric power.
제어기(7)는 바람으로부터 최대 출력을 얻기 위해 풍속계(9)로부터 오는 바람의 속도를 입력받아 최적의 속도비를 유지하도록 사판각 조절기(8)를 통해 유압펌프(2) 또는 유압모터(3)가 가진 사판의 각도를 조절한다.The controller 7 receives the speed of the wind coming from the anemometer 9 to obtain the maximum output from the wind and the hydraulic pump 2 or the hydraulic motor 3 through the swash plate angle adjuster 8 to maintain the optimum speed ratio. Adjust the angle of the swash plate.
회전날개(1)는 바람의 에너지를 회전하는 기계 에너지로 변환하고, 유압펌프(2)는 기계 에너지를 유체의 에너지로 변환시킨다. 유압모터(3)는 유체의 에너지를 회전하는 기계 에너지로 변환시켜 주며, 발전기(4)는 전달된 기계 에너지를 전기 에너지로 변환하는 역할을 한다. The rotary blade 1 converts wind energy into rotating mechanical energy, and the hydraulic pump 2 converts mechanical energy into energy of a fluid. The hydraulic motor 3 converts the energy of the fluid into rotating mechanical energy, and the generator 4 converts the delivered mechanical energy into electrical energy.
이러한 발전 장치는 유압펌프, 유압모터 또는 발전기가 갖는 용량(정격출력)의 20% 이하의 수준으로 에너지원(바람, 물 등)으로부터 에너지가 입력될 때 효율이 급격하게 떨어지는 문제가 있다. Such a power generation device has a problem in that efficiency drops rapidly when energy is input from an energy source (wind, water, etc.) at a level of 20% or less of a capacity (rated output) of a hydraulic pump, a hydraulic motor, or a generator.
이에 본 발명은 회전력을 유압으로 변환하여 발전기를 구동하는 발전 장치에서, 저속인 회전에 대해서도 에너지를 효율적으로 이용할 수 있도록 하는 발전 장치를 제공하는 데에 그 주된 목적이 있다. Accordingly, the present invention has a main object to provide a power generation device capable of efficiently utilizing energy even at low speed rotation in a power generation device for driving a generator by converting rotational force into hydraulic pressure.
본 발명에 따른 발전 장치는, 회전날개; 상기 회전날개의 회전으로 구동되어 작동유체를 유동시키는 적어도 하나의 유압펌프; 상기 유압펌프의 토출측에 연결되어 상기 작동유체의 유로를 형성하는 이송라인; 상기 이송라인에 병렬로 연결되는 적어도 2개의 유압모터; 및 상기 유압모터로부터 전달되는 회전력을 전력으로 변환하는 발전기를 포함하는 것을 특징으로 한다. Power generating device according to the present invention, the rotary blade; At least one hydraulic pump driven by rotation of the rotary blade to flow a working fluid; A transfer line connected to the discharge side of the hydraulic pump to form a flow path of the working fluid; At least two hydraulic motors connected in parallel to the transfer line; And characterized in that it comprises a generator for converting the rotational force transmitted from the hydraulic motor into electric power.
이상과 같이 본 발명에 의하면, 유압펌프 및 유압모터 등의 용량을 적절히 분할하여 낮은 풍속에서도 효율적으로 발전할 수 있는 효과가 있게 된다. As described above, according to the present invention, the capacity of the hydraulic pump, the hydraulic motor, and the like is properly divided, so that there is an effect of efficiently generating power even at low wind speeds.
또한, 본 발명에 의하면, 궁극적으로 발전 효율의 극대화와 발전량의 향상을 도모할 수 있는 효과가 있다. In addition, according to the present invention, there is an effect that can ultimately maximize the power generation efficiency and improve the amount of power generated.
도 1은 종래의 발전 장치를 개략적으로 도시한 구성도이다.1 is a configuration diagram schematically showing a conventional power generation device.
도 2는 본 발명의 제1실시예에 따른 발전 장치를 개략적으로 도시한 구성도이다.2 is a configuration diagram schematically showing a power generation device according to a first embodiment of the present invention.
도 3은 본 발명의 제2실시예에 따른 발전 장치를 개략적으로 도시한 구성도이다.3 is a configuration diagram schematically showing a power generation device according to a second embodiment of the present invention.
도 4는 본 발명의 제3실시예에 따른 발전 장치를 개략적으로 도시한 구성도이다.4 is a configuration diagram schematically showing a power generation device according to a third embodiment of the present invention.
도 5는 본 발명의 제4실시예에 따른 발전 장치를 개략적으로 도시한 구성도이다.5 is a configuration diagram schematically showing a power generation device according to a fourth embodiment of the present invention.
도 6은 도 2 및 도 3에 도시된 스위칭 유닛과 발전기의 연결관계를 개략적으로 도시한 도면이다. FIG. 6 is a view schematically illustrating a connection relationship between a switching unit and a generator illustrated in FIGS. 2 and 3.
이하, 본 발명이 예시적인 도면을 통해 상세하게 설명된다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. Hereinafter, the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 발명은, 예컨대 바람이나 물 등과 같은 에너지원으로서의 유체가, 원하는 출력의 20% 이하의 수준으로 약하게 불거나 흐를 때 효율 저하가 일어나는 문제점을 해결하기 위해, 유압펌프, 유압모터 또는 발전기 중 적어도 하나는 그 용량을 분할하여 설치한 것을 특징으로 한다. The present invention, at least one of the hydraulic pump, hydraulic motor or generator to solve the problem that the efficiency degradation occurs when the fluid as an energy source, such as wind or water, weakly blow or flow at a level of 20% or less of the desired output. Is characterized in that the divided capacity installed.
이하에서는 설명의 편의상 에너지원이 바람인 경우를 예로 들어 설명하지만, 반드시 이에 한정되지 않으며, 예컨대 물을 이용한 발전 등에 적용될 수 있음은 물론이다. Hereinafter, for convenience of description, a case where the energy source is wind is described as an example, but is not necessarily limited thereto, and may be applied to, for example, power generation using water.
제1실시예First embodiment
도 2는 본 발명의 제1실시예에 따른 발전 장치를 개략적으로 도시한 구성도이다.2 is a configuration diagram schematically showing a power generation device according to a first embodiment of the present invention.
도 2에 도시된 바와 같이, 본 발명의 제1실시예에 따른 발전 장치는, 회전날개(10); 이 회전날개의 회전으로 구동되어 작동유체를 유동시키는 적어도 하나의 유압펌프(21, 22); 이 유압펌프의 토출측에 연결되어 작동유체의 유로를 형성하는 이송라인(50); 이 이송라인에 병렬로 연결되는 적어도 2개의 유압모터(31, 32); 및 유압모터로부터 전달되는 회전력을 전력으로 변환하는 발전기(40)를 포함하고 있다. As shown in Figure 2, the power generation apparatus according to the first embodiment of the present invention, the rotary blade 10; At least one hydraulic pump (21, 22) which is driven by the rotation of the rotary blade to flow the working fluid; A transfer line 50 connected to the discharge side of the hydraulic pump to form a flow path of the working fluid; At least two hydraulic motors 31 and 32 connected in parallel to the transfer line; And a generator 40 for converting the rotational force transmitted from the hydraulic motor into electric power.
회전날개(10)의 회전축에 유압펌프의 구동축을 함께 연결한다. 이에 따라 회전날개의 회전에 의해 유압펌프가 구동될 수 있다. The drive shaft of the hydraulic pump is connected to the rotary shaft of the rotary blade 10 together. Accordingly, the hydraulic pump may be driven by the rotation of the rotary blades.
도 2에는 회전날개(10)의 회전축에 복수의 유압펌프(21, 22)가 연결됨과 더불어, 그 구동축들이 서로 간 그리고 회전날개의 회전축과 동축상으로 연결된 예가 나타나 있지만, 이에 한정되지 않고 예컨대 기어박스 등과 같은 수단에 의해 구동축들이 병렬로 연결될 수도 있다. 2 shows an example in which a plurality of hydraulic pumps 21 and 22 are connected to the rotary shaft of the rotary blade 10, and the driving shafts are coaxially connected to each other and to the rotary shaft of the rotary blade, but the present invention is not limited thereto. The drive shafts may be connected in parallel by means such as a box.
복수의 유압펌프(21, 22)는 서로 다른 용량을 갖는다. 예를 들어, 제1유압펌프(21)가 상대적으로 제2유압펌프(22)보다 용량이 클 때, 이들 유압펌프가 갖는 용량비는 4:1로 될 수 있다. The plurality of hydraulic pumps 21 and 22 have different capacities. For example, when the first hydraulic pump 21 has a relatively larger capacity than the second hydraulic pump 22, the capacity ratio of these hydraulic pumps may be 4: 1.
유압펌프(21, 22)는 예컨대 사판식 피스톤 펌프 등과 같은 가변 용량형 펌프로 될 수 있다. 이러한 경우에, 유압펌프의 토출량을 제어하기 위한 사판각 조절기(80)를 각각 포함할 수 있다. The hydraulic pumps 21 and 22 can be, for example, variable displacement pumps such as swash plate piston pumps. In this case, the swash plate angle controller 80 for controlling the discharge amount of the hydraulic pump may be included.
