JP2005248738A - Operation control method for wind power generator - Google Patents

Operation control method for wind power generator Download PDF

Info

Publication number
JP2005248738A
JP2005248738A JP2004056948A JP2004056948A JP2005248738A JP 2005248738 A JP2005248738 A JP 2005248738A JP 2004056948 A JP2004056948 A JP 2004056948A JP 2004056948 A JP2004056948 A JP 2004056948A JP 2005248738 A JP2005248738 A JP 2005248738A
Authority
JP
Japan
Prior art keywords
hydraulic
control
generator
wind turbine
hydraulic pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004056948A
Other languages
Japanese (ja)
Inventor
Kazuaki Hatano
Kazumi Machida
Katsuhiro Sakai
和明 波多野
和美 町田
勝弘 酒井
Original Assignee
Fuchu Giken:Kk
株式会社府中技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuchu Giken:Kk, 株式会社府中技研 filed Critical Fuchu Giken:Kk
Priority to JP2004056948A priority Critical patent/JP2005248738A/en
Publication of JP2005248738A publication Critical patent/JP2005248738A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation control method for a wind power generator, in which a generator G is installed on the ground, a flexible control of operation of the wind power generator, and rotation of a windmill 1 can be suppressed without losing wind power energy. <P>SOLUTION: In the operation control method for a wind power generator employing a hydraulic system for transmission of rotational energy, at least one of a hydraulic pump 13, hydraulic motor 15, hydraulic motor 20 is a variable displacement type. A controller 10 is constituted of a revolution number detection means of the windmill 1 and a predetermined electronic control circuit. When receiving a revolution number detection signal of the windmill 1, the controller 10 outputs a control signal based on set operational specifications to perform a variable control of the capacity of a variable displacement hydraulic pump 13 or the hydraulic motor 20. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、風車の回転で発電機を駆動し、風力エネルギーを電気エネルギーに変換する風力発電装置の運転制御方法に関するものである。   The present invention relates to an operation control method for a wind turbine generator that drives a generator by rotation of a windmill and converts wind energy into electric energy.
近年、風力発電は、環境汚染物質を全く排出しないクリーン性、無尽蔵な自然エネルギーを利用する省エネ性等の優位性から、地球温暖化問題を解決するためのエネルギー手段として積極的な開発利用が推進されている。   In recent years, wind power generation has been actively developed and used as an energy means to solve the global warming problem because of its superiority such as cleanliness that does not emit any environmental pollutants and energy conservation that uses inexhaustible natural energy. Has been.
図5に、構造物としての風力発電装置の一般的な構成を示す。図において、複数枚のブレードで形成した風車1が、発電機Gを設置したナセル5の前端に取り付けられ、風車1の回転軸3が増速機4を介して発電機Gに連結されている。風車1及びナセル5は、基礎7に立設したタワー8で所定の地上高に支持され、ヨー駆動装置6で風向きに追従して水平方向に回動自在とされている。そして、風車1が回転して風力エネルギーを回転エネルギーに変換し、回転軸3の回転数を増速機4で発電に適した回転数に増速して発電機Gを駆動し、発電機Gが交流電力を出力することで、風力エネルギーを電気エネルギーに変換する。   In FIG. 5, the general structure of the wind power generator as a structure is shown. In the figure, a windmill 1 formed of a plurality of blades is attached to the front end of a nacelle 5 on which a generator G is installed, and a rotating shaft 3 of the windmill 1 is connected to the generator G via a speed increaser 4. . The windmill 1 and the nacelle 5 are supported at a predetermined ground height by a tower 8 erected on the foundation 7, and are freely rotatable in the horizontal direction following the wind direction by a yaw driving device 6. Then, the windmill 1 rotates to convert wind energy into rotational energy, the rotational speed of the rotary shaft 3 is increased to a rotational speed suitable for power generation by the speed increaser 4, and the generator G is driven. Outputs AC power to convert wind energy into electrical energy.
こうした風力発電装置において、安定した電力の供給を得るために、ブレードの長尺化、タワー8の高度化、発電機Gの高出力化等の装置の大型化が図られているが、基礎7及びタワー8の支持構造体が支える荷重が増大し、高度化、巨大化した大型の風力発電装置の建設コストが極めて高価であった。これに対して、特開2003−278640号公報(特許文献1)により、風車の回転で駆動される油圧ポンプと、発電機Gを駆動する油圧モータとからなる油圧回路を構成し、油圧ポンプの作動で吐出される圧油による油圧モータの作動で発電機Gを駆動する手段が提案されている。これは、回転エネルギーの伝動に油圧システムを適用し、ナセル5には小型・軽量の油圧ポンプを設置し、発電機Gをナセル5から降ろして地上に設置することとし、支持構造体への荷重を軽減して風力発電装置の建設コストの大幅な低減化を図るものである。
特開2003−278640号公報
In such a wind power generation device, in order to obtain a stable power supply, the size of the device has been increased, such as lengthening the blade, upgrading the tower 8, and increasing the output of the generator G. In addition, the load supported by the support structure of the tower 8 has increased, and the construction cost of a large-scale wind power generation apparatus that has become sophisticated and huge has been extremely high. On the other hand, according to Japanese Patent Application Laid-Open No. 2003-278640 (Patent Document 1), a hydraulic circuit including a hydraulic pump driven by the rotation of a windmill and a hydraulic motor driving a generator G is configured. Means for driving the generator G by actuation of a hydraulic motor by pressure oil discharged by actuation have been proposed. This is because the hydraulic system is applied to the transmission of rotational energy, a small and lightweight hydraulic pump is installed in the nacelle 5, the generator G is lowered from the nacelle 5 and installed on the ground, and the load on the support structure To reduce the construction cost of the wind turbine generator.
JP 2003-278640 A
一方、従来、強風時に増大する風力発電装置の騒音、振動を抑制する手段としては、機械的、電気的ブレーキにより、風車1の回転を抑制する手段が用いられている。しかし、こうした回転抑制手段は、風速の3乗に比例する風力エネルギーが有効に発電に寄与することなく無駄となり、強風時に飛躍的に増大する風力エネルギーを効率的に電気エネルギーに変換するものではない。   On the other hand, conventionally, as a means for suppressing noise and vibration of the wind turbine generator that increases during strong winds, a means for suppressing the rotation of the windmill 1 by mechanical and electrical braking has been used. However, such rotation suppression means does not effectively convert wind energy, which is proportional to the third power of the wind speed, without effectively contributing to power generation, and that dramatically increases wind energy, which increases dramatically during strong winds, to electrical energy. .
