WO2018122936A1 - Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element - Google Patents

Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element Download PDF

Info

Publication number
WO2018122936A1
WO2018122936A1 PCT/JP2016/088770 JP2016088770W WO2018122936A1 WO 2018122936 A1 WO2018122936 A1 WO 2018122936A1 JP 2016088770 W JP2016088770 W JP 2016088770W WO 2018122936 A1 WO2018122936 A1 WO 2018122936A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
formula
aligning agent
group
crystal aligning
Prior art date
Application number
PCT/JP2016/088770
Other languages
French (fr)
Japanese (ja)
Inventor
欣也 松本
橋本 淳
直樹 作本
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2018558546A priority Critical patent/JP7001063B2/en
Priority to KR1020197021860A priority patent/KR20190095477A/en
Priority to CN201680092089.6A priority patent/CN110325901B/en
Priority to PCT/JP2016/088770 priority patent/WO2018122936A1/en
Publication of WO2018122936A1 publication Critical patent/WO2018122936A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal aligning agent suitable for a photo-alignment method treatment, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element using the liquid crystal aligning film.
  • Liquid crystal display elements used for liquid crystal televisions, liquid crystal displays, and the like are usually provided with a liquid crystal alignment film for controlling the alignment state of the liquid crystals.
  • a liquid crystal alignment film a polyimide-based liquid crystal alignment film obtained by applying a polyimide precursor such as polyamic acid (polyamic acid) or a liquid crystal aligning agent mainly composed of a soluble polyimide solution to a glass substrate or the like and baking it is mainly used. Yes.
  • this liquid crystal alignment film is rubbed in one direction with a cloth of cotton, nylon, polyester or the like on the surface of the polyimide liquid crystal alignment film formed on the electrode substrate. It is produced by performing a so-called rubbing process.
  • the photo-alignment method has an advantage that it can be produced by an industrially simple manufacturing process as a rubbing-less alignment treatment method.
  • a liquid crystal display element of an IPS drive method or a fringe field switching (hereinafter referred to as FFS) drive method By using the liquid crystal alignment film obtained by the alignment method, the performance of the liquid crystal display element can be improved as compared to the liquid crystal alignment film obtained by the rubbing treatment method. Therefore, it attracts attention as a promising liquid crystal alignment method.
  • the liquid crystal alignment film obtained by the photo-alignment method has a problem that anisotropy with respect to the alignment direction of the polymer film is smaller than that by the rubbing treatment. If the anisotropy is small, sufficient liquid crystal orientation cannot be obtained, and problems such as occurrence of afterimages occur when a liquid crystal display element is formed.
  • As a method for increasing the anisotropy of a liquid crystal alignment film obtained by a photo-alignment method it has been proposed to remove a low molecular weight component generated by cutting the main chain of the polyimide by light irradiation after light irradiation.
  • a positive type liquid crystal is conventionally used.
  • a negative type liquid crystal it is possible to reduce the transmission loss at the upper part of the electrode and improve the contrast. It is.
  • an IPS driving type or FFS driving type liquid crystal display element using a liquid crystal alignment film obtained by the photo-alignment method and a negative liquid crystal it is expected to have higher display performance than a conventional liquid crystal display element.
  • An object of the present invention is to provide a liquid crystal alignment suitable for a photo-alignment process for obtaining a liquid crystal alignment film for a photo-alignment method in which no bright spots are generated and good afterimage characteristics are obtained even when a negative liquid crystal is used. It is in providing the liquid crystal display element which comprises an agent, the liquid crystal aligning film obtained from this liquid crystal aligning agent, and this liquid crystal aligning agent.
  • liquid crystal aligning agent containing a polyimide polymer having a specific structure is effective for achieving the above object, and has completed the present invention.
  • the gist of the present invention is as described below. 1. It contains at least one polymer (A) selected from the group consisting of a polyimide precursor having structural units represented by the following formula (1) and the following formula (2) and an imidized polymer of the polyimide precursor.
  • a liquid crystal aligning agent characterized by that.
  • X 1 and X 2 are each independently a tetravalent organic group, R 1 and R 2 are each independently a hydrogen atom, or carbon atoms An alkyl group having 1 to 4; A 1 , A 2 , A 3 , and A 4 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; and Z 1 , Z 2 , Z 3 , And Z 4 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms, and n is an integer of 1 to 4).
  • the present invention even when a negative liquid crystal is used, a bright alignment point that can be suppressed in the photo-alignment treatment method can be suppressed, and a liquid crystal alignment film having high irradiation sensitivity and good afterimage characteristics can be obtained.
  • the liquid crystal aligning agent suitable for can be provided.
  • the liquid crystal aligning agent of the present invention is selected from the group consisting of a polyimide precursor having a structural unit represented by the above formula (1) and the above formula (2) and an imidized polymer of the polyimide precursor. At least one polymer (also referred to as a specific polymer (A)).
  • R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. From the viewpoint of ease of imidization by heating, a hydrogen atom or a methyl group is particularly preferable.
  • X 1 and X 2 are tetravalent organic groups.
  • a structure capable of imparting anisotropy by a reaction such as decomposition or isomerization upon irradiation with ultraviolet rays is preferable, and at least one selected from the group consisting of structures represented by the following formulas (X1-1) to (X1-9) It is more preferable that
  • R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, An alkynyl group or a phenyl group, which may be the same or different.
  • R 3 , R 4 , R 5 , and R 6 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group.
  • Specific examples of the structure of the formula (X1-1) include structures represented by the following formulas (X1-10) to (X1-11). From the viewpoint of liquid crystal alignment and sensitivity, (X1-11) is particularly preferable.
  • a 1 , A 2 , A 3 , and A 4 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. From the viewpoint of liquid crystal orientation, a hydrogen atom or a methyl group is preferable, and a hydrogen atom is more preferable.
  • Z 1 , Z 2 , Z 3 , and Z 4 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. From the viewpoint of liquid crystal orientation, a hydrogen atom, a halogen atom, or a methyl group is preferable.