또한, 유압펌프(21, 22)는 고정용량형 펌프로 될 수도 있다. 이러한 경우에는, 유압펌프의 구동축에 클러치를 설치하거나 각 유압펌프에 연계되는 순환라인을 병설하여 해당 유압펌프와 유로를 선택할 수 있다. The hydraulic pumps 21 and 22 may also be fixed capacity pumps. In this case, the hydraulic pump and the flow path can be selected by installing a clutch on the drive shaft of the hydraulic pump or by installing a circulation line connected to each hydraulic pump.
이송라인(50)은 유압펌프(21, 22)의 토출측을 복수의 유압모터(31, 32)의 흡입측에 연결한다. 이 이송라인(50)에 의해 유압펌프로부터 토출되는 작동유체가 각 유압모터로 분할되어 유입된다.The transfer line 50 connects the discharge side of the hydraulic pumps 21 and 22 to the suction side of the plurality of hydraulic motors 31 and 32. The working fluid discharged from the hydraulic pump by the transfer line 50 is divided into each hydraulic motor and introduced.
선택적으로, 밸브(52)를 거쳐 이송라인(50)에 연결되는 축압기(51)가 마련될 수 있는데, 이 축압기는 에너지를 저장할 수 있기 때문에, 에너지를 저장한 후 바람이 약할 때 방출하여 발전하면 효율이 높게 발전할 수 있다. Optionally, an accumulator 51 may be provided which is connected to the transfer line 50 via the valve 52. Since the accumulator can store energy, the energy is stored when the wind is weak after the energy is stored. Power generation can generate high efficiency.
복수의 유압모터(31, 32)는 서로 다른 용량을 갖는다. 예를 들어, 제1유압모터(31)가 상대적으로 제2유압모터(32)보다 용량이 클 때, 이들 유압모터가 갖는 용량비는 4:1로 될 수 있다. The plurality of hydraulic motors 31 and 32 have different capacities. For example, when the first hydraulic motor 31 has a larger capacity than the second hydraulic motor 32, the capacity ratio of these hydraulic motors may be 4: 1.
유압펌프의 작동으로 구동되는 유압모터(31, 32)는 예컨대 사판식 피스톤 모터 등과 같은 가변 용량형 모터로 되는 것이 좋다. 이러한 경우에, 유압모터는 사판각 조절기(80)에 의해 그 용량이 각각 조절될 수 있다. The hydraulic motors 31 and 32 driven by the operation of the hydraulic pump are preferably made of a variable displacement motor such as a swash plate piston motor. In this case, the hydraulic motor can be adjusted in its capacity by the swash plate angle adjuster 80, respectively.
추가로, 유압펌프(21, 22)의 흡입측을 유압모터(31, 32)의 토출측에 연결하는 복귀라인(60)이 포함될 수 있다. 이때, 유압모터 내에서 작동한 작동유체는 복귀라인을 거쳐 유압펌프에 유입되고, 이어서 유압펌프에 의해 압력이 상승되어 유압펌프로부터 토출될 수 있다.In addition, a return line 60 may be included to connect the suction side of the hydraulic pumps 21 and 22 to the discharge side of the hydraulic motors 31 and 32. At this time, the working fluid operated in the hydraulic motor is introduced into the hydraulic pump via a return line, and then the pressure is increased by the hydraulic pump to be discharged from the hydraulic pump.
선택적으로 복귀라인(60)에 탱크(61)가 마련될 수 있으며, 별도의 공급펌프(62)를 통해 작동유체가 펌핑되어 유압모터로 이송될 수 있다.Optionally, the tank 61 may be provided in the return line 60, and a working fluid may be pumped through a separate supply pump 62 and transferred to the hydraulic motor.
발전기(40)의 회전자에 유압모터(31, 32)들의 출력축이 함께 연결된다. 이에 따라 유압모터의 회전에 의해 발전기의 회전자가 회전구동됨으로써 교류 전력을 생산하게 된다. 도 2에는 출력축들이 서로 간 그리고 발전기의 회전자와 동축상으로 연결된 예가 나타나 있지만, 반드시 이에 한정되지 않는다. Output shafts of the hydraulic motors 31 and 32 are connected together to the rotor of the generator 40. Accordingly, the rotor of the generator is rotated by the rotation of the hydraulic motor to produce AC power. 2 shows an example where the output shafts are coaxially connected with each other and with the rotor of the generator, but are not necessarily limited thereto.
도 6에 도시된 바와 같이, 발전기(40)는 회전자, 이 회전자가 삽입되는 고정자, 및 고정자에 권취되고 서로 다른 권선수를 갖도록 분할된 복수의 코일부(43, 44)를 포함한다. 이러한 발전기는 풍속계(91) 또는 유압계 및 유량계, 회전날개(10)의 회전각속도 검출계(미도시)로부터 취득되어 계산된 출력에 따라 스위칭 유닛(45)에서 발전기의 제1코일부(43) 또는 제2코일부(44) 중 적어도 하나를 선택적으로 결정하여 발전 효율을 높일 수 있다. As shown in FIG. 6, the generator 40 includes a rotor, a stator into which the rotor is inserted, and a plurality of coil parts 43 and 44 wound around the stator and divided to have different winding numbers. Such a generator is the first coil part 43 of the generator in the switching unit 45 according to the output obtained from the anemometer 91 or the hydraulic system and the flow meter, the rotational angular velocity detector (not shown) of the rotary blade 10 (not shown). Alternatively, at least one of the second coil units 44 may be selectively determined to increase power generation efficiency.
예를 들어, 고정자에 제1 및 제2코일부가 구비되고 제1코일부(43)가 상대적으로 제2코일부(44)보다 권선수가 많을 때, 이들 제1코일부 및 제2코일부의 권선비는 4:1로 될 수 있다.For example, when the stator is provided with the first and second coil parts and the first coil part 43 has a larger number of turns than the second coil part 44, the turns ratio of these first coil parts and the second coil parts is increased. Can be 4: 1.
본 발명의 발전 장치는 제어기(70)를 포함할 수 있다. 이 제어기는 사판각 조절기(80)에 연결되어 사판의 각도를 조절함으로써, 회전날개(10)가 바람으로부터 최대 에너지를 얻을 수 있도록 익단속도비(Tip Speed Ratio)를 유지하게 함과 더불어, 유압펌프(21, 22) 또는 유압모터(31, 32)의 용량을 선택할 수 있다. The power generation apparatus of the present invention may include a controller 70. This controller is connected to the swash plate angle adjuster 80 to adjust the angle of the swash plate, thereby maintaining the tip speed ratio (Tip Speed Ratio) so that the rotary blade 10 can obtain the maximum energy from the wind, the hydraulic pump The capacity of the 21 or 22 or the hydraulic motors 31 and 32 can be selected.
또한, 제어기(70)는 풍속계(91) 또는 유압계 및 유량계, 회전날개(10)의 회전각속도 검출계에 연결될 수 있다. 풍속계로부터 검출되는 풍속이나, 유압계 및 유량계로부터 검출되는 작동유체의 유압 및 유량, 회전각속도 검출계로부터 검출되는 회전날개의 회전각속도 등에 따라 제어기는 제1유압펌프(21) 또는 제2유압펌프(22)를 유로에 연결하고, 제2유압모터(31) 또는 제2유압모터(32)를 유로에 연결할 수 있다. In addition, the controller 70 may be connected to the anemometer 91 or the hydraulic system and the flow meter, the rotational angular velocity detector of the rotary blade 10. According to the wind speed detected from the anemometer, the oil pressure and flow rate of the working fluid detected from the hydraulic system and the flow meter, the rotation angular velocity of the rotary blade detected from the rotation angle velocity detector, the controller may control the first hydraulic pump 21 or second hydraulic pump ( 22 may be connected to the flow path, and the second hydraulic motor 31 or the second hydraulic motor 32 may be connected to the flow path.
또, 제어기(70)는 스위칭 유닛(45)을 매개로 하여 발전기(40)에 연결될 수 있다. 특히, 제어기는 풍속계(91) 또는 유압계 및 유량계, 회전날개(10)의 회전각속도 검출계로부터 취득되어 계산된 출력에 따라 스위칭 유닛(45)이 발전기의 제1코일부(43) 또는 제2코일부(44) 중 적어도 하나를 선택적으로 결정할 수 있게 하고, 선택된 코일부가 전력계통에 연결되게 한다. In addition, the controller 70 may be connected to the generator 40 via the switching unit 45. In particular, the controller may be configured such that the switching unit 45 has the first coil part 43 or the second of the generator according to the output obtained from the anemometer 91 or the hydraulic system and the flowmeter, and the rotation angle velocity detector of the rotary blade 10. It is possible to selectively determine at least one of the coil parts 44 and to allow the selected coil part to be connected to the power system.
이하에서는, 이와 같이 구성된 본 발명의 제1실시예에 따른 발전 장치의 작동에 대해 설명하기로 한다. Hereinafter, the operation of the power generation apparatus according to the first embodiment of the present invention configured as described above will be described.
