WO2016152928A1 - Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element Download PDF

Info

Publication number
WO2016152928A1
WO2016152928A1 PCT/JP2016/059221 JP2016059221W WO2016152928A1 WO 2016152928 A1 WO2016152928 A1 WO 2016152928A1 JP 2016059221 W JP2016059221 W JP 2016059221W WO 2016152928 A1 WO2016152928 A1 WO 2016152928A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
aligning agent
bond
crystal aligning
Prior art date
Application number
PCT/JP2016/059221
Other languages
French (fr)
Japanese (ja)
Inventor
奈穂 国見
永井 健太郎
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020177030346A priority Critical patent/KR102605000B1/en
Priority to JP2017508395A priority patent/JP6669161B2/en
Priority to CN202010669052.3A priority patent/CN111777519B/en
Priority to CN201680029992.8A priority patent/CN107615145B/en
Priority to KR1020237020871A priority patent/KR20230097217A/en
Publication of WO2016152928A1 publication Critical patent/WO2016152928A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/84Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/49Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton
    • C07C211/50Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton with at least two amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/49Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton
    • C07C211/50Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton with at least two amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/51Phenylenediamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/90Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to a carbon atom of a six-membered aromatic ring, e.g. amino-diphenylethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C219/00Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C219/34Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having amino groups and esterified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/40Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino groups bound to carbon atoms of at least one six-membered aromatic ring and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/42Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino groups bound to carbon atoms of at least one six-membered aromatic ring and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton with carboxyl groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by saturated carbon chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/52Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/52Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C229/54Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C229/60Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring with amino and carboxyl groups bound in meta- or para- positions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C235/16Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
    • C07C237/40Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having the nitrogen atom of the carboxamide group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/12Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/22Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/04Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms
    • C07C275/20Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an unsaturated carbon skeleton
    • C07C275/24Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of urea groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal aligning agent used for the production of a liquid crystal display element having good afterimage characteristics, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element having the liquid crystal aligning film.
  • the photo-alignment method is an industrially simple manufacturing process as a rubbing-less alignment treatment method.
  • the rubbing treatment method is used by using the liquid crystal alignment film obtained by the above-described photo-alignment method.
  • the contrast and viewing angle characteristics of the liquid crystal display element can be expected to be improved.
  • the performance of the liquid crystal display element can be improved, and has attracted attention as a promising liquid crystal alignment method.
  • the liquid crystal alignment film obtained by the photo-alignment method has a problem that anisotropy with respect to the alignment direction of the polymer film is smaller than that by rubbing. If the anisotropy is small, sufficient liquid crystal orientation cannot be obtained, and problems such as occurrence of an afterimage occur when a liquid crystal display element is formed.
  • a method for increasing the anisotropy of the liquid crystal alignment film obtained by the photo-alignment method it has been proposed to remove the low molecular weight component generated by cutting the main chain of the polyimide by light irradiation after the light irradiation. .
  • a positive type liquid crystal is used for an IPS driving type or FFS driving type liquid crystal display element.
  • a negative type liquid crystal it is possible to reduce the transmission loss at the upper part of the electrode and improve the contrast. Is possible.
  • a liquid crystal alignment film obtained by a photo-alignment method is used for an IPS driving type or FFS driving type liquid crystal display element using negative liquid crystal, it is expected to have higher display performance than a conventional liquid crystal display element.
  • a liquid crystal display element is produced using a so-called photodecomposition type liquid crystal alignment film and negative liquid crystal in which anisotropy is produced by polymer decomposition by light irradiation and liquid crystal is aligned.
  • An object of the present invention is to provide a liquid crystal aligning agent for obtaining a liquid crystal aligning film for a photo-alignment method in which no bright spots are generated and good afterimage characteristics are obtained even when a negative type liquid crystal is used.
  • An object of the present invention is to provide a liquid crystal alignment film obtained and a liquid crystal display device including the liquid crystal alignment film.
  • R 1 and R 2 are each independently a single bond, —O—, —S—, —NR 12 —, ester bond, amide bond, thioester bond, urea bond, carbonate bond, or carbamate bond.
  • R 12 is a hydrogen atom or a methyl group
  • A is an alkylene group having 2 to 20 carbon atoms
  • B 1 and B 2 are each independently a divalent organic compound selected from the following structures: And B 1 and B 2 are not the same structure.)
  • R 4 is an alkylene group having 1 to 5 carbon atoms .
  • R 5 is a hydrogen atom, a methyl group, hydroxy group or a methoxy group.
  • the liquid crystal aligning agent of said 1 whose said polyimide precursor is a polymer containing the structural unit of following formula (2).
  • X 1 is at least one selected from the group consisting of structures represented by the following formulas (X1-1) and (X1-2).
  • Y 1 is represented by the formula (1).
  • a divalent organic group, R 3 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and Z 1 and Z 2 may each independently have a hydrogen atom or a substituent;
  • a liquid crystal display device comprising the liquid crystal alignment film according to 6 above. 8).
  • R 12 is a hydrogen atom or a methyl group
  • A is an alkylene group having 2 to 20 carbon atoms.
  • the liquid crystal aligning agent of the present invention By using the liquid crystal aligning agent of the present invention, it is possible to suppress a bright spot due to a decomposition product derived from the liquid crystal aligning film generated during the photo-alignment treatment, and to obtain a liquid crystal aligning film having high irradiation sensitivity and excellent liquid crystal aligning properties. In addition, it is possible to provide a highly reliable liquid crystal display element free from display defects.
  • the diamine used as a raw material of the polymer constituting the liquid crystal aligning agent has a specific asymmetric structure. It is presumed that the solubility and crystallinity of the decomposition product generated by light irradiation changed.
  • the main chain of the polymer constituting the liquid crystal aligning agent of the present invention contains a specific structure represented by the above formula (1) (hereinafter also referred to as a specific structure).
  • R 1 and R 2 are each independently a single bond, —O—, —S—, —NR 12 —, ester bond, amide bond, thioester bond, urea bond, carbonate bond, Or it is a carbamate bond and R ⁇ 12 > is a hydrogen atom or a methyl group.
  • A is an alkylene group having 2 to 20 carbon atoms.
  • B 1 and B 2 are each independently a divalent organic group selected from the following structures, and B 1 and B 2 are not the same structure. Since B 1 and B 2 do not have the same structure, the solubility and crystallinity of the decomposition product generated by light irradiation change, and the bright spots derived from the decomposition components of the polymer can be suppressed.
  • R 4 is an alkylene group having 1 to 5 carbon atoms.
  • R 5 is a hydrogen atom, a methyl group, a hydroxy group or a methoxy group.
  • R 1 and R 2 are preferably a single bond, —O—, —S—, —NR 12 —, an ester bond or an amide bond from the viewpoint of liquid crystal alignment. -O- is particularly preferred.
  • A is preferably an alkylene group having 2 to 6 carbon chains, particularly preferably an alkylene group having 2 to 4 carbon chains, from the viewpoint of liquid crystal orientation.
  • R 4 is preferably an alkylene group having 1 to 3 carbon atoms from the viewpoint of liquid crystal alignment.
  • R 5 is preferably a hydrogen atom or a methyl group from the viewpoint of liquid crystal orientation.
  • the specific structure described above is preferably contained in a diamine which is a raw material for the polyimide precursor. Specific examples of the diamine having the specific structure described above include, but are not limited to, the following diamines.
  • R 5 and R 12 are as defined above, including preferred examples thereof.
  • the diamine having the above specific structure is preferably a diamine having the following structure from the viewpoints of orientation and reduction of bright spots when formed into a liquid crystal display element.
  • R 1 , R 2 and A are as described above including preferred examples thereof.
  • the diamines having the specific structure the following diamines are preferable.
  • the main synthesis method of the diamine will be described in detail below.
  • the method demonstrated below is an example, and is not limited to this.
  • the diamine of the present invention can be obtained by reducing a dinitro compound and converting a nitro group to an amino group as shown in the following reaction formula.
  • the following reaction formula has described the diamine described in the Example as an example.
  • the method for reducing the dinitro compound is not particularly limited, and palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum carbon sulfide, etc. are used as catalysts, and ethyl acetate, toluene, tetrahydrofuran, dioxane, alcohols, etc.
  • Examples of the method include reduction with hydrogen gas, hydrazine, hydrogen chloride and the like in a solvent. If necessary, an autoclave or the like may be used under pressure.
  • the dinitro compound in the synthesis of the dinitro compound, as shown in the following reaction formula, can be obtained by reacting a commercially available biphenyl derivative with nitrobenzene substituted with a leaving group X such as halogen.
  • Preferred leaving groups X include fluorine atom, chlorine atom, bromine atom, iodine atom, tosylate (—OTs), mesylate (—OMs) and the like.
  • the above reaction can be performed in the presence of a base.
  • the base to be used is not particularly limited as long as it can be synthesized.
  • Inorganic bases such as potassium carbonate, sodium carbonate, cesium carbonate, sodium alkoxide, potassium alkoxide, sodium hydroxide, potassium hydroxide, sodium hydride, pyridine, dimethylamino Examples thereof include organic bases such as pyridine, trimethylamine, triethylamine, and tributylamine.
  • a palladium catalyst such as dibenzylideneacetone palladium or diphenylphosphinoferrocene palladium or a copper catalyst is used in combination, the yield can be improved. From the viewpoint of ease of synthesis, a method using potassium carbonate is preferred, but synthesis is not particularly limited because synthesis is possible by methods other than this method.
  • the polyimide precursor which comprises the liquid crystal aligning agent of this invention contains the structural unit of following formula (2).
  • X 1 is at least one selected from the group consisting of structures represented by the following formulas (X1-1) and (X1-2). Among these, from the viewpoint of liquid crystal alignment, the following formula (X1-2) is preferable.
  • Y 1 is a divalent organic group represented by the formula (1).
  • R 3 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Specific examples include methyl group, ethyl group, propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group and n-pentyl group. From the viewpoint of ease of imidization by heating, R 3 is preferably a hydrogen atom or a methyl group.
  • Z 1 and Z 2 are each independently a hydrogen atom or an optionally substituted alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl group having 2 to 10 carbon atoms. It is a group. Specific examples of the alkyl group include a methyl group, ethyl group, propyl group, butyl group, t-butyl group, hexyl group, octyl group, decyl group, cyclopentyl group, cyclohexyl group, and bicyclohexyl group.
  • alkenyl group examples include those in which one or more CH 2 —CH 2 structures present in the above alkyl group are replaced with a CH ⁇ CH structure.
  • vinyl group, allyl group, 1-propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, A cyclohexenyl group etc. are mentioned.
  • Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures. Specific examples include an ethynyl group, a 1-propynyl group, and a 2-propynyl group.
  • the above alkyl group, alkenyl group, and alkynyl group may have a substituent and, depending on the substituent, may form a ring structure.
  • forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
  • substituents include halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls. Group, alkenyl group, alkynyl group and the like.
  • halogen group examples include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • a phenyl group is mentioned as an aryl group. This aryl group may be further substituted with the other substituent described above.
  • the organooxy group a structure represented by OR can be shown.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
  • the organothio group can have a structure represented by —S—R. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like.
  • Rs may be further substituted with the substituent described above.
  • Specific examples include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
  • the organosilyl group can exhibit a structure represented by -Si- (R) 3.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, tripentylsilyl group, trihexylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group and the like.
  • As the acyl group a structure represented by —C (O) —R can be shown.
  • R examples include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above. Specific examples include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • ester group a structure represented by —C (O) O—R or —OC (O) —R can be shown.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • thioester group a structure represented by —C (S) O—R or —OC (S) —R can be shown.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • phosphate group a structure represented by —OP (O) — (OR) 2 can be shown.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • the amide group is represented by —C (O) NH 2 , or —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , or —NRC (O) R.
  • the structure can be shown.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the aryl group include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
  • As an alkyl group the same thing as the alkyl group mentioned above can be mentioned.
  • This alkyl group may be further substituted with the other substituent described above.
  • an alkenyl group the same thing as the alkenyl group mentioned above can be mentioned.
  • This alkenyl group may be further substituted with the other substituent described above.
  • Examples of the alkynyl group include the same alkynyl groups described above. This alkynyl group may be further substituted with the other substituent described above.
  • a hydrogen atom or a carbon atom that may have a substituent is 1
  • An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group or an ethyl group is particularly preferable.
  • the structural unit represented by the above formula (2) is preferably contained in an amount of 20 to 100 mol% based on the total structural units, and particularly preferably 30 to 100 mol% from the viewpoint of liquid crystal alignment.
  • X 2 is a tetravalent organic group, and Y 2 is a divalent organic group.
  • X 2 is a tetravalent organic group derived from a tetracarboxylic acid derivative, and its structure is not particularly limited. In the polyimide precursor, X 2 is 2 or more may be mixed. Specific examples of X 2 include structures of the following formulas (X-1) to (X-44).
  • R 8 to R 11 in the formula (X-1) are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkyl group having 2 to 6 carbon atoms.
  • R 8 to R 11 have a bulky structure, the liquid crystal orientation may be lowered, so a hydrogen atom, a methyl group or an ethyl group is more preferable, and a hydrogen atom or a methyl group is particularly preferable.
  • Y 2 is a divalent organic group derived from diamine, and its structure is not particularly limited. Specific examples of the structure of Y 2 include the following (Y-1) to (Y-118).
  • the polyimide precursor used in the present invention is obtained from a reaction between a diamine component and a tetracarboxylic acid derivative, and examples thereof include polyamic acid and polyamic acid ester.
  • the polyamic acid which is a polyimide precursor used in the present invention is produced by the following method. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
  • the reaction of the diamine component and the tetracarboxylic acid component is usually performed in an organic solvent.
  • the organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Although the specific example of the organic solvent used for reaction below is given, it is not limited to these examples. Examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinone. It is done.
  • the solubility of the polyimide precursor is high, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3].
  • An organic solvent can be used.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D-3 represents an alkyl group having 1 to 4 carbon atoms.
  • the concentration of the polyamic acid polymer in the reaction system is preferably from 1 to 30% by mass, and more preferably from 5 to 20% by mass, from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. In addition, by performing precipitation several times, washing with a poor solvent, and then drying at normal temperature or heat, a purified polyamic acid powder can be obtained.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyamic acid ester which is a polyimide precursor used in the present invention can be produced by the following production method (1), (2) or (3).
  • a polyamic acid ester can be manufactured by esterifying the polyamic acid manufactured as mentioned above. Specifically, it is produced by reacting a polyamic acid and an esterifying agent in the presence of an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. be able to.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
  • organic solvent examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl- Examples include imidazolidinone.
  • solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the above formulas [D-1] to [D-3]
  • the indicated solvents can be used. These solvents may be used alone or in combination.
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone from the solubility of the polymer. These may be used alone or in combination of two or more. Also good.
  • the concentration at the time of production is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the polyamic acid ester can be manufactured from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine are mixed in the presence of a base and an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be produced by reacting.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of production is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the solvent used for the production of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • Polyamic acid ester can be manufactured by polycondensing tetracarboxylic-acid diester and diamine. Specifically, a tetracarboxylic acid diester and a diamine are mixed in the presence of a condensing agent, a base, and an organic solvent at 0 to 150 ° C., preferably at 0 to 100 ° C., for 30 minutes to 24 hours, preferably 3 to It can be produced by reacting for 15 hours.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the amount of the base added is preferably 2 to 4 times the mol of the diamine component from the viewpoint that it can be easily removed and a high molecular weight product can be easily obtained.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
  • the production method (1) or (2) is particularly preferable.
  • the polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polyamic acid ester powder.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyimide used in the present invention can be produced by imidizing the aforementioned polyamic acid ester or polyamic acid.
  • a polyimide is produced from a polyamic acid ester
  • chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving a polyamic acid ester solution or a polyamic acid ester resin powder in an organic solvent is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
  • Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst.
  • a basic catalyst As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature for carrying out the imidization reaction is ⁇ 20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time is preferably 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid ester group.
  • the imidation rate of the obtained polymer can be controlled by adjusting the amount of catalyst, temperature, reaction time and the like. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, redissolved in an organic solvent, and the liquid crystal alignment according to the present invention. It is preferable to use an agent.
  • Chemical imidation which adds a catalyst to the solution of the polyamic acid obtained by reaction with a diamine component and tetracarboxylic dianhydride is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
  • Chemical imidation can be performed by stirring the polyamic acid to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • an organic solvent the solvent used at the time of the polymerization reaction mentioned above can be used.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Of these, acetic anhydride is preferable because purification after completion of the reaction is easy.
  • the temperature for carrying out the imidization reaction is ⁇ 20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time is preferably 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amount of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times of the amic acid group, preferably 3 to 30 mole times.
  • the imidation rate of the obtained polymer can be controlled by adjusting the amount of catalyst, temperature, reaction time and the like.
  • the liquid crystal aligning agent of the present invention is preferable.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polyimide powder.
  • the liquid crystal aligning agent of the present invention contains at least one polymer selected from the group consisting of a polyimide precursor having a specific structure in the main chain and an imidized polymer of the polyimide precursor.
  • the molecular weight of the polymer is preferably 2,000 to 500,000 in terms of weight average molecular weight (Mw), more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000.
  • the number average molecular weight (Mn) is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000. .
  • the concentration of the polymer in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed, but from the point of forming a uniform and defect-free coating film, 1
  • the content is preferably at least 10% by mass, and is preferably 10% by mass or less from the viewpoint of storage stability of the solution.
  • the concentration of the polymer is preferably 2 to 7% by mass.
  • the organic solvent for dissolving the polymer (hereinafter also referred to as a good solvent) contained in the liquid crystal aligning agent used in the present invention is not particularly limited as long as the polymer is uniformly dissolved.
  • a good solvent for example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone And cyclohexanone, cyclopentanone or 4-hydroxy-4-methyl-2-pentanone.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or ⁇ -butyrolactone is preferably used.
  • a solvent represented by the above formula [D-1] to formula [D-3] it is preferable to use a solvent represented by the above formula [D-1] to formula [D-3].
  • the content of the good solvent in the liquid crystal aligning agent of the present invention is preferably 20 to 99% by mass of the whole solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
  • the liquid crystal aligning agent of the present invention uses a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied. it can.
  • a solvent also referred to as a poor solvent
  • a poor solvent it is not limited to these examples.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanediol, 1,3-propaned
  • 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether or dipropylene glycol dimethyl ether are preferable.
  • the content of these poor solvents is preferably 1 to 80% by mass of the whole solvent contained in the liquid crystal aligning agent. Among these, 10 to 80% by mass is preferable, and 20 to 70% by mass is more preferable.
  • liquid crystal aligning agent of the present invention in addition to the above, as long as the effects of the present invention are not impaired, a polymer other than the polymer described in the present invention, the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film, etc.
  • Dielectric or conductive material for changing characteristics, silane coupling agent for improving adhesion between liquid crystal alignment film and substrate, crosslinkability for increasing hardness and density of liquid crystal alignment film When baking a compound and also a coating film, you may add the imidation promoter for the purpose of making the imidation by the heating of a polyimide precursor progress efficiently.
  • the liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying and baking.
  • the substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a plastic substrate such as a polycarbonate substrate, or the like can be used. It is preferable to use a substrate on which an ITO electrode or the like for driving is formed in terms of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used as the electrode.
  • Examples of the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent.
  • the drying temperature is preferably 50 to 120 ° C., and the drying time is preferably 1 to 10 minutes.
  • the firing temperature is preferably 150 to 300 ° C., and the firing time is preferably 5 to 120 minutes.
  • the thickness of the film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be impaired, so it is preferably 5 to 300 nm, more preferably 10 to 120 nm.
  • the surface of the coating film is irradiated with radiation deflected in a certain direction, and in some cases, heat treatment is performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability.
  • a method is mentioned.
  • the radiation ultraviolet rays and visible rays having a wavelength of 100 to 800 nm can be used. Of these, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and those having a wavelength of 200 to 400 nm are particularly preferable. Further, in order to improve the liquid crystal orientation, radiation may be irradiated while heating the coated substrate at 50 to 250 ° C.
  • the dose of radiation is preferably 1 ⁇ 10,000mJ / cm 2, particularly preferably 100 ⁇ 5,000mJ / cm 2.
  • the liquid crystal alignment film produced as described above can stably align liquid crystal molecules in a certain direction. Since higher anisotropy can be imparted, the higher the extinction ratio of polarized ultraviolet light, the better. Specifically, the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more.
  • the film irradiated with polarized radiation may then be contact-treated with a solvent containing at least one selected from water and an organic solvent.
  • the solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves a decomposition product generated by light irradiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like. Two or more of these solvents may be used in combination.
  • At least one selected from the group consisting of water, 2-propanol, 1-methoxy-2-propanol and ethyl lactate is more preferable.
  • Water, 2-propanol, or a mixed solvent of water and 2-propanol is particularly preferable.
  • examples of the contact treatment between the film irradiated with polarized radiation and the solution containing the organic solvent include immersion treatment, spraying treatment, and the like, such that the membrane and the liquid are sufficiently in contact with each other. Is preferred. Among them, a method of immersing the film in a solution containing an organic solvent for 10 seconds to 1 hour, more preferably 1 to 30 minutes is preferable.
  • the contact treatment may be performed at normal temperature or preferably at 10 to 80 ° C., more preferably at 20 to 50 ° C.
  • a means for enhancing contact such as ultrasonic waves can be applied as necessary.
  • rinsing with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, drying, or both are performed. You may go.
  • the film subjected to the contact treatment with the solvent may be heated at 150 ° C. or higher for the purpose of drying the solvent and reorienting the molecular chains in the film.
  • the heating temperature is preferably 150 to 300 ° C. A higher temperature promotes reorientation of molecular chains. However, if the temperature is too high, molecular chains may be decomposed. Therefore, the heating temperature is more preferably 180 to 250 ° C., and particularly preferably 200 to 230 ° C. If the heating time is too short, the effect of reorienting the molecular chain may not be obtained, and if it is too long, the molecular chain may be decomposed, and is preferably 10 seconds to 30 minutes. 10 minutes is more preferable.
  • the liquid crystal display device of the present invention is a device in which a liquid crystal cell is prepared by a known method after obtaining a substrate having a liquid crystal alignment film formed from the liquid crystal aligning agent of the present invention, and the cell is used as an element. is there.
  • a liquid crystal display element having a passive matrix structure will be described below as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes may be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • the liquid crystal alignment film of the present invention is formed on each substrate.
  • the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant.
  • a spacer in the sealing material In order to control the substrate gap, it is usually preferable to mix a spacer in the sealing material. In addition, it is preferable that spacers for controlling the substrate gap are also sprayed on the in-plane portion where no sealing material is provided. Also, a part of the sealing material is usually provided with an opening that can be filled with liquid crystal from the outside.
  • a liquid crystal material is injected into a space surrounded by two substrates and the sealing material through an opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
  • a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • the sealing agent for example, a resin that is cured by ultraviolet irradiation or heating having a reactive group such as an epoxy group, an acryloyl group, a methacryloyl group, a hydroxy group, an allyl group, or an acetyl group is used.
  • a cured resin system having reactive groups of both an epoxy group and a (meth) acryloyl group.
  • an inorganic filler may be blended for the purpose of improving adhesiveness, moisture resistance and the like.
  • the inorganic filler that can be used is not particularly limited, and specifically, spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, sulfuric acid.
  • spherical silica, fused silica, crystalline silica titanium oxide, titanium black, silicon nitride, boron nitride, calcium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, aluminum hydroxide, calcium silicate, aluminum silicate Etc.
  • Two or more of the above inorganic fillers may be mixed and used.
  • NMP N-methyl-2-pyrrolidone
  • BCS Butyl cellosolve
  • DA-1-1 (5.0 g, 13.1 mmol) was dissolved in tetrahydrofuran (100.0 g), 5 mass% palladium-carbon (0.1 g) was added, and the mixture was stirred at room temperature for 2 hours in a hydrogen atmosphere. After confirming disappearance of the raw material by HPLC, the reaction solution was dissolved in tetrahydrofuran (800.0 g), the catalyst was removed by filtration, and the filtrate was concentrated. The precipitated solid was stirred and washed in heptane (200.0 g) and filtered. The obtained solid was dried to obtain DA-1 (white powder, yield: 4.0 g, yield: 94%).
  • the hydrogen nuclear magnetic resonance ( 1 HNMR, 500 MHz) of the synthesis example was measured in a deuterated dimethyl sulfoxide (DMSO-d6) solvent, and the chemical shift was the ⁇ value (ppm) when tetramethylsilane was used as an internal standard. ).
  • GPC apparatus manufactured by Shodex (GPC-101), column: manufactured by Shodex (KD803, series of KD805), column temperature: 50 ° C., eluent: N, N-dimethylformamide (as an additive, lithium bromide-water) Japanese product (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) 10 ml / L), flow rate: 1.0 ml / min.
  • Standard sample for preparing calibration curve TSK standard polyethylene oxide (weight average molecular weight (Mw); about 900,000, 150,000, 100,000 and 30,000) manufactured by Tosoh Corporation, and polyethylene glycol (peak top) manufactured by Polymer Laboratories Molecular weight (Mp); about 12,000, 4,000 and 1,000).
  • Mw weight average molecular weight
  • Mp polyethylene glycol
  • Mp Polymer Laboratories Molecular weight
  • the measurement was performed by mixing four types of 900,000, 100,000, 12,000 and 1,000, and three types of 150,000, 30,000 and 4,000. Two samples of the mixed sample were measured separately.
  • a liquid crystal cell having a configuration of a fringe field switching (FFS) mode liquid crystal display element is manufactured.
  • a glass substrate with an electrode having a size of 30 mm ⁇ 50 mm and a thickness of 0.7 mm was prepared.
  • an ITO electrode having a solid pattern constituting a counter electrode as a first layer is formed.
  • a SiN (silicon nitride) film formed by the CVD method is formed as the second layer.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an ITO film as the third layer is disposed on the second SiN film, and the two pixels, the first pixel and the second pixel, are arranged. Forming.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of electrode elements having a square shape with a bent central portion.
  • the width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji.
  • Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film to be described later is used as a reference, in the first region of the pixel, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise), and in the second region of the pixel The electrode elements of the pixel electrode are formed at an angle of ⁇ 10 ° (clockwise).
  • the direction of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the substrate plane is It is comprised so that it may become a mutually reverse direction.
  • the prepared substrate with electrodes, and a glass substrate having a columnar spacer with a height of 4 ⁇ m on which an ITO film is formed on the back surface It applied by spin coat application.
  • the film was dried on an 80 ° C. hot plate for 5 minutes, and then baked in a hot air circulation oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm.
  • the coated film surface was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 10: 1 or more via a polarizing plate.
  • This substrate is immersed in at least one solvent selected from water and an organic solvent for 3 minutes, then immersed in pure water for 1 minute, and then heated on a hot plate at 150 to 300 ° C. for 5 minutes to obtain liquid crystal alignment A substrate with a film was obtained.
  • a sealant is printed on one substrate as a set of two substrates, and the other substrate is bonded so that the liquid crystal alignment film surfaces face each other and the orientation direction becomes 0 °.
  • An empty cell was produced by curing. Liquid crystal MLC-7026-100 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.
  • a liquid crystal cell having the same structure as the liquid crystal cell described above was prepared, and an AC voltage of ⁇ 5 V was applied for 120 hours at a frequency of 60 Hz in a constant temperature environment of 60 ° C. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day. After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted.
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second area of the first pixel became darkest to the angle at which the first area became darkest was calculated as the angle ⁇ . Also in the second pixel, as in the case of the first pixel, the second area was compared with the first area, and the same angle ⁇ was calculated.
  • the bright spot of the liquid crystal cell described above was evaluated.
  • the bright spot of the liquid crystal cell was evaluated by observing the liquid crystal cell with a polarizing microscope (ECLIPSE E600WPOL) (Nikon Corporation). Specifically, the liquid crystal cell was installed with crossed Nicols, and the liquid crystal cell was observed with a polarizing microscope having a magnification of 5 times. The number of confirmed bright spots was counted, and the number of bright spots was less than 10. “Good” and more than “bad”.
  • Example 1 15.00 g of 12% by mass polyamic acid solution (A) was weighed into a 100 ml Erlenmeyer flask, 9.00 g of NMP and 6.00 g of BCS were added, and mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (1). . Abnormalities such as turbidity and precipitation were not observed in the liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • Example 2 A liquid crystal aligning agent (2) was obtained in the same manner as in Example 1 except that the polyamic acid solution (B) was used instead of the polyamic acid solution (A). Abnormalities such as turbidity and precipitation were not observed in the liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • Example 3 9.00 g of a 20% by mass polyamic acid solution (C) was placed in a 100 ml Erlenmeyer flask, 15.00 g of NMP and 6.00 g of BCS were added, and the mixture was mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (3). Abnormalities such as turbidity and precipitation were not observed in the liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • C 20% by mass polyamic acid solution
  • Example 1 A liquid crystal aligning agent (4) was obtained in the same manner as in Example 1 except that the polyamic acid solution (D) was used instead of the polyamic acid solution (A). Abnormalities such as turbidity and precipitation were not observed in the liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • a liquid crystal aligning agent (5) was obtained in the same manner as in Example 1 except that the polyamic acid solution (E) was used instead of the polyamic acid solution (A). Abnormalities such as turbidity and precipitation were not observed in the liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
  • Example 4 After the liquid crystal aligning agent (1) is filtered through a 1.0 ⁇ m filter, spin coating is applied to the substrate with electrodes and a glass substrate having a columnar spacer with a height of 4 ⁇ m on which an ITO film is formed on the back surface. Was applied. Next, it was dried on an 80 ° C. hot plate for 5 minutes, and baked in a hot air circulation oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with 0.2 J / cm 2 of linearly polarized ultraviolet light having an extinction ratio of 26: 1 and a wavelength of 254 nm through a polarizing plate. Then, it heated for 14 minutes on a 230 degreeC hotplate, and obtained the board
  • a set of two substrates was used, a sealant was printed on one substrate, and the other substrate was bonded so that the liquid crystal alignment film faced and the alignment direction was 0 °. Then, the sealing agent was hardened and the empty cell was produced. Liquid crystal MLC-7026-100 (manufactured by Merck) was injected into this empty cell by a reduced pressure injection method, and then the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and left to stand for evaluation of afterimages by long-term AC driving. The value of the angle ⁇ of this liquid crystal cell after long-term AC driving was 0.01 °. Further, as a result of observation of bright spots in the liquid crystal cell, the number of bright spots was less than 10 and was good.
  • Example 5 A coating film was formed in the same manner as in Example 4 except that the liquid crystal aligning agent (2) was used. The surface of the coating film was irradiated with 0.5 J / cm 2 of linearly polarized ultraviolet light having an extinction ratio of 26: 1 and a wavelength of 254 nm through a polarizing plate. Then, it heated for 14 minutes on a 230 degreeC hotplate, and obtained the board
  • Example 6> A coating film was formed in the same manner as in Example 4 except that the liquid crystal aligning agent (3) was used, and irradiated with ultraviolet rays and heated to obtain a substrate with a liquid crystal alignment film.
  • An FFS drive liquid crystal cell was produced in the same manner as in Example 4 except that this substrate with a liquid crystal alignment film was used, and the same evaluation as in Example 4 was performed on the obtained liquid crystal cell. As a result, the value of the angle ⁇ was 0.02 °. The number of bright spots was less than 10 and was good.
  • Example 3 Except for using the liquid crystal aligning agent (4), a coating film was formed in the same manner as in Example 4, irradiated with ultraviolet rays, and heated to obtain a substrate with a liquid crystal alignment film.
  • An FFS drive liquid crystal cell was produced in the same manner as in Example 4 except that this substrate with a liquid crystal alignment film was used, and the same evaluation as in Example 4 was performed on the obtained liquid crystal cell.
  • the value of the angle ⁇ was 0.10 °. Further, the number of bright spots was 10 or more, which was poor.
  • the liquid crystal aligning agent of the present invention is capable of forming a liquid crystal alignment film for a photo-alignment method having a good afterimage characteristic without generating a bright spot even when a negative type liquid crystal is used, and having a high display quality. It can be used for an FFS driving type liquid crystal display element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided are: a liquid crystal aligning agent for obtaining a liquid crystal alignment film for photo-alignment methods, which enables the achievement of good afterimage characteristics without producing bright dots even in cases where negative liquid crystals are used; a liquid crystal alignment film; and a liquid crystal display element. A liquid crystal aligning agent which contains at least one polymer selected from the group consisting of polyimide precursors that have a structure represented by formula (1) in the main chain and imidized polymers of the polyimide precursors. (In formula (1), each of R1 and R2 represents a single bond, -O-, -S-, -NR12- or the like; R12 represents a hydrogen atom or the like; A represents an alkylene group having 2-20 carbon atoms; and each of B1 and B2 independently represents a divalent organic group selected from among structures (AA), provided that B1 and B2 are different from each other.) (In structures (AA), R4 represents an alkylene group having 1-5 carbon atoms; and R5 represents a hydrogen atom or the like.)