  • n is an integer of 1 to 4.
  • the proportion of the structural unit represented by the above formula (1) is 10 to 50 mol% with respect to 1 mol of all the structural units from the viewpoint of liquid crystal orientation and suppression of bright spots. Is more preferable, and more preferably 30 to 50 mol%.
  • the content ratio of the structural unit represented by the above formula (2) is 20 to 20 parts per 1 mole of all the structural units from the viewpoint of liquid crystal orientation and suppression of bright spots. 90 mol% is preferable, and more preferably 20 to 50 mol%.
  • the specific polymer (A) has a structural unit represented by the following formula (3) in addition to the structural units represented by the above formulas (1) and (2) from the viewpoint of the mechanical strength of the alignment film. It is preferable.
  • X 3 has the same meaning as X 1 and X 2 in the above formula, including preferred examples (1) and (2).
  • R 3 is synonymous with the above R 1 and R 2 including preferred examples.
  • Y 1 is at least one selected from the group consisting of structures represented by the following formulas [1d-1] to [1d-7].
  • D is a tert-butoxymethoxycarbonyl group.
  • n 1 to n 5 are each independently an integer of 1 to 5. More specific examples of Y 1 include the following formulas [1d1-1] to [1d1-6].
  • D is a tert-butoxymethoxycarbonyl group.
  • the content ratio of the structural unit represented by the formula (3) is preferably 10 to 50 mol%, more preferably 20 to 30 mol% with respect to 1 mol of all the structural units of the specific polymer (A). is there.
  • the specific polymer (A) has, in addition to the structural units represented by the above formulas (1) to (3), a polyimide precursor containing a structural unit represented by the following formula (4) and the polyimide precursor. You may do it.
  • R 4 has the same meaning as R 1 in formula (1), including preferred examples.
  • a 5 and A 6 are synonymous with A 1 and A 2 in the above formula (1).
  • X is a tetravalent organic group, and its structure is not particularly limited. Specific examples include the above formulas (X1-1) to (X1-9) or the following formulas (X-9) to (X-42). From the viewpoint of availability of the compound, X includes X1-1 to X1-9, X-17, X-25, X-26, X-27, X-28, X-32, or X-39. .
  • tetracarboxylic dianhydrides having an aromatic ring structure are preferable from the viewpoint of obtaining a liquid crystal alignment film in which residual charges accumulated by a DC voltage can be quickly relaxed, and X is X-26, X-27, X -28, X-32, X-35, or X-37 is more preferred.
  • Y is a divalent organic group, and its structure is not particularly limited.
  • Specific examples of Y 2 include the following formulas (Y-1) to (Y-84).
  • Y is preferably a highly linear structure.
  • Y-7, Y-43 to Y-48, Y63, or Y-71 to Y-76 are more preferable.
  • Y-77 to Y-84 are more preferable because a liquid crystal alignment film can be obtained in which the residual charge accumulated by the DC voltage is quickly relaxed.
  • the polyamic acid ester which is a polyimide precursor used in the present invention can be synthesized by the method (1), (2) or (3) shown below.
  • the polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the amount of the esterifying agent used is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone from the solubility of the polymer, and these may be used alone or in combination.
  • the concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of synthesis is preferably 1 to 30% by mass and more preferably 5 to 20% by mass because polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • Polyamic acid ester can be synthesized by polycondensation of tetracarboxylic acid diester and diamine. Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can be synthesized by reacting for a time.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the amount of the base added is preferably 2 to 4 moles relative to the diamine component because it can be easily removed and a high molecular weight product can be easily obtained.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
  • the synthesis method (1) or (2) is particularly preferable.
  • the polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyamic acid which is a polyimide precursor used in the present invention can be synthesized by the following method. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone from the solubility of the monomer and polymer, and these may be used alone or in combination of two or more. .
  • the concentration of the polymer is preferably 1 to 30% by mass and more preferably 5 to 20% by mass because the polymer does not easily precipitate and a high molecular weight body is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • the polyimide used in the present invention can be produced by imidizing the polyamic acid ester or polyamic acid.
  • chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
  • Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst.
  • a basic catalyst As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time is preferably 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid ester group.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below and redissolved in an organic solvent to obtain a liquid crystal aligning agent. It is preferable.
  • Chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction with a diamine component and tetracarboxylic dianhydride is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process. Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the temperature for carrying out the imidization reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. Is double.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
  • the liquid crystal aligning agent of the present invention is preferable.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the liquid crystal aligning agent used in the present invention has a form of a solution in which the specific polymer (A) is dissolved in an organic solvent.
  • the molecular weight of the specific polymer (A) is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, still more preferably 10,000 to 100,000. .
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the concentration of the polymer in the liquid crystal aligning agent can be appropriately changed according to the setting of the thickness of the coating film to be formed, but is preferably 1% by weight or more because a uniform and defect-free coating film is formed. 10% by weight or less is preferable from the viewpoint of stability.
  • the solvent used for the liquid crystal aligning agent of this invention will not be specifically limited if it is a solvent (it is also called a good solvent) in which a specific polymer (A) is dissolved.
  • good solvents are given below.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and ⁇ -butyrolactone are preferably used.
  • solvents represented by the following formulas [D-1] to [D-3] are preferable.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D 3 represents 1 to 3 carbon atoms. 4 alkyl groups).
  • the content of the good solvent in the liquid crystal aligning agent is preferably 20 to 99% by mass of the total solvent, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass.
  • the liquid crystal aligning agent can contain a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied.
  • These poor solvents are preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass based on the total amount of the solvent contained in the liquid crystal aligning agent.
  • the liquid crystal aligning agent of the present invention includes at least one substituent selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group.
  • crosslinkable compound having a crosslinkable compound or a crosslinkable compound having a polymerizable unsaturated bond It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-amin
  • the crosslinkable compound having an oxetane group is a compound having at least two oxetane groups represented by the following formula [4A]. Specific examples include crosslinkable compounds represented by the formulas [4a] to [4k] published on pages 58 to 59 of International Publication No. WO2011 / 132751 (published on October 27, 2011).
