WO2013147498A1 - Apparatus for generating hydraulic wind power and method thereof - Google Patents
Apparatus for generating hydraulic wind power and method thereof Download PDFInfo
- Publication number
- WO2013147498A1 WO2013147498A1 PCT/KR2013/002508 KR2013002508W WO2013147498A1 WO 2013147498 A1 WO2013147498 A1 WO 2013147498A1 KR 2013002508 W KR2013002508 W KR 2013002508W WO 2013147498 A1 WO2013147498 A1 WO 2013147498A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- hydraulic motor
- hydraulic
- fluid
- fluid supply
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 239000012530 fluid Substances 0.000 claims abstract description 143
- 238000010248 power generation Methods 0.000 claims abstract description 32
- 230000005611 electricity Effects 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000001788 irregular Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/28—Wind motors characterised by the driven apparatus the apparatus being a pump or a compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/028—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/10—Combinations of wind motors with apparatus storing energy
- F03D9/17—Combinations of wind motors with apparatus storing energy storing energy in pressurised fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/40—Transmission of power
- F05B2260/406—Transmission of power through hydraulic systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2270/00—Control
- F05B2270/50—Control logic embodiment by
- F05B2270/506—Control logic embodiment by hydraulic means, e.g. hydraulic valves within a hydraulic circuit
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/16—Mechanical energy storage, e.g. flywheels or pressurised fluids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P80/00—Climate change mitigation technologies for sector-wide applications
- Y02P80/10—Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
Definitions
- the present invention relates to a hydraulic wind power generation apparatus and method thereof, and more particularly, to replace the hydraulic cylinder for converting wind power to hydraulic pressure instead of an increaser to reduce the weight of the power generation apparatus and to control the outflow of the fluid stored in the accumulator.
- the present invention relates to a hydraulic wind power generator and a method for increasing power generation efficiency.
- a wind turbine is a machine that converts a rotor into mechanical energy by using the aerodynamic characteristics of the kinetic energy of the air flow and converts the mechanical energy into electricity.
- the wind turbine is classified into a horizontal type and a vertical type according to the direction of the rotation axis with respect to the ground.
- the main components include a rotor composed of a blade and a hub, and drives the generator by increasing the rotation. It consists of a gear box, a generator for controlling a generator and various safety devices, a hydraulic brake device, a power control device, and a tower.
- an increaser is installed between the hydraulic pump and the blade for the purpose of increasing the flow rate flowing out through the hydraulic pump.
- the increaser has a disadvantage of increasing the manufacturing cost of the wind power generator as an expensive device and frequent failures, and also has a problem in that power generation efficiency is lowered because energy loss occurs through the increaser.
- Hydraulic wind power generation apparatus and method according to the present invention is derived to solve the above-mentioned conventional problems, and aims to solve the following problems.
- a large amount of fluid can be supplied through a cylinder and a piston, thereby eliminating an increaser, thereby reducing energy loss. It is for the purpose of providing.
- an object of the present invention is to provide a method capable of providing a predetermined range of hydraulic pressure after accumulation of a fluid pressure, and thus generating power in a high efficiency region.
- Hydraulic wind power generation device is provided with a blade is provided with a rotating part that rotates by the wind, the rotating part, the cylinder and the piston is provided to the fluid by the driving of the piston in accordance with the rotation of the rotating part.
- a power supply connected to the fluid supply unit to supply the fluid supply unit, and connected to the hydraulic motor unit and the hydraulic motor unit rotated by the pressure of the fluid supplied from the fluid supply unit, and generating electricity according to the rotation of the hydraulic motor unit. Contains wealth.
- the fluid supply unit is provided in a plurality of radially arranged, one side of the fluid supply unit is connected to the rotating unit, respectively The other side may be connected to the hydraulic motor unit through one flow path.
- the hydraulic wind power generation device further includes a connecting plate having an opening formed in the center thereof, and a plurality of the fluid supply units connected to each other. Coupled to the blade is formed in the horizontal direction spaced apart from the drive shaft in a horizontal direction, the end of the drive shaft and the end of the rotating shaft is connected by a connecting shaft formed in the vertical direction, the rotation of the rotating part Accordingly, the center of the connecting plate may be provided to rotate in a circle having a radius of a spaced interval between the rotation shaft and the drive shaft.
- the hydraulic wind power generation device is provided with a tower in which the rotating unit and the fluid supply unit is provided, the tower is provided in plurality, connected to the fluid supply unit respectively installed in the plurality of towers, After storing the pressure of the fluid supplied from each of the fluid supply unit, it may further include an accumulator for providing a fluid of a predetermined pressure to the hydraulic motor.
- the hydraulic motor unit may be provided in plural, and each hydraulic motor unit may be provided with hydraulic motors having different capacities, and may be connected to the accumulators, respectively.
- the hydraulic wind power generator may further include a control unit for controlling the hydraulic motor is driven with a relatively high energy efficiency according to the pressure accumulated in the accumulator portion of the hydraulic motor having a different capacity.
- a pressure sensor is installed in the accumulator, and a flow sensor is installed between the accumulator and the hydraulic motor, and is measured by the pressure sensor.
- the generator is operated when the level value obtained by converting the pressure value reaches a level that is the maximum of the available capacity of the accumulator,
- the controller may further include a control unit configured to stop the operation of the generator when the output value is less than or equal to an operation section or when the pressure detected from the pressure sensor is a pressure corresponding to the lowest level of the accumulator.
- the hydraulic motor unit is provided with a swash plate angle control unit that can adjust the flow rate to control the rotation of the hydraulic motor unit
- the controller is the angle of the swash plate angle control unit It may be arranged to control the adjustment.
- the hydraulic wind power generation method is connected to a rotating part provided with a blade, in the fluid supply part provided with a cylinder and a piston, the step of driving the piston of the fluid supply part according to the rotation of the rotating part to form the hydraulic pressure And rotating the hydraulic motor unit by the pressure of the fluid supplied from the fluid supply unit and generating electricity in the generator according to the rotation of the hydraulic motor unit.
- the hydraulic wind power generation method is connected to a plurality of fluid supply unit is installed, the accumulator for storing the fluid supplied from each of the fluid supply unit provides a fluid of a predetermined pressure to the hydraulic motor unit. It may further comprise a step provided to.
- the fluid supply unit is provided in a plurality and disposed radially, one side of the fluid supply unit is connected to each of the rotating unit The other side may be connected to the hydraulic motor unit.
- Hydraulic wind turbine generator and method according to an embodiment of the present invention has at least some of the following effects.
- Hydraulic wind power generation device and method according to an embodiment of the present invention can supply a large amount of fluid through a fluid supply unit having a cylinder and a piston is possible to exclude the speed increaser is reduced energy loss, thereby There is an effect that the efficiency can be increased.
- the hydraulic wind power generator and the method according to an embodiment of the present invention can provide a predetermined range of hydraulic pressure to the hydraulic motor after the accumulation of the fluid pressure through the accumulator, it is possible to operate in the high efficiency region of the hydraulic motor-generator Efficiency improvement can be expected.
- the hydraulic wind power generator and the method according to an embodiment of the present invention reduce the installation cost by excluding the gearbox, and there is no fear of breakdown of the gearbox.
- FIG. 1 and 2 is a view showing a hydraulic wind power generator according to an embodiment of the present invention.
- 3 to 5 are views illustrating an operating state in which the fluid supply unit is disposed radially and operated in the hydraulic wind power generator according to the embodiment of the present invention.
- FIG. 6 is a view showing the operation control of the hydraulic motor unit according to the efficiency of the hydraulic wind power generator according to an embodiment of the present invention.
- the hydraulic wind power generator 1000 includes a rotating part 100 provided with a blade 110 and rotating by wind.
- the hydraulic wind power generator 1000 is connected to the rotating unit 100, the cylinder 210 and the piston 220 is provided with the piston in accordance with the rotation of the rotating unit 100 And a fluid supply part 200 supplying a fluid by driving of the 220 (see FIGS. 3 to 5).
- the hydraulic wind power generator 1000 is connected to the fluid supply unit 200, the hydraulic motor unit 300 is rotated by the pressure of the fluid supplied from the fluid supply unit 200 It includes.
- the hydraulic wind power generator 1000 is connected to the hydraulic motor unit 300, the power generation unit 400 for generating electricity in accordance with the rotation of the hydraulic motor unit 300 Include.
- the hydraulic wind power generator 1000 may further include a connection plate having an opening formed at a center thereof, and a plurality of connection plates connected to the fluid supply units, respectively.
- the rotating part 100 is provided with a blade 110 is provided to rotate by the wind.
- the rotating part 100 includes the blade 110, the blade 110 is provided to rotate by the wind fluid supply unit is connected to the rotating part 100 is the rotation energy generated through the blade 110 Is provided to be delivered to (200).
- the fluid supply unit 200 is connected to the rotation unit 100, and the fluid supply unit 200 is provided with a cylinder 210 and a piston 220 to provide the rotation unit 100.
- the piston 220 is provided to supply the fluid to the drive
- the fluid supply unit 200 may be provided such that one side is connected to the hydraulic motor unit 300 and the other side is connected to the fluid storage unit 310, as shown in FIG.
- the fluid flowing out of the fluid supply unit 200 drives the hydraulic motor unit 300 and is then stored in the fluid storage unit 310, and the fluid stored in the fluid storage unit 310 is pumped by the pump 320. It may be provided to enable the circulation flowing into the fluid supply unit 200 again.
- the fluid supplied from the fluid storage unit 310 flows into the cylinder 210 of the fluid supply unit 200 by the energy generated from the rotation of the blade 110 and is disposed inside the cylinder 210 ( 220).
- the fluid introduced into the cylinder 210 of the fluid supply unit 200 flows out of the cylinder 210 by the driving of the piston 220, and the hydraulic motor unit 300 connected to the fluid supply unit 200. It is provided to rotate.
- a hydraulic pump without a cylinder 210 In the conventional hydraulic wind power generation, a hydraulic pump without a cylinder 210 is used. In the case of such a hydraulic pump, a supply capacity of the fluid is relatively small, and thus a speed increaser is used.
- the hydraulic wind power generator 1000 and the method according to an embodiment of the present invention uses a cylinder 210 provided with a piston 220 as the fluid supply unit 200, so that a fluid having a relatively large capacity without a speed increaser is provided. Since it can be supplied to the hydraulic motor unit 300, stable power generation is possible.
- hydraulic wind power generator 1000 and the method according to an embodiment of the present invention may reduce the energy loss generated in the speed increaser by excluding the speed increaser, thereby increasing power generation efficiency.
- the installation cost for producing a speed reducer is reduced from the increase of the speed reducer, and there is no fear of breakdown of the speed increaser.
- the fluid supply unit 200 may be provided in a plurality and disposed radially.
- the cylinder 210 and the piston 220 provided in the fluid supply unit 200 are provided in plural to radially supply the hydraulic pressure to the hydraulic motor unit 300. It is disposed, one side of the fluid supply unit 200 may be connected to the rotating unit 100, the other side may be provided to be connected to the hydraulic motor unit 300 through one flow path.
- the plurality of fluid supply units 200 may be provided radially so as to have three spaces of 120 degrees.
- the number and spacing of the fluid supply unit 200 are not limited thereto.
- the cylinder 210 and the piston 220 provided in the plurality of the fluid supply unit 200 may be connected to the connecting plate 500 having an opening 510 in the center, respectively.
- the cylinder 210 provided in the fluid supply unit 200 may be connected to the flow path 212, and the accumulator 600 may be connected to the flow path 212.
- a driving shaft 520 formed in a horizontal direction is coupled to the opening 510 of the connecting plate 500, and a rotating shaft 120 spaced apart from the driving shaft 520 by a predetermined interval R is formed in the horizontal direction. It is coupled to the blade 110, the end of the drive shaft 520 and the end of the rotating shaft 120 may be provided to be connected by a connecting shaft 530 formed in the vertical direction.
- the center of the connecting plate 500 may be provided to rotate in a circle having a radius of a spaced interval between the rotation shaft 120 and the driving shaft 520.
- the blade 110 is coupled to the rotation shaft 120 to rotate together with the rotation shaft 120.
- the connecting shaft 530 extending in the vertical direction is connected to an end of the rotating shaft 120, and the connecting shaft 530 rotates in association with the rotation of the rotating shaft 120.
- the driving shaft 520 is connected to the end of the connecting shaft 530, and rotates in conjunction with the rotation of the connecting shaft 530.
- the driving shaft 520 is connected to the opening 510 formed in the center of the connecting plate 500, so that when the driving shaft 520 is rotated, the connecting plate 500 also the rotating shaft 120 and the driving shaft It rotates while drawing a circle having a radius of spaced apart interval (R) of (520).