Description

液晶配向剤、液晶配向膜及び液晶表示素子Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
 本発明は、残像特性が良好な液晶表示素子の製造に用いられる液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を有する液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent used for the production of a liquid crystal display element having good afterimage characteristics, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element having the liquid crystal aligning film.
 光配向法は、ラビングレスの配向処理方法として、工業的にも簡便な製造プロセスである。特に、IPS(In-Plane-Switching)駆動方式やFFS(Flinge-field-Switching)駆動方式の液晶表示素子においては、上記の光配向法で得られる液晶配向膜を用いることで、ラビング処理法で得られる液晶配向膜に比べて、液晶表示素子のコントラストや視野角特性の向上が期待できる。これにより、液晶表示素子の性能を向上させることが可能であり、有望な液晶配向処理方法として注目されている。
 しかし、光配向法により得られる液晶配向膜は、ラビングによるものに比べて、高分子膜の配向方向に対する異方性が小さいという問題がある。異方性が小さいと充分な液晶配向性が得られず、液晶表示素子とした場合に、残像が発生するなどの問題が発生する。
 一方、光配向法により得られる液晶配向膜の異方性を高める方法として、光照射によって前記ポリイミドの主鎖が切断されて生成した低分子量成分を、光照射後に除去することが提案されている。
The photo-alignment method is an industrially simple manufacturing process as a rubbing-less alignment treatment method. In particular, in the liquid crystal display element of the IPS (In-Plane-Switching) driving method and the FFS (Flinge-field-Switching) driving method, the rubbing treatment method is used by using the liquid crystal alignment film obtained by the above-described photo-alignment method. Compared with the obtained liquid crystal alignment film, the contrast and viewing angle characteristics of the liquid crystal display element can be expected to be improved. As a result, the performance of the liquid crystal display element can be improved, and has attracted attention as a promising liquid crystal alignment method.
However, the liquid crystal alignment film obtained by the photo-alignment method has a problem that anisotropy with respect to the alignment direction of the polymer film is smaller than that by rubbing. If the anisotropy is small, sufficient liquid crystal orientation cannot be obtained, and problems such as occurrence of an afterimage occur when a liquid crystal display element is formed.
On the other hand, as a method for increasing the anisotropy of the liquid crystal alignment film obtained by the photo-alignment method, it has been proposed to remove the low molecular weight component generated by cutting the main chain of the polyimide by light irradiation after the light irradiation. .
日本特開平9-297313号公報Japanese Unexamined Patent Publication No. 9-297313 日本特開2011-107266号公報Japanese Unexamined Patent Publication No. 2011-107266
 IPS駆動方式やFFS駆動方式の液晶表示素子には、従来、ポジ型液晶が用いられているが、ネガ型液晶を用いることで、電極上部での透過損失を小さくし、コントラストを向上させることが可能である。
 光配向法で得られる液晶配向膜を、ネガ型液晶を用いたIPS駆動方式やFFS駆動方式の液晶表示素子に用いると、従来の液晶表示素子より高い表示性能を有することが期待される。しかし、本発明者が検討した結果、光照射によるポリマーの分解により、異方性を出し、液晶を配向させる、いわゆる、光分解型液晶配向膜とネガ液晶を用いて液晶表示素子を作製した場合、偏光紫外線照射によって生じる液晶配向膜を構成するポリマーの分解生成物に由来する表示不良(輝点)の発生率が高いことが分かった。
 本発明の課題は、ネガ型液晶を用いた場合でも、輝点が発生せず、良好な残像特性が得られる光配向法用の液晶配向膜を得るための液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向膜を具備する液晶表示素子を提供することにある。
Conventionally, a positive type liquid crystal is used for an IPS driving type or FFS driving type liquid crystal display element. By using a negative type liquid crystal, it is possible to reduce the transmission loss at the upper part of the electrode and improve the contrast. Is possible.
When a liquid crystal alignment film obtained by a photo-alignment method is used for an IPS driving type or FFS driving type liquid crystal display element using negative liquid crystal, it is expected to have higher display performance than a conventional liquid crystal display element. However, as a result of examination by the present inventors, when a liquid crystal display element is produced using a so-called photodecomposition type liquid crystal alignment film and negative liquid crystal in which anisotropy is produced by polymer decomposition by light irradiation and liquid crystal is aligned. It was found that the incidence of display defects (bright spots) derived from the decomposition products of the polymer constituting the liquid crystal alignment film produced by irradiation with polarized ultraviolet rays was high.
An object of the present invention is to provide a liquid crystal aligning agent for obtaining a liquid crystal aligning film for a photo-alignment method in which no bright spots are generated and good afterimage characteristics are obtained even when a negative type liquid crystal is used. An object of the present invention is to provide a liquid crystal alignment film obtained and a liquid crystal display device including the liquid crystal alignment film.
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、本発明を完成するに至った。すなわち、本発明は以下に示す通りである。
1.主鎖中に下記式(1)で表される構造を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体を含有する液晶配向剤。
Figure JPOXMLDOC01-appb-C000008
 (式中、R及びRは、それぞれ独立して、単結合、-O-、-S-、-NR12-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、又はカルバメート結合であり、R12は、水素原子、又はメチル基である。Aは炭素数2~20のアルキレン基である。B及びBは、それぞれ独立して、下記構造から選ばれる2価の有機基であり、BとBは同じ構造ではない。)
Figure JPOXMLDOC01-appb-C000009
 (式中、Rは、炭素数1~5のアルキレン基である。Rは水素原子、メチル基、ヒドロキシ基又はメトキシ基である。)
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, the present invention is as follows.
1. A liquid crystal aligning agent containing at least one polymer selected from the group consisting of a polyimide precursor having a structure represented by the following formula (1) in the main chain and an imidized polymer of the polyimide precursor.
Figure JPOXMLDOC01-appb-C000008
Wherein R 1 and R 2 are each independently a single bond, —O—, —S—, —NR 12 —, ester bond, amide bond, thioester bond, urea bond, carbonate bond, or carbamate bond. R 12 is a hydrogen atom or a methyl group, A is an alkylene group having 2 to 20 carbon atoms, and B 1 and B 2 are each independently a divalent organic compound selected from the following structures: And B 1 and B 2 are not the same structure.)
Figure JPOXMLDOC01-appb-C000009
(Wherein, R 4 is an alkylene group having 1 to 5 carbon atoms .R 5 is a hydrogen atom, a methyl group, hydroxy group or a methoxy group.)
2.前記ポリイミド前駆体が、下記式(2)の構造単位を含有する重合体である上記1に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000010
 (式中、Xは、下記式(X1-1)及び(X1-2)で表される構造からなる群から選ばれる少なくとも1種である。Yは前記式(1)で表される2価の有機基である。Rは水素原子又は炭素数1~5のアルキル基である。Z及びZは、それぞれ独立して、水素原子、又は置換基を有してもよい、炭素数1~10のアルキル基、炭素数2~10のアルケニル基若しくは炭素数2~10のアルキニル基である。)
Figure JPOXMLDOC01-appb-C000011
2. The liquid crystal aligning agent of said 1 whose said polyimide precursor is a polymer containing the structural unit of following formula (2).
Figure JPOXMLDOC01-appb-C000010
(Wherein X 1 is at least one selected from the group consisting of structures represented by the following formulas (X1-1) and (X1-2). Y 1 is represented by the formula (1). A divalent organic group, R 3 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and Z 1 and Z 2 may each independently have a hydrogen atom or a substituent; An alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl group having 2 to 10 carbon atoms.)
Figure JPOXMLDOC01-appb-C000011
3.前記ポリイミド前駆体が、前記式(2)で表される構造単位を、全構造単位に対して、20~100モル%有する上記2に記載の液晶配向剤。
4.Xが、下記式(X1-2)である上記2又は3に記載の光配向用液晶配向剤。
Figure JPOXMLDOC01-appb-C000012
5.前記式(1)の構造が下記構造である、上記1~4のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000013
 (式中、A、R及びRは、前記と同定義である。)
3. 3. The liquid crystal aligning agent according to 2, wherein the polyimide precursor has a structural unit represented by the formula (2) in an amount of 20 to 100 mol% based on all structural units.
4). X 1 is a liquid crystal aligning agent for optical alignment described in 2 or 3 is a formula (Xl-2).
Figure JPOXMLDOC01-appb-C000012
5. 5. The liquid crystal aligning agent according to any one of 1 to 4 above, wherein the structure of the formula (1) is the following structure.
Figure JPOXMLDOC01-appb-C000013
(In the formula, A, R 1 and R 2 are as defined above.)
6.上記1~5のいずれかに記載の液晶配向剤を塗布、焼成して得られた膜に、偏光された紫外線を照射して得られる液晶配向膜。
7.上記6に記載の液晶配向膜を具備する液晶表示素子。
8.下記式で表されるジアミン。
Figure JPOXMLDOC01-appb-C000014
 (式中、R及びRは、それぞれ独立して、単結合、-O-、-S-、-NR12-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、又はカルバメート結合であり、R12は、水素原子又はメチル基であり、Aは炭素数2~20のアルキレン基である。)
6). 6. A liquid crystal alignment film obtained by irradiating a film obtained by applying and baking the liquid crystal aligning agent according to any one of 1 to 5 above with polarized ultraviolet rays.
7). 7. A liquid crystal display device comprising the liquid crystal alignment film according to 6 above.
8). Diamine represented by the following formula.
Figure JPOXMLDOC01-appb-C000014
Wherein R 1 and R 2 are each independently a single bond, —O—, —S—, —NR 12 —, ester bond, amide bond, thioester bond, urea bond, carbonate bond, or carbamate bond. R 12 is a hydrogen atom or a methyl group, and A is an alkylene group having 2 to 20 carbon atoms.)
 本発明の液晶配向剤を用いることにより、光配向処理時に発生する液晶配向膜由来の分解物による輝点を抑制でき、照射感度が高く、優れた液晶配向性を有する液晶配向膜を得ることができ、表示不良がなく、信頼性の高い液晶表示素子の提供が可能となる。
 本発明の液晶配向剤を用いることで、上述の効果が得られるのかについては必ずしも明らかではないが、液晶配向剤を構成する重合体の原料として用いるジアミンが、特定の非対称の構造を有していることにより、光照射により生じる分解物の溶解性及び結晶性が変化したためと推察される。
By using the liquid crystal aligning agent of the present invention, it is possible to suppress a bright spot due to a decomposition product derived from the liquid crystal aligning film generated during the photo-alignment treatment, and to obtain a liquid crystal aligning film having high irradiation sensitivity and excellent liquid crystal aligning properties. In addition, it is possible to provide a highly reliable liquid crystal display element free from display defects.
Although it is not necessarily clear whether the above-mentioned effect can be obtained by using the liquid crystal aligning agent of the present invention, the diamine used as a raw material of the polymer constituting the liquid crystal aligning agent has a specific asymmetric structure. It is presumed that the solubility and crystallinity of the decomposition product generated by light irradiation changed.
<特定構造>
 本発明の液晶配向剤を構成する重合体の主鎖中には、上記式(1)で表される特定構造(以下、特定構造ともいう。)を含有する。
Figure JPOXMLDOC01-appb-C000015
 上記式(1)において、R及びRは、それぞれ独立して、単結合、-O-、-S-、-NR12-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、又はカルバメート結合であり、R12は、水素原子又はメチル基である。Aは炭素数2~20のアルキレン基である。B及びBは、それぞれ独立して、下記構造から選ばれる2価の有機基であり、BとBは同じ構造ではない。なお、B及びBは、同じ構造にならないことにより、光照射により生じる分解物の溶解性及び結晶性が変化し、ポリマーの分解成分由来の輝点を抑制することができる。
<Specific structure>
The main chain of the polymer constituting the liquid crystal aligning agent of the present invention contains a specific structure represented by the above formula (1) (hereinafter also referred to as a specific structure).
Figure JPOXMLDOC01-appb-C000015
In the above formula (1), R 1 and R 2 are each independently a single bond, —O—, —S—, —NR 12 —, ester bond, amide bond, thioester bond, urea bond, carbonate bond, Or it is a carbamate bond and R < 12 > is a hydrogen atom or a methyl group. A is an alkylene group having 2 to 20 carbon atoms. B 1 and B 2 are each independently a divalent organic group selected from the following structures, and B 1 and B 2 are not the same structure. Since B 1 and B 2 do not have the same structure, the solubility and crystallinity of the decomposition product generated by light irradiation change, and the bright spots derived from the decomposition components of the polymer can be suppressed.
Figure JPOXMLDOC01-appb-C000016
 上記式中、Rは、炭素数1~5のアルキレン基である。Rは水素原子、メチル基、ヒドロキシ基又はメトキシ基である。)
Figure JPOXMLDOC01-appb-C000016
In the above formula, R 4 is an alkylene group having 1 to 5 carbon atoms. R 5 is a hydrogen atom, a methyl group, a hydroxy group or a methoxy group. )
 なお、上記式(1)において、なかでも、R、Rは、液晶配向性の観点から、単結合、-O-、-S-、-NR12-、エステル結合又はアミド結合が好ましく、-O-が特に好ましい。また、Aは、液晶配向性の観点から、炭素鎖2~6のアルキレン基が好ましく、炭素鎖2~4のアルキレン基が特に好ましい。
 上記式中、Rは、液晶配向性の観点から、炭素数1~3のアルキレン基が好ましい。Rは、液晶配向性の観点から、水素原子又はメチル基が好ましい。
 上記した特定構造は、ポリイミド前駆体の原料であるジアミン中に含有することが好ましい。上記した特定構造を有するジアミンの具体例としては、下記ジアミンが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000017
In the above formula (1), R 1 and R 2 are preferably a single bond, —O—, —S—, —NR 12 —, an ester bond or an amide bond from the viewpoint of liquid crystal alignment. -O- is particularly preferred. A is preferably an alkylene group having 2 to 6 carbon chains, particularly preferably an alkylene group having 2 to 4 carbon chains, from the viewpoint of liquid crystal orientation.
In the above formula, R 4 is preferably an alkylene group having 1 to 3 carbon atoms from the viewpoint of liquid crystal alignment. R 5 is preferably a hydrogen atom or a methyl group from the viewpoint of liquid crystal orientation.
The specific structure described above is preferably contained in a diamine which is a raw material for the polyimide precursor. Specific examples of the diamine having the specific structure described above include, but are not limited to, the following diamines.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 (Rは、前記と同定義である。)
Figure JPOXMLDOC01-appb-C000018
(R 5 has the same definition as above.)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 上記式において、R及びR12は、それぞれの好ましい例も含めて、前記と同定義である。
Figure JPOXMLDOC01-appb-C000020
In the above formula, R 5 and R 12 are as defined above, including preferred examples thereof.
 上記の特定構造を有するジアミンは、なかでも、配向性及び液晶表示素子にした際の輝点減少の観点から、以下の構造を有するジアミンであることが好ましい。
Figure JPOXMLDOC01-appb-C000021