  • the crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5A].
  • crosslinkable compounds represented by the formulas [5-1] to [5-42] described on pages 76 to 82 of International Publication No. WO2012 / 014898 (published on 2.2.2.2012).
  • the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril.
  • a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group, or both can be used.
  • the melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
  • Examples of the melamine derivative or benzoguanamine derivative include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5.8 methoxymethyl groups per triazine ring.
  • MX-750 which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5.8 methoxymethyl groups per triazine ring.
  • MW-30 manufactured by Sanwa Chemical Co., Ltd.
  • Methoxymethylated ethoxyme Benzomethylamine, methoxymethyl butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzoguanamine such as Cymel 1128, carboxymethyl-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 Cyanamide).
  • glycoluril examples include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, and methoxymethylolated glycoluril such as Powderlink 1174.
  • examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol. More specifically, the crosslinkable compounds represented by the formulas [6-1] to [6-48] described in pages 62 to 66 of International Publication No. WO2011 / 132751 (published on 10.27.2011) can be mentioned.
  • crosslinkable compound having a polymerizable unsaturated bond examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol.
  • Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol Rudi (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl
  • E 1 represents a group selected from the group consisting of a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring or a phenanthrene ring; 2 represents a group selected from the following formula [7a] or [7b], and n represents an integer of 1 to 4.
  • crosslinkable compound used for a liquid crystal aligning agent may be 1 type, or may combine 2 or more types.
  • the content of the crosslinkable compound in the liquid crystal aligning agent is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all the polymer components.
  • the amount is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of all the polymer components. More preferred is 1 to 50 parts by mass.
  • the liquid crystal aligning agent of this invention can use the compound which improves the uniformity of the film thickness of a liquid crystal aligning film at the time of apply
  • the compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
  • F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink), Florard FC430, FC431 (or more) And Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
  • the amount of the surfactant used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent.
  • the liquid crystal aligning agent is published on pages 69 to 73 of International Publication No. WO2011 / 132751 (published on 10.27.2011) as a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge release of the device. It is also possible to add nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156].
  • the amine compound may be added directly to the liquid crystal aligning agent, but it is preferable to add the amine compound after forming a solution having a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass.
  • the solvent is not particularly limited as long as the specific polymer (A) is dissolved.
  • the liquid crystal aligning agent of the present invention includes, in addition to the above-mentioned poor solvent, crosslinkable compound, resin film or compound that improves the film thickness uniformity and surface smoothness of the liquid crystal aligning film, and a compound that promotes charge removal.
  • a polymer other than the polymer described in the present invention, a silane coupling agent for the purpose of improving the adhesion between the alignment film and the substrate, and further when firing the coating film An imidization accelerator for the purpose of efficiently progressing imidization by heating of the polyimide precursor may be added to.
  • the liquid crystal alignment film is a film obtained by applying the above liquid crystal aligning agent to a substrate, drying and baking.
  • the substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with a glass substrate or a silicon nitride substrate. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is used from the viewpoint of simplification of the process.
  • an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate, and a material that reflects light such as aluminum can be used for the electrode in this case.
  • a method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method of performing screen printing, offset printing, flexographic printing, an inkjet method, or the like is common. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, or a spray method, and these may be used depending on the purpose.
  • the solvent can be evaporated by a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven to form a liquid crystal alignment film.
  • a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven to form a liquid crystal alignment film.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention.
  • a condition of baking at 50 to 120 ° C. for 1 to 10 minutes and then baking at 150 to 300 ° C. for 5 to 120 minutes is mentioned in order to sufficiently remove the contained solvent. If the thickness of the liquid crystal alignment film after baking is too thin, the reliability of the liquid crystal display element may be lowered, and thus it is preferably 5 to 300 nm, and more preferably 10 to 200 nm.
  • the method for aligning the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention may be a rubbing method, but the photo alignment method is preferred.
  • the photo-alignment treatment method the surface of the liquid crystal alignment film is irradiated with radiation deflected in a certain direction, and in some cases, preferably, a heat treatment is performed at a temperature of 150 to 250 ° C. And a method of imparting (also referred to as liquid crystal alignment ability).
  • the radiation ultraviolet rays or visible rays having a wavelength of 100 to 800 nm can be used. Among these, ultraviolet rays having a wavelength of preferably 100 to 400 nm, more preferably 200 to 400 nm are preferable.
  • the substrate coated with the liquid crystal alignment film may be irradiated with radiation while heating at 50 to 250 ° C.
  • the irradiation amount of the radiation is preferably 1 ⁇ 10,000mJ / cm 2, more preferably 100 ⁇ 5,000mJ / cm 2.
  • the liquid crystal alignment film can stably align liquid crystal molecules in a certain direction.
  • a higher extinction ratio of polarized ultraviolet rays is preferable because higher anisotropy can be imparted.
  • the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more.
  • the liquid crystal alignment film irradiated with polarized radiation can be subjected to contact treatment using water or a solvent by the above method.
  • the solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves a decomposition product generated from the liquid crystal alignment film by irradiation with radiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples thereof include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate or cyclohexyl acetate.
  • water, 2-propanol, 1-methoxy-2-propanol or ethyl lactate is preferable, and water, 1-methoxy-2-propanol or ethyl lactate is more preferable in view of versatility and solvent safety.
  • a solvent may be used alone or in combination of two or more.
  • Examples of the above-described contact treatment that is, treatment of water or a solvent on the liquid crystal alignment film irradiated with polarized radiation includes immersion treatment and spray treatment (spray treatment).
  • the time for these treatments is preferably 10 seconds to 1 hour, and preferably immersion treatment for 1 to 30 minutes, from the viewpoint of efficiently dissolving the decomposition products generated from the liquid crystal alignment film by radiation.
  • the solvent for the contact treatment may be heated at normal temperature, but is preferably 10 to 80 ° C. Of these, 20 to 50 ° C. is preferable.
