WO2016153038A1 - Cyclic olefin resin composition film - Google Patents

Cyclic olefin resin composition film Download PDF

Info

Publication number
WO2016153038A1
WO2016153038A1 PCT/JP2016/059611 JP2016059611W WO2016153038A1 WO 2016153038 A1 WO2016153038 A1 WO 2016153038A1 JP 2016059611 W JP2016059611 W JP 2016059611W WO 2016153038 A1 WO2016153038 A1 WO 2016153038A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic olefin
resin composition
film
composition film
refractive index
Prior art date
Application number
PCT/JP2016/059611
Other languages
French (fr)
Japanese (ja)
Inventor
石森 拓
堀井 明宏
慶 小幡
香奈子 橋本
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2016153038A1 publication Critical patent/WO2016153038A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a cyclic olefin resin composition film in which an elastomer or the like is added and dispersed in a cyclic olefin resin.
  • Cyclic olefin resin is an amorphous and thermoplastic olefin resin that has a cyclic olefin skeleton in its main chain, has excellent optical properties (transparency, low birefringence), low water absorption, It has excellent performance such as dimensional stability and high moisture resistance based thereon (see, for example, Patent Documents 1 to 3). Therefore, films or sheets made of cyclic olefin resins are expected to be developed for various optical applications such as retardation films, polarizing plate protective films, light diffusion plates, and moisture proof packaging applications such as pharmaceutical packaging and food packaging. Yes.
  • the present invention has been proposed in view of such a conventional situation, and provides a cyclic olefin-based resin composition film excellent in mechanical isotropy.
  • the inventors of the present application stretched a cyclic olefin resin composition composed of a cyclic olefin resin and an elastomer, and made the refractive index in the MD direction a predetermined value larger than the refractive index in the TD direction.
  • the present inventors have found that the problem can be solved and have completed the present invention.
  • the cyclic olefin-based resin composition film according to the present invention is obtained by stretching a cyclic olefin-based resin composition composed of a cyclic olefin-based resin and an elastomer, and having a refractive index in the MD direction of 0.001 to less than a refractive index in the TD direction. It is made larger by 0.0035.
  • the method for producing a cyclic olefin-based resin composition film according to the present invention includes heating and melting a cyclic olefin-based resin composition containing a cyclic olefin-based resin and an elastomer, and stretching the heat-melted cyclic olefin-based resin composition.
  • a cyclic olefin-based resin composition film having a refractive index in the MD direction that is 0.001 to 0.0035 larger than a refractive index in the TD direction is obtained.
  • a cyclic olefin resin composition composed of a cyclic olefin resin and an elastomer, and making the refractive index in the MD direction larger than the refractive index in the TD direction by a predetermined value, it becomes mechanically isotropic.
  • An excellent cyclic olefin resin composition film is obtained.
  • FIG. 1 is a cross-sectional perspective view showing an outline of a cyclic olefin-based resin composition film according to the present embodiment.
  • FIG. 2 is a schematic diagram illustrating a configuration example of a film manufacturing apparatus.
  • 3A and 3B are cross-sectional views illustrating an example of a transparent conductive film
  • FIGS. 3C and 3D are cross-sectional views illustrating an example of a transparent conductive film provided with a moth-eye-shaped structure.
  • FIG. 4 is a schematic cross-sectional view showing a configuration example of the touch panel.
  • FIG. 5 is an external view illustrating an example of a television device as an electronic apparatus.
  • 6A and 6B are external views illustrating examples of a digital camera as an electronic device.
  • FIG. 7 is an external view illustrating an example of a notebook personal computer as an electronic device.
  • FIG. 8 is an external view illustrating an example of a video camera as an electronic device.
  • FIG. 9 is an external view illustrating an example of a mobile phone as an electronic device.
  • FIG. 10 is an external view illustrating an example of a tablet computer as an electronic device.
  • the cyclic olefin-based resin composition film according to the present embodiment is obtained by stretching a cyclic olefin-based resin composition composed of a cyclic olefin-based resin and an elastomer, and having a refractive index in the MD direction that is 0.001 to less than that in the TD direction. It is made larger by 0.0035. By setting it as such a structure, the cyclic olefin resin composition film excellent in mechanical isotropy is obtained.
  • FIG. 1 is a cross-sectional perspective view showing an outline of a cyclic olefin-based resin composition film according to the present embodiment.
  • the cyclic olefin-based resin composition film contains a cyclic olefin-based resin 11 and an elastomer 12.
  • the cyclic olefin-based resin composition film is, for example, a short film or sheet, the X-axis direction which is the width direction (TD: Transverse Direction), and the Y-axis direction which is the length direction (MD: Machine Direction), And a Z-axis direction that is a thickness direction.
  • the thickness Z of the cyclic olefin-based resin composition film is preferably 0.1 ⁇ m to 2 mm, and more preferably 1 ⁇ m to 1 mm.
  • a dispersed phase (island phase) made of elastomer 12 is dispersed in a matrix (sea phase) made of cyclic olefin resin 11.
  • the dispersed phase is dispersed with shape anisotropy in the MD direction by, for example, extrusion molding, has a major axis in the MD direction, and a minor axis in the TD direction.
  • the cyclic olefin-based resin composition film preferably has a refractive index in the MD direction that is 0.001 to 0.0030 higher than a refractive index in the TD direction.
  • the mechanical isotropy of a cyclic olefin resin composition film can be made more favorable.
  • the refractive index in the MD direction of the cyclic olefin-based resin composition film is preferably 1.48 to 1.58, and more preferably 1.51 to 1.55.
  • the refractive index in the TD direction of the cyclic olefin-based resin composition film is preferably 1.48 to 1.58, and more preferably 1.51 to 1.55.
  • the cyclic olefin-based resin composition film preferably satisfies the following formula (1) or formula (2), and more preferably satisfies the following formula (1). That is, the cyclic olefin-based resin composition film preferably has a small difference between the tear strength in the MD direction and the tear strength in the TD direction. By satisfy
  • the tear strength (N / mm) of the larger tear strength in the MD direction or TD direction of the cyclic olefin resin composition film ⁇ 0.8 ⁇ 0.8 in the MD direction or TD direction of the cyclic olefin resin composition film
  • the cyclic olefin-based resin composition film preferably has a tear strength in the MD direction, that is, a tear strength in the MD direction that is pulled in the MD direction and split in the TD direction is preferably 70 N / mm or more, and more than 100 N / mm. More preferred.
  • the upper limit of the tear strength in the MD direction is usually preferably 120 N / mm or less.
  • the cyclic olefin-based resin composition film has a tear strength in the TD direction, that is, a tear strength in the TD direction that is pulled in the TD direction and teared in the MD direction is preferably 70 N / mm or more, and more preferably 80 N / mm or more. More preferably, it is more preferably 100 N / mm or more.
  • the upper limit of the tear strength in the TD direction is usually preferably 120 N / mm or less.
  • the difference between the tear strength in the MD direction and the tear strength in the TD direction is preferably 25 N / mm or less, and more preferably 20 N / mm or less.
  • the short axis dispersion diameter of the elastomer 12 is preferably 2.0 ⁇ m or less, and more preferably 1.0 ⁇ m or less.
  • the short axis dispersion diameter means the size in the TD direction of the dispersed phase composed of the elastomer 12, and can be measured as follows. First, the TD-thickness (Z-axis) cross section of the cyclic olefin-based resin composition film is cut. Then, the cross section of the film is magnified, the short axis of each dispersed phase in the predetermined range at the center of the cross section of the film is measured, and the average value is defined as the short axis dispersion diameter. Moreover, when a dispersion diameter is small, it is preferable to cut
  • the elastomer content is preferably less than 35 wt%, more preferably 5 wt% or more and 30 wt% or less.
  • the cyclic olefin resin composition film preferably has an in-plane retardation of 30 nm or less. Thereby, for example, it can be applied as an indirect member in a liquid crystal display creation / evaluation process, for example, as an adhesive tape for reinforcement or a protective cover for a panel.
  • the cyclic olefin-based resin is a polymer compound having a main chain composed of carbon-carbon bonds and having a cyclic hydrocarbon structure in at least part of the main chain.
  • This cyclic hydrocarbon structure is introduced by using a compound (cyclic olefin) having at least one olefinic double bond in the cyclic hydrocarbon structure as represented by norbornene or tetracyclododecene as a monomer. Is done.
  • Cyclic olefin resins include cyclic olefin addition (co) polymers or hydrogenated products thereof (1), cyclic olefin and ⁇ -olefin addition copolymers or hydrogenated products (2), cyclic olefin ring-opening ( Co) polymers or hydrogenated products thereof (3).
  • cyclic olefin examples include: cyclopentene, cyclohexene, cyclooctene; one-ring cyclic olefin such as cyclopentadiene, 1,3-cyclohexadiene; bicyclo [2.2.1] hept-2-ene (common name: norbornene) ), 5-methyl-bicyclo [2.2.1] hept-2-ene, 5,5-dimethyl-bicyclo [2.2.1] hept-2-ene, 5-ethyl-bicyclo [2.2.
  • Tricyclo [4.3.0.1 2,5 ] deca-3,7-diene (common name: dicyclopentadiene), tricyclo [4.3.0.1 2,5 ] dec-3-ene; tricyclo [ 4.4.0.1 2,5 ] undeca-3,7-diene or tricyclo [4.4.0.1 2,5 ] undeca-3,8-diene or a partially hydrogenated product thereof (or cyclopentadiene) And cyclohexene)), tricyclo [4.4.0.1 2,5 ] undec-3-ene; 5-cyclopentyl-bicyclo [2.2.1] hept-2-ene, 5-cyclohexyl-bicyclo [2.2.1] hept-2-ene, 5-cyclohexenylbicyclo [2.2.1] hepta 3-cyclic olefins such as 2-ene and 5-phenyl-bicyclo [2.2.1] hept-2-ene;
  • Tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene also simply referred to as tetracyclododecene
  • 8-methyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene 8-ethyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene
  • 8-methylidenetetracyclo 4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene
  • 8-vinyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene 8-propenyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] tetracyclic olefins such as dodec-3-ene;
  • ⁇ -olefin copolymerizable with the cyclic olefin examples include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3 -Ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1- Hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, etc.
  • Examples thereof include 2 to 8 ⁇ -olefins. These ⁇ -olefins can be used alone or in combination of two or more. As these ⁇ -olefins, those contained in the range of 5 to 200 mol% with respect to the cyclic polyolefin can be used.
  • polymerization method of the cyclic olefin or the cyclic olefin and the ⁇ -olefin and the hydrogenation method of the obtained polymer there is no particular limitation on the polymerization method of the cyclic olefin or the cyclic olefin and the ⁇ -olefin and the hydrogenation method of the obtained polymer, and it can be performed according to a known method.
  • an addition copolymer of ethylene and norbornene is preferably used as the cyclic olefin resin.
  • the structure of the cyclic olefin-based resin is not particularly limited, and may be a chain, branched, or crosslinked, but is preferably a straight chain.
  • the molecular weight of the cyclic olefin-based resin is 5,000 to 300,000, preferably 10,000 to 150,000, and more preferably 15,000 to 100,000 according to the GPC method. If the number average molecular weight is too low, the mechanical strength decreases, and if it is too high, the moldability deteriorates.
  • the cyclic olefin resin has a polar group (for example, a carboxyl group, an acid anhydride group, an epoxy group, an amide group, an ester group, a hydroxyl group, etc.) in the above-mentioned cyclic olefin resins (1) to (3).
  • a polar group for example, a carboxyl group, an acid anhydride group, an epoxy group, an amide group, an ester group, a hydroxyl group, etc.
  • What (4) which grafted and / or copolymerized the unsaturated compound (u) which has can be included. Two or more of the above cyclic olefin resins (1) to (4) may be used in combination.
  • Examples of the unsaturated compound (u) include (meth) acrylic acid, maleic acid, maleic anhydride, itaconic anhydride, glycidyl (meth) acrylate, alkyl (meth) acrylate (carbon number 1 to 10) ester, maleic acid Examples include alkyl (having 1 to 10 carbon atoms) ester, (meth) acrylamide, (2-hydroxyethyl) (meth) acrylate, and the like.
  • Affinity with metals and polar resins can be increased by using a modified cyclic olefin resin (4) obtained by grafting and / or copolymerizing an unsaturated compound (u) having a polar group, so vapor deposition, sputtering, coating It is possible to increase the strength of various secondary processing such as adhesion, and is suitable when secondary processing is required.
  • the presence of the polar group has a drawback of increasing the water absorption rate of the cyclic olefin resin.
  • the content of polar groups is preferably 0 to 1 mol / kg per 1 kg of cyclic olefin resin.
  • the elastomer is preferably a styrene elastomer.
  • the styrenic elastomer is a copolymer of styrene and a conjugated diene such as butadiene or isoprene, and / or a hydrogenated product thereof.
  • the styrene elastomer is a block copolymer having styrene as a hard segment and conjugated diene as a soft segment.
  • the structure of the soft segment changes the storage elastic modulus of the styrene-based elastomer, and the content of styrene that is the hard segment changes the refractive index and changes the haze of the entire film.
  • the styrene elastomer does not require a vulcanization step and is preferably used. Further, the hydrogenated one is more preferable because it has higher thermal stability.
  • styrenic elastomers examples include styrene / butadiene / styrene block copolymers, styrene / isoprene / styrene block copolymers, styrene / ethylene / butylene / styrene block copolymers, and styrene / ethylene / propylene / styrene block copolymers. Examples thereof include styrene and butadiene block copolymers.
  • styrene / ethylene / butylene / styrene block copolymer styrene / ethylene / propylene / styrene block copolymer, styrene / butadiene block copolymer (hydrogenation) in which double bond of conjugated diene component is eliminated by hydrogenation May also be used.
  • the structure of the styrene-based elastomer is not particularly limited, and may be chain-like, branched or cross-linked, but is preferably linear in order to reduce the storage elastic modulus.
  • At least one styrene selected from the group consisting of styrene / ethylene / butylene / styrene block copolymers, styrene / ethylene / propylene / styrene block copolymers, and hydrogenated styrene / butadiene block copolymers.
  • Based elastomers are preferably used.
  • hydrogenated styrene / butadiene block copolymers are more preferably used because of high tear strength and small haze increase after environmental preservation.
  • the ratio of butadiene to styrene in the hydrogenated styrene / butadiene block copolymer is preferably in the range of 10 to 90 mol% so as not to impair the compatibility with the cyclic olefin resin.
  • the styrene content of the styrene elastomer is preferably 20 to 40 mol%. By setting the styrene content to 20 to 40 mol%, the haze can be further reduced.
  • the molecular weight of the styrene elastomer is 5,000 to 300,000, preferably 10,000 to 150,000, and more preferably 20,000 to 100,000, as determined by the GPC method. If the number average molecular weight is too low, the mechanical strength decreases, and if it is too high, the moldability deteriorates.
  • the weight ratio of the cyclic olefin resin to the styrene elastomer is preferably 60:40 to 95: 1, and more preferably 85:15 to 95: 5. By setting it as such a range, the toughness of the film obtained can be improved more.
  • the cyclic olefin-based resin composition film may contain various compounding agents as necessary in addition to the cyclic olefin-based resin and the elastomer as long as the characteristics thereof are not impaired.
  • the various compounding agents are not particularly limited as long as they are usually used in thermoplastic resin materials.
  • inorganic oxide fine particles, antioxidants, ultraviolet absorbers, light stabilizers, plasticizers, lubricants examples thereof include antistatic agents, flame retardants, colorants such as dyes and pigments, near infrared absorbers, compounding agents such as fluorescent whitening agents, and fillers.
  • a cyclic olefin resin composition containing a cyclic olefin resin and an elastomer is heated and melted, and the heated and melted cyclic olefin resin composition is obtained.
  • a cyclic olefin-based resin composition film having a refractive index in the MD direction that is 0.001 to 0.0035 larger than that in the TD direction is obtained by extrusion.
  • the cyclic olefin-based resin composition contains the cyclic olefin-based resin and the elastomer described above, and the preferred range is also the same.
  • the heating temperature of the cyclic olefin resin composition is preferably in the range of 210 to 300 ° C.
  • the film is preferably stretched so that the refractive index in the MD direction of the film is 0.001 to 0.0035 larger than the refractive index in the TD direction.
  • the stretching of the film may be uniaxial stretching or biaxial stretching. In the case of uniaxial stretching, it is preferable to perform longitudinal stretching by a roll method or lateral stretching by a tenter. In the case of biaxial stretching, it is preferably performed by longitudinal stretching by a roll method and transverse stretching by a tenter. The stretching may be performed sequentially or simultaneously with the first and second axes.
  • FIG. 2 is a schematic diagram showing a configuration example of a film manufacturing apparatus.
  • the film manufacturing apparatus includes a die 21, a roll 22, and a roll 23.
  • the die 21 is a general T-die for melt molding, and extrudes the molten resin material 24 into a film shape.
  • the resin material 24 contains the above-mentioned cyclic olefin resin composition, for example.
  • the rolls 22 and 23 have a configuration in which the resin material 24 extruded from the die 21 in a film shape can be nipped with an arbitrary pressure.
  • the roll 22 and the roll 23 are configured to be rotatable in an arbitrary direction.
  • the roll 22 is configured to be rotatable at an arbitrary rotational speed ratio by a rotational power transmission mechanism (not shown) with respect to the rotational speed based on the roll 23.