 上記式中、R、R、Aは、それぞれの好ましい例を含めて、上記したとおりである。上記特定構造を有するジアミンとしては、なかでも、以下のジアミンが好ましい。
Figure JPOXMLDOC01-appb-C000022
Among them, the diamine having the above specific structure is preferably a diamine having the following structure from the viewpoints of orientation and reduction of bright spots when formed into a liquid crystal display element.
Figure JPOXMLDOC01-appb-C000021

In the above formula, R 1 , R 2 and A are as described above including preferred examples thereof. Among the diamines having the specific structure, the following diamines are preferable.
Figure JPOXMLDOC01-appb-C000022
<ジアミンの合成>
 上記ジアミンの主な合成法につき以下詳述する。なお、以下で説明する方法は、一つの例であり、これに限定されるものではない。
 本発明のジアミンは、下記反応式で示すように、ジニトロ化合物を還元してニトロ基をアミノ基に変換することで得られる。なお、下記反応式は、実施例において記載したジアミンを1つの例として記載している。
Figure JPOXMLDOC01-appb-C000023
<Synthesis of diamine>
The main synthesis method of the diamine will be described in detail below. In addition, the method demonstrated below is an example, and is not limited to this.
The diamine of the present invention can be obtained by reducing a dinitro compound and converting a nitro group to an amino group as shown in the following reaction formula. In addition, the following reaction formula has described the diamine described in the Example as an example.
Figure JPOXMLDOC01-appb-C000023
 ジニトロ化合物を還元する方法は特に制限はなく、パラジウム-炭素、酸化白金、ラネーニッケル、白金黒、ロジウム-アルミナ、硫化白金炭素などを触媒として用い、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサン、アルコール系などの溶媒中、水素ガス、ヒドラジン、塩化水素などによって還元を行う方法が例示できる。必要に応じて、オートクレープなどを用いて加圧下で行ってもよい。一方で、ベンゼン環や飽和炭化水素部の水素原子を置換する置換基の構造に不飽和結合部位を含む場合、パラジウムカーボンや白金カーボンなどを用いると、この不飽和結合部位が還元されてしまい、飽和結合となってしまう恐れがある。そのため、還元鉄、錫、塩化錫などの遷移金属を触媒として用いた還元条件が好ましい。 The method for reducing the dinitro compound is not particularly limited, and palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum carbon sulfide, etc. are used as catalysts, and ethyl acetate, toluene, tetrahydrofuran, dioxane, alcohols, etc. Examples of the method include reduction with hydrogen gas, hydrazine, hydrogen chloride and the like in a solvent. If necessary, an autoclave or the like may be used under pressure. On the other hand, when an unsaturated bond site is included in the structure of the substituent that replaces the hydrogen atom of the benzene ring or saturated hydrocarbon portion, using palladium carbon or platinum carbon, the unsaturated bond site is reduced, There is a risk of becoming a saturated bond. Therefore, reducing conditions using transition metals such as reduced iron, tin, and tin chloride as a catalyst are preferable.
 ジニトロ化合物の合成においては、下記反応式に示すように、市販のビフェニル誘導体を、ハロゲンなどの脱離基Xが置換されたニトロベンゼンと反応させることにより、該ジニトロ化合物を得ることができる。好ましい脱離基Xとしては、フッ素原子、塩素原子、臭素原子、ヨウ素原子、トシラート(-OTs)、メシラート(-OMs)などが挙げられる。
Figure JPOXMLDOC01-appb-C000024
In the synthesis of the dinitro compound, as shown in the following reaction formula, the dinitro compound can be obtained by reacting a commercially available biphenyl derivative with nitrobenzene substituted with a leaving group X such as halogen. Preferred leaving groups X include fluorine atom, chlorine atom, bromine atom, iodine atom, tosylate (—OTs), mesylate (—OMs) and the like.
Figure JPOXMLDOC01-appb-C000024
 上記反応は、塩基存在下にて行なうことができる。用いる塩基は、合成可能であれば特に限定はないが、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、ナトリウムアルコキシド、カリウムアルコキシド、水酸化ナトリウム、水酸化カリウム、水素化ナトリウムなどの無機塩基、ピリジン、ジメチルアミノピリジン、トリメチルアミン、トリエチルアミン、トリブチルアミンなどの有機塩基などが挙げられる。また、場合によっては、ジベンジリデンアセトンパラジウムやジフェニルフォスフィノフェロセンパラジウムのようなパラジウム触媒や銅触媒などを併用すると、収率を向上させることができる。合成のし易さの観点からは、炭酸カリウムを用いる方法が好ましいが、この方法以外でも合成は可能であるため、特に合成法は限定されない。 The above reaction can be performed in the presence of a base. The base to be used is not particularly limited as long as it can be synthesized. Inorganic bases such as potassium carbonate, sodium carbonate, cesium carbonate, sodium alkoxide, potassium alkoxide, sodium hydroxide, potassium hydroxide, sodium hydride, pyridine, dimethylamino Examples thereof include organic bases such as pyridine, trimethylamine, triethylamine, and tributylamine. In some cases, when a palladium catalyst such as dibenzylideneacetone palladium or diphenylphosphinoferrocene palladium or a copper catalyst is used in combination, the yield can be improved. From the viewpoint of ease of synthesis, a method using potassium carbonate is preferred, but synthesis is not particularly limited because synthesis is possible by methods other than this method.
<重合体>
 本発明の液晶配向剤を構成するポリイミド前駆体は、下記式(2)の構造単位を含有する。
Figure JPOXMLDOC01-appb-C000025
<Polymer>
The polyimide precursor which comprises the liquid crystal aligning agent of this invention contains the structural unit of following formula (2).
Figure JPOXMLDOC01-appb-C000025
 Xは、下記式(X1-1)及び(X1-2)で表される構造からなる群から選ばれる少なくとも1種である。その中でも、液晶配向性の観点から、下記式(X1-2)が好ましい。
Figure JPOXMLDOC01-appb-C000026
X 1 is at least one selected from the group consisting of structures represented by the following formulas (X1-1) and (X1-2). Among these, from the viewpoint of liquid crystal alignment, the following formula (X1-2) is preferable.
Figure JPOXMLDOC01-appb-C000026
 Yは、式(1)で表される2価の有機基である。
 Rは、水素原子又は炭素数1~5のアルキル基である。具体例としては、メチル基、エチル基、プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基などが挙げられる。加熱によるイミド化のしやすさの観点から、Rは、水素原子又はメチル基が好ましい。
Y 1 is a divalent organic group represented by the formula (1).
R 3 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Specific examples include methyl group, ethyl group, propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group and n-pentyl group. From the viewpoint of ease of imidization by heating, R 3 is preferably a hydrogen atom or a methyl group.
 Z及びZは、それぞれ独立して、水素原子、又は置換基を有してもよい、炭素数1~10のアルキル基、炭素数2~10のアルケニル基若しくは炭素数2~10のアルキニル基である。アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、CH=CH構造に置き換えたものが挙げられる。具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造を、C≡C構造に置き換えたものが挙げられる。具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。 Z 1 and Z 2 are each independently a hydrogen atom or an optionally substituted alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl group having 2 to 10 carbon atoms. It is a group. Specific examples of the alkyl group include a methyl group, ethyl group, propyl group, butyl group, t-butyl group, hexyl group, octyl group, decyl group, cyclopentyl group, cyclohexyl group, and bicyclohexyl group. Examples of the alkenyl group include those in which one or more CH 2 —CH 2 structures present in the above alkyl group are replaced with a CH═CH structure. Specifically, vinyl group, allyl group, 1-propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, A cyclohexenyl group etc. are mentioned. Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C≡C structures. Specific examples include an ethynyl group, a 1-propynyl group, and a 2-propynyl group.
 上記のアルキル基、アルケニル基、及びアルキニル基は置換基を有していてもよく、更には、置換基によっては環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。
 置換基の例としては、ハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基等を挙げることができる。
 ハロゲン基としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられる。
 アリール基としては、フェニル基が挙げられる。このアリール基には前述した他の置換基が、さらに置換していてもよい。
The above alkyl group, alkenyl group, and alkynyl group may have a substituent and, depending on the substituent, may form a ring structure. Note that forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
Examples of substituents include halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls. Group, alkenyl group, alkynyl group and the like.
Examples of the halogen group include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
A phenyl group is mentioned as an aryl group. This aryl group may be further substituted with the other substituent described above.
 オルガノオキシ基としては、O-Rで表される構造を示すことができる。このRは、同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などが挙げられる。
 オルガノチオ基としては、-S-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基などが挙げられる。
As the organooxy group, a structure represented by OR can be shown. The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
The organothio group can have a structure represented by —S—R. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above. Specific examples include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
 オルガノシリル基としては、-Si-(R)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基などが挙げられる。
 アシル基としては、-C(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。
The organosilyl group, can exhibit a structure represented by -Si- (R) 3. The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, tripentylsilyl group, trihexylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group and the like.
As the acyl group, a structure represented by —C (O) —R can be shown. Examples of R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above. Specific examples include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
 エステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。
 チオエステル基としては、-C(S)O-R、又は-OC(S)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。
 リン酸エステル基としては、-OP(O)-(OR)2で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。
As the ester group, a structure represented by —C (O) O—R or —OC (O) —R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
As the thioester group, a structure represented by —C (S) O—R or —OC (S) —R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
As the phosphate group, a structure represented by —OP (O) — (OR) 2 can be shown. The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
 アミド基としては、-C(O)NH、又は、-C(O)NHR、-NHC(O)R、-C(O)N(R)、-NRC(O)Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。
 アリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には、前述した他の置換基がさらに置換していてもよい。
 アルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には、前述した他の置換基がさらに置換していてもよい。
 アルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には、前述した他の置換基がさらに置換していてもよい。
 アルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には、前述した他の置換基がさらに置換していてもよい。
The amide group is represented by —C (O) NH 2 , or —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , or —NRC (O) R. The structure can be shown. The R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
Examples of the aryl group include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
As an alkyl group, the same thing as the alkyl group mentioned above can be mentioned. This alkyl group may be further substituted with the other substituent described above.
As an alkenyl group, the same thing as the alkenyl group mentioned above can be mentioned. This alkenyl group may be further substituted with the other substituent described above.
Examples of the alkynyl group include the same alkynyl groups described above. This alkynyl group may be further substituted with the other substituent described above.
 一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、Z及びZとしては、水素原子、又は置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。
 上記式(2)で表される構造単位を、全構造単位に対して、20~100モル%有することが好ましく、液晶配向性の観点から、30~100モル%が特に好ましい。
In general, when a bulky structure is introduced, there is a possibility that the reactivity of the amino group and the liquid crystal alignment may be lowered. Therefore, as Z 1 and Z 2 , a hydrogen atom or a carbon atom that may have a substituent is 1 An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group or an ethyl group is particularly preferable.
The structural unit represented by the above formula (2) is preferably contained in an amount of 20 to 100 mol% based on the total structural units, and particularly preferably 30 to 100 mol% from the viewpoint of liquid crystal alignment.
<その他の構造単位>
 本発明の液晶配向剤を構成する重合体が、上記式(2)の構造単位以外の構造単位を含む場合、その構造単位は、下記式(3)で表される。
Figure JPOXMLDOC01-appb-C000027
 R、Z及びZの定義は、上記式(2)と同様である。
<Other structural units>
When the polymer which comprises the liquid crystal aligning agent of this invention contains structural units other than the structural unit of the said Formula (2), the structural unit is represented by following formula (3).
Figure JPOXMLDOC01-appb-C000027
The definitions of R 3 , Z 1 and Z 2 are the same as in the above formula (2).
 Xは、4価の有機基であり、Yは、2価の有機基である。
 Xは、テトラカルボン酸誘導体由来の4価の有機基であり、その構造は特に限定されるものではない。ポリイミド前駆体中、Xは2種類以上が混在していてもよい。Xの具体例を示すならば、下記式(X-1)~(X-44)の構造が挙げられる。
X 2 is a tetravalent organic group, and Y 2 is a divalent organic group.
X 2 is a tetravalent organic group derived from a tetracarboxylic acid derivative, and its structure is not particularly limited. In the polyimide precursor, X 2 is 2 or more may be mixed. Specific examples of X 2 include structures of the following formulas (X-1) to (X-44).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 上記式(X-1)におけるR~R11は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基又はフェニル基である。R~R11が、嵩高い構造である場合、液晶配向性を低下させる可能性があるため、水素原子、メチル基又はエチル基がより好ましく、水素原子又は、メチル基が特に好ましい。 R 8 to R 11 in the formula (X-1) are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkyl group having 2 to 6 carbon atoms. An alkynyl group or a phenyl group. When R 8 to R 11 have a bulky structure, the liquid crystal orientation may be lowered, so a hydrogen atom, a methyl group or an ethyl group is more preferable, and a hydrogen atom or a methyl group is particularly preferable.
 式(3)において、Yは、ジアミン由来の2価の有機基であり、その構造は特に限定されない。Yの構造の具体例を示すならば、下記の(Y-1)~(Y-118)が挙げられる。
Figure JPOXMLDOC01-appb-C000032
In Formula (3), Y 2 is a divalent organic group derived from diamine, and its structure is not particularly limited. Specific examples of the structure of Y 2 include the following (Y-1) to (Y-118).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 (式(Y-109)中、m、nは、それぞれ独立して、1~11の整数であり、m+nは2~12の整数であり、式(Y-114)中、hは1~3の整数であり、式(Y-111)及び(Y-117)中、jは0~3の整数である。)
 本発明に用いるポリイミド前駆体は、ジアミン成分とテトラカルボン酸誘導体との反応から得られるものであり、ポリアミック酸やポリアミック酸エステル等が挙げられる。
(In formula (Y-109), m and n are each independently an integer of 1 to 11, m + n is an integer of 2 to 12, and in formula (Y-114), h is 1 to 3 (In the formulas (Y-111) and (Y-117), j is an integer of 0 to 3).)
The polyimide precursor used in the present invention is obtained from a reaction between a diamine component and a tetracarboxylic acid derivative, and examples thereof include polyamic acid and polyamic acid ester.
<ポリイミド前駆体(ポリアミック酸)>
 本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下の方法により製造される。
 具体的には、テトラカルボン酸二無水物とジアミンとを、有機溶媒の存在下で、-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
<Polyimide precursor (polyamic acid)>
The polyamic acid which is a polyimide precursor used in the present invention is produced by the following method.
Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at −20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
 ジアミン成分とテトラカルボン酸成分との反応は、通常、有機溶媒中で行う。その際に用いる有機溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる有機溶媒の具体例を挙げるが、これらの例に限定されるものではない。例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-イミダゾリジノンが挙げられる。
 また、ポリイミド前駆体の溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は下記の式[D-1]~式[D-3]で示される有機溶媒を用いることができる。
The reaction of the diamine component and the tetracarboxylic acid component is usually performed in an organic solvent. The organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Although the specific example of the organic solvent used for reaction below is given, it is not limited to these examples. Examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinone. It is done.
When the solubility of the polyimide precursor is high, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3]. An organic solvent can be used.
Figure JPOXMLDOC01-appb-C000049
 式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。
Figure JPOXMLDOC01-appb-C000049
In the formula [D-1], D 1 represents an alkyl group having 1 to 3 carbon atoms, and in the formula [D-2], D 2 represents an alkyl group having 1 to 3 carbon atoms, and the formula [D-3] In the formula, D 3 represents an alkyl group having 1 to 4 carbon atoms.
 これら溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
 反応系中におけるポリアミック酸ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。
These solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Moreover, since water in the solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polyimide precursor, it is preferable to use a dehydrated and dried solvent.
The concentration of the polyamic acid polymer in the reaction system is preferably from 1 to 30% by mass, and more preferably from 5 to 20% by mass, from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで、精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。 The polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. In addition, by performing precipitation several times, washing with a poor solvent, and then drying at normal temperature or heat, a purified polyamic acid powder can be obtained. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリイミド前駆体(ポリアミック酸エステル)>
 本発明に用いられるポリイミド前駆体であるポリアミック酸エステルは、以下に示す(1)、(2)又は(3)の製法で製造することができる。
<Polyimide precursor (polyamic acid ester)>