この発明は、風車1の回転で駆動される油圧ポンプと、発電機Gを駆動する油圧モータとからなる油圧回路を構成して回転エネルギーの伝動に油圧システムを適用し、発電機Gを地上に設置するとともに、風力発電装置の運転をフレキシブルに制御可能であり、風力エネルギーを損失することなく風車1の回転を抑制することができる風力発電装置の運転制御方法を提案し、特に、風力発電装置の最適運転を図ることを目的とするものである。   In the present invention, a hydraulic circuit including a hydraulic pump driven by the rotation of the windmill 1 and a hydraulic motor that drives the generator G is configured to apply the hydraulic system to transmission of rotational energy, and the generator G is placed on the ground. A wind power generator operation control method that can flexibly control the operation of the wind turbine generator and that can suppress the rotation of the windmill 1 without losing wind energy is proposed. The purpose of this is to achieve the optimum operation.
上記の目的を達成するため、請求項1に記載の発明は、風車と、この風車の回転で駆動される油圧ポンプとをタワーで所定の地上高に支持し、油圧ポンプの作動で吐出される圧油を油圧モータへ送油する圧送回路を形成し、油圧モータと、この油圧モータの回転で駆動される発電機とを地上に設置し、回転エネルギーの伝動に油圧システムを適用した風力発電装置の運転制御方法であって、油圧ポンプ、油圧モータの少なくともどちらか一方を可変容量型とする。そして、風車の回転数検出手段と所定の電子制御回路からなるコントローラーを設け、風車の回転数検出信号が入力されたコントローラーが、設定された運転仕様に基づいて制御信号を出力し、可変容量型油圧ポンプ又は油圧モータの容量を可変制御することを特徴とするものである。   In order to achieve the above object, according to the first aspect of the present invention, a wind turbine and a hydraulic pump driven by the rotation of the wind turbine are supported by a tower at a predetermined ground height, and discharged by operation of the hydraulic pump. A wind power generator that forms a pressure feed circuit that feeds pressure oil to a hydraulic motor, installs the hydraulic motor and a generator driven by the rotation of the hydraulic motor on the ground, and applies the hydraulic system to transmit rotational energy In this operation control method, at least one of the hydraulic pump and the hydraulic motor is a variable displacement type. Then, a controller comprising a wind turbine rotation speed detection means and a predetermined electronic control circuit is provided, and the controller to which the wind turbine rotation speed detection signal is input outputs a control signal based on the set operation specification, and is a variable capacity type The capacity of the hydraulic pump or the hydraulic motor is variably controlled.
請求項2に記載の風力発電装置の運転制御方法は、請求項1に記載の風力発電装置の運転制御方法において、可変容量型油圧ポンプ又は油圧モータに代わって、容量が異なる複数の定量型油圧ポンプ又は油圧モータを並列に連結し、コントローラーの制御信号に応じてこれらを選択的に組み合わせて運転するよう構成するものである。   The operation control method for a wind turbine generator according to claim 2 is the operation control method for a wind turbine generator according to claim 1, wherein a plurality of fixed hydraulic pressures having different capacities are used instead of a variable displacement hydraulic pump or a hydraulic motor. A pump or a hydraulic motor is connected in parallel, and is configured to be operated by selectively combining them according to the control signal of the controller.
請求項3に記載の風力発電装置の運転制御方法は、請求項2に記載の風力発電装置の運転制御方法において、定量型油圧ポンプ又は油圧モータに代わって、容量が異なる複数の可変容量型油圧ポンプ又は油圧モータを用いるものである。   The operation control method for a wind turbine generator according to claim 3 is the operation control method for a wind turbine generator according to claim 2, wherein a plurality of variable displacement hydraulics having different capacities are used instead of the quantitative hydraulic pump or the hydraulic motor. A pump or a hydraulic motor is used.
請求項4に記載の風力発電装置の運転制御方法は、風車の回転数と発電機Gの出力との関係における最適運転曲線に沿った運転制御を行うものである。   The operation control method for a wind turbine generator according to claim 4 performs operation control along an optimum operation curve in the relationship between the rotational speed of the windmill and the output of the generator G.
請求項1に記載の風力発電装置の運転制御方法によれば、油圧ポンプ、油圧モータの少なくともどちらか一方を可変容量型とし、この可変容量型油圧ポンプ又は油圧モータの容量をコントローラーの制御信号で可変制御することで、風力発電装置の運転をフレキシブルに制御可能である。例えば、可変容量型油圧ポンプを用い、風速の増加に伴って風車の回転数が上昇すれば、油圧ポンプの一回転の吐出量を増加させて回転トルクを増大させ、風車の回転上昇の抑制を図るとともに、作動油の流量の増大で油圧モータを増速させ、発電出力の増大を図ることで、風力エネルギーを損失することなく風車の回転を抑制することができる。また、可変容量型油圧モータを用い、一回転に要する油量を可変制御することで、作動油の流量の変動に対して油圧モータの回転数の変動を抑制し、定出力運転を図ることもできる。   According to the operation control method for a wind turbine generator according to claim 1, at least one of the hydraulic pump and the hydraulic motor is a variable displacement type, and the capacity of the variable displacement hydraulic pump or the hydraulic motor is determined by a control signal of the controller. By variably controlling, the operation of the wind power generator can be flexibly controlled. For example, if a variable displacement hydraulic pump is used and the rotational speed of the wind turbine increases as the wind speed increases, the discharge amount of one rotation of the hydraulic pump is increased to increase the rotational torque, thereby suppressing the increase in rotational speed of the wind turbine. In addition, the rotation of the wind turbine can be suppressed without losing wind energy by accelerating the hydraulic motor by increasing the flow rate of hydraulic oil and increasing the power generation output. In addition, by using a variable displacement hydraulic motor and variably controlling the amount of oil required for one rotation, fluctuations in the number of revolutions of the hydraulic motor can be suppressed with respect to fluctuations in the flow rate of hydraulic oil, and constant output operation can be achieved. it can.
請求項2に記載の風力発電装置の運転制御方法によれば、容量が異なる複数の定量型油圧ポンプ又は油圧モータを選択的に組み合わせて運転することで、単一の可変容量型油圧ポンプ又は油圧モータの使用に比べて、無風状態から強風状態まで、風速の変化に対するダイナミックレンジの拡大を図ることができる。また、この運転制御方法において、容量が異なる複数の可変容量型油圧ポンプ又は油圧モータを用いることで、風速の変化に応じた無段階な運転制御が可能である。   According to the operation control method for a wind turbine generator according to claim 2, a single variable displacement hydraulic pump or hydraulic pressure is operated by selectively combining a plurality of quantitative hydraulic pumps or hydraulic motors having different capacities. Compared to the use of a motor, the dynamic range can be expanded with respect to changes in wind speed from a windless state to a strong wind state. Further, in this operation control method, by using a plurality of variable displacement hydraulic pumps or hydraulic motors having different capacities, it is possible to perform stepless operation control according to changes in wind speed.