  • the surface shapes of the rolls 22 and 23 are not particularly limited, and for example, a mirror surface, a textured surface, a prism, a lenticular, or the like can be arbitrarily selected.
  • Each of the rolls 22 and 23 has a medium flow path therein, and has a function of controlling the surface to an arbitrary temperature by an individual temperature control device.
  • the material of the surface of the roll 22 and the roll 23 is not specifically limited, A metal, rubber
  • the input resin material (cyclic olefin resin composition) is melted at an arbitrary temperature, and the resin material 24 is extruded from the die 21 into a film.
  • the extruded molten resin material 24 is dropped and sandwiched between rolls 22 and 23 to be stretched.
  • a cyclic olefin-based resin composition film in which the refractive index in the MD direction is 0.001 to 0.0035 larger than the refractive index in the TD direction is obtained.
  • the cyclic olefin-based resin composition film is conveyed to the next step along the roll 23 and wound into a raw fabric by a running system (not shown).
  • the refractive index in the MD direction of the film is 0.001 to 0.0035 larger than the refractive index in the TD direction.
  • Retardation of about 100 nm occurs. Therefore, the cyclic olefin-based resin composition film can be used for various optical applications, for example, a retardation film, a polarizing plate protective film, a light diffusing plate and the like, particularly a prism sheet and a liquid crystal cell substrate.
  • FIGS. 3A and 3B are cross-sectional views showing an example of a transparent conductive film.
  • This transparent conductive film (transparent conductive element) is constituted by using the above-mentioned cyclic olefin-based resin composition film as a base film (base material).
  • this transparent conductive film includes a retardation film 31 as a base film (base material), and a transparent conductive layer 33 on at least one surface of the retardation film 31.
  • FIG. 3A is an example in which the transparent conductive layer 33 is provided on one surface of the retardation film 31
  • FIG. 3B is an example in which the transparent conductive layer 33 is provided on both surfaces of the retardation film 31.
  • a hard coat layer 32 may be further provided between the retardation film 31 and the transparent conductive layer 33.
  • the material of the transparent conductive layer 33 for example, one or more selected from the group consisting of electrically conductive metal oxide materials, metal materials, carbon materials, and conductive polymers can be used.
  • the metal oxide material include indium tin oxide (ITO) zinc oxide, indium oxide, antimony-added tin oxide, fluorine-added tin oxide, aluminum-added zinc oxide, gallium-added zinc oxide, silicon-added zinc oxide, and zinc oxide- Examples thereof include a tin oxide system, an indium oxide-tin oxide system, and a zinc oxide-indium oxide-magnesium oxide system.
  • metal material for example, metal nanofillers such as metal nanoparticles and metal nanowires can be used.
  • these materials include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantalum, titanium, bismuth, Examples thereof include metals such as antimony and lead, and alloys thereof.
  • the carbon material include carbon black, carbon fiber, fullerene, graphene, carbon nanotube, carbon microcoil, and nanohorn.
  • the conductive polymer for example, substituted or unsubstituted polyaniline, polypyrrole, polythiofin, and one or two (co) polymers selected from these can be used.
  • the transparent conductive layer 33 may be a transparent electrode having a predetermined electrode pattern. Examples of the electrode pattern include a stripe shape, but are not limited thereto.
  • a photosensitive resin for example, acrylate resins such as urethane acrylate, epoxy acrylate, polyester acrylate, polyol acrylate, polyether acrylate, and melamine acrylate can be used.
  • the urethane acrylate resin is obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer, and reacting an acrylate or methacrylate monomer having a hydroxyl group with the obtained product.
  • the thickness of the hard coat layer 32 is preferably 1 ⁇ m to 20 ⁇ m, but is not particularly limited to this range.
  • the transparent conductive film is provided with a moth-eye structure 34 as an antireflection layer on at least one surface of the above-described retardation film. Also good.
  • FIG. 3C is an example in which a moth-eye structure 34 is provided on one surface of the retardation film 31, and FIG. 3D is an example in which a moth-eye structure is provided on both surfaces of the retardation film.
  • the antireflection layer provided on the surface of the retardation film 11 is not limited to the moth-eye structure described above, and a conventionally known antireflection layer such as a low refractive index layer can also be used. .
  • FIG. 4 is a schematic cross-sectional view showing one configuration example of the touch panel.
  • the touch panel (input device) 40 is a so-called resistive film type touch panel.
  • the resistive film type touch panel may be either an analog resistive film type touch panel or a digital resistive film type touch panel.
  • the touch panel 40 includes a first transparent conductive film 41 and a second transparent conductive film 42 facing the first transparent conductive film 41.
  • the 1st transparent conductive film 41 and the 2nd transparent conductive film 42 are bonded together via the bonding part 45 between those peripheral parts.
  • As the bonding part 45 for example, an adhesive paste, an adhesive tape or the like is used.
  • the touch panel 40 is bonded to the display device 44 through the bonding layer 43, for example.
  • a material of the bonding layer 43 for example, an acrylic, rubber, or silicon adhesive can be used, and an acrylic adhesive is preferable from the viewpoint of transparency.
  • the touch panel 40 further includes a polarizer 48 bonded to the surface on the touch side of the first transparent conductive film 41 via a bonding layer 50 or the like.
  • a polarizer 48 bonded to the surface on the touch side of the first transparent conductive film 41 via a bonding layer 50 or the like.
  • the 1st transparent conductive film 41 and / or the 2nd transparent conductive film 42 the above-mentioned transparent conductive film can be used.
  • the retardation film as the base film (base material) is set to ⁇ / 4.
  • the touch panel 40 is preferably provided with a moth-eye structure 34 on the opposing surfaces of the first transparent conductive film 41 and the second transparent conductive film 42, that is, on the surface of the transparent conductive layer 33.
  • the optical characteristics for example, a reflection characteristic, a transmission characteristic, etc.
  • the touch panel 40 preferably further includes a single-layer or multi-layer antireflection layer on the surface of the first transparent conductive film 41 on the touch side. Thereby, a reflectance can be reduced and visibility can be improved.
  • the touch panel 40 further includes a hard coat layer on the surface on the touch side of the first transparent conductive film 41 from the viewpoint of improving the scratch resistance.
  • the surface of the hard coat layer is preferably imparted with antifouling properties.
  • the touch panel 40 further includes a front panel (surface member) 49 bonded to the surface on the touch side of the first transparent conductive film 41 via the bonding layer 51. Moreover, it is preferable that the touch panel 40 further includes a glass substrate 46 bonded to the surface of the second transparent conductive film 42 bonded to the display device 44 via a bonding layer 47.
  • the touch panel 40 preferably further includes a plurality of structures on the surface to be bonded to the display device 44 of the second transparent conductive film 42 or the like.
  • the adhesion between the touch panel 40 and the bonding layer 43 can be improved by the anchor effect of the plurality of structures.
  • a moth-eye structure is preferable. Thereby, interface reflection can be suppressed.
  • a liquid crystal display for example, a liquid crystal display, a CRT (Cathode Ray Tube) display, a plasma display (Plasma Display Panel: PDP), an electroluminescence (Electro Luminescence: EL) display, a surface conduction electron-emitting device display (Surface-conduction)
  • Various display devices such as Electron-emitter Display (SED) can be used.
  • FIG. 5 is an external view illustrating an example of a television device as an electronic apparatus.
  • the television device 100 includes a display unit 101, and the display unit 101 includes a touch panel 40.
  • FIG. 6A and 6B are external views illustrating examples of a digital camera as an electronic device.
  • 6A is an external view of the digital camera viewed from the front side
  • FIG. 6B is an external view of the digital camera viewed from the back side.
  • the digital camera 110 includes a light emitting unit 111 for flash, a display unit 112, a menu switch 113, a shutter button 114, and the like, and the display unit 112 includes the touch panel 40 described above.
  • FIG. 7 is an external view showing an example of a notebook personal computer as an electronic device.
  • the notebook personal computer 120 includes a main body 121 including a keyboard 122 for inputting characters, a display unit 123 for displaying images, and the like, and the display unit 123 includes the touch panel 40 described above.
  • FIG. 8 is an external view showing an example of a video camera as an electronic device.
  • the video camera 130 includes a main body 131, a subject shooting lens 132 on the side facing forward, a start / stop switch 133 during shooting, a display unit 134, and the like, and the display unit 134 includes the touch panel 40 described above.
  • FIG. 9 is an external view showing an example of a mobile phone as an electronic device.
  • the mobile phone 140 is a so-called smartphone, and the display unit 141 includes the touch panel 40 described above.
  • FIG. 10 is an external view showing an example of a tablet computer as an electronic device.
  • the tablet computer 150 includes the touch panel 40 described above on the display unit 151.
  • Example> Examples of the present invention will be described below.
  • an elastomer was added to the cyclic olefin-based resin composition, and a cyclic olefin-based resin composition film having a refractive index in the MD direction larger than the refractive index in the TD direction by a predetermined value was produced.
  • About the produced cyclic olefin system resin composition film tear strength of MD direction and TD direction was measured, and mechanical isotropy was evaluated.
  • the present invention is not limited to these examples.
  • Refractive index ⁇ n (refractive index in MD direction ⁇ refractive index in TD direction)
  • the refractive index in the MD direction and the refractive index in the TD direction were measured using a retardation measuring device (manufactured by Otsuka Electronics Co., Ltd.), and the difference between the refractive index in the MD direction and the refractive index in the TD direction (refractive index ⁇ n) was determined.
  • Tear strength (right-angle tear)
  • the tear strength was measured according to JISK7128 for a film having a thickness of 80 ⁇ m.
  • a No. 3 type test piece was used as a test piece, and measurement was performed at a test speed of 200 mm / min using a tensile tester (AG-X, manufactured by Shimadzu Corporation).
  • AG-X tensile tester
  • the mechanical isotropy of the cyclic olefin resin composition film was evaluated as ⁇ .
  • the tear strength (N / mm) of the larger tear strength among the MD direction or TD direction of the cyclic olefin resin composition film ⁇ 0.8 ⁇ the MD direction or TD direction of the cyclic olefin resin composition film
  • the tear strength (N / mm) of the smaller tear strength, and the difference is 1.0 or less
  • the mechanical isotropy of the cyclic olefin resin composition film was evaluated as x.
  • the tear strength (N / mm) of the larger tear strength among the MD direction or TD direction of the cyclic olefin resin composition film ⁇ 0.8 ⁇ the MD direction or TD direction of the cyclic olefin resin composition film
  • the tear strength (N / mm) of the smaller tear strength, and the difference exceeds 1.0
  • Cyclic olefin resin As the cyclic olefin resin, TOPAS6013-S04 (manufactured by Polyplastics Co., Ltd., chemical name: addition copolymer of ethylene and norbornene) was used.
  • Example 1 90 parts by mass of TOPAS 6013-S04 as the cyclic olefin resin, and S.I. O. E. 10 parts by mass of L606 was blended. This is kneaded at a predetermined temperature in the temperature range of 210 ° C. to 300 ° C. using a twin screw extruder (specifications: diameter 25 mm, length: 26 D, T die width: 160 mm) with a T die attached to the tip, and then circular The olefin resin composition was extruded at a speed of 250 g / min to form a film having a thickness of 80 ⁇ m.
  • a twin screw extruder specificallyations: diameter 25 mm, length: 26 D, T die width: 160 mm
  • the extruded film was stretched so that the refractive index in the MD direction was 0.001 larger than the refractive index in the TD direction.
  • the tear strength in the MD direction of the film was 100 N / mm, and the tear strength in the TD direction was 120 N / mm. Evaluation of mechanical isotropy was (circle).
  • Example 2 A film was obtained in the same manner as in Example 1 except that the film was stretched so that the refractive index in the MD direction was 0.003 larger than the refractive index in the TD direction. As shown in Table 1, the tear strength in the MD direction of the film was 115 N / mm, and the tear strength in the TD direction was 105 N / mm. Evaluation of mechanical isotropy was (circle).
  • Example 3 A film was obtained in the same manner as in Example 1 except that Tuftec H1517 was used as the styrene-based elastomer and the film was stretched so that the refractive index in the MD direction was 0.001 larger than the refractive index in the TD direction. .
  • the tear strength in the MD direction of the film was 77 N / mm, and the tear strength in the TD direction was 95 N / mm. Evaluation of mechanical isotropy was (circle).
  • Example 4 A film was obtained in the same manner as in Example 1 except that Tuftec H1517 was used as the styrene-based elastomer and the film was stretched so that the refractive index in the MD direction was 0.002 larger than the refractive index in the TD direction. .
  • the tear strength in the MD direction of the film was 86 N / mm
  • the tear strength in the TD direction was 86 N / mm. Evaluation of mechanical isotropy was (circle).
  • Example 5 A film was obtained in the same manner as in Example 1 except that Tuftec H1517 was used as the styrene-based elastomer and the film was stretched so that the refractive index in the MD direction was 0.003 larger than the refractive index in the TD direction. .
  • the tear strength in the MD direction of the film was 91 N / mm, and the tear strength in the TD direction was 81 N / mm. Evaluation of mechanical isotropy was (circle).
  • Example 6 A film was obtained in the same manner as in Example 1 except that Tuftec H1517 was used as the styrene-based elastomer and the film was stretched so that the refractive index in the MD direction was 0.0035 larger than the refractive index in the TD direction. .
  • the tear strength in the MD direction of the film was 96 N / mm
  • the tear strength in the TD direction was 76 N / mm. Evaluation of mechanical isotropy was ⁇ .
  • Comparative Example 1 90 parts by mass of TOPAS 6013-S04 as the cyclic olefin resin, and S.I. O. E. 10 parts by mass of L606 was blended. This is kneaded at a predetermined temperature in the temperature range of 210 ° C. to 300 ° C. using a twin screw extruder (specifications: diameter 25 mm, length: 26 D, T die width: 160 mm) with a T die attached to the tip, and then circular The olefin resin composition was extruded at a speed of 250 g / min to form a film having a thickness of 80 ⁇ m. The film obtained in Comparative Example 1 is unstretched.
  • the refractive index in the MD direction of the film was 0.00005 larger than the refractive index in the TD direction.
  • the tear strength in the MD direction of the film was 53 N / mm, and the tear strength in the TD direction was 165 N / mm. Evaluation of mechanical isotropy was x.
  • Comparative Example 2 A film was obtained in the same manner as in Comparative Example 1 except that Tuftec H1517 was used as the styrene elastomer. That is, the film obtained in Comparative Example 2 is also unstretched. As shown in Table 1, the refractive index in the MD direction was 0.00005 larger than the refractive index in the TD direction. The tear strength in the MD direction of the film was 47 N / mm, and the tear strength in the TD direction was 125 N / mm. Evaluation of mechanical isotropy was x.
  • Example 3 A film was obtained in the same manner as in Example 1 except that Tuftec H1517 was used as the styrene-based elastomer and the film was stretched so that the refractive index in the MD direction was 0.0001 larger than the refractive index in the TD direction. .
  • the tear strength in the MD direction of the film was 48.5 N / mm, and the tear strength in the TD direction was 123.5 N / mm. Evaluation of mechanical isotropy was x.
  • Example 4 A film was obtained in the same manner as in Example 1 except that Tuftec H1517 was used as the styrene-based elastomer and the film was stretched so that the refractive index in the MD direction was 0.0004 larger than the refractive index in the TD direction. .
  • the tear strength in the MD direction of the film was 58 N / mm, and the tear strength in the TD direction was 114 N / mm. Evaluation of mechanical isotropy was x.
  • Example 5 A film was obtained in the same manner as in Example 1 except that Tuftec H1517 was used as the styrene-based elastomer and the film was stretched so that the refractive index in the MD direction was 0.0007 larger than the refractive index in the TD direction. .
  • the tear strength in the MD direction of the film was 68 N / mm
  • the tear strength in the TD direction was 104 N / mm. Evaluation of mechanical isotropy was x.
  • Example 6 A film was obtained in the same manner as in Example 1 except that Tuftec H1517 was used as the styrene-based elastomer and the film was stretched so that the refractive index in the MD direction was 0.004 larger than the refractive index in the TD direction. .
  • the tear strength in the MD direction of the film was 104 N / mm
  • the tear strength in the TD direction was 68 N / mm. Evaluation of mechanical isotropy was x.
  • the cyclic olefin resin composition film having a refractive index in the MD direction of 0.001 to 0.0035 larger than that in the TD direction is excellent in mechanical isotropy.
  • a cyclic olefin resin composition film having a refractive index in the MD direction of 0.001 to 0.0030 larger than that in the TD direction is superior in mechanical isotropy.
  • the cyclic olefin resin composition film that does not satisfy the condition that the refractive index in the MD direction is 0.001 to 0.0035 larger than the refractive index in the TD direction is mechanically isotropic. It turned out that it is not excellent in property. That is, as in Comparative Examples 1 to 6, it was found that mechanical anisotropy was confirmed when the refractive index ⁇ n was less than 0.001 or when the refractive index ⁇ n exceeded 0.0035. .