The polyamic acid ester which is a polyimide precursor used in the present invention can be produced by the following production method (1), (2) or (3).
(1)ポリアミック酸から製造する場合
 ポリアミック酸エステルは、前記のように製造されたポリアミック酸をエステル化することによって製造できる。具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造することができる。
(1) When manufacturing from polyamic acid A polyamic acid ester can be manufactured by esterifying the polyamic acid manufactured as mentioned above. Specifically, it is produced by reacting a polyamic acid and an esterifying agent in the presence of an organic solvent at −20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. be able to.
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。 The esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
 有機溶剤としては、例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-イミダゾリジノンが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、又は前記式[D-1]~式[D-3]で示される溶媒を用いることができる。
 これらの溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は、重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
Examples of the organic solvent include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl- Examples include imidazolidinone. When the solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the above formulas [D-1] to [D-3] The indicated solvents can be used.
These solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Further, since water in the solvent inhibits the polymerization reaction and further causes hydrolysis of the generated polyimide precursor, it is preferable to use a dehydrated and dried solvent.
 上記の反応に用いる溶媒は、ポリマーの溶解性から、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。 The solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone from the solubility of the polymer. These may be used alone or in combination of two or more. Also good. The concentration at the time of production is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから製造することができる。
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを、塩基と有機溶剤の存在下で、-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造することができる。
(2) When manufactured by reaction of tetracarboxylic acid diester dichloride and diamine The polyamic acid ester can be manufactured from tetracarboxylic acid diester dichloride and diamine.
Specifically, tetracarboxylic acid diester dichloride and diamine are mixed in the presence of a base and an organic solvent at −20 to 150 ° C., preferably 0 to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be produced by reacting.
 前記塩基としては、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。
 上記の反応に用いる溶媒は、モノマー及びポリマーの溶解性から、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの製造に用いる溶媒は、できるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
The solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination. The polymer concentration at the time of production is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the production of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
(3)テトラカルボン酸ジエステルとジアミンから製造する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより製造することができる。
 具体的には、テトラカルボン酸ジエステルとジアミンとを、縮合剤、塩基、及び有機溶剤の存在下で、0~150℃、好ましくは0~100℃において、30分~24時間、好ましくは3~15時間反応させることによって製造することができる。
(3) When manufacturing from tetracarboxylic-acid diester and diamine Polyamic acid ester can be manufactured by polycondensing tetracarboxylic-acid diester and diamine.
Specifically, a tetracarboxylic acid diester and a diamine are mixed in the presence of a condensing agent, a base, and an organic solvent at 0 to 150 ° C., preferably at 0 to 100 ° C., for 30 minutes to 24 hours, preferably 3 to It can be produced by reacting for 15 hours.
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルが好ましい。 Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
 前記塩基としては、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという点から、ジアミン成分に対して2~4倍モルが好ましい。
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。
As the base, tertiary amines such as pyridine and triethylamine can be used. The amount of the base added is preferably 2 to 4 times the mol of the diamine component from the viewpoint that it can be easily removed and a high molecular weight product can be easily obtained.
In the above reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
 上記3つのポリアミック酸エステルの製造方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は(2)の製法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して、精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
Among the methods for producing the three polyamic acid esters, since the high molecular weight polyamic acid ester is obtained, the production method (1) or (2) is particularly preferable.
The polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polyamic acid ester powder. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリイミド>
 本発明に用いられるポリイミドは、前記したポリアミック酸エステル又はポリアミック酸をイミド化することにより製造することができる。
 ポリアミック酸エステルからポリイミドを製造する場合、ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に、塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
<Polyimide>
The polyimide used in the present invention can be produced by imidizing the aforementioned polyamic acid ester or polyamic acid.
When a polyimide is produced from a polyamic acid ester, chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving a polyamic acid ester solution or a polyamic acid ester resin powder in an organic solvent is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
 化学的イミド化は、イミド化させたいポリアミック酸エステルを、有機溶媒中において、塩基性触媒存在下で撹拌することにより行うことができる。有機溶媒としては、前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。
 イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、好ましくは反応時間は1~100時間で行うことができる。塩基性触媒の量は、アミック酸エステル基の0.5~30モル倍、好ましくは2~20モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間等を調節することで制御することができる。イミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
The temperature for carrying out the imidization reaction is −20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time is preferably 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid ester group. The imidation rate of the obtained polymer can be controlled by adjusting the amount of catalyst, temperature, reaction time and the like. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, redissolved in an organic solvent, and the liquid crystal alignment according to the present invention. It is preferable to use an agent.
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られたポリアミック酸の溶液に、触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたいポリアミック酸を、有機溶媒中において、塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては、前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等が挙げられる。なかでも無水酢酸は、反応終了後の精製が容易となるので好ましい。
When manufacturing a polyimide from a polyamic acid, the chemical imidation which adds a catalyst to the solution of the polyamic acid obtained by reaction with a diamine component and tetracarboxylic dianhydride is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
Chemical imidation can be performed by stirring the polyamic acid to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Of these, acetic anhydride is preferable because purification after completion of the reaction is easy.
 イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、反応時間は好ましくは1~100時間で行うことができる。塩基性触媒の量は、アミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミック酸基の1~50モル倍、好ましくは3~30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間等を調節することで制御することができる。 The temperature for carrying out the imidization reaction is −20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time is preferably 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amount of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times of the amic acid group, preferably 3 to 30 mole times. The imidation rate of the obtained polymer can be controlled by adjusting the amount of catalyst, temperature, reaction time and the like.
 ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して、精製されたポリイミドの粉末を得ることができる。
 貧溶媒としては、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
In the solution after the imidation reaction of polyamic acid ester or polyamic acid, the added catalyst and the like remain, so the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent. Thus, the liquid crystal aligning agent of the present invention is preferable.
The polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polyimide powder.
Although it does not specifically limit as a poor solvent, Methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene etc. are mentioned.
<液晶配向剤>
 本発明の液晶配向剤は、主鎖中に特定構造を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体を含有する。重合体の分子量は、重量平均分子量(Mw)で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量(Mn)は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
<Liquid crystal aligning agent>
The liquid crystal aligning agent of the present invention contains at least one polymer selected from the group consisting of a polyimide precursor having a specific structure in the main chain and an imidized polymer of the polyimide precursor. The molecular weight of the polymer is preferably 2,000 to 500,000 in terms of weight average molecular weight (Mw), more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000. The number average molecular weight (Mn) is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000. .
 本発明の液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点からは、1質量%以上であることが好ましく、溶液の保存安定性の点からは、10質量%以下とすることが好ましい。重合体の濃度は好ましくは2~7質量%である。 The concentration of the polymer in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed, but from the point of forming a uniform and defect-free coating film, 1 The content is preferably at least 10% by mass, and is preferably 10% by mass or less from the viewpoint of storage stability of the solution. The concentration of the polymer is preferably 2 to 7% by mass.
 本発明に用いられる液晶配向剤に含有される、重合体を溶解させる有機溶媒(以下、良溶媒ともいう)は、重合体が均一に溶解するものであれば特に限定されない。
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン又は4-ヒドロキシ-4-メチル-2-ペンタノンを挙げることができる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、又はγ-ブチロラクトンを用いることが好ましい。
 さらに、本発明の重合体の溶媒への溶解性が高い場合は、前記式[D-1]~式[D-3]で示される溶媒を用いることが好ましい。
 本発明の液晶配向剤における良溶媒の含有量は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましい。なかでも、20~90質量%が好ましい。より好ましいのは、30~80質量%である。
The organic solvent for dissolving the polymer (hereinafter also referred to as a good solvent) contained in the liquid crystal aligning agent used in the present invention is not particularly limited as long as the polymer is uniformly dissolved.
For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone And cyclohexanone, cyclopentanone or 4-hydroxy-4-methyl-2-pentanone. Of these, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or γ-butyrolactone is preferably used.
Furthermore, when the solubility of the polymer of the present invention in a solvent is high, it is preferable to use a solvent represented by the above formula [D-1] to formula [D-3].
The content of the good solvent in the liquid crystal aligning agent of the present invention is preferably 20 to 99% by mass of the whole solvent contained in the liquid crystal aligning agent. Of these, 20 to 90% by mass is preferable. More preferred is 30 to 80% by mass.
 本発明の液晶配向剤は、本発明の効果を損なわない限り、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を用いることができる。貧溶媒の具体例を挙げるが、これらの例に限定されるものではない。
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、前記式[D-1]~式[D-3]で示される溶媒などを挙げることができる。
As long as the effects of the present invention are not impaired, the liquid crystal aligning agent of the present invention uses a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied. it can. Although the specific example of a poor solvent is given, it is not limited to these examples.
For example, ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Etanji 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentane Diol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, 2 Heptanone, 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate 2- (methoxymethoxy) ethanol, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, propylene glycol, propylene glycol monobutyl ether, 1- (Butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol, Dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoacetate Tar, ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol Monoethyl ether, milk Methyl, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, 3-methoxypropion Ethyl acetate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, ethyl lactate, lactate n-propyl ester, lactate n-butyl ester, lactic acid Examples thereof include isoamyl esters and solvents represented by the above formulas [D-1] to [D-3].
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル又はジプロピレングリコールジメチルエーテルが好ましい。
 これら貧溶媒の含有量は、液晶配向剤に含まれる溶媒全体の1~80質量%であるのが好ましい。なかでも、10~80質量%が好ましく、20~70質量%がより好ましい。
Of these, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether or dipropylene glycol dimethyl ether are preferable.
The content of these poor solvents is preferably 1 to 80% by mass of the whole solvent contained in the liquid crystal aligning agent. Among these, 10 to 80% by mass is preferable, and 20 to 70% by mass is more preferable.
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、本発明に記載の重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を添加してもよい。 In the liquid crystal aligning agent of the present invention, in addition to the above, as long as the effects of the present invention are not impaired, a polymer other than the polymer described in the present invention, the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film, etc. Dielectric or conductive material for changing characteristics, silane coupling agent for improving adhesion between liquid crystal alignment film and substrate, crosslinkability for increasing hardness and density of liquid crystal alignment film When baking a compound and also a coating film, you may add the imidation promoter for the purpose of making the imidation by the heating of a polyimide precursor progress efficiently.
<液晶配向膜>
 本発明の液晶配向膜は、上記液晶配向剤を基板に塗布し、乾燥し、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることが、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。
<Liquid crystal alignment film>
The liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying and baking. The substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a plastic substrate such as a polycarbonate substrate, or the like can be used. It is preferable to use a substrate on which an ITO electrode or the like for driving is formed in terms of simplification of the process. In the reflective liquid crystal display element, an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used as the electrode.
 本発明の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。
 液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択できる。通常は、含有される有機溶媒を十分に除去するために、乾燥温度は好ましくは50~120℃℃あり、乾燥時間は好ましくは1~10分である。また、焼成温度は好ましくは150~300℃であり、焼成時間は好ましくは5~120分である。
 焼成後の膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が損なわれる可能性があるので、好ましくは5~300nm、より好ましくは10~120nmである。
Examples of the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method.
Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent. Usually, in order to sufficiently remove the contained organic solvent, the drying temperature is preferably 50 to 120 ° C., and the drying time is preferably 1 to 10 minutes. The firing temperature is preferably 150 to 300 ° C., and the firing time is preferably 5 to 120 minutes.
The thickness of the film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be impaired, so it is preferably 5 to 300 nm, more preferably 10 to 120 nm.
 液晶配向膜の光配向処理の方法としては、塗膜表面に、一定方向に偏向した放射線を照射し、場合によっては、さらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線及び可視光線を用いることができる。このうち、100~400nmの波長を有する紫外線が好ましく、200~400nmの波長を有するものが特に好ましい。また、液晶配向性を改善するために、塗膜基板を50~250℃で加熱しつつ、放射線を照射してもよい。放射線の照射量は、1~10,000mJ/cmが好ましく、100~5,000mJ/cmが特に好ましい。上記のようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 より高い異方性が付与できるため、偏光された紫外線の消光比は高いほど好ましい。具体的には、直線に偏光された紫外線の消光比は、10:1以上が好ましく、20:1以上がより好ましい。
As a method of photo-alignment treatment of the liquid crystal alignment film, the surface of the coating film is irradiated with radiation deflected in a certain direction, and in some cases, heat treatment is performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability. A method is mentioned. As the radiation, ultraviolet rays and visible rays having a wavelength of 100 to 800 nm can be used. Of these, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and those having a wavelength of 200 to 400 nm are particularly preferable. Further, in order to improve the liquid crystal orientation, radiation may be irradiated while heating the coated substrate at 50 to 250 ° C. The dose of radiation is preferably 1 ~ 10,000mJ / cm 2, particularly preferably 100 ~ 5,000mJ / cm 2. The liquid crystal alignment film produced as described above can stably align liquid crystal molecules in a certain direction.