- Hydraulic wind power generator 1000 and the method according to an embodiment of the present invention is to arrange the fluid supply unit radially to supply a constant flow rate to the hydraulic motor, it will be described below.
- the fluid introduced into the cylinder 210 may be supplied to the hydraulic motor unit 300, but when the cylinder 210 is expanded, the fluid flows into the cylinder 210. While temporarily supplying the fluid to the hydraulic motor unit 300 is stopped.
- the fluid also changes in the amount supplied over time.
- the hydraulic wind power generator 1000 and the method according to an embodiment of the present invention are provided with a plurality of the fluid supply unit 200 is disposed radially, thereby, of the fluid supplied to the hydraulic motor unit 300
- the quantity can be made constant.
- each flow rate flowing out of the plurality of cylinders 210 changes with time, but the total flow rate flowing out of the plurality of cylinders 210 remains constant. Can be.
- the connecting plate 500 when the connecting plate 500 is moved clockwise in the position shown in FIG. 3, the piston 220 is expanded in the cylinder X, so that the first passage 212 (a The fluid does not flow out through)), and the first valve 214 (a) is opened to allow fluid to flow into the cylinder (X). That is, the flow rate flowing out through the cylinder X is zero.
- the second valve 214 (b) is closed, and the fluid flows out through the second flow passage 212 (b).
- the flow rate flowing out through the cylinder (Y) is assumed to be 0.8.
- the third valve 214 (c) is closed in the state where the compression of the piston 220 is started, and the fluid starts to flow out through the third flow path 212 (c).
- the flow rate flowing out through the cylinder Z is assumed to be 0.2.
- 1 of the first channel 212 (a) is connected to 1 of the fourth channel 212 (d)
- 2 of the second channel 212 (b) is the fourth channel 212 (d).
- Is connected to 2 3 of the third flow path (212 (c)) may be provided to be connected to 3 of the fourth flow path (212 (d)).
- This connection structure is also common in FIGS. 4 and 5.
- the first valve 214 (a) is closed in a state where compression of the piston 220 is started.
- the fluid begins to flow out through the first flow passage 212 (a).
- the flow rate flowing out through the cylinder (X) is assumed to be 0.2.
- the third valve 214 (c) is closed, and the fluid flows out through the third flow passage 212 (c).
- the flow rate flowing out through the cylinder Z is assumed to be 0.8.
- the second valve 214 (b) is closed in the state where the compression of the piston 220 is started, and the fluid starts to flow out through the second flow path 212 (b).
- the flow rate flowing out through the cylinder Y is assumed to be 0.2.
- the hydraulic wind power generator 1000 and the method according to an embodiment of the present invention as if the output is constant in three-phase alternating current of the same size and only 120 degrees difference phase by placing a plurality of cylinders (210) radially
- the total outflow of fluid may be provided to be kept constant.
- the first valve to the third valve may be provided as a check valve formed to flow in only one direction to prevent the back flow of the liquid.
- the hydraulic motor unit 300 is connected to the fluid supply unit 200 and provided to rotate by the pressure of the fluid supplied from the fluid supply unit 200.
- the hydraulic motor unit 300 including the hydraulic motor is connected to the power generation unit 400 including a generator, so that electricity is generated in the power generation unit 400 according to the rotation of the hydraulic motor unit 300. Prepared.
- the hydraulic wind power generator 1000 and the method according to an embodiment of the present invention may include a tower 900 in which the rotating unit 100 and the fluid supply unit 200 are installed.
- the tower 900 may be provided in plurality.
- an anemometer 990 may be installed in the tower 900.
- the accumulator 600 is connected to each of the fluid supply unit 200 installed in the plurality of the tower 900, after storing the fluid supplied from each of the fluid supply unit 200
- the hydraulic motor 300 may be provided to provide a fluid having a predetermined pressure.
- the hydraulic wind power generator 1000 and the method according to an embodiment of the present invention is provided with a accumulator 600
- the accumulator 600 is a fluid supply unit 200 respectively installed in a plurality of towers (900) After accumulating the pressure of the fluid flowing from the) provides a constant hydraulic pressure to the hydraulic motor unit 300 connected to one side of the accumulator 600, a constant output from the power generation unit 400 connected to the hydraulic motor unit 300 It is arranged to be generated.
- a pressure sensor 610 may be installed at the accumulator 600, and a flow sensor 620 may be installed at the hydraulic motor 300.
- control unit 700a operates the generator when the water level value obtained by converting the pressure value measured by the pressure sensing sensor reaches a water level which is the maximum of the available capacity of the accumulator, and when the output value is less than or equal to the operating range or the pressure sensing It may be provided to control the operation to stop the operation of the generator when the pressure sensed from the sensor is the pressure corresponding to the lowest level of the accumulator.
- the hydraulic motor unit 300 is provided with a swash plate angle adjusting unit 800 that can adjust the flow rate to control the rotation of the hydraulic motor unit 300
- the control unit 700a is the swash plate angle adjusting unit It may be provided to control the angle adjustment of the (800).
- the control unit 700a is detected from the flow rate sensor 620 installed in the hydraulic motor unit 300 and the data on the pressure (P) of the accumulator detected by the pressure sensor 610 installed in the accumulator 600. Receive and store data on flow rate (Q).
- the controller 700a may be provided to estimate the level L of the fluid from the pressure P of the accumulator.
- the efficiency ( ⁇ mg ) of the hydraulic motor unit 300-power generation unit 400 is a value obtained by multiplying the efficiency ( ⁇ m ) of the hydraulic motor unit 300 by the efficiency ( ⁇ g ) of the power generation unit 400.
- the hydraulic motor 300 is stopped.
- the hydraulic motor unit 300 is operated. It may be set to an interval.
- the predetermined efficiency ⁇ mg1 is an efficiency at an arbitrary point b, which corresponds to a constant, and may be arbitrarily set in consideration of various conditions.
- control unit 700a sends an operation start signal to the swash plate angle adjusting unit 800 when the pressure P of the accumulator part is equal to or higher than the pressure corresponding to the level of the available capacity of the accumulator 600.
- the swash plate angle may be provided to gradually open.
- the controller 700a calculates data on the pressure P of the accumulator and data on the flow rate Q, and the controller 700a has a PQ / ⁇ mg1 value of b + (( Continue to open the swash plate angle until the value corresponding to ab) / 2) point, and then adjust the swash plate angle according to the changing PQ / ⁇ mg1 value.
- the swash plate adjustment method is a percentage of the value obtained by subtracting the value b from the value a in FIG. 6 from the value P in the control part 700a, that is, PQ * 100 / ( ⁇ mg1 * (ab)).
- PQ * 100 / ( ⁇ mg1 * (ab) is a percentage of the value obtained by subtracting the value b from the value a in FIG. 6 from the value P in the control part 700a, that is, PQ * 100 / ( ⁇ mg1 * (ab)).
- control unit 700a is the output value (PQ / ⁇ mg1 ) is lower than the operating interval, that is, below the value corresponding to the point b in Figure 6 or the pressure detected from the pressure sensor 610 is
- the swash plate angle control unit 800 sends a stop signal, the swash plate angle control unit 800 adjusts the swash plate angle to 0 degrees By stopping the operation of the hydraulic motor unit 300.
- the efficiency of the hydraulic motor-generator can be improved, and as a result, the utilization rate can be improved, and the hydraulic energy is stably changed to electric power to provide the electric power. This has the effect of improving quality.
- control unit 700a may control the flow rate Q by controlling the swash plate angle adjusting unit 800 installed in the hydraulic motor unit 300. That is, when the swash plate angle is gradually increased, the flow rate (Q) flowing into the hydraulic motor unit 300 also increases, so that the rotational speed of the hydraulic motor unit 300 is increased.
- the hydraulic motor unit 300 may be provided in plural, and each hydraulic motor unit 300 may be provided with hydraulic motors having different capacities and connected to the accumulator 600, respectively. have.
- the most efficient hydraulic motor unit 300 in consideration of the storage amount of the fluid stored in the accumulator 600. It can be provided to drive.
- the hydraulic motor provided in the hydraulic motor unit 300 is four, and each of the capacity of the hydraulic motor is 6.25%, 12.5%, 25%, 50% of the total capacity, when the wind speed is the weakest 6.25% capacity of the hydraulic motor can be driven, and when the wind speed is the strongest, it can be arranged to drive the hydraulic motor that selects and combines the small capacity sequentially from the large capacity.
- controller 700b may be further configured to control the hydraulic motor having a relatively high energy efficiency according to the pressure accumulated in the accumulator 600 among the hydraulic motors having different capacities.
- the number and capacity of the hydraulic motor is only one example, the number and capacity are not limited thereto.
- control unit 700a for controlling the stop or operation of the generator in accordance with the pressure and the flow rate of the accumulator 600, and the hydraulic pressure of the relatively high efficiency in accordance with the flow rate of the plurality of hydraulic motor unit 300
- the control unit 700b for driving the motor unit 300 may be provided as one control unit or may be provided as a separate control unit.
- the piston of the fluid supply unit 200 according to the rotation of the rotating unit 100. 220 is driven to form hydraulic pressure.
- the hydraulic motor unit 300 is rotated by the pressure of the fluid supplied from the fluid supply unit 200, and electricity is generated in the generator according to the rotation of the hydraulic motor unit 300.
- the accumulator 600 is connected to the plurality of fluid supply unit 200, the storage unit 600 for storing the fluid supplied from each of the fluid supply unit 200 to provide a fluid of a predetermined pressure to the hydraulic motor unit 300
- the hydraulic motor unit 300 may be provided to rotate.
- the fluid supply unit 200 is provided in a plurality arranged radially, one side of the fluid supply unit 200 is connected to the rotating unit 100, The other side may be provided to be connected to the hydraulic motor unit 300 through a fourth flow passage 212 (d) provided as one flow passage.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Wind Motors (AREA)
Abstract
The present invention relates to an apparatus for generating hydraulic wind power and a method thereof, the apparatus for generating hydraulic wind power comprising: a rotating unit, provided with blades, which rotates due to the wind; a fluid supplying unit, connected to the rotating unit and provided with a cylinder and a piston, for providing fluid by means of the operation of the piston driven by the rotation of the rotating unit; and a hydraulic motor unit, connected to the fluid supplying unit, which rotates due to the pressure of the fluid provided by the fluid supplying unit; and a power generation unit, connected to the hydraulic motor unit, for generating electricity from the rotation of the hydraulic motor unit. Accordingly, the present invention has the benefit of reducing energy loss and raising the energy generation efficiency by allowing the hydraulic motor part to be operated at an operational level of high efficiency thereof.
Description
본 발명은 유압식 풍력 발전 장치 및 그 방법에 관한 것으로서, 보다 상세하게는 증속기 대신 풍력을 유압으로 전환시키는 유압실린더로 대체하여 발전 장치의 중량을 감소시키고, 축압부에 저장된 유체의 유출을 제어하여 발전 효율을 상승시킬 수 있는 유압식 풍력 발전 장치 및 그 방법에 관한 것이다.The present invention relates to a hydraulic wind power generation apparatus and method thereof, and more particularly, to replace the hydraulic cylinder for converting wind power to hydraulic pressure instead of an increaser to reduce the weight of the power generation apparatus and to control the outflow of the fluid stored in the accumulator. The present invention relates to a hydraulic wind power generator and a method for increasing power generation efficiency.
일반적으로 풍력발전기는 공기의 유동이 가진 운동 에너지의 공기역학적(aerodynamic) 특성을 이용하여 회전자(rotor)를 회전시켜 기계적 에너지로 변환시키고 이 기계적 에너지로 전기를 얻는 기계이다.In general, a wind turbine is a machine that converts a rotor into mechanical energy by using the aerodynamic characteristics of the kinetic energy of the air flow and converts the mechanical energy into electricity.
그리고, 풍력발전기는 지면에 대한 회전축의 방향에 따라 수평형 및 수직형으로 분류되고, 주요 구성 요소로는 날개(blade)와 허브(hub)로 구성된 회전자와, 회전을 증속하여 발전기를 구동시키는 증속 장치(gear box), 발전기 및 각종 안전장치를 제어하는 제어 장치, 유압 브레이크 장치와 전력 제어 장치 및 타워 등으로 구성된다.In addition, the wind turbine is classified into a horizontal type and a vertical type according to the direction of the rotation axis with respect to the ground. The main components include a rotor composed of a blade and a hub, and drives the generator by increasing the rotation. It consists of a gear box, a generator for controlling a generator and various safety devices, a hydraulic brake device, a power control device, and a tower.