  • ultrasonic treatment or the like may be performed as necessary.
  • rinsing also referred to as rinsing
  • a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, or methyl ethyl ketone
  • the firing temperature is preferably 150 to 300 ° C, more preferably 180 to 250 ° C, and particularly preferably 200 to 230 ° C.
  • the firing time is preferably 10 seconds to 30 minutes, more preferably 1 to 10 minutes.
  • the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film for a horizontal electric field type liquid crystal display element such as an IPS mode or an FFS mode, and is particularly useful for an FFS mode liquid crystal display element.
  • the liquid crystal display element is obtained using a liquid crystal cell by preparing a liquid crystal cell by a known method after obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention.
  • a liquid crystal display element having a passive matrix structure will be described as an example.
  • an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a SiO 2 —TiO 2 film formed by a sol-gel method.
  • a liquid crystal alignment film is formed on each substrate, the other substrate is overlaid on one substrate so that the liquid crystal alignment film faces each other, and the periphery is bonded with a sealant.
  • a spacer is usually mixed in the sealant, and it is preferable to spray a spacer for controlling the substrate gap on the in-plane portion where no sealant is provided.
  • a part of the sealant is provided with an opening that can be filled with liquid crystal from the outside.
  • a liquid crystal material is injected into the space surrounded by the two substrates and the sealing agent through the opening provided in the sealing agent, and then the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
  • the liquid crystal material either a positive liquid crystal material or a negative liquid crystal material may be used, but a negative liquid crystal material is preferable.
  • a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • liquid crystal aligning agent of the present invention it is possible to obtain a liquid crystal aligning film that suppresses afterimages due to AC driving and has both adhesiveness with the sealing agent and the base substrate.
  • a liquid crystal alignment film for photo-alignment treatment obtained by irradiating polarized radiation.
  • NMP N-methyl-2-pyrrolidone
  • BCS Butyl cellosolve
  • DA-1 1,2-bis (4-aminophenoxy) ethane
  • DA-2 1,3-bis (4-aminophenoxy) propane
  • DA-3 p-phenylenediamine
  • DA-6 4- (2- (methylamino) ethyl) aniline
  • the viscosity of the polyamic acid ester and the polyamic acid solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24), temperature 25 Measured at ° C.
  • the molecular weight of the polyamic acid ester is measured by a GPC (room temperature gel permeation chromatography) apparatus, and is a number average molecular weight (hereinafter also referred to as Mn) and a weight average molecular weight (hereinafter also referred to as Mw) in terms of polyethylene glycol and polyethylene oxide. Was calculated.
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 ml / L) Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polymer laboratory Polyethylene glycol manufactured by the company (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000). In order to avoid the overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000
  • the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is the proton peak integrated value derived from the NH group of the amic acid
  • y is the peak integrated value of the reference proton
  • is the NH of the amic acid in the case of polyamic acid (imidation rate is 0%). This is the ratio of the number of reference protons to one group proton.
  • a liquid crystal cell having a configuration of a fringe field switching (FFS) mode liquid crystal display element is manufactured.
  • a substrate with electrodes was prepared.
  • an ITO electrode having a solid pattern constituting a counter electrode as a first layer is formed.
  • a SiN (silicon nitride) film formed by the CVD method is formed as the second layer.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an ITO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of electrode elements having a dogleg shape whose central portion is bent.
  • the width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold “Koji”.
  • Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel.
  • the electrode elements of the electrode are formed so as to form an angle of ⁇ 10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
  • the prepared substrate with electrodes and a glass substrate having a columnar spacer with a height of 4 ⁇ m on which an ITO film is formed on the back surface It applied by spin coat application.
  • This coating film surface was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 10: 1 or more via a polarizing plate.
  • This substrate is immersed in at least one solvent selected from water and an organic solvent for 3 minutes, then immersed in pure water for 1 minute, and heated on a hot plate at 150 ° C. to 300 ° C. for 5 minutes to provide a liquid crystal alignment film
  • a substrate was obtained.
  • the two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added.
  • An empty cell was produced by curing.
  • Liquid crystal MLC-7026-100 manufactured by Merck & Co., Inc.
  • a liquid crystal cell having the same structure as the liquid crystal cell used for the above-described afterimage evaluation was prepared. Using this liquid crystal cell, an AC voltage of ⁇ 5 V was applied for 120 hours at a frequency of 60 Hz in a constant temperature environment of 60 ° C. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day. After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted.
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle ⁇ .
  • the second region and the first region were compared to calculate a similar angle ⁇ .
  • Example 1 15.00 g of the 12% by mass polyamic acid solution (A) obtained in Synthesis Example 1 was placed in a 100 ml Erlenmeyer flask, 9.00 g of NMP and 6.00 g of BCS were added, and the mixture was mixed at 25 ° C. for 8 hours. (1) was obtained.
  • This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
  • Example 2 to 6 The liquid crystal aligning agent (2) was obtained in the same manner as in Example 1 except that 12% by mass of the polyamic acid solutions (B) to (F) obtained in Synthesis Examples 2 to 6 were used. To (6) were obtained. All of these liquid crystal aligning agents were confirmed to be uniform solutions without any abnormality such as turbidity and precipitation.
  • the liquid crystal aligning agent (7) was obtained in the same manner as in Example 1 except that 12% by mass of the polyamic acid solutions (G) to (K) obtained in Synthesis Examples 7 to 11 were used. To (11) were obtained. All of these liquid crystal aligning agents were confirmed to be uniform solutions without any abnormality such as turbidity and precipitation.
  • Example 7 The liquid crystal aligning agent (1) obtained in Example 1 was filtered through a 1.0 ⁇ m filter, and then spin-coated on a 30 mm ⁇ 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the height of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured.
  • anisotropy value 1.31 in dose is 100 / cm 2 in the UV, anisotropy value at 150 mJ / cm 2 at 3.10, the anisotropy at 200 mJ / cm 2 The value was 2.25.