Since higher anisotropy can be imparted, the higher the extinction ratio of polarized ultraviolet light, the better. Specifically, the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more.
 偏光された放射線を照射した膜は、次いで、水及び有機溶媒から選ばれる少なくとも1種を含む溶媒で接触処理してもよい。
 接触処理に使用する溶媒としては、光照射によって生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、酢酸シクロヘキシルなどが挙げられる。これらの溶媒は2種以上を併用してもよい。汎用性や安全性の点から、水、2-プロパノール、1-メトキシ-2-プロパノール及び乳酸エチルからなる群から選ばれる少なくとも1種がより好ましい。水、2-プロパノール、又は、水と2-プロパノールの混合溶媒が特に好ましい。
The film irradiated with polarized radiation may then be contact-treated with a solvent containing at least one selected from water and an organic solvent.
The solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves a decomposition product generated by light irradiation. Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like. Two or more of these solvents may be used in combination. In view of versatility and safety, at least one selected from the group consisting of water, 2-propanol, 1-methoxy-2-propanol and ethyl lactate is more preferable. Water, 2-propanol, or a mixed solvent of water and 2-propanol is particularly preferable.
 本発明において、偏光された放射線を照射した膜と有機溶媒を含む溶液との接触処理としては、浸漬処理、噴霧(スプレー)処理などが挙げられ、膜と液とが十分に接触するような処理が好ましい。なかでも、好ましくは10秒~1時間、より好ましくは1~30分、有機溶媒を含む溶液中で、膜を浸漬処理する方法が好ましい。接触処理は、常温でも加温してもよいが、好ましくは10~80℃、より好ましくは20~50℃で実施される。また、必要に応じて、超音波などの接触を高める手段を施すことができる。
 接触処理の後に、使用した溶液中の有機溶媒を除去する目的で、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトンなどの低沸点溶媒によるすすぎ(リンス)や乾燥のいずれか、又は両方を行ってもよい。
In the present invention, examples of the contact treatment between the film irradiated with polarized radiation and the solution containing the organic solvent include immersion treatment, spraying treatment, and the like, such that the membrane and the liquid are sufficiently in contact with each other. Is preferred. Among them, a method of immersing the film in a solution containing an organic solvent for 10 seconds to 1 hour, more preferably 1 to 30 minutes is preferable. The contact treatment may be performed at normal temperature or preferably at 10 to 80 ° C., more preferably at 20 to 50 ° C. Moreover, a means for enhancing contact such as ultrasonic waves can be applied as necessary.
After the contact treatment, for the purpose of removing the organic solvent in the used solution, rinsing (rinsing) with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, drying, or both are performed. You may go.
 さらに、溶媒による接触処理をした膜は、溶媒の乾燥及び膜中の分子鎖の再配向を目的に、150℃以上で加熱してもよい。加熱温度としては、150~300℃が好ましい。温度が高いほど、分子鎖の再配向が促進されるが、温度が高すぎると分子鎖の分解を伴う恐れがある。そのため、加熱温度は、180~250℃がより好ましく、200~230℃が特に好ましい。
 加熱する時間は、短すぎると分子鎖の再配向の効果が得られない可能性があり、長すぎると分子鎖が分解してしまう可能性があるため、10秒~30分が好ましく、1~10分がより好ましい。
Furthermore, the film subjected to the contact treatment with the solvent may be heated at 150 ° C. or higher for the purpose of drying the solvent and reorienting the molecular chains in the film. The heating temperature is preferably 150 to 300 ° C. A higher temperature promotes reorientation of molecular chains. However, if the temperature is too high, molecular chains may be decomposed. Therefore, the heating temperature is more preferably 180 to 250 ° C., and particularly preferably 200 to 230 ° C.
If the heating time is too short, the effect of reorienting the molecular chain may not be obtained, and if it is too long, the molecular chain may be decomposed, and is preferably 10 seconds to 30 minutes. 10 minutes is more preferable.
<液晶表示素子>
 本発明の液晶表示素子は、本発明の液晶配向剤から形成された液晶配向膜を有する基板を得た後、公知の方法で液晶セルを作製し、該セルを使用して素子としたものである。
 液晶セルの作製方法の一例として、以下に、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
<Liquid crystal display element>
The liquid crystal display device of the present invention is a device in which a liquid crystal cell is prepared by a known method after obtaining a substrate having a liquid crystal alignment film formed from the liquid crystal aligning agent of the present invention, and the cell is used as an element. is there.
As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described below as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
 まず、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えば、ITO電極とすることができ、所望の画像表示ができるようにパターニングされる。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。
 次に、各基板の上に、本発明の液晶配向膜を形成する。次に、一方の基板に他方の基板を、互いの配向膜面が対向するようにして重ね合わせ、周辺をシール材で接着する。シール材には、基板間隙を制御するために、通常、スペーサーを混入することが好ましい。また、シール材を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。また、シール材の一部には、通常、外部から液晶を充填可能な開口部が設けられる。
First, a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes may be ITO electrodes, for example, and are patterned so as to display a desired image. Next, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode. The insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
Next, the liquid crystal alignment film of the present invention is formed on each substrate. Next, the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant. In order to control the substrate gap, it is usually preferable to mix a spacer in the sealing material. In addition, it is preferable that spacers for controlling the substrate gap are also sprayed on the in-plane portion where no sealing material is provided. Also, a part of the sealing material is usually provided with an opening that can be filled with liquid crystal from the outside.
 次に、シール材に設けた開口部を通じて、2枚の基板とシール材で包囲された空間内に液晶材料を注入する。その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に、一対の偏光板を貼り付ける。以上の工程を経ることにより、本発明の液晶表示素子が得られる。
 本発明において、シール剤としては、例えば、エポキシ基、アクリロイル基、メタアクリロイル基、ヒドロキシ基、アリル基、アセチル基などの反応性基を有する紫外線照射や加熱によって硬化する樹脂が用いられる。特に、エポキシ基と(メタ)アクリロイル基の両方の反応性基を有する硬化樹脂系を用いるのが好ましい。
Next, a liquid crystal material is injected into a space surrounded by two substrates and the sealing material through an opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive. For the injection, a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used. Next, a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer. By passing through the above process, the liquid crystal display element of this invention is obtained.
In the present invention, as the sealing agent, for example, a resin that is cured by ultraviolet irradiation or heating having a reactive group such as an epoxy group, an acryloyl group, a methacryloyl group, a hydroxy group, an allyl group, or an acetyl group is used. In particular, it is preferable to use a cured resin system having reactive groups of both an epoxy group and a (meth) acryloyl group.
 上記のシール剤には、接着性、耐湿性等の向上を目的として、無機充填剤を配合してもよい。使用可能な無機充填剤としては、特に限定されないが、具体的には、球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、シリコンカーバイド、窒化珪素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン、アスベスト等が挙げられる。好ましくは、球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、窒化珪素、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウムなどである。前記の無機充填剤は2種以上を混合して用いてもよい。 In the above sealing agent, an inorganic filler may be blended for the purpose of improving adhesiveness, moisture resistance and the like. The inorganic filler that can be used is not particularly limited, and specifically, spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, sulfuric acid. Barium, calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, aluminum hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, Examples include asbestos. Preferably, spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon nitride, boron nitride, calcium carbonate, barium sulfate, calcium sulfate, mica, talc, clay, alumina, aluminum hydroxide, calcium silicate, aluminum silicate Etc. Two or more of the above inorganic fillers may be mixed and used.
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。使用した化合物の略号は以下のとおりである。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. The abbreviations of the compounds used are as follows.
 NMP:N-メチル-2-ピロリドン、  BCS:ブチルセロソルブ
Figure JPOXMLDOC01-appb-C000050
NMP: N-methyl-2-pyrrolidone, BCS: Butyl cellosolve
Figure JPOXMLDOC01-appb-C000050
[DA-1の合成(4‘‐(2-(4-アミノフェノキシ)エトキシ)-[1,1’-ビフェニル]-4-アミン)]
 第1ステップ:4-ニトロ‐4‘‐(2-(4-ニトロフェノキシ)エトキシ)-1,1’-ビフェニル(DA-1-1)の合成
[Synthesis of DA-1 (4 ′-(2- (4-aminophenoxy) ethoxy)-[1,1′-biphenyl] -4-amine)]
First Step: Synthesis of 4-nitro-4 ′-(2- (4-nitrophenoxy) ethoxy) -1,1′-biphenyl (DA-1-1)
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 4-ヒドロキシ‐4‘-ニトロビフェニル(10.0g、46.5mmol)をDMF(40.0g)に溶解し、炭酸カリウム(17.2g、69.7mmol)を加え、β‐ブロモ‐4-ニトロフェネトール(17.2g、69.7mmol)のDMF溶液(40.0g)を80℃で滴下した。
 そのまま80℃で2時間撹拌し、高速液体クロマトグラフィー(以下、HPLCと略す)で原料の消失を確認した。その後、反応液を室温に放冷し、水(500.0g)を加えて析出物をろ過し、ろ物を水(100.0g)で2回洗浄した。得られたろ物は、MeOH(500.0g)で2回洗浄した。析出物をろ過し、50℃で減圧乾燥することで、4-ニトロ‐4‘‐(2-(4-ニトロフェノキシ)エトキシ)-1,1’-ビフェニル(DA-1-1)を得た(白色粉末、収量:17.6g、収率:99%)。
4-Hydroxy-4′-nitrobiphenyl (10.0 g, 46.5 mmol) is dissolved in DMF (40.0 g), potassium carbonate (17.2 g, 69.7 mmol) is added, and β-bromo-4-nitro is added. A DMF solution (40.0 g) of phenetole (17.2 g, 69.7 mmol) was added dropwise at 80 ° C.
The mixture was stirred as it was at 80 ° C. for 2 hours, and disappearance of the raw materials was confirmed by high performance liquid chromatography (hereinafter abbreviated as HPLC). Thereafter, the reaction solution was allowed to cool to room temperature, water (500.0 g) was added, the precipitate was filtered, and the filtrate was washed twice with water (100.0 g). The obtained filtrate was washed twice with MeOH (500.0 g). The precipitate was filtered and dried under reduced pressure at 50 ° C. to obtain 4-nitro-4 ′-(2- (4-nitrophenoxy) ethoxy) -1,1′-biphenyl (DA-1-1). (White powder, yield: 17.6 g, yield: 99%).
 1H NMR (DMSO- d6):δ 8.22-8.29 (m, 4H, C6H4), 7.94 (d, J = 7.2 Hz, 2H, C6H4), 7.79 (d, J = 8.8 Hz, 2H, C6H4), 7.25-7.15 (m, 4H, C6H4)4.54-4.45 (m, 4H, CH2). 13C{1H} NMR (DMSO- d6):δ 164.1, 159.6, 146.6, 146.5, 141.4, 130.7, 129.1, 127.5, 126.4, 124.5, 115.7, 115.6, 67.8, 66.7(each s).
 融点(DSC):193℃
1 H NMR (DMSO-d 6 ): δ 8.22-8.29 (m, 4H, C 6 H 4 ), 7.94 (d, J = 7.2 Hz, 2H, C 6 H 4 ), 7.79 (d, J = 8.8 Hz , 2H, C 6 H 4 ), 7.25-7.15 (m, 4H, C 6 H 4 ) 4.54-4.45 (m, 4H, CH 2 ). 13 C { 1 H} NMR (DMSO-d 6 ): δ 164.1 , 159.6, 146.6, 146.5, 141.4, 130.7, 129.1, 127.5, 126.4, 124.5, 115.7, 115.6, 67.8, 66.7 (each s).
Melting point (DSC): 193 ° C
 第2ステップ:4‘‐(2-(4-アミノフェノキシ)エトキシ)-[1,1’-ビフェニル]-4-アミン(DA-1)の合成
Figure JPOXMLDOC01-appb-C000052
Second Step: Synthesis of 4 ′-(2- (4-aminophenoxy) ethoxy)-[1,1′-biphenyl] -4-amine (DA-1)
Figure JPOXMLDOC01-appb-C000052
 DA-1-1(5.0g、13.1mmol)をテトラヒドロフラン(100.0g)に溶解し、5質量%パラジウム-炭素(0.1g)を加え、水素雰囲気下、室温で2時間撹拌した。原料の消失をHPLCで確認した後、反応液をテトラヒドロフラン(800.0g)中で溶解し、触媒をろ過により除去した後、ろ液を濃縮した。析出した固体をヘプタン(200.0g)中で撹拌、洗浄し、ろ過した。得られた固体を乾燥することでDA-1を得た(白色粉末、収量:4.0g、収率:94%)。 DA-1-1 (5.0 g, 13.1 mmol) was dissolved in tetrahydrofuran (100.0 g), 5 mass% palladium-carbon (0.1 g) was added, and the mixture was stirred at room temperature for 2 hours in a hydrogen atmosphere. After confirming disappearance of the raw material by HPLC, the reaction solution was dissolved in tetrahydrofuran (800.0 g), the catalyst was removed by filtration, and the filtrate was concentrated. The precipitated solid was stirred and washed in heptane (200.0 g) and filtered. The obtained solid was dried to obtain DA-1 (white powder, yield: 4.0 g, yield: 94%).
 1H NMR (DMSO- d6):δ 7.45 (d, J = 8.8 Hz, 2H, C6H4), 7.29 (d, J = 8.8 Hz, 2H, C6H4), 6.97 (d, J = 8.8 Hz, 2H, C6H4), 6.70 (d, J = 8.8 Hz, 2H, C6H4), 6.62 (d, J = 8.8 Hz, 2H, C6H4), 6.52 (d, J = 8.8 Hz, 2H, C6H4), 5.14 (s, 2H, NH2), 4.64 (s, 2H, NH2), 4.24 (br, 2H, CH2), 4.16 (br, 2H, CH2). 13C{1H} NMR (DMSO- d6):δ 157.2, 150.0, 148.2, 143.1, 133.9, 127.7, 126.2, 116.3, 115.9, 115.5, 115.0, 114.4, 67.2, 66.9 (each s).
融点(DSC):156℃
1 H NMR (DMSO-d 6 ): δ 7.45 (d, J = 8.8 Hz, 2H, C 6 H 4 ), 7.29 (d, J = 8.8 Hz, 2H, C 6 H 4 ), 6.97 (d, J = 8.8 Hz, 2H, C 6 H 4 ), 6.70 (d, J = 8.8 Hz, 2H, C 6 H 4 ), 6.62 (d, J = 8.8 Hz, 2H, C 6 H 4 ), 6.52 (d, J = 8.8 Hz, 2H, C 6 H 4 ), 5.14 (s, 2H, NH 2 ), 4.64 (s, 2H, NH 2 ), 4.24 (br, 2H, CH 2 ), 4.16 (br, 2H, CH 2 ). 13 C { 1 H} NMR (DMSO-d 6 ): δ 157.2, 150.0, 148.2, 143.1, 133.9, 127.7, 126.2, 116.3, 115.9, 115.5, 115.0, 114.4, 67.2, 66.9 (each s).
Melting point (DSC): 156 ° C
 なお、合成例の水素核磁気共鳴(1HNMR、500MHz)は重水素化ジメチルスルホキシド(DMSO-d6)溶媒中で測定し、化学シフトは、テトラメチルシランを内部標準としたときのδ値(ppm)で示した。 The hydrogen nuclear magnetic resonance ( 1 HNMR, 500 MHz) of the synthesis example was measured in a deuterated dimethyl sulfoxide (DMSO-d6) solvent, and the chemical shift was the δ value (ppm) when tetramethylsilane was used as an internal standard. ).
[粘度]
 各溶液の粘度は、E型粘度計(TVE-22H、東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[viscosity]
The viscosity of each solution was measured using an E-type viscometer (TVE-22H, manufactured by Toki Sangyo Co., Ltd.) at a sample amount of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24), and a temperature of 25 ° C. .
[分子量]
 GPC装置:Shodex社製(GPC-101)、カラム:Shodex社製(KD803、KD805の直列)、カラム温度:50℃、溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)、流速:1.0ml/分。
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw);約900,000、150,000、100,000及び30,000)、及びポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp);約12,000、4,000及び1,000)。
 測定は、ピークが重なるのを避けるため、900,000、100,000、12,000及び1,000の4種類を混合したサンプルと、150,000、30,000及び4,000の3種類を混合したサンプルの2サンプルを別々に測定した。
[Molecular weight]
GPC apparatus: manufactured by Shodex (GPC-101), column: manufactured by Shodex (KD803, series of KD805), column temperature: 50 ° C., eluent: N, N-dimethylformamide (as an additive, lithium bromide-water) Japanese product (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran (THF) 10 ml / L), flow rate: 1.0 ml / min.
Standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw); about 900,000, 150,000, 100,000 and 30,000) manufactured by Tosoh Corporation, and polyethylene glycol (peak top) manufactured by Polymer Laboratories Molecular weight (Mp); about 12,000, 4,000 and 1,000).
In order to avoid the overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000 and 1,000, and three types of 150,000, 30,000 and 4,000. Two samples of the mixed sample were measured separately.
[液晶セルの作製]
 フリンジフィールドスィッチング(Fringe Field Switching:FFS)モード液晶表示素子の構成を備えた液晶セルを作製する。
 30mm×50mmの大きさで、厚さが0.7mmの、電極付きのガラス基板を準備した。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成されている。第1層目の対向電極の上には、第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目として、ITO膜をパターニングして形成された、櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により、電気的に絶縁されている。
[Production of liquid crystal cell]
A liquid crystal cell having a configuration of a fringe field switching (FFS) mode liquid crystal display element is manufactured.
A glass substrate with an electrode having a size of 30 mm × 50 mm and a thickness of 0.7 mm was prepared. On the substrate, an ITO electrode having a solid pattern constituting a counter electrode as a first layer is formed. On the counter electrode of the first layer, a SiN (silicon nitride) film formed by the CVD method is formed as the second layer. The second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film. A comb-like pixel electrode formed by patterning an ITO film as the third layer is disposed on the second SiN film, and the two pixels, the first pixel and the second pixel, are arranged. Forming. The size of each pixel is 10 mm long and about 5 mm wide. At this time, the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
 第3層目の画素電極は、中央部分が屈曲したくの字形状の電極要素を、複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。 The pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of electrode elements having a square shape with a bent central portion. The width in the short direction of each electrode element is 3 μm, and the distance between the electrode elements is 6 μm. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji. Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では、画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では、画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が、互いに逆方向となるように構成されている。 When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film to be described later is used as a reference, in the first region of the pixel, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise), and in the second region of the pixel The electrode elements of the pixel electrode are formed at an angle of −10 ° (clockwise). That is, in the first region and the second region of each pixel, the direction of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the substrate plane is It is comprised so that it may become a mutually reverse direction.