Abstract

Provided is a cyclic olefin resin composition film having excellent mechanical isotropy. The cyclic olefin resin composition film according to the present invention is obtained by drawing a cyclic olefin resin composition comprising a cyclic olefin resin and an elastomer, and configuring the refractive index in the MD direction so as to be 0.001-0.0035 greater than the refractive index in the TD direction. Good mechanical isotropy can thereby be obtained.

Description

環状オレフィン系樹脂組成物フィルムCyclic olefin resin composition film
 本発明は、環状オレフィン系樹脂にエラストマー等を添加分散させた環状オレフィン系樹脂組成物フィルムに関する。本出願は、日本国において2015年3月26日に出願された日本出願番号特願2015-065268を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 The present invention relates to a cyclic olefin resin composition film in which an elastomer or the like is added and dispersed in a cyclic olefin resin. This application claims priority on the basis of Japanese Patent Application No. 2015-065268 filed on Mar. 26, 2015 in Japan. This application is incorporated herein by reference. Is done.
 環状オレフィン系樹脂は、その主鎖に環状のオレフィン骨格を持った非晶性で熱可塑性のオレフィン系樹脂であり、優れた光学特性(透明性、低複屈折性)を持ち、低吸水性とそれに基づく寸法安定性、高防湿性といった、優れた性能を有している(例えば、特許文献1乃至3参照)。そのため環状オレフィン系樹脂からなるフィルムもしくはシートは、各種光学用途、例えば位相差フィルム、偏光板保護フィルム、光拡散板等や、防湿包装用途、例えば医薬品包装、食品包装等への展開が期待されている。 Cyclic olefin resin is an amorphous and thermoplastic olefin resin that has a cyclic olefin skeleton in its main chain, has excellent optical properties (transparency, low birefringence), low water absorption, It has excellent performance such as dimensional stability and high moisture resistance based thereon (see, for example, Patent Documents 1 to 3). Therefore, films or sheets made of cyclic olefin resins are expected to be developed for various optical applications such as retardation films, polarizing plate protective films, light diffusion plates, and moisture proof packaging applications such as pharmaceutical packaging and food packaging. Yes.
 環状オレフィン系樹脂のフィルムは、靭性に劣るため、エラストマー等を添加分散することにより、靱性を改善することが知られている(例えば、特許文献3参照)。 Since a film of a cyclic olefin resin is inferior in toughness, it is known to improve toughness by adding and dispersing an elastomer or the like (see, for example, Patent Document 3).
特開平1-256548号公報JP-A-1-256548 特開2001-72837号公報JP 2001-72837 A 特開2004-156048号公報JP 2004-156048 A
 近年、機械的等方性に優れた環状オレフィン系樹脂組成物フィルムが望まれている。本願発明者らが検討したところ、環状オレフィン系樹脂及びエラストマーを含有するフィルムは、フィルム形成時にエラストマーが環状オレフィン系樹脂の流れ方向に配向するため、機械的異方性が必然的に生じてしまい、機械的等方性に優れたフィルムを得るのが困難であることが分かった。 In recent years, a cyclic olefin-based resin composition film excellent in mechanical isotropy has been desired. As a result of studies by the present inventors, a film containing a cyclic olefin resin and an elastomer is inevitably mechanically anisotropic because the elastomer is oriented in the flow direction of the cyclic olefin resin during film formation. It was found that it was difficult to obtain a film having excellent mechanical isotropy.
 本発明は、このような従来の実情に鑑みて提案されたものであり、機械的等方性に優れた環状オレフィン系樹脂組成物フィルムを提供する。 The present invention has been proposed in view of such a conventional situation, and provides a cyclic olefin-based resin composition film excellent in mechanical isotropy.
 本願発明者らは、鋭意検討の結果、環状オレフィン系樹脂及びエラストマーからなる環状オレフィン系樹脂組成物を延伸し、MD方向の屈折率をTD方向の屈折率よりも所定値大きくすることにより、前記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies, the inventors of the present application stretched a cyclic olefin resin composition composed of a cyclic olefin resin and an elastomer, and made the refractive index in the MD direction a predetermined value larger than the refractive index in the TD direction. The present inventors have found that the problem can be solved and have completed the present invention.
 すなわち、本発明に係る環状オレフィン系樹脂組成物フィルムは、環状オレフィン系樹脂及びエラストマーからなる環状オレフィン系樹脂組成物を延伸し、MD方向の屈折率をTD方向の屈折率よりも0.001~0.0035大きくしてなるものである。 That is, the cyclic olefin-based resin composition film according to the present invention is obtained by stretching a cyclic olefin-based resin composition composed of a cyclic olefin-based resin and an elastomer, and having a refractive index in the MD direction of 0.001 to less than a refractive index in the TD direction. It is made larger by 0.0035.
 本発明に係る環状オレフィン系樹脂組成物フィルムの製造方法は、環状オレフィン系樹脂とエラストマーとを含有する環状オレフィン系樹脂組成物を加熱溶融し、前記加熱溶融された環状オレフィン系樹脂組成物を延伸し、MD方向の屈折率をTD方向の屈折率よりも0.001~0.0035大きくしてなる環状オレフィン系樹脂組成物フィルムを得る。 The method for producing a cyclic olefin-based resin composition film according to the present invention includes heating and melting a cyclic olefin-based resin composition containing a cyclic olefin-based resin and an elastomer, and stretching the heat-melted cyclic olefin-based resin composition. Thus, a cyclic olefin-based resin composition film having a refractive index in the MD direction that is 0.001 to 0.0035 larger than a refractive index in the TD direction is obtained.
 本発明によれば、環状オレフィン系樹脂及びエラストマーからなる環状オレフィン系樹脂組成物を延伸し、MD方向の屈折率をTD方向の屈折率よりも所定値大きくすることにより、機械的等方性に優れた環状オレフィン系樹脂組成物フィルムが得られる。 According to the present invention, by stretching a cyclic olefin resin composition composed of a cyclic olefin resin and an elastomer, and making the refractive index in the MD direction larger than the refractive index in the TD direction by a predetermined value, it becomes mechanically isotropic. An excellent cyclic olefin resin composition film is obtained.
図1は、本実施の形態に係る環状オレフィン系樹脂組成物フィルムの概略を示す断面斜視図である。FIG. 1 is a cross-sectional perspective view showing an outline of a cyclic olefin-based resin composition film according to the present embodiment. 図2は、フィルム製造装置の一構成例を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration example of a film manufacturing apparatus. 図3A及び図3Bは、透明導電性フィルムの一例を示す断面図であり、図3C及び図3Dは、モスアイ形状の構造体を設けた透明導電性フィルムの一例を示す断面図である。3A and 3B are cross-sectional views illustrating an example of a transparent conductive film, and FIGS. 3C and 3D are cross-sectional views illustrating an example of a transparent conductive film provided with a moth-eye-shaped structure. 図4は、タッチパネルの一構成例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing a configuration example of the touch panel. 図5は、電子機器としてテレビ装置の例を示す外観図である。FIG. 5 is an external view illustrating an example of a television device as an electronic apparatus. 図6A及び図6Bは、電子機器としてデジタルカメラの例を示す外観図である。6A and 6B are external views illustrating examples of a digital camera as an electronic device. 図7は、電子機器としてノート型パーソナルコンピュータの例を示す外観図である。FIG. 7 is an external view illustrating an example of a notebook personal computer as an electronic device. 図8は、電子機器としてビデオカメラの例を示す外観図である。FIG. 8 is an external view illustrating an example of a video camera as an electronic device. 図9は、電子機器として携帯電話の一例を示す外観図である。FIG. 9 is an external view illustrating an example of a mobile phone as an electronic device. 図10は、電子機器としてタブレット型コンピュータの一例を示す外観図である。FIG. 10 is an external view illustrating an example of a tablet computer as an electronic device.
 以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.環状オレフィン系樹脂組成物フィルム
2.環状オレフィン系樹脂組成物フィルムの製造方法
3.電子機器への適用例
4.実施例
Hereinafter, embodiments of the present invention will be described in detail in the following order with reference to the drawings.
1. 1. Cyclic olefin resin composition film 2. Production method of cyclic olefin-based resin composition film 3. Application example to electronic equipment Example
 <1.環状オレフィン系樹脂組成物フィルム>
 本実施の形態に係る環状オレフィン系樹脂組成物フィルムは、環状オレフィン系樹脂及びエラストマーからなる環状オレフィン系樹脂組成物を延伸し、MD方向の屈折率をTD方向の屈折率よりも0.001~0.0035大きくしてなるものである。このような構成とすることにより、機械的等方性に優れた環状オレフィン系樹脂組成物フィルムが得られる。
<1. Cyclic Olefin Resin Composition Film>
The cyclic olefin-based resin composition film according to the present embodiment is obtained by stretching a cyclic olefin-based resin composition composed of a cyclic olefin-based resin and an elastomer, and having a refractive index in the MD direction that is 0.001 to less than that in the TD direction. It is made larger by 0.0035. By setting it as such a structure, the cyclic olefin resin composition film excellent in mechanical isotropy is obtained.
 図1は、本実施の形態に係る環状オレフィン系樹脂組成物フィルムの概略を示す断面斜視図である。図1に示すように、環状オレフィン系樹脂組成物フィルムは、環状オレフィン系樹脂11と、エラストマー12とを含有する。 FIG. 1 is a cross-sectional perspective view showing an outline of a cyclic olefin-based resin composition film according to the present embodiment. As shown in FIG. 1, the cyclic olefin-based resin composition film contains a cyclic olefin-based resin 11 and an elastomer 12.
 環状オレフィン系樹脂組成物フィルムは、例えば短形状のフィルム又はシートであり、幅方向(TD:Transverse Direction)であるX軸方向と、長さ方向(MD:Machine Direction)であるY軸方向と、厚さ方向であるZ軸方向とを有する。環状オレフィン系樹脂組成物フィルムの厚さZは、0.1μm~2mmであることが好ましく、1μm~1mmであることがより好ましい。 The cyclic olefin-based resin composition film is, for example, a short film or sheet, the X-axis direction which is the width direction (TD: Transverse Direction), and the Y-axis direction which is the length direction (MD: Machine Direction), And a Z-axis direction that is a thickness direction. The thickness Z of the cyclic olefin-based resin composition film is preferably 0.1 μm to 2 mm, and more preferably 1 μm to 1 mm.
 また、図1に示すように、環状オレフィン系樹脂組成物フィルムは、環状オレフィン系樹脂11からなるマトリックス(海相)中にエラストマー12からなる分散相(島相)が分散している。分散相は、例えば押出成型によりMD方向に形状異方性を持って分散し、MD方向に長軸を有し、TD方向に短軸を有する。 Further, as shown in FIG. 1, in the cyclic olefin resin composition film, a dispersed phase (island phase) made of elastomer 12 is dispersed in a matrix (sea phase) made of cyclic olefin resin 11. The dispersed phase is dispersed with shape anisotropy in the MD direction by, for example, extrusion molding, has a major axis in the MD direction, and a minor axis in the TD direction.
 環状オレフィン系樹脂組成物フィルムは、MD方向の屈折率がTD方向の屈折率よりも0.001~0.0030大きいことが好ましい。このような構成とすることにより、環状オレフィン系樹脂組成物フィルムの機械的等方性をより良好にすることができる。 The cyclic olefin-based resin composition film preferably has a refractive index in the MD direction that is 0.001 to 0.0030 higher than a refractive index in the TD direction. By setting it as such a structure, the mechanical isotropy of a cyclic olefin resin composition film can be made more favorable.
 環状オレフィン系樹脂組成物フィルムのMD方向の屈折率は、1.48~1.58であることが好ましく、1.51~1.55であることがより好ましい。環状オレフィン系樹脂組成物フィルムのTD方向の屈折率は、1.48~1.58であることが好ましく、1.51~1.55であることがより好ましい。 The refractive index in the MD direction of the cyclic olefin-based resin composition film is preferably 1.48 to 1.58, and more preferably 1.51 to 1.55. The refractive index in the TD direction of the cyclic olefin-based resin composition film is preferably 1.48 to 1.58, and more preferably 1.51 to 1.55.
 また、環状オレフィン系樹脂組成物フィルムは、下記式(1)式又は式(2)の条件を満たすことが好ましく、下記式(1)の条件を満たすことがより好ましい。すなわち、環状オレフィン系樹脂組成物フィルムは、MD方向の引裂き強度と、TD方向の引裂き強度との差が小さいことが好ましい。このような条件を満たすことにより、環状オレフィン系樹脂組成物フィルムの機械的等方性を良好にすることができる。 The cyclic olefin-based resin composition film preferably satisfies the following formula (1) or formula (2), and more preferably satisfies the following formula (1). That is, the cyclic olefin-based resin composition film preferably has a small difference between the tear strength in the MD direction and the tear strength in the TD direction. By satisfy | filling such conditions, the mechanical isotropy of a cyclic olefin resin composition film can be made favorable.
(1)環状オレフィン系樹脂組成物フィルムのMD方向又はTD方向のうち引裂き強度が大きい方の引裂き強度(N/mm)×0.8<環状オレフィン系樹脂組成物フィルムのMD方向又はTD方向のうち引裂き強度が小さい方の引裂き強度(N/mm)。 (1) The tear strength (N / mm) of the larger tear strength in the MD direction or TD direction of the cyclic olefin resin composition film × 0.8 <0.8 in the MD direction or TD direction of the cyclic olefin resin composition film The tear strength (N / mm) of the smaller tear strength.
(2)環状オレフィン系樹脂組成物フィルムのMD方向又はTD方向のうち引裂き強度が大きい方の引裂き強度(N/mm)×0.8≧環状オレフィン系樹脂組成物フィルムのMD方向又はTD方向のうち引裂き強度が小さい方の引裂き強度(N/mm)であり、かつ、その差が1.0以下。 (2) The tear strength (N / mm) of the larger tear strength among the MD direction or TD direction of the cyclic olefin resin composition film × 0.8 ≧ the MD direction or TD direction of the cyclic olefin resin composition film Of these, the tear strength (N / mm) of the smaller tear strength, and the difference is 1.0 or less.
 環状オレフィン系樹脂組成物フィルムは、MD方向の引裂き強度、すなわち、MD方向に引っ張りTD方向に裂けるMD方向の引裂き強度が、70N/mm以上であることが好ましく、100N/mm以上であることがより好ましい。MD方向の引裂き強度の上限は、通常120N/mm以下であることが好ましい。 The cyclic olefin-based resin composition film preferably has a tear strength in the MD direction, that is, a tear strength in the MD direction that is pulled in the MD direction and split in the TD direction is preferably 70 N / mm or more, and more than 100 N / mm. More preferred. The upper limit of the tear strength in the MD direction is usually preferably 120 N / mm or less.
 環状オレフィン系樹脂組成物フィルムは、TD方向の引裂き強度、すなわち、TD方向に引っ張りMD方向に裂けるTD方向の引裂き強度が、70N/mm以上であることが好ましく、80N/mm以上であることがより好ましく、100N/mm以上であることがさらに好ましい。TD方向の引裂き強度の上限は、通常120N/mm以下であることが好ましい。 The cyclic olefin-based resin composition film has a tear strength in the TD direction, that is, a tear strength in the TD direction that is pulled in the TD direction and teared in the MD direction is preferably 70 N / mm or more, and more preferably 80 N / mm or more. More preferably, it is more preferably 100 N / mm or more. The upper limit of the tear strength in the TD direction is usually preferably 120 N / mm or less.
 環状オレフィン系樹脂組成物フィルムは、MD方向の引裂き強度と、TD方向の引裂き強度との差が25N/mm以下であることが好ましく、20N/mm以下であることがより好ましい。 In the cyclic olefin-based resin composition film, the difference between the tear strength in the MD direction and the tear strength in the TD direction is preferably 25 N / mm or less, and more preferably 20 N / mm or less.