また、この発明の風力発電装置の運転制御方法によれば、風車の回転数と発電機Gの出力との関係における最適運転曲線に沿った運転仕様をコントローラに設定し、その制御信号で可変容量型油圧ポンプ又は油圧モータの容量を可変制御することで、風力発電装置の最適運転を実現することができる。   Further, according to the operation control method for a wind turbine generator of the present invention, the operation specification along the optimum operation curve in the relationship between the rotational speed of the windmill and the output of the generator G is set in the controller, and the variable capacity is determined by the control signal. By optimally controlling the capacity of the hydraulic pump or the hydraulic motor, it is possible to realize the optimum operation of the wind turbine generator.
以下にこの発明の実施の形態を、図面を用いて具体的に説明する。
図1は、この発明の風力発電装置の運転制御方法の最初の実施例で、基本的な構成を示す全体構成図である。図において、風車1の回転軸3に可変容量型油圧ポンプ13(斜板式ピストンポンプ)の駆動軸を連結し、風車1の回転で油圧ポンプ13を駆動するように構成されている。回転軸3には、回転数検知器11が介設され、その信号が所定の電子制御回路からなるコントローラー10に入力され、回転軸3(風車1)の回転数が検出可能とされている。回転数検知器11、油圧ポンプ13等をナセル5内に設置し、風車1と油圧ポンプ13とで構成した風車・油圧ポンプユニットは、タワー8で所定の地上高に支持される。
Embodiments of the present invention will be specifically described below with reference to the drawings.
FIG. 1 is an overall configuration diagram showing a basic configuration in the first embodiment of the operation control method for a wind turbine generator according to the present invention. In the figure, a drive shaft of a variable displacement hydraulic pump 13 (swash plate type piston pump) is connected to the rotary shaft 3 of the windmill 1, and the hydraulic pump 13 is driven by the rotation of the windmill 1. A rotation speed detector 11 is provided on the rotation shaft 3 and a signal thereof is input to a controller 10 including a predetermined electronic control circuit so that the rotation speed of the rotation shaft 3 (wind turbine 1) can be detected. A wind turbine / hydraulic pump unit including a rotation speed detector 11, a hydraulic pump 13, and the like installed in the nacelle 5 and configured by the wind turbine 1 and the hydraulic pump 13 is supported by the tower 8 at a predetermined ground height.
油圧ポンプ13の作動で吐出される圧油を定容量型油圧モータ15へ送油する圧送回路14が形成され、圧送回路14にはリリーフ弁17、比例制御弁18が介設されている。油圧モータ15の出力軸に発電機Gを連結し、油圧モータ15の回転で発電機Gを駆動するように構成され、発電機Gの出力電圧V、出力電流Aがコントローラー10に入力され、発電機Gの出力が検出可能とされている。油圧モータ20と発電機Gとで構成した油圧モータ・発電ユニットは地上に設置される。   A pressure feeding circuit 14 for feeding pressure oil discharged by the operation of the hydraulic pump 13 to the constant displacement hydraulic motor 15 is formed, and a relief valve 17 and a proportional control valve 18 are interposed in the pressure feeding circuit 14. The generator G is connected to the output shaft of the hydraulic motor 15, and the generator G is driven by the rotation of the hydraulic motor 15. The output voltage V and the output current A of the generator G are input to the controller 10 to generate power. The output of the machine G can be detected. A hydraulic motor / power generation unit composed of the hydraulic motor 20 and the generator G is installed on the ground.
油圧モータ15の排油を油圧ポンプ13へ送油する戻り回路16が形成され、戻り回路15にはタンク19が介設され、油圧ポンプ13−圧送回路14−油圧モータ15−戻り回路16−タンク19−油圧ポンプ13と作動油が循環する油圧回路が形成されている。   A return circuit 16 for sending the oil discharged from the hydraulic motor 15 to the hydraulic pump 13 is formed, and a tank 19 is interposed in the return circuit 15. The hydraulic pump 13 -the pressure feeding circuit 14 -the hydraulic motor 15 -the return circuit 16 -the tank 19-Hydraulic circuit in which hydraulic pump 13 and hydraulic oil circulate is formed.
次にこの風力発電装置の運転について説明する。
風車1が風力エネルギーを回転エネルギーに変換し、回転軸3が回転して油圧ポンプ13を駆動する。油圧ポンプ13が作動して圧油を吐出し、圧送回路14から油圧モータ15へ送油されて油圧モータ15を駆動する。油圧モータ15の回転で発電機Gの回転子が回転し、発電機Gが交流電力を出力する。油圧モータ15の排油は、予圧又は補助ポンプを用いた付加圧によって戻り回路16からタンク19へ収容され、再び油圧ポンプ13に吸引される。このように、風車1の回転エネルギーが油圧システムを介して伝動され、電気エネルギーに変換される。
Next, the operation of this wind power generator will be described.
The windmill 1 converts wind energy into rotational energy, and the rotating shaft 3 rotates to drive the hydraulic pump 13. The hydraulic pump 13 is actuated to discharge the pressure oil, and is fed from the pressure feed circuit 14 to the hydraulic motor 15 to drive the hydraulic motor 15. The rotor of the generator G is rotated by the rotation of the hydraulic motor 15, and the generator G outputs AC power. The oil discharged from the hydraulic motor 15 is accommodated in the tank 19 from the return circuit 16 by preload or additional pressure using an auxiliary pump, and is again sucked into the hydraulic pump 13. Thus, the rotational energy of the windmill 1 is transmitted through the hydraulic system and converted into electrical energy.
この風力発電装置の運転において、回転数検知器11からの回転軸3の回転数検出信号と発電機Gの出力とがコントローラー10に入力され、コントローラー10は、設定された運転仕様に基づいて比例制御弁18へ制御信号を出力する。比例制御弁18はこの制御信号に応じて、油圧ポンプ13の斜板傾転シリンダ内への油圧の供給又は排油を行い、斜板の傾転角を可変して油圧ポンプ13の吐出量を制御する。このようにして、風速の増加に伴って回転軸3の回転数が上昇すれば、油圧ポンプ13の一回転の吐出量を増加させて回転トルクを増大させ、風車1の回転上昇の抑制を図るとともに、作動油の流量の増大で油圧モータ15を増速させ、発電出力の増大が図られる。   In the operation of the wind power generator, the rotational speed detection signal of the rotary shaft 3 from the rotational speed detector 11 and the output of the generator G are input to the controller 10, and the controller 10 is proportional based on the set operation specifications. A control signal is output to the control valve 18. The proportional control valve 18 supplies or discharges hydraulic pressure into the swash plate tilting cylinder of the hydraulic pump 13 in response to the control signal, and varies the tilt angle of the swash plate to control the discharge amount of the hydraulic pump 13. Control. Thus, if the rotation speed of the rotating shaft 3 increases with the increase in the wind speed, the discharge amount of one rotation of the hydraulic pump 13 is increased to increase the rotational torque, thereby suppressing the rotation increase of the windmill 1. At the same time, the hydraulic motor 15 is accelerated by increasing the flow rate of the hydraulic oil, and the power generation output is increased.