회전날개(10)는 예컨대 바람의 에너지를 회전력으로 변환시키고, 그 회전축이 회전하면서 유압펌프(21, 22)를 구동시킨다. 유압펌프가 작동하여 작동유체를 토출하고, 이송라인(50)에 의해 작동유체가 유압모터(31, 32)로 보내어져 유압모터를 구동한다. The rotary blade 10 converts wind energy into a rotational force, for example, and drives the hydraulic pumps 21 and 22 while the rotary shaft rotates. The hydraulic pump operates to discharge the working fluid, and the working fluid is sent to the hydraulic motors 31 and 32 by the transfer line 50 to drive the hydraulic motor.
유압모터(31, 32)의 회전으로 발전기(40)의 회전자가 회전하고, 발전기에서는 교류 전력을 생산한다. 유압모터에서 배출된 작동유체는 복귀라인(60)에 의해 순환되어 다시 유압펌프(21, 22)에 흡인된다. 이와 같이, 회전날개(10)의 회전력이 유압 시스템을 통하여 전동 되어 발전기에서 전력으로 변환되게 된다.The rotor of the generator 40 rotates by the rotation of the hydraulic motors 31 and 32, and the generator produces AC power. The working fluid discharged from the hydraulic motor is circulated by the return line 60 and sucked back to the hydraulic pumps 21 and 22. As such, the rotational force of the rotary blade 10 is transmitted through the hydraulic system is converted into power in the generator.
이러한 본 발명의 제1실시예에 따른 발전 장치는, 예를 들어 설치장소의 평균 풍속이 원하는 출력의 20% 이하의 수준으로 유지될 때, 발전기(40)의 권선을 분할하여 제1코일부(43) 및 제2코일부(44)의 권선비가 4:1이 되도록 하거나, 이 발전기의 회전자와 동축상으로 연결된 유압모터의 용량을 분할하여 제1유압모터(31) 및 제2유압모터(32)의 용량비가 4:1이 되도록 하거나, 회전날개(10)의 회전축과 동축상으로 연결된 유압펌프의 용량을 분할하여 제1유압펌프(21) 및 제2유압펌프(22)의 용량비가 4:1이 되도록 하여 배치한다. In the power generation apparatus according to the first embodiment of the present invention, for example, when the average wind speed of the installation place is maintained at a level of 20% or less of the desired output, the winding of the generator 40 is divided to the first coil part ( 43 and the winding ratio of the second coil portion 44 is 4: 1, or by dividing the capacity of the hydraulic motor coaxially with the rotor of the generator, the first hydraulic motor 31 and the second hydraulic motor ( The capacity ratio of the first hydraulic pump 21 and the second hydraulic pump 22 is 4 by dividing the capacity of the hydraulic pump 32 coaxially with the rotary shaft of the rotary blade 10. Arrange so that it becomes: 1.
바람이 원하는 출력의 20% 미만으로 불 때 발전기(40)의 고정자에 권취된 제2코일부(44)만 그 가동을 유지한다. 또한, 바람이 원하는 출력의 20% 이상으로 불 때에는 발전기의 고정자에 권취된 제1코일부(43)에서 전력을 생산하도록 한다. 더욱이, 강풍이 불 때에는 발전기의 고정자에 권취된 제1코일부 및 제2코일부에서 함께 전력을 생산하게 된다.When the wind blows to less than 20% of the desired output, only the second coil portion 44 wound around the stator of the generator 40 maintains its operation. In addition, when the wind blows more than 20% of the desired output to produce power in the first coil portion 43 wound around the stator of the generator. Furthermore, when the strong wind blows, the first coil part and the second coil part wound around the stator of the generator produce power together.
제어기(70)는, 풍속계(91)나 유압계 및 유량계 또는 회전각속도 검출계로부터의 검출 신호가 수신되면, 설정된 운전 사양에 기초하여 스위칭 유닛(45)에 제어 신호를 송신한다. 이 제어 신호에 따라, 스위칭 유닛은 발전기(40)의 제1코일부(43) 또는 제2코일부(44)를 선택적으로 스위칭하여 전력계통에 연결함으로써, 안정적이고 효율적인 발전이 이행되게 한다. The controller 70 transmits a control signal to the switching unit 45 based on the set operating specification, when the detection signal from the anemometer 91, the hydraulic system, the flowmeter, or the rotational angular velocity detector is received. According to this control signal, the switching unit selectively switches the first coil part 43 or the second coil part 44 of the generator 40 to the power system so that stable and efficient power generation is implemented.
더불어, 바람이 원하는 출력의 20% 미만으로 불 때 용량이 작은 제2유압모터(32)로만 작동유체가 흐를 수 있게 한다. 또한, 바람이 원하는 출력의 20% 이상으로 불 때에는 용량이 큰 제1유압모터(31)로 작동유체가 흐르게 한다. 더욱이, 강풍이 불 때에는 제1유압모터 및 제2유압모터 양쪽으로 작동유체가 흐른다. In addition, when the wind blows less than 20% of the desired output, the working fluid can flow only to the second hydraulic motor 32 having a small capacity. In addition, when the wind blows to 20% or more of the desired output, the working fluid flows to the first hydraulic motor 31 having a large capacity. Moreover, when there is a strong wind, the working fluid flows to both the first hydraulic motor and the second hydraulic motor.
풍속계(91)나 유압계 및 유량계 또는 회전각속도 검출계로부터의 검출 신호가 제어기(70)에 수신되면, 제어기는 설정된 운전 사양에 기초하여 사판각 조절기(80)에 제어 신호를 송신한다. 이 제어 신호에 따라, 사판각 조절기(80)는 사판의 각도를 가변해 해당 유압모터(31, 32)의 회전각속도를 제어한다. When a detection signal from the anemometer 91 or the hydraulic system and the flowmeter or the rotational angular velocity detector is received by the controller 70, the controller transmits a control signal to the swash plate angle adjuster 80 based on the set operating specification. According to this control signal, the swash plate angle adjuster 80 varies the angle of the swash plate to control the rotational angular speeds of the hydraulic motors 31 and 32.
특히, 풍속이 원하는 출력의 20% 미만 수준으로 감소하면 제1유압모터(31)로는 작동유체가 흐르지 않게 하고, 제2유압모터(32)로 작동유체가 흐르도록 하여 적절한 회전각속도로 회전시킬 수 있다. 또, 풍속이 원하는 출력의 20% 이상으로 증가하면 제2유압모터로는 작동유체가 흐르지 않게 하고 제1유압모터가 회전되게 할 수 있다. 더구나, 강풍이 불게 되면 제1유압모터 및 제2유압모터가 모두 회전되게 하여 원하는 출력으로 운전되게 할 수 있다. In particular, when the wind speed is reduced to less than 20% of the desired output, the working fluid does not flow to the first hydraulic motor 31, and the working fluid flows to the second hydraulic motor 32, thereby rotating at an appropriate rotational angular speed. have. In addition, when the wind speed increases to 20% or more of the desired output, the working fluid does not flow to the second hydraulic motor and the first hydraulic motor can be rotated. Moreover, when the strong wind blows, both the first hydraulic motor and the second hydraulic motor can be rotated to operate at a desired output.
마찬가지로, 바람이 원하는 출력의 20% 미만으로 불 때 용량이 작은 제2유압펌프(22)로만 작동유체가 흐를 수 있게 한다. 또한, 바람이 원하는 출력의 20% 이상으로 불 때에는 용량이 큰 제1유압펌프(21)로 작동유체가 흐르게 한다. 더욱이, 강풍이 불 때에는 제1유압펌프 및 제2유압펌프 양쪽으로 작동유체가 흐른다. Likewise, only when the wind blows to less than 20% of the desired output, the working fluid can flow to the second hydraulic pump 22, which has a small capacity. In addition, when the wind blows to 20% or more of the desired output, the working fluid flows to the first hydraulic pump 21 having a large capacity. In addition, when the strong wind blows, the working fluid flows to both the first hydraulic pump and the second hydraulic pump.
풍속계(91)나 유압계 및 유량계 또는 회전각속도 검출계로부터의 검출 신호가 제어기(70)에 수신되면, 제어기는 설정된 운전 사양에 기초하여 사판각 조절기(80)에 제어 신호를 송신한다. 이 제어 신호에 따라, 사판각 조절기(80)는 사판의 각도를 가변해 익단속도비를 유지하도록 해당 유압펌프(21, 22)의 회전각속도를 제어한다. When a detection signal from the anemometer 91 or the hydraulic system and the flowmeter or the rotational angular velocity detector is received by the controller 70, the controller transmits a control signal to the swash plate angle adjuster 80 based on the set operating specification. According to this control signal, the swash plate angle adjuster 80 controls the rotational angular speeds of the hydraulic pumps 21 and 22 to maintain the tip speed ratio by varying the angle of the swash plate.