  • the irradiation amount of the ultraviolet ray having the highest anisotropy was 150 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
  • Example 8 The liquid crystal aligning agent (2) obtained in Example 2 was filtered through a 1.0 ⁇ m filter, and then spin-coated on a 30 mm ⁇ 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the height of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured.
  • anisotropy value 0.43 in the irradiation amount is 50 mJ / cm 2 of the ultraviolet, anisotropy value at 100 mJ / cm 2 at 3.53, the anisotropy at 150 mJ / cm 2 The value was 3.26.
  • the irradiation amount of the ultraviolet ray having the highest anisotropy was 150 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
  • Example 9 The liquid crystal aligning agent (3) obtained in Example 3 was filtered through a 1.0 ⁇ m filter, and then spin-coated on a 30 mm ⁇ 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the height of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured.
  • the anisotropy value when the UV irradiation dose is 200 mJ / cm 2 is 2.24, the anisotropy value at 300 mJ / cm 2 is 3.41, and the anisotropy value at 400 mJ / cm 2 .
  • the value was 1.51.
  • the irradiation amount of the ultraviolet ray having the highest anisotropy was 300 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
  • Example 10 The liquid crystal aligning agent (4) obtained in Example 4 was filtered through a 1.0 ⁇ m filter, and spin-coated on a 30 mm ⁇ 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the height of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured.
  • the anisotropy value when the UV irradiation dose is 100 mJ / cm 2 is 1.15
  • the anisotropy value at 200 mJ / cm 2 is 2.30
  • the anisotropy value at 300 mJ / cm 2 is 300 mJ / cm 2 .
  • the value was 2.26.
  • the irradiation amount of the ultraviolet ray having the highest anisotropy was 200 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
  • Example 11 The liquid crystal aligning agent (5) obtained in Example 5 was filtered through a 1.0 ⁇ m filter, and spin-coated on a 30 mm ⁇ 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the height of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured.
  • the irradiation amount of the ultraviolet ray having the highest anisotropy was 150 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
  • Example 12 The liquid crystal aligning agent (6) obtained in Example 6 was filtered through a 1.0 ⁇ m filter, and then spin-coated on a 30 mm ⁇ 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the height of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured.
  • anisotropy value 2.76 in dose is 100 mJ / cm 2 of the ultraviolet
  • anisotropy value at 150 mJ / cm 2 at 4.87 the anisotropy at 200 mJ / cm 2
  • the value was 4.01.
  • the irradiation amount of the ultraviolet ray having the highest anisotropy was 150 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
  • Comparative Example 6 The liquid crystal aligning agent (7) obtained in Comparative Example 1 was filtered through a 1.0 ⁇ m filter, and then spin-coated on a 30 mm ⁇ 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the degree of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured.
  • the irradiation amount of the ultraviolet ray having the greatest anisotropy was 200 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
  • Comparative Example 7 The liquid crystal aligning agent (8) obtained in Comparative Example 2 was filtered through a 1.0 ⁇ m filter, and then spin-coated on a 30 mm ⁇ 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the degree of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured.
  • the irradiation amount of the ultraviolet ray having the largest anisotropy was 150 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
  • Comparative Example 8 The liquid crystal aligning agent (9) obtained in Comparative Example 3 was filtered through a 1.0 ⁇ m filter, and then spin-coated on a 30 mm ⁇ 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the degree of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured.
  • the irradiation amount of the ultraviolet ray having the greatest anisotropy was 100 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
  • Comparative Example 9 The liquid crystal aligning agent (10) obtained in Comparative Example 4 was filtered through a 1.0 ⁇ m filter, and then spin-coated on a 30 mm ⁇ 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the degree of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured.
  • the value was 1.33.
  • the irradiation amount of the ultraviolet ray having the greatest anisotropy was 600 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
  • Comparative Example 10 The liquid crystal aligning agent (11) obtained in Comparative Example 5 was filtered through a 1.0 ⁇ m filter, and then spin-coated on a 30 mm ⁇ 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the degree of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured.
  • the anisotropy value at 5.5 mJ / cm 2 of the UV irradiation is 5.54
  • the anisotropy value at 100 mJ / cm 2 is 7.34
  • the anisotropy value at 200 mJ / cm 2 was 6.40.
  • the irradiation amount of the ultraviolet ray having the greatest anisotropy was 100 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
  • Example 13 After the liquid crystal aligning agent (1) obtained in Example 1 is filtered through a 1.0 ⁇ m filter, the prepared substrate with electrodes and a columnar spacer with a height of 4 ⁇ m on which an ITO film is formed on the back surface are provided. It apply
  • the surface of the coating film was irradiated with 150 mJ / cm 2 of linearly polarized UV light having a extinction ratio of 26: 1 through a polarizing plate at 150 mJ / cm 2 and then heated on a hot plate at 230 ° C. for 14 minutes to obtain a substrate with a liquid crystal alignment film Got.
  • the two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added.
  • An empty cell was produced by curing.
  • Liquid crystal MLC-7026-100 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and left to stand for evaluation of afterimages by long-term AC driving. The value of the angle ⁇ of this liquid crystal cell after long-term AC driving was 0.08 degrees. Further, as a result of observing the bright spots in the cell, the number of bright spots was less than 10, which was favorable.
  • Example 14 The same method as in Example 13 except that the liquid crystal aligning agent (1) obtained in Example 1 was irradiated with polarized ultraviolet light, then immersed in 2-propanol for 3 minutes, and then immersed in pure water for 1 minute. Thus, an FFS drive liquid crystal cell was produced.
  • This FFS drive liquid crystal cell was subjected to afterimage evaluation by long-term AC drive. The value of the angle ⁇ of this liquid crystal cell after long-term AC driving was 0.10 degrees. Further, as a result of observing the bright spots in the cell, the number of bright spots was less than 10, which was favorable.
