WO2015178331A1 - Cyclic olefin resin composition film - Google Patents

Cyclic olefin resin composition film Download PDF

Info

Publication number
WO2015178331A1
WO2015178331A1 PCT/JP2015/064147 JP2015064147W WO2015178331A1 WO 2015178331 A1 WO2015178331 A1 WO 2015178331A1 JP 2015064147 W JP2015064147 W JP 2015064147W WO 2015178331 A1 WO2015178331 A1 WO 2015178331A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic olefin
styrene
resin composition
composition film
olefin resin
Prior art date
Application number
PCT/JP2015/064147
Other languages
French (fr)
Japanese (ja)
Inventor
石森 拓
堀井 明宏
慶 小幡
健 細谷
香奈子 橋本
一樹 平田
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2015178331A1 publication Critical patent/WO2015178331A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a cyclic olefin resin composition film in which an elastomer or the like is added and dispersed in a cyclic olefin resin.
  • Cyclic olefin resin is an amorphous and thermoplastic olefin resin that has a cyclic olefin skeleton in its main chain, has excellent optical properties (transparency, low birefringence), low water absorption, It has excellent performance such as dimensional stability and high moisture resistance. Therefore, films or sheets made of cyclic olefin resins are expected to be developed for various optical applications such as retardation films, polarizing plate protective films, light diffusion plates, and moisture proof packaging applications such as pharmaceutical packaging and food packaging. Yes.
  • the cyclic olefin resin film with the elastomer added and dispersed has a large difference in linear thermal expansion coefficient between the cyclic olefin resin and the elastomer.
  • the haze change sometimes occurred without returning to the state.
  • the present invention has been proposed in view of such conventional circumstances, and provides a cyclic olefin-based resin composition film having excellent environmental preservation.
  • the present inventor maintains excellent toughness even if the difference in linear thermal expansion coefficient between the cyclic olefin resin and the styrene elastomer is large by adding a styrene elastomer to the cyclic olefin resin and adjusting to a predetermined retardation. As a result, the inventors have found that environmental preservation can be improved, and have completed the present invention.
  • the cyclic olefin-based resin composition film according to the present invention contains a cyclic olefin-based resin and a styrene-based elastomer, and the difference in linear thermal expansion coefficient between the cyclic olefin resin and the styrene-based elastomer is 50 ppm / ° C. or more. Yes, the retardation in the thickness direction is 10 nm or more.
  • the method for producing a cyclic olefin-based resin composition film according to the present invention comprises melting a cyclic olefin-based resin having a linear thermal expansion coefficient difference of 50 ppm / ° C. or more and a styrene-based elastomer, and then melting the molten cyclic olefin-based film.
  • a resin composition is extruded into a film by an extrusion method, and the styrene elastomer is dispersed in the cyclic olefin resin to obtain a cyclic olefin resin composition film having a thickness direction retardation of 10 nm or more. It is characterized by.
  • the cyclic olefin resin composition film according to the present invention is suitable for application to transparent conductive elements, input devices, display devices, and electronic devices.
  • FIG. 1 is a cross-sectional perspective view showing an outline of a cyclic olefin-based resin composition film according to the present embodiment.
  • FIG. 2 is a schematic diagram illustrating a configuration example of a film manufacturing apparatus.
  • 3A and 3B are cross-sectional views illustrating an example of a transparent conductive film
  • FIGS. 3C and 3D are cross-sectional views illustrating an example of a transparent conductive film provided with a moth-eye-shaped structure.
  • FIG. 4 is a schematic cross-sectional view showing a configuration example of the touch panel.
  • FIG. 5 is an external view illustrating an example of a television device as an electronic apparatus.
  • 6A and 6B are external views illustrating examples of a digital camera as an electronic device.
  • FIG. 7 is an external view illustrating an example of a notebook personal computer as an electronic device.
  • FIG. 8 is an external view illustrating an example of a video camera as an electronic device.
  • FIG. 9 is an external view illustrating an example of a mobile phone as an electronic device.
  • FIG. 10 is an external view illustrating an example of a tablet computer as an electronic device.
  • the cyclic olefin-based resin composition film according to the present embodiment includes a cyclic olefin-based resin and a styrene-based elastomer, and the difference in linear thermal expansion coefficient between the cyclic olefin resin and the styrene-based elastomer is 50 ppm / ° C. or more.
  • the retardation Rth in the thickness direction is 10 nm or more. Thereby, the haze rise after environmental preservation
  • the difference in coefficient of linear thermal expansion between the cyclic olefin resin and the styrene elastomer is 50 ppm / ° C. or more.
  • the linear thermal expansion coefficient of the cyclic olefin resin preferably used is 40 to 80 ppm / ° C.
  • the linear thermal expansion coefficient of the styrenic elastomer preferably used is 130 to 220 ppm / ° C.
  • the linear thermal expansion coefficient represents a rate of change in length at which an object expands and contracts due to a temperature change, and is indicated by a strain per unit temperature.
  • the measurement method is performed in accordance with JISK7197, and is calculated as the average linear thermal expansion coefficient ⁇ (ppm / ° C.) at the test piece temperatures T1 to T2.
  • ⁇ L / L0 ⁇ (T2-T1) (Where ⁇ : linear expansion coefficient, ⁇ L: (length of test piece at T2) ⁇ (length of test piece at T1), L0: length of test piece at T1)
  • the in-plane retardation R 0 is preferably 30 nm or less. Thereby, the non-polarizing film which has the outstanding environmental preservation property can be obtained.
  • FIG. 1 is a cross-sectional perspective view showing an outline of a cyclic olefin-based resin composition film according to the present embodiment.
  • the cyclic olefin-based resin composition film is, for example, a short film or sheet, the X-axis direction which is the width direction (TD: Transverse Direction), and the Y-axis direction which is the length direction (MD: Machine Direction), And a Z-axis direction that is a thickness direction.
  • the thickness Z of the cyclic olefin-based resin composition film is preferably 0.1 ⁇ m to 2 mm, more preferably 1 ⁇ m to 1 mm.
  • a dispersed phase (island phase) made of styrene elastomer 12 is dispersed in a matrix (sea phase) made of cyclic olefin resin 11.
  • the dispersed phase is dispersed with shape anisotropy in the MD direction by, for example, extrusion molding, has a major axis in the MD direction, and a minor axis in the TD direction.
  • the short axis dispersion diameter of the styrene elastomer 12 is 2 ⁇ m or less, more preferably 1 ⁇ m or less. If the minor axis dispersion diameter is too large, a gap is generated between the styrene elastomer / cyclic olefin resin due to the styrene elastomer phase change under environmental preservation, and the refractive index of the styrene elastomer itself changes, The haze of the entire film is greatly changed.
  • the short axis dispersion diameter means the size in the TD direction of the dispersed phase composed of the styrene elastomer 12 and can be measured as follows. First, the MD-thickness (Z-axis) cross section of the cyclic olefin-based resin composition film is cut. Then, the cross section of the film is magnified, the short axis of each dispersed phase in the predetermined range at the center of the cross section of the film is measured, and the average value is defined as the short axis dispersion diameter. Moreover, when a dispersion diameter is small, it is preferable to cut
  • the cyclic olefin-based resin composition film contains a cyclic olefin-based resin 11 and a styrene-based elastomer 12, and the styrene-based elastomer 12 is dispersed in the cyclic olefin-based resin 11 by 5 to 35 wt%. That is, the mass% ratio of cyclic olefin resin / styrene elastomer is 95/5 to 65/35 (the total of both is 100 mass%). A more preferable mass% ratio of cyclic olefin resin / styrene elastomer is 93/7 to 80/20. If the addition ratio of the styrene-based elastomer 12 is too large, the optical properties (retardation, haze) are lowered, and if it is too small, the toughness becomes insufficient.
  • the cyclic olefin-based resin is a polymer compound having a main chain composed of carbon-carbon bonds and having a cyclic hydrocarbon structure in at least part of the main chain.
  • This cyclic hydrocarbon structure is introduced by using a compound (cyclic olefin) having at least one olefinic double bond in the cyclic hydrocarbon structure as represented by norbornene or tetracyclododecene as a monomer. Is done.
  • Cyclic olefin resins include cyclic olefin addition (co) polymers or hydrogenated products thereof (1), cyclic olefin and ⁇ -olefin addition copolymers or hydrogenated products (2), cyclic olefin ring-opening ( Co) polymers or hydrogenated products thereof (3).
  • cyclic olefin examples include: cyclopentene, cyclohexene, cyclooctene; one-ring cyclic olefin such as cyclopentadiene, 1,3-cyclohexadiene; bicyclo [2.2.1] hept-2-ene (common name: norbornene) ), 5-methyl-bicyclo [2.2.1] hept-2-ene, 5,5-dimethyl-bicyclo [2.2.1] hept-2-ene, 5-ethyl-bicyclo [2.2.
  • Tricyclo [4.3.0.1 2,5 ] deca-3,7-diene (common name: dicyclopentadiene), tricyclo [4.3.0.1 2,5 ] dec-3-ene; tricyclo [ 4.4.0.1 2,5 ] undeca-3,7-diene or tricyclo [4.4.0.1 2,5 ] undeca-3,8-diene or a partially hydrogenated product thereof (or cyclopentadiene) Tricyclo [4.4.0.1 2,5 ] undec-3-ene; 5-cyclopentyl-bicyclo [2.2.1] hept-2-ene, 5-cyclohexyl-bicyclo [2.2.1] hept-2-ene, 5-cyclohexenylbicyclo [2.2.1] hept-2-ene, 5-phenyl-bicyclo [2.2.1] hept-2-ene A cyclic olefin of the ring;
  • Tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene also simply referred to as tetracyclododecene
  • 8-methyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene 8-ethyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene
  • 8-methylidenetetracyclo 4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene
  • 8-vinyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene 8-propenyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] tetracyclic olefins such as dodec-3-ene;
  • ⁇ -olefin copolymerizable with the cyclic olefin examples include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3 -Ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1- Hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, etc.
  • Examples thereof include 2 to 8 ethylene or ⁇ -olefin. These ⁇ -olefins can be used alone or in combination of two or more. As these ⁇ -olefins, those contained in the range of 5 to 200 mol% with respect to the cyclic polyolefin can be used.
  • an addition copolymer of ethylene and norbornene is preferably used as the cyclic olefin resin.
  • the structure of the cyclic olefin-based resin is not particularly limited, and may be a chain, branched, or crosslinked, but is preferably a straight chain.
  • the molecular weight of the cyclic olefin-based resin is 5,000 to 300,000, preferably 10,000 to 150,000, and more preferably 15,000 to 100,000 according to the GPC method. If the number average molecular weight is too low, the mechanical strength decreases, and if it is too high, the moldability deteriorates.
  • the cyclic olefin resin has a polar group (for example, a carboxyl group, an acid anhydride group, an epoxy group, an amide group, an ester group, a hydroxyl group, etc.) in the above-mentioned cyclic olefin resins (1) to (3).
  • a polar group for example, a carboxyl group, an acid anhydride group, an epoxy group, an amide group, an ester group, a hydroxyl group, etc.
  • What (4) which grafted and / or copolymerized the unsaturated compound (u) which has can be included. Two or more of the above cyclic olefin resins (1) to (4) may be used in combination.
  • Examples of the unsaturated compound (u) include (meth) acrylic acid, maleic acid, maleic anhydride, itaconic anhydride, glycidyl (meth) acrylate, alkyl (meth) acrylate (carbon number 1 to 10) ester, maleic acid Examples include alkyl (having 1 to 10 carbon atoms) ester, (meth) acrylamide, (2-hydroxyethyl) (meth) acrylate, and the like.
  • Affinity with metals and polar resins can be increased by using a modified cyclic olefin resin (4) obtained by grafting and / or copolymerizing an unsaturated compound (u) having a polar group, so vapor deposition, sputtering, coating It is possible to increase the strength of various secondary processing such as adhesion, and is suitable when secondary processing is required.
  • the presence of the polar group has a drawback of increasing the water absorption rate of the cyclic olefin resin.
  • the content of polar groups is preferably 0 to 1 mol / kg per 1 kg of cyclic olefin resin.
  • the styrenic elastomer is a copolymer of styrene and a conjugated diene such as butadiene or isoprene, and / or a hydrogenated product thereof.
  • the styrene elastomer is a block copolymer having styrene as a hard segment and conjugated diene as a soft segment.
  • the structure of the soft segment changes the storage elastic modulus of the styrene-based elastomer, and the content of styrene that is the hard segment changes the refractive index and changes the haze of the entire film.
  • the styrene elastomer does not require a vulcanization step and is preferably used. Further, the hydrogenated one is more preferable because it has higher thermal stability.
  • styrenic elastomers examples include styrene / butadiene / styrene block copolymers, styrene / isoprene / styrene block copolymers, styrene / ethylene / butylene / styrene block copolymers, and styrene / ethylene / propylene / styrene block copolymers. Examples thereof include styrene and butadiene block copolymers.
  • styrene / ethylene / butylene / styrene block copolymer styrene / ethylene / propylene / styrene block copolymer, styrene / butadiene block copolymer (hydrogenation) in which double bond of conjugated diene component is eliminated by hydrogenation May also be used.
  • the structure of the styrene-based elastomer is not particularly limited, and may be chain-like, branched or cross-linked, but is preferably linear in order to reduce the storage elastic modulus.
  • At least one styrene selected from the group consisting of styrene / ethylene / butylene / styrene block copolymers, styrene / ethylene / propylene / styrene block copolymers, and hydrogenated styrene / butadiene block copolymers.
  • Based elastomers are preferably used.
  • hydrogenated styrene / butadiene block copolymers are more preferably used because of high tear strength and small haze increase after environmental preservation.
  • the ratio of butadiene to styrene in the hydrogenated styrene / butadiene block copolymer is preferably in the range of 10 to 90 mol% so as not to impair the compatibility with the cyclic olefin resin.
  • the styrene content of the styrene elastomer is preferably 20 to 40 mol%. By setting the styrene content to 20 to 40 mol%, the haze can be reduced.
  • the molecular weight of the styrene elastomer is 5,000 to 300,000, preferably 10,000 to 150,000, and more preferably 20,000 to 100,000, as determined by the GPC method. If the number average molecular weight is too low, the mechanical strength decreases, and if it is too high, the moldability deteriorates.
  • various compounding agents may be added to the cyclic olefin-based resin composition as necessary as long as the characteristics are not impaired.
  • the various compounding agents are not particularly limited as long as they are usually used in thermoplastic resin materials.
  • antioxidants, ultraviolet absorbers, light stabilizers, plasticizers, lubricants, antistatic agents, difficulty Examples include flame retardants, colorants such as dyes and pigments, near infrared absorbers, compounding agents such as fluorescent brighteners, and fillers.
  • the tear strength can be set to 60 N / mm or more, and the haze increase rate after environmental preservation can be set to 1% or less. If the tear strength is smaller than the above range, the film is liable to be broken at the time of production or use, which is inappropriate. On the other hand, if the haze increase rate is too high, it deviates from the initial characteristics in use and does not satisfy the intended characteristics.
  • the method for producing a cyclic olefin-based resin composition film according to the present embodiment melts a cyclic olefin-based resin having a difference in linear thermal expansion coefficient of 50 ppm / ° C. or more and a styrene-based elastomer, and melted the cyclic olefin-based resin.
  • the composition is extruded into a film by an extrusion method, and a styrene-based elastomer is dispersed in a cyclic olefin-based resin to obtain a cyclic olefin-based resin composition film having a thickness direction retardation of 10 nm or more.
  • the cyclic olefin-based resin composition film may be non-stretched, uniaxially stretched, or biaxially stretched.
  • FIG. 2 is a schematic diagram showing a configuration example of a film manufacturing apparatus.
  • the film manufacturing apparatus includes a die 21 and a roll 22.
  • the die 21 is a die for melt molding, and extrudes the molten resin material 23 into a film shape.
  • the resin material 23 contains the above-mentioned cyclic olefin resin composition, for example.