図2は、この発明の第2の実施例の全体構成図である。図において、前例と同一の符号は同一の部材であるので説明を省略するが、この実施例は、前例と同じく油圧ポンプ13を可変容量型とするとともに、油圧ポンプ13の作動で駆動される油圧モータ20も可変容量型(斜板式ピストンモータ)としたものである。油圧ポンプ13及び油圧モータ20は、前例の油圧制御に代わって、それぞれ直動モータ21、22で斜板の傾転角を可変して容量を制御する構造が用いられている。   FIG. 2 is an overall configuration diagram of the second embodiment of the present invention. In the figure, the same reference numerals as those in the previous example are the same members, and the description thereof will be omitted. In this example, the hydraulic pump 13 is a variable displacement type as in the previous example, and the hydraulic pressure driven by the operation of the hydraulic pump 13 is The motor 20 is also a variable capacity type (swash plate type piston motor). The hydraulic pump 13 and the hydraulic motor 20 employ a structure in which the displacement is controlled by changing the tilt angle of the swash plate by the direct acting motors 21 and 22, respectively, instead of the hydraulic control of the previous example.
この風力発電装置の運転において、回転数検知器11からの回転軸3の回転数検出信号と発電機Gの出力とがコントローラー10に入力され、コントローラー10は、設定された運転仕様に基づいて各直動モータ21、22へ制御信号を出力する。直動モータ21、22はこの制御信号に応じて、それぞれの斜板の傾転角を可変して油圧ポンプ13及び油圧モータ20の容量を可変制御し、風力発電装置の運転が制御される。油圧ポンプ13及び油圧モータ20を可変容量型としたことで、風力発電装置の運転をよりフレキシブルに制御可能であり、強風時に風車1の回転抑制を図るほか、油圧モータ20の一回転に要する油量を可変制御することで、作動油の流量の変動に対して油圧モータ20の回転数の変動を抑制し、定出力運転を図ることもできる。   In the operation of the wind power generator, the rotational speed detection signal of the rotary shaft 3 from the rotational speed detector 11 and the output of the generator G are input to the controller 10, and the controller 10 performs each operation based on the set operation specifications. A control signal is output to the direct acting motors 21 and 22. In response to this control signal, the direct acting motors 21 and 22 vary the tilt angles of the respective swash plates to variably control the capacities of the hydraulic pump 13 and the hydraulic motor 20, thereby controlling the operation of the wind power generator. Since the hydraulic pump 13 and the hydraulic motor 20 are variable displacement types, the operation of the wind power generator can be controlled more flexibly, and the rotation of the windmill 1 can be suppressed during strong winds, and the oil required for one rotation of the hydraulic motor 20 By variably controlling the amount, fluctuations in the rotational speed of the hydraulic motor 20 can be suppressed with respect to fluctuations in the flow rate of the hydraulic oil, and constant output operation can be achieved.
図3は、この発明の第3の実施例の全体構成図である。この実施例は、風車1の回転軸3に、容量が異なる3個の定量型油圧ポンプ24、25、26を歯車箱23を介して並列に連結したものである。各油圧ポンプ24、25、26の駆動軸には電磁クラッチ27、28、29が介設され、それぞれの電磁クラッチ27、28、29の断続を制御することで、油圧ポンプ24、25、26を選択的に組み合わせて運転するものである。油圧ポンプ24、25、26で吐出される圧油は合流して圧送回路14から油圧モータ15へ送油され、定容量型油圧モータ15を駆動する。   FIG. 3 is an overall configuration diagram of the third embodiment of the present invention. In this embodiment, three quantitative hydraulic pumps 24, 25, 26 having different capacities are connected in parallel to a rotating shaft 3 of a windmill 1 via a gear box 23. Electromagnetic clutches 27, 28, 29 are provided on the drive shafts of the hydraulic pumps 24, 25, 26. By controlling the on / off of the electromagnetic clutches 27, 28, 29, the hydraulic pumps 24, 25, 26 are controlled. They are operated in combination selectively. The pressure oil discharged from the hydraulic pumps 24, 25, and 26 merges and is sent from the pressure feed circuit 14 to the hydraulic motor 15 to drive the constant displacement hydraulic motor 15.
この風力発電装置の運転において、回転数検知器11からの回転軸3の回転数検出信号と発電機Gの出力とがコントローラー10に入力され、コントローラー10は、設定された運転仕様に基づいて電磁クラッチ27、28、29へ制御信号を出力し、電磁クラッチ27、28、29はこの制御信号に応じて断続作動する。油圧ポンプ24、25、26の容量比を1:2:4とすれば、電磁クラッチ27のみ吸着した最も小型の油圧ポンプ24のみの容量比1の作動から、全ての電磁クラッチ27、28、29が吸着した全油圧ポンプ24、25、26の容量比7の作動まで、選択的に組み合わせて運転する。このように構成することで、単一の可変容量型油圧ポンプ13の使用に比べて、無風状態から強風状態まで、風速の変化に対するダイナミックレンジの拡大を図ったものである。なお、定量型油圧ポンプ24、25、26に代わって、容量の異なる複数の可変容量型油圧ポンプを用い、これらを選択的に組み合わせて運転するとともに、前例と同様にしてコントローラー10からの制御信号で各油圧ポンプの吐出量を制御するよう構成することもでき、この場合、風速の変化に応じた無段階な運転制御が可能である。また、この実施例では油圧ポンプ側を複数で構成したが、同様な考え方で、容量の異なる複数の油圧モータを設けてもよい。   In the operation of the wind power generator, the rotation speed detection signal of the rotation shaft 3 from the rotation speed detector 11 and the output of the generator G are input to the controller 10, and the controller 10 is electromagnetically operated based on the set operation specifications. A control signal is output to the clutches 27, 28, and 29, and the electromagnetic clutches 27, 28, and 29 are intermittently operated according to the control signal. If the capacity ratio of the hydraulic pumps 24, 25, 26 is 1: 2: 4, all the electromagnetic clutches 27, 28, 29 are operated from the operation of the capacity ratio 1 of only the smallest hydraulic pump 24 that attracts only the electromagnetic clutch 27. Are selectively combined and operated until the capacity ratio of the hydraulic pumps 24, 25, and 26 having adsorbed is increased. With this configuration, the dynamic range can be expanded with respect to changes in wind speed from a non-wind state to a strong wind state as compared with the use of a single variable displacement hydraulic pump 13. In place of the quantitative hydraulic pumps 24, 25, and 26, a plurality of variable displacement hydraulic pumps having different capacities are used, and these are selectively combined and operated, and the control signal from the controller 10 is the same as in the previous example. In this case, it is possible to control the discharge amount of each hydraulic pump. In this case, stepless operation control according to the change of the wind speed is possible. In this embodiment, a plurality of hydraulic pumps are provided, but a plurality of hydraulic motors having different capacities may be provided based on the same concept.