유압펌프(21, 22)들이 고정용량형 펌프인 경우에는, 제어기(70)가 유압펌프의 구동축에 설치된 클러치 또는 각 유압펌프에 연계되는 순환라인에 배치된 밸브 등에 제어 신호를 전송하여 해당 유압펌프와 유로를 선택할 수 있다. When the hydraulic pumps 21 and 22 are fixed displacement pumps, the controller 70 transmits a control signal to a clutch disposed on a drive shaft of the hydraulic pump or a valve disposed in a circulation line associated with each hydraulic pump. And euro can be selected.
이 경우도, 풍속이 원하는 출력의 20% 미만 수준으로 감소하면 제1유압펌프(21)의 토출량은 없게 하고, 제2유압펌프(22)의 토출량만 적절히 조절할 수 있다. 이에 따라, 작동유체가 제2유압펌프에서 제2유압모터(32)로 흐를 수 있다. Also in this case, if the wind speed is reduced to less than 20% of the desired output, there is no discharge amount of the first hydraulic pump 21, and only the discharge amount of the second hydraulic pump 22 can be appropriately adjusted. Accordingly, the working fluid may flow from the second hydraulic pump to the second hydraulic motor 32.
또, 풍속이 원하는 출력의 20% 이상으로 증가하면 제2유압펌프(22)의 토출량은 없게 하고, 제1유압펌프(21)의 토출량을 조절할 수 있다. 이에 따라, 작동유체가 제1유압펌프에서 제1유압모터(31)로 흐를 수 있게 된다. In addition, when the wind speed increases to 20% or more of the desired output, the discharge amount of the second hydraulic pump 22 is eliminated, and the discharge amount of the first hydraulic pump 21 can be adjusted. Accordingly, the working fluid can flow from the first hydraulic pump to the first hydraulic motor 31.
더구나, 강풍이 불게 되면 양쪽 제1유압펌프(21) 및 제2유압펌프(22)를 통해 작동유체가 토출되고, 이어서 제1유압모터(31) 및 제2유압모터(32)로 흐를 수 있게 된다. 결국에, 발전기(40)는 원하는 출력 내지 적정한 수준의 출력으로 운전되게 됨으로써, 궁극적으로 발전 효율을 극대화할 수 있게 되는 것이다. In addition, when a strong wind blows, the working fluid is discharged through both the first hydraulic pump 21 and the second hydraulic pump 22, and then flows to the first hydraulic motor 31 and the second hydraulic motor 32. do. In the end, the generator 40 is driven to the desired output to the appropriate level of output, ultimately to maximize the power generation efficiency.
여기서, 바람이 원하는 출력 이상으로 불 때 밸브(52)를 개방하여 축압기(51)에 에너지를 저장할 수 있으며, 이때 부족한 작동유체를 보충하기 위해 공급펌프(62)를 가동해서 탱크(61)로부터 작동유체를 축압기로 공급하여 에너지를 저장할 수 있다. 그 후에, 바람이 원하는 출력의 20% 미만으로 불 때 저장된 에너지를 방출하여 발전하면 발전량을 높일 수 있다. Here, when the wind blows more than the desired output, the valve 52 may be opened to store energy in the accumulator 51, in which case the supply pump 62 is operated to replenish the insufficient working fluid from the tank 61. The working fluid can be supplied to the accumulator to store energy. After that, when the wind blows to less than 20% of the desired output, the generated energy can be released by generating power to increase the amount of power generated.
또, 바람이 원하는 출력의 20% 미만 수준으로 불 때에도 축압기(51)에 작동유체를 보충한 다음에, 저장된 에너지를 발전기의 효율이 낮은 영역에서 방출하여 발전하면 결과적으로 발전 효율을 높일 수 있다.In addition, when the wind blows to less than 20% of the desired output, the accumulator 51 is replenished with working fluid, and then the stored energy is discharged and generated in a region where the efficiency of the generator is low, resulting in higher power generation efficiency. .
예를 들어, 발전기가 갖는 정격출력의 약 10% 수준으로 바람이 불 때, 도 1에 도시된 종래의 발전 장치에서는 유압펌프 및 유압모터의 효율은 각각 32%이고, 발전기는 68%의 효율을 갖게 되었다.For example, when the wind blows to about 10% of the rated power of the generator, the efficiency of the hydraulic pump and the hydraulic motor is 32% in the conventional power generation device shown in FIG. I got it.
본 발명의 제1실시예에 따른 발전 장치에서, 발전기(40)가 갖는 정격출력의 약 10% 수준으로 바람이 불 때에는, 작동유체의 경로가 제2유압펌프(22)에서 제2유압모터(32)로 결정되고 발전기의 제2코일부(44)가 가동되게 된다. 이 경우에, 제2유압펌프와 제2유압모터의 효율은 각각 72%이며, 발전기의 효율은 87%로 된다. In the power generation apparatus according to the first embodiment of the present invention, when the wind blows to about 10% of the rated output of the generator 40, the path of the working fluid is the second hydraulic motor (22) in the second hydraulic pump (22). 32) and the second coil portion 44 of the generator is operated. In this case, the efficiency of the second hydraulic pump and the second hydraulic motor is 72%, respectively, and the efficiency of the generator is 87%.
본 발명의 제1실시예에 따른 발전 장치에서, 발전기(40)가 갖는 정격출력의 20% 이상으로 바람이 불 때, 작동유체의 경로는 제1유압펌프(21)에서 제1유압모터(31)로 결정되고 발전기의 제1코일부(43)가 가동되게 된다. 이때부터는 유압펌프, 유압모터 또는 발전기의 효율곡선을 따라가기 때문에 높은 효율을 유지하며 발전할 수 있다. In the power generation apparatus according to the first embodiment of the present invention, when the wind blows to 20% or more of the rated output of the generator 40, the path of the working fluid is the first hydraulic motor (31) in the first hydraulic pump (21) ), And the first coil part 43 of the generator is operated. From this time, it can follow the efficiency curve of the hydraulic pump, the hydraulic motor or the generator and maintain the high efficiency.
한편, 2개 이상의 회전날개를 사용하여 발전하는 경우에, 도 2에 도시된 바와 같이 발전기(40)를 공유할 수 있도록 배치하여도 된다. On the other hand, in the case of power generation using two or more rotary blades, as shown in Figure 2 may be arranged so as to share the generator (40).
제2실시예Second embodiment
도 3은 본 발명의 제2실시예에 따른 발전 장치를 개략적으로 도시한 구성도이다. 3 is a configuration diagram schematically showing a power generation device according to a second embodiment of the present invention.
도 3에 도시된 바와 같이 본 발명의 제2실시예에 따른 발전 장치는 회전날개(10)의 회전축에 복수의 유압펌프(20)가 연결됨과 더불어, 이들 유압펌프가 갖는 용량비는 1:1인 점만 제외하고, 나머지 구성요소들은 전술한 제1실시예의 구성요소들과 동일하다. As shown in FIG. 3, in the power generation apparatus according to the second embodiment of the present invention, a plurality of hydraulic pumps 20 are connected to the rotating shaft of the rotary blade 10, and the capacity ratio of these hydraulic pumps is 1: 1. Except for the points, the remaining components are the same as those of the first embodiment described above.
이에, 본 발명의 제2실시예에 따른 발전 장치를 설명함에 있어, 제1실시예에 의한 발전 장치와 동일한 구성요소에 대해서는 동일한 부호를 부여하면서 그 구성 및 기능의 상세한 설명을 생략하기로 한다.Therefore, in describing the power generator according to the second embodiment of the present invention, the same components as those of the power generator according to the first embodiment will be denoted by the same reference numerals, and detailed descriptions of the configuration and functions will be omitted.
풍속이 높은 지역에서는 발전기(40)가 갖는 정격출력의 20%를 초과하는 바람의 발생 빈도가 커지게 된다. 이러한 경우에, 본 발명의 제1실시예에 따른 발전 장치의 구성을 적용하게 되면 오히려 효율이 떨어지는 문제가 발생할 수 있다. In a region where the wind speed is high, the generation frequency of wind exceeding 20% of the rated output of the generator 40 becomes large. In such a case, if the configuration of the power generation device according to the first embodiment of the present invention is applied, a problem may be inferior in efficiency.
따라서, 본 발명의 제2실시예에 따른 발전 장치에서는 복수의 유압펌프(20)로 용량을 분할하고서 그 용량비를 1:1로 함으로써 효율 저하를 극복할 수 있다.Therefore, in the power generation apparatus according to the second exemplary embodiment of the present invention, efficiency can be overcome by dividing a capacity into a plurality of hydraulic pumps 20 and setting the capacity ratio to 1: 1.
보다 구체적으로, 본 발명의 제2실시예에 따른 발전 장치는, 예를 들어 설치장소의 평균 풍속이 원하는 출력의 20% 이상의 수준으로 유지될 때, 발전기(40)의 권선을 분할하여 제1코일부(43) 및 제2코일부(44)의 권선비가 4:1이 되도록 하거나, 이 발전기의 회전자와 동축상으로 연결된 유압모터의 용량을 분할하여 제1유압모터(31) 및 제2유압모터(32)의 용량비가 4:1이 되도록 하거나, 회전날개(10)의 회전축과 동축상으로 연결된 유압펌프의 용량을 분할하여 유압펌프(20)들의 용량비가 1:1이 되도록 하여 배치한다. More specifically, the power generating apparatus according to the second embodiment of the present invention, for example, when the average wind speed of the installation site is maintained at a level of 20% or more of the desired output, the winding of the generator 40 by dividing the first nose The winding ratio of the portion 43 and the second coil portion 44 is 4: 1, or the capacity of the hydraulic motor connected coaxially with the rotor of the generator is divided so that the first hydraulic motor 31 and the second hydraulic pressure are divided. The capacity ratio of the motor 32 is 4: 1, or the capacity ratio of the hydraulic pumps coaxially connected with the rotary shaft of the rotary blade 10 is divided so that the capacity ratio of the hydraulic pumps 20 is 1: 1.