  • Example 15 to 19 Each coating film having a thickness of 100 nm was formed in the same manner as in Example 13 except that the liquid crystal aligning agents (2) to (6) obtained in Examples 2 to 6 were used. Each of these coating surfaces was irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm with an extinction ratio of 26: 1 through a polarizing plate at an irradiation amount (unit: mJ / cm 2 ) described in Table 1 below. Except for the above, a substrate with a liquid crystal alignment film and then each FFS drive liquid crystal cell were prepared in the same manner as in Example 13, and afterimage evaluation was performed by long-term alternating current drive.
  • Table 1 shows the value of the angle ⁇ of each liquid crystal cell after long-term AC driving and the results of observation of the bright spots in the cell. In addition, the number of luminescent spots was evaluated as good when it was less than 10, and the number of luminescent spots as 10 or more was evaluated as defective.
  • Each coating film having a thickness of 100 nm was formed in the same manner as in Example 13 except that the liquid crystal aligning agents (7) to (11) obtained in Comparative Examples 1 to 5 were used.
  • Each of these coating surfaces was irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm with an extinction ratio of 26: 1 through a polarizing plate at an irradiation amount (unit: mJ / cm 2 ) described in Table 1 below. Except for the above, a substrate with a liquid crystal alignment film and then each FFS drive liquid crystal cell were prepared in the same manner as in Example 13, and afterimage evaluation was performed by long-term alternating current drive.
  • Table 1 shows the value of the angle ⁇ of each liquid crystal cell after long-term AC driving and the results of observation of the bright spots in the cell. In addition, the number of luminescent spots was evaluated as good when it was less than 10, and the number of luminescent spots as 10 or more was evaluated as defective.
  • the liquid crystal aligning agent of the present invention even when a negative liquid crystal is used, a bright spot due to a decomposition product derived from the liquid crystal aligning film generated during the photo-alignment treatment does not occur, and a liquid crystal aligning film having good afterimage characteristics can be obtained. I can do it. Therefore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has few bright spots that cause a decrease in contrast, and reduces afterimages caused by alternating current driving in liquid crystal display elements of the IPS driving method and the FFS driving method. Thus, an IPS driving type or FFS driving type liquid crystal display element having excellent afterimage characteristics can be obtained. Therefore, it can be used in a liquid crystal display element that requires high display quality.

Abstract

Provided are: a liquid crystal aligning agent for obtaining an alignment film that is suitable for photo-alignment and enables the achievement of good afterimage characteristics without producing bright dots even if used for negative liquid crystals; a liquid crystal alignment film; and a liquid crystal display element. A liquid crystal aligning agent which contains at least one polymer (A) that is selected from the group consisting of polyimide precursors having a structural unit represented by formula (1) and a structural unit represented by formula (2) and imidized polymers of the polyimide precursors. In the formulae, the symbols are as defined in the description.

Description

液晶配向剤、液晶配向膜、及び液晶表示素子Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
 本発明は、光配向法処理に適した液晶配向剤、この液晶配向剤から得られる液晶配向膜及びこの液晶配向膜を使用した液晶表示素子に関する。 The present invention relates to a liquid crystal aligning agent suitable for a photo-alignment method treatment, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element using the liquid crystal aligning film.
 液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。液晶配向膜としては、ポリアミック酸(ポリアミド酸)などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向剤をガラス基板等に塗布し焼成したポリイミド系の液晶配向膜が主として用いられている。現在、工業的に最も普及している方法によれば、この液晶配向膜は、電極基板上に形成されたポリイミド系液晶配向膜の表面を、綿、ナイロン、ポリエステル等の布で一方向に擦る、所謂ラビング処理を行うことで作製されている。 Liquid crystal display elements used for liquid crystal televisions, liquid crystal displays, and the like are usually provided with a liquid crystal alignment film for controlling the alignment state of the liquid crystals. As the liquid crystal alignment film, a polyimide-based liquid crystal alignment film obtained by applying a polyimide precursor such as polyamic acid (polyamic acid) or a liquid crystal aligning agent mainly composed of a soluble polyimide solution to a glass substrate or the like and baking it is mainly used. Yes. At present, according to the most widespread industrial method, this liquid crystal alignment film is rubbed in one direction with a cloth of cotton, nylon, polyester or the like on the surface of the polyimide liquid crystal alignment film formed on the electrode substrate. It is produced by performing a so-called rubbing process.
 光配向法は、ラビングレスの配向処理方法として、工業的にも簡便な製造プロセスで生産できる利点があり、IPS駆動方式やフリンジフィールドスイッチング(以下、FFS)駆動方式の液晶表示素子においては、光配向法で得られる液晶配向膜を用いることで、ラビング処理法で得られる液晶配向膜に比べて、液晶表示素子のコントラストや視野角特性の向上が期待できるなどの液晶表示素子の性能を向上させることが可能であるため、有望な液晶配向処理方法として注目されている。 The photo-alignment method has an advantage that it can be produced by an industrially simple manufacturing process as a rubbing-less alignment treatment method. In a liquid crystal display element of an IPS drive method or a fringe field switching (hereinafter referred to as FFS) drive method, By using the liquid crystal alignment film obtained by the alignment method, the performance of the liquid crystal display element can be improved as compared to the liquid crystal alignment film obtained by the rubbing treatment method. Therefore, it attracts attention as a promising liquid crystal alignment method.
 しかし、光配向法により得られる液晶配向膜は、ラビング処理によるものに比べて、高分子膜の配向方向に対する異方性が小さいという問題がある。異方性が小さいと、充分な液晶配向性が得られず、液晶表示素子とした場合に、残像が発生するなどの問題が発生する。光配向法により得られる液晶配向膜の異方性を高める方法として、光照射後に、光照射によって前記ポリイミドの主鎖が切断されて生成した低分子量成分を除去することが提案されている。 However, the liquid crystal alignment film obtained by the photo-alignment method has a problem that anisotropy with respect to the alignment direction of the polymer film is smaller than that by the rubbing treatment. If the anisotropy is small, sufficient liquid crystal orientation cannot be obtained, and problems such as occurrence of afterimages occur when a liquid crystal display element is formed. As a method for increasing the anisotropy of a liquid crystal alignment film obtained by a photo-alignment method, it has been proposed to remove a low molecular weight component generated by cutting the main chain of the polyimide by light irradiation after light irradiation.