한편, 최근에는, 회전자(rotor)를 회전시켜 얻은 기계적 에너지로부터 전기를 발생시키는 과정에서 에너지 전달매체로 유체를 사용하는 유압식 풍력 발전기가 알려져 있다On the other hand, recently, hydraulic wind generators using a fluid as an energy transfer medium in the process of generating electricity from mechanical energy obtained by rotating a rotor have been known.
여기서, 종래의 유압식 풍력 발전기는 유압 펌프를 통해 유출시키는 유량을 증가시키려는 목적으로, 유압 펌프와 블레이드 사이에 증속기가 설치되었다.Here, in the conventional hydraulic wind generator, an increaser is installed between the hydraulic pump and the blade for the purpose of increasing the flow rate flowing out through the hydraulic pump.
하지만, 증속기는 고가의 장치로 풍력발전장치의 제조비용을 증가시키고 고장이 빈번하다는 단점이 있었으며, 또한, 증속기를 통해 에너지 손실이 발생되므로 발전 효율이 낮아지는 문제점이 있었다.However, the increaser has a disadvantage of increasing the manufacturing cost of the wind power generator as an expensive device and frequent failures, and also has a problem in that power generation efficiency is lowered because energy loss occurs through the increaser.
본 발명에 따른 유압식 풍력 발전 장치 및 그 방법은 상술한 종래의 문제점을 해결하기 위해 도출된 것으로서, 다음과 같은 과제해결을 목적으로 한다.Hydraulic wind power generation apparatus and method according to the present invention is derived to solve the above-mentioned conventional problems, and aims to solve the following problems.
본 발명은 일 측면으로서, 실린더와 피스톤을 통해 다량의 유체를 공급할 수 있어 증속기의 배제가 가능해져 에너지 손실을 감소시키며, 이를 통해, 발전 효율이 상승될 수 있는 유압식 풍력 발전 장치 및 그 방법의 제공을 목적으로 한다.According to an aspect of the present invention, a large amount of fluid can be supplied through a cylinder and a piston, thereby eliminating an increaser, thereby reducing energy loss. It is for the purpose of providing.
또한, 본 발명은 일 측면으로서, 유체 압력의 축적 후 소정 범위 유압의 제공이 가능해져 고효율 영역에서 발전할 수 있는 방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method capable of providing a predetermined range of hydraulic pressure after accumulation of a fluid pressure, and thus generating power in a high efficiency region.
본 발명의 해결과제는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해되어 질 수 있을 것이다.The problem of the present invention is not limited to those mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명의 일 실시예에 따른 유압식 풍력 발전 장치는 블레이드가 구비되어 바람에 의해 회전하는 회전부와, 상기 회전부에 연결되며, 실린더와 피스톤이 구비되어 상기 회전부의 회전에 따라 상기 피스톤의 구동으로 유체를 공급하는 유체공급부와, 상기 유체공급부에 연결되며, 상기 유체공급부에서 공급되는 유체의 압력에 의해 회전되는 유압모터부 및 상기 유압모터부에 연결되며, 상기 유압모터부의 회전에 따라 전기를 발생시키는 발전부를 포함한다.Hydraulic wind power generation device according to an embodiment of the present invention is provided with a blade is provided with a rotating part that rotates by the wind, the rotating part, the cylinder and the piston is provided to the fluid by the driving of the piston in accordance with the rotation of the rotating part. A power supply connected to the fluid supply unit to supply the fluid supply unit, and connected to the hydraulic motor unit and the hydraulic motor unit rotated by the pressure of the fluid supplied from the fluid supply unit, and generating electricity according to the rotation of the hydraulic motor unit. Contains wealth.
또한, 본 발명의 일 실시예에 따른 유압식 풍력 발전 장치 중 일정한 유압을 상기 유압모터부에 공급하기 위해, 상기 유체공급부는 복수로 마련되어 방사상으로 배치되며, 상기 유체공급부의 일측은 상기 회전부에 각각 연결되고, 타측은 하나의 유로를 통해 유압모터부에 연결될 수 있다.In addition, in order to supply a constant hydraulic pressure in the hydraulic motor unit of the hydraulic wind power generator according to an embodiment of the present invention, the fluid supply unit is provided in a plurality of radially arranged, one side of the fluid supply unit is connected to the rotating unit, respectively The other side may be connected to the hydraulic motor unit through one flow path.
그리고, 본 발명의 일 실시예에 따른 유압식 풍력 발전 장치는 중앙에 개구가 형성되어 복수의 상기 유체공급부가 각각 연결되는 연결판을 더 포함하며, 상기 연결판의 개구에는 수평방향으로 형성되는 구동축이 결합되고, 상기 구동축으로부터 소정 간격 이격되어 수평방향으로 형성되는 회전축이 상기 블레이드에 결합되며, 상기 구동축의 단부와 상기 회전축의 단부는 수직방향으로 형성되는 연결축에 의해 연결되되, 상기 회전부의 회전에 따라 상기 연결판의 중앙은 상기 회전축과 상기 구동축의 이격된 간격을 반경으로 하는 원을 그리며 회전하도록 마련될 수 있다.In addition, the hydraulic wind power generation device according to an embodiment of the present invention further includes a connecting plate having an opening formed in the center thereof, and a plurality of the fluid supply units connected to each other. Coupled to the blade is formed in the horizontal direction spaced apart from the drive shaft in a horizontal direction, the end of the drive shaft and the end of the rotating shaft is connected by a connecting shaft formed in the vertical direction, the rotation of the rotating part Accordingly, the center of the connecting plate may be provided to rotate in a circle having a radius of a spaced interval between the rotation shaft and the drive shaft.
또한, 본 발명의 일 실시예에 따른 유압식 풍력 발전 장치는 상기 회전부와 상기 유체공급부가 설치되는 타워가 구비되며, 상기 타워는 복수로 마련되고, 복수의 상기 타워에 각각 설치된 유체공급부에 연결되며, 각각의 상기 유체공급부로부터 공급되는 유체의 압력을 저장 후, 상기 유압모터부에 소정 압력의 유체를 제공하는 축압부를 더 포함할 수 있다.In addition, the hydraulic wind power generation device according to an embodiment of the present invention is provided with a tower in which the rotating unit and the fluid supply unit is provided, the tower is provided in plurality, connected to the fluid supply unit respectively installed in the plurality of towers, After storing the pressure of the fluid supplied from each of the fluid supply unit, it may further include an accumulator for providing a fluid of a predetermined pressure to the hydraulic motor.
그리고, 본 발명의 일 실시예에 따른 유압식 풍력 발전 장치에서 상기 유압모터부는 복수로 마련되고, 각각의 유압모터부에는 용량이 서로 다른 유압모터가 구비되어 상기 축압부에 각각 연결될 수 있다.In the hydraulic wind power generator according to an embodiment of the present invention, the hydraulic motor unit may be provided in plural, and each hydraulic motor unit may be provided with hydraulic motors having different capacities, and may be connected to the accumulators, respectively.
또한, 본 발명의 일 실시예에 따른 유압식 풍력 발전 장치는 용량이 서로 다른 유압모터 중 상기 축압부에 축적된 압력에 따라 에너지 효율이 상대적으로 높은 유압모터가 구동되도록 제어하는 제어부가 더 포함될 수 있다.In addition, the hydraulic wind power generator according to an embodiment of the present invention may further include a control unit for controlling the hydraulic motor is driven with a relatively high energy efficiency according to the pressure accumulated in the accumulator portion of the hydraulic motor having a different capacity. .
그리고, 본 발명의 일 실시예에 따른 유압식 풍력 발전 장치에서, 상기 축압부에는 압력감지센서가 설치되고, 상기 축압부와 상기 유압모터부사이에는 유량센서가 설치되며, 상기 압력감지센서에서 측정되는 압력값을 환산하여 얻은 수위값이 축압부 가용 용량의 최대가 되는 수위에 도달할 때 발전기를 운전하고,In the hydraulic wind power generator according to an embodiment of the present invention, a pressure sensor is installed in the accumulator, and a flow sensor is installed between the accumulator and the hydraulic motor, and is measured by the pressure sensor. The generator is operated when the level value obtained by converting the pressure value reaches a level that is the maximum of the available capacity of the accumulator,
출력값이 운전구간 이하 일때 또는 압력감지센서로부터 감지되는 압력이 축압부의 최저 수위에 대응되는 압력일 때 발전기의 운전을 정지시키는 작동을 하는 제어부를 더 포함할 수 있다.The controller may further include a control unit configured to stop the operation of the generator when the output value is less than or equal to an operation section or when the pressure detected from the pressure sensor is a pressure corresponding to the lowest level of the accumulator.
또한, 본 발명의 일 실시예에 따른 유압식 풍력 발전 장치에서 상기 유압모터부에는 상기 유압모터부의 회전을 컨트롤하기 위해 유량을 조절할 수 있는 사판각도 조절부가 설치되며, 상기 제어부는 상기 사판각도 조절부의 각도조절을 제어하도록 마련될 수 있다.In addition, in the hydraulic wind power generator according to an embodiment of the present invention, the hydraulic motor unit is provided with a swash plate angle control unit that can adjust the flow rate to control the rotation of the hydraulic motor unit, the controller is the angle of the swash plate angle control unit It may be arranged to control the adjustment.
그리고, 본 발명의 일 실시예에 따른 유압식 풍력 발전 방법은 블레이드가 구비되는 회전부에 연결되며 실린더와 피스톤이 구비되는 유체공급부에서, 회전부의 회전에 따라 유체공급부의 피스톤이 구동되어 유압이 형성되는 단계와, 상기 유체공급부에서 공급되는 유체의 압력에 의해 유압모터부가 회전되는 단계 및 상기 유압모터부의 회전에 따라 발전기에서 전기를 발생시키는 단계를 포함한다.In addition, the hydraulic wind power generation method according to an embodiment of the present invention is connected to a rotating part provided with a blade, in the fluid supply part provided with a cylinder and a piston, the step of driving the piston of the fluid supply part according to the rotation of the rotating part to form the hydraulic pressure And rotating the hydraulic motor unit by the pressure of the fluid supplied from the fluid supply unit and generating electricity in the generator according to the rotation of the hydraulic motor unit.
또한, 본 발명의 일 실시예에 따른 유압식 풍력 발전 방법은 복수로 설치된 유체공급부에 연결되고, 각각의 상기 유체공급부로부터 공급되는 유체를 저장하는 축압부가 상기 유압모터부에 소정 압력의 유체를 제공하도록 마련되는 단계를 더 포함할 수 있다.In addition, the hydraulic wind power generation method according to an embodiment of the present invention is connected to a plurality of fluid supply unit is installed, the accumulator for storing the fluid supplied from each of the fluid supply unit provides a fluid of a predetermined pressure to the hydraulic motor unit. It may further comprise a step provided to.
그리고, 본 발명의 일 실시예에 따른 유압식 풍력 발전 방법에서 일정한 유압을 상기 유압모터부에 공급하기 위해, 상기 유체공급부는 복수로 마련되어 방사상으로 배치되며, 상기 유체공급부의 일측은 상기 회전부에 각각 연결되고, 타측은 유압모터부에 연결될 수 있다.In addition, in order to supply a constant hydraulic pressure to the hydraulic motor in the hydraulic wind power generation method according to an embodiment of the present invention, the fluid supply unit is provided in a plurality and disposed radially, one side of the fluid supply unit is connected to each of the rotating unit The other side may be connected to the hydraulic motor unit.
본 발명의 실시예에 따른 유압식 풍력 발전 장치 및 그 방법은 다음과 같은 효과 중 적어도 일부를 가진다.Hydraulic wind turbine generator and method according to an embodiment of the present invention has at least some of the following effects.
본 발명의 일 실시예에 따른 유압식 풍력 발전 장치 및 그 방법은 실린더와 피스톤을 구비하는 유체공급부를 통해 다량의 유체를 공급할 수 있어 증속기의 배제가 가능해져 에너지 손실이 감소되며, 이를 통해, 발전 효율이 상승될 수 있는 효과가 있다.Hydraulic wind power generation device and method according to an embodiment of the present invention can supply a large amount of fluid through a fluid supply unit having a cylinder and a piston is possible to exclude the speed increaser is reduced energy loss, thereby There is an effect that the efficiency can be increased.
또한, 본 발명의 일 실시예에 따른 유압식 풍력 발전 장치 및 그 방법은 축압기를 통해 유체 압력의 축적 후 유압모터에 소정 범위 유압의 제공이 가능하므로, 유압모터-발전기의 고효율 영역에서 운전할 수 있어 효율향상을 기대할 수 있다.In addition, the hydraulic wind power generator and the method according to an embodiment of the present invention can provide a predetermined range of hydraulic pressure to the hydraulic motor after the accumulation of the fluid pressure through the accumulator, it is possible to operate in the high efficiency region of the hydraulic motor-generator Efficiency improvement can be expected.