図4に示すグラフは、この発明の主目的である風力発電装置の最適運転について説明するものである。一般に、風力発電装置において、風速の増加とともに風車1の回転数が上昇し、発電機Gの出力が増大してその出力特性は図中の破線曲線のように示される。一方、風車1の力学特性と発電機Gの出力特性から、各風速における風車1の回転数と発電機Gの出力の関係は、図中イ、ロ、ハの曲線のように示される。したがって、各風速における最大出力が得られる曲線イ、ロ、ハの頂点を結んだ曲線が、風速エネルギーを最も効率的に発電可能な風力発電装置の最適運転曲線である。この発明の風力発電装置の運転制御方法によれば、この最適運転曲線に沿った運転仕様をコントローラ10に設定し、その制御信号で可変容量型油圧ポンプ13又は油圧モータ20の容量を可変制御することで、風車1の力学的特性と発電機Gの出力特性とのベストマッチングを図った最適運転を実現することができる。   The graph shown in FIG. 4 explains the optimum operation of the wind turbine generator that is the main object of the present invention. In general, in a wind turbine generator, the rotational speed of the wind turbine 1 increases as the wind speed increases, the output of the generator G increases, and its output characteristics are shown as a dashed curve in the figure. On the other hand, from the mechanical characteristics of the windmill 1 and the output characteristics of the generator G, the relationship between the rotational speed of the windmill 1 and the output of the generator G at each wind speed is shown by curves a, b, and c in the figure. Therefore, the curve that connects the vertices of curves i, b, and c where the maximum output at each wind speed is obtained is the optimum operating curve of the wind turbine generator that can generate wind energy efficiently most efficiently. According to the operation control method for a wind turbine generator of the present invention, the operation specification along the optimum operation curve is set in the controller 10, and the capacity of the variable displacement hydraulic pump 13 or the hydraulic motor 20 is variably controlled by the control signal. Thus, it is possible to realize an optimum operation in which the best matching between the mechanical characteristics of the wind turbine 1 and the output characteristics of the generator G is achieved.
以上、この発明の風力発電装置の運転制御方法の実施例について説明したが、実際の適用においては、脈動圧や衝動圧を緩和、調整する油圧調整器、運転上の障害を取り除き、安定した作動を保証するためのオイルフィルター、油圧、油温制御装置等の安全装置及び各種計器、センサーを油圧回路中の適宜の箇所に配置し、これらの作動状況を監視装置によって自動又は目視で監視し、作動油の円滑な循環と装置の安全且つ安定した運転を図るものとする。   As described above, the embodiment of the operation control method for the wind turbine generator according to the present invention has been described. Oil filters, oil pressure, oil temperature control devices and other safety devices and various instruments and sensors are arranged at appropriate locations in the hydraulic circuit, and their operating status is automatically or visually monitored by a monitoring device. Smooth circulation of hydraulic oil and safe and stable operation of the device shall be attempted.
この発明の最初の実施例の全体構成図。1 is an overall configuration diagram of a first embodiment of the present invention. 第2の実施例の全体構成図。The whole block diagram of the 2nd Example. 第3の実施例の全体構成図。The whole block diagram of the 3rd Example. 風力発電装置の出力特性図。The output characteristic figure of a wind power generator. 従来の風力発電装置の構成図。The block diagram of the conventional wind power generator.
符号の説明Explanation of symbols
1 風車
8 タワー
10 コントローラー
13 可変容量型油圧ポンプ
14 圧送回路
15 定容量型油圧モータ
20 可変容量型油圧モータ
24、25、26 定量型油圧ポンプ
DESCRIPTION OF SYMBOLS 1 Windmill 8 Tower 10 Controller 13 Variable displacement hydraulic pump 14 Pumping circuit 15 Constant displacement hydraulic motor 20 Variable displacement hydraulic motor 24, 25, 26 Fixed displacement hydraulic pump

Claims (4)

  1. 風車1と、この風車1の回転で駆動される油圧ポンプ13とをタワー8で所定の地上高に支持し、油圧ポンプ13の作動で吐出される圧油を油圧モータ15、20へ送油する圧送回路14を形成し、油圧モータ15、20と、この油圧モータ15、20の回転で駆動される発電機Gとを地上に設置し、回転エネルギーの伝動に油圧システムを適用した風力発電装置の運転制御方法であって、
    油圧ポンプ13、油圧モータ15、20の少なくともどちらか一方を可変容量型とし、
    風車1の回転数検出手段と所定の電子制御回路からなるコントローラー10を設け、風車1の回転数検出信号が入力されたコントローラー10が、設定された運転仕様に基づいて制御信号を出力し、可変容量型油圧ポンプ13又は油圧モータ20の容量を可変制御することを特徴とした風力発電装置の運転制御方法。
    The wind turbine 1 and the hydraulic pump 13 driven by the rotation of the wind turbine 1 are supported at a predetermined ground height by the tower 8, and the pressure oil discharged by the operation of the hydraulic pump 13 is sent to the hydraulic motors 15 and 20. A wind power generator in which a pressure feed circuit 14 is formed, hydraulic motors 15 and 20 and a generator G driven by the rotation of the hydraulic motors 15 and 20 are installed on the ground, and a hydraulic system is applied to transmission of rotational energy. An operation control method comprising:
    At least one of the hydraulic pump 13 and the hydraulic motors 15 and 20 is a variable displacement type,
    A controller 10 including a rotation speed detection means of the windmill 1 and a predetermined electronic control circuit is provided, and the controller 10 to which the rotation speed detection signal of the windmill 1 is input outputs a control signal based on the set operation specification and is variable. An operation control method for a wind turbine generator, wherein the capacity of the displacement hydraulic pump 13 or the hydraulic motor 20 is variably controlled.