바람이 일정 범위의 유속으로 불 때 유압펌프(20)들 중 하나만 작동유체가 흐를 수 있게 한다. 강풍이 불 때에는 유압펌프들 양쪽으로 작동유체가 흐른다. Only one of the hydraulic pumps 20 allows the working fluid to flow when the wind blows at a range of flow rates. In strong winds, the working fluid flows to both sides of the hydraulic pumps.
풍속계(91)나 유압계 및 유량계 또는 회전각속도 검출계로부터의 검출 신호가 제어기(70)에 수신되면, 제어기는 설정된 운전 사양에 기초하여 사판각 조절기(80)에 제어 신호를 송신한다. 이 제어 신호에 따라, 사판각 조절기(80)는 사판의 각도를 가변해 익단속도비를 유지하도록 유압펌프(20)의 회전각속도를 제어한다. When a detection signal from the anemometer 91 or the hydraulic system and the flowmeter or the rotational angular velocity detector is received by the controller 70, the controller transmits a control signal to the swash plate angle adjuster 80 based on the set operating specification. According to this control signal, the swash plate angle adjuster 80 controls the rotational angular speed of the hydraulic pump 20 to maintain the tip speed ratio by varying the angle of the swash plate.
유압펌프(20)들이 고정용량형 펌프인 경우에는, 제어기(70)가 유압펌프의 구동축에 설치된 클러치 또는 각 유압펌프에 연계되는 순환라인에 배치된 밸브 등에 제어 신호를 전송하여 해당 유압펌프와 유로를 선택할 수 있다. When the hydraulic pumps 20 are fixed displacement type pumps, the controller 70 transmits a control signal to a clutch disposed on a drive shaft of the hydraulic pump or a valve disposed in a circulation line connected to each hydraulic pump, so that the hydraulic pump and the flow path are controlled. Can be selected.
풍속이 일정 범위 내에 있으면 유압펌프(20)들 중 어느 하나의 토출량은 없게 하고 다른 하나의 토출량을 조절할 수 있다. If the wind speed is within a certain range there is no discharge amount of any one of the hydraulic pump 20 can be adjusted to the other discharge amount.
풍속이 일정 범위를 벗어나는 강풍이 불게 되면 양쪽 유압펌프(20)를 통해 작동유체가 토출되게 하여 원하는 출력으로 운전되게 할 수 있다. When a strong wind blowing out of a certain range of wind speed is to be discharged to the working fluid through both hydraulic pumps 20 can be driven to the desired output.
이와 같이 평균 풍속을 고려하여 발전 장치가 원하는 출력으로 운전되게 함으로써, 궁극적으로 발전 효율을 극대화할 수 있게 된다. As such, the generator is operated at a desired output in consideration of the average wind speed, thereby ultimately maximizing power generation efficiency.
제3실시예Third embodiment
도 4는 본 발명의 제3실시예에 따른 발전 장치를 개략적으로 도시한 구성도이다.4 is a configuration diagram schematically showing a power generation device according to a third embodiment of the present invention.
도 4에 도시된 바와 같이, 본 발명의 제3실시예에 따른 발전 장치는 복수의 유압모터(31, 32)에 해당 발전기(41, 42)가 하나씩 연결된 점만 제외하고, 나머지 구성요소들은 전술한 제1실시예의 구성요소들과 동일하다. As shown in FIG. 4, in the power generation apparatus according to the third embodiment of the present invention, except that the corresponding generators 41 and 42 are connected to the plurality of hydraulic motors 31 and 32 one by one, the remaining components are described above. Same as the components of the first embodiment.
이에, 본 발명의 제3실시예에 따른 발전 장치를 설명함에 있어, 제1실시예에 의한 발전 장치와 동일한 구성요소에 대해서는 동일한 부호를 부여하면서 그 구성 및 기능의 상세한 설명을 생략하기로 한다.Therefore, in describing the power generator according to the third embodiment of the present invention, the same components as those of the power generator according to the first embodiment will be denoted by the same reference numerals, and detailed descriptions thereof will be omitted.
전술한 제1실시예와 제2실시예에서는, 그 구조적인 문제로 인해 제1유압모터(31)와 제2유압모터(32) 중 하나는 공회전해야 하며, 발전기(40)의 경우에는 사용하지 않는 코일부에서 권선비만큼의 동손, 관성에 의한 손실, 마찰손 등의 손실이 초래된다. In the above-described first and second embodiments, one of the first hydraulic motor 31 and the second hydraulic motor 32 must be idle due to its structural problems, and in the case of the generator 40, it is not used. In case of the coil part, loss of copper loss, inertia, friction loss, etc. as much as the winding ratio is caused.
따라서, 본 발명의 제3실시예에 따른 발전 장치에서는 복수의 발전기(41, 42)로 용량을 분할하고서 그 용량비를 예컨대 4:1로 함으로써 불필요한 손실을 해소할 수 있다. 이러한 복수의 발전기(41, 42)는 각각 전력계통에 연결되어 생산된 전력을 공급할 수 있다. Therefore, in the power generation apparatus according to the third embodiment of the present invention, unnecessary losses can be eliminated by dividing the capacity into a plurality of generators 41 and 42 and setting the capacity ratio to 4: 1. The plurality of generators 41 and 42 may be connected to a power system, respectively, to supply the produced power.
보다 구체적으로, 본 발명의 제3실시예에 따른 발전 장치는, 상대적으로 용량이 큰 제1유압모터(31)의 출력축에는 대형의 제1발전기(41)가 직결되고, 용량이 작은 제2유압모터(32)의 출력축에는 소형의 제2발전기(42)가 직결되어 있다. More specifically, in the power generation apparatus according to the third embodiment of the present invention, a large first generator 41 is directly connected to an output shaft of a first hydraulic motor 31 having a relatively large capacity, and a second hydraulic pressure having a small capacity is used. A small second generator 42 is directly connected to the output shaft of the motor 32.
이러한 본 발명의 제3실시예에 따른 발전 장치는, 예를 들어 설치장소의 평균 풍속이 원하는 총 출력의 20% 이하의 수준으로 유지될 때, 발전기의 용량을 분할하여 제1발전기(41) 및 제2발전기(42)의 용량비가 4:1이 되도록 하거나, 각 발전기에 연결되는 각 유압모터의 용량을 달리하여 제1유압모터(31) 및 제2유압모터(32)의 용량비가 4:1이 되도록 하거나, 회전날개(10)의 회전축과 동축상으로 연결된 유압펌프의 용량을 분할하여 제1유압펌프(21) 및 제2유압펌프(22)의 용량비가 4:1이 되도록 하여 배치한다. In the power generation apparatus according to the third embodiment of the present invention, for example, when the average wind speed at the installation site is maintained at a level of 20% or less of the desired total output, the capacity of the generator may be divided so that the first generator 41 and The capacity ratio of the second generator 42 is 4: 1, or the capacity ratio of the first hydraulic motor 31 and the second hydraulic motor 32 is 4: 1 by varying the capacity of each hydraulic motor connected to each generator. Or, the capacity of the hydraulic pump connected coaxially with the rotating shaft of the rotary blade 10 is divided so that the capacity ratio of the first hydraulic pump 21 and the second hydraulic pump 22 is 4: 1.
바람이 원하는 총 출력의 20% 미만으로 불 때 용량이 작은 제2발전기(42)만 그 가동을 유지한다. 또한, 바람이 원하는 총 출력의 20% 이상으로 불 때에는 용량이 큰 제1발전기(41)에서 전력을 생산하도록 한다. 더욱이, 강풍이 불 때에는 제1발전기 및 제2발전기 양쪽에서 함께 전력을 생산하게 된다.When the wind blows to less than 20% of the desired total power, only the small second generator 42 keeps running. In addition, when the wind blows more than 20% of the desired total output, the first generator 41 having a large capacity is used to produce power. Moreover, when the strong wind blows, both the first generator and the second generator produce power together.
더불어, 바람이 원하는 총 출력의 20% 미만으로 불 때 용량이 작은 제2유압모터(32)로만 작동유체가 흐를 수 있게 한다. 또한, 바람이 원하는 총 출력의 20% 이상으로 불 때에는 용량이 큰 제1유압모터(31)로 작동유체가 흐르게 한다. 더욱이, 강풍이 불 때에는 제1유압모터 및 제2유압모터 양쪽으로 작동유체가 흐른다. In addition, when the wind blows to less than 20% of the desired total power, the working fluid can flow only to the second hydraulic motor 32 having a small capacity. In addition, when the wind blows to 20% or more of the desired total output, the working fluid flows to the first hydraulic motor 31 having a large capacity. Moreover, when there is a strong wind, the working fluid flows to both the first hydraulic motor and the second hydraulic motor.