  • the roll 22 has a role of transporting the resin material 23 extruded from the die 21 into a film shape. Further, the roll 22 has a medium flow path therein, and the surface can be adjusted to an arbitrary temperature by an individual temperature control device.
  • the material of the surface of the roll 22 is not specifically limited, A metal rubber, resin, an elastomer, etc. can be used.
  • a cyclic olefin resin composition containing the above-mentioned cyclic olefin resin and a styrene elastomer is melt-mixed at a temperature in the range of 210 ° C to 300 ° C. As the melting temperature is higher, the minor axis dispersion diameter tends to be smaller.
  • the cyclic olefin-based resin composition film according to the present embodiment can be used for various optical applications, for example, a retardation film, a polarizing plate protective film, a light diffusion plate, etc., particularly a prism sheet and a liquid crystal cell substrate.
  • a retardation film for example, a retardation film, a polarizing plate protective film, a light diffusion plate, etc., particularly a prism sheet and a liquid crystal cell substrate.
  • FIGS. 3A and 3B are cross-sectional views showing an example of a transparent conductive film.
  • This transparent conductive film (transparent conductive element) is constituted by using the above-mentioned cyclic olefin-based resin composition film as a base film (base material).
  • this transparent conductive film includes a retardation film 31 as a base film (base material), and a transparent conductive layer 33 on at least one surface of the retardation film 31.
  • FIG. 3A is an example in which the transparent conductive layer 33 is provided on one surface of the retardation film 31
  • FIG. 3B is an example in which the transparent conductive layer 33 is provided on both surfaces of the retardation film 31.
  • a hard coat layer 32 may be further provided between the retardation film 31 and the transparent conductive layer 33.
  • the material of the transparent conductive layer 33 for example, one or more selected from the group consisting of electrically conductive metal oxide materials, metal materials, carbon materials, and conductive polymers can be used.
  • metal oxide materials include indium tin oxide (ITO) zinc oxide, indium oxide, antimony-added tin oxide, fluorine-added tin oxide, aluminum-added zinc oxide, gallium-added zinc oxide, silicon-added zinc oxide, and zinc oxide- Examples thereof include a tin oxide system, an indium oxide-tin oxide system, and a zinc oxide-indium oxide-magnesium oxide system.
  • metal material for example, metal nanofillers such as metal nanoparticles and metal nanowires can be used.
  • these materials include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantalum, titanium, bismuth, Examples thereof include metals such as antimony and lead, and alloys thereof.
  • the carbon material include carbon black, carbon fiber, fullerene, graphene, carbon nanotube, carbon microcoil, and nanohorn.
  • the conductive polymer for example, substituted or unsubstituted polyaniline, polypyrrole, polythiofin, and one or two (co) polymers selected from these can be used.
  • the transparent conductive layer 33 may be a transparent electrode having a predetermined electrode pattern. Examples of the electrode pattern include a stripe shape, but are not limited thereto.
  • a photosensitive resin for example, acrylate resins such as urethane acrylate, epoxy acrylate, polyester acrylate, polyol acrylate, polyether acrylate, and melamine acrylate can be used.
  • the urethane acrylate resin is obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer, and reacting an acrylate or methacrylate monomer having a hydroxyl group with the obtained product.
  • the thickness of the hard coat layer 32 is preferably 1 ⁇ m to 20 ⁇ m, but is not particularly limited to this range.
  • the transparent conductive film is provided with a moth-eye structure 34 as an antireflection layer on at least one surface of the above-described retardation film. Also good.
  • FIG. 3C is an example in which a moth-eye structure 34 is provided on one surface of the retardation film 31, and FIG. 3D is an example in which a moth-eye structure is provided on both surfaces of the retardation film.
  • the antireflection layer provided on the surface of the retardation film 11 is not limited to the moth-eye structure described above, and a conventionally known antireflection layer such as a low refractive index layer can also be used. .
  • FIG. 4 is a schematic cross-sectional view showing one configuration example of the touch panel.
  • the touch panel (input device) 40 is a so-called resistive film type touch panel.
  • the resistive film type touch panel may be either an analog resistive film type touch panel or a digital resistive film type touch panel.
  • the touch panel 40 includes a first transparent conductive film 41 and a second transparent conductive film 42 facing the first transparent conductive film 41.
  • the 1st transparent conductive film 41 and the 2nd transparent conductive film 42 are bonded together via the bonding part 45 between those peripheral parts.
  • As the bonding part 45 for example, an adhesive paste, an adhesive tape or the like is used.
  • the touch panel 40 is bonded to the display device 44 through the bonding layer 43, for example.
  • a material of the bonding layer 43 for example, an acrylic, rubber, or silicon adhesive can be used, and an acrylic adhesive is preferable from the viewpoint of transparency.
  • the touch panel 40 further includes a polarizer 48 bonded to the surface on the touch side of the first transparent conductive film 41 via a bonding layer 50 or the like.
  • a polarizer 48 bonded to the surface on the touch side of the first transparent conductive film 41 via a bonding layer 50 or the like.
  • the 1st transparent conductive film 41 and / or the 2nd transparent conductive film 42 the above-mentioned transparent conductive film can be used.
  • the retardation film as the base film (base material) is set to ⁇ / 4.
  • the touch panel 40 is preferably provided with a moth-eye structure 34 on the opposing surfaces of the first transparent conductive film 41 and the second transparent conductive film 42, that is, on the surface of the transparent conductive layer 33.
  • the optical characteristics for example, a reflection characteristic, a transmission characteristic, etc.
  • the touch panel 40 preferably further includes a single-layer or multi-layer antireflection layer on the surface of the first transparent conductive film 41 on the touch side. Thereby, a reflectance can be reduced and visibility can be improved.
  • the touch panel 40 further includes a hard coat layer on the surface on the touch side of the first transparent conductive film 41 from the viewpoint of improving the scratch resistance.
  • the surface of the hard coat layer is preferably imparted with antifouling properties.
  • the touch panel 40 further includes a front panel (surface member) 49 bonded to the surface on the touch side of the first transparent conductive film 41 via the bonding layer 51. Moreover, it is preferable that the touch panel 40 further includes a glass substrate 46 bonded to the surface of the second transparent conductive film 42 bonded to the display device 44 via a bonding layer 47.
  • the touch panel 40 preferably further includes a plurality of structures on the surface to be bonded to the display device 44 of the second transparent conductive film 42 or the like.
  • the adhesion between the touch panel 40 and the bonding layer 43 can be improved by the anchor effect of the plurality of structures.
  • a moth-eye structure is preferable. Thereby, interface reflection can be suppressed.
  • a liquid crystal display for example, a CRT (Cathode Ray Tube) display, a plasma display (Plasma Display Panel: PDP), an electroluminescence (Electro Luminescence: EL) display, a surface conduction electron-emitting device display (Surface-conduction Various display devices such as Electron-emitter Display (SED) can be used.
  • a CRT Cathode Ray Tube
  • a plasma display Plasma Display Panel: PDP
  • an electroluminescence (Electro Luminescence: EL) display for example, a liquid crystal display, a CRT (Cathode Ray Tube) display, a plasma display (Plasma Display Panel: PDP), an electroluminescence (Electro Luminescence: EL) display, a surface conduction electron-emitting device display (Surface-conduction
  • SED Electron-emitter Display
  • FIG. 5 is an external view illustrating an example of a television device as an electronic apparatus.
  • the television device 100 includes a display unit 101, and the display unit 101 includes a touch panel 40.
  • FIG. 6A and 6B are external views illustrating examples of a digital camera as an electronic device.
  • 6A is an external view of the digital camera viewed from the front side
  • FIG. 6B is an external view of the digital camera viewed from the back side.
  • the digital camera 110 includes a light emitting unit 111 for flash, a display unit 112, a menu switch 113, a shutter button 114, and the like, and the display unit 112 includes the touch panel 40 described above.
  • FIG. 7 is an external view showing an example of a notebook personal computer as an electronic device.
  • the notebook personal computer 120 includes a main body 121 including a keyboard 122 for inputting characters, a display unit 123 for displaying images, and the like, and the display unit 123 includes the touch panel 40 described above.
  • FIG. 8 is an external view showing an example of a video camera as an electronic device.
  • the video camera 130 includes a main body 131, a subject shooting lens 132 on the side facing forward, a start / stop switch 133 during shooting, a display unit 134, and the like, and the display unit 134 includes the touch panel 40 described above.
  • FIG. 9 is an external view showing an example of a mobile phone as an electronic device.
  • the mobile phone 140 is a so-called smartphone, and the display unit 141 includes the touch panel 40 described above.
  • FIG. 10 is an external view showing an example of a tablet computer as an electronic device.
  • the tablet computer 150 includes the touch panel 40 described above on the display unit 151.
  • Example> Examples of the present invention will be described in detail below.
  • a styrene elastomer having a predetermined linear thermal expansion coefficient was added to the cyclic olefin resin to prepare a cyclic olefin resin composition film controlled to a predetermined retardation (R 0 , R th ).
  • R 0 , R th a predetermined retardation
  • the present invention is not limited to these examples.
  • the linear thermal expansion coefficient of the styrene elastomer, the retardation, haze, and tear strength of the cyclic olefin resin composition film were measured as follows.
  • the linear thermal expansion coefficient was calculated based on JISK7197 using a thermomechanical analyzer (TMA: Thermomechanical Analysis, TMA4100SA manufactured by NETZSCH Japan).
  • TMA thermomechanical analyzer
  • a test piece made of a styrene-based elastomer was prepared, and the average linear thermal expansion coefficient (ppm / ° C.) at a temperature of 0 ° C. to 200 ° C. of the test piece was calculated at a temperature increase rate of 2 ° C./min.
  • a film having a thickness of 80 ⁇ m was measured according to JISK7128.
  • a No. 3 type test piece was used as a test piece, measured at a test speed of 200 mm / min using a tensile tester (AG-X, manufactured by Shimadzu Corporation), and the average value in the MD and TD directions was determined as the tear strength. did.
  • a tear strength of 60 N / mm or more was evaluated as “ ⁇ ”, and a tear strength of less than 60 N / mm was evaluated as “x”. If the tear strength is 60 N / mm or more, practical use is possible in that the risk of breakage in a subsequent process such as a coating process is reduced.
  • cyclic olefin resin and styrene elastomer As the cyclic olefin resin, TOPAS 6013-S04 (manufactured by Polyplastics Co., Ltd., chemical name: addition copolymer of ethylene and norbornene) was used. The linear thermal expansion coefficient of this cyclic olefin resin was 65 ppm / ° C.
  • Tuftec H1041 (manufactured by Asahi Kasei Chemicals), Tuftec H1272 (manufactured by Asahi Kasei Chemicals), Tuftec H1517 (manufactured by Asahi Kasei Chemicals), and Tuftec H1221 (manufactured by Asahi Kasei Chemicals) are styrene / ethylene / butylene. / Styrene block copolymer. S. O.
  • E L606 (manufactured by Asahi Kasei Chemicals Corporation) is a hydrogenated styrene / butadiene block copolymer.
  • the linear thermal expansion coefficients of these styrenic elastomers were all in the range of 130 to 220 ppm / ° C.
  • Tuftec H1041 was used as the styrene elastomer.
  • the difference in coefficient of linear thermal expansion between the cyclic olefin resin and the styrene elastomer was 50 ppm / ° C. or higher.
  • the styrenic elastomer is dispersed with shape anisotropy in the MD direction of the film, has an average major axis of about 4 ⁇ m in the MD direction, and an average minor axis of about 0.2 ⁇ m in the TD direction. Had.
  • the in-plane retardation R 0 of the film was 7.4 nm, and the retardation in the thickness direction was 10.1 nm. Further, the initial haze was 5.7%, and the increase in haze after environmental preservation was 0.8%, which was evaluated as good. Moreover, tear strength was evaluation of (circle) in 82 N / mm.
  • Example 2 Tuftec H1272 was used as the styrene elastomer.
  • the difference in coefficient of linear thermal expansion between the cyclic olefin resin and the styrene elastomer was 50 ppm / ° C. or higher.
  • the film was produced in the same manner as in Example 1.
  • the retardation R0 in the in-plane direction of the film was 13.5 nm, and the retardation in the thickness direction was 15.3 nm.
  • the initial haze was 15.3%, and the haze increase after environmental preservation was 0.4%.
  • tear strength was evaluation of (circle) in 80 N / mm.
  • Styrenic elastomers include S.I. O. E. L606 was used. The difference in coefficient of linear thermal expansion between the cyclic olefin resin and the styrene elastomer was 50 ppm / ° C. or higher. The film was produced in the same manner as in Example 1.
  • the in-plane retardation R 0 of the film was 18.1 nm, and the retardation in the thickness direction was 20.4 nm.
  • the initial haze was 0.3%, and the haze increase after environmental preservation was 0.1%.
  • the tear strength was 102 N / mm, which was evaluated as “good”.
  • Example 4 Tuftec H1517 was used as the styrene elastomer.
  • the difference in coefficient of linear thermal expansion between the cyclic olefin resin and the styrene elastomer was 50 ppm / ° C. or higher.
  • the film was produced in the same manner as in Example 1 except that 85 parts by mass of the cyclic olefin resin and 15 parts by mass of the styrene elastomer were blended.
  • the in-plane retardation R 0 of the film was 27.2 nm, and the retardation in the thickness direction was 12.6 nm.
  • the initial haze was 1.1%, and the haze increase after environmental preservation was 0.2%, which was evaluated as ⁇ .
  • tearing strength was evaluation of (circle) in 62 N / mm.
  • Tuftec H1041 was used as the styrene elastomer.
  • the difference in coefficient of linear thermal expansion between the cyclic olefin resin and the styrene elastomer was 50 ppm / ° C. or higher.
  • the film was produced in the same manner as in Example 1.
  • the in-plane retardation R 0 of the film was 2.3 nm, and the retardation in the thickness direction was 8.8 nm.
  • the initial haze was 5.2%, and the increase in haze after environmental preservation was 1.7%.
  • the tear strength was 83 N / mm, which was evaluated as “good”.
  • Tuftec H1221 was used as the styrene elastomer.
  • the difference in coefficient of linear thermal expansion between the cyclic olefin resin and the styrene elastomer was 50 ppm / ° C. or higher.
  • the film was produced in the same manner as in Example 1.
  • the retardation R0 in the in-plane direction of the film was 2.5 nm, and the retardation in the thickness direction was 7.0 nm.
  • the initial haze was 9.0%, and the increase in haze after environmental preservation was 2.8%, which was evaluated as x.
  • the tear strength was 77 N / mm, which was evaluated as “good”.
  • Tuftec H1272 was used as the styrene elastomer.
  • the difference in coefficient of linear thermal expansion between the cyclic olefin resin and the styrene elastomer was 50 ppm / ° C. or higher.
  • the film was produced in the same manner as in Example 1.
  • the retardation R0 in the in-plane direction of the film was 1.5 nm, and the retardation in the thickness direction was 4.4 nm.
  • the initial haze was 17.5%, and the increase in haze after environmental preservation was 15.2%, which was evaluated as x.
  • tearing strength was evaluation of (circle) in 78 N / mm.
  • Styrenic elastomers include S.I. O. E. L606 was used. The difference in coefficient of linear thermal expansion between the cyclic olefin resin and the styrene elastomer was 50 ppm / ° C. or higher. The film was produced in the same manner as in Example 1.
  • retardation R0 in the in-plane direction of the film was 1.3 nm, and retardation in the thickness direction was 5.9 nm.
  • the initial haze was 0.2%, and the haze increase after environmental preservation was 4.0%, which was evaluated as x.
  • tear strength was evaluation of (circle) in 100 N / mm.
  • Retardation R th in the thickness direction is the 10nm or more in Examples 1 to 4, while maintaining excellent toughness, haze increase after ambient storage is less than 1.0%, good results were obtained.
  • the thickness direction retardation R th is Comparative Example 1-4 is less than 10nm, although toughness remained kept, and the haze increase after ambient storage 1.0% or more, good results are obtained I could't.