그리고, 본 발명의 일 실시예에 따른 유압식 풍력 발전 장치 및 그 방법은 증속기를 배제하여 설치비용이 감소되며, 증속기의 고장 염려가 없어 유지보수가 용이한 효과가 있다.In addition, the hydraulic wind power generator and the method according to an embodiment of the present invention reduce the installation cost by excluding the gearbox, and there is no fear of breakdown of the gearbox.
본 발명의 효과는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해되어 질 수 있을 것이다.The effects of the present invention are not limited to those mentioned above, and other effects that are not mentioned will be clearly understood by those skilled in the art from the following description.
도 1 및 도 2는 본 발명의 일 실시예에 따른 유압식 풍력 발전 장치를 도시한 도면이다.1 and 2 is a view showing a hydraulic wind power generator according to an embodiment of the present invention.
도 3 내지 도 5는 본 발명의 일 실시예에 따른 유압식 풍력 발전 장치 중 유체공급부가 방사상으로 배치되어 작동되는 작동상태를 도시한 도면이다.3 to 5 are views illustrating an operating state in which the fluid supply unit is disposed radially and operated in the hydraulic wind power generator according to the embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 유압식 풍력 발전 장치 중 효율에 따른 유압모터부의 운전 제어를 도시한 도면이다.6 is a view showing the operation control of the hydraulic motor unit according to the efficiency of the hydraulic wind power generator according to an embodiment of the present invention.
본 명세서에서 사용되는 용어에서 단수의 표현은 문맥상 명백하게 다르게 해석되지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, "포함한다", "구비한다", "갖다" 등의 용어는 설시된 특징, 개수, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 의미하는 것이며, 하나 또는 그 이상의 다른 특징들이나 개수, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하지 않는 것으로 이해되어야 한다.As used herein, the singular forms "a", "an", and "the" include the plural expressions unless the context clearly dictates otherwise. , Number, steps, actions, components, parts, or combinations thereof, and the presence or addition of one or more other features or numbers, steps, actions, components, parts, or combinations thereof It should be understood that it does not exclude.
이하, 도면을 참조하면서 유압식 풍력 발전 장치(1000) 및 그 방법에 관하여 구체적으로 설명하기로 한다.Hereinafter, the hydraulic wind power generator 1000 and its method will be described in detail with reference to the drawings.
도 1을 참조하면, 본 발명 중 일 실시예에 따른 유압식 풍력 발전 장치(1000)는 블레이드(110)가 구비되어 바람에 의해 회전하는 회전부(100)를 포함한다.Referring to FIG. 1, the hydraulic wind power generator 1000 according to an embodiment of the present invention includes a rotating part 100 provided with a blade 110 and rotating by wind.
또한, 본 발명 중 일 실시예에 따른 유압식 풍력 발전 장치(1000)는 상기 회전부(100)에 연결되며, 실린더(210)와 피스톤(220)이 구비되어 상기 회전부(100)의 회전에 따라 상기 피스톤(220)의 구동으로 유체를 공급하는 유체공급부(200)를 포함한다(도 3 내지 도 5 참조).In addition, the hydraulic wind power generator 1000 according to an embodiment of the present invention is connected to the rotating unit 100, the cylinder 210 and the piston 220 is provided with the piston in accordance with the rotation of the rotating unit 100 And a fluid supply part 200 supplying a fluid by driving of the 220 (see FIGS. 3 to 5).
여기서, 상기 실린더(210)와 피스톤(220)에 대한 구체적인 설명은 후술하기로 한다.Here, a detailed description of the cylinder 210 and the piston 220 will be described later.
또한, 본 발명 중 일 실시예에 따른 유압식 풍력 발전 장치(1000)는 상기 유체공급부(200)에 연결되며, 상기 유체공급부(200)에서 공급되는 유체의 압력에 의해 회전되는 유압모터부(300)를 포함한다.In addition, the hydraulic wind power generator 1000 according to an embodiment of the present invention is connected to the fluid supply unit 200, the hydraulic motor unit 300 is rotated by the pressure of the fluid supplied from the fluid supply unit 200 It includes.
그리고, 본 발명 중 일 실시예에 따른 유압식 풍력 발전 장치(1000)는 상기 유압모터부(300)에 연결되며, 상기 유압모터부(300)의 회전에 따라 전기를 발생시키는 발전부(400)를 포함한다.And, the hydraulic wind power generator 1000 according to an embodiment of the present invention is connected to the hydraulic motor unit 300, the power generation unit 400 for generating electricity in accordance with the rotation of the hydraulic motor unit 300 Include.
한편, 본 발명 중 일 실시예에 따른 유압식 풍력 발전 장치(1000)는 중앙에 개구가 형성되어 복수의 상기 유체공급부가 각각 연결되는 연결판;을 더 포함할 수 있다.Meanwhile, the hydraulic wind power generator 1000 according to an embodiment of the present invention may further include a connection plate having an opening formed at a center thereof, and a plurality of connection plates connected to the fluid supply units, respectively.
이하, 각 구성별로 상세히 설명한다.Hereinafter, each configuration will be described in detail.
도 1을 참조하면, 회전부(100)는 블레이드(110)가 구비되어 바람에 의해 회전하도록 마련된다.Referring to Figure 1, the rotating part 100 is provided with a blade 110 is provided to rotate by the wind.
여기서, 상기 회전부(100)에는 상기 블레이드(110)가 포함되며, 상기 블레이드(110)는 바람에 의해 회전하도록 마련되어 상기 블레이드(110)를 통해 발생되는 회전에너지가 상기 회전부(100)에 연결된 유체공급부(200)로 전달되도록 마련된다.Here, the rotating part 100 includes the blade 110, the blade 110 is provided to rotate by the wind fluid supply unit is connected to the rotating part 100 is the rotation energy generated through the blade 110 Is provided to be delivered to (200).
도 1 및 도 3을 참조하면, 유체공급부(200)는 상기 회전부(100)에 연결되며, 또한, 상기 유체공급부(200)는 실린더(210)와 피스톤(220)이 구비되어 상기 회전부(100)의 회전에 따라 상기 피스톤(220)의 구동으로 유체를 공급하도록 마련된다1 and 3, the fluid supply unit 200 is connected to the rotation unit 100, and the fluid supply unit 200 is provided with a cylinder 210 and a piston 220 to provide the rotation unit 100. In accordance with the rotation of the piston 220 is provided to supply the fluid to the drive
여기서, 상기 유체공급부(200)는 도 1에 도시된 바와 같이, 일측이 유압모터부(300)에 연결되고 타측이 유체저장부(310)에 연결되도록 마련될 수 있다.Here, the fluid supply unit 200 may be provided such that one side is connected to the hydraulic motor unit 300 and the other side is connected to the fluid storage unit 310, as shown in FIG.
그리고, 상기 유체공급부(200)로부터 유출된 유체가 유압모터부(300)를 구동시킨 후 유체저장부(310)에 저장되며, 상기 유체저장부(310)에 저장된 유체는 펌프(320)에 의해 다시 유체공급부(200)로 유입되는 순환이 가능하도록 마련될 수 있다.The fluid flowing out of the fluid supply unit 200 drives the hydraulic motor unit 300 and is then stored in the fluid storage unit 310, and the fluid stored in the fluid storage unit 310 is pumped by the pump 320. It may be provided to enable the circulation flowing into the fluid supply unit 200 again.
즉, 유체저장부(310)로부터 공급되는 유체가 상기 블레이드(110)의 회전으로부터 발생되는 에너지에 의해 유체공급부(200)의 실린더(210)에 유입되어 상기 실린더(210) 내부에 배치된 피스톤(220)을 구동시킨다.That is, the fluid supplied from the fluid storage unit 310 flows into the cylinder 210 of the fluid supply unit 200 by the energy generated from the rotation of the blade 110 and is disposed inside the cylinder 210 ( 220).
여기서, 상기 유체공급부(200)의 실린더(210)에 유입된 유체는 상기 피스톤(220)의 구동에 의해 실린더(210) 외부로 유출되며, 상기 유체공급부(200)에 연결된 유압모터부(300)를 회전시키도록 마련된다.Here, the fluid introduced into the cylinder 210 of the fluid supply unit 200 flows out of the cylinder 210 by the driving of the piston 220, and the hydraulic motor unit 300 connected to the fluid supply unit 200. It is provided to rotate.
종래의 유압식 풍력 발전에서는 실린더(210)가 구비되지 않은 유압 펌프를 사용하였으며, 이러한 유압 펌프의 경우, 유체의 공급 용량이 상대적으로 적어서 증속기를 사용하였었다.In the conventional hydraulic wind power generation, a hydraulic pump without a cylinder 210 is used. In the case of such a hydraulic pump, a supply capacity of the fluid is relatively small, and thus a speed increaser is used.
하지만, 본 발명의 일 실시예에 따른 유압식 풍력 발전 장치(1000) 및 그 방법은 피스톤(220)이 구비된 실린더(210)를 유체공급부(200)로 사용하여 증속기없이도 상대적으로 많은 용량의 유체를 상기 유압모터부(300)에 공급가능하므로, 안정적인 발전이 가능하다.However, the hydraulic wind power generator 1000 and the method according to an embodiment of the present invention uses a cylinder 210 provided with a piston 220 as the fluid supply unit 200, so that a fluid having a relatively large capacity without a speed increaser is provided. Since it can be supplied to the hydraulic motor unit 300, stable power generation is possible.
또한, 본 발명의 일 실시예에 따른 유압식 풍력 발전 장치(1000) 및 그 방법은 증속기를 배제하여 증속기에서 발생되던 에너지 손실이 감소될 수 있으며, 이를 통해, 발전 효율이 상승되는 효과가 있다. In addition, the hydraulic wind power generator 1000 and the method according to an embodiment of the present invention may reduce the energy loss generated in the speed increaser by excluding the speed increaser, thereby increasing power generation efficiency.
그리고, 증속기 배제로부터 증속기를 생산하기 위한 설치비용이 감소되며, 증속기의 고장 염려가 없어 유지보수가 용이한 효과가 있다.In addition, the installation cost for producing a speed reducer is reduced from the increase of the speed reducer, and there is no fear of breakdown of the speed increaser.
한편, 상기 유체공급부(200)는 복수로 마련되어 방사상으로 배치될 수 있다.On the other hand, the fluid supply unit 200 may be provided in a plurality and disposed radially.
즉, 도 3 내지 도 5를 참조하면, 상기 유체공급부(200)에 구비되는 실린더(210)와 피스톤(220)은 일정한 유압을 상기 유압모터부(300)에 공급하기 위해, 복수로 마련되어 방사상으로 배치되며, 상기 유체공급부(200)의 일측은 상기 회전부(100)에 연결되고, 타측은 하나의 유로를 통해 상기 유압모터부(300)에 연결되도록 마련될 수 있다.That is, referring to FIGS. 3 to 5, the cylinder 210 and the piston 220 provided in the fluid supply unit 200 are provided in plural to radially supply the hydraulic pressure to the hydraulic motor unit 300. It is disposed, one side of the fluid supply unit 200 may be connected to the rotating unit 100, the other side may be provided to be connected to the hydraulic motor unit 300 through one flow path.
또한, 복수의 상기 유체공급부(200)는 3개로 마련되어 상호 120도의 간격을 가지도록 방사상으로 배치될 수 있다. 다만, 상기 유체공급부(200)의 개수와 간격이 이에 한정되는 것은 아니다.In addition, the plurality of fluid supply units 200 may be provided radially so as to have three spaces of 120 degrees. However, the number and spacing of the fluid supply unit 200 are not limited thereto.
여기서, 복수의 상기 유체공급부(200)에 구비되는 실린더(210)와 피스톤(220)은 중앙에 개구(510)가 형성된 연결판(500)에 각각 연결될 수 있다.Here, the cylinder 210 and the piston 220 provided in the plurality of the fluid supply unit 200 may be connected to the connecting plate 500 having an opening 510 in the center, respectively.
또한, 상기 유체공급부(200)에 구비된 실린더(210)는 유로(212)에 연결되며, 상기 유로(212)에는 축압부(600)가 연결되도록 마련될 수 있다.In addition, the cylinder 210 provided in the fluid supply unit 200 may be connected to the flow path 212, and the accumulator 600 may be connected to the flow path 212.