풍속계(91)나 유압계 및 유량계 또는 회전각속도 검출계로부터의 검출 신호가 제어기(70)에 수신되면, 제어기는 설정된 운전 사양에 기초하여 사판각 조절기(80)에 제어 신호를 송신한다. 이 제어 신호에 따라, 사판각 조절기는 사판의 각도를 가변해 해당 유압모터(31, 32)의 회전각속도를 제어한다. When a detection signal from the anemometer 91 or the hydraulic system and the flowmeter or the rotational angular velocity detector is received by the controller 70, the controller transmits a control signal to the swash plate angle adjuster 80 based on the set operating specification. In accordance with this control signal, the swash plate angle controller varies the angle of the swash plate to control the rotational angular speeds of the hydraulic motors 31 and 32.
특히, 풍속이 원하는 총 출력의 20% 미만 수준으로 감소하면 제1유압모터(31)로는 작동유체가 흐르지 않게 하고, 제2유압모터(32)로 작동유체가 흐르도록 하여 적절한 회전각속도로 회전시킬 수 있다. 또, 풍속이 원하는 총 출력의 20% 이상으로 증가하면 제2유압모터로는 작동유체가 흐르지 않게 하고 제1유압모터가 회전되게 할 수 있다. 더구나, 강풍이 불게 되면 제1유압모터 및 제2유압모터가 모두 회전되게 하여 원하는 출력으로 운전되게 할 수 있다. In particular, when the wind speed is reduced to less than 20% of the desired total output, the working fluid does not flow to the first hydraulic motor 31, and the working fluid flows to the second hydraulic motor 32 to rotate at an appropriate rotational angular speed. Can be. In addition, when the wind speed increases to 20% or more of the desired total output, the working fluid does not flow to the second hydraulic motor and the first hydraulic motor can be rotated. Moreover, when the strong wind blows, both the first hydraulic motor and the second hydraulic motor can be rotated to operate at a desired output.
마찬가지로, 바람이 원하는 총 출력의 20% 미만으로 불 때 용량이 작은 제2유압펌프(22)로만 작동유체가 흐를 수 있게 한다. 또한, 바람이 원하는 총 출력의 20% 이상으로 불 때에는 용량이 큰 제1유압펌프(21)로 작동유체가 흐른다. 더욱이, 강풍이 불 때에는 제1유압펌프 및 제2유압펌프 양쪽으로 작동유체가 흐른다. Likewise, only when the wind blows to less than 20% of the desired total power, the working fluid can flow to the second hydraulic pump 22, which has a small capacity. In addition, when the wind blows to 20% or more of the desired total power, the working fluid flows to the large first hydraulic pump 21. In addition, when the strong wind blows, the working fluid flows to both the first hydraulic pump and the second hydraulic pump.
풍속계(91)나 유압계 및 유량계 또는 회전각속도 검출계로부터의 검출 신호가 제어기(70)에 수신되면, 제어기는 설정된 운전 사양에 기초하여 사판각 조절기(80)에 제어 신호를 송신한다. 이 제어 신호에 따라, 사판각 조절기는 사판의 각도를 가변해 익단속도비를 유지하도록 해당 유압펌프(21, 22)의 회전각속도를 제어한다. When a detection signal from the anemometer 91 or the hydraulic system and the flowmeter or the rotational angular velocity detector is received by the controller 70, the controller transmits a control signal to the swash plate angle adjuster 80 based on the set operating specification. According to this control signal, the swash plate angle controller controls the rotational angular speeds of the hydraulic pumps 21 and 22 to maintain the tip speed ratio by varying the angle of the swash plate.
유압펌프(21, 22)들이 고정용량형 펌프인 경우에는, 제어기(70)가 유압펌프의 구동축에 설치된 클러치 또는 각 유압펌프에 연계되는 순환라인에 배치된 밸브 등에 제어 신호를 전송하여 해당 유압펌프와 유로를 선택할 수 있다. When the hydraulic pumps 21 and 22 are fixed displacement pumps, the controller 70 transmits a control signal to a clutch disposed on a drive shaft of the hydraulic pump or a valve disposed in a circulation line associated with each hydraulic pump. And euro can be selected.
이 경우도, 풍속이 원하는 총 출력의 20% 미만 수준으로 감소하면 제1유압펌프(21)의 토출량은 없게 하고, 제2유압펌프(22)의 토출량만 적절히 조절할 수 있다. 이에 따라, 작동유체가 제2유압펌프에서 제2유압모터(32)로 흐를 수 있고, 결국 제2발전기(42)가 운전되어 소용량 발전을 하게 된다. Also in this case, if the wind speed is reduced to less than 20% of the desired total output, there is no discharge amount of the first hydraulic pump 21, and only the discharge amount of the second hydraulic pump 22 can be appropriately adjusted. Accordingly, the working fluid can flow from the second hydraulic pump to the second hydraulic motor 32, and eventually the second generator 42 is operated to generate small capacity.
또, 풍속이 원하는 총 출력의 20% 이상으로 증가하면 제2유압펌프(22)의 토출량은 없게 하고, 제1유압펌프(21)의 토출량을 조절할 수 있다. 이에 따라, 작동유체가 제1유압펌프에서 제1유압모터(31)로 흐를 수 있게 되고, 결국 제1발전기(41)가 운전되어 대용량 발전을 하게 된다. In addition, when the wind speed increases to 20% or more of the desired total output, the discharge amount of the second hydraulic pump 22 is eliminated, and the discharge amount of the first hydraulic pump 21 can be adjusted. Accordingly, the working fluid can flow from the first hydraulic pump to the first hydraulic motor 31, and eventually the first generator 41 is operated to generate large capacity.
더구나, 강풍이 불게 되면 양쪽 제1유압펌프(21) 및 제2유압펌프(22)를 통해 작동유체가 토출되고, 이어서 제1유압모터(31) 및 제2유압모터(31)로 흐를 수 있게 된다. 결국에, 제1발전기(41) 및 제2발전기(42)가 원하는 총 출력으로 운전되게 됨으로써, 궁극적으로 발전 효율을 극대화할 수 있게 되는 것이다. In addition, when a strong wind blows, the working fluid is discharged through both the first hydraulic pump 21 and the second hydraulic pump 22, and then flows to the first hydraulic motor 31 and the second hydraulic motor 31. do. As a result, the first generator 41 and the second generator 42 is operated at the desired total output, thereby ultimately maximizing power generation efficiency.
여기서, 바람이 원하는 출력 이상으로 불 때 탱크(61)로부터 작동유체를 보충하기 위해 공급펌프(62)를 가동한 후 밸브(52)를 개방하여 축압기(51)에 에너지를 저장할 수 있다. 그 후에, 바람이 원하는 출력의 20% 미만으로 불 때 저장된 에너지를 방출하여 발전하면 발전량을 높일 수 있다. Here, when the wind blows above the desired output, the supply pump 62 may be operated to refill the working fluid from the tank 61, and then the valve 52 may be opened to store energy in the accumulator 51. After that, when the wind blows to less than 20% of the desired output, the generated energy can be released by generating power to increase the amount of power generated.
또, 바람이 원하는 출력의 20% 미만 수준으로 불 때에도 축압기(51)에 작동유체를 보충한 다음에, 저장된 에너지를 발전기의 효율이 낮은 영역에서 방출하여 발전하면 결과적으로 발전 효율을 높일 수 있다.In addition, when the wind blows to less than 20% of the desired output, the accumulator 51 is replenished with working fluid, and then the stored energy is discharged and generated in a region where the efficiency of the generator is low, resulting in higher power generation efficiency. .
한편, 2개 이상의 회전날개를 사용하여 발전하는 경우에, 도 4에 도시된 바와 같이 제1발전기(41) 또는 제2발전기(42)를 공유할 수 있도록 배치하여도 된다. On the other hand, in the case of power generation using two or more rotary blades, as shown in Figure 4 may be arranged so as to share the first generator 41 or the second generator 42.
이와 같이 본 발명의 제3실시예에 따른 발전 장치는 에너지를 최대한 유효하게 이용할 수 있게 됨과 동시에, 복잡한 제어수단을 이용하지 않고서도 간단하고 용이하게 구성하여 제어할 수 있는 장점이 있게 된다. As described above, the power generation apparatus according to the third embodiment of the present invention can use energy as effectively as possible, and has the advantage of being simple and easy to configure and control without using complicated control means.
제4실시예Fourth embodiment
도 5는 본 발명의 제4실시예에 따른 발전 장치를 개략적으로 도시한 구성도이다.5 is a configuration diagram schematically showing a power generation device according to a fourth embodiment of the present invention.