Abstract

Provided is a cyclic olefin resin composition film which has excellent storage stability in terms of environments. This cyclic olefin resin composition film contains a cyclic olefin resin (11) and a styrene elastomer (12), and the linear thermal expansion coefficient difference between the cyclic olefin resin (11) and the styrene elastomer (12) is 50 ppm/°C or more. This cyclic olefin resin composition film has a retardation in the thickness direction of 10 nm or more. Consequently, this cyclic olefin resin composition film is able to achieve excellent storage stability in terms of environments.

Description

環状オレフィン系樹脂組成物フィルムCyclic olefin resin composition film
 本発明は、環状オレフィン系樹脂にエラストマー等を添加分散させた環状オレフィン系樹脂組成物フィルムに関する。本出願は、日本国において2014年5月19日に出願された日本特許出願番号特願2014-103826を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 The present invention relates to a cyclic olefin resin composition film in which an elastomer or the like is added and dispersed in a cyclic olefin resin. This application claims priority on the basis of Japanese Patent Application No. 2014-103826 filed on May 19, 2014 in Japan. This application is incorporated herein by reference. Incorporated.
 環状オレフィン系樹脂は、その主鎖に環状のオレフィン骨格を持った非晶性で熱可塑性のオレフィン系樹脂であり、優れた光学特性(透明性、低複屈折性)を持ち、低吸水性とそれに基づく寸法安定性、高防湿性といった、優れた性能を有している。そのため環状オレフィン系樹脂からなるフィルムもしくはシートは、各種光学用途、例えば位相差フィルム、偏光板保護フィルム、光拡散板等や、防湿包装用途、例えば医薬品包装、食品包装等への展開が期待されている。 Cyclic olefin resin is an amorphous and thermoplastic olefin resin that has a cyclic olefin skeleton in its main chain, has excellent optical properties (transparency, low birefringence), low water absorption, It has excellent performance such as dimensional stability and high moisture resistance. Therefore, films or sheets made of cyclic olefin resins are expected to be developed for various optical applications such as retardation films, polarizing plate protective films, light diffusion plates, and moisture proof packaging applications such as pharmaceutical packaging and food packaging. Yes.
 環状オレフィン系樹脂のフィルムは、靭性に劣るため、ハードセグメントとソフトセグメントを有するエラストマー等を添加分散することにより、靱性を改善することが知られている(例えば、特許文献1参照。)。 Since a film of a cyclic olefin resin is inferior in toughness, it is known to improve toughness by adding and dispersing an elastomer having a hard segment and a soft segment (see, for example, Patent Document 1).
 しかしながら、エラストマーを添加分散した環状オレフィン系樹脂のフィルムは、環状オレフィン系樹脂とエラストマーとの線熱膨張係数差が大きいため、環境変化でもセグメントの相変化により、環境を常温に戻しても、元の状態に戻らず、ヘイズ変化が生じることがあった。 However, the cyclic olefin resin film with the elastomer added and dispersed has a large difference in linear thermal expansion coefficient between the cyclic olefin resin and the elastomer. The haze change sometimes occurred without returning to the state.
特開2004-1560487号公報JP 2004-1560487 A
 本発明は、このような従来の実情に鑑みて提案されたものであり、優れた環境保存性を有する環状オレフィン系樹脂組成物フィルムを提供する。 The present invention has been proposed in view of such conventional circumstances, and provides a cyclic olefin-based resin composition film having excellent environmental preservation.
 本発明者は、環状オレフィン系樹脂にスチレン系エラストマーを添加し、所定のリタデーションに調整することにより、環状オレフィン樹脂とスチレン系エラストマーとの線熱膨張係数差が大きくても、優れた靱性を保ったまま、環境保存性を改善できることを見出し、本発明を完成するに至った。 The present inventor maintains excellent toughness even if the difference in linear thermal expansion coefficient between the cyclic olefin resin and the styrene elastomer is large by adding a styrene elastomer to the cyclic olefin resin and adjusting to a predetermined retardation. As a result, the inventors have found that environmental preservation can be improved, and have completed the present invention.
 すなわち、本発明に係る環状オレフィン系樹脂組成物フィルムは、環状オレフィン系樹脂と、スチレン系エラストマーとを含有し、前記環状オレフィン樹脂とスチレン系エラストマーとの線熱膨張係数差が50ppm/℃以上であり、厚さ方向のリタデーションが10nm以上であることを特徴とする。 That is, the cyclic olefin-based resin composition film according to the present invention contains a cyclic olefin-based resin and a styrene-based elastomer, and the difference in linear thermal expansion coefficient between the cyclic olefin resin and the styrene-based elastomer is 50 ppm / ° C. or more. Yes, the retardation in the thickness direction is 10 nm or more.
 また、本発明に係る環状オレフィン系樹脂組成物フィルムの製造方法は、50ppm/℃以上の線熱膨張係数差を有する環状オレフィン系樹脂とスチレン系エラストマーとを溶融し、前記溶融された環状オレフィン系樹脂組成物を押出法により、フィルム状に押し出し、前記スチレン系エラストマーが、前記環状オレフィン系樹脂に分散されてなり、厚さ方向のリタデーションが10nm以上である環状オレフィン系樹脂組成物フィルムを得ることを特徴とする。 The method for producing a cyclic olefin-based resin composition film according to the present invention comprises melting a cyclic olefin-based resin having a linear thermal expansion coefficient difference of 50 ppm / ° C. or more and a styrene-based elastomer, and then melting the molten cyclic olefin-based film. A resin composition is extruded into a film by an extrusion method, and the styrene elastomer is dispersed in the cyclic olefin resin to obtain a cyclic olefin resin composition film having a thickness direction retardation of 10 nm or more. It is characterized by.
 また、本発明に係る環状オレフィン系樹脂組成物フィルムは、透明導電性素子、入力装置、表示装置、及び電子機器に適用して好適なものである。 Also, the cyclic olefin resin composition film according to the present invention is suitable for application to transparent conductive elements, input devices, display devices, and electronic devices.
 本発明によれば、環状オレフィン系樹脂にスチレン系エラストマーを添加し、所定のリタデーションに調整することにより、優れた環境保存性を得ることができる。 According to the present invention, excellent environmental preservation can be obtained by adding a styrene-based elastomer to a cyclic olefin-based resin and adjusting to a predetermined retardation.
図1は、本実施の形態に係る環状オレフィン系樹脂組成物フィルムの概略を示す断面斜視図である。FIG. 1 is a cross-sectional perspective view showing an outline of a cyclic olefin-based resin composition film according to the present embodiment. 図2は、フィルム製造装置の一構成例を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration example of a film manufacturing apparatus. 図3A及び図3Bは、透明導電性フィルムの一例を示す断面図であり、図3C及び図3Dは、モスアイ形状の構造体を設けた透明導電性フィルムの一例を示す断面図である。3A and 3B are cross-sectional views illustrating an example of a transparent conductive film, and FIGS. 3C and 3D are cross-sectional views illustrating an example of a transparent conductive film provided with a moth-eye-shaped structure. 図4は、タッチパネルの一構成例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing a configuration example of the touch panel. 図5は、電子機器としてテレビ装置の例を示す外観図である。FIG. 5 is an external view illustrating an example of a television device as an electronic apparatus. 図6A及び図6Bは、電子機器としてデジタルカメラの例を示す外観図である。6A and 6B are external views illustrating examples of a digital camera as an electronic device. 図7は、電子機器としてノート型パーソナルコンピュータの例を示す外観図である。FIG. 7 is an external view illustrating an example of a notebook personal computer as an electronic device. 図8は、電子機器としてビデオカメラの例を示す外観図である。FIG. 8 is an external view illustrating an example of a video camera as an electronic device. 図9は、電子機器として携帯電話の一例を示す外観図である。FIG. 9 is an external view illustrating an example of a mobile phone as an electronic device. 図10は、電子機器としてタブレット型コンピュータの一例を示す外観図である。FIG. 10 is an external view illustrating an example of a tablet computer as an electronic device.
 以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.環状オレフィン系樹脂組成物フィルム
2.環状オレフィン系樹脂組成物フィルムの製造方法
3.電子機器への適用例
4.実施例
Hereinafter, embodiments of the present invention will be described in detail in the following order with reference to the drawings.
1. 1. Cyclic olefin resin composition film 2. Production method of cyclic olefin-based resin composition film 3. Application example to electronic equipment Example
 <1.環状オレフィン系樹脂組成物フィルム>
 本実施の形態に係る環状オレフィン系樹脂組成物フィルムは、環状オレフィン系樹脂と、スチレン系エラストマーとを含有し、環状オレフィン樹脂とスチレン系エラストマーとの線熱膨張係数差が50ppm/℃以上であり、厚さ方向のリタデーションRthが10nm以上である。これにより、環境保存後のヘイズ上昇を抑制することができる。
<1. Cyclic Olefin Resin Composition Film>
The cyclic olefin-based resin composition film according to the present embodiment includes a cyclic olefin-based resin and a styrene-based elastomer, and the difference in linear thermal expansion coefficient between the cyclic olefin resin and the styrene-based elastomer is 50 ppm / ° C. or more. The retardation Rth in the thickness direction is 10 nm or more. Thereby, the haze rise after environmental preservation | save can be suppressed.
 環状オレフィン樹脂とスチレン系エラストマーとの線熱膨張係数差は、50ppm/℃以上ある。好ましく用いられる環状オレフィン樹脂の線熱膨張係数は、40~80ppm/℃であり、好ましく用いられるスチレン系エラストマーの線熱膨張係数は、130~220ppm/℃である。 The difference in coefficient of linear thermal expansion between the cyclic olefin resin and the styrene elastomer is 50 ppm / ° C. or more. The linear thermal expansion coefficient of the cyclic olefin resin preferably used is 40 to 80 ppm / ° C., and the linear thermal expansion coefficient of the styrenic elastomer preferably used is 130 to 220 ppm / ° C.
 ここで、線熱膨張係数とは、物体が温度変化によって、膨張、収縮する長さの変化割合を表し、単位温度当たりの歪で示される。その測定方法は、JISK7197に準拠して行われ、試験片の温度T1~T2における平均の線熱膨張率α(ppm/℃)として算出される。
α=ΔL/L0×(T2-T1)
(式中、α:線膨張率、ΔL:(T2での試験片の長さ)-(T1での試験片の長さ)、L0:T1での試験片の長さである。)
Here, the linear thermal expansion coefficient represents a rate of change in length at which an object expands and contracts due to a temperature change, and is indicated by a strain per unit temperature. The measurement method is performed in accordance with JISK7197, and is calculated as the average linear thermal expansion coefficient α (ppm / ° C.) at the test piece temperatures T1 to T2.
α = ΔL / L0 × (T2-T1)
(Where α: linear expansion coefficient, ΔL: (length of test piece at T2) − (length of test piece at T1), L0: length of test piece at T1)
 また、面内方向のリタデーションRは、30nm以下であることが好ましい。これにより、優れた環境保存性を有する無偏光フィルムを得ることができる。 Further, the in-plane retardation R 0 is preferably 30 nm or less. Thereby, the non-polarizing film which has the outstanding environmental preservation property can be obtained.
 図1は、本実施の形態に係る環状オレフィン系樹脂組成物フィルムの概略を示す断面斜視図である。環状オレフィン系樹脂組成物フィルムは、例えば短形状のフィルム又はシートであり、幅方向(TD:Transverse Direction)であるX軸方向と、長さ方向(MD:Machine Direction)であるY軸方向と、厚さ方向であるZ軸方向とを有する。環状オレフィン系樹脂組成物フィルムの厚さZは、0.1μm~2mmであることが好ましく、より好ましくは1μm~1mmである。 FIG. 1 is a cross-sectional perspective view showing an outline of a cyclic olefin-based resin composition film according to the present embodiment. The cyclic olefin-based resin composition film is, for example, a short film or sheet, the X-axis direction which is the width direction (TD: Transverse Direction), and the Y-axis direction which is the length direction (MD: Machine Direction), And a Z-axis direction that is a thickness direction. The thickness Z of the cyclic olefin-based resin composition film is preferably 0.1 μm to 2 mm, more preferably 1 μm to 1 mm.
 また、図1に示すように、環状オレフィン系樹脂組成物フィルムは、環状オレフィン系樹脂11からなるマトリックス(海相)中にスチレン系エラストマー12からなる分散相(島相)が分散している。分散相は、例えば押出成型によりMD方向に形状異方性を持って分散し、MD方向に長軸を有し、TD方向に短軸を有する。 Further, as shown in FIG. 1, in the cyclic olefin resin composition film, a dispersed phase (island phase) made of styrene elastomer 12 is dispersed in a matrix (sea phase) made of cyclic olefin resin 11. The dispersed phase is dispersed with shape anisotropy in the MD direction by, for example, extrusion molding, has a major axis in the MD direction, and a minor axis in the TD direction.
 スチレン系エラストマー12の短軸分散径は、2μm以下であり、より好ましくは1μm以下である。短軸分散径が大きすぎると、環境保存下において、スチレン系エラストマー相変化により、スチレン系エラストマー/環状オレフィン系樹脂間に隙間が発生し、スチレン系エラストマー自体の屈折率が変化し、結果として、フィルム全体のヘイズを大きく変化させてしまう。 The short axis dispersion diameter of the styrene elastomer 12 is 2 μm or less, more preferably 1 μm or less. If the minor axis dispersion diameter is too large, a gap is generated between the styrene elastomer / cyclic olefin resin due to the styrene elastomer phase change under environmental preservation, and the refractive index of the styrene elastomer itself changes, The haze of the entire film is greatly changed.
 なお、本明細書において、短軸分散径とは、スチレン系エラストマー12からなる分散相のTD方向の大きさを意味し、次のように測定することができる。先ず、環状オレフィン系樹脂組成物フィルムのMD-厚み(Z軸)断面を切断する。そして、フィルム断面を拡大観察し、フィルム断面中央の所定範囲の各分散相の短軸を計測し、その平均値を短軸分散径とする。また、分散径が小さい場合は、フィルムに対してオスミウム染色を施した後、切断することが好ましい。 In the present specification, the short axis dispersion diameter means the size in the TD direction of the dispersed phase composed of the styrene elastomer 12 and can be measured as follows. First, the MD-thickness (Z-axis) cross section of the cyclic olefin-based resin composition film is cut. Then, the cross section of the film is magnified, the short axis of each dispersed phase in the predetermined range at the center of the cross section of the film is measured, and the average value is defined as the short axis dispersion diameter. Moreover, when a dispersion diameter is small, it is preferable to cut | disconnect, after giving osmium dyeing | staining with respect to a film.
 環状オレフィン系樹脂組成物フィルムは、環状オレフィン系樹脂11と、スチレン系エラストマー12とを含有し、スチレン系エラストマー12が、環状オレフィン系樹脂11に5~35wt%分散されている。すなわち、環状オレフィン系樹脂/スチレン系エラストマーの質量%比は、95/5~65/35(両者の合計は100質量%である。)である。また、より好ましい環状オレフィン系樹脂/スチレン系エラストマーの質量%比は、93/7~80/20である。スチレン系エラストマー12の添加比率が多すぎると光学特性(リタデーション、ヘイズ)が低下し、少なすぎると靭性が十分でなくなる。 The cyclic olefin-based resin composition film contains a cyclic olefin-based resin 11 and a styrene-based elastomer 12, and the styrene-based elastomer 12 is dispersed in the cyclic olefin-based resin 11 by 5 to 35 wt%. That is, the mass% ratio of cyclic olefin resin / styrene elastomer is 95/5 to 65/35 (the total of both is 100 mass%). A more preferable mass% ratio of cyclic olefin resin / styrene elastomer is 93/7 to 80/20. If the addition ratio of the styrene-based elastomer 12 is too large, the optical properties (retardation, haze) are lowered, and if it is too small, the toughness becomes insufficient.
 以下、環状オレフィン系樹脂及びスチレン系エラストマーについて、詳細に説明する。 Hereinafter, the cyclic olefin resin and the styrene elastomer will be described in detail.
 [環状オレフィン系樹脂]
 環状オレフィン系樹脂は、主鎖が炭素-炭素結合からなり、主鎖の少なくとも一部に環状炭化水素構造を有する高分子化合物である。この環状炭化水素構造は、ノルボルネンやテトラシクロドデセンに代表されるような、環状炭化水素構造中に少なくとも一つのオレフィン性二重結合を有する化合物(環状オレフィン)を単量体として用いることで導入される。
[Cyclic olefin resin]
The cyclic olefin-based resin is a polymer compound having a main chain composed of carbon-carbon bonds and having a cyclic hydrocarbon structure in at least part of the main chain. This cyclic hydrocarbon structure is introduced by using a compound (cyclic olefin) having at least one olefinic double bond in the cyclic hydrocarbon structure as represented by norbornene or tetracyclododecene as a monomer. Is done.
 環状オレフィン系樹脂は、環状オレフィンの付加(共)重合体又はその水素添加物(1)、環状オレフィンとα-オレフィンの付加共重合体又はその水素添加物(2)、環状オレフィンの開環(共)重合体又はその水素添加物(3)に分類される。 Cyclic olefin resins include cyclic olefin addition (co) polymers or hydrogenated products thereof (1), cyclic olefin and α-olefin addition copolymers or hydrogenated products (2), cyclic olefin ring-opening ( Co) polymers or hydrogenated products thereof (3).
 環状オレフィンの具体例としては、シクロペンテン、シクロヘキセン、シクロオクテン;シクロペンタジエン、1,3-シクロヘキサジエン等の1環の環状オレフィン;ビシクロ[2.2.1]ヘプタ-2-エン(慣用名:ノルボルネン)、5-メチル-ビシクロ[2.2.1]ヘプタ-2-エン、5,5-ジメチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-エチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-ブチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-エチリデン-ビシクロ[2.2.1]ヘプタ-2-エン、5-ヘキシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-オクチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-オクタデシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-メチリデン-ビシクロ[2.2.1]ヘプタ-2-エン、5-ビニル-ビシクロ[2.2.1]ヘプタ-2-エン、5-プロペニル-ビシクロ[2.2.1]ヘプタ-2-エン等の2環の環状オレフィン; Specific examples of the cyclic olefin include: cyclopentene, cyclohexene, cyclooctene; one-ring cyclic olefin such as cyclopentadiene, 1,3-cyclohexadiene; bicyclo [2.2.1] hept-2-ene (common name: norbornene) ), 5-methyl-bicyclo [2.2.1] hept-2-ene, 5,5-dimethyl-bicyclo [2.2.1] hept-2-ene, 5-ethyl-bicyclo [2.2. 1] Hept-2-ene, 5-butyl-bicyclo [2.2.1] hept-2-ene, 5-ethylidene-bicyclo [2.2.1] hept-2-ene, 5-hexyl-bicyclo [ 2.2.1] hept-2-ene, 5-octyl-bicyclo [2.2.1] hept-2-ene, 5-octadecyl-bicyclo [2.2.1] hept-2-ene, 5- Metilide -Bicyclo [2.2.1] hept-2-ene, 5-vinyl-bicyclo [2.2.1] hept-2-ene, 5-propenyl-bicyclo [2.2.1] hept-2-ene Bicyclic olefins such as;
 トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、トリシクロ[4.3.0.12,5]デカ-3-エン;トリシクロ[4.4.0.12,5]ウンデカ-3,7-ジエン若しくはトリシクロ[4.4.0.12,5]ウンデカ-3,8-ジエン又はこれらの部分水素添加物(又はシクロペンタジエンとシクロヘキセンの付加物)であるトリシクロ[4.4.0.12,5]ウンデカ-3-エン;5-シクロペンチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シクロヘキシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シクロヘキセニルビシクロ[2.2.1]ヘプタ-2-エン、5-フェニル-ビシクロ[2.2.1]ヘプタ-2-エンといった3環の環状オレフィン; Tricyclo [4.3.0.1 2,5 ] deca-3,7-diene (common name: dicyclopentadiene), tricyclo [4.3.0.1 2,5 ] dec-3-ene; tricyclo [ 4.4.0.1 2,5 ] undeca-3,7-diene or tricyclo [4.4.0.1 2,5 ] undeca-3,8-diene or a partially hydrogenated product thereof (or cyclopentadiene) Tricyclo [4.4.0.1 2,5 ] undec-3-ene; 5-cyclopentyl-bicyclo [2.2.1] hept-2-ene, 5-cyclohexyl-bicyclo [2.2.1] hept-2-ene, 5-cyclohexenylbicyclo [2.2.1] hept-2-ene, 5-phenyl-bicyclo [2.2.1] hept-2-ene A cyclic olefin of the ring;
 テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(単にテトラシクロドデセンともいう)、8-メチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-メチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-ビニルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-プロペニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンといった4環の環状オレフィン; Tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene (also simply referred to as tetracyclododecene), 8-methyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-ethyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-methylidenetetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-ethylidenetetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-vinyltetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-propenyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] tetracyclic olefins such as dodec-3-ene;
 8-シクロペンチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-シクロヘキシル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-シクロヘキセニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-フェニル-シクロペンチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン;テトラシクロ[7.4.13,6.01,9.02,7]テトラデカ-4,9,11,13-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレンともいう)、テトラシクロ[8.4.14,7.01,10.03,8]ペンタデカ-5,10,12,14-テトラエン(1,4-メタノ-1,4,4a,5,10,10a-へキサヒドロアントラセンともいう);ペンタシクロ[6.6.1.13,6.02,7.09,14]-4-ヘキサデセン、ペンタシクロ[6.5.1.13,6.02,7.09,13]-4-ペンタデセン、ペンタシクロ[7.4.0.02,7.13,6.110,13]-4-ペンタデセン;ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]-5-エイコセン、ヘプタシクロ[8.7.0.12,9.03,8.14,7.012,17.113,l6]-14-エイコセン;シクロペンタジエンの4量体などの多環の環状オレフィンが挙げられる。これらの環状オレフィンは、それぞれ単独であるいは2種以上組み合わせて用いることができる。 8-cyclopentyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-cyclohexyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-cyclohexenyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-phenyl-cyclopentyl-tetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene; tetracyclo [7.4.1 3,6 . 0 1,9 . 0 2,7 ] tetradeca-4,9,11,13-tetraene (also referred to as 1,4-methano-1,4,4a, 9a-tetrahydrofluorene), tetracyclo [8.4.1 4,7 . 0 1,10 . 0 3,8 ] pentadeca-5,10,12,14-tetraene (also referred to as 1,4-methano-1,4,4a, 5,10,10a-hexahydroanthracene); pentacyclo [6.6.1] .1,3,6 . 0 2,7 . 0 9,14 ] -4-hexadecene, pentacyclo [6.5.1.1 3,6 . 0 2,7 . 0 9,13] -4-pentadecene, pentacyclo [7.4.0.0 2,7. 1 3,6 . 1 10,13] -4-pentadecene; heptacyclo [8.7.0.1 2,9. 1 4,7 . 1 11, 17 . 0 3,8 . 0 12,16 ] -5-eicosene, heptacyclo [8.7.0.1 2,9 . 0 3,8 . 1 4,7 . 0 12,17 . 1 13,16 ] -14-eicosene ; and polycyclic cyclic olefins such as cyclopentadiene tetramer. These cyclic olefins can be used alone or in combination of two or more.
 環状オレフィンと共重合可能なα-オレフィンの具体例としては、エチレン、プロピレン、1-ブテン、1-ペンテン、1-へキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-へキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-へキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどの炭素数2~20、好ましくは炭素数2~8のエチレン又はα-オレフィンなどが挙げられる。これらのα-オレフィンは、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。これらのα-オレフィンは、環状ポリオレフィンに対して、5~200mol%の範囲で含有されたものを使用することができる。 Specific examples of the α-olefin copolymerizable with the cyclic olefin include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3 -Ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1- Hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, etc. 2-20, preferably carbon numbers Examples thereof include 2 to 8 ethylene or α-olefin. These α-olefins can be used alone or in combination of two or more. As these α-olefins, those contained in the range of 5 to 200 mol% with respect to the cyclic polyolefin can be used.
 環状オレフィン又は環状オレフィンとα-オレフィンとの重合方法及び得られた重合体の水素添加方法に、格別な制限はなく、公知の方法に従って行うことができる。 There is no particular limitation on the polymerization method of the cyclic olefin or the cyclic olefin and the α-olefin and the hydrogenation method of the obtained polymer, and it can be carried out according to a known method.
 環状オレフィン系樹脂として、本実施の形態では、エチレンとノルボルネンの付加共重合体が好ましく用いられる。 In the present embodiment, an addition copolymer of ethylene and norbornene is preferably used as the cyclic olefin resin.
 環状オレフィン系樹脂の構造には、特に制限はなく、鎖状でも、分岐状でも、架橋状でもよいが、好ましくは直鎖状である。 The structure of the cyclic olefin-based resin is not particularly limited, and may be a chain, branched, or crosslinked, but is preferably a straight chain.
 環状オレフィン系樹脂の分子量は、GPC法による数平均分子量が5000~30万、好ましくは1万~15万、さらに好ましくは1.5万~10万である。数平均分子量が低すぎると機械的強度が低下し、大きすぎると成形性が悪くなる。 The molecular weight of the cyclic olefin-based resin is 5,000 to 300,000, preferably 10,000 to 150,000, and more preferably 15,000 to 100,000 according to the GPC method. If the number average molecular weight is too low, the mechanical strength decreases, and if it is too high, the moldability deteriorates.
 また、環状オレフィン系樹脂には、前述の環状オレフィン系樹脂(l)~(3)に極性基(例えば、カルボキシル基、酸無水物基、エポキシ基、アミド基、エステル基、ヒドロキシル基など)を有する不飽和化合物(u)をグラフト及び/又は共重合したもの(4)を含めることができる。上記環状オレフィン系樹脂(l)~(4)は、二種以上混合使用してもよい。 In addition, the cyclic olefin resin has a polar group (for example, a carboxyl group, an acid anhydride group, an epoxy group, an amide group, an ester group, a hydroxyl group, etc.) in the above-mentioned cyclic olefin resins (1) to (3). What (4) which grafted and / or copolymerized the unsaturated compound (u) which has can be included. Two or more of the above cyclic olefin resins (1) to (4) may be used in combination.
 上記不飽和化合物(u)としては、(メタ)アクリル酸、マレイン酸、無水マレイン酸、無水イタコン酸、グリシジル(メタ)アクリレート、(メタ)アクリル酸アルキル(炭素数1~10)エステル、マレイン酸アルキル(炭素数1~10)エステル、(メタ)アクリルアミド、(メタ)アクリル酸-2-ヒドロキシエチル等が挙げられる。 Examples of the unsaturated compound (u) include (meth) acrylic acid, maleic acid, maleic anhydride, itaconic anhydride, glycidyl (meth) acrylate, alkyl (meth) acrylate (carbon number 1 to 10) ester, maleic acid Examples include alkyl (having 1 to 10 carbon atoms) ester, (meth) acrylamide, (2-hydroxyethyl) (meth) acrylate, and the like.
 極性基を有する不飽和化合物(u)をグラフト及び/又は共重合した変性環状オレフィン系樹脂(4)を用いることにより金属や極性樹脂との親和性を高めることができるので、蒸着、スパッタ、コーティング、接着等、各種二次加工の強度を高めることができ、二次加工が必要な場合に好適である。しかし、極性基の存在は環状オレフィン系樹脂の吸水率を高めてしまう欠点がある。そのため極性基(例えば、カルボキシル基、酸無水物基、エポキシ基、アミド基、エステル基、ヒドロキシル基など)の含有量は、環状オレフィン系樹脂1kg当り0~1mol/kgであることが好ましい。 Affinity with metals and polar resins can be increased by using a modified cyclic olefin resin (4) obtained by grafting and / or copolymerizing an unsaturated compound (u) having a polar group, so vapor deposition, sputtering, coating It is possible to increase the strength of various secondary processing such as adhesion, and is suitable when secondary processing is required. However, the presence of the polar group has a drawback of increasing the water absorption rate of the cyclic olefin resin. Therefore, the content of polar groups (for example, carboxyl group, acid anhydride group, epoxy group, amide group, ester group, hydroxyl group, etc.) is preferably 0 to 1 mol / kg per 1 kg of cyclic olefin resin.
 [スチレン系エラストマー]
 スチレン系エラストマーは、スチレンとブタジエンもしくはイソプレン等の共役ジエンの共重合体、及び/又は、その水素添加物である。スチレン系エラストマーは、スチレンをハードセグメント、共役ジエンをソフトセグメントとしたブロック共重合体である。ソフトセグメントの構造が、スチレン系エラストマーの貯蔵弾性率を変化させ、ハードセグメントであるスチレンの含有率が、屈折率を変化させ、フィルム全体のヘイズを変化させる。スチレン系エラストマーは、加硫工程が不用であり、好適に用いられる。また、水素添加をしたものの方が、熱安定性が高く、さらに好適である。
[Styrene elastomer]
The styrenic elastomer is a copolymer of styrene and a conjugated diene such as butadiene or isoprene, and / or a hydrogenated product thereof. The styrene elastomer is a block copolymer having styrene as a hard segment and conjugated diene as a soft segment. The structure of the soft segment changes the storage elastic modulus of the styrene-based elastomer, and the content of styrene that is the hard segment changes the refractive index and changes the haze of the entire film. The styrene elastomer does not require a vulcanization step and is preferably used. Further, the hydrogenated one is more preferable because it has higher thermal stability.
 スチレン系エラストマーの例としては、スチレン/ブタジエン/スチレンブロック共重合体、スチレン/イソプレン/スチレンブロック共重合体、スチレン/エチレン/ブチレン/スチレンブロック共重合体、スチレン/エチレン/プロピレン/スチレンブロック共重合体、スチレン/ブタジエンブロック共重合体などが挙げられる。 Examples of styrenic elastomers include styrene / butadiene / styrene block copolymers, styrene / isoprene / styrene block copolymers, styrene / ethylene / butylene / styrene block copolymers, and styrene / ethylene / propylene / styrene block copolymers. Examples thereof include styrene and butadiene block copolymers.
 また、水素添加により共役ジエン成分の二重結合をなくした、スチレン/エチレン/ブチレン/スチレンブロック共重合体、スチレン/エチレン/プロピレン/スチレンブロック共重合体、スチレン/ブタジエンブロック共重合体(水素添加されたスチレン系エラストマーともいう。)などを用いてもよい。 In addition, styrene / ethylene / butylene / styrene block copolymer, styrene / ethylene / propylene / styrene block copolymer, styrene / butadiene block copolymer (hydrogenation) in which double bond of conjugated diene component is eliminated by hydrogenation May also be used.
 スチレン系エラストマーの構造には、特に制限はなく、鎖状でも、分岐状でも、架橋状でもよいが、貯蔵弾性率を小さくするため、好ましくは直鎖状である。 The structure of the styrene-based elastomer is not particularly limited, and may be chain-like, branched or cross-linked, but is preferably linear in order to reduce the storage elastic modulus.
 本実施の形態では、スチレン/エチレン/ブチレン/スチレンブロック共重合体、スチレン/エチレン/プロピレン/スチレンブロック共重合体、水素添加スチレン/ブタジエンブロック共重合体からなる群より選ばれる1種以上のスチレン系エラストマーが好適に用いられる。特に、水素添加スチレン/ブタジエンブロック共重合体は、高い引裂き強度と、環境保存後のヘイズ上昇が小さいため、さらに好適に用いられる。水素添加スチレン/ブタジエンブロック共重合体のスチレンに対するブタジエンの比率は、環状オレフィン系樹脂との相溶性を損なわないために、10~90mol%の範囲であることが好ましい。 In the present embodiment, at least one styrene selected from the group consisting of styrene / ethylene / butylene / styrene block copolymers, styrene / ethylene / propylene / styrene block copolymers, and hydrogenated styrene / butadiene block copolymers. Based elastomers are preferably used. In particular, hydrogenated styrene / butadiene block copolymers are more preferably used because of high tear strength and small haze increase after environmental preservation. The ratio of butadiene to styrene in the hydrogenated styrene / butadiene block copolymer is preferably in the range of 10 to 90 mol% so as not to impair the compatibility with the cyclic olefin resin.
 また、スチレン系エラストマーのスチレン含有率は、20~40mol%であることが好ましい。スチレン含有率を20~40mol%とすることにより、ヘイズを小さくすることができる。 Further, the styrene content of the styrene elastomer is preferably 20 to 40 mol%. By setting the styrene content to 20 to 40 mol%, the haze can be reduced.
 また、スチレン系エラストマーの分子量は、GPC法による数平均分子量が5000~30万、好ましくは1万~15万、さらに好ましくは2万~10万である。数平均分子量が低すぎると機械的強度が低下し、大きすぎると成形性が悪くなる。 The molecular weight of the styrene elastomer is 5,000 to 300,000, preferably 10,000 to 150,000, and more preferably 20,000 to 100,000, as determined by the GPC method. If the number average molecular weight is too low, the mechanical strength decreases, and if it is too high, the moldability deteriorates.
 [他の添加物]
 環状オレフィン系樹脂組成物には、環状オレフィン系樹脂、及びスチレン系エラストマーの他に、その特性を損なわない範囲で、必要に応じて各種配合剤が添加されていてもよい。各種配合剤としては、熱可塑性樹脂材料で通常用いられているものであれば格別な制限はなく、例えば、酸化防止剤、紫外線吸収剤、光安定剤、可塑剤、滑剤、帯電防止剤、難燃剤、染料や顔料などの着色剤、近赤外線吸収剤、蛍光増白剤などの配合剤、充填剤等が挙げられる。
[Other additives]
In addition to the cyclic olefin-based resin and the styrene-based elastomer, various compounding agents may be added to the cyclic olefin-based resin composition as necessary as long as the characteristics are not impaired. The various compounding agents are not particularly limited as long as they are usually used in thermoplastic resin materials. For example, antioxidants, ultraviolet absorbers, light stabilizers, plasticizers, lubricants, antistatic agents, difficulty Examples include flame retardants, colorants such as dyes and pigments, near infrared absorbers, compounding agents such as fluorescent brighteners, and fillers.
 このような構成からなる環状オレフィン系樹脂組成物フィルムによれば、引裂き強度を60N/mm以上とすることができ、また、環境保存後のヘイズ上昇率を1%以下とすることができる。引裂き強度が上記範囲より小さいと、製造時や使用時にフィルムの破壊が起きやすく不適である。また、ヘイズ上昇率が高すぎると、使用上、初期設定の特性から逸脱し、本来目的の特性を満足しない。 According to the cyclic olefin-based resin composition film having such a configuration, the tear strength can be set to 60 N / mm or more, and the haze increase rate after environmental preservation can be set to 1% or less. If the tear strength is smaller than the above range, the film is liable to be broken at the time of production or use, which is inappropriate. On the other hand, if the haze increase rate is too high, it deviates from the initial characteristics in use and does not satisfy the intended characteristics.
 <2.環状オレフィン系樹脂組成物フィルムの製造方法>
 本実施の形態に係る環状オレフィン系樹脂組成物フィルムの製造方法は、50ppm/℃以上の線熱膨張係数差を有する環状オレフィン系樹脂とスチレン系エラストマーとを溶融し、溶融された環状オレフィン系樹脂組成物を押出法により、フィルム状に押し出し、いスチレン系エラストマーが、環状オレフィン系樹脂に分散されてなり、厚さ方向のリタデーションが10nm以上である環状オレフィン系樹脂組成物フィルムを得る。環状オレフィン系樹脂組成物フィルムは、無延伸のものでも、一軸延伸のものでも、二軸延伸のものでもよい。
<2. Method for Producing Cyclic Olefin Resin Composition Film>
The method for producing a cyclic olefin-based resin composition film according to the present embodiment melts a cyclic olefin-based resin having a difference in linear thermal expansion coefficient of 50 ppm / ° C. or more and a styrene-based elastomer, and melted the cyclic olefin-based resin. The composition is extruded into a film by an extrusion method, and a styrene-based elastomer is dispersed in a cyclic olefin-based resin to obtain a cyclic olefin-based resin composition film having a thickness direction retardation of 10 nm or more. The cyclic olefin-based resin composition film may be non-stretched, uniaxially stretched, or biaxially stretched.
 図2は、フィルム製造装置の一構成例を示す模式図である。このフィルム製造装置は、ダイ21と、ロール22とを備える。ダイ21は、溶融成形用のダイであり、溶融状態の樹脂材料23をフィルム状に押し出す。樹脂材料23は、例えば前述の環状オレフィン系樹脂組成物を含む。ロール22は、ダイ21からフィルム状に押し出された樹脂材料23を搬送する役割をもつ。また、ロール22は、その内部に媒体の流路を有し、それぞれ個別の温調装置により任意の温度に表面を調整可能である。また、ロール22の表面の材質は、特に限定されるものではなく、金属ゴム、樹脂、エラストマーなどを用いることができる。 FIG. 2 is a schematic diagram showing a configuration example of a film manufacturing apparatus. The film manufacturing apparatus includes a die 21 and a roll 22. The die 21 is a die for melt molding, and extrudes the molten resin material 23 into a film shape. The resin material 23 contains the above-mentioned cyclic olefin resin composition, for example. The roll 22 has a role of transporting the resin material 23 extruded from the die 21 into a film shape. Further, the roll 22 has a medium flow path therein, and the surface can be adjusted to an arbitrary temperature by an individual temperature control device. Moreover, the material of the surface of the roll 22 is not specifically limited, A metal rubber, resin, an elastomer, etc. can be used.