그리고, 상기 연결판(500)의 개구(510)에는 수평방향으로 형성되는 구동축(520)이 결합되고, 상기 구동축(520)으로부터 소정 간격(R) 이격되어 수평방향으로 형성되는 회전축(120)이 상기 블레이드(110)에 결합되며, 상기 구동축(520)의 단부와 상기 회전축(120)의 단부는 수직방향으로 형성되는 연결축(530)에 의해 연결되도록 마련될 수 있다.In addition, a driving shaft 520 formed in a horizontal direction is coupled to the opening 510 of the connecting plate 500, and a rotating shaft 120 spaced apart from the driving shaft 520 by a predetermined interval R is formed in the horizontal direction. It is coupled to the blade 110, the end of the drive shaft 520 and the end of the rotating shaft 120 may be provided to be connected by a connecting shaft 530 formed in the vertical direction.
또한, 상기 회전부(100)의 회전에 따라 상기 연결판(500)의 중앙은 상기 회전축(120)과 상기 구동축(520)의 이격된 간격을 반경으로 하는 원을 그리며 회전하도록 마련될 수 있다.In addition, as the rotation unit 100 rotates, the center of the connecting plate 500 may be provided to rotate in a circle having a radius of a spaced interval between the rotation shaft 120 and the driving shaft 520.
즉, 도 3을 참조하면, 상기 블레이드(110)는 회전축(120)에 결합되어 회전축(120)과 함께 회전하게 된다. That is, referring to FIG. 3, the blade 110 is coupled to the rotation shaft 120 to rotate together with the rotation shaft 120.
그리고, 상기 회전축(120)의 단부에는 수직방향으로 연장형성되는 연결축(530)이 연결되어 있으며, 상기 연결축(530)은 상기 회전축(120)의 회전에 연동되어 회전하게 된다.The connecting shaft 530 extending in the vertical direction is connected to an end of the rotating shaft 120, and the connecting shaft 530 rotates in association with the rotation of the rotating shaft 120.
또한, 상기 연결축(530)의 단부에는 구동축(520)이 연결되어 있으며, 상기 연결축(530)의 회전에 따라 연동되어 회전하게 된다.In addition, the driving shaft 520 is connected to the end of the connecting shaft 530, and rotates in conjunction with the rotation of the connecting shaft 530.
즉, 상기 회전축(120)이 회전하게 되면, 상기 구동축(520)은 상기 회전축(120)과 상기 구동축(520)의 이격된 간격(R)을 반지름으로 하는 원을 그리면서 회전을 하게 된다.That is, when the rotary shaft 120 is rotated, the drive shaft 520 is rotated while drawing a circle with a radius (R) spaced apart from the rotary shaft 120 and the drive shaft 520.
여기서, 상기 구동축(520)은 상기 연결판(500)의 중앙에 형성된 개구(510)에 연결되므로, 상기 구동축(520)이 회전하게 되면 상기 연결판(500) 역시 상기 회전축(120)과 상기 구동축(520)의 이격된 간격(R)을 반지름으로 하는 원을 그리면서 회전을 하게 된다.Here, the driving shaft 520 is connected to the opening 510 formed in the center of the connecting plate 500, so that when the driving shaft 520 is rotated, the connecting plate 500 also the rotating shaft 120 and the driving shaft It rotates while drawing a circle having a radius of spaced apart interval (R) of (520).
본 발명의 일 실시예에 따른 유압식 풍력 발전 장치(1000) 및 그 방법은 상기 유체공급부(200)를 방사상으로 배치하여 상기 유압모터에 일정한 유량을 공급할 수 있게 되며, 이하, 이에 대해 설명한다.Hydraulic wind power generator 1000 and the method according to an embodiment of the present invention is to arrange the fluid supply unit radially to supply a constant flow rate to the hydraulic motor, it will be described below.
하나의 실린더(210)를 통해 상기 유압모터부(300)로 유체가 공급되는 경우, 공급되는 유체는 시간에 따라 변화가 생긴다. When the fluid is supplied to the hydraulic motor unit 300 through one cylinder 210, the fluid supplied changes with time.
즉, 실린더(210)가 압축될 때는 실린더(210) 내부로 유입된 유체가 상기 유압모터부(300)로 공급될 수 있지만, 실린더(210)가 팽창될 때는 실린더(210) 내부로 유체가 유입되면서 일시적으로 유압모터부(300)로의 유체 공급이 중단된다.That is, when the cylinder 210 is compressed, the fluid introduced into the cylinder 210 may be supplied to the hydraulic motor unit 300, but when the cylinder 210 is expanded, the fluid flows into the cylinder 210. While temporarily supplying the fluid to the hydraulic motor unit 300 is stopped.
따라서, 시간에 따라 크기와 위상이 변화되는 교류와 같이, 상기 유체 역시 시간에 따라 공급되는 양에 변화가 발생된다.Thus, as with alternating current whose magnitude and phase change over time, the fluid also changes in the amount supplied over time.
하지만, 본 발명의 일 실시예에 따른 유압식 풍력 발전 장치(1000) 및 그 방법은 유체공급부(200)가 복수로 마련되어 방사상으로 배치되므며, 이에 의해, 유압모터부(300)에 공급되는 유체의 양을 일정하게 할 수 있다.However, the hydraulic wind power generator 1000 and the method according to an embodiment of the present invention are provided with a plurality of the fluid supply unit 200 is disposed radially, thereby, of the fluid supplied to the hydraulic motor unit 300 The quantity can be made constant.
즉, 도 3 내지 도 5에 도시된 바와 같이, 복수의 상기 실린더(210)에 유출되는 각각의 유량은 시간에 따라 변화되지만, 복수의 상기 실린더(210)에서 유출되는 총유량은 일정하게 유지될 수 있다.That is, as shown in FIGS. 3 to 5, each flow rate flowing out of the plurality of cylinders 210 changes with time, but the total flow rate flowing out of the plurality of cylinders 210 remains constant. Can be.
예를 들어, 좀더 구체적으로 설명하면, 상기 연결판(500)이 도 3에 도시된 위치에서 시계방향으로 이동되는 경우, 실린더(X)에서는 피스톤(220)이 팽창되므로 제1유로(212(a))를 통해 유체가 유출되지 않으며, 제1밸브(214(a))가 열려 상기 실린더(X) 내부로 유체가 유입된다. 즉, 실린더(X)를 통해 유출되는 유량은 0이다.For example, in more detail, when the connecting plate 500 is moved clockwise in the position shown in FIG. 3, the piston 220 is expanded in the cylinder X, so that the first passage 212 (a The fluid does not flow out through)), and the first valve 214 (a) is opened to allow fluid to flow into the cylinder (X). That is, the flow rate flowing out through the cylinder X is zero.
그리고, 실린더(Y)에서는 피스톤(220)의 압축이 상당히 진행된 상태로, 제2밸브(214(b))는 닫혀 있고, 제2유로(212(b))를 통해 유체가 유출되고 있다. 여기서, 실린더(Y)를 통해 유출되는 유량을 0.8로 가정한다.In the cylinder Y, while the compression of the piston 220 proceeds considerably, the second valve 214 (b) is closed, and the fluid flows out through the second flow passage 212 (b). Here, the flow rate flowing out through the cylinder (Y) is assumed to be 0.8.
또한, 실린더(Z)에서는 피스톤(220)의 압축이 시작되는 상태로 제3밸브(214(c))는 닫히고, 제3유로(212(c))를 통해 유체가 유출되기 시작한다. 여기서, 실린더(Z)를 통해 유출되는 유량을 0.2로 가정한다.In addition, in the cylinder Z, the third valve 214 (c) is closed in the state where the compression of the piston 220 is started, and the fluid starts to flow out through the third flow path 212 (c). Here, the flow rate flowing out through the cylinder Z is assumed to be 0.2.
도 3의 경우, 3개의 실린더(X,Y,Z)를 통해 유출되어 하나의 유로로 마련되는 제4유로(212(d))를 통해 이동되는 총유량은 1에 해당된다. In FIG. 3, the total flow rate flowing through three cylinders X, Y, and Z moves through the fourth flow passage 212 (d) provided as one flow passage corresponds to one.
여기서, 제1유로(212(a))의 ①은 제4유로(212(d))의 ①에 연결되고, 제2유로(212(b))의 ②는 제4유로(212(d))의 ②에 연결되며, 제3유로(212(c))의 ③은 제4유로(212(d))의 ③에 연결되도록 마련될 수 있다. 이러한 연결 구조는 도 4 및 도 5에서도 공통된다.Here, ① of the first channel 212 (a) is connected to ① of the fourth channel 212 (d), and ② of the second channel 212 (b) is the fourth channel 212 (d). Is connected to ②, ③ of the third flow path (212 (c)) may be provided to be connected to ③ of the fourth flow path (212 (d)). This connection structure is also common in FIGS. 4 and 5.
그리고, 상기 연결판(500)이 도 4에 도시된 위치에서 시계방향으로 이동되는 경우, 실린더(X)에서는 피스톤(220)의 압축이 시작되는 상태로 제1밸브(214(a))는 닫히고, 제1유로(212(a))를 통해 유체가 유출되기 시작한다. 여기서, 실린더(X)를 통해 유출되는 유량을 0.2로 가정한다.In addition, when the connecting plate 500 is moved clockwise in the position shown in FIG. 4, in the cylinder X, the first valve 214 (a) is closed in a state where compression of the piston 220 is started. The fluid begins to flow out through the first flow passage 212 (a). Here, the flow rate flowing out through the cylinder (X) is assumed to be 0.2.
또한, 실린더(Y)에서는 피스톤(220)이 팽창되므로 제2유로(212(b))를 통해 유체가 유출되지 않으며, 제2밸브(214(b))가 열려 상기 실린더(Y) 내부로 유체가 유입된다. 즉, 실린더(Y)를 통해 유출되는 유량은 0이다.In addition, since the piston 220 is expanded in the cylinder Y, the fluid does not flow out through the second passage 212 (b), and the second valve 214 (b) opens to open the fluid into the cylinder Y. Is introduced. That is, the flow rate flowing out through the cylinder Y is zero.
그리고, 실린더(Z)에서는 피스톤(220)의 압축이 상당히 진행된 상태로, 제3밸브(214(c))는 닫혀 있고, 제3유로(212(c))를 통해 유체가 유출되고 있다. 여기서, 실린더(Z)를 통해 유출되는 유량을 0.8로 가정한다.In the cylinder Z, while the compression of the piston 220 proceeds considerably, the third valve 214 (c) is closed, and the fluid flows out through the third flow passage 212 (c). Here, the flow rate flowing out through the cylinder Z is assumed to be 0.8.
도 4의 경우, 3개의 실린더(X,Y,Z)를 통해 유출되어 하나의 유로로 마련되는 제4유로(212(d))를 통해 이동되는 총유량은 1에 해당된다.In FIG. 4, the total flow rate flowing through the three cylinders X, Y, and Z moves through the fourth flow passage 212 (d) provided as one flow passage corresponds to one.
그리고, 상기 연결판(500)이 도 5에 도시된 위치에서 시계방향으로 이동되는 경우, 실린더(X)에서는 피스톤(220)의 압축이 상당히 진행된 상태로, 제1밸브(214(a))는 닫혀 있고, 제1유로(212(a))를 통해 유체가 유출되고 있다. 여기서, 실린더(X)를 통해 유출되는 유량을 0.8로 가정한다.In addition, when the connecting plate 500 is moved in the clockwise direction at the position shown in FIG. 5, in the cylinder X, the compression of the piston 220 proceeds considerably, and the first valve 214 (a) is It is closed and the fluid flows out through the 1st flow path 212 (a). Here, the flow rate flowing out through the cylinder (X) is assumed to be 0.8.
또한, 실린더(Y)에서는 피스톤(220)의 압축이 시작되는 상태로 제2밸브(214(b))는 닫히고, 제2유로(212(b))를 통해 유체가 유출되기 시작한다. 여기서, 실린더(Y)를 통해 유출되는 유량을 0.2로 가정한다.In addition, in the cylinder Y, the second valve 214 (b) is closed in the state where the compression of the piston 220 is started, and the fluid starts to flow out through the second flow path 212 (b). Here, the flow rate flowing out through the cylinder Y is assumed to be 0.2.
그리고, 실린더(Z)에서는 피스톤(220)이 팽창되므로 제3유로(212(c))를 통해 유체가 유출되지 않으며, 제3밸브(214(c))가 열려 상기 실린더(Z) 내부로 유체가 유입된다. 즉, 실린더(Z)를 통해 유출되는 유량은 0이다.In addition, since the piston 220 is expanded in the cylinder Z, the fluid does not flow out through the third flow path 212 (c), and the third valve 214 (c) is opened to open the fluid into the cylinder Z. Is introduced. That is, the flow rate flowing out through the cylinder Z is zero.