日本特開平9-297313号公報Japanese Unexamined Patent Publication No. 9-297313 日本特開2011-107266号公報Japanese Unexamined Patent Publication No. 2011-107266
 IPS駆動方式やFFS駆動方式の液晶表示素子においては、従来ポジ型液晶が用いられているが、ネガ型液晶を用いることで、電極上部での透過損失を小さくし、コントラストを向上させることが可能である。光配向法で得られる液晶配向膜とネガ液晶を使用するIPS駆動方式やFFS駆動方式の液晶表示素子に用いると、従来の液晶表示素子より高い表示性能を有することが期待される。 In the IPS drive type and FFS drive type liquid crystal display elements, a positive type liquid crystal is conventionally used. By using a negative type liquid crystal, it is possible to reduce the transmission loss at the upper part of the electrode and improve the contrast. It is. When used in an IPS driving type or FFS driving type liquid crystal display element using a liquid crystal alignment film obtained by the photo-alignment method and a negative liquid crystal, it is expected to have higher display performance than a conventional liquid crystal display element.
 しかし、本願発明者が検討した結果、光配向による液晶配向膜は、ネガ液晶を用いた液晶表示素子の場合、表示不良(輝点)の発生率が高く、表示不良を起こす問題があることが分かった。
 本発明の課題は、ネガ型液晶を用いた場合でも、輝点が発生せず、良好な残像特性が得られる光配向法用の液晶配向膜を得るための光配向法処理に適した液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び該液晶配向剤を具備する液晶表示素子を提供することにある。
However, as a result of examination by the inventors of the present application, in the case of a liquid crystal display element using a negative liquid crystal, a liquid crystal alignment film by photo-alignment has a problem of causing a display defect due to a high incidence of display defects (bright spots). I understood.
An object of the present invention is to provide a liquid crystal alignment suitable for a photo-alignment process for obtaining a liquid crystal alignment film for a photo-alignment method in which no bright spots are generated and good afterimage characteristics are obtained even when a negative liquid crystal is used. It is in providing the liquid crystal display element which comprises an agent, the liquid crystal aligning film obtained from this liquid crystal aligning agent, and this liquid crystal aligning agent.
 本発明者は鋭意研究を進めたところ、特定構造を有するポリイミド系重合体を含む液晶配向剤が、上記の目的を達成するために有効であることを見出し、本発明を完成するに至った。 As a result of extensive research, the present inventor has found that a liquid crystal aligning agent containing a polyimide polymer having a specific structure is effective for achieving the above object, and has completed the present invention.
 本発明の要旨は、以下に記載するとおりである。
1.下記式(1)と下記式(2)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体(A)を含有することを特徴とする液晶配向剤。
Figure JPOXMLDOC01-appb-C000006
(式(1)、式(2)中、X及びXそれぞれ独立して、4価の有機基であり、R及びRは、それぞれ独立して、水素原子、又は炭素数1~4のアルキル基であり、A、A,A,Aはそれぞれ独立して、水素原子、又は炭素数1~4のアルキル基であり、Z、Z、Z、及びZは、それぞれ独立して、水素原子、ハロゲン原子、及び炭素数1~4のアルキル基であり、nは、1~4の整数である。)
The gist of the present invention is as described below.
1. It contains at least one polymer (A) selected from the group consisting of a polyimide precursor having structural units represented by the following formula (1) and the following formula (2) and an imidized polymer of the polyimide precursor. A liquid crystal aligning agent characterized by that.
Figure JPOXMLDOC01-appb-C000006
(In the formula (1), equation (2), X 1 and X 2 are each independently a tetravalent organic group, R 1 and R 2 are each independently a hydrogen atom, or carbon atoms An alkyl group having 1 to 4; A 1 , A 2 , A 3 , and A 4 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; and Z 1 , Z 2 , Z 3 , And Z 4 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms, and n is an integer of 1 to 4).
 本発明によれば、ネガ液晶を用いた場合でも、光配向処理法に見られる輝点を抑制でき、かつ照射感度が高く、良好な残像特性を有する液晶配向膜が得られる、光配向法処理に適した液晶配向剤が提供できる。かかる液晶配向剤から得られる液晶配向膜を備えることにより、表示不良がなく、信頼性の高い液晶表示素子が提供できる。 According to the present invention, even when a negative liquid crystal is used, a bright alignment point that can be suppressed in the photo-alignment treatment method can be suppressed, and a liquid crystal alignment film having high irradiation sensitivity and good afterimage characteristics can be obtained. The liquid crystal aligning agent suitable for can be provided. By providing a liquid crystal alignment film obtained from such a liquid crystal aligning agent, a highly reliable liquid crystal display element without display defects can be provided.
<特定重合体>
 本発明の液晶配向剤は、上記のように、上記式(1)と上記式(2)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体(特定重合体(A)ともいう。)を含有する。
 式(1)及び式(2)において、R及びRは、それぞれ独立して、水素原子、又は炭素数1~4のアルキル基である。加熱によるイミド化のしやすさの観点から、水素原子、又はメチル基が特に好ましい。X及びXは、4価の有機基である。紫外線照射によって、分解や異性化などの反応し、異方性が付与できる構造が好ましく、下記式(X1-1)~(X1-9)で表される構造からなる群から選ばれる少なくとも1種であることがより好ましい。
Figure JPOXMLDOC01-appb-I000007
<Specific polymer>
As described above, the liquid crystal aligning agent of the present invention is selected from the group consisting of a polyimide precursor having a structural unit represented by the above formula (1) and the above formula (2) and an imidized polymer of the polyimide precursor. At least one polymer (also referred to as a specific polymer (A)).