 次に、液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と、裏面にITO膜が成膜されている、高さ4μmの柱状スペーサーを有するガラス基板とに、スピンコート塗布にて塗布した。塗布後、80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して、消光比10:1以上の直線偏光した波長254nmの紫外線を照射した。この基板を、水及び有機溶媒から選ばれる少なくとも1種の溶媒に3分間浸漬させ、次いで、純水に1分間浸漬させ、その後、150~300℃のホットプレート上で5分間加熱し、液晶配向膜付き基板を得た。 Next, after filtering the liquid crystal aligning agent through a 1.0 μm filter, the prepared substrate with electrodes, and a glass substrate having a columnar spacer with a height of 4 μm on which an ITO film is formed on the back surface, It applied by spin coat application. After application, the film was dried on an 80 ° C. hot plate for 5 minutes, and then baked in a hot air circulation oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. The coated film surface was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 10: 1 or more via a polarizing plate. This substrate is immersed in at least one solvent selected from water and an organic solvent for 3 minutes, then immersed in pure water for 1 minute, and then heated on a hot plate at 150 to 300 ° C. for 5 minutes to obtain liquid crystal alignment A substrate with a film was obtained.
 2枚の基板を一組として、一方の基板上にシール剤を印刷し、もう一方の基板を、液晶配向膜面が向き合い、配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-7026-100(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置してから各評価に使用した。 A sealant is printed on one substrate as a set of two substrates, and the other substrate is bonded so that the liquid crystal alignment film surfaces face each other and the orientation direction becomes 0 °. An empty cell was produced by curing. Liquid crystal MLC-7026-100 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.
 [長期交流駆動による残像評価]
 上記した液晶セルと同様の構造の液晶セルを準備し、60℃の恒温環境下、周波数60Hzで±5Vの交流電圧を120時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで、液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素においても、第1画素の場合と同様に、第2領域と第1領域とを比較し、同様の角度Δを算出した。
[Afterimage evaluation by long-term AC drive]
A liquid crystal cell having the same structure as the liquid crystal cell described above was prepared, and an AC voltage of ± 5 V was applied for 120 hours at a frequency of 60 Hz in a constant temperature environment of 60 ° C. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day.
After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second area of the first pixel became darkest to the angle at which the first area became darkest was calculated as the angle Δ. Also in the second pixel, as in the case of the first pixel, the second area was compared with the first area, and the same angle Δ was calculated.
 [液晶セルの輝点の評価(コントラスト)]
 上記した液晶セルの輝点の評価を行った。液晶セルの輝点の評価は、液晶セルを偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)で観察することで行った。具体的には、液晶セルをクロスニコルで設置し、倍率を5倍にした偏光顕微鏡で液晶セルを観察して、確認された輝点の数を数え、輝点の数が10個未満を「良好」、それ以上を「不良」とした。
[Evaluation of bright spot of liquid crystal cell (contrast)]
The bright spot of the liquid crystal cell described above was evaluated. The bright spot of the liquid crystal cell was evaluated by observing the liquid crystal cell with a polarizing microscope (ECLIPSE E600WPOL) (Nikon Corporation). Specifically, the liquid crystal cell was installed with crossed Nicols, and the liquid crystal cell was observed with a polarizing microscope having a magnification of 5 times. The number of confirmed bright spots was counted, and the number of bright spots was less than 10. “Good” and more than “bad”.
<合成例1>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1を1.44g(4.50mmol)、及びDA-2を0.49g(4.53mmol)を量り取り、NMPを25.38g加えて、窒素を送りながら撹拌し、溶解させた。このジアミン溶液を撹拌しながら、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を1.92g(8.56mmol)添加し、更に、固形分濃度が12質量%になるようにNMPを2.82g加え、室温で24時間撹拌して、ポリアミック酸溶液(A)を得た。このポリアミック酸溶液の温度25℃における粘度は1680mPa・sであった。また、このポリアミック酸の分子量は、Mn=14700、Mw=35000であった。
<Synthesis Example 1>
In a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 1.44 g (4.50 mmol) of DA-1 and 0.49 g (4.53 mmol) of DA-2 were weighed, and 25. 38 g was added, and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 1.92 g (8.56 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and the solid content concentration was further 12% by mass. Then, 2.82 g of NMP was added and stirred at room temperature for 24 hours to obtain a polyamic acid solution (A). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 1680 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 14700 and Mw = 35000.
<合成例2>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1を2.24g(7.00mmol)を量り取り、NMPを24.64g加えて、窒素を送りながら撹拌し、溶解させた。このジアミン溶液を撹拌しながら、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を1.49g(6.65mmol)添加し、更に、固形分濃度が12質量%になるようにNMPを2.73g加え、室温で24時間撹拌して、ポリアミック酸溶液(B)を得た。このポリアミック酸溶液の温度25℃における粘度は2650mPa・sであった。また、このポリアミック酸の分子量は、Mn=21300、Mw=52300であった。
<Synthesis Example 2>
In a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 2.24 g (7.00 mmol) of DA-1 was weighed, 24.64 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. . While stirring this diamine solution, 1.49 g (6.65 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and the solid content concentration was further 12% by mass. Then, 2.73 g of NMP was added and stirred at room temperature for 24 hours to obtain a polyamic acid solution (B). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 2650 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 21300 and Mw = 52300.
<合成例3>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1を1.51g(4.71mmol)、及びDA-3を1.14g(4.71mmol)を量り取り、NMPを16.99g加えて、窒素を送りながら撹拌し、溶解させた。このジアミン溶液を撹拌しながら、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を2.07g(9.23mmol)添加し、更に、固形分濃度が20質量%になるようにNMPを1.89g加え、40℃で24時間撹拌して、ポリアミック酸溶液(C)を得た。このポリアミック酸溶液の温度25℃における粘度は5000mPa・sであった。また、このポリアミック酸の分子量は、Mn=13900、Mw=34100であった。
<Synthesis Example 3>
In a 50 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, 1.51 g (4.71 mmol) of DA-1 and 1.14 g (4.71 mmol) of DA-3 were weighed, and NMP 16. 99 g was added and dissolved by stirring while feeding nitrogen. While stirring this diamine solution, 2.07 g (9.23 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and the solid content concentration was further 20% by mass. Then, 1.89 g of NMP was added and stirred at 40 ° C. for 24 hours to obtain a polyamic acid solution (C). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 5000 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 13900 and Mw = 34100.
<合成例4>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-4を1.59g(6.51mmol)、及びDA-2を0.70g(6.47mmol)を量り取り、NMPを33.07g加えて、窒素を送りながら撹拌し、溶解させた。このジアミン溶液を撹拌しながら、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を2.71g(12.09mmol)添加し、更に、固形分濃度が12質量%になるようにNMPを3.67g加え、室温で24時間撹拌して、ポリアミック酸溶液(D)を得た。このポリアミック酸溶液の温度25℃における粘度は360mPa・sであった。また、このポリアミック酸の分子量は、Mn=14500、Mw=30200であった。
<Synthesis Example 4>
In a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 1.59 g (6.51 mmol) of DA-4 and 0.70 g (6.47 mmol) of DA-2 were weighed and 33. 07 g was added and stirred while feeding nitrogen to dissolve. While stirring the diamine solution, 2.71 g (12.09 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and the solid concentration was 12% by mass. Then, 3.67 g of NMP was added and stirred at room temperature for 24 hours to obtain a polyamic acid solution (D). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 360 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 14500 and Mw = 30200.
<合成例5>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を3.59g(16.01mmol)を量り取り、NMPを34.18g加えて、窒素を送りながら撹拌し、溶解させた。この酸二無水物溶液を撹拌しながら、DA-2を1.59g(14.70mmol)添加し、更に、固形分濃度が12質量%になるようにNMPを3.80g加え、室温で24時間撹拌して、ポリアミック酸溶液(E)を得た。このポリアミック酸溶液の温度25℃における粘度は200mPa・sであった。また、このポリアミック酸の分子量は、Mn=12600、Mw=30500であった。
<Synthesis Example 5>
In a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, weighed 3.59 g (16.01 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 34.18 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this acid dianhydride solution, 1.59 g (14.70 mmol) of DA-2 was added, and 3.80 g of NMP was further added so that the solid concentration was 12% by mass, and the mixture was stirred at room temperature for 24 hours. Stirring to obtain a polyamic acid solution (E). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 200 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 12600 and Mw = 30500.
<実施例1>
 12質量%のポリアミック酸溶液(A)15.00gを100ml三角フラスコに量り取り、NMP9.00g及びBCS6.00gを加え、25℃にて8時間混合して、液晶配向剤(1)を得た。液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 1>
15.00 g of 12% by mass polyamic acid solution (A) was weighed into a 100 ml Erlenmeyer flask, 9.00 g of NMP and 6.00 g of BCS were added, and mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (1). . Abnormalities such as turbidity and precipitation were not observed in the liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
<実施例2>
 ポリアミック酸溶液(A)の代わりにポリアミック酸溶液(B)を用いたこと以外は、実施例1と同様に処理を行い、液晶配向剤(2)を得た。液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 2>
A liquid crystal aligning agent (2) was obtained in the same manner as in Example 1 except that the polyamic acid solution (B) was used instead of the polyamic acid solution (A). Abnormalities such as turbidity and precipitation were not observed in the liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
<実施例3>
 20質量%のポリアミック酸溶液(C)9.00gを100ml三角フラスコに取り、NMP15.00g、BCS6.00gを加え、25℃にて8時間混合して、液晶配向剤(3)を得た。液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 3>
9.00 g of a 20% by mass polyamic acid solution (C) was placed in a 100 ml Erlenmeyer flask, 15.00 g of NMP and 6.00 g of BCS were added, and the mixture was mixed at 25 ° C. for 8 hours to obtain a liquid crystal aligning agent (3). Abnormalities such as turbidity and precipitation were not observed in the liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
<比較例1>
 ポリアミック酸溶液(A)の代わりにポリアミック酸溶液(D)を用いたこと以外は、実施例1と同様に処理を行い、液晶配向剤(4)を得た。液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative Example 1>
A liquid crystal aligning agent (4) was obtained in the same manner as in Example 1 except that the polyamic acid solution (D) was used instead of the polyamic acid solution (A). Abnormalities such as turbidity and precipitation were not observed in the liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
<比較例2>
 ポリアミック酸溶液(A)の代わりにポリアミック酸溶液(E)を用いたこと以外は、実施例1と同様に処理を行い、液晶配向剤(5)を得た。液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative example 2>
A liquid crystal aligning agent (5) was obtained in the same manner as in Example 1 except that the polyamic acid solution (E) was used instead of the polyamic acid solution (A). Abnormalities such as turbidity and precipitation were not observed in the liquid crystal aligning agent, and it was confirmed that the liquid crystal aligning agent was a uniform solution.
<実施例4>
 上記液晶配向剤(1)を、1.0μmのフィルターで濾過した後、上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板とに、スピンコート塗布にて塗布した。次いで、80℃のホットプレート上で5分間乾燥させ、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して、消光比26:1の直線偏光した波長254nmの紫外線を、0.2J/cm照射した。その後、230℃のホットプレート上で14分間加熱して、液晶配向膜付き基板を得た。
<Example 4>
After the liquid crystal aligning agent (1) is filtered through a 1.0 μm filter, spin coating is applied to the substrate with electrodes and a glass substrate having a columnar spacer with a height of 4 μm on which an ITO film is formed on the back surface. Was applied. Next, it was dried on an 80 ° C. hot plate for 5 minutes, and baked in a hot air circulation oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with 0.2 J / cm 2 of linearly polarized ultraviolet light having an extinction ratio of 26: 1 and a wavelength of 254 nm through a polarizing plate. Then, it heated for 14 minutes on a 230 degreeC hotplate, and obtained the board | substrate with a liquid crystal aligning film.
 2枚の基板を一組とし、一方の基板の上にシール剤を印刷し、もう一方の基板を、液晶配向膜面が向き合い、配向方向が0°になるようにして張り合わせた。その後、シール剤を硬化させて、空セルを作製した。この空セルに減圧注入法によって、液晶MLC-7026-100(メルク社製)を注入し、次いで、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置して、長期交流駆動による残像評価を実施した。長期交流駆動後における、この液晶セルの角度Δの値は、0.01°であった。また、液晶セル中の輝点観察を行った結果、輝点の数は10個未満であり、良好であった。 A set of two substrates was used, a sealant was printed on one substrate, and the other substrate was bonded so that the liquid crystal alignment film faced and the alignment direction was 0 °. Then, the sealing agent was hardened and the empty cell was produced. Liquid crystal MLC-7026-100 (manufactured by Merck) was injected into this empty cell by a reduced pressure injection method, and then the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and left to stand for evaluation of afterimages by long-term AC driving. The value of the angle Δ of this liquid crystal cell after long-term AC driving was 0.01 °. Further, as a result of observation of bright spots in the liquid crystal cell, the number of bright spots was less than 10 and was good.
<実施例5>
 上記液晶配向剤(2)を用いた以外は、実施例4と同様の方法で、塗膜を形成させた。この塗膜面に偏光板を介して、消光比26:1の直線偏光した波長254nmの紫外線を、0.5J/cm照射した。その後、230℃のホットプレート上で14分間加熱して、液晶配向膜付き基板を得た。この液晶配向膜付き基板を用いた以外は、実施例4と同様の方法で、FFS駆動液晶セルを作製し、得られた液晶セルについて、実施例4と同様の評価を実施した。その結果、角度Δの値は、0.03°であった。また、輝点の数は10個未満であり、良好であった。
<Example 5>
A coating film was formed in the same manner as in Example 4 except that the liquid crystal aligning agent (2) was used. The surface of the coating film was irradiated with 0.5 J / cm 2 of linearly polarized ultraviolet light having an extinction ratio of 26: 1 and a wavelength of 254 nm through a polarizing plate. Then, it heated for 14 minutes on a 230 degreeC hotplate, and obtained the board | substrate with a liquid crystal aligning film. An FFS drive liquid crystal cell was produced in the same manner as in Example 4 except that this substrate with a liquid crystal alignment film was used, and the same evaluation as in Example 4 was performed on the obtained liquid crystal cell. As a result, the value of the angle Δ was 0.03 °. The number of bright spots was less than 10 and was good.
<実施例6>
 上記液晶配向剤(3)を用いた以外は、実施例4と同様の方法で、塗膜を形成させ、紫外線を照射し、加熱して、液晶配向膜付き基板を得た。この液晶配向膜付き基板を用いた以外は、実施例4と同様の方法で、FFS駆動液晶セルを作製し、得られた液晶セルについて、実施例4と同様の評価を実施した。その結果、角度Δの値は、0.02°であった。また、輝点の数は10個未満であり、良好であった。
<Example 6>
A coating film was formed in the same manner as in Example 4 except that the liquid crystal aligning agent (3) was used, and irradiated with ultraviolet rays and heated to obtain a substrate with a liquid crystal alignment film. An FFS drive liquid crystal cell was produced in the same manner as in Example 4 except that this substrate with a liquid crystal alignment film was used, and the same evaluation as in Example 4 was performed on the obtained liquid crystal cell. As a result, the value of the angle Δ was 0.02 °. The number of bright spots was less than 10 and was good.
<比較例3>
 上記液晶配向剤(4)を用いた以外は、実施例4と同様の方法で、塗膜を形成させ、紫外線を照射し、加熱して、液晶配向膜付き基板を得た。この液晶配向膜付き基板を用いた以外は、実施例4と同様の方法で、FFS駆動液晶セルを作製し、得られた液晶セルについて、実施例4と同様の評価を実施した。その結果、角度Δの値は、0.10°であった。また、輝点の数は10個以上であり、不良であった。
<Comparative Example 3>
Except for using the liquid crystal aligning agent (4), a coating film was formed in the same manner as in Example 4, irradiated with ultraviolet rays, and heated to obtain a substrate with a liquid crystal alignment film. An FFS drive liquid crystal cell was produced in the same manner as in Example 4 except that this substrate with a liquid crystal alignment film was used, and the same evaluation as in Example 4 was performed on the obtained liquid crystal cell. As a result, the value of the angle Δ was 0.10 °. Further, the number of bright spots was 10 or more, which was poor.
<比較例4>
 上記液晶配向剤(5)を用いた以外は、実施例4と同様の方法で、塗膜を形成させ、紫外線を0.5J/cm照射し、加熱して、液晶配向膜付き基板を得た。この液晶配向膜付き基板を用いた以外は、実施例4と同様の方法で、FFS駆動液晶セルを作製し、得られた液晶セルについて、実施例4と同様の評価を実施した。その結果、角度Δの値は、0.19°であった。また、輝点の数は10個以上であり、不良であった。
<Comparative example 4>
Except for using the liquid crystal aligning agent (5), a coating film was formed in the same manner as in Example 4, irradiated with ultraviolet rays at 0.5 J / cm 2 and heated to obtain a substrate with a liquid crystal aligning film. It was. An FFS drive liquid crystal cell was produced in the same manner as in Example 4 except that this substrate with a liquid crystal alignment film was used, and the same evaluation as in Example 4 was performed on the obtained liquid crystal cell. As a result, the value of the angle Δ was 0.19 °. Further, the number of bright spots was 10 or more, which was poor.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
 本発明の液晶配向剤は、ネガ型液晶を用いた場合でも、輝点が発生せず、良好な残像特性を有する光配向法用の液晶配向膜の形成が可能であり、高い表示品位の、FFS駆動方式の液晶表示素子などに利用できる。
 なお、2015年3月24日に出願された日本特許出願2015-061095号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The liquid crystal aligning agent of the present invention is capable of forming a liquid crystal alignment film for a photo-alignment method having a good afterimage characteristic without generating a bright spot even when a negative type liquid crystal is used, and having a high display quality. It can be used for an FFS driving type liquid crystal display element.
The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2015-061095 filed on Mar. 24, 2015 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (8)