  2. 請求項1に記載の風力発電装置の運転制御方法において、
    可変容量型油圧ポンプ13又は油圧モータ20に代わって、容量が異なる複数の定量型油圧ポンプ24、25、26又は油圧モータを並列に連結し、コントローラー10の制御信号に応じてこれらを選択的に組み合わせて運転するよう構成した風力発電装置の運転制御方法。
    In the wind turbine generator operation control method according to claim 1,
    Instead of the variable displacement hydraulic pump 13 or the hydraulic motor 20, a plurality of quantitative hydraulic pumps 24, 25, 26 or hydraulic motors having different capacities are connected in parallel, and these are selectively selected according to the control signal of the controller 10. An operation control method for a wind turbine generator configured to operate in combination.
  3. 請求項2に記載の風力発電装置の運転制御方法において、
    定量型油圧ポンプ24、25、26又は油圧モータに代わって、容量が異なる複数の可変容量型油圧ポンプ又は油圧モータを用いた風力発電装置の運転制御方法。
    In the wind turbine generator operation control method according to claim 2,
    An operation control method for a wind turbine generator using a plurality of variable displacement hydraulic pumps or hydraulic motors having different capacities instead of the fixed hydraulic pumps 24, 25, 26 or the hydraulic motor.
  4. 風車1の回転数と発電機Gの出力との関係における最適運転曲線に沿った運転制御を行うようにした請求項1、2又は3に記載の風力発電装置の運転制御方法。   The operation control method for a wind turbine generator according to claim 1, 2 or 3, wherein operation control is performed along an optimum operation curve in the relationship between the rotational speed of the windmill 1 and the output of the generator G.
JP2004056948A 2004-03-02 2004-03-02 Operation control method for wind power generator Pending JP2005248738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056948A JP2005248738A (en) 2004-03-02 2004-03-02 Operation control method for wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056948A JP2005248738A (en) 2004-03-02 2004-03-02 Operation control method for wind power generator

Publications (1)

Publication Number Publication Date
JP2005248738A true JP2005248738A (en) 2005-09-15

Family

ID=35029471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056948A Pending JP2005248738A (en) 2004-03-02 2004-03-02 Operation control method for wind power generator

Country Status (1)

Country Link
JP (1) JP2005248738A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085263A (en) * 2005-09-22 2007-04-05 Bosch Rexroth Corp Power generating circuit
WO2007073665A1 (en) * 2005-12-12 2007-07-05 Xiaoping Duan A wind electricity generating device and system
KR100814132B1 (en) 2007-01-31 2008-03-14 울산대학교 산학협력단 A equipment wind power generation complex
KR100832053B1 (en) 2007-08-21 2008-05-27 김동용 The wind turbine system by controlled fluid torque converter set
JP2009513882A (en) * 2005-10-31 2009-04-02 チャプドライヴ・アクティーゼルスカブ Turbine-driven power generation system and control method thereof
WO2009088171A2 (en) * 2008-01-10 2009-07-16 Min Sung Lee Aerogenerator
WO2009102134A2 (en) * 2008-02-11 2009-08-20 Jong-Won Park Wind-powered electricity-generation system
EP2154368A2 (en) * 2008-08-13 2010-02-17 General Electric Company Wind turbine with fluid power transmission arrangement
WO2010124012A2 (en) * 2009-04-21 2010-10-28 Gen-Tech Llc Power generator system
WO2010126621A3 (en) * 2009-01-05 2011-06-16 Windera Power Systems Inc. Hydraulic drive train with energy dissipation for electricity generation
US20120045327A1 (en) * 2010-08-17 2012-02-23 Artemis Intelligent Power Limited Fluid-Working Machine with Multi-Lobe Ring Cam
WO2011148652A3 (en) * 2010-05-28 2012-04-12 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type and method of operating the same
WO2011147997A3 (en) * 2010-05-28 2012-04-19 Artemis Intelligent Power Limited Method and apparatus for extracting energy from a fluctuating energy flow from a renewable energy source
WO2011147996A3 (en) * 2010-05-28 2012-04-19 Artemis Intelligent Power Limited Method and apparatus for extracting energy from a fluctuating energy flow from a renewable energy source
US8181455B2 (en) 2011-04-05 2012-05-22 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type and method for installing hydraulic pump
CN102713260A (en) * 2010-08-17 2012-10-03 阿尔特弥斯智能动力有限公司 Fluid-working machine with multi-lobe ring cam
JP2013501868A (en) * 2010-11-30 2013-01-17 三菱重工業株式会社 Wind power generator, tidal current power generator and operation control method thereof
JP2013501891A (en) * 2010-05-28 2013-01-17 三菱重工業株式会社 Renewable energy power generator and method of operating the same
JP2013501890A (en) * 2010-05-28 2013-01-17 三菱重工業株式会社 Renewable energy power generator and method of operating the same
JP2013509518A (en) * 2010-11-30 2013-03-14 三菱重工業株式会社 Wind power generator and operation control method thereof
CN103003564A (en) * 2011-09-22 2013-03-27 三菱重工业株式会社 Regnerative energy power generation device and rotor locking method therefor
WO2013042385A1 (en) * 2011-09-22 2013-03-28 三菱重工業株式会社 Renewable energy-type electric power generation device and method for operating renewable energy-type electric power generation device
US8432054B2 (en) 2011-06-13 2013-04-30 Wind Smart, Inc. Wind turbine with hydrostatic transmission
WO2013064812A1 (en) * 2011-11-01 2013-05-10 Winddrive Limited A power transfer system
CN103114967A (en) * 2013-02-28 2013-05-22 浙江大学 Hydraulic transmission wind-wave-complementary power generation set and control method thereof
WO2013005259A3 (en) * 2011-07-06 2013-05-23 Mitsubishi Heavy Industries, Ltd. Energy extraction device, group of energy extraction devices and operating methods
WO2013147498A1 (en) * 2012-03-27 2013-10-03 한국전력공사 Apparatus for generating hydraulic wind power and method thereof
US8601805B2 (en) 2011-04-05 2013-12-10 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type
US8622719B2 (en) 2010-11-30 2014-01-07 Mitsubishi Heavy Industries, Ltd. Hydraulic pump structure for wind turbine generator or tidal current generator and method of mounting hydraulic pump
US8684682B2 (en) 2011-04-05 2014-04-01 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type
US8710693B2 (en) 2011-09-22 2014-04-29 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type and method of attaching and detaching blade