 エラストマー12の短軸分散径は、2.0μm以下であることが好ましく、1.0μm以下であることがより好ましい。短軸分散径が上記範囲を満たすことにより、環境保存下において、エラストマー相変化により、エラストマー/環状オレフィン系樹脂間に隙間が発生することを抑制し、エラストマー自体の屈折率が変化することを抑制し、結果として、フィルム全体のヘイズが大きく変化してしまうことを抑制することができる。 The short axis dispersion diameter of the elastomer 12 is preferably 2.0 μm or less, and more preferably 1.0 μm or less. By satisfying the above range for the minor axis dispersion diameter, it is possible to suppress the generation of gaps between the elastomer and the cyclic olefin resin due to the elastomer phase change and to prevent the refractive index of the elastomer itself from changing under environmental preservation. And as a result, it can suppress that the haze of the whole film changes greatly.
 なお、本明細書において、短軸分散径とは、エラストマー12からなる分散相のTD方向の大きさを意味し、次のように測定することができる。先ず、環状オレフィン系樹脂組成物フィルムのTD-厚み(Z軸)断面を切断する。そして、フィルム断面を拡大観察し、フィルム断面中央の所定範囲の各分散相の短軸を計測し、その平均値を短軸分散径とする。また、分散径が小さい場合は、フィルムに対してオスミウム染色を施した後、切断することが好ましい。 In the present specification, the short axis dispersion diameter means the size in the TD direction of the dispersed phase composed of the elastomer 12, and can be measured as follows. First, the TD-thickness (Z-axis) cross section of the cyclic olefin-based resin composition film is cut. Then, the cross section of the film is magnified, the short axis of each dispersed phase in the predetermined range at the center of the cross section of the film is measured, and the average value is defined as the short axis dispersion diameter. Moreover, when a dispersion diameter is small, it is preferable to cut | disconnect, after giving osmium dyeing | staining with respect to a film.
 環状オレフィン系樹脂組成物フィルムにおいて、エラストマーの含有量は、35wt%未満であることが好ましく、5wt%以上30wt%以下であることがより好ましい。上記範囲を満たすことにより、環状オレフィン系樹脂組成物フィルムの面内方向のリタデーションが大きくなりすぎないようにすることができ、また、靭性も良好にすることができる。 In the cyclic olefin-based resin composition film, the elastomer content is preferably less than 35 wt%, more preferably 5 wt% or more and 30 wt% or less. By satisfying the above range, the retardation in the in-plane direction of the cyclic olefin-based resin composition film can be prevented from becoming too large, and the toughness can be improved.
 環状オレフィン系樹脂組成物フィルムは、面内方向のリタデーションが30nm以下であることが好ましい。これにより、例えば、液晶ディスプレイの作成・評価工程における間接部材として、例えば補強のための粘着テープやパネルの保護カバーとして、適用することができる。 The cyclic olefin resin composition film preferably has an in-plane retardation of 30 nm or less. Thereby, for example, it can be applied as an indirect member in a liquid crystal display creation / evaluation process, for example, as an adhesive tape for reinforcement or a protective cover for a panel.
 以下、環状オレフィン系樹脂11、及びエラストマー12について、詳細に説明する。 Hereinafter, the cyclic olefin resin 11 and the elastomer 12 will be described in detail.
 [環状オレフィン系樹脂]
 環状オレフィン系樹脂は、主鎖が炭素-炭素結合からなり、主鎖の少なくとも一部に環状炭化水素構造を有する高分子化合物である。この環状炭化水素構造は、ノルボルネンやテトラシクロドデセンに代表されるような、環状炭化水素構造中に少なくとも一つのオレフィン性二重結合を有する化合物(環状オレフィン)を単量体として用いることで導入される。
[Cyclic olefin resin]
The cyclic olefin-based resin is a polymer compound having a main chain composed of carbon-carbon bonds and having a cyclic hydrocarbon structure in at least part of the main chain. This cyclic hydrocarbon structure is introduced by using a compound (cyclic olefin) having at least one olefinic double bond in the cyclic hydrocarbon structure as represented by norbornene or tetracyclododecene as a monomer. Is done.
 環状オレフィン系樹脂は、環状オレフィンの付加(共)重合体又はその水素添加物(1)、環状オレフィンとα-オレフィンの付加共重合体又はその水素添加物(2)、環状オレフィンの開環(共)重合体又はその水素添加物(3)に分類される。 Cyclic olefin resins include cyclic olefin addition (co) polymers or hydrogenated products thereof (1), cyclic olefin and α-olefin addition copolymers or hydrogenated products (2), cyclic olefin ring-opening ( Co) polymers or hydrogenated products thereof (3).
 環状オレフィンの具体例としては、シクロペンテン、シクロヘキセン、シクロオクテン;シクロペンタジエン、1,3-シクロヘキサジエン等の1環の環状オレフィン;ビシクロ[2.2.1]ヘプタ-2-エン(慣用名:ノルボルネン)、5-メチル-ビシクロ[2.2.1]ヘプタ-2-エン、5,5-ジメチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-エチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-ブチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-エチリデン-ビシクロ[2.2.1]ヘプタ-2-エン、5-ヘキシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-オクチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-オクタデシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-メチリデン-ビシクロ[2.2.1]ヘプタ-2-エン、5-ビニル-ビシクロ[2.2.1]ヘプタ-2-エン、5-プロペニル-ビシクロ[2.2.1]ヘプタ-2-エン等の2環の環状オレフィン; Specific examples of the cyclic olefin include: cyclopentene, cyclohexene, cyclooctene; one-ring cyclic olefin such as cyclopentadiene, 1,3-cyclohexadiene; bicyclo [2.2.1] hept-2-ene (common name: norbornene) ), 5-methyl-bicyclo [2.2.1] hept-2-ene, 5,5-dimethyl-bicyclo [2.2.1] hept-2-ene, 5-ethyl-bicyclo [2.2. 1] Hept-2-ene, 5-butyl-bicyclo [2.2.1] hept-2-ene, 5-ethylidene-bicyclo [2.2.1] hept-2-ene, 5-hexyl-bicyclo [ 2.2.1] hept-2-ene, 5-octyl-bicyclo [2.2.1] hept-2-ene, 5-octadecyl-bicyclo [2.2.1] hept-2-ene, 5- Metilide -Bicyclo [2.2.1] hept-2-ene, 5-vinyl-bicyclo [2.2.1] hept-2-ene, 5-propenyl-bicyclo [2.2.1] hept-2-ene Bicyclic olefins such as;
 トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、トリシクロ[4.3.0.12,5]デカ-3-エン;トリシクロ[4.4.0.12,5]ウンデカ-3,7-ジエン若しくはトリシクロ[4.4.0.12,5]ウンデカ-3,8-ジエン又はこれらの部分水素添加物(又はシクロペンタジエンとシクロヘキセンの付加物)であるトリシクロ[4.4.0.12,5]ウンデカ-3-エン;
5-シクロペンチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シクロヘキシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シクロヘキセニルビシクロ[2.2.1]ヘプタ-2-エン、5-フェニル-ビシクロ[2.2.1]ヘプタ-2-エンといった3環の環状オレフィン;
Tricyclo [4.3.0.1 2,5 ] deca-3,7-diene (common name: dicyclopentadiene), tricyclo [4.3.0.1 2,5 ] dec-3-ene; tricyclo [ 4.4.0.1 2,5 ] undeca-3,7-diene or tricyclo [4.4.0.1 2,5 ] undeca-3,8-diene or a partially hydrogenated product thereof (or cyclopentadiene) And cyclohexene)), tricyclo [4.4.0.1 2,5 ] undec-3-ene;
5-cyclopentyl-bicyclo [2.2.1] hept-2-ene, 5-cyclohexyl-bicyclo [2.2.1] hept-2-ene, 5-cyclohexenylbicyclo [2.2.1] hepta 3-cyclic olefins such as 2-ene and 5-phenyl-bicyclo [2.2.1] hept-2-ene;
 テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(単にテトラシクロドデセンともいう)、8-メチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-メチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-ビニルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-プロペニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンといった4環の環状オレフィン; Tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene (also simply referred to as tetracyclododecene), 8-methyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-ethyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-methylidenetetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-ethylidenetetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-vinyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-propenyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] tetracyclic olefins such as dodec-3-ene;
 8-シクロペンチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-シクロヘキシル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-シクロヘキセニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-フェニル-シクロペンチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン;テトラシクロ[7.4.13,6.01,9.02,7]テトラデカ-4,9,11,13-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレンともいう)、テトラシクロ[8.4.14,7.01,10.03,8]ペンタデカ-5,10,12,14-テトラエン(1,4-メタノ-1,4,4a,5,10,10a-へキサヒドロアントラセンともいう);ペンタシクロ[6.6.1.13,6.02,7.09,14]-4-ヘキサデセン、ペンタシクロ[6.5.1.13,6.02,7.09,13]-4-ペンタデセン、ペンタシクロ[7.4.0.02,7.13,6.110,13]-4-ペンタデセン;ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]-5-エイコセン、ヘプタシクロ[8.7.0.12,9.03,8.14,7.012,17.113,l6]-14-エイコセン;シクロペンタジエンの4量体などの多環の環状オレフィンが挙げられる。これらの環状オレフィンは、それぞれ単独であるいは2種以上組み合わせて用いることができる。 8-cyclopentyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-cyclohexyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-cyclohexenyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-phenyl-cyclopentyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene; tetracyclo [7.4.1 3,6 . 0 1,9 . 0 2,7 ] tetradeca-4,9,11,13-tetraene (also referred to as 1,4-methano-1,4,4a, 9a-tetrahydrofluorene), tetracyclo [8.4.1 4,7 . 0 1,10 . 0 3,8 ] pentadeca-5,10,12,14-tetraene (also referred to as 1,4-methano-1,4,4a, 5,10,10a-hexahydroanthracene); pentacyclo [6.6.1] .1,3,6 . 0 2,7 . 0 9,14 ] -4-hexadecene, pentacyclo [6.5.1.1 3,6 . 0 2,7 . 0 9,13] -4-pentadecene, pentacyclo [7.4.0.0 2,7. 1 3,6 . 1 10,13] -4-pentadecene; heptacyclo [8.7.0.1 2,9. 1 4,7 . 1 11, 17 . 0 3,8 . 0 12,16 ] -5-eicosene, heptacyclo [8.7.0.1 2,9 . 0 3,8 . 1 4,7 . 0 12,17 . 1 13,16 ] -14-eicosene ; and polycyclic cyclic olefins such as cyclopentadiene tetramer. These cyclic olefins can be used alone or in combination of two or more.
 環状オレフィンと共重合可能なα-オレフィンの具体例としては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-へキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-へキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-へキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどの炭素数2~20、好ましくは炭素数2~8のα-オレフィンなどが挙げられる。これらのα-オレフィンは、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。これらのα-オレフィンは、環状ポリオレフィンに対して、5~200mol%の範囲で含有されたものを使用することができる。 Specific examples of the α-olefin copolymerizable with the cyclic olefin include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3 -Ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1- Hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, etc. 2-20, preferably carbon numbers Examples thereof include 2 to 8 α-olefins. These α-olefins can be used alone or in combination of two or more. As these α-olefins, those contained in the range of 5 to 200 mol% with respect to the cyclic polyolefin can be used.
 環状オレフィン又は環状オレフィンとα-オレフィンとの重合方法及び得られた重合体の水素添加方法に、格別な制限はなく、公知の方法に従って行うことができる。 There is no particular limitation on the polymerization method of the cyclic olefin or the cyclic olefin and the α-olefin and the hydrogenation method of the obtained polymer, and it can be performed according to a known method.
 環状オレフィン系樹脂として、本実施の形態では、エチレンとノルボルネンの付加共重合体が好ましく用いられる。 In the present embodiment, an addition copolymer of ethylene and norbornene is preferably used as the cyclic olefin resin.
 環状オレフィン系樹脂の構造には、特に制限はなく、鎖状でも、分岐状でも、架橋状でもよいが、好ましくは直鎖状である。 The structure of the cyclic olefin-based resin is not particularly limited, and may be a chain, branched, or crosslinked, but is preferably a straight chain.
 環状オレフィン系樹脂の分子量は、GPC法による数平均分子量が5000~30万、好ましくは1万~15万、さらに好ましくは1.5万~10万である。数平均分子量が低すぎると機械的強度が低下し、大きすぎると成形性が悪くなる。 The molecular weight of the cyclic olefin-based resin is 5,000 to 300,000, preferably 10,000 to 150,000, and more preferably 15,000 to 100,000 according to the GPC method. If the number average molecular weight is too low, the mechanical strength decreases, and if it is too high, the moldability deteriorates.
 また、環状オレフィン系樹脂には、前述の環状オレフィン系樹脂(1)~(3)に極性基(例えば、カルボキシル基、酸無水物基、エポキシ基、アミド基、エステル基、ヒドロキシル基など)を有する不飽和化合物(u)をグラフト及び/又は共重合したもの(4)を含めることができる。上記環状オレフィン系樹脂(1)~(4)は、二種以上混合使用してもよい。 In addition, the cyclic olefin resin has a polar group (for example, a carboxyl group, an acid anhydride group, an epoxy group, an amide group, an ester group, a hydroxyl group, etc.) in the above-mentioned cyclic olefin resins (1) to (3). What (4) which grafted and / or copolymerized the unsaturated compound (u) which has can be included. Two or more of the above cyclic olefin resins (1) to (4) may be used in combination.
 上記不飽和化合物(u)としては、(メタ)アクリル酸、マレイン酸、無水マレイン酸、無水イタコン酸、グリシジル(メタ)アクリレート、(メタ)アクリル酸アルキル(炭素数1~10)エステル、マレイン酸アルキル(炭素数1~10)エステル、(メタ)アクリルアミド、(メタ)アクリル酸-2-ヒドロキシエチル等が挙げられる。 Examples of the unsaturated compound (u) include (meth) acrylic acid, maleic acid, maleic anhydride, itaconic anhydride, glycidyl (meth) acrylate, alkyl (meth) acrylate (carbon number 1 to 10) ester, maleic acid Examples include alkyl (having 1 to 10 carbon atoms) ester, (meth) acrylamide, (2-hydroxyethyl) (meth) acrylate, and the like.
 極性基を有する不飽和化合物(u)をグラフト及び/又は共重合した変性環状オレフィン系樹脂(4)を用いることにより金属や極性樹脂との親和性を高めることができるので、蒸着、スパッタ、コーティング、接着等、各種二次加工の強度を高めることができ、二次加工が必要な場合に好適である。しかし、極性基の存在は環状オレフィン系樹脂の吸水率を高めてしまう欠点がある。そのため極性基(例えば、カルボキシル基、酸無水物基、エポキシ基、アミド基、エステル基、ヒドロキシル基など)の含有量は、環状オレフィン系樹脂1kg当り0~1mol/kgであることが好ましい。 Affinity with metals and polar resins can be increased by using a modified cyclic olefin resin (4) obtained by grafting and / or copolymerizing an unsaturated compound (u) having a polar group, so vapor deposition, sputtering, coating It is possible to increase the strength of various secondary processing such as adhesion, and is suitable when secondary processing is required. However, the presence of the polar group has a drawback of increasing the water absorption rate of the cyclic olefin resin. Therefore, the content of polar groups (for example, carboxyl group, acid anhydride group, epoxy group, amide group, ester group, hydroxyl group, etc.) is preferably 0 to 1 mol / kg per 1 kg of cyclic olefin resin.
 [エラストマー]
 エラストマーは、スチレン系エラストマーであることが好ましい。スチレン系エラストマーは、スチレンとブタジエンもしくはイソプレン等の共役ジエンの共重合体、及び/又は、その水素添加物である。スチレン系エラストマーは、スチレンをハードセグメント、共役ジエンをソフトセグメントとしたブロック共重合体である。ソフトセグメントの構造が、スチレン系エラストマーの貯蔵弾性率を変化させ、ハードセグメントであるスチレンの含有率が、屈折率を変化させ、フィルム全体のヘイズを変化させる。スチレン系エラストマーは、加硫工程が不用であり、好適に用いられる。また、水素添加をしたものの方が、熱安定性が高く、さらに好適である。
[Elastomer]