  1.  主鎖中に下記式(1)で表される構造を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体を含有する液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
     (式中、R及びRは、それぞれ独立して、単結合、-O-、-S-、-NR12-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、又はカルバメート結合であり、R12は、水素原子又はメチル基である。Aは炭素数2~20のアルキレン基である。B及びBは、それぞれ独立して、下記構造から選ばれる2価の有機基であり、BとBは同じ構造ではない。)
    Figure JPOXMLDOC01-appb-C000002
     (式中、Rは、炭素数1~5のアルキレン基である。Rは水素原子、メチル基、ヒドロキシ基又はメトキシ基である。)
    A liquid crystal aligning agent containing at least one polymer selected from the group consisting of a polyimide precursor having a structure represented by the following formula (1) in the main chain and an imidized polymer of the polyimide precursor.
    Figure JPOXMLDOC01-appb-C000001
    Wherein R 1 and R 2 are each independently a single bond, —O—, —S—, —NR 12 —, ester bond, amide bond, thioester bond, urea bond, carbonate bond, or carbamate bond. R 12 represents a hydrogen atom or a methyl group, A represents an alkylene group having 2 to 20 carbon atoms, and B 1 and B 2 each independently represents a divalent organic group selected from the following structures: And B 1 and B 2 are not the same structure.)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 4 is an alkylene group having 1 to 5 carbon atoms. R 5 is a hydrogen atom, a methyl group, a hydroxy group or a methoxy group.)
  2.  前記ポリイミド前駆体が、下記式(2)の構造単位を含有する重合体である請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
     (式中、Xは、下記式(X1-1)及び(X1-2)で表される構造からなる群から選ばれる少なくとも1種である。Yは前記式(1)で表される2価の有機基であり、Rは水素原子又は炭素数1~5のアルキル基である。Z及びZは、それぞれ独立して、水素原子、又は置換基を有してもよい、炭素数1~10のアルキル基、炭素数2~10のアルケニル基若しくは炭素数2~10のアルキニル基である。)
    Figure JPOXMLDOC01-appb-C000004
    The liquid crystal aligning agent according to claim 1, wherein the polyimide precursor is a polymer containing a structural unit represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000003
    (Wherein X 1 is at least one selected from the group consisting of structures represented by the following formulas (X1-1) and (X1-2). Y 1 is represented by the formula (1). R 3 is a divalent organic group, R 3 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and Z 1 and Z 2 may each independently have a hydrogen atom or a substituent, An alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an alkynyl group having 2 to 10 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000004
  3.  前記ポリイミド前駆体が、前記式(2)で表される構造単位を、全構造単位に対して、20~100モル%有する請求項2に記載の液晶配向剤。 3. The liquid crystal aligning agent according to claim 2, wherein the polyimide precursor has a structural unit represented by the formula (2) in an amount of 20 to 100 mol% based on the total structural units.
  4.  Xが、下記式(X1-2)である請求項2又は3に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    4. The liquid crystal aligning agent according to claim 2, wherein X 1 is the following formula (X1-2).
    Figure JPOXMLDOC01-appb-C000005
  5.  前記式(1)の構造が下記構造である、請求項1~4のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
     (式中、A、R及びRは、前記と同定義である。)
    The liquid crystal aligning agent according to any one of claims 1 to 4, wherein the structure of the formula (1) is the following structure.
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, A, R 1 and R 2 are as defined above.)
  6.  請求項1~5のいずれか1項に記載の液晶配向剤を塗布、焼成して得られた膜に、偏光された紫外線を照射して得られる液晶配向膜。 A liquid crystal alignment film obtained by irradiating a film obtained by applying and baking the liquid crystal aligning agent according to any one of claims 1 to 5 with polarized ultraviolet rays.
  7.  請求項6に記載の液晶配向膜を具備する液晶表示素子。 A liquid crystal display device comprising the liquid crystal alignment film according to claim 6.
  8.  下記式で表されるジアミン。
    Figure JPOXMLDOC01-appb-C000007
     (式中、R及びRは、それぞれ独立して、単結合、-O-、-S-、-NR12-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、又はカルバメート結合であり、R12は、水素原子又はメチル基であり、Aは炭素数2~20のアルキレン基である。)
    Diamine represented by the following formula.
    Figure JPOXMLDOC01-appb-C000007
    Wherein R 1 and R 2 are each independently a single bond, —O—, —S—, —NR 12 —, ester bond, amide bond, thioester bond, urea bond, carbonate bond, or carbamate bond. R 12 is a hydrogen atom or a methyl group, and A is an alkylene group having 2 to 20 carbon atoms.)
PCT/JP2016/059221 2015-03-24 2016-03-23 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element WO2016152928A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177030346A KR102605000B1 (en) 2015-03-24 2016-03-23 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2017508395A JP6669161B2 (en) 2015-03-24 2016-03-23 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
CN202010669052.3A CN111777519B (en) 2015-03-24 2016-03-23 Diamines
CN201680029992.8A CN107615145B (en) 2015-03-24 2016-03-23 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR1020237020871A KR20230097217A (en) 2015-03-24 2016-03-23 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-061095 2015-03-24
JP2015061095 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016152928A1 true WO2016152928A1 (en) 2016-09-29