 本実施の形態では、樹脂材料23として、前述の環状オレフィン系樹脂と、スチレン系エラストマーとを含有する環状オレフィン系樹脂組成物を用い、210℃~300℃の範囲の温度で溶融混合する。溶融温度が高いほど短軸分散径が小さくなる傾向にある。 In the present embodiment, as the resin material 23, a cyclic olefin resin composition containing the above-mentioned cyclic olefin resin and a styrene elastomer is melt-mixed at a temperature in the range of 210 ° C to 300 ° C. As the melting temperature is higher, the minor axis dispersion diameter tends to be smaller.
 <3.電子機器への適用例>
 本実施の形態に係る環状オレフィン系樹脂組成物フィルムは、各種光学用途、例えば位相差フィルム、偏光板保護フィルム、光拡散板等、特にプリズムシート、液晶セル基板への用途に用いることができる。以下では、環状オレフィン系樹脂組成物フィルムを位相差フィルムとして用いた適用例について説明する。
<3. Application example to electronic equipment>
The cyclic olefin-based resin composition film according to the present embodiment can be used for various optical applications, for example, a retardation film, a polarizing plate protective film, a light diffusion plate, etc., particularly a prism sheet and a liquid crystal cell substrate. Below, the application example which used the cyclic olefin resin composition film as a phase difference film is demonstrated.
 図3A及び図3Bは、透明導電性フィルムの一例を示す断面図である。この透明導電性フィルム(透明導電性素子)は、前述の環状オレフィン系樹脂組成物フィルムをベースフィルム(基材)として構成される。具体的には、この透明導電性フィルムは、ベースフィルム(基材)としての位相差フィルム31と、位相差フィルム31の少なくとも一方の表面に透明導電層33とを備える。図3Aは、位相差フィルム31の一方の表面に透明導電層33を設けた例であり、図3Bは、位相差フィルム31の両方の表面に透明導電層33を設けた例である。また、図3A及び図3Bに示すように、位相差フィルム31と透明導電層33との間にハードコート層32をさらに備えるようにしてもよい。 3A and 3B are cross-sectional views showing an example of a transparent conductive film. This transparent conductive film (transparent conductive element) is constituted by using the above-mentioned cyclic olefin-based resin composition film as a base film (base material). Specifically, this transparent conductive film includes a retardation film 31 as a base film (base material), and a transparent conductive layer 33 on at least one surface of the retardation film 31. FIG. 3A is an example in which the transparent conductive layer 33 is provided on one surface of the retardation film 31, and FIG. 3B is an example in which the transparent conductive layer 33 is provided on both surfaces of the retardation film 31. In addition, as shown in FIGS. 3A and 3B, a hard coat layer 32 may be further provided between the retardation film 31 and the transparent conductive layer 33.
 透明導電層33の材料としては、例えば、電気的導電性を有する金属酸化物材料、金属材料、炭素材料、及び導電性ポリマーなどからなる群より選ばれる1種以上を用いることができる。金属酸化物材料としては、例えば、インジウム鈴酸化物(ITO)酸化亜鉛、酸化インジウム、アンチモン添加酸化錫、フッ素添加酸化錫、アルミニウム添加酸化亜鉛、ガリウム添加酸化亜鉛、シリコン添加酸化亜鉛、酸化亜鉛-酸化錫系、酸化インジウム-酸化錫系、酸化亜鉛-酸化インジウム-酸化マグネシウム系などが挙げられる。金属材料としては、例えば、金属ナノ粒子、金属ナノワイヤーなどの金属ナノフィラーを用いることができる。これらの具体的材料としては、例えば、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンタル、チタン、ビスマス、アンチモン、鉛などの金属又はこれらの合金などが挙げられる。炭素材料としては、例えば、カーボンブラック、炭素繊維、フラーレン、グラフェン、カーボンナノチューブ、カーボンマイクロコイル、ナノホーンなどが挙げられる。導電性ポリマーとしては、例えば、置換又は無置換のポリアニリン、ポリビロール、ポリチオフィン、及びこれらから選ばれる1種又は2種からなる(共)重合体などを用いることができる。 As the material of the transparent conductive layer 33, for example, one or more selected from the group consisting of electrically conductive metal oxide materials, metal materials, carbon materials, and conductive polymers can be used. Examples of metal oxide materials include indium tin oxide (ITO) zinc oxide, indium oxide, antimony-added tin oxide, fluorine-added tin oxide, aluminum-added zinc oxide, gallium-added zinc oxide, silicon-added zinc oxide, and zinc oxide- Examples thereof include a tin oxide system, an indium oxide-tin oxide system, and a zinc oxide-indium oxide-magnesium oxide system. As the metal material, for example, metal nanofillers such as metal nanoparticles and metal nanowires can be used. Specific examples of these materials include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantalum, titanium, bismuth, Examples thereof include metals such as antimony and lead, and alloys thereof. Examples of the carbon material include carbon black, carbon fiber, fullerene, graphene, carbon nanotube, carbon microcoil, and nanohorn. As the conductive polymer, for example, substituted or unsubstituted polyaniline, polypyrrole, polythiofin, and one or two (co) polymers selected from these can be used.
 透明導電層33の形成方法としては、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法などのPVD法や、CVD法、塗工法、印刷法などを用いることができる。透明導電層33は、所定の電極パターンを有する透明電極であってもよい。電極パターンとしては、ストライプ状などが挙げられるが、これに限定されるものではない。 As a method for forming the transparent conductive layer 33, for example, a PVD method such as a sputtering method, a vacuum deposition method, or an ion plating method, a CVD method, a coating method, a printing method, or the like can be used. The transparent conductive layer 33 may be a transparent electrode having a predetermined electrode pattern. Examples of the electrode pattern include a stripe shape, but are not limited thereto.
 ハードコート層32の材料としては、光又は電子線などにより硬化する電離放射線硬化樹脂、又は熱により硬化する熱硬化型樹脂を用いることが好ましく、紫外線により硬化する感光性樹脂が最も好ましい。このような感光性樹脂としては、例えば、ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレート、ポリオールアクリレート、ポリエーテルアクリレート、メラミンアクリレートなどのアクリレート系樹脂を用いることができる。例えば、ウレタンアクリレート樹脂は、ポリエステルポリオールにイソシアネートモノマー、あるいはプレポリマーを反応させ、得られた生成物に、水酸基を有するアクリレート又はメタアクリレート系のモノマーを反応させることによって得られる。ハードコート層32の厚みは、1μm~20μmであることが好ましいが、この範囲に特に限定されるものではない。 As the material of the hard coat layer 32, it is preferable to use an ionizing radiation curable resin that is cured by light or an electron beam, or a thermosetting resin that is cured by heat, and a photosensitive resin that is cured by ultraviolet rays is most preferable. As such a photosensitive resin, for example, acrylate resins such as urethane acrylate, epoxy acrylate, polyester acrylate, polyol acrylate, polyether acrylate, and melamine acrylate can be used. For example, the urethane acrylate resin is obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer, and reacting an acrylate or methacrylate monomer having a hydroxyl group with the obtained product. The thickness of the hard coat layer 32 is preferably 1 μm to 20 μm, but is not particularly limited to this range.
 また、透明導電性フィルムは、図3C及び図3Dに示すように、上述の位相差フィルムの少なくとも一方の表面に反射防止層としてのモスアイ(蛾の目)形状の構造体34を設けるようにしてもよい。図3Cは、位相差フィルム31の一方の表面にモスアイ形状の構造体34を設けた例であり、図3Dは、位相差フィルムの両方の表面にモスアイ形状の構造体を設けた例である。なお、位相差フィルム11の表面に設けられる反射防止層は、上述のモスアイ形状の構造体に限定されるものではなく、低屈折率層などの従来公知の反射防止層を用いることも可能である。 In addition, as shown in FIGS. 3C and 3D, the transparent conductive film is provided with a moth-eye structure 34 as an antireflection layer on at least one surface of the above-described retardation film. Also good. FIG. 3C is an example in which a moth-eye structure 34 is provided on one surface of the retardation film 31, and FIG. 3D is an example in which a moth-eye structure is provided on both surfaces of the retardation film. The antireflection layer provided on the surface of the retardation film 11 is not limited to the moth-eye structure described above, and a conventionally known antireflection layer such as a low refractive index layer can also be used. .
 図4は、タッチパネルの一構成例を示す概略断面図である。このタッチパネル(入力装置)40は、いわゆる抵抗膜方式タッチパネルである。抵抗膜方式タッチパネルとしては、アナログ抵抗膜方式タッチパネル、又はデジタル抵抗膜方式タッチパネルのいずれであってもよい。 FIG. 4 is a schematic cross-sectional view showing one configuration example of the touch panel. The touch panel (input device) 40 is a so-called resistive film type touch panel. The resistive film type touch panel may be either an analog resistive film type touch panel or a digital resistive film type touch panel.
 タッチパネル40は、第1の透明導電性フィルム41と、第1の透明導電性フィルム41と対向する第2の透明導電性フィルム42とを備える。第1の透明導電性フィルム41と第2の透明導電性フィルム42は、それらの周縁部間において貼り合わせ部45を介して貼り合わされている。貼り合わせ部45としては、例えば、粘着ペースト、粘着テープなどが用いられる。このタッチパネル40は、例えば表示装置44に対して貼り合わせ層43を介して貼り合わされる。貼り合わせ層43の材料としては、例えば、アクリル系、ゴム系、シリコン系などの粘着剤を用いることができ、透明性の観点から、アクリル系粘着剤が好ましい。 The touch panel 40 includes a first transparent conductive film 41 and a second transparent conductive film 42 facing the first transparent conductive film 41. The 1st transparent conductive film 41 and the 2nd transparent conductive film 42 are bonded together via the bonding part 45 between those peripheral parts. As the bonding part 45, for example, an adhesive paste, an adhesive tape or the like is used. The touch panel 40 is bonded to the display device 44 through the bonding layer 43, for example. As a material of the bonding layer 43, for example, an acrylic, rubber, or silicon adhesive can be used, and an acrylic adhesive is preferable from the viewpoint of transparency.
 タッチパネル40は、第1の透明導電性フィルム41のタッチ側となる面に対して、貼り合わせ層50などを介して貼り合わされた偏光子48をさらに備える。第1の透明導電性フィルム41及び/又は第2の透明導電性フィルム42としては、前述の透明導電性フィルムを用いることができる。但し、ベースフィルム(基材)としての位相差フィルムは、λ/4に設定される。このように偏光子48と位相差フィルム31とを採用することにより、反射率を低減し、視認性を向上させることができる。 The touch panel 40 further includes a polarizer 48 bonded to the surface on the touch side of the first transparent conductive film 41 via a bonding layer 50 or the like. As the 1st transparent conductive film 41 and / or the 2nd transparent conductive film 42, the above-mentioned transparent conductive film can be used. However, the retardation film as the base film (base material) is set to λ / 4. By adopting the polarizer 48 and the retardation film 31 in this way, the reflectance can be reduced and the visibility can be improved.
 タッチパネル40は、第1の透明導電性フィルム41及び第2の透明導電性フィルム42の対向する表面、すなわち透明導電層33の表面にモスアイ構造体34を設けることが好ましい。これにより、第1の透明導電性フィルム41及び第2の透明導電性フィルム42の光学特性(例えば反射特性や透過特性など)を向上させることができる。 The touch panel 40 is preferably provided with a moth-eye structure 34 on the opposing surfaces of the first transparent conductive film 41 and the second transparent conductive film 42, that is, on the surface of the transparent conductive layer 33. Thereby, the optical characteristics (for example, a reflection characteristic, a transmission characteristic, etc.) of the 1st transparent conductive film 41 and the 2nd transparent conductive film 42 can be improved.
 タッチパネル40は、第1の透明導電性フィルム41のタッチ側となる面に単層又は多層の反射防止層をさらに備えることが好ましい。これにより、反射率を低減し、視認性を向上させることができる。 The touch panel 40 preferably further includes a single-layer or multi-layer antireflection layer on the surface of the first transparent conductive film 41 on the touch side. Thereby, a reflectance can be reduced and visibility can be improved.
 タッチパネル40は、耐擦傷性の向上の観点から、第1の透明導電性フィルム41のタッチ側となる面にハードコート層をさらに備えることが好ましい。このハードコート層の表面には、防汚性が付与されていることが好ましい。 It is preferable that the touch panel 40 further includes a hard coat layer on the surface on the touch side of the first transparent conductive film 41 from the viewpoint of improving the scratch resistance. The surface of the hard coat layer is preferably imparted with antifouling properties.
 タッチパネル40は、第1の透明導電性フィルム41のタッチ側となる面に対して、貼り合わせ層51を介して貼り合わされたフロントパネル(表面部材)49をさらに備えることが好ましい。また、タッチパネル40は、第2の透明導電性フィルム42の表示装置44に貼り合わされる面に、貼り合わせ層47を介して貼り合わされたガラス基板46をさらに備えることが好ましい。 It is preferable that the touch panel 40 further includes a front panel (surface member) 49 bonded to the surface on the touch side of the first transparent conductive film 41 via the bonding layer 51. Moreover, it is preferable that the touch panel 40 further includes a glass substrate 46 bonded to the surface of the second transparent conductive film 42 bonded to the display device 44 via a bonding layer 47.
 タッチパネル40は、第2の透明導電性フィルム42の表示装置44などと貼り合わされる面に、複数の構造体をさらに備えることが好ましい。複数の構造体のアンカー効果により、タッチパネル40と貼り合わせ層43との間の接着性を向上することができる。この構造体としては、モスアイ形状の構造体が好ましい。これにより、界面反射を抑制することができる。 The touch panel 40 preferably further includes a plurality of structures on the surface to be bonded to the display device 44 of the second transparent conductive film 42 or the like. The adhesion between the touch panel 40 and the bonding layer 43 can be improved by the anchor effect of the plurality of structures. As this structure, a moth-eye structure is preferable. Thereby, interface reflection can be suppressed.
 表示装置44としては、例えば、液晶ディスプレイ、CRT(Cathode Ray Tube)ディスプレイ、プラズマディスプレイ(Plasma Display Panel:PDP)、エレクトロルミネッセンス(Electro Luminescence:EL)ディスプレイ、表面伝導型電子放出素子ディスプレイ(Surface-conduction Electron-emitter Display:SED)などの各種表示装置を用いることができる。 As the display device 44, for example, a liquid crystal display, a CRT (Cathode Ray Tube) display, a plasma display (Plasma Display Panel: PDP), an electroluminescence (Electro Luminescence: EL) display, a surface conduction electron-emitting device display (Surface-conduction Various display devices such as Electron-emitter Display (SED) can be used.
 次に、前述した入力装置40を備える電子機器について説明する。図5は、電子機器としてテレビ装置の例を示す外観図である。テレビ装置100は、表示部101を備え、その表示部101にタッチパネル40を備える。 Next, an electronic apparatus including the input device 40 described above will be described. FIG. 5 is an external view illustrating an example of a television device as an electronic apparatus. The television device 100 includes a display unit 101, and the display unit 101 includes a touch panel 40.
 図6A及び図6Bは、電子機器としてデジタルカメラの例を示す外観図である。図6Aは、デジタルカメラを表側から見た外観図であり、図6Bは、デジタルカメラを裏側から見た外観図である。デジタルカメラ110は、フラッシュ用の発光部111、表示部112、メニュースイッチ113、シャッターボタン114などを備え、その表示部112に前述のタッチパネル40を備える。 6A and 6B are external views illustrating examples of a digital camera as an electronic device. 6A is an external view of the digital camera viewed from the front side, and FIG. 6B is an external view of the digital camera viewed from the back side. The digital camera 110 includes a light emitting unit 111 for flash, a display unit 112, a menu switch 113, a shutter button 114, and the like, and the display unit 112 includes the touch panel 40 described above.
 図7は、電子機器としてノート型パーソナルコンピュータの例を示す外観図である。ノート型パーソナルコンピュータ120は、本体部121に、文字を入力するキーボード122、画像を表示する表示部123などを備え、その表示部123に前述のタッチパネル40を備える。 FIG. 7 is an external view showing an example of a notebook personal computer as an electronic device. The notebook personal computer 120 includes a main body 121 including a keyboard 122 for inputting characters, a display unit 123 for displaying images, and the like, and the display unit 123 includes the touch panel 40 described above.
 図8は、電子機器としてビデオカメラの例を示す外観図である。ビデオカメラ130は、本体部131、前方を向いた側面に被写体撮影用のレンズ132、撮影時のスタート/ストップスイッチ133、表示部134などを備え、その表示部134に前述のタッチパネル40を備える。 FIG. 8 is an external view showing an example of a video camera as an electronic device. The video camera 130 includes a main body 131, a subject shooting lens 132 on the side facing forward, a start / stop switch 133 during shooting, a display unit 134, and the like, and the display unit 134 includes the touch panel 40 described above.
 図9は、電子機器として携帯電話の一例を示す外観図である。携帯電話140は、いわゆるスマートフォンであり、その表示部141に前述のタッチパネル40を備える。 FIG. 9 is an external view showing an example of a mobile phone as an electronic device. The mobile phone 140 is a so-called smartphone, and the display unit 141 includes the touch panel 40 described above.
 図10は、電子機器としてタブレット型コンピュータの一例を示す外観図である。タブレット型コンピュータ150は、その表示部151に前述のタッチパネル40を備える。 FIG. 10 is an external view showing an example of a tablet computer as an electronic device. The tablet computer 150 includes the touch panel 40 described above on the display unit 151.