The elastomer is preferably a styrene elastomer. The styrenic elastomer is a copolymer of styrene and a conjugated diene such as butadiene or isoprene, and / or a hydrogenated product thereof. The styrene elastomer is a block copolymer having styrene as a hard segment and conjugated diene as a soft segment. The structure of the soft segment changes the storage elastic modulus of the styrene-based elastomer, and the content of styrene that is the hard segment changes the refractive index and changes the haze of the entire film. The styrene elastomer does not require a vulcanization step and is preferably used. Further, the hydrogenated one is more preferable because it has higher thermal stability.
 スチレン系エラストマーの例としては、スチレン/ブタジエン/スチレンブロック共重合体、スチレン/イソプレン/スチレンブロック共重合体、スチレン/エチレン/ブチレン/スチレンブロック共重合体、スチレン/エチレン/プロピレン/スチレンブロック共重合体、スチレン/ブタジエンブロック共重合体などが挙げられる。 Examples of styrenic elastomers include styrene / butadiene / styrene block copolymers, styrene / isoprene / styrene block copolymers, styrene / ethylene / butylene / styrene block copolymers, and styrene / ethylene / propylene / styrene block copolymers. Examples thereof include styrene and butadiene block copolymers.
 また、水素添加により共役ジエン成分の二重結合をなくした、スチレン/エチレン/ブチレン/スチレンブロック共重合体、スチレン/エチレン/プロピレン/スチレンブロック共重合体、スチレン/ブタジエンブロック共重合体(水素添加されたスチレン系エラストマーともいう。)などを用いてもよい。 In addition, styrene / ethylene / butylene / styrene block copolymer, styrene / ethylene / propylene / styrene block copolymer, styrene / butadiene block copolymer (hydrogenation) in which double bond of conjugated diene component is eliminated by hydrogenation May also be used.
 スチレン系エラストマーの構造には、特に制限はなく、鎖状でも、分岐状でも、架橋状でもよいが、貯蔵弾性率を小さくするため、好ましくは直鎖状である。 The structure of the styrene-based elastomer is not particularly limited, and may be chain-like, branched or cross-linked, but is preferably linear in order to reduce the storage elastic modulus.
 本実施の形態では、スチレン/エチレン/ブチレン/スチレンブロック共重合体、スチレン/エチレン/プロピレン/スチレンブロック共重合体、水素添加スチレン/ブタジエンブロック共重合体からなる群より選ばれる1種以上のスチレン系エラストマーが好適に用いられる。特に、水素添加スチレン/ブタジエンブロック共重合体は、高い引裂き強度と、環境保存後のヘイズ上昇が小さいため、さらに好適に用いられる。水素添加スチレン/ブタジエンブロック共重合体のスチレンに対するブタジエンの比率は、環状オレフィン系樹脂との相溶性を損なわないために、10~90mol%の範囲であることが好ましい。 In the present embodiment, at least one styrene selected from the group consisting of styrene / ethylene / butylene / styrene block copolymers, styrene / ethylene / propylene / styrene block copolymers, and hydrogenated styrene / butadiene block copolymers. Based elastomers are preferably used. In particular, hydrogenated styrene / butadiene block copolymers are more preferably used because of high tear strength and small haze increase after environmental preservation. The ratio of butadiene to styrene in the hydrogenated styrene / butadiene block copolymer is preferably in the range of 10 to 90 mol% so as not to impair the compatibility with the cyclic olefin resin.
 また、スチレン系エラストマーのスチレン含有率は、20~40mol%であることが好ましい。スチレン含有率を20~40mol%とすることにより、ヘイズをより小さくすることができる。 Further, the styrene content of the styrene elastomer is preferably 20 to 40 mol%. By setting the styrene content to 20 to 40 mol%, the haze can be further reduced.
 また、スチレン系エラストマーの分子量は、GPC法による数平均分子量が5000~30万、好ましくは1万~15万、さらに好ましくは2万~10万である。数平均分子量が低すぎると機械的強度が低下し、大きすぎると成形性が悪くなる。 The molecular weight of the styrene elastomer is 5,000 to 300,000, preferably 10,000 to 150,000, and more preferably 20,000 to 100,000, as determined by the GPC method. If the number average molecular weight is too low, the mechanical strength decreases, and if it is too high, the moldability deteriorates.
 環状オレフィン樹脂とスチレン系エラストマーとの重量比(環状オレフィン樹脂:スチレン系エラストマー)は、60:40~95:1であることが好ましく、85:15~95:5であることがより好ましい。このような範囲とすることにより、得られるフィルムの靭性をより向上させることができる。 The weight ratio of the cyclic olefin resin to the styrene elastomer (cyclic olefin resin: styrene elastomer) is preferably 60:40 to 95: 1, and more preferably 85:15 to 95: 5. By setting it as such a range, the toughness of the film obtained can be improved more.
 [他の添加物]
 環状オレフィン系樹脂組成物フィルムは、環状オレフィン系樹脂、及びエラストマーの他に、その特性を損なわない範囲で、必要に応じて各種配合剤を含有していてもよい。各種配合剤としては、熱可塑性樹脂材料で通常用いられているものであれば格別な制限はなく、例えば、無機酸化物微粒子、酸化防止剤、紫外線吸収剤、光安定剤、可塑剤、滑剤、帯電防止剤、難燃剤、染料や顔料などの着色剤、近赤外線吸収剤、蛍光増白剤などの配合剤、充填剤等が挙げられる。
[Other additives]
The cyclic olefin-based resin composition film may contain various compounding agents as necessary in addition to the cyclic olefin-based resin and the elastomer as long as the characteristics thereof are not impaired. The various compounding agents are not particularly limited as long as they are usually used in thermoplastic resin materials. For example, inorganic oxide fine particles, antioxidants, ultraviolet absorbers, light stabilizers, plasticizers, lubricants, Examples thereof include antistatic agents, flame retardants, colorants such as dyes and pigments, near infrared absorbers, compounding agents such as fluorescent whitening agents, and fillers.
 <2.環状オレフィン系樹脂組成物フィルムの製造方法>
 本実施の形態に係る環状オレフィン系樹脂組成物フィルムの製造方法は、環状オレフィン系樹脂とエラストマーとを含有する環状オレフィン系樹脂組成物を加熱溶融し、加熱溶融された環状オレフィン系樹脂組成物を押出法により、フィルム状に押し出し、延伸し、MD方向の屈折率をTD方向の屈折率よりも0.001~0.0035大きくしてなる環状オレフィン系樹脂組成物フィルムを得る。
<2. Method for Producing Cyclic Olefin Resin Composition Film>
In the method for producing a cyclic olefin resin composition film according to the present embodiment, a cyclic olefin resin composition containing a cyclic olefin resin and an elastomer is heated and melted, and the heated and melted cyclic olefin resin composition is obtained. A cyclic olefin-based resin composition film having a refractive index in the MD direction that is 0.001 to 0.0035 larger than that in the TD direction is obtained by extrusion.
 環状オレフィン系樹脂組成物は、上述した環状オレフィン系樹脂とエラストマーとを含有するものであり、好ましい範囲も同様である。 The cyclic olefin-based resin composition contains the cyclic olefin-based resin and the elastomer described above, and the preferred range is also the same.
 環状オレフィン系樹脂組成物の加熱温度は、210~300℃の範囲が好ましい。 The heating temperature of the cyclic olefin resin composition is preferably in the range of 210 to 300 ° C.
 フィルムの延伸は、フィルムのMD方向の屈折率が、TD方向の屈折率よりも0.001~0.0035大きくなるように行うことが好ましい。フィルムの延伸は、一軸延伸であってもよいし、二軸延伸であってもよい。一軸延伸の場合、ロール法による縦延伸、又はテンターによる横延伸により行うことが好ましい。二軸延伸の場合、ロール法による縦延伸及びテンターによる横延伸により行うことが好ましい。延伸は、一軸目の延伸と二軸目の延伸を逐次的に行っても、同時に行っても良い。 The film is preferably stretched so that the refractive index in the MD direction of the film is 0.001 to 0.0035 larger than the refractive index in the TD direction. The stretching of the film may be uniaxial stretching or biaxial stretching. In the case of uniaxial stretching, it is preferable to perform longitudinal stretching by a roll method or lateral stretching by a tenter. In the case of biaxial stretching, it is preferably performed by longitudinal stretching by a roll method and transverse stretching by a tenter. The stretching may be performed sequentially or simultaneously with the first and second axes.
 図2は、フィルム製造装置の一構成例を示す模式図である。このフィルム製造装置は、ダイ21、ロール22およびロール23を備える。ダイ21は、一般的な溶融成形用のTダイであり、溶融状態の樹脂材料24をフィルム状に押し出す。樹脂材料24は、例えば上述の環状オレフィン系樹脂組成物を含む。ロール22とロール23とは、ダイ21からフィルム状に押し出された樹脂材料24を任意の圧力にてニップできる構成を有している。ロール22およびロール23は、任意の方向に回転可能に構成されている。より具体的には、ロール22はロール23を基準とした回転速度に対し、図示しない回転動力伝達機構により任意の回転速度比にて回転可能に構成されている。ロール22およびロール23の表面形状は特に限定されるものではなく、例えばミラー面、シボ面、プリズムやレンチキュラーなどを任意に選択できる。ロール22およびロール23はその内部に媒体の流路をもち、それぞれ個別の温調装置により任意の温度に表面を温調できる機能を有する。ロール22およびロール23の表面の材質は特に限定されるものではなく、金属、ゴム、樹脂、エラストマーなどを用いることができる。 FIG. 2 is a schematic diagram showing a configuration example of a film manufacturing apparatus. The film manufacturing apparatus includes a die 21, a roll 22, and a roll 23. The die 21 is a general T-die for melt molding, and extrudes the molten resin material 24 into a film shape. The resin material 24 contains the above-mentioned cyclic olefin resin composition, for example. The rolls 22 and 23 have a configuration in which the resin material 24 extruded from the die 21 in a film shape can be nipped with an arbitrary pressure. The roll 22 and the roll 23 are configured to be rotatable in an arbitrary direction. More specifically, the roll 22 is configured to be rotatable at an arbitrary rotational speed ratio by a rotational power transmission mechanism (not shown) with respect to the rotational speed based on the roll 23. The surface shapes of the rolls 22 and 23 are not particularly limited, and for example, a mirror surface, a textured surface, a prism, a lenticular, or the like can be arbitrarily selected. Each of the rolls 22 and 23 has a medium flow path therein, and has a function of controlling the surface to an arbitrary temperature by an individual temperature control device. The material of the surface of the roll 22 and the roll 23 is not specifically limited, A metal, rubber | gum, resin, an elastomer, etc. can be used.
 このような構成を有するフィルム製造装置を用いた環状オレフィン系樹脂組成物フィルムの製造方法の一例について説明する。まず、投入樹脂材料(環状オレフィン系樹脂組成物)を任意の温度にて溶融状態とし、樹脂材料24をダイ21からフィルム状に押し出す。押し出された溶融状態の樹脂材料24を落下させて、ロール22とロール23とにより挟むことにより、延伸を施す。この延伸により、MD方向の屈折率をTD方向の屈折率よりも0.001~0.0035大きくしてなる環状オレフィン系樹脂組成物フィルムが得られる。次に、必要に応じて、ロール23に沿って環状オレフィン系樹脂組成物フィルムを次工程に搬送し、図示しない走行系により原反状に巻き取る。 An example of a method for producing a cyclic olefin-based resin composition film using a film production apparatus having such a configuration will be described. First, the input resin material (cyclic olefin resin composition) is melted at an arbitrary temperature, and the resin material 24 is extruded from the die 21 into a film. The extruded molten resin material 24 is dropped and sandwiched between rolls 22 and 23 to be stretched. By this stretching, a cyclic olefin-based resin composition film in which the refractive index in the MD direction is 0.001 to 0.0035 larger than the refractive index in the TD direction is obtained. Next, if necessary, the cyclic olefin-based resin composition film is conveyed to the next step along the roll 23 and wound into a raw fabric by a running system (not shown).
 <3.電子機器への適用例>
 本実施の形態に係る環状オレフィン系樹脂組成物フィルムは、フィルムのMD方向の屈折率が、TD方向の屈折率よりも0.001~0.0035大きいため、例えば膜厚を100μmとしたときに、100nm程度のリタデーションが発生する。そのため、環状オレフィン系樹脂組成物フィルムは、各種光学用途、例えば位相差フィルム、偏光板保護フィルム、光拡散板等、特にプリズムシート、液晶セル基板への用途に用いることができる。以下では、環状オレフィン系樹脂組成物フィルムを位相差フィルムとして用いた適用例について説明する。
<3. Application example to electronic equipment>
In the cyclic olefin-based resin composition film according to the present embodiment, the refractive index in the MD direction of the film is 0.001 to 0.0035 larger than the refractive index in the TD direction. , Retardation of about 100 nm occurs. Therefore, the cyclic olefin-based resin composition film can be used for various optical applications, for example, a retardation film, a polarizing plate protective film, a light diffusing plate and the like, particularly a prism sheet and a liquid crystal cell substrate. Below, the application example which used the cyclic olefin resin composition film as a phase difference film is demonstrated.
 図3A及び図3Bは、透明導電性フィルムの一例を示す断面図である。この透明導電性フィルム(透明導電性素子)は、前述の環状オレフィン系樹脂組成物フィルムをベースフィルム(基材)として構成される。具体的には、この透明導電性フィルムは、ベースフィルム(基材)としての位相差フィルム31と、位相差フィルム31の少なくとも一方の表面に透明導電層33とを備える。図3Aは、位相差フィルム31の一方の表面に透明導電層33を設けた例であり、図3Bは、位相差フィルム31の両方の表面に透明導電層33を設けた例である。また、図3A及び図3Bに示すように、位相差フィルム31と透明導電層33との間にハードコート層32をさらに備えるようにしてもよい。 3A and 3B are cross-sectional views showing an example of a transparent conductive film. This transparent conductive film (transparent conductive element) is constituted by using the above-mentioned cyclic olefin-based resin composition film as a base film (base material). Specifically, this transparent conductive film includes a retardation film 31 as a base film (base material), and a transparent conductive layer 33 on at least one surface of the retardation film 31. FIG. 3A is an example in which the transparent conductive layer 33 is provided on one surface of the retardation film 31, and FIG. 3B is an example in which the transparent conductive layer 33 is provided on both surfaces of the retardation film 31. In addition, as shown in FIGS. 3A and 3B, a hard coat layer 32 may be further provided between the retardation film 31 and the transparent conductive layer 33.
 透明導電層33の材料としては、例えば、電気的導電性を有する金属酸化物材料、金属材料、炭素材料、及び導電性ポリマーなどからなる群より選ばれる1種以上を用いることができる。金属酸化物材料としては、例えば、インジウム錫酸化物(ITO)酸化亜鉛、酸化インジウム、アンチモン添加酸化錫、フッ素添加酸化錫、アルミニウム添加酸化亜鉛、ガリウム添加酸化亜鉛、シリコン添加酸化亜鉛、酸化亜鉛-酸化錫系、酸化インジウム-酸化錫系、酸化亜鉛-酸化インジウム-酸化マグネシウム系などが挙げられる。金属材料としては、例えば、金属ナノ粒子、金属ナノワイヤーなどの金属ナノフィラーを用いることができる。これらの具体的材料としては、例えば、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンタル、チタン、ビスマス、アンチモン、鉛などの金属又はこれらの合金などが挙げられる。炭素材料としては、例えば、カーボンブラック、炭素繊維、フラーレン、グラフェン、カーボンナノチューブ、カーボンマイクロコイル、ナノホーンなどが挙げられる。導電性ポリマーとしては、例えば、置換又は無置換のポリアニリン、ポリビロール、ポリチオフィン、及びこれらから選ばれる1種又は2種からなる(共)重合体などを用いることができる。 As the material of the transparent conductive layer 33, for example, one or more selected from the group consisting of electrically conductive metal oxide materials, metal materials, carbon materials, and conductive polymers can be used. Examples of the metal oxide material include indium tin oxide (ITO) zinc oxide, indium oxide, antimony-added tin oxide, fluorine-added tin oxide, aluminum-added zinc oxide, gallium-added zinc oxide, silicon-added zinc oxide, and zinc oxide- Examples thereof include a tin oxide system, an indium oxide-tin oxide system, and a zinc oxide-indium oxide-magnesium oxide system. As the metal material, for example, metal nanofillers such as metal nanoparticles and metal nanowires can be used. Specific examples of these materials include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantalum, titanium, bismuth, Examples thereof include metals such as antimony and lead, and alloys thereof. Examples of the carbon material include carbon black, carbon fiber, fullerene, graphene, carbon nanotube, carbon microcoil, and nanohorn. As the conductive polymer, for example, substituted or unsubstituted polyaniline, polypyrrole, polythiofin, and one or two (co) polymers selected from these can be used.