도 5의 경우, 3개의 실린더(X,Y,Z)를 통해 유출되어 하나의 유로로 마련되는 제4유로(212(d))를 통해 이동되는 총유량은 1에 해당된다.In FIG. 5, the total flow rate flowing through the three cylinders X, Y, and Z is moved through the fourth flow passage 212 (d) provided as one flow passage corresponds to one.
즉, 도 3 내지 도 5의 예시에서 복수의 실린더(210) 중 각각의 실린더(210)를 통해 유출되는 유량은 서로 다르지만, 3개의 실린더(X,Y,Z)를 통해 유출되어 하나의 유로를 통해 이동되는 총유량은 1로서 동일하다.That is, in the examples of FIGS. 3 to 5, although the flow rates flowing out through the respective cylinders 210 among the plurality of cylinders 210 are different from each other, the flow paths flow out through the three cylinders X, Y, and Z to form one flow path. The total flow rate moved through is equal to one.
즉, 크기는 같고 위상만 120도 차이가 있는 3상 교류에서 출력이 일정한 것처럼 본 발명의 일 실시예에 따른 유압식 풍력 발전 장치(1000) 및 그 방법은 복수의 실린더(210)를 방사상으로 배치하여 유체의 총유출량이 일정하게 유지되도록 마련될 수 있다.That is, the hydraulic wind power generator 1000 and the method according to an embodiment of the present invention as if the output is constant in three-phase alternating current of the same size and only 120 degrees difference phase by placing a plurality of cylinders (210) radially The total outflow of fluid may be provided to be kept constant.
이로부터, 일정한 양의 유체를 유압모터부(300)에 공급할 수 있고, 또한, 일정한 출력의 발전이 가능해지는 효과가 있다.From this, a certain amount of fluid can be supplied to the hydraulic motor unit 300, and there is an effect that the generation of a constant output is possible.
한편, 상기 제1밸브 내지 제3밸브는 액체의 역류를 방지하기 위해 한쪽 방향으로만 흐르게 하도록 형성되는 체크밸브로 마련될 수 있다.On the other hand, the first valve to the third valve may be provided as a check valve formed to flow in only one direction to prevent the back flow of the liquid.
도 1을 참조하면, 유압모터부(300)는 상기 유체공급부(200)에 연결되며, 상기 유체공급부(200)에서 공급되는 유체의 압력에 의해 회전되도록 마련된다.Referring to FIG. 1, the hydraulic motor unit 300 is connected to the fluid supply unit 200 and provided to rotate by the pressure of the fluid supplied from the fluid supply unit 200.
여기서, 유압모터가 포함되는 상기 유압모터부(300)는 발전기를 포함하는 발전부(400)에 연결되어 있으므로, 상기 유압모터부(300)의 회전에 따라 발전부(400)에서 전기가 발생되도록 마련된다.Here, since the hydraulic motor unit 300 including the hydraulic motor is connected to the power generation unit 400 including a generator, so that electricity is generated in the power generation unit 400 according to the rotation of the hydraulic motor unit 300. Prepared.
도 1을 참조하면, 본 발명의 일 실시예에 따른 유압식 풍력 발전 장치(1000) 및 그 방법은 상기 회전부(100)와 상기 유체공급부(200)가 설치되는 타워(900)가 구비될 수 있으며, 상기 타워(900)는 복수로 마련될 수 있다. 여기서, 상기 타워(900)에는 풍속계(990)가 설치될 수 있다.Referring to FIG. 1, the hydraulic wind power generator 1000 and the method according to an embodiment of the present invention may include a tower 900 in which the rotating unit 100 and the fluid supply unit 200 are installed. The tower 900 may be provided in plurality. Here, an anemometer 990 may be installed in the tower 900.
그리고, 도 1에 도시된 바와 같이, 축압부(600)는 복수의 상기 타워(900)에 각각 설치된 유체공급부(200)에 연결되며, 각각의 상기 유체공급부(200)로부터 공급되는 유체를 저장 후, 상기 유압모터부(300)에 소정 압력의 유체를 제공하도록 마련될 수 있다.And, as shown in Figure 1, the accumulator 600 is connected to each of the fluid supply unit 200 installed in the plurality of the tower 900, after storing the fluid supplied from each of the fluid supply unit 200 In addition, the hydraulic motor 300 may be provided to provide a fluid having a predetermined pressure.
블레이드의 회전속도가 풍황에 따라 불규칙한 경우, 종래의 풍력 발전기의 출력 역시 불규칙해지는 문제가 있었다.If the rotational speed of the blade is irregular according to the wind, there is a problem that the output of the conventional wind generator is also irregular.
하지만, 본 발명의 일 실시예에 따른 유압식 풍력 발전 장치(1000) 및 그 방법은 축압부(600)가 구비되며, 상기 축압부(600)는 복수의 타워(900)에 각각 설치된 유체공급부(200)로부터 유입되는 유체의 압력을 축적한 후 상기 축압부(600)의 일측에 연결된 유압모터부(300)에 일정한 유압을 제공하여 상기 유압모터부(300)에 연결된 발전부(400)에서 일정한 출력이 발생될 수 있도록 마련된다.However, the hydraulic wind power generator 1000 and the method according to an embodiment of the present invention is provided with a accumulator 600, the accumulator 600 is a fluid supply unit 200 respectively installed in a plurality of towers (900) After accumulating the pressure of the fluid flowing from the) provides a constant hydraulic pressure to the hydraulic motor unit 300 connected to one side of the accumulator 600, a constant output from the power generation unit 400 connected to the hydraulic motor unit 300 It is arranged to be generated.
이로부터, 일정한 양의 유체를 축압부(600)를 통해 유압모터부(300)에 공급할 수 있을뿐만 아니라 유체 유동에 의해 유압시스템에 가해지는 충격을 최소화하여 시스템 내구성을 향상시킬 수 있다.From this, it is possible to supply a certain amount of fluid to the hydraulic motor unit 300 through the accumulator 600, as well as to minimize the impact applied to the hydraulic system by the fluid flow to improve the system durability.
또한, 도 1에 도시된 바와 같이, 상기 축압부(600)에는 압력감지센서(610)가 설치되고, 상기 유압모터부(300)에는 유량센서(620)가 설치될 수 있다.In addition, as illustrated in FIG. 1, a pressure sensor 610 may be installed at the accumulator 600, and a flow sensor 620 may be installed at the hydraulic motor 300.
그리고, 제어부(700a)는 상기 압력감지센서에서 측정되는 압력값을 환산하여 얻은 수위값이 축압부 가용 용량의 최대가 되는 수위에 도달할 때 발전기를 운전하고, 출력값이 운전구간 이하 일때 또는 압력감지센서로부터 감지되는 압력이 축압부의 최저 수위에 대응되는 압력일 때 발전기의 운전을 정지시키는 작동을 제어하도록 마련될 수 있다.Then, the control unit 700a operates the generator when the water level value obtained by converting the pressure value measured by the pressure sensing sensor reaches a water level which is the maximum of the available capacity of the accumulator, and when the output value is less than or equal to the operating range or the pressure sensing It may be provided to control the operation to stop the operation of the generator when the pressure sensed from the sensor is the pressure corresponding to the lowest level of the accumulator.
여기서, 상기 유압모터부(300)에는 상기 유압모터부(300)의 회전을 컨트롤하기 위해 유량을 조절할 수 있는 사판각도 조절부(800)가 설치되며, 상기 제어부(700a)는 상기 사판각도 조절부(800)의 각도조절을 제어하도록 마련될 수 있다.Here, the hydraulic motor unit 300 is provided with a swash plate angle adjusting unit 800 that can adjust the flow rate to control the rotation of the hydraulic motor unit 300, the control unit 700a is the swash plate angle adjusting unit It may be provided to control the angle adjustment of the (800).
상기 제어부(700a)는 상기 축압부(600)에 설치된 압력감지센서(610)로부터 감지되는 축압부의 압력(P)에 대한 데이터 및 유압모터부(300)에 설치된 유량센서(620)로부터 감지되는 유량(Q)에 대한 데이터를 입력받아 저장한다.The control unit 700a is detected from the flow rate sensor 620 installed in the hydraulic motor unit 300 and the data on the pressure (P) of the accumulator detected by the pressure sensor 610 installed in the accumulator 600. Receive and store data on flow rate (Q).
그리고, 상기 제어부(700a)는 상기 축압부의 압력(P)로부터 유체의 수위(L)를 추정하도록 마련될 수 있다.The controller 700a may be provided to estimate the level L of the fluid from the pressure P of the accumulator.
여기서, 유압모터부(300)-발전부(400)의 효율(ηmg)은 상기 유압모터부(300)의 효율(ηm)과 상기 발전부(400)의 효율 (ηg)을 곱한 값에 해당된다.Here, the efficiency (η mg ) of the hydraulic motor unit 300-power generation unit 400 is a value obtained by multiplying the efficiency (η m ) of the hydraulic motor unit 300 by the efficiency (η g ) of the power generation unit 400. Corresponds to
도 6을 참조하면, 유압모터부(300)-발전부(400)의 효율(ηmg)이 소정의 효율(ηmg1)보다 낮은 구간에서는 유압모터부(300)가 정지되는 정지구간으로 설정되며, 유압모터부(300)-발전부(400)의 효율(ηmg)이 소정의 효율(ηmg1)보다 높고 최대효율(ηmg max)보다 낮은 구간에서는 유압모터부(300)가 가동되는 운전구간으로 설정될 수 있다.Referring to FIG. 6, in a section in which the efficiency η mg of the hydraulic motor 300-power generation unit 400 is lower than the predetermined efficiency η mg1 , the hydraulic motor 300 is stopped. In a section in which the efficiency (η mg ) of the hydraulic motor unit 300-power generation unit 400 is higher than the predetermined efficiency (η mg1 ) and lower than the maximum efficiency (η mg max ), the hydraulic motor unit 300 is operated. It may be set to an interval.
여기서, 소정의 효율(ηmg1)은 임의 지점(b)에서의 효율로, 상수에 해당되며, 각종의 조건을 고려하여 임의로 설정될 수 있다.Here, the predetermined efficiency η mg1 is an efficiency at an arbitrary point b, which corresponds to a constant, and may be arbitrarily set in consideration of various conditions.
한편, 상기 제어부(700a)는 상기 축압부의 압력(P)이 상기 축압부(600) 가용 용량의 최대가 되는 수위에 대응되는 압력 이상이면 상기 사판각도 조절부(800)로 운전 시작신호를 보내며, 운전 시작신호에 따라 상기 사판각이 점진적으로 개방되도록 마련될 수 있다.On the other hand, the control unit 700a sends an operation start signal to the swash plate angle adjusting unit 800 when the pressure P of the accumulator part is equal to or higher than the pressure corresponding to the level of the available capacity of the accumulator 600. According to an operation start signal, the swash plate angle may be provided to gradually open.
그리고, 상기 제어부(700a)에 의해 축압부의 압력(P)에 대한 데이터와 유량(Q)에 대한 데이터를 계산하며, 상기 제어부(700a)는 PQ/ηmg1값이 도 6에서의 b+((a-b)/2)지점에 대응되는 값이 될 때까지 사판각을 계속 개방시키고, 그 후 사판각도 조정은 변화하는 PQ/ηmg1값에 따라 사판각도를 조정한다.The controller 700a calculates data on the pressure P of the accumulator and data on the flow rate Q, and the controller 700a has a PQ / η mg1 value of b + (( Continue to open the swash plate angle until the value corresponding to ab) / 2) point, and then adjust the swash plate angle according to the changing PQ / η mg1 value.
그리고, 사판각 조정방식은 제어부(700a)에서 (PQ/ηmg1 -b)값이 도 6에서의 a 값에서 b 값을 뺀 값의 백분율, 즉 PQ*100/(ηmg1 *(a-b))를 계산하여 사판각도 운영 최대각의 백분율에 해당하는 사판각을 개방하는 신호를 상기 사판각도 조절부(800)로 보내는 방식이다.In addition, the swash plate adjustment method is a percentage of the value obtained by subtracting the value b from the value a in FIG. 6 from the value P in the control part 700a, that is, PQ * 100 / (η mg1 * (ab)). By calculating the swash plate angle is a method of sending a signal to open the swash plate angle corresponding to the percentage of the maximum operating angle to the swash plate angle control unit 800.