 以上のような各電子機器であっても、表示部に、面内リタデーションが小さく、靱性に優れた環状オレフィン系樹脂組成物フィルムが使用されているため、高耐久で高画質な表示が可能になる。 Even in each electronic device as described above, a cyclic olefin resin composition film with small in-plane retardation and excellent toughness is used for the display part, so that high durability and high image quality display is possible. Become.
 <4.実施例>
 以下、本発明の実施例について詳細に説明する。本実施例では、環状オレフィン系樹脂に所定の線熱膨張係数を有するスチレン系エラストマーを添加し、所定のリタデーション(R,Rth)に制御した環状オレフィン系樹脂組成物フィルムを作成した。そして、初期ヘイズ、環境保存後のヘイズ上昇、及び引き裂き強度について評価した。なお、本発明はこれらの実施例に限定されるものではない。
<4. Example>
Examples of the present invention will be described in detail below. In this example, a styrene elastomer having a predetermined linear thermal expansion coefficient was added to the cyclic olefin resin to prepare a cyclic olefin resin composition film controlled to a predetermined retardation (R 0 , R th ). Then, initial haze, haze increase after environmental preservation, and tear strength were evaluated. The present invention is not limited to these examples.
 スチレン系エラストマーの線熱膨張係数、環状オレフィン系樹脂組成物フィルムのリタデーション、ヘイズ、及び引裂き強度は、次のように測定した。 The linear thermal expansion coefficient of the styrene elastomer, the retardation, haze, and tear strength of the cyclic olefin resin composition film were measured as follows.
 [線熱膨張係数の測定]
 熱機械分析装置(TMA:Thermomechanical Analysis、NETZSCH Japan製 TMA4100SA)を使用し、JISK7197に準拠して線熱膨張係数を算出した。スチレン系エラストマーからなる試験片を作製し、試験片の温度0℃~200℃における平均の線熱膨張率(ppm/℃)を昇温速度2℃/minにて算出した。
[Measurement of linear thermal expansion coefficient]
The linear thermal expansion coefficient was calculated based on JISK7197 using a thermomechanical analyzer (TMA: Thermomechanical Analysis, TMA4100SA manufactured by NETZSCH Japan). A test piece made of a styrene-based elastomer was prepared, and the average linear thermal expansion coefficient (ppm / ° C.) at a temperature of 0 ° C. to 200 ° C. of the test piece was calculated at a temperature increase rate of 2 ° C./min.
 [リタデーションの測定]
 光学材料検査装置(RETS-100、大塚電子社製)を使用し、環状オレフィン系樹脂組成物フィルムの面内方向のリタデーションR、及び厚さ方向のリタデーションRthを測定した。
[Measurement of retardation]
Using an optical material inspection apparatus (RETS-100, manufactured by Otsuka Electronics Co., Ltd.), the in-plane retardation R 0 and the thickness direction retardation R th of the cyclic olefin-based resin composition film were measured.
 [ヘイズの測定]
 厚み80μmのフィルムについて、ヘイズメーター(HM150、(株)村上色彩技術研究所製)を使用して初期ヘイズを測定した。また、環境保存試験(-40℃12時間保存後、85℃オーブンに10分間投入)後に、ヘイズメーターを使用してヘイズを測定し、初期ヘイズとの差分をヘイズ上昇とした。ヘイズ上昇が0.5%未満のものを「◎」と評価し、ヘイズ上昇が0.5%以上1.0%未満のものを「○」と評価し、ヘイズ上昇が1.0%以上ものを「×」と評価した。
[Measurement of haze]
The initial haze of a film having a thickness of 80 μm was measured using a haze meter (HM150, manufactured by Murakami Color Research Laboratory Co., Ltd.). Further, after an environmental preservation test (stored at −40 ° C. for 12 hours and then put into an 85 ° C. oven for 10 minutes), the haze was measured using a haze meter, and the difference from the initial haze was regarded as haze increase. A haze increase of less than 0.5% is evaluated as “◎”, a haze increase of 0.5% or more and less than 1.0% is evaluated as “◯”, and a haze increase is 1.0% or more. Was evaluated as “×”.
 [引裂き強度(直角形引き裂き)の測定]
 厚み80μmのフィルムをJISK7128に従い測定した。試験片として3号形試験片を用い、引張試験機(AG-X、島津製作所(株)製)を用いて試験速度200mm/分で測定し、MD方向及びTD方向の平均値を引裂き強度とした。引裂き強度が60N/mm以上のものを「○」と評価し、60N/mm未満のものを「×」と評価した。引き裂き強度が、60N/mm以上あれば、コーティング工程などの後工程での破断の恐れが低下する点で、実用上の使用が可能である。
[Measurement of tear strength (right-angle tear)]
A film having a thickness of 80 μm was measured according to JISK7128. A No. 3 type test piece was used as a test piece, measured at a test speed of 200 mm / min using a tensile tester (AG-X, manufactured by Shimadzu Corporation), and the average value in the MD and TD directions was determined as the tear strength. did. A tear strength of 60 N / mm or more was evaluated as “◯”, and a tear strength of less than 60 N / mm was evaluated as “x”. If the tear strength is 60 N / mm or more, practical use is possible in that the risk of breakage in a subsequent process such as a coating process is reduced.
 [環状オレフィン系樹脂、及びスチレン系エラストマー]
 環状オレフィン系樹脂としては、TOPAS6013-S04(ポリプラスチック(株)製、化学名:エチレンとノルボルネンの付加共重合体)を使用した。この環状オレフィン系樹脂の線熱膨張係数は、65ppm/℃であった。
[Cyclic olefin resin and styrene elastomer]
As the cyclic olefin resin, TOPAS 6013-S04 (manufactured by Polyplastics Co., Ltd., chemical name: addition copolymer of ethylene and norbornene) was used. The linear thermal expansion coefficient of this cyclic olefin resin was 65 ppm / ° C.
 また、スチレン系エラストマーとしては、表1に示す5種類を使用した。タフテックH1041(旭化成ケミカルズ(株)製)、タフテックH1272(旭化成ケミカルズ(株)製)、タフテックH1517(旭化成ケミカルズ(株)製)、タフテックH1221(旭化成ケミカルズ(株)製)は、スチレン/エチレン/ブチレン/スチレンブロック共重合体である。また、S.O.E L606(旭化成ケミカルズ(株)製)は、水添スチレン/ブタジエンブロック共重合体である。これらのスチレン系エラストマーの線熱膨張係数は、全て130~220ppm/℃の範囲であった。 Also, five types of styrene elastomers shown in Table 1 were used. Tuftec H1041 (manufactured by Asahi Kasei Chemicals), Tuftec H1272 (manufactured by Asahi Kasei Chemicals), Tuftec H1517 (manufactured by Asahi Kasei Chemicals), and Tuftec H1221 (manufactured by Asahi Kasei Chemicals) are styrene / ethylene / butylene. / Styrene block copolymer. S. O. E L606 (manufactured by Asahi Kasei Chemicals Corporation) is a hydrogenated styrene / butadiene block copolymer. The linear thermal expansion coefficients of these styrenic elastomers were all in the range of 130 to 220 ppm / ° C.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [実施例1]
 スチレン系エラストマーとして、タフテックH1041を用いた。環状オレフィン系樹脂とスチレン系エラストマーとの線熱膨張係数差は、50ppm/℃以上であった。
[Example 1]
Tuftec H1041 was used as the styrene elastomer. The difference in coefficient of linear thermal expansion between the cyclic olefin resin and the styrene elastomer was 50 ppm / ° C. or higher.
 環状オレフィン系樹脂を90質量部、及びスチレン系エラストマーを10質量部配合し、これを先端にTダイを取り付けた二軸押出機(仕様:直径25mm、長さ:26D、Tダイ幅:160mm)を用いて210℃~300℃の温度範囲の所定温度で混練した後、環状オレフィン系樹脂組成物を、50~300g/minの速度範囲の所定速度で押し出し、厚さが80μmのフィルムをロールに巻きとった。この作製方法により、スチレン系エラストマーは、フィルムのMD方向に形状異方性を持って分散し、MD方向に平均約4μmの長軸を有し、TD方向に平均約0.2μmの短軸を有していた。 90 parts by mass of cyclic olefin resin and 10 parts by mass of styrene elastomer, twin screw extruder equipped with a T die at the tip (specifications: diameter 25mm, length: 26D, T die width: 160mm) After kneading at a predetermined temperature in the temperature range of 210 ° C. to 300 ° C., the cyclic olefin resin composition is extruded at a predetermined speed in the speed range of 50 to 300 g / min, and a film having a thickness of 80 μm is rolled. I took it up. By this production method, the styrenic elastomer is dispersed with shape anisotropy in the MD direction of the film, has an average major axis of about 4 μm in the MD direction, and an average minor axis of about 0.2 μm in the TD direction. Had.
 表2に示すように、フィルムの面内方向のリタデーションRは7.4nm、厚み方向のリタデーションは10.1nmであった。また、初期ヘイズは5.7%、環境保存後のヘイズ上昇は0.8%で○の評価であった。また、引き裂き強度は82N/mmで○の評価であった。 As shown in Table 2, the in-plane retardation R 0 of the film was 7.4 nm, and the retardation in the thickness direction was 10.1 nm. Further, the initial haze was 5.7%, and the increase in haze after environmental preservation was 0.8%, which was evaluated as good. Moreover, tear strength was evaluation of (circle) in 82 N / mm.
 [実施例2]
 スチレン系エラストマーとして、タフテックH1272を用いた。環状オレフィン系樹脂とスチレン系エラストマーとの線熱膨張係数差は、50ppm/℃以上であった。フィルムの作製は、実施例1と同様の方法で行った。
[Example 2]
Tuftec H1272 was used as the styrene elastomer. The difference in coefficient of linear thermal expansion between the cyclic olefin resin and the styrene elastomer was 50 ppm / ° C. or higher. The film was produced in the same manner as in Example 1.
 表2に示すように、フィルムの面内方向のリタデーションRは13.5nm、厚み方向のリタデーションは15.3nmであった。また、初期ヘイズは15.3%、環境保存後のヘイズ上昇は0.4%で◎の評価であった。また、引き裂き強度は80N/mmで○の評価であった。 As shown in Table 2, the retardation R0 in the in-plane direction of the film was 13.5 nm, and the retardation in the thickness direction was 15.3 nm. The initial haze was 15.3%, and the haze increase after environmental preservation was 0.4%. Moreover, tear strength was evaluation of (circle) in 80 N / mm.
 [実施例3]
 スチレン系エラストマーとして、S.O.E.L606を用いた。環状オレフィン系樹脂とスチレン系エラストマーとの線熱膨張係数差は、50ppm/℃以上であった。フィルムの作製は、実施例1と同様の方法で行った。
[Example 3]
Styrenic elastomers include S.I. O. E. L606 was used. The difference in coefficient of linear thermal expansion between the cyclic olefin resin and the styrene elastomer was 50 ppm / ° C. or higher. The film was produced in the same manner as in Example 1.
 表2に示すように、フィルムの面内方向のリタデーションRは18.1nm、厚み方向のリタデーションは20.4nmであった。また、初期ヘイズは0.3%、環境保存後のヘイズ上昇は0.1%で◎の評価であった。また、引き裂き強度は102N/mmで○の評価であった。 As shown in Table 2, the in-plane retardation R 0 of the film was 18.1 nm, and the retardation in the thickness direction was 20.4 nm. The initial haze was 0.3%, and the haze increase after environmental preservation was 0.1%. The tear strength was 102 N / mm, which was evaluated as “good”.
 [実施例4]
 スチレン系エラストマーとして、タフテックH1517を用いた。環状オレフィン系樹脂とスチレン系エラストマーとの線熱膨張係数差は、50ppm/℃以上であった。フィルムの作製は、環状オレフィン系樹脂を85質量部、及びスチレン系エラストマーを15質量部配合した以外は、実施例1と同様の方法で行った。
[Example 4]
Tuftec H1517 was used as the styrene elastomer. The difference in coefficient of linear thermal expansion between the cyclic olefin resin and the styrene elastomer was 50 ppm / ° C. or higher. The film was produced in the same manner as in Example 1 except that 85 parts by mass of the cyclic olefin resin and 15 parts by mass of the styrene elastomer were blended.
 表2に示すように、フィルムの面内方向のリタデーションRは27.2nm、厚み方向のリタデーションは12.6nmであった。また、初期ヘイズは1.1%、環境保存後のヘイズ上昇は0.2%で◎の評価であった。また、引き裂き強度は62N/mmで○の評価であった。 As shown in Table 2, the in-plane retardation R 0 of the film was 27.2 nm, and the retardation in the thickness direction was 12.6 nm. The initial haze was 1.1%, and the haze increase after environmental preservation was 0.2%, which was evaluated as ◎. Moreover, tearing strength was evaluation of (circle) in 62 N / mm.
 [比較例1]
 スチレン系エラストマーとして、タフテックH1041を用いた。環状オレフィン系樹脂とスチレン系エラストマーとの線熱膨張係数差は、50ppm/℃以上であった。フィルムの作製は、実施例1と同様の方法で行った。
[Comparative Example 1]
Tuftec H1041 was used as the styrene elastomer. The difference in coefficient of linear thermal expansion between the cyclic olefin resin and the styrene elastomer was 50 ppm / ° C. or higher. The film was produced in the same manner as in Example 1.
 表2に示すように、フィルムの面内方向のリタデーションRは2.3nm、厚み方向のリタデーションは8.8nmであった。また、初期ヘイズは5.2%、環境保存後のヘイズ上昇は1.7%で×の評価であった。また、引き裂き強度は83N/mmで○の評価であった。 As shown in Table 2, the in-plane retardation R 0 of the film was 2.3 nm, and the retardation in the thickness direction was 8.8 nm. The initial haze was 5.2%, and the increase in haze after environmental preservation was 1.7%. The tear strength was 83 N / mm, which was evaluated as “good”.
 [比較例2]
 スチレン系エラストマーとして、タフテックH1221を用いた。環状オレフィン系樹脂とスチレン系エラストマーとの線熱膨張係数差は、50ppm/℃以上であった。フィルムの作製は、実施例1と同様の方法で行った。
[Comparative Example 2]
Tuftec H1221 was used as the styrene elastomer. The difference in coefficient of linear thermal expansion between the cyclic olefin resin and the styrene elastomer was 50 ppm / ° C. or higher. The film was produced in the same manner as in Example 1.
 表2に示すように、フィルムの面内方向のリタデーションRは2.5nm、厚み方向のリタデーションは7.0nmであった。また、初期ヘイズは9.0%、環境保存後のヘイズ上昇は2.8%で×の評価であった。また、引き裂き強度は77N/mmで○の評価であった。 As shown in Table 2, the retardation R0 in the in-plane direction of the film was 2.5 nm, and the retardation in the thickness direction was 7.0 nm. The initial haze was 9.0%, and the increase in haze after environmental preservation was 2.8%, which was evaluated as x. Further, the tear strength was 77 N / mm, which was evaluated as “good”.
 [比較例3]
 スチレン系エラストマーとして、タフテックH1272を用いた。環状オレフィン系樹脂とスチレン系エラストマーとの線熱膨張係数差は、50ppm/℃以上であった。フィルムの作製は、実施例1と同様の方法で行った。
[Comparative Example 3]
Tuftec H1272 was used as the styrene elastomer. The difference in coefficient of linear thermal expansion between the cyclic olefin resin and the styrene elastomer was 50 ppm / ° C. or higher. The film was produced in the same manner as in Example 1.
 表2に示すように、フィルムの面内方向のリタデーションRは1.5nm、厚み方向のリタデーションは4.4nmであった。また、初期ヘイズは17.5%、環境保存後のヘイズ上昇は15.2%で×の評価であった。また、引き裂き強度は78N/mmで○の評価であった。 As shown in Table 2, the retardation R0 in the in-plane direction of the film was 1.5 nm, and the retardation in the thickness direction was 4.4 nm. The initial haze was 17.5%, and the increase in haze after environmental preservation was 15.2%, which was evaluated as x. Moreover, tearing strength was evaluation of (circle) in 78 N / mm.
 [比較例4]
 スチレン系エラストマーとして、S.O.E.L606を用いた。環状オレフィン系樹脂とスチレン系エラストマーとの線熱膨張係数差は、50ppm/℃以上であった。フィルムの作製は、実施例1と同様の方法で行った。
[Comparative Example 4]
Styrenic elastomers include S.I. O. E. L606 was used. The difference in coefficient of linear thermal expansion between the cyclic olefin resin and the styrene elastomer was 50 ppm / ° C. or higher. The film was produced in the same manner as in Example 1.
 表2に示すように、フィルムの面内方向のリタデーションRは1.3nm、厚み方向のリタデーションは5.9nmであった。また、初期ヘイズは0.2%、環境保存後のヘイズ上昇は4.0%で×の評価であった。また、引き裂き強度は100N/mmで○の評価であった。 As shown in Table 2, retardation R0 in the in-plane direction of the film was 1.3 nm, and retardation in the thickness direction was 5.9 nm. The initial haze was 0.2%, and the haze increase after environmental preservation was 4.0%, which was evaluated as x. Moreover, tear strength was evaluation of (circle) in 100 N / mm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 厚さ方向のリタデーションRthが10nm以上である実施例1~4は、優れた靱性を保ったまま、環境保存後のヘイズ上昇が1.0%未満であり、良好な結果が得られた。一方、厚さ方向のリタデーションRthが10nm未満である比較例1~4は、靱性は保ったままであったが、環境保存後のヘイズ上昇が1.0%以上であり、良好な結果が得られなかった。 Retardation R th in the thickness direction is the 10nm or more in Examples 1 to 4, while maintaining excellent toughness, haze increase after ambient storage is less than 1.0%, good results were obtained. On the other hand, the thickness direction retardation R th is Comparative Example 1-4 is less than 10nm, although toughness remained kept, and the haze increase after ambient storage 1.0% or more, good results are obtained I couldn't.
 11 環状オレフィン系樹脂、12 スチレン系エラストマー、21 ダイ、22 ロール、23 樹脂材料、31 位相差フィルム、32 ハードコート層、33 透明導電層、34 モスアイ形状の構造体、40 タッチパネル、41 第1の透明導電性フィルム、42 第2の透明導電性フィルム、43 貼り合わせ層、44 表示装置、45 貼り合わせ部、46 ガラス基板、47 貼り合わせ層、48 偏光子、49 フロントパネル、50 貼り合わせ層、51 貼り合わせ層、100 テレビ装置、101 表示部、110 デジタルカメラ、111 発光部、112 表示部、113 メニュースイッチ、114 シャッターボタン、120 ノート型パーソナルコンピュータ、121 本体部、122 キーボード、123 表示部、130 ビデオカメラ、131 本体部、132 レンズ、133 スタート/ストップスイッチ、134 表示部、140 携帯電話、141 表示部、150 タブレット型コンピュータ、151 表示部 11 cyclic olefin resin, 12 styrene elastomer, 21 die, 22 roll, 23 resin material, 31 retardation film, 32 hard coat layer, 33 transparent conductive layer, 34 moth-eye-shaped structure, 40 touch panel, 41 first Transparent conductive film, 42 2nd transparent conductive film, 43 bonding layer, 44 display device, 45 bonding portion, 46 glass substrate, 47 bonding layer, 48 polarizer, 49 front panel, 50 bonding layer, 51 bonding layer, 100 TV device, 101 display unit, 110 digital camera, 111 light emitting unit, 112 display unit, 113 menu switch, 114 shutter button, 120 notebook personal computer, 121 main unit, 122 keyboard, 23 display unit, 130 a video camera, 131 main body, 132 lens, 133 a start / stop switch, 134 display unit, 140 mobile phones, 141 display unit, 150 a tablet computer, 151 display unit