 透明導電層33の形成方法としては、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法などのPVD法や、CVD法、塗工法、印刷法などを用いることができる。透明導電層33は、所定の電極パターンを有する透明電極であってもよい。電極パターンとしては、ストライプ状などが挙げられるが、これに限定されるものではない。 As a method for forming the transparent conductive layer 33, for example, a PVD method such as a sputtering method, a vacuum deposition method, or an ion plating method, a CVD method, a coating method, a printing method, or the like can be used. The transparent conductive layer 33 may be a transparent electrode having a predetermined electrode pattern. Examples of the electrode pattern include a stripe shape, but are not limited thereto.
 ハードコート層32の材料としては、光又は電子線などにより硬化する電離放射線硬化樹脂、又は熱により硬化する熱硬化型樹脂を用いることが好ましく、紫外線により硬化する感光性樹脂が最も好ましい。このような感光性樹脂としては、例えば、ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレート、ポリオールアクリレート、ポリエーテルアクリレート、メラミンアクリレートなどのアクリレート系樹脂を用いることができる。例えば、ウレタンアクリレート樹脂は、ポリエステルポリオールにイソシアネートモノマー、あるいはプレポリマーを反応させ、得られた生成物に、水酸基を有するアクリレート又はメタアクリレート系のモノマーを反応させることによって得られる。ハードコート層32の厚みは、1μm~20μmであることが好ましいが、この範囲に特に限定されるものではない。 As the material of the hard coat layer 32, it is preferable to use an ionizing radiation curable resin that is cured by light or an electron beam, or a thermosetting resin that is cured by heat, and a photosensitive resin that is cured by ultraviolet rays is most preferable. As such a photosensitive resin, for example, acrylate resins such as urethane acrylate, epoxy acrylate, polyester acrylate, polyol acrylate, polyether acrylate, and melamine acrylate can be used. For example, the urethane acrylate resin is obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer, and reacting an acrylate or methacrylate monomer having a hydroxyl group with the obtained product. The thickness of the hard coat layer 32 is preferably 1 μm to 20 μm, but is not particularly limited to this range.
 また、透明導電性フィルムは、図3C及び図3Dに示すように、上述の位相差フィルムの少なくとも一方の表面に反射防止層としてのモスアイ(蛾の目)形状の構造体34を設けるようにしてもよい。図3Cは、位相差フィルム31の一方の表面にモスアイ形状の構造体34を設けた例であり、図3Dは、位相差フィルムの両方の表面にモスアイ形状の構造体を設けた例である。なお、位相差フィルム11の表面に設けられる反射防止層は、上述のモスアイ形状の構造体に限定されるものではなく、低屈折率層などの従来公知の反射防止層を用いることも可能である。 In addition, as shown in FIGS. 3C and 3D, the transparent conductive film is provided with a moth-eye structure 34 as an antireflection layer on at least one surface of the above-described retardation film. Also good. FIG. 3C is an example in which a moth-eye structure 34 is provided on one surface of the retardation film 31, and FIG. 3D is an example in which a moth-eye structure is provided on both surfaces of the retardation film. The antireflection layer provided on the surface of the retardation film 11 is not limited to the moth-eye structure described above, and a conventionally known antireflection layer such as a low refractive index layer can also be used. .
 図4は、タッチパネルの一構成例を示す概略断面図である。このタッチパネル(入力装置)40は、いわゆる抵抗膜方式タッチパネルである。抵抗膜方式タッチパネルとしては、アナログ抵抗膜方式タッチパネル、又はデジタル抵抗膜方式タッチパネルのいずれであってもよい。 FIG. 4 is a schematic cross-sectional view showing one configuration example of the touch panel. The touch panel (input device) 40 is a so-called resistive film type touch panel. The resistive film type touch panel may be either an analog resistive film type touch panel or a digital resistive film type touch panel.
 タッチパネル40は、第1の透明導電性フィルム41と、第1の透明導電性フィルム41と対向する第2の透明導電性フィルム42とを備える。第1の透明導電性フィルム41と第2の透明導電性フィルム42は、それらの周縁部間において貼り合わせ部45を介して貼り合わされている。貼り合わせ部45としては、例えば、粘着ペースト、粘着テープなどが用いられる。このタッチパネル40は、例えば表示装置44に対して貼り合わせ層43を介して貼り合わされる。貼り合わせ層43の材料としては、例えば、アクリル系、ゴム系、シリコン系などの粘着剤を用いることができ、透明性の観点から、アクリル系粘着剤が好ましい。 The touch panel 40 includes a first transparent conductive film 41 and a second transparent conductive film 42 facing the first transparent conductive film 41. The 1st transparent conductive film 41 and the 2nd transparent conductive film 42 are bonded together via the bonding part 45 between those peripheral parts. As the bonding part 45, for example, an adhesive paste, an adhesive tape or the like is used. The touch panel 40 is bonded to the display device 44 through the bonding layer 43, for example. As a material of the bonding layer 43, for example, an acrylic, rubber, or silicon adhesive can be used, and an acrylic adhesive is preferable from the viewpoint of transparency.
 タッチパネル40は、第1の透明導電性フィルム41のタッチ側となる面に対して、貼り合わせ層50などを介して貼り合わされた偏光子48をさらに備える。第1の透明導電性フィルム41及び/又は第2の透明導電性フィルム42としては、前述の透明導電性フィルムを用いることができる。但し、ベースフィルム(基材)としての位相差フィルムは、λ/4に設定される。このように偏光子48と位相差フィルム31とを採用することにより、反射率を低減し、視認性を向上させることができる。 The touch panel 40 further includes a polarizer 48 bonded to the surface on the touch side of the first transparent conductive film 41 via a bonding layer 50 or the like. As the 1st transparent conductive film 41 and / or the 2nd transparent conductive film 42, the above-mentioned transparent conductive film can be used. However, the retardation film as the base film (base material) is set to λ / 4. By adopting the polarizer 48 and the retardation film 31 in this way, the reflectance can be reduced and the visibility can be improved.
 タッチパネル40は、第1の透明導電性フィルム41及び第2の透明導電性フィルム42の対向する表面、すなわち透明導電層33の表面にモスアイ構造体34を設けることが好ましい。これにより、第1の透明導電性フィルム41及び第2の透明導電性フィルム42の光学特性(例えば反射特性や透過特性など)を向上させることができる。 The touch panel 40 is preferably provided with a moth-eye structure 34 on the opposing surfaces of the first transparent conductive film 41 and the second transparent conductive film 42, that is, on the surface of the transparent conductive layer 33. Thereby, the optical characteristics (for example, a reflection characteristic, a transmission characteristic, etc.) of the 1st transparent conductive film 41 and the 2nd transparent conductive film 42 can be improved.
 タッチパネル40は、第1の透明導電性フィルム41のタッチ側となる面に単層又は多層の反射防止層をさらに備えることが好ましい。これにより、反射率を低減し、視認性を向上させることができる。 The touch panel 40 preferably further includes a single-layer or multi-layer antireflection layer on the surface of the first transparent conductive film 41 on the touch side. Thereby, a reflectance can be reduced and visibility can be improved.
 タッチパネル40は、耐擦傷性の向上の観点から、第1の透明導電性フィルム41のタッチ側となる面にハードコート層をさらに備えることが好ましい。このハードコート層の表面には、防汚性が付与されていることが好ましい。 It is preferable that the touch panel 40 further includes a hard coat layer on the surface on the touch side of the first transparent conductive film 41 from the viewpoint of improving the scratch resistance. The surface of the hard coat layer is preferably imparted with antifouling properties.
 タッチパネル40は、第1の透明導電性フィルム41のタッチ側となる面に対して、貼り合わせ層51を介して貼り合わされたフロントパネル(表面部材)49をさらに備えることが好ましい。また、タッチパネル40は、第2の透明導電性フィルム42の表示装置44に貼り合わされる面に、貼り合わせ層47を介して貼り合わされたガラス基板46をさらに備えることが好ましい。 It is preferable that the touch panel 40 further includes a front panel (surface member) 49 bonded to the surface on the touch side of the first transparent conductive film 41 via the bonding layer 51. Moreover, it is preferable that the touch panel 40 further includes a glass substrate 46 bonded to the surface of the second transparent conductive film 42 bonded to the display device 44 via a bonding layer 47.
 タッチパネル40は、第2の透明導電性フィルム42の表示装置44などと貼り合わされる面に、複数の構造体をさらに備えることが好ましい。複数の構造体のアンカー効果により、タッチパネル40と貼り合わせ層43との間の接着性を向上することができる。この構造体としては、モスアイ形状の構造体が好ましい。これにより、界面反射を抑制することができる。 The touch panel 40 preferably further includes a plurality of structures on the surface to be bonded to the display device 44 of the second transparent conductive film 42 or the like. The adhesion between the touch panel 40 and the bonding layer 43 can be improved by the anchor effect of the plurality of structures. As this structure, a moth-eye structure is preferable. Thereby, interface reflection can be suppressed.
 表示装置44としては、例えば、液晶ディスプレイ、CRT(Cathode Ray Tube)ディスプレイ、プラズマディスプレイ(Plasma Display Panel:PDP)、エレクトロルミネッセンス(Electro Luminescence:EL)ディスプレイ、表面伝導型電子放出素子ディスプレイ(Surface-conduction Electron-emitter Display:SED)などの各種表示装置を用いることができる。 As the display device 44, for example, a liquid crystal display, a CRT (Cathode Ray Tube) display, a plasma display (Plasma Display Panel: PDP), an electroluminescence (Electro Luminescence: EL) display, a surface conduction electron-emitting device display (Surface-conduction) Various display devices such as Electron-emitter Display (SED) can be used.
 次に、前述した入力装置40を備える電子機器について説明する。図5は、電子機器としてテレビ装置の例を示す外観図である。テレビ装置100は、表示部101を備え、その表示部101にタッチパネル40を備える。 Next, an electronic apparatus including the input device 40 described above will be described. FIG. 5 is an external view illustrating an example of a television device as an electronic apparatus. The television device 100 includes a display unit 101, and the display unit 101 includes a touch panel 40.
 図6A及び図6Bは、電子機器としてデジタルカメラの例を示す外観図である。図6Aは、デジタルカメラを表側から見た外観図であり、図6Bは、デジタルカメラを裏側から見た外観図である。デジタルカメラ110は、フラッシュ用の発光部111、表示部112、メニュースイッチ113、シャッターボタン114などを備え、その表示部112に前述のタッチパネル40を備える。 6A and 6B are external views illustrating examples of a digital camera as an electronic device. 6A is an external view of the digital camera viewed from the front side, and FIG. 6B is an external view of the digital camera viewed from the back side. The digital camera 110 includes a light emitting unit 111 for flash, a display unit 112, a menu switch 113, a shutter button 114, and the like, and the display unit 112 includes the touch panel 40 described above.
 図7は、電子機器としてノート型パーソナルコンピュータの例を示す外観図である。ノート型パーソナルコンピュータ120は、本体部121に、文字を入力するキーボード122、画像を表示する表示部123などを備え、その表示部123に前述のタッチパネル40を備える。 FIG. 7 is an external view showing an example of a notebook personal computer as an electronic device. The notebook personal computer 120 includes a main body 121 including a keyboard 122 for inputting characters, a display unit 123 for displaying images, and the like, and the display unit 123 includes the touch panel 40 described above.
 図8は、電子機器としてビデオカメラの例を示す外観図である。ビデオカメラ130は、本体部131、前方を向いた側面に被写体撮影用のレンズ132、撮影時のスタート/ストップスイッチ133、表示部134などを備え、その表示部134に前述のタッチパネル40を備える。 FIG. 8 is an external view showing an example of a video camera as an electronic device. The video camera 130 includes a main body 131, a subject shooting lens 132 on the side facing forward, a start / stop switch 133 during shooting, a display unit 134, and the like, and the display unit 134 includes the touch panel 40 described above.
 図9は、電子機器として携帯電話の一例を示す外観図である。携帯電話140は、いわゆるスマートフォンであり、その表示部141に前述のタッチパネル40を備える。 FIG. 9 is an external view showing an example of a mobile phone as an electronic device. The mobile phone 140 is a so-called smartphone, and the display unit 141 includes the touch panel 40 described above.
 図10は、電子機器としてタブレット型コンピュータの一例を示す外観図である。タブレット型コンピュータ150は、その表示部151に前述のタッチパネル40を備える。 FIG. 10 is an external view showing an example of a tablet computer as an electronic device. The tablet computer 150 includes the touch panel 40 described above on the display unit 151.
 以上のような各電子機器であっても、表示部に、機械的等方性に優れた環状オレフィン系樹脂組成物フィルムが使用されているため、高耐久で高画質な表示が可能になる。 Even in each of the electronic devices as described above, since the cyclic olefin resin composition film having excellent mechanical isotropy is used for the display portion, high-quality display with high durability becomes possible.
 <3.実施例>
 以下、本発明の実施例について説明する。本実施例では、環状オレフィン系樹脂組成物にエラストマーを添加し、MD方向の屈折率をTD方向の屈折率よりも所定値大きくしてなる環状オレフィン系樹脂組成物フィルムを作製した。作製した環状オレフィン系樹脂組成物フィルムについて、MD方向及びTD方向の引裂き強度を測定し、機械的等方性について評価した。なお、本発明はこれらの実施例に限定されるものではない。
<3. Example>
Examples of the present invention will be described below. In this example, an elastomer was added to the cyclic olefin-based resin composition, and a cyclic olefin-based resin composition film having a refractive index in the MD direction larger than the refractive index in the TD direction by a predetermined value was produced. About the produced cyclic olefin system resin composition film, tear strength of MD direction and TD direction was measured, and mechanical isotropy was evaluated. The present invention is not limited to these examples.
 [屈折率△n(MD方向の屈折率-TD方向の屈折率)]
 MD方向の屈折率及びTD方向の屈折率を、リタデーション測定装置(大塚電子(株)社製)を用いてそれぞれ測定し、MD方向の屈折率とTD方向の屈折率との差(屈折率△n)を求めた。
[Refractive index Δn (refractive index in MD direction−refractive index in TD direction)]
The refractive index in the MD direction and the refractive index in the TD direction were measured using a retardation measuring device (manufactured by Otsuka Electronics Co., Ltd.), and the difference between the refractive index in the MD direction and the refractive index in the TD direction (refractive index Δ n) was determined.
 [引裂き強度(直角形引き裂き)]
 引裂き強度は、厚み80μmのフィルムをJISK7128に従い測定した。試験片として3号形試験片を用い、引張試験機(AG-X、島津製作所(株)製)を用いて試験速度200mm/分で測定した。MD方向に引っ張るMD方向の引裂き強度の平均値、及びTD方向に引っ張るTD方向の引裂き強度の平均値をそれぞれ算出した。
[Tear strength (right-angle tear)]
The tear strength was measured according to JISK7128 for a film having a thickness of 80 μm. A No. 3 type test piece was used as a test piece, and measurement was performed at a test speed of 200 mm / min using a tensile tester (AG-X, manufactured by Shimadzu Corporation). The average value of the tear strength in the MD direction pulled in the MD direction and the average value of the tear strength in the TD direction pulled in the TD direction were calculated.
 [機械的等方性]
 下記式(1)の条件を満たす場合を、環状オレフィン系樹脂組成物フィルムの機械的等方性の評価が○とした。