여기서, 상기 제어부(700a)는 출력값(PQ/ηmg1)이 운전 구간 이하, 즉,도 6에서의 b 지점에 대응되는 값 이하로 낮아지거나 또는 상기 압력감지센서(610)로부터 감지되는 압력이 상기 축압부(600) 가용 용량의 최저가 되는 수위에 대응되는 압력 이하가 되면 상기 사판각도 조절부(800)로 운전정지 신호를 보내게 되며, 상기 사판각도 조절부(800)는 사판각도를 0도로 조절하여 상기 유압모터부(300)의 가동을 정지시킨다.Here, the control unit 700a is the output value (PQ / η mg1 ) is lower than the operating interval, that is, below the value corresponding to the point b in Figure 6 or the pressure detected from the pressure sensor 610 is When the pressure is lower than the pressure corresponding to the lowest level of the available capacity 600, the swash plate angle control unit 800 sends a stop signal, the swash plate angle control unit 800 adjusts the swash plate angle to 0 degrees By stopping the operation of the hydraulic motor unit 300.
이러한 방식에 따라 상기 사판각도 조절부(800)를 제어하는 것을 통해 유압모터-발전기의 효율을 향상시킬 수 있으며, 결과적으로 이용률을 제고시킬 수 있을뿐만 아니라 유압에너지를 안정적으로 전력으로 변화시켜서 전기의 품질을 향상시킬 수 있는 효과가 있다.In this way, by controlling the swash plate angle adjusting unit 800, the efficiency of the hydraulic motor-generator can be improved, and as a result, the utilization rate can be improved, and the hydraulic energy is stably changed to electric power to provide the electric power. This has the effect of improving quality.
그리고, 상기 제어부(700a)는 상기 유압모터부(300)에 설치된 사판각도 조절부(800)를 제어하여 유량(Q)을 컨트롤할 수 있다. 즉, 사판각도가 점점 증가되면, 상기 유압모터부(300)로 유입되는 유량(Q)도 증가하여 상기 유압모터부(300)의 회전 속도는 빨라진다.In addition, the control unit 700a may control the flow rate Q by controlling the swash plate angle adjusting unit 800 installed in the hydraulic motor unit 300. That is, when the swash plate angle is gradually increased, the flow rate (Q) flowing into the hydraulic motor unit 300 also increases, so that the rotational speed of the hydraulic motor unit 300 is increased.
그리고, 사판각도가 점점 감소되면, 상기 유압모터부(300)로 유입되는 유량(Q)도 감소하여 상기 유압모터부(300)의 회전 속도는 느려진다.And, if the swash plate angle is gradually reduced, the flow rate (Q) flowing into the hydraulic motor unit 300 is also reduced, so that the rotational speed of the hydraulic motor unit 300 is slowed.
즉, 풍속이 불규칙한 경우, 풍속이 높을 때에는 일부의 유체를 이용하여 발전하고 나머지 유체는 상기 축압부(600)에 저장하여 유압을 축적하며, 풍속이 낮을 때에는 상기 축압부(600)에 저장된 유압을 이용하여 발전할 수 있으므로, 이를 통해, 일정한 발전 출력을 얻을 수 있을 뿐만 아니라 발전 효율이 향상되는 효과가 있다.That is, when the wind speed is irregular, when the wind speed is high, the power is generated using some fluid, and the remaining fluid is stored in the accumulator 600 to accumulate hydraulic pressure, and when the wind speed is low, the hydraulic pressure stored in the accumulator 600 Since it can be generated by using, through this, it is possible not only to obtain a constant power generation output, but also improve the power generation efficiency.
도 2를 참조하면, 상기 유압모터부(300)는 복수로 마련되고, 각각의 유압모터부(300)에는 용량이 서로 다른 유압모터가 구비되어 상기 축압부(600)에 각각 연결되도록 마련될 수 있다.Referring to FIG. 2, the hydraulic motor unit 300 may be provided in plural, and each hydraulic motor unit 300 may be provided with hydraulic motors having different capacities and connected to the accumulator 600, respectively. have.
즉, 시간에 따라 풍속이 변하는 경우, 상기 축압부(600)에 저장되는 유체의 저장량도 서로 다르므로, 상기 축압부(600)에 저장된 유체의 저장량을 고려하여 가장 효율이 높은 유압모터부(300)를 구동하도록 마련될 수 있다.That is, when the wind speed changes with time, since the storage amount of the fluid stored in the accumulator 600 is different from each other, the most efficient hydraulic motor unit 300 in consideration of the storage amount of the fluid stored in the accumulator 600. It can be provided to drive.
예를 들어, 상기 유압모터부(300)에 구비되는 상기 유압모터가 4개이고, 상기 유압모터의 각각의 용량이 전체용량의 6.25%, 12.5%, 25%, 50%라면, 풍속이 가장 약한 때에는 6.25% 용량의 유압모터를 구동시키고, 풍속이 가장 강한 때에는 큰 용량부터 순차적으로 작은 용량을 선정 조합시킨 유압모터를 구동시키도록 마련될 수 있다. For example, if the hydraulic motor provided in the hydraulic motor unit 300 is four, and each of the capacity of the hydraulic motor is 6.25%, 12.5%, 25%, 50% of the total capacity, when the wind speed is the weakest 6.25% capacity of the hydraulic motor can be driven, and when the wind speed is the strongest, it can be arranged to drive the hydraulic motor that selects and combines the small capacity sequentially from the large capacity.
여기서, 용량이 서로 다른 유압모터 중 상기 축압부(600)에 축적된 압력에 따라 에너지 효율이 상대적으로 높은 유압모터가 구동되도록 제어하는 제어부(700b)가 더 포함될 수 있다.Here, the controller 700b may be further configured to control the hydraulic motor having a relatively high energy efficiency according to the pressure accumulated in the accumulator 600 among the hydraulic motors having different capacities.
다만, 유압모터의 개수와 용량은 하나의 예시일 뿐이며, 개수와 용량은 이에 한정되지 않는다.However, the number and capacity of the hydraulic motor is only one example, the number and capacity are not limited thereto.
이에 의해, 해당 풍속에서 최대의 발전 효율을 얻을 수 있는 효과가 있다.This has the effect of obtaining the maximum power generation efficiency at the wind speed.
한편, 전술한 바와 같이, 축압부(600)의 압력과 유량에 따라 발전기의 정지 또는 운전을 제어하는 제어부(700a)와, 복수의 유압모터부(300) 중 유량에 따라 효율이 상대적으로 높은 유압모터부(300)를 구동하는 제어부(700b)는 하나의 제어부로 마련될 수도 있고, 별개의 제어부로 마련될 수도 있다.On the other hand, as described above, the control unit 700a for controlling the stop or operation of the generator in accordance with the pressure and the flow rate of the accumulator 600, and the hydraulic pressure of the relatively high efficiency in accordance with the flow rate of the plurality of hydraulic motor unit 300 The control unit 700b for driving the motor unit 300 may be provided as one control unit or may be provided as a separate control unit.
이하, 본 발명의 일 실시예에 따른 유압식 풍력 발전 방법에 대해 설명한다. 다만, 전술한 바와 같이, 유압식 풍력 장치와 공통되는 부분에 대한 설명은 상기의 설명으로 대체한다.Hereinafter, a hydraulic wind power generation method according to an embodiment of the present invention will be described. However, as described above, the description of the parts in common with the hydraulic wind power device is replaced with the above description.
우선, 블레이드(110)가 구비되는 회전부(100)에 연결되며 실린더(210)와 피스톤(220)이 구비되는 유체공급부(200)에서, 회전부(100)의 회전에 따라 유체공급부(200)의 피스톤(220)이 구동되어 유압이 형성된다.First, in the fluid supply unit 200 connected to the rotating unit 100 provided with the blade 110 and provided with the cylinder 210 and the piston 220, the piston of the fluid supply unit 200 according to the rotation of the rotating unit 100. 220 is driven to form hydraulic pressure.
다음, 상기 유체공급부(200)에서 공급되는 유체의 압력에 의해 유압모터부(300)가 회전되며, 상기 유압모터부(300)의 회전에 따라 발전기에서 전기가 발생된다.Next, the hydraulic motor unit 300 is rotated by the pressure of the fluid supplied from the fluid supply unit 200, and electricity is generated in the generator according to the rotation of the hydraulic motor unit 300.
여기서, 복수로 설치된 유체공급부(200)에 연결되고, 각각의 상기 유체공급부(200)로부터 공급되는 유체를 저장하는 축압부(600)가 상기 유압모터부(300)에 소정 압력의 유체를 제공하여 상기 유압모터부(300)가 회전하도록 마련될 수 있다.Here, the accumulator 600 is connected to the plurality of fluid supply unit 200, the storage unit 600 for storing the fluid supplied from each of the fluid supply unit 200 to provide a fluid of a predetermined pressure to the hydraulic motor unit 300 The hydraulic motor unit 300 may be provided to rotate.
그리고, 일정한 유압을 상기 유압모터부(300)에 공급하기 위해, 상기 유체공급부(200)는 복수로 마련되어 방사상으로 배치되며, 상기 유체공급부(200)의 일측은 상기 회전부(100)에 연결되고, 타측은 하나의 유로로 마련되는 제4유로(212(d))를 통해 상기 유압모터부(300)에 연결되도록 마련될 수 있다.In addition, in order to supply a constant hydraulic pressure to the hydraulic motor unit 300, the fluid supply unit 200 is provided in a plurality arranged radially, one side of the fluid supply unit 200 is connected to the rotating unit 100, The other side may be provided to be connected to the hydraulic motor unit 300 through a fourth flow passage 212 (d) provided as one flow passage.
본 발명의 명세서, 본 실시예 및 본 명세서에 첨부된 도면은 본 발명에 포함되는 기술적 사상의 일부를 명확하게 나타내고 있는 것에 불과하며, 본 발명의 명세서 및 도면에 포함된 기술적 사상의 범위 내에서 당업자가 용이하게 유추할 수 있는 변형 예와 구체적인 실시예는 모두 본 발명의 권리범위에 포함되는 것이 자명하다고 할 것이다.The specification of the present invention, the present embodiment and the accompanying drawings only clearly show some of the technical ideas included in the present invention, and those skilled in the art within the scope of the technical ideas included in the specification and drawings of the present invention. Modifications and specific embodiments that can be easily inferred will be apparently included in the scope of the invention.
Claims (11)
- 블레이드가 구비되어 바람에 의해 회전하는 회전부;A rotating part provided with a blade and rotated by wind;상기 회전부에 연결되며, 실린더와 피스톤이 구비되어 상기 회전부의 회전에 따라 상기 피스톤의 구동으로 유체를 공급하는 유체공급부;A fluid supply unit connected to the rotating unit and provided with a cylinder and a piston to supply fluid by driving the piston according to the rotation of the rotating unit;상기 유체공급부에 연결되며, 상기 유체공급부에서 공급되는 유체의 압력에 의해 회전되는 유압모터부; 및A hydraulic motor unit connected to the fluid supply unit and rotated by a pressure of a fluid supplied from the fluid supply unit; And상기 유압모터부에 연결되며, 상기 유압모터부의 회전에 따라 전기를 발생시키는 발전부;A power generation unit connected to the hydraulic motor unit and generating electricity according to the rotation of the hydraulic motor unit;를 포함하는 유압식 풍력 발전 장치.Hydraulic wind power generation device comprising a.
- 제1항에 있어서,The method of claim 1,일정한 유압을 상기 유압모터부에 공급하기 위해, 상기 유체공급부는 복수로 마련되어 방사상으로 배치되며, 상기 유체공급부의 일측은 상기 회전부에 연결되고, 타측은 하나의 유로를 통해 상기 유압모터부에 연결되는 것을 특징으로 하는 유압식 풍력 발전 장치.In order to supply a constant hydraulic pressure to the hydraulic motor unit, the fluid supply unit is provided in a plurality and radially arranged, one side of the fluid supply unit is connected to the rotating part, the other side is connected to the hydraulic motor unit through one flow path Hydraulic wind power generator, characterized in that.
- 제2항에 있어서,The method of claim 2,중앙에 개구가 형성되어 복수의 상기 유체공급부가 각각 연결되는 연결판;을 더 포함하며, And a connection plate having an opening formed in a center thereof, the plurality of connecting fluid supply parts being connected to each other.상기 연결판의 개구에는 수평방향으로 형성되는 구동축이 결합되고, 상기 구동축으로부터 소정 간격 이격되어 수평방향으로 형성되는 회전축이 상기 블레이드에 결합되며, 상기 구동축의 단부와 상기 회전축의 단부는 수직방향으로 형성되는 연결축에 의해 연결되되,A drive shaft formed in a horizontal direction is coupled to an opening of the connecting plate, and a rotation shaft formed in a horizontal direction spaced apart from the drive shaft by a predetermined distance is coupled to the blade, and an end of the drive shaft and an end of the rotation shaft are formed in a vertical direction. Connected by connecting shaft,상기 회전부의 회전에 따라 상기 연결판의 중앙은 상기 회전축과 상기 구동축의 이격된 간격을 반경으로 하는 원을 그리며 회전하는 것을 특징으로 하는 유압식 풍력 발전 장치.According to the rotation of the rotating unit, the center of the connecting plate is a hydraulic wind power generator, characterized in that rotating in a circle with a radius of the spaced apart interval between the rotating shaft and the drive shaft.