JP5550781B2 (en) * 2011-09-22 2014-07-16 三菱重工業株式会社 Renewable energy power generator and method of operating the renewable energy power generator
KR101437362B1 (en) 2013-01-07 2014-09-15 한국기계연구원 Appratus for dissipating vibration energy
JP5634595B2 (en) * 2011-09-22 2014-12-03 三菱重工業株式会社 Regenerative energy type power generator and rotor fixing method thereof
CN104500376A (en) * 2014-12-06 2015-04-08 杭州科技职业技术学院 Wind-driven deep-well pump
CN104564508A (en) * 2015-01-12 2015-04-29 郑涵文 Tidal power generation device
EP2743502A4 (en) * 2011-08-10 2015-05-06 Mitsubishi Heavy Ind Ltd Renewable energy type electric power generation device
US9127656B2 (en) 2010-08-17 2015-09-08 Artemis Intelligent Power Limited Ring cam and fluid-working machine including ring cam
EP3173666A1 (en) * 2012-01-11 2017-05-31 Hydrautrans BV Transmission
KR101844823B1 (en) * 2013-09-05 2018-04-05 한국전력공사 Apparatus for controlling hydraulic type wind turbine and Method for the same

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4680019B2 (en) * 2005-09-22 2011-05-11 ボッシュ・レックスロス株式会社 Power generation circuit
JP2007085263A (en) * 2005-09-22 2007-04-05 Bosch Rexroth Corp Power generating circuit
JP2009513882A (en) * 2005-10-31 2009-04-02 チャプドライヴ・アクティーゼルスカブ Turbine-driven power generation system and control method thereof
WO2007073665A1 (en) * 2005-12-12 2007-07-05 Xiaoping Duan A wind electricity generating device and system
KR100814132B1 (en) 2007-01-31 2008-03-14 울산대학교 산학협력단 A equipment wind power generation complex
WO2009025420A1 (en) * 2007-08-21 2009-02-26 Dong Yong Kim Wind turbine system using fluid torque converter
KR100832053B1 (en) 2007-08-21 2008-05-27 김동용 The wind turbine system by controlled fluid torque converter set
WO2009088171A2 (en) * 2008-01-10 2009-07-16 Min Sung Lee Aerogenerator
WO2009088171A3 (en) * 2008-01-10 2009-09-03 Min Sung Lee Aerogenerator
WO2009102134A2 (en) * 2008-02-11 2009-08-20 Jong-Won Park Wind-powered electricity-generation system
WO2009102134A3 (en) * 2008-02-11 2009-11-05 Park Jong-Won Wind-powered electricity-generation system
EP2154368A2 (en) * 2008-08-13 2010-02-17 General Electric Company Wind turbine with fluid power transmission arrangement
US8074450B2 (en) * 2008-08-13 2011-12-13 General Electric Company Wind energy system with fluid-working machine with non-symmetric actuation
EP2154368A3 (en) * 2008-08-13 2012-01-04 General Electric Company Wind turbine with fluid power transmission arrangement
US8621856B2 (en) 2009-01-05 2014-01-07 Windera Power Systems, Inc. Hydraulic drive train with energy dissipation for electricity generation
WO2010126621A3 (en) * 2009-01-05 2011-06-16 Windera Power Systems Inc. Hydraulic drive train with energy dissipation for electricity generation
US8288880B2 (en) 2009-04-21 2012-10-16 Gen-Tech Llc Power generator system
WO2010124012A2 (en) * 2009-04-21 2010-10-28 Gen-Tech Llc Power generator system
WO2010124012A3 (en) * 2009-04-21 2011-03-24 Gen-Tech Llc Power generator system
CN102884312A (en) * 2010-05-28 2013-01-16 三菱重工业株式会社 Power generating apparatus of renewable energy type and method of operating the same
WO2011147997A3 (en) * 2010-05-28 2012-04-19 Artemis Intelligent Power Limited Method and apparatus for extracting energy from a fluctuating energy flow from a renewable energy source
WO2011147996A3 (en) * 2010-05-28 2012-04-19 Artemis Intelligent Power Limited Method and apparatus for extracting energy from a fluctuating energy flow from a renewable energy source
GB2480683B (en) * 2010-05-28 2014-09-10 Artemis Intelligent Power Ltd Method and apparatus for extracting energy from a fluctuating energy flow from a renewable energy source
US9103438B2 (en) 2010-05-28 2015-08-11 Artemis Intelligent Power Limited Method and apparatus for extracting energy from a fluctuating energy flow from a renewable energy source
WO2011148654A3 (en) * 2010-05-28 2012-04-12 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type and method of operating the same
JP2012522186A (en) * 2010-05-28 2012-09-20 アルテミス インテリジェント パワー リミティドArtemis Intelligent Power Limited Method and apparatus for extracting energy from a fluctuating energy flow with a renewable energy source
JP2012522185A (en) * 2010-05-28 2012-09-20 アルテミス インテリジェント パワー リミティドArtemis Intelligent Power Limited Method and apparatus for extracting energy from a fluctuating energy flow with a renewable energy source
WO2011148652A3 (en) * 2010-05-28 2012-04-12 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type and method of operating the same
JP2013501890A (en) * 2010-05-28 2013-01-17 三菱重工業株式会社 Renewable energy power generator and method of operating the same
KR101331686B1 (en) 2010-05-28 2013-11-20 아르테미스 인텔리전트 파워 리미티드 Method and apparatus for extracting energy from a fluctuating energy flow from a renewable energy source
CN102741549A (en) * 2010-05-28 2012-10-17 阿尔特弥斯智能动力有限公司 Method and apparatus for extracting energy from a fluctuating energy flow from a renewable energy source
JP2013501891A (en) * 2010-05-28 2013-01-17 三菱重工業株式会社 Renewable energy power generator and method of operating the same
CN102884313A (en) * 2010-05-28 2013-01-16 三菱重工业株式会社 Power generating apparatus of renewable energy type and method of operating the same
CN102597510A (en) * 2010-05-28 2012-07-18 阿尔特弥斯智能动力有限公司 Method and apparatus for extracting energy from a fluctuating energy flow from a renewable energy source
KR101331627B1 (en) 2010-05-28 2013-11-20 아르테미스 인텔리전트 파워 리미티드 Method and apparatus for extracting energy from a fluctuating energy flow from a renewable energy source
US9127656B2 (en) 2010-08-17 2015-09-08 Artemis Intelligent Power Limited Ring cam and fluid-working machine including ring cam
CN102713260A (en) * 2010-08-17 2012-10-03 阿尔特弥斯智能动力有限公司 Fluid-working machine with multi-lobe ring cam
US9328720B2 (en) 2010-08-17 2016-05-03 Artemis Intelligent Power Limited Fluid-working machine with multi-lobe ring cam
US20120045327A1 (en) * 2010-08-17 2012-02-23 Artemis Intelligent Power Limited Fluid-Working Machine with Multi-Lobe Ring Cam