도 5에 도시된 바와 같이 본 발명의 제4실시예에 따른 발전 장치는 회전날개(10)의 회전축에 복수의 유압펌프(20)가 연결됨과 더불어, 이들 유압펌프가 갖는 용량비는 1:1인 점만 제외하고, 나머지 구성요소들은 전술한 제3실시예의 구성요소들과 동일하다. As shown in FIG. 5, in the power generation apparatus according to the fourth embodiment of the present invention, a plurality of hydraulic pumps 20 are connected to the rotary shaft of the rotary blade 10, and the capacity ratio of these hydraulic pumps is 1: 1. Except for the points, the remaining components are the same as those of the above-described third embodiment.
다시 말해, 본 발명의 제4실시예에 따른 발전 장치는 제2실시예에 따른 발전 장치와 제3실시예에 따른 발전 장치의 구성상 특징을 조합한 것이다. In other words, the power generation device according to the fourth embodiment of the present invention combines the features of the configuration of the power generation device according to the second embodiment and the power generation device according to the third embodiment.
이에, 본 발명의 제4실시예에 따른 발전 장치를 설명함에 있어, 제2실시예 및 제3실시예에 의한 발전 장치와 동일한 구성요소에 대해서는 동일한 부호를 부여하면서 그 구성 및 기능의 상세한 설명을 생략하기로 한다.Thus, in the description of the power generation device according to the fourth embodiment of the present invention, the same components as those of the power generation device according to the second and third embodiments will be denoted by the same reference numerals, and detailed descriptions of the construction and functions thereof will be given. It will be omitted.
풍속이 높은 지역에서는 발전기가 갖는 정격출력의 20%를 초과하는 바람의 발생 빈도가 커지게 된다. 이러한 경우에, 본 발명의 제3실시예에 따른 발전 장치의 구성을 적용하게 되면 오히려 효율이 떨어지는 문제가 발생할 수 있다. In high wind speeds, the frequency of wind exceeding 20% of the generator's rated output will increase. In such a case, if the configuration of the power generation device according to the third embodiment of the present invention is applied, a problem may occur rather inefficient.
따라서, 본 발명의 제4실시예에 따른 발전 장치에서는 복수의 유압펌프(20)로 용량을 분할하고서 그 용량비를 1:1로 함으로써 효율 저하를 극복할 수 있다.Therefore, in the power generation apparatus according to the fourth exemplary embodiment of the present invention, efficiency can be overcome by dividing the capacity into a plurality of hydraulic pumps 20 and setting the capacity ratio to 1: 1.
보다 구체적으로, 본 발명의 제4실시예에 따른 발전 장치는, 예를 들어 설치장소의 평균 풍속이 원하는 출력의 20% 이상의 수준으로 유지될 때, 발전기의 용량을 분할하여 제1발전기(41) 및 제2발전기(42)의 용량비가 4:1이 되도록 하거나, 각 발전기에 연결되는 각 유압모터의 용량을 달리하여 제1유압모터(31) 및 제2유압모터(32)의 용량비가 4:1이 되도록 하거나, 회전날개(10)의 회전축과 동축상으로 연결된 유압펌프(20)의 용량을 분할하여 유압펌프들의 용량비가 1:1이 되도록 하여 배치한다. More specifically, the power generator according to the fourth embodiment of the present invention, for example, when the average wind speed of the installation site is maintained at the level of 20% or more of the desired output, the first generator 41 by dividing the capacity of the generator And the capacity ratio of the second generator 42 is 4: 1, or the capacity ratio of the first hydraulic motor 31 and the second hydraulic motor 32 is 4: by varying the capacity of each hydraulic motor connected to each generator. 1 or by dividing the capacity of the hydraulic pump 20 connected coaxially with the rotating shaft of the rotary blade 10 so that the capacity ratio of the hydraulic pump is 1: 1.
이와 같이 본 발명에 의하면, 평균 풍속을 고려하여 유압펌프, 유압모터 또는 발전기의 용량을 적절히 분할함으로써, 낮은 풍속에서도 발전 효율을 극대화할 수 있게 된다. Thus, according to the present invention, by properly dividing the capacity of the hydraulic pump, the hydraulic motor or the generator in consideration of the average wind speed, it is possible to maximize the power generation efficiency even at low wind speed.
또한, 권선을 분할하는 방식의 단일 발전기를 채택하면 시설 단가를 낮출 수 있으며, 유압모터마다 발전기를 독립적으로 배치하는 경우에는 불필요한 손실을 줄이고 효율을 높일 수 있다.In addition, by adopting a single generator of the winding division method can reduce the unit cost, and when the generator is placed independently for each hydraulic motor can reduce unnecessary losses and increase efficiency.
한편, 2개 이상의 회전날개를 사용하여 발전할 때 발전기를 공유하게 되면 발전기의 효율을 3 ~ 6% 정도로 향상시킬 뿐만 아니라 시설 단가를 절감할 수 있는 장점이 있다. On the other hand, sharing the generator when generating power using two or more rotary blades has the advantage of not only to improve the efficiency of the generator 3 ~ 6%, but also to reduce the cost of the facility.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
이상과 같이, 본 발명은 회전력을 유압으로 변환하여 발전기를 구동하는 발전 분야에서, 저속인 회전에 대해서도 에너지를 효율적으로 이용할 수 있도록 하는 발명인 것이다. As described above, the present invention is an invention in which the energy can be efficiently used even for a low speed rotation in a power generation field for driving a generator by converting rotational force into hydraulic pressure.

Claims (13)

  1. 회전날개; Rotary wing;
    상기 회전날개의 회전으로 구동되어 작동유체를 유동시키는 적어도 하나의 유압펌프; At least one hydraulic pump driven by rotation of the rotary blade to flow a working fluid;
    상기 유압펌프의 토출측에 연결되어 상기 작동유체의 유로를 형성하는 이송라인; A transfer line connected to the discharge side of the hydraulic pump to form a flow path of the working fluid;
    상기 이송라인에 병렬로 연결되는 적어도 2개의 유압모터; 및 At least two hydraulic motors connected in parallel to the transfer line; And
    상기 유압모터로부터 전달되는 회전력을 전력으로 변환하는 발전기Generator for converting the rotational force transmitted from the hydraulic motor into electric power
    를 포함하는 발전 장치. Power generation device comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 유압모터는 가변 용량형 모터이고, The hydraulic motor is a variable displacement motor,
    상기 유압모터에 각각 연결되는 복수의 사판각 조절기와, 상기 사판각 조절기에 연결되는 제어기를 더 포함하는 것을 특징으로 하는 발전 장치. And a plurality of swash plate angle adjusters connected to the hydraulic motors, and a controller connected to the swash plate angle adjusters.
  3. 제2항에 있어서,The method of claim 2,
    상기 발전기는,The generator,
    회전자, Rotor,
    상기 회전자가 삽입되는 고정자, 및 A stator into which the rotor is inserted, and
    상기 고정자에 권취되고 서로 다른 권선수를 갖도록 분할된 복수의 코일부A plurality of coil parts wound around the stator and divided to have different winding numbers
    를 포함하는 것을 특징으로 하는 발전 장치. Power generation device comprising a.
  4. 제3항에 있어서,The method of claim 3,
    상기 발전기와 전력계통 사이에 개재되고, 상기 서로 다른 권선수를 갖도록 분할된 복수의 코일부에 연결되는 스위칭 유닛을 더 포함하고,A switching unit interposed between the generator and the power system and connected to a plurality of coil parts divided to have different winding numbers,
    상기 제어기가 상기 스위칭 유닛에 연결되는 것을 특징으로 하는 발전 장치.And the controller is connected to the switching unit.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 회전날개를 구동시키는 에너지원인 유체의 속도나, 상기 작동유체의 유압 및 유량, 상기 회전날개의 회전각속도 중 적어도 하나에 따라 상기 제어기가 해당 사판각 조절기를 제어하여, 상기 유압모터들 중 적어도 하나가 상기 유로에 연결됨과 동시에, 상기 제어기가 상기 스위칭 유닛을 제어하여, 상기 복수의 코일부 중 적어도 하나를 상기 전력계통에 연결하는 것을 특징으로 하는 발전 장치. The controller controls the swash plate angle controller according to at least one of the speed of the fluid as the energy source for driving the rotary blades, the hydraulic pressure and flow rate of the working fluid, and the rotational angular velocity of the rotary blades, thereby providing at least one of the hydraulic motors. Is connected to the flow path, and the controller controls the switching unit to connect at least one of the plurality of coil units to the power system.
  6. 제5항에 있어서,The method of claim 5,
    상기 회전날개를 구동시키는 에너지원인 유체의 속도나, 상기 작동유체의 유압 및 유량, 상기 회전날개의 회전각속도 중 적어도 하나로 계산된 출력이 일정 수준 미만일 때, 상기 유압모터들 중 상대적으로 용량이 작은 유압모터가 상기 유로에 연결되고, 상기 코일부들 중 상대적으로 권선수가 작은 코일부가 상기 전력계통에 연결되는 것을 특징으로 하는 발전 장치. When the output of the fluid, which is the energy source for driving the rotary blade, or the output calculated by at least one of the hydraulic pressure and flow rate of the working fluid, and the rotational angular velocity of the rotary blade, is less than a certain level, the relatively small hydraulic pressure among the hydraulic motors And a motor is connected to the flow path, and a coil part having a smaller number of windings among the coil parts is connected to the power system.