Claims (12)

  1.  環状オレフィン系樹脂と、スチレン系エラストマーとを含有し、
     前記環状オレフィン樹脂とスチレン系エラストマーとの線熱膨張係数差が50ppm/℃以上であり、
     厚さ方向のリタデーションが10nm以上である環状オレフィン系樹脂組成物フィルム。
    Containing a cyclic olefin resin and a styrene elastomer,
    The linear thermal expansion coefficient difference between the cyclic olefin resin and the styrene elastomer is 50 ppm / ° C or more,
    A cyclic olefin-based resin composition film having a retardation in the thickness direction of 10 nm or more.
  2.  面内方向のリタデーションが30nm以下である請求項1記載の環状オレフィン系樹脂組成物フィルム。 The cyclic olefin resin composition film according to claim 1, wherein retardation in the in-plane direction is 30 nm or less.
  3.  前記環状オレフィン樹脂の線熱膨張係数が、40~80ppm/℃であり、
     前記スチレン系エラストマーの線熱膨張係数が、130~220ppm/℃である請求項1又は2記載の環状オレフィン系樹脂組成物フィルム。
    The linear thermal expansion coefficient of the cyclic olefin resin is 40 to 80 ppm / ° C.
    The cyclic olefin-based resin composition film according to claim 1 or 2, wherein the styrene-based elastomer has a linear thermal expansion coefficient of 130 to 220 ppm / ° C.
  4.  前記スチレン系エラストマーが、スチレン/エチレン/ブチレン/スチレンブロック共重合体、スチレン/エチレン/プロピレン/スチレンブロック共重合体、水素添加スチレン/ブタジエンブロック共重合体からなる群より選ばれる1種以上である請求項1乃至3のいずれか1項に記載の環状オレフィン系樹脂組成物フィルム。 The styrene elastomer is at least one selected from the group consisting of styrene / ethylene / butylene / styrene block copolymers, styrene / ethylene / propylene / styrene block copolymers, and hydrogenated styrene / butadiene block copolymers. The cyclic olefin resin composition film according to any one of claims 1 to 3.
  5.  前記スチレン系エラストマーのスチレン含有率が、20~40mol%である請求項1乃至4のいずれか1項に記載の環状オレフィン系樹脂組成物フィルム。 The cyclic olefin-based resin composition film according to any one of claims 1 to 4, wherein the styrene-based elastomer has a styrene content of 20 to 40 mol%.
  6.  前記環状オレフィン系樹脂が、エチレンとノルボルネンの付加共重合体である請求項1乃至5のいずれか1項に記載の環状オレフィン系樹脂組成物フィルム。 The cyclic olefin resin composition film according to any one of claims 1 to 5, wherein the cyclic olefin resin is an addition copolymer of ethylene and norbornene.
  7.  前記スチレン系エラストマーが、前記環状オレフィン系樹脂に5~35wt%分散されてなる請求項1乃至6のいずれか1項に記載の環状オレフィン系樹脂組成物フィルム。 The cyclic olefin resin composition film according to any one of claims 1 to 6, wherein the styrene elastomer is dispersed in the cyclic olefin resin in an amount of 5 to 35 wt%.
  8.  前記請求項1乃至7のいずれか1項に記載の環状オレフィン系樹脂組成物フィルムを基材として備える透明導電性素子。 A transparent conductive element comprising the cyclic olefin-based resin composition film according to any one of claims 1 to 7 as a base material.
  9.  前記請求項1乃至7のいずれか1項に記載の環状オレフィン系樹脂組成物フィルムを備える入力装置。 An input device comprising the cyclic olefin-based resin composition film according to any one of claims 1 to 7.
  10.  前記請求項1乃至7のいずれか1項に記載の環状オレフィン系樹脂組成物フィルムを備える表示装置。 A display device comprising the cyclic olefin-based resin composition film according to any one of claims 1 to 7.
  11.  前記請求項1乃至7のいずれか1項に記載の環状オレフィン系樹脂組成物フィルムを備える電子機器。 Electronic equipment comprising the cyclic olefin-based resin composition film according to any one of claims 1 to 7.
  12.  50ppm/℃以上の線熱膨張係数差を有する環状オレフィン系樹脂とスチレン系エラストマーとを溶融し、
     前記溶融された環状オレフィン系樹脂組成物を押出法により、フィルム状に押し出し、前記スチレン系エラストマーが、前記環状オレフィン系樹脂に分散されてなり、厚さ方向のリタデーションが10nm以上である環状オレフィン系樹脂組成物フィルムを得る環状オレフィン系樹脂組成物フィルムの製造方法。
     