JP2013509518A (en) * 2010-11-30 2013-03-14 三菱重工業株式会社 Wind power generator and operation control method thereof
CN103003567A (en) * 2010-11-30 2013-03-27 三菱重工业株式会社 Wind turbine generator or tidal current generator and operation method thereof
US8622719B2 (en) 2010-11-30 2014-01-07 Mitsubishi Heavy Industries, Ltd. Hydraulic pump structure for wind turbine generator or tidal current generator and method of mounting hydraulic pump
JP2013501868A (en) * 2010-11-30 2013-01-17 三菱重工業株式会社 Wind power generator, tidal current power generator and operation control method thereof
US8181455B2 (en) 2011-04-05 2012-05-22 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type and method for installing hydraulic pump
US8684682B2 (en) 2011-04-05 2014-04-01 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type
CN102822512A (en) * 2011-04-05 2012-12-12 三菱重工业株式会社 Power generating apparatus of renewable energy type and method for installing hydraulic pump
US8601805B2 (en) 2011-04-05 2013-12-10 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type
JP4969708B1 (en) * 2011-04-05 2012-07-04 三菱重工業株式会社 Renewable energy power generator and hydraulic pump mounting method
WO2012137312A1 (en) * 2011-04-05 2012-10-11 三菱重工業株式会社 Renewable energy generator device and hydraulic pump attachment method
US8432054B2 (en) 2011-06-13 2013-04-30 Wind Smart, Inc. Wind turbine with hydrostatic transmission
WO2013005259A3 (en) * 2011-07-06 2013-05-23 Mitsubishi Heavy Industries, Ltd. Energy extraction device, group of energy extraction devices and operating methods
EP2743502A4 (en) * 2011-08-10 2015-05-06 Mitsubishi Heavy Ind Ltd Renewable energy type electric power generation device
WO2013042279A1 (en) * 2011-09-22 2013-03-28 三菱重工業株式会社 Renewable energy-type electric power generation device and rotor affixation method for same
CN103003564A (en) * 2011-09-22 2013-03-27 三菱重工业株式会社 Regnerative energy power generation device and rotor locking method therefor
US8624413B2 (en) 2011-09-22 2014-01-07 Mitsubishi Heavy Industries, Ltd. Regeneration energy type electric generation apparatus and its rotor fixing method
JP5634595B2 (en) * 2011-09-22 2014-12-03 三菱重工業株式会社 Regenerative energy type power generator and rotor fixing method thereof
US8710693B2 (en) 2011-09-22 2014-04-29 Mitsubishi Heavy Industries, Ltd. Power generating apparatus of renewable energy type and method of attaching and detaching blade
JP5518180B2 (en) * 2011-09-22 2014-06-11 三菱重工業株式会社 Regenerative energy type power generator and rotor fixing method thereof
JP5550781B2 (en) * 2011-09-22 2014-07-16 三菱重工業株式会社 Renewable energy power generator and method of operating the renewable energy power generator
WO2013042252A1 (en) * 2011-09-22 2013-03-28 三菱重工業株式会社 Regnerative energy power generation device and rotor locking method therefor
WO2013042385A1 (en) * 2011-09-22 2013-03-28 三菱重工業株式会社 Renewable energy-type electric power generation device and method for operating renewable energy-type electric power generation device
WO2013064812A1 (en) * 2011-11-01 2013-05-10 Winddrive Limited A power transfer system
EP3173667A1 (en) * 2012-01-11 2017-05-31 Hydrautrans BV Transmission
EP3173666A1 (en) * 2012-01-11 2017-05-31 Hydrautrans BV Transmission
CN104204513A (en) * 2012-03-27 2014-12-10 韩国电力公社 Apparatus for generating hydraulic wind power and method thereof
CN104204513B (en) * 2012-03-27 2017-07-07 韩国电力公社 Fluid pressure type wind power generation plant and its method
WO2013147498A1 (en) * 2012-03-27 2013-10-03 한국전력공사 Apparatus for generating hydraulic wind power and method thereof
KR20130109413A (en) * 2012-03-27 2013-10-08 한국전력공사 Hydraulic wind power generation device and its method
KR101967148B1 (en) * 2012-03-27 2019-04-10 한국전력공사 Hydraulic wind power generation device and its method
KR101437362B1 (en) 2013-01-07 2014-09-15 한국기계연구원 Appratus for dissipating vibration energy
CN103114967A (en) * 2013-02-28 2013-05-22 浙江大学 Hydraulic transmission wind-wave-complementary power generation set and control method thereof
KR101844823B1 (en) * 2013-09-05 2018-04-05 한국전력공사 Apparatus for controlling hydraulic type wind turbine and Method for the same
CN104500376A (en) * 2014-12-06 2015-04-08 杭州科技职业技术学院 Wind-driven deep-well pump
CN104564508A (en) * 2015-01-12 2015-04-29 郑涵文 Tidal power generation device

Similar Documents

Publication Publication Date Title
JP2005248738A (en) Operation control method for wind power generator
US6304002B1 (en) Distributed powertrain for high torque, low electric power generator
CN100347445C (en) Wind turbine with hydraulic transmission
US5140170A (en) Power generating system
CN101050753B (en) Control system for wind turbine with hydrodynamic transmission
JP4181041B2 (en) Wind power generator
JP2003148323A (en) Fluid power generation device
CN101169103A (en) Methods and apparatus for operating a wind turbine
JP6423800B2 (en) Control device for the yaw system of a wind power plant
US8922039B2 (en) Wind turbine and a method for powering one or more hydraulic pitch actuators
RU2460922C2 (en) Variable gear ratio transmission
WO2013021433A1 (en) Wind power generation device and method for controlling excess energy of wind power generation device
JP2005180237A (en) Wind power generation device
JP2014515075A (en) Converter for converting hydraulic energy into electrical energy, converter assembly and method for controlling a converter
EP2535581A2 (en) Wind turbine with hydrostatic transmission
JP2003278640A (en) Wind power generator
US8621856B2 (en) Hydraulic drive train with energy dissipation for electricity generation
CA2371694C (en) Powertrain for power generator
KR20020045601A (en) Wind turbine
KR101967148B1 (en) Hydraulic wind power generation device and its method
JP2015169163A (en) Wind power generation device
KR101656674B1 (en) Power generating apparatus having hydraulic machineries
US10697430B2 (en) Turbine blade arrangement
KR101569997B1 (en) Windpower Generation
TW201026952A (en) Wind power generator