  7. 제2항에 있어서,The method of claim 2,
    상기 발전기는 복수로 구비되고,The generator is provided in plurality,
    상기 복수의 발전기는 서로 다른 용량을 갖는 것을 특징으로 하는 발전 장치.The power generator is characterized in that the plurality of generators have different capacities.
  8. 제7항에 있어서, The method of claim 7, wherein
    상기 회전날개를 구동시키는 에너지원인 유체의 속도나, 상기 작동유체의 유압 및 유량, 상기 회전날개의 회전각속도 중 적어도 하나에 따라 상기 제어기가 해당 사판각 조절기를 제어하여, 상기 유압모터들 중 적어도 하나가 상기 유로에 연결되는 것을 특징으로 하는 발전 장치. The controller controls the swash plate angle controller according to at least one of the speed of the fluid as the energy source for driving the rotary blades, the hydraulic pressure and flow rate of the working fluid, and the rotational angular velocity of the rotary blades, thereby providing at least one of the hydraulic motors. Is connected to the flow path.
  9. 제8항에 있어서, The method of claim 8,
    상기 유압모터들은 서로 다른 용량을 가지며, The hydraulic motors have different capacities,
    상기 유압모터들 중 상대적으로 용량이 작은 유압모터가, 상기 발전기들 중 용량이 작은 발전기에 연결되는 것을 특징으로 하는 발전 장치. A relatively small capacity hydraulic motor of the hydraulic motors, characterized in that the generator is connected to the smaller capacity of the generator.
  10. 제3항 또는 제7항에 있어서,The method according to claim 3 or 7,
    상기 유압펌프는 복수로 구비되고,The hydraulic pump is provided in plurality,
    상기 복수의 유압펌프는 서로 다른 용량을 갖는 것을 특징으로 하는 발전 장치. The plurality of hydraulic pumps, characterized in that having a different capacity.
  11. 제10항에 있어서,The method of claim 10,
    상기 회전날개를 구동시키는 에너지원인 유체의 속도나, 상기 작동유체의 유압 및 유량, 상기 회전날개의 회전각속도 중 적어도 하나로 계산된 출력이 일정 수준 미만일 때, 상기 유압펌프들 중 상대적으로 용량이 작은 유압펌프가 상기 유로에 연결되는 것을 특징으로 하는 발전 장치. When the output of the fluid, which is the energy source for driving the rotary blade, or the output calculated by at least one of the hydraulic pressure and flow rate of the working fluid and the rotary angular velocity of the rotary blade, is less than a certain level, the hydraulic pressure of the hydraulic pump is relatively small. Generating apparatus, characterized in that the pump is connected to the flow path.
  12. 제1항에 있어서,The method of claim 1,
    상기 이송라인에 연결되어 상기 작동유체를 저장해 두고 출력이 일정 수준 미만일 때 상기 작동유체를 상기 유압모터 쪽으로 방출하는 축압기를 더 포함하는 것을 특징으로 하는 발전 장치.And an accumulator connected to the transfer line for storing the working fluid and discharging the working fluid toward the hydraulic motor when the output is less than a predetermined level.
  13. 제3항 또는 제7항에 있어서,The method according to claim 3 or 7,
    2개 이상의 상기 회전날개를 사용할 때, 상기 발전기를 공유하는 것을 특징으로 하는 발전 장치. When using two or more of the rotary blades, the generator characterized in that sharing the generator.
PCT/KR2015/009461 2015-03-26 2015-09-08 Electric power generation device having multiple hydraulic machines WO2016153134A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580078263.7A CN107407256B (en) 2015-03-26 2015-09-08 Power generator with multiple hydraulic devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0042159 2015-03-26
KR1020150042159A KR101656674B1 (en) 2015-03-26 2015-03-26 Power generating apparatus having hydraulic machineries

Publications (1)

Publication Number Publication Date
WO2016153134A1 true WO2016153134A1 (en) 2016-09-29

Family

ID=56977815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009461 WO2016153134A1 (en) 2015-03-26 2015-09-08 Electric power generation device having multiple hydraulic machines

Country Status (3)

Country Link
KR (1) KR101656674B1 (en)
CN (1) CN107407256B (en)
WO (1) WO2016153134A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106401862A (en) * 2016-11-14 2017-02-15 郑州神利达钻采设备有限公司 Hydrodynamic rotating device and rotating method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211873A (en) * 2001-01-12 2002-07-31 Shin Caterpillar Mitsubishi Ltd Work machine with lifting magnet
KR20100046466A (en) * 2008-10-27 2010-05-07 현대중공업 주식회사 Power transforming device of wind turbine with hydraulic system
KR20120090758A (en) * 2010-11-30 2012-08-17 미츠비시 쥬고교 가부시키가이샤 Wind turbine generator system and operation control method thereof
KR101460909B1 (en) * 2013-08-13 2014-11-17 한국전력공사 Hydraulic pressure control system for hydraulic wind power generator
KR20150028389A (en) * 2013-09-05 2015-03-16 한국전력공사 Apparatus for controlling hydraulic type wind turbine and Method for the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011011682A2 (en) * 2009-07-23 2011-01-27 Parker-Hannifin Corporation Wind turbine drive system
GB2476790A (en) * 2009-12-01 2011-07-13 Statoil Asa Hydraulic transmission system for wind or water turbines
CN101782042B (en) * 2010-02-05 2012-07-04 上海僖舜莱机电设备制造有限公司 Hydraulic control frequency stabilized wind power generation apparatus
CN102884313B (en) * 2010-05-28 2016-09-14 三菱重工业株式会社 The TRT of renewable energy type and operation method thereof
CN102654105B (en) * 2012-05-09 2014-02-12 江苏大学 Separating flexible speed increasing device based on inner-curve hydraulic motor
CN202659427U (en) * 2012-06-01 2013-01-09 泸州天府液压件有限公司 Hydraulic transmission system used for wind power generation
CN203285621U (en) * 2013-01-21 2013-11-13 青岛经济技术开发区泰合海浪能研究中心 Super-huge tower frame hydraulic matching type vertical shaft wind generator unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002211873A (en) * 2001-01-12 2002-07-31 Shin Caterpillar Mitsubishi Ltd Work machine with lifting magnet
KR20100046466A (en) * 2008-10-27 2010-05-07 현대중공업 주식회사 Power transforming device of wind turbine with hydraulic system
KR20120090758A (en) * 2010-11-30 2012-08-17 미츠비시 쥬고교 가부시키가이샤 Wind turbine generator system and operation control method thereof
KR101460909B1 (en) * 2013-08-13 2014-11-17 한국전력공사 Hydraulic pressure control system for hydraulic wind power generator
KR20150028389A (en) * 2013-09-05 2015-03-16 한국전력공사 Apparatus for controlling hydraulic type wind turbine and Method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106401862A (en) * 2016-11-14 2017-02-15 郑州神利达钻采设备有限公司 Hydrodynamic rotating device and rotating method thereof

Also Published As

Publication number Publication date
KR101656674B1 (en) 2016-09-19
CN107407256A (en) 2017-11-28
CN107407256B (en) 2019-07-30

Similar Documents

Publication Publication Date Title
US8866425B2 (en) System for driving elongated electric machines
JP2001061230A (en) Electric power control system and method
EA014747B1 (en) Reversible hydroelectric device
WO2004022948A1 (en) Jet motor or turbine motor
WO2012030003A1 (en) Hydraulic circuit for construction equipment
CN103112702B (en) Constant voltage frequency ratio control system and constant voltage frequency ratio control method of multi-motor driving belt conveyor
EP2374192B1 (en) Method for operation of a permanent magnet synchronous machine, and a device in an electric system comprising such a machine
SE0950190A1 (en) Diversity cabinet
CN106655921A (en) Braking method of permanent-magnet synchronous motor and related equipment
CA2580360A1 (en) Energy transfer apparatus
CN101179221B (en) Brushless dual-mechanical port motor
US20170138213A1 (en) Combined pump and turbine
WO2016153134A1 (en) Electric power generation device having multiple hydraulic machines
WO2013147498A1 (en) Apparatus for generating hydraulic wind power and method thereof
ITMI20121666A1 (en) WIND POWER PLANT FOR THE GENERATION OF ELECTRICITY
CN109728699A (en) Bimorph transducer multiple degrees of freedom motor
US20170237383A1 (en) Method and power converter unit for operating a generator
CN204794796U (en) Thermal power unit air cooling island cooling unit's controlling means
CN102151850B (en) Permanent magnet synchronous motor spindle of machine tool
US12021436B2 (en) Cooling of active elements of electrical machines
CN111917348B (en) Intelligent power generation equipment
WO2010071339A2 (en) Variable generating system for wind power generation
CN102158045A (en) Speed change method of gear box and electromagnetic gear box
JP5383028B2 (en) Spinning machine and driving method of spinning machine
CN106936279A (en) A kind of bimorph transducer asynchronization capacity-increasing transformation system of Synchronous generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886581

Country of ref document: EP

Kind code of ref document: A1