    Melting a cyclic olefin-based resin having a linear thermal expansion coefficient difference of 50 ppm / ° C. or more and a styrene-based elastomer;
    The molten cyclic olefin resin composition is extruded into a film by an extrusion method, the styrene elastomer is dispersed in the cyclic olefin resin, and the retardation in the thickness direction is 10 nm or more. The manufacturing method of the cyclic olefin resin composition film which obtains a resin composition film.
PCT/JP2015/064147 2014-05-19 2015-05-18 Cyclic olefin resin composition film WO2015178331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-103826 2014-05-19
JP2014103826A JP2015218286A (en) 2014-05-19 2014-05-19 Cyclic olefin resin composition film

Publications (1)

Publication Number Publication Date
WO2015178331A1 true WO2015178331A1 (en) 2015-11-26

Family

ID=54554001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064147 WO2015178331A1 (en) 2014-05-19 2015-05-18 Cyclic olefin resin composition film

Country Status (3)

Country Link
JP (1) JP2015218286A (en)
TW (1) TW201605960A (en)
WO (1) WO2015178331A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017085809A1 (en) * 2015-11-18 2017-05-26 デクセリアルズ株式会社 Cyclic olefin-based resin composition film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR110303A1 (en) * 2016-12-01 2019-03-13 Dow Global Technologies Llc MULTI-PATH FILMS
JP7040175B2 (en) * 2018-03-19 2022-03-23 コニカミノルタ株式会社 Transparent optical film and its manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238190A (en) * 1994-03-01 1995-09-12 Sumitomo Bakelite Co Ltd Plastic resin composition
JP2000511582A (en) * 1996-06-06 2000-09-05 ヘキスト・セラニーズ・コーポレーション Cyclic olefin polymer formulations exhibiting improved impact resistance and excellent transparency
WO2004035688A1 (en) * 2002-10-03 2004-04-29 Sekisui Chemical Co., Ltd. Thermoplastic saturated norbornene based resin film, ans method for producing thermoplastic saturated norbornene based resin film
JP2009025442A (en) * 2007-07-18 2009-02-05 Konica Minolta Opto Inc Polarizing plate and liquid crystal display device
JP2011503342A (en) * 2007-11-20 2011-01-27 ダウ グローバル テクノロジーズ インコーポレイティド Optical compensation film
WO2013179781A1 (en) * 2012-05-29 2013-12-05 ポリプラスチックス株式会社 Cyclic olefin resin composition and resin molded body
JP2015055796A (en) * 2013-09-12 2015-03-23 富士フイルム株式会社 Optical film and display device
JP2015108050A (en) * 2013-12-04 2015-06-11 デクセリアルズ株式会社 Cyclic olefin-based resin composition film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238190A (en) * 1994-03-01 1995-09-12 Sumitomo Bakelite Co Ltd Plastic resin composition
JP2000511582A (en) * 1996-06-06 2000-09-05 ヘキスト・セラニーズ・コーポレーション Cyclic olefin polymer formulations exhibiting improved impact resistance and excellent transparency
WO2004035688A1 (en) * 2002-10-03 2004-04-29 Sekisui Chemical Co., Ltd. Thermoplastic saturated norbornene based resin film, ans method for producing thermoplastic saturated norbornene based resin film
JP2009025442A (en) * 2007-07-18 2009-02-05 Konica Minolta Opto Inc Polarizing plate and liquid crystal display device
JP2011503342A (en) * 2007-11-20 2011-01-27 ダウ グローバル テクノロジーズ インコーポレイティド Optical compensation film
WO2013179781A1 (en) * 2012-05-29 2013-12-05 ポリプラスチックス株式会社 Cyclic olefin resin composition and resin molded body
JP2015055796A (en) * 2013-09-12 2015-03-23 富士フイルム株式会社 Optical film and display device
JP2015108050A (en) * 2013-12-04 2015-06-11 デクセリアルズ株式会社 Cyclic olefin-based resin composition film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017085809A1 (en) * 2015-11-18 2017-05-26 デクセリアルズ株式会社 Cyclic olefin-based resin composition film

Also Published As

Publication number Publication date
JP2015218286A (en) 2015-12-07
TW201605960A (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP6297824B2 (en) Cyclic olefin resin composition film
WO2015080167A1 (en) Cycloolefin-based resin composition film
JP6678576B2 (en) Cyclic olefin resin composition film
WO2015178279A1 (en) Cyclic olefin resin composition film
WO2015178331A1 (en) Cyclic olefin resin composition film
JP6424033B2 (en) Cyclic olefin resin composition film
WO2015198686A1 (en) Cyclic olefin resin composition film
JP6424030B2 (en) Cyclic olefin resin composition film
WO2016153038A1 (en) Cyclic olefin resin composition film
WO2016084173A1 (en) Cyclic olefin resin composition film
WO2017085809A1 (en) Cyclic olefin-based resin composition film
JP6723745B2 (en) Cyclic olefin resin composition film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796936

Country of ref document: EP

Kind code of ref document: A1