Family

ID=56978163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059221 WO2016152928A1 (en) 2015-03-24 2016-03-23 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Country Status (5)

Country Link
JP (2) JP6669161B2 (en)
KR (2) KR20230097217A (en)
CN (2) CN107615145B (en)
TW (1) TWI707888B (en)
WO (1) WO2016152928A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056238A1 (en) * 2016-09-20 2018-03-29 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2018122936A1 (en) * 2016-12-26 2018-07-05 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
KR20190103397A (en) * 2017-04-04 2019-09-04 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal aligning film, its manufacturing method, liquid crystal element, a polymer, and a compound
JP2020040953A (en) * 2015-03-24 2020-03-19 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2020166623A1 (en) * 2019-02-13 2020-08-20 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element using this
CN111602088A (en) * 2018-01-19 2020-08-28 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
TWI726965B (en) * 2016-12-27 2021-05-11 日商日產化學工業股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR20210125901A (en) 2020-04-09 2021-10-19 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and manufacturing method thereof, and liquid crystal device
KR20220014816A (en) 2020-07-29 2022-02-07 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element
KR20220014850A (en) 2020-07-29 2022-02-07 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element
WO2022085674A1 (en) * 2020-10-23 2022-04-28 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20230038512A (en) 2020-07-17 2023-03-20 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
KR20230038513A (en) 2020-07-17 2023-03-20 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
KR20240037999A (en) 2021-07-30 2024-03-22 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display device, compound, and polymer
KR20240090439A (en) 2021-10-18 2024-06-21 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display device, compound, and polymer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI742094B (en) * 2017-06-13 2021-10-11 奇美實業股份有限公司 Method of producing liquid crystal alignment film and liquid crystal display
JP7334722B2 (en) * 2018-03-19 2023-08-29 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
CN112703447A (en) * 2018-09-14 2021-04-23 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, diamine, method for producing diamine, and polymer
JP7392655B2 (en) * 2018-11-06 2023-12-06 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
TWI834894B (en) * 2020-07-13 2024-03-11 奇美實業股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003454A (en) * 2000-04-07 2002-01-09 Chisso Corp New diamino compound, polymer synthesized by using the diamino compound, and varnish, oriented film and liquid crystal display element, obtained by using the polymer
JP2005157346A (en) * 2003-11-05 2005-06-16 Chisso Corp Liquid crystal aligning agent and liquid crystal display using the same
JP2005154436A (en) * 2003-11-05 2005-06-16 Chisso Corp New diamine and polymer using the same as raw material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (en) 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
TWI343926B (en) * 2003-11-05 2011-06-21 Chisso Corp Diamine
TWI341863B (en) * 2003-11-05 2011-05-11 Chisso Corp Liquid crystal alignment agent
JP4821118B2 (en) * 2004-02-12 2011-11-24 Jnc株式会社 Diamine, polymer, liquid crystal alignment film and liquid crystal display element
JP5654228B2 (en) 2009-11-13 2015-01-14 株式会社ジャパンディスプレイ Liquid crystal display device and method of manufacturing liquid crystal display device
TWI554555B (en) * 2011-06-28 2016-10-21 Nissan Chemical Ind Ltd A liquid crystal alignment film, a liquid crystal alignment film, and a liquid crystal display device
JP6083379B2 (en) * 2011-08-04 2017-02-22 日産化学工業株式会社 Liquid crystal aligning agent for photo-alignment treatment method, and liquid crystal alignment film using the same
JP6146077B2 (en) * 2012-06-29 2017-06-14 Jsr株式会社 Method for producing liquid crystal alignment film
JP6213281B2 (en) * 2013-03-19 2017-10-18 Jnc株式会社 Photosensitive diamine, liquid crystal aligning agent, and liquid crystal display element
KR102221877B1 (en) * 2013-03-25 2021-03-02 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2014178406A1 (en) * 2013-05-01 2014-11-06 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20230097217A (en) * 2015-03-24 2023-06-30 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003454A (en) * 2000-04-07 2002-01-09 Chisso Corp New diamino compound, polymer synthesized by using the diamino compound, and varnish, oriented film and liquid crystal display element, obtained by using the polymer
JP2005157346A (en) * 2003-11-05 2005-06-16 Chisso Corp Liquid crystal aligning agent and liquid crystal display using the same
JP2005154436A (en) * 2003-11-05 2005-06-16 Chisso Corp New diamine and polymer using the same as raw material

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020040953A (en) * 2015-03-24 2020-03-19 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2018056238A1 (en) * 2016-09-20 2018-03-29 日産化学工業株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2018122936A1 (en) * 2016-12-26 2018-07-05 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JPWO2018122936A1 (en) * 2016-12-26 2019-10-31 日産化学株式会社 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
JP7001063B2 (en) 2016-12-26 2022-01-19 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI726965B (en) * 2016-12-27 2021-05-11 日商日產化學工業股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
KR20190103397A (en) * 2017-04-04 2019-09-04 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal aligning film, its manufacturing method, liquid crystal element, a polymer, and a compound
CN110383156A (en) * 2017-04-04 2019-10-25 Jsr株式会社 Aligning agent for liquid crystal, liquid crystal orientation film and its manufacturing method, liquid crystal cell, polymer and compound
JPWO2018186055A1 (en) * 2017-04-04 2019-11-07 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film and manufacturing method thereof, liquid crystal element, polymer, and compound
JP7028241B2 (en) 2017-04-04 2022-03-02 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and its manufacturing method, and liquid crystal element
KR102269265B1 (en) * 2017-04-04 2021-06-24 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal aligning film and manufacturing method thereof, liquid crystal element, and polymer
CN111602088A (en) * 2018-01-19 2020-08-28 日产化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element using same
JPWO2020166623A1 (en) * 2019-02-13 2021-12-16 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using it
WO2020166623A1 (en) * 2019-02-13 2020-08-20 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal element using this
TWI816022B (en) * 2019-02-13 2023-09-21 日商日產化學股份有限公司 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display elements using the same
JP7428145B2 (en) 2019-02-13 2024-02-06 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element using the same
KR20210125901A (en) 2020-04-09 2021-10-19 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and manufacturing method thereof, and liquid crystal device
KR20230038512A (en) 2020-07-17 2023-03-20 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
KR20230038513A (en) 2020-07-17 2023-03-20 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
KR20220014816A (en) 2020-07-29 2022-02-07 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element
KR20220014850A (en) 2020-07-29 2022-02-07 제이에스알 가부시끼가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal element
WO2022085674A1 (en) * 2020-10-23 2022-04-28 日産化学株式会社 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20240037999A (en) 2021-07-30 2024-03-22 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display device, compound, and polymer
KR20240090439A (en) 2021-10-18 2024-06-21 닛산 가가쿠 가부시키가이샤 Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display device, compound, and polymer

Also Published As

Publication number Publication date
KR20230097217A (en) 2023-06-30
CN111777519B (en) 2023-12-05
KR102605000B1 (en) 2023-11-22
JP6669161B2 (en) 2020-03-18
JP2020040953A (en) 2020-03-19
CN107615145A (en) 2018-01-19
TWI707888B (en) 2020-10-21
JPWO2016152928A1 (en) 2018-03-22
KR20170131533A (en) 2017-11-29
CN107615145B (en) 2021-05-07
TW201708316A (en) 2017-03-01
JP6852771B2 (en) 2021-03-31
CN111777519A (en) 2020-10-16

Similar Documents

Publication Publication Date Title
JP6852771B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6711443B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal alignment element
JP6638396B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP7259328B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP6578948B2 (en) Liquid crystal aligning agent containing polyimide precursor and / or polyimide having thermally detachable group
JPWO2015072554A1 (en) Liquid crystal aligning agent and liquid crystal display element using the same
WO2013157586A1 (en) Liquid-crystal alignment material for use in photo-alignment method, liquid-crystal alignment film, and liquid-crystal display element
WO2013081067A1 (en) Liquid crystal alignment film, method for producing liquid crystal alignment film, and liquid crystal display element
WO2015156335A1 (en) Liquid crystal aligning agent containing urea compound having alkoxysilyl group
WO2014084364A1 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP7131384B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2017047596A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP2024037908A (en) Compound
WO2018062437A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP7392655B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
WO2019181879A1 (en) Liquid crystal alignment agent, liquid crystal aligned film and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508395

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177030346

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16768831

Country of ref document: EP

Kind code of ref document: A1