- 제1항 내지 제3항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3,상기 회전부와 상기 유체공급부가 설치되는 타워가 구비되며,The rotating unit and the fluid supply unit is provided with a tower,상기 타워는 복수로 마련되고, 복수의 상기 타워에 각각 설치된 유체공급부에 연결되며, 각각의 상기 유체공급부로부터 공급되는 유체의 압력을 저장 후, 상기 유압모터부에 소정 압력의 유체를 제공하는 축압부;를 더 포함하는 것을 특징으로 하는 유압식 풍력 발전 장치.The tower may be provided in plurality, and may be connected to a fluid supply unit installed in each of the plurality of towers, and after storing the pressure of the fluid supplied from each of the fluid supply units, the accumulator unit for supplying a fluid having a predetermined pressure to the hydraulic motor unit. Hydraulic wind turbine further comprises a.
- 제4항에 있어서,The method of claim 4, wherein상기 유압모터부는 복수로 마련되고, 각각의 유압모터부에는 용량이 서로 다른 유압모터가 구비되어 상기 축압부에 각각 연결되는 것을 특징으로 하는 유압식 풍력 발전 장치.The hydraulic motor unit is provided in plural, each hydraulic motor unit is provided with a hydraulic motor having a different capacity, the hydraulic wind power generator, characterized in that connected to each of the accumulator.
- 제5항에 있어서,The method of claim 5,용량이 서로 다른 유압모터 중 상기 축압부에 축적된 압력에 따라 에너지 효율이 상대적으로 높은 유압모터가 구동되도록 제어하는 제어부가 더 포함되는 것을 특징으로 하는 유압식 풍력 발전 장치.And a control unit for controlling a hydraulic motor having a relatively high energy efficiency according to the pressure accumulated in the accumulator among the hydraulic motors having different capacities.
- 제4항에 있어서,The method of claim 4, wherein상기 축압부에는 압력감지센서가 설치되고, 상기 축압부와 상기 유압모터부사이에는 유량센서가 설치되며, 상기 압력감지센서에서 측정되는 압력값을 환산하여 얻은 수위값이 축압부 가용 용량의 최대가 되는 수위에 도달할 때 발전기를 운전하고,The accumulator is provided with a pressure sensor, a flow sensor is installed between the accumulator and the hydraulic motor, the level value obtained by converting the pressure value measured by the pressure sensor is the maximum of the available capacity of the accumulator. Drive the generator when the water level is reached,출력값이 운전구간 이하 일때 또는 압력감지센서로부터 감지되는 압력이 축압부의 최저 수위에 대응되는 압력일 때 발전기의 운전을 정지시키는 작동을 하는 제어부를 더 포함하는 것을 특징으로 하는 유압식 풍력 발전 장치.And a control unit operable to stop the operation of the generator when the output value is less than or equal to the operation section or when the pressure detected from the pressure sensor is a pressure corresponding to the lowest level of the accumulator.
- 제7항에 있어서,The method of claim 7, wherein상기 유압모터부에는 운전중에 상기 유압모터부의 회전을 컨트롤하기 위해 유량을 조절할 수 있는 사판각도 조절부가 설치되며, 상기 제어부는 상기 사판각도 조절부의 각도조절을 제어하는 것을 특징으로 하는 유압식 풍력 발전 장치.The hydraulic motor unit is provided with a swash plate angle control unit for adjusting the flow rate to control the rotation of the hydraulic motor unit during operation, the control unit is characterized in that the hydraulic wind power generator characterized in that for controlling the angle adjustment of the swash plate angle control unit.
- 블레이드가 구비되는 회전부에 연결되며 실린더와 피스톤이 구비되는 유체공급부에서, 회전부의 회전에 따라 유체공급부의 피스톤이 구동되어 유압이 형성되는 단계;A hydraulic pressure is formed by driving the piston of the fluid supply part according to the rotation of the rotation part in the fluid supply part connected to the rotation part provided with the blade and the cylinder and the piston;상기 유체공급부에서 공급되는 유체의 압력에 의해 유압모터부가 회전되는 단계; 및Rotating the hydraulic motor part by the pressure of the fluid supplied from the fluid supply part; And상기 유압모터부의 회전에 따라 발전기에서 전기를 발생시키는 단계;Generating electricity from a generator according to the rotation of the hydraulic motor unit;를 포함하는 유압식 풍력 발전 방법.Hydraulic wind power generation method comprising a.
- 제9항에 있어서,The method of claim 9,복수로 설치된 유체공급부에 연결되고 각각의 상기 유체공급부로부터 공급되는 유체를 저장하는 축압부가 상기 유압모터부에 소정 압력의 유체를 제공하는 단계;를 더 포함하는 것을 특징으로 하는 유압식 풍력 발전 방법.And a pressure accumulating unit connected to a plurality of fluid supply units and storing the fluid supplied from each of the fluid supply units, supplying a fluid having a predetermined pressure to the hydraulic motor unit.
- 제10항에 있어서,The method of claim 10,상기 유체공급부는 일정한 유압을 상기 유압모터부에 공급하기 위해 복수로 마련되어 방사상으로 배치되며, 상기 유체공급부의 일측은 상기 회전부에 연결되고, 타측은 하나의 유로를 통해 상기 유압모터부에 연결되는 것을 특징으로 하는 유압식 풍력 발전 방법.The fluid supply part is provided in a plurality and radially arranged to supply a constant hydraulic pressure to the hydraulic motor unit, one side of the fluid supply unit is connected to the rotating part, the other side is connected to the hydraulic motor unit through one flow path Hydraulic wind power generation method characterized by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380016551.0A CN104204513B (en) | 2012-03-27 | 2013-03-26 | Fluid pressure type wind power generation plant and its method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2012-0031131 | 2012-03-27 | ||
KR1020120031131A KR101967148B1 (en) | 2012-03-27 | 2012-03-27 | Hydraulic wind power generation device and its method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013147498A1 true WO2013147498A1 (en) | 2013-10-03 |
Family
ID=49260680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/002508 WO2013147498A1 (en) | 2012-03-27 | 2013-03-26 | Apparatus for generating hydraulic wind power and method thereof |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR101967148B1 (en) |
CN (1) | CN104204513B (en) |
WO (1) | WO2013147498A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102351228B1 (en) * | 2015-05-14 | 2022-01-13 | 노광영 | Horizontal type variable Blade's sweat, taking adventage othe drag ot pneumatic pump |
DE102015209644A1 (en) * | 2015-05-27 | 2016-12-01 | Robert Bosch Gmbh | Hydrostatic linear actuator and arrangement with hydrostatic linear actuators |
KR101980612B1 (en) * | 2018-01-08 | 2019-05-21 | 박준규 | Brake apparatus for rotator |
KR102320936B1 (en) * | 2021-02-26 | 2021-11-15 | 주식회사 코리안파워파트너스 | Hydraulic wind power generating system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3952723A (en) * | 1975-02-14 | 1976-04-27 | Browning Engineering Corporation | Windmills |
JP2005248738A (en) * | 2004-03-02 | 2005-09-15 | Fuchu Giken:Kk | Operation control method for wind power generator |
US20100040470A1 (en) * | 2008-08-13 | 2010-02-18 | Jacob Johannes Nies | Wind energy system with fluid-working machine with non-symmetric actuation |
US20110142596A1 (en) * | 2010-06-29 | 2011-06-16 | Jacob Johannes Nies | Method for monitoring a component in a hydraulic circuit, monitoring device and fluid turbine |
KR20120018287A (en) * | 2010-05-28 | 2012-03-02 | 아르테미스 인텔리전트 파워 리미티드 | Method and apparatus for extracting energy from a fluctuating energy flow from a renewable energy source |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH497815A (en) * | 1969-04-02 | 1970-10-15 | Bbc Brown Boveri & Cie | Diverter switch for a step transformer |
DD299200A5 (en) * | 1990-10-01 | 1992-04-02 | Bpa Projekt Und Anlagentechnik-Gmbh,De | DEVICE FOR POSITIONING THE ROTOR HEAD OF A WIND POWER PLANT |
JP2006307816A (en) * | 2005-04-26 | 2006-11-09 | System Giken Kk | Horizontal/vertical windmill for wind power generation having variable blade length and pitch |
CN1749560A (en) * | 2005-10-12 | 2006-03-22 | 孙志永 | Wind collecting electric field |
CN2878713Y (en) * | 2005-12-12 | 2007-03-14 | 段小平 | Wind power generation device and system |
US20120045328A1 (en) * | 2010-08-17 | 2012-02-23 | Cleveland State University | Power transmission system |
-
2012
- 2012-03-27 KR KR1020120031131A patent/KR101967148B1/en active IP Right Grant
-
2013
- 2013-03-26 WO PCT/KR2013/002508 patent/WO2013147498A1/en active Application Filing
- 2013-03-26 CN CN201380016551.0A patent/CN104204513B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3952723A (en) * | 1975-02-14 | 1976-04-27 | Browning Engineering Corporation | Windmills |
JP2005248738A (en) * | 2004-03-02 | 2005-09-15 | Fuchu Giken:Kk | Operation control method for wind power generator |
US20100040470A1 (en) * | 2008-08-13 | 2010-02-18 | Jacob Johannes Nies | Wind energy system with fluid-working machine with non-symmetric actuation |
KR20120018287A (en) * | 2010-05-28 | 2012-03-02 | 아르테미스 인텔리전트 파워 리미티드 | Method and apparatus for extracting energy from a fluctuating energy flow from a renewable energy source |
US20110142596A1 (en) * | 2010-06-29 | 2011-06-16 | Jacob Johannes Nies | Method for monitoring a component in a hydraulic circuit, monitoring device and fluid turbine |
Also Published As
Publication number | Publication date |
---|---|
CN104204513A (en) | 2014-12-10 |
KR20130109413A (en) | 2013-10-08 |
KR101967148B1 (en) | 2019-04-10 |
CN104204513B (en) | 2017-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3465246B2 (en) | Fluid power generator | |
EP2464860B1 (en) | A variable speed wind turbine, and a method for operating the variable speed wind turbine during a power imbalance event | |
WO2013147498A1 (en) | Apparatus for generating hydraulic wind power and method thereof | |
KR101487153B1 (en) | Multiple generator wind turbine and method of operation | |
JP5785243B2 (en) | Wind turbine with high temperature superconducting multiphase generator | |
CN101300421B (en) | A turbine driven electric power production system and a method for control thereof | |
WO2007132303A1 (en) | Wind turbine system with ac servo motor rotor blade pitch control, using super-capacitor energy storage | |
CN102985686A (en) | Power generating apparatus of renewable energy type and operation method thereof | |
CN103095053A (en) | Wind turbine generator and wind turbine | |
CN1860292A (en) | Redundant blade pitch control system for a wind turbine and method for controlling a wind turbine | |
KR20120090023A (en) | Vertical wind power generator | |
CN101334005A (en) | Method and apparatus for controlling vertical axis wind power generation system | |
RU2352810C2 (en) | Windmill generator | |
WO2019083134A1 (en) | Power generation system with non-powered fans and ventilator utilizing rudder-induced wind power | |
CN101839218A (en) | Direct-drive wind generating set | |
CN110985295B (en) | Grid-connected rotating speed control method for energy storage type hydraulic wind generating set | |
CN103038504A (en) | Power generating apparatus of renewable energy type and operation method thereof | |
JP6037803B2 (en) | Windmill, control method therefor, and wind power generation system | |
CN103511183A (en) | Vertical axis wind turbine | |
ITMI20121666A1 (en) | WIND POWER PLANT FOR THE GENERATION OF ELECTRICITY | |
CN110067700B (en) | Wind power magnetic suspension vertical shaft seawater desalination system and control method thereof | |
WO2009102134A2 (en) | Wind-powered electricity-generation system | |
WO2016153134A1 (en) | Electric power generation device having multiple hydraulic machines | |
CN201513295U (en) | Direct-drive wind generator set | |
CN112030901A (en) | Sectional speed-limiting gearless transmission hoisting type quick hoist |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13767930 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13767930 Country of ref document: EP Kind code of ref document: A1 |