(1)環状オレフィン系樹脂組成物フィルムのMD方向又はTD方向のうち引裂き強度が大きい方の引裂き強度(N/mm)×0.8<環状オレフィン系樹脂組成物フィルムのMD方向又はTD方向のうち引裂き強度が小さい方の引裂き強度(N/mm)
[Mechanical isotropy]
When the condition of the following formula (1) was satisfied, the evaluation of mechanical isotropy of the cyclic olefin-based resin composition film was evaluated as ◯.
(1) The tear strength (N / mm) of the larger tear strength in the MD direction or TD direction of the cyclic olefin resin composition film × 0.8 <0.8 in the MD direction or TD direction of the cyclic olefin resin composition film The tear strength (N / mm) of the smaller tear strength
 下記(2)の条件を満たす場合を、環状オレフィン系樹脂組成物フィルムの機械的等方性の評価が△とした。
(2)環状オレフィン系樹脂組成物フィルムのMD方向又はTD方向のうち引裂き強度が大きい方の引裂き強度(N/mm)×0.8≧環状オレフィン系樹脂組成物フィルムのMD方向又はTD方向のうち引裂き強度が小さい方の引裂き強度(N/mm)であり、かつ、その差が1.0以下
When the condition of the following (2) was satisfied, the mechanical isotropy of the cyclic olefin resin composition film was evaluated as Δ.
(2) The tear strength (N / mm) of the larger tear strength among the MD direction or TD direction of the cyclic olefin resin composition film × 0.8 ≧ the MD direction or TD direction of the cyclic olefin resin composition film The tear strength (N / mm) of the smaller tear strength, and the difference is 1.0 or less
 下記(3)の条件を満たす場合を、環状オレフィン系樹脂組成物フィルムの機械的等方性の評価が×とした。
(3)環状オレフィン系樹脂組成物フィルムのMD方向又はTD方向のうち引裂き強度が大きい方の引裂き強度(N/mm)×0.8≧環状オレフィン系樹脂組成物フィルムのMD方向又はTD方向のうち引裂き強度が小さい方の引裂き強度(N/mm)であり、かつ、その差が1.0を超える
When the condition (3) below was satisfied, the mechanical isotropy of the cyclic olefin resin composition film was evaluated as x.
(3) The tear strength (N / mm) of the larger tear strength among the MD direction or TD direction of the cyclic olefin resin composition film × 0.8 ≧ the MD direction or TD direction of the cyclic olefin resin composition film Of these, the tear strength (N / mm) of the smaller tear strength, and the difference exceeds 1.0
 [環状オレフィン系樹脂]
 環状オレフィン系樹脂としては、TOPAS6013-S04(ポリプラスチックス(株)製、化学名:エチレンとノルボルネンの付加共重合体)を用いた。
[Cyclic olefin resin]
As the cyclic olefin resin, TOPAS6013-S04 (manufactured by Polyplastics Co., Ltd., chemical name: addition copolymer of ethylene and norbornene) was used.
 [エラストマー]
 エラストマーとしては、次の2種類を用いた。
 S.O.E.L606(旭化成ケミカルズ(株)製):水添スチレン/ブタジエンブロック共重合体
 タフテックH1517(旭化成ケミカルズ(株)製):スチレン/エチレン/ブチレン/スチレンブロック共重合体
[Elastomer]
The following two types were used as the elastomer.
S. O. E. L606 (manufactured by Asahi Kasei Chemicals Corporation): hydrogenated styrene / butadiene block copolymer Tuftec H1517 (manufactured by Asahi Kasei Chemicals Corporation): styrene / ethylene / butylene / styrene block copolymer
 [実施例1]
 環状オレフィン系樹脂として、TOPAS6013-S04を90質量部、及びスチレン系エラストマーとして、S.O.E.L606を10質量部配合した。これを先端にTダイを取り付けた二軸押出機(仕様:直径25mm、長さ:26D、Tダイ幅:160mm)を用いて210℃~300℃の温度範囲の所定温度で混練した後、環状オレフィン系樹脂組成物を、250g/minの速さで押し出し、厚さが80μmのフィルム状にした。その後、押し出したフィルムを、MD方向の屈折率がTD方向の屈折率よりも0.001大きくなるように延伸した。表1に示すように、フィルムのMD方向の引裂き強度は100N/mmで、TD方向の引裂き強度は120N/mmであった。機械的等方性の評価は○であった。
[Example 1]
90 parts by mass of TOPAS 6013-S04 as the cyclic olefin resin, and S.I. O. E. 10 parts by mass of L606 was blended. This is kneaded at a predetermined temperature in the temperature range of 210 ° C. to 300 ° C. using a twin screw extruder (specifications: diameter 25 mm, length: 26 D, T die width: 160 mm) with a T die attached to the tip, and then circular The olefin resin composition was extruded at a speed of 250 g / min to form a film having a thickness of 80 μm. Thereafter, the extruded film was stretched so that the refractive index in the MD direction was 0.001 larger than the refractive index in the TD direction. As shown in Table 1, the tear strength in the MD direction of the film was 100 N / mm, and the tear strength in the TD direction was 120 N / mm. Evaluation of mechanical isotropy was (circle).
 [実施例2]
 MD方向の屈折率がTD方向の屈折率よりも0.003大きくなるようにフィルムを延伸したこと以外は、実施例1と同様にしてフィルムを得た。表1に示すように、フィルムのMD方向の引裂き強度は115N/mmで、TD方向の引裂き強度は105N/mmであった。機械的等方性の評価は○であった。
[Example 2]
A film was obtained in the same manner as in Example 1 except that the film was stretched so that the refractive index in the MD direction was 0.003 larger than the refractive index in the TD direction. As shown in Table 1, the tear strength in the MD direction of the film was 115 N / mm, and the tear strength in the TD direction was 105 N / mm. Evaluation of mechanical isotropy was (circle).
 [実施例3]
 スチレン系エラストマーとしてタフテックH1517を用いたこと、MD方向の屈折率がTD方向の屈折率よりも0.001大きくなるようにフィルムを延伸したこと以外は、実施例1と同様にしてフィルムを得た。表1に示すように、フィルムのMD方向の引裂き強度は77N/mmで、TD方向の引裂き強度は95N/mmであった。機械的等方性の評価は○であった。
[Example 3]
A film was obtained in the same manner as in Example 1 except that Tuftec H1517 was used as the styrene-based elastomer and the film was stretched so that the refractive index in the MD direction was 0.001 larger than the refractive index in the TD direction. . As shown in Table 1, the tear strength in the MD direction of the film was 77 N / mm, and the tear strength in the TD direction was 95 N / mm. Evaluation of mechanical isotropy was (circle).
 [実施例4]
 スチレン系エラストマーとしてタフテックH1517を用いたこと、MD方向の屈折率がTD方向の屈折率よりも0.002大きくなるようにフィルムを延伸したこと以外は、実施例1と同様にしてフィルムを得た。表1に示すように、フィルムのMD方向の引裂き強度は86N/mmで、TD方向の引裂き強度は86N/mmであった。機械的等方性の評価は○であった。
[Example 4]
A film was obtained in the same manner as in Example 1 except that Tuftec H1517 was used as the styrene-based elastomer and the film was stretched so that the refractive index in the MD direction was 0.002 larger than the refractive index in the TD direction. . As shown in Table 1, the tear strength in the MD direction of the film was 86 N / mm, and the tear strength in the TD direction was 86 N / mm. Evaluation of mechanical isotropy was (circle).
 [実施例5]
 スチレン系エラストマーとしてタフテックH1517を用いたこと、MD方向の屈折率がTD方向の屈折率よりも0.003大きくなるようにフィルムを延伸したこと以外は、実施例1と同様にしてフィルムを得た。表1に示すように、フィルムのMD方向の引裂き強度は91N/mmで、TD方向の引裂き強度は81N/mmであった。機械的等方性の評価は○であった。
[Example 5]
A film was obtained in the same manner as in Example 1 except that Tuftec H1517 was used as the styrene-based elastomer and the film was stretched so that the refractive index in the MD direction was 0.003 larger than the refractive index in the TD direction. . As shown in Table 1, the tear strength in the MD direction of the film was 91 N / mm, and the tear strength in the TD direction was 81 N / mm. Evaluation of mechanical isotropy was (circle).
 [実施例6]
 スチレン系エラストマーとしてタフテックH1517を用いたこと、MD方向の屈折率がTD方向の屈折率よりも0.0035大きくなるようにフィルムを延伸したこと以外は、実施例1と同様にしてフィルムを得た。表1に示すように、フィルムのMD方向の引裂き強度は96N/mmで、TD方向の引裂き強度は76N/mmであった。機械的等方性の評価は△であった。
[Example 6]
A film was obtained in the same manner as in Example 1 except that Tuftec H1517 was used as the styrene-based elastomer and the film was stretched so that the refractive index in the MD direction was 0.0035 larger than the refractive index in the TD direction. . As shown in Table 1, the tear strength in the MD direction of the film was 96 N / mm, and the tear strength in the TD direction was 76 N / mm. Evaluation of mechanical isotropy was Δ.
 [比較例1]
 環状オレフィン系樹脂として、TOPAS6013-S04を90質量部、及びスチレン系エラストマーとして、S.O.E.L606を10質量部配合した。これを先端にTダイを取り付けた二軸押出機(仕様:直径25mm、長さ:26D、Tダイ幅:160mm)を用いて210℃~300℃の温度範囲の所定温度で混練した後、環状オレフィン系樹脂組成物を、250g/minの速さで押し出し、厚さが80μmのフィルム状にした。比較例1で得られたフィルムは無延伸である。表1に示すように、フィルムのMD方向の屈折率は、TD方向の屈折率よりも0.00005大きかった。また、フィルムのMD方向の引裂き強度は53N/mmで、TD方向の引裂き強度は165N/mmであった。機械的等方性の評価は×であった。
[Comparative Example 1]
90 parts by mass of TOPAS 6013-S04 as the cyclic olefin resin, and S.I. O. E. 10 parts by mass of L606 was blended. This is kneaded at a predetermined temperature in the temperature range of 210 ° C. to 300 ° C. using a twin screw extruder (specifications: diameter 25 mm, length: 26 D, T die width: 160 mm) with a T die attached to the tip, and then circular The olefin resin composition was extruded at a speed of 250 g / min to form a film having a thickness of 80 μm. The film obtained in Comparative Example 1 is unstretched. As shown in Table 1, the refractive index in the MD direction of the film was 0.00005 larger than the refractive index in the TD direction. The tear strength in the MD direction of the film was 53 N / mm, and the tear strength in the TD direction was 165 N / mm. Evaluation of mechanical isotropy was x.
 [比較例2]
 スチレン系エラストマーとして、タフテックH1517を用いたこと以外は、比較例1と同様にしてフィルムを得た。すなわち、比較例2で得られたフィルムも無延伸である。表1に示すように、MD方向の屈折率がTD方向の屈折率よりも0.00005大きかった。また、フィルムのMD方向の引裂き強度は47N/mmで、TD方向の引裂き強度は125N/mmであった。機械的等方性の評価は×であった。
[Comparative Example 2]
A film was obtained in the same manner as in Comparative Example 1 except that Tuftec H1517 was used as the styrene elastomer. That is, the film obtained in Comparative Example 2 is also unstretched. As shown in Table 1, the refractive index in the MD direction was 0.00005 larger than the refractive index in the TD direction. The tear strength in the MD direction of the film was 47 N / mm, and the tear strength in the TD direction was 125 N / mm. Evaluation of mechanical isotropy was x.
 [比較例3]
 スチレン系エラストマーとしてタフテックH1517を用いたこと、MD方向の屈折率がTD方向の屈折率よりも0.0001大きくなるようにフィルムを延伸したこと以外は、実施例1と同様にしてフィルムを得た。表1に示すように、フィルムのMD方向の引裂き強度は48.5N/mmで、TD方向の引裂き強度は123.5N/mmであった。機械的等方性の評価は×であった。
[Comparative Example 3]
A film was obtained in the same manner as in Example 1 except that Tuftec H1517 was used as the styrene-based elastomer and the film was stretched so that the refractive index in the MD direction was 0.0001 larger than the refractive index in the TD direction. . As shown in Table 1, the tear strength in the MD direction of the film was 48.5 N / mm, and the tear strength in the TD direction was 123.5 N / mm. Evaluation of mechanical isotropy was x.
 [比較例4]
 スチレン系エラストマーとしてタフテックH1517を用いたこと、MD方向の屈折率がTD方向の屈折率よりも0.0004大きくなるようにフィルムを延伸したこと以外は、実施例1と同様にしてフィルムを得た。表1に示すように、フィルムのMD方向の引裂き強度は58N/mmで、TD方向の引裂き強度は114N/mmであった。機械的等方性の評価は×であった。
[Comparative Example 4]
A film was obtained in the same manner as in Example 1 except that Tuftec H1517 was used as the styrene-based elastomer and the film was stretched so that the refractive index in the MD direction was 0.0004 larger than the refractive index in the TD direction. . As shown in Table 1, the tear strength in the MD direction of the film was 58 N / mm, and the tear strength in the TD direction was 114 N / mm. Evaluation of mechanical isotropy was x.
 [比較例5]
 スチレン系エラストマーとしてタフテックH1517を用いたこと、MD方向の屈折率がTD方向の屈折率よりも0.0007大きくなるようにフィルムを延伸したこと以外は、実施例1と同様にしてフィルムを得た。表1に示すように、フィルムのMD方向の引裂き強度は68N/mmで、TD方向の引裂き強度は104N/mmであった。機械的等方性の評価は×であった。
[Comparative Example 5]
A film was obtained in the same manner as in Example 1 except that Tuftec H1517 was used as the styrene-based elastomer and the film was stretched so that the refractive index in the MD direction was 0.0007 larger than the refractive index in the TD direction. . As shown in Table 1, the tear strength in the MD direction of the film was 68 N / mm, and the tear strength in the TD direction was 104 N / mm. Evaluation of mechanical isotropy was x.
 [比較例6]
 スチレン系エラストマーとしてタフテックH1517を用いたこと、MD方向の屈折率がTD方向の屈折率よりも0.004大きくなるようにフィルムを延伸したこと以外は、実施例1と同様にしてフィルムを得た。表1に示すように、フィルムのMD方向の引裂き強度は104N/mmで、TD方向の引裂き強度は68N/mmであった。機械的等方性の評価は×であった。
[Comparative Example 6]
A film was obtained in the same manner as in Example 1 except that Tuftec H1517 was used as the styrene-based elastomer and the film was stretched so that the refractive index in the MD direction was 0.004 larger than the refractive index in the TD direction. . As shown in Table 1, the tear strength in the MD direction of the film was 104 N / mm, and the tear strength in the TD direction was 68 N / mm. Evaluation of mechanical isotropy was x.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~6のように、MD方向の屈折率がTD方向の屈折率よりも0.001~0.0035大きい環状オレフィン系樹脂組成物フィルムは、機械的等方性に優れていることが分かった。特に、MD方向の屈折率がTD方向の屈折率よりも0.001~0.0030大きい環状オレフィン系樹脂組成物フィルムは、機械的等方性により優れていることが分かった。 As in Examples 1 to 6, the cyclic olefin resin composition film having a refractive index in the MD direction of 0.001 to 0.0035 larger than that in the TD direction is excellent in mechanical isotropy. I understood. In particular, it has been found that a cyclic olefin resin composition film having a refractive index in the MD direction of 0.001 to 0.0030 larger than that in the TD direction is superior in mechanical isotropy.
 一方、比較例1~6のように、MD方向の屈折率がTD方向の屈折率よりも0.001~0.0035大きいという条件を満たさない環状オレフィン系樹脂組成物フィルムは、機械的等方性に優れていないことが分かった。すなわち、比較例1~6のように、屈折率△nが0.001未満である場合、又は屈折率△nが0.0035を超える場合、機械的異方性が確認されることが分かった。 On the other hand, as in Comparative Examples 1 to 6, the cyclic olefin resin composition film that does not satisfy the condition that the refractive index in the MD direction is 0.001 to 0.0035 larger than the refractive index in the TD direction is mechanically isotropic. It turned out that it is not excellent in property. That is, as in Comparative Examples 1 to 6, it was found that mechanical anisotropy was confirmed when the refractive index Δn was less than 0.001 or when the refractive index Δn exceeded 0.0035. .
 11 環状オレフィン系樹脂、12 エラストマー、21 ダイ、22,23 ロール、24/ 樹脂材料、31 位相差フィルム、32 ハードコート層、33 透明導電層、34 モスアイ形状の構造体、40 タッチパネル、41 第1の透明導電性フィルム、42 第2の透明導電性フィルム、43 貼り合わせ層、44 表示装置、45 貼り合わせ部、46 ガラス基板、47 貼り合わせ層、48 偏光子、49 フロントパネル、50 貼り合わせ層、51 貼り合わせ層、100 テレビ装置、101 表示部、110 デジタルカメラ、111 発光部、112 表示部、113 メニュースイッチ、114 シャッターボタン、120 ノート型パーソナルコンピュータ、121 本体部、122 キーボード、123 表示部、130 ビデオカメラ、131 本体部、132 レンズ、133 スタート/ストップスイッチ、134 表示部、140 携帯電話、141 表示部、150 タブレット型コンピュータ、151 表示部
 
 
11 cyclic olefin resin, 12 elastomer, 21 die, 22, 23 roll, 24 / resin material, 31 retardation film, 32 hard coat layer, 33 transparent conductive layer, 34 moth-eye-shaped structure, 40 touch panel, 41 1st Transparent conductive film, 42 second transparent conductive film, 43 bonding layer, 44 display device, 45 bonding portion, 46 glass substrate, 47 bonding layer, 48 polarizer, 49 front panel, 50 bonding layer , 51 Bonding layer, 100 TV device, 101 display unit, 110 digital camera, 111 light emitting unit, 112 display unit, 113 menu switch, 114 shutter button, 120 notebook personal computer, 121 main body unit, 122 keyboard, 123 display unit , 130 video camera, 131 body , 132 lens, 133 a start / stop switch, 134 display unit, 140 mobile phones, 141 display unit, 150 a tablet computer, 151 display unit

Claims (12)

  1.  環状オレフィン系樹脂及びエラストマーからなる環状オレフィン系樹脂組成物を延伸し、MD方向の屈折率をTD方向の屈折率よりも0.001~0.0035大きくしてなる環状オレフィン系樹脂組成物フィルム。 A cyclic olefin-based resin composition film obtained by stretching a cyclic olefin-based resin composition composed of a cyclic olefin-based resin and an elastomer so that the refractive index in the MD direction is 0.001 to 0.0035 larger than the refractive index in the TD direction.
  2.  MD方向の屈折率がTD方向の屈折率よりも0.001~0.0030大きい、請求項1記載の環状オレフィン系樹脂組成物フィルム。 The cyclic olefin-based resin composition film according to claim 1, wherein the refractive index in the MD direction is 0.001 to 0.0030 larger than the refractive index in the TD direction.
  3.  下記式(1)の条件を満たす、請求項1又は2記載の環状オレフィン系樹脂組成物フィルム。
    (1)環状オレフィン系樹脂組成物フィルムのMD方向又はTD方向のうち引裂き強度が大きい方の引裂き強度(N/mm)×0.8<環状オレフィン系樹脂組成物フィルムのMD方向又はTD方向のうち引裂き強度が小さい方の引裂き強度(N/mm)
    The cyclic olefin resin composition film of Claim 1 or 2 which satisfy | fills the conditions of following formula (1).
    (1) The tear strength (N / mm) of the larger tear strength in the MD direction or TD direction of the cyclic olefin resin composition film × 0.8 <0.8 in the MD direction or TD direction of the cyclic olefin resin composition film The tear strength (N / mm) of the smaller tear strength
  4.  MD方向及びTD方向の引裂き強度が70N/mm以上であり、
     MD方向の引裂き強度とTD方向の引裂き強度との差が20N/mm以下である、請求項1又は2記載の環状オレフィン系樹脂組成物フィルム。
    The tear strength in the MD direction and TD direction is 70 N / mm or more,
    The cyclic olefin resin composition film according to claim 1 or 2, wherein the difference between the tear strength in the MD direction and the tear strength in the TD direction is 20 N / mm or less.
  5.  前記エラストマーの含有量が、5wt%以上30wt%以下である、請求項1乃至4のいずれか1項に記載の環状オレフィン系樹脂組成物フィルム。 The cyclic olefin-based resin composition film according to any one of claims 1 to 4, wherein the elastomer content is 5 wt% or more and 30 wt% or less.
  6.  前記環状オレフィン系樹脂が、エチレンとノルボルネンの付加共重合体である、請求項1乃至5のいずれか1項に記載の環状オレフィン系樹脂組成物フィルム。 The cyclic olefin resin composition film according to any one of claims 1 to 5, wherein the cyclic olefin resin is an addition copolymer of ethylene and norbornene.
  7.  前記エラストマーが、スチレン/エチレン/ブチレン/スチレンブロック共重合体、スチレン/エチレン/プロピレン/スチレンブロック共重合体、水素添加スチレン/ブタジエンブロック共重合体からなる群より選ばれる1種以上である、請求項1乃至6のいずれか1項に記載の環状オレフィン系樹脂組成物フィルム。 The elastomer is at least one selected from the group consisting of a styrene / ethylene / butylene / styrene block copolymer, a styrene / ethylene / propylene / styrene block copolymer, and a hydrogenated styrene / butadiene block copolymer. Item 7. The cyclic olefin-based resin composition film according to any one of Items 1 to 6.
  8.  請求項1乃至7のいずれか1項に記載の環状オレフィン系樹脂組成物フィルムを基材として備える透明導電性素子。 A transparent conductive element comprising the cyclic olefin-based resin composition film according to any one of claims 1 to 7 as a base material.
  9.  請求項1乃至7のいずれか1項に記載の環状オレフィン系樹脂組成物フィルムを備える入力装置。 An input device comprising the cyclic olefin-based resin composition film according to any one of claims 1 to 7.
  10.  請求項1乃至7のいずれか1項に記載の環状オレフィン系樹脂組成物フィルムを備える表示装置。 A display device comprising the cyclic olefin-based resin composition film according to any one of claims 1 to 7.
  11.  請求項1乃至7のいずれか1項に記載の環状オレフィン系樹脂組成物フィルムを備える電子機器。 An electronic device comprising the cyclic olefin-based resin composition film according to any one of claims 1 to 7.
  12.  環状オレフィン系樹脂とエラストマーとを含有する環状オレフィン系樹脂組成物を加熱溶融し、
     前記加熱溶融された環状オレフィン系樹脂組成物を延伸し、MD方向の屈折率をTD方向の屈折率よりも0.001~0.0035大きくしてなる環状オレフィン系樹脂組成物フィルムを得る環状オレフィン系樹脂組成物フィルムの製造方法。
     
    Heat-melting a cyclic olefin resin composition containing a cyclic olefin resin and an elastomer,
    Cyclic olefin obtained by stretching the heat-melted cyclic olefin resin composition to obtain a cyclic olefin resin composition film in which the refractive index in the MD direction is 0.001 to 0.0035 larger than the refractive index in the TD direction Of the resin-based resin composition film.
PCT/JP2016/059611 2015-03-26 2016-03-25 Cyclic olefin resin composition film WO2016153038A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-065268 2015-03-26
JP2015065268A JP2016183303A (en) 2015-03-26 2015-03-26 Cyclic olefinic resin composition film

Publications (1)

Publication Number Publication Date
WO2016153038A1 true WO2016153038A1 (en) 2016-09-29

Family

ID=56977748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059611 WO2016153038A1 (en) 2015-03-26 2016-03-25 Cyclic olefin resin composition film

Country Status (3)

Country Link
JP (1) JP2016183303A (en)
TW (1) TW201708375A (en)
WO (1) WO2016153038A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070916A1 (en) * 2022-09-26 2024-04-04 東レ株式会社 Biaxially-oriented polyolefin film

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035688A1 (en) * 2002-10-03 2004-04-29 Sekisui Chemical Co., Ltd. Thermoplastic saturated norbornene based resin film, ans method for producing thermoplastic saturated norbornene based resin film
JP2010026098A (en) * 2008-07-16 2010-02-04 Sekisui Chem Co Ltd Retardation film, composite sheet polarizer, sheet polarizer and liquid crystal display device
JP2010026096A (en) * 2008-07-16 2010-02-04 Sekisui Chem Co Ltd Retardation film, composite sheet polarizer, sheet polarizer and liquid crystal display device
JP2010026097A (en) * 2008-07-16 2010-02-04 Sekisui Chem Co Ltd Retardation film, composite sheet polarizer, sheet polarizer and liquid crystal display device
JP2010243820A (en) * 2009-04-07 2010-10-28 Sekisui Chem Co Ltd Method of manufacturing retardation compensation film, retardation compensation film, composite polarizing plate, polarizing plate, and liquid crystal display device
JP2010243819A (en) * 2009-04-07 2010-10-28 Sekisui Chem Co Ltd Method of manufacturing retardation compensation film, retardation compensation film, composite polarizing plate, polarizing plate, and liquid crystal display device
JP2010243818A (en) * 2009-04-07 2010-10-28 Sekisui Chem Co Ltd Method of manufacturing retardation compensation film, retardation compensation film, composite polarizing plate, polarizing plate, and liquid crystal display device
JP2015055796A (en) * 2013-09-12 2015-03-23 富士フイルム株式会社 Optical film and display device
WO2015080167A1 (en) * 2013-11-26 2015-06-04 デクセリアルズ株式会社 Cycloolefin-based resin composition film
WO2015083808A1 (en) * 2013-12-04 2015-06-11 デクセリアルズ株式会社 Cyclic olefin resin composition film
WO2016006683A1 (en) * 2014-07-11 2016-01-14 デクセリアルズ株式会社 Cyclic olefin resin composition film

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004035688A1 (en) * 2002-10-03 2004-04-29 Sekisui Chemical Co., Ltd. Thermoplastic saturated norbornene based resin film, ans method for producing thermoplastic saturated norbornene based resin film
JP2010026098A (en) * 2008-07-16 2010-02-04 Sekisui Chem Co Ltd Retardation film, composite sheet polarizer, sheet polarizer and liquid crystal display device
JP2010026096A (en) * 2008-07-16 2010-02-04 Sekisui Chem Co Ltd Retardation film, composite sheet polarizer, sheet polarizer and liquid crystal display device
JP2010026097A (en) * 2008-07-16 2010-02-04 Sekisui Chem Co Ltd Retardation film, composite sheet polarizer, sheet polarizer and liquid crystal display device
JP2010243820A (en) * 2009-04-07 2010-10-28 Sekisui Chem Co Ltd Method of manufacturing retardation compensation film, retardation compensation film, composite polarizing plate, polarizing plate, and liquid crystal display device
JP2010243819A (en) * 2009-04-07 2010-10-28 Sekisui Chem Co Ltd Method of manufacturing retardation compensation film, retardation compensation film, composite polarizing plate, polarizing plate, and liquid crystal display device
JP2010243818A (en) * 2009-04-07 2010-10-28 Sekisui Chem Co Ltd Method of manufacturing retardation compensation film, retardation compensation film, composite polarizing plate, polarizing plate, and liquid crystal display device
JP2015055796A (en) * 2013-09-12 2015-03-23 富士フイルム株式会社 Optical film and display device
WO2015080167A1 (en) * 2013-11-26 2015-06-04 デクセリアルズ株式会社 Cycloolefin-based resin composition film
WO2015083808A1 (en) * 2013-12-04 2015-06-11 デクセリアルズ株式会社 Cyclic olefin resin composition film
WO2016006683A1 (en) * 2014-07-11 2016-01-14 デクセリアルズ株式会社 Cyclic olefin resin composition film

Also Published As

Publication number Publication date
TW201708375A (en) 2017-03-01
JP2016183303A (en) 2016-10-20

Similar Documents

Publication Publication Date Title
JP6297824B2 (en) Cyclic olefin resin composition film
WO2015080167A1 (en) Cycloolefin-based resin composition film
KR102188086B1 (en) Cyclic olefin resin composition film
WO2015178279A1 (en) Cyclic olefin resin composition film
JP6424033B2 (en) Cyclic olefin resin composition film
WO2015198686A1 (en) Cyclic olefin resin composition film
WO2015178331A1 (en) Cyclic olefin resin composition film
JP6424030B2 (en) Cyclic olefin resin composition film
WO2016153038A1 (en) Cyclic olefin resin composition film
WO2016084173A1 (en) Cyclic olefin resin composition film
JP6723745B2 (en) Cyclic olefin resin composition film
WO2017085809A1 (en) Cyclic olefin-based resin composition film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768941

Country of ref document: EP

Kind code of ref document: A1