In Formula (1) and Formula (2), R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. From the viewpoint of ease of imidization by heating, a hydrogen atom or a methyl group is particularly preferable. X 1 and X 2 are tetravalent organic groups. A structure capable of imparting anisotropy by a reaction such as decomposition or isomerization upon irradiation with ultraviolet rays is preferable, and at least one selected from the group consisting of structures represented by the following formulas (X1-1) to (X1-9) It is more preferable that
Figure JPOXMLDOC01-appb-I000007
 式(X1-1)において、R、R、R、及びRはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルキニル基、又はフェニル基であり、同一でも異なってもよい。液晶配向性の観点から、R、R、R,及びRは、水素原子、ハロゲン原子、メチル基、又はエチル基が好ましく、水素原子、又はメチル基がより好ましい。式(X1-1)の具体的な構造としては、下記式(X1-10)~(X1-11)で表される構造が挙げられる。液晶配向性及び感度の観点から、(X1-11)が特に好ましい。 In the formula (X1-1), R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, An alkynyl group or a phenyl group, which may be the same or different. From the viewpoint of liquid crystal orientation, R 3 , R 4 , R 5 , and R 6 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group. Specific examples of the structure of the formula (X1-1) include structures represented by the following formulas (X1-10) to (X1-11). From the viewpoint of liquid crystal alignment and sensitivity, (X1-11) is particularly preferable.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(1)及び式(2)において、A、A,A,Aはそれぞれ独立して、水素原子、又は炭素数1~4のアルキル基である。液晶配向性の観点から、水素原子、又はメチル基が好ましく、水素原子がより好ましい。
 式(1)及び式(2)において、Z、Z、Z、及びZは、それぞれ独立して、水素原子、ハロゲン原子、又は炭素数1~4のアルキル基である。液晶配向性の観点から、水素原子、ハロゲン原子、又はメチル基が好ましい。nは、1~4の整数である。
In Formula (1) and Formula (2), A 1 , A 2 , A 3 , and A 4 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. From the viewpoint of liquid crystal orientation, a hydrogen atom or a methyl group is preferable, and a hydrogen atom is more preferable.
In formula (1) and formula (2), Z 1 , Z 2 , Z 3 , and Z 4 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. From the viewpoint of liquid crystal orientation, a hydrogen atom, a halogen atom, or a methyl group is preferable. n is an integer of 1 to 4.
 特定重合体(A)において、液晶配向性及び輝点の抑制の観点から、その全構造単位1モルに対して、上記式(1)で表される構造単位の比率は、10~50モル%が好ましく、より好ましくは30~50モル%である。
 また、特定重合体(A)において、上記式(2)で表される構造単位の含有割合は、液晶配向性及び輝点の抑制の観点から、その全構造単位1モルに対して、20~90モル%が好ましく、より好ましくは20~50モル%である。
In the specific polymer (A), the proportion of the structural unit represented by the above formula (1) is 10 to 50 mol% with respect to 1 mol of all the structural units from the viewpoint of liquid crystal orientation and suppression of bright spots. Is more preferable, and more preferably 30 to 50 mol%.
In the specific polymer (A), the content ratio of the structural unit represented by the above formula (2) is 20 to 20 parts per 1 mole of all the structural units from the viewpoint of liquid crystal orientation and suppression of bright spots. 90 mol% is preferable, and more preferably 20 to 50 mol%.
 特定重合体(A)は、配向膜の機械強度の観点から、上記式(1)及び(2)で表される構造単位以外に、さらに、下記式(3)で表される構造単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000009
The specific polymer (A) has a structural unit represented by the following formula (3) in addition to the structural units represented by the above formulas (1) and (2) from the viewpoint of the mechanical strength of the alignment film. It is preferable.
Figure JPOXMLDOC01-appb-C000009
 式(3)中、X好ましい例も含めて上記式(1)及び式(2)におけるX及びXと同義である。Rは、好ましい例も含めて、上記R及びRと同義である。Yは下記式[1d-1]~[1d-7]で表される構造からなる群から選ばれる少なくとも1種である。 Wherein (3), X 3 has the same meaning as X 1 and X 2 in the above formula, including preferred examples (1) and (2). R 3 is synonymous with the above R 1 and R 2 including preferred examples. Y 1 is at least one selected from the group consisting of structures represented by the following formulas [1d-1] to [1d-7].
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式[1d-1]~式[1d-7]中、Dは、tert-ブトキシメトキシカルボニル基である。n~nは、それぞれ独立して、1~5の整数である。
 Yのより具体的な例としては、下記式[1d1-1]~[1d1-6]が挙げられる。
In the above formulas [1d-1] to [1d-7], D is a tert-butoxymethoxycarbonyl group. n 1 to n 5 are each independently an integer of 1 to 5.
More specific examples of Y 1 include the following formulas [1d1-1] to [1d1-6].
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記[1d1-1]~[1d1-6]において、Dはtert-ブトキシメトキシカルボニル基である。
 式(3)で表される構造単位の含有比率は、特定重合体(A)の全構造単位1モルに対して、10~50モル%であるが好ましく、より好ましくは20~30モル%である。
In the above [1d1-1] to [1d1-6], D is a tert-butoxymethoxycarbonyl group.
The content ratio of the structural unit represented by the formula (3) is preferably 10 to 50 mol%, more preferably 20 to 30 mol% with respect to 1 mol of all the structural units of the specific polymer (A). is there.
 特定重合体(A)は、上記式(1)~(3)で表される構造単位以外に、下記式(4)で表される構造単位を含有するポリイミド前駆体及び該ポリイミド前駆体を有していてもよい。
Figure JPOXMLDOC01-appb-C000012
The specific polymer (A) has, in addition to the structural units represented by the above formulas (1) to (3), a polyimide precursor containing a structural unit represented by the following formula (4) and the polyimide precursor. You may do it.
Figure JPOXMLDOC01-appb-C000012
 式(4)において、Rは、好ましい例も含めて上記式(1)におけるRと同義である。A及びAは、好ましい例も含めて、上記式(1)のA及びAと同義である。Xは4価の有機基であり、その構造は特に限定されない。
 具体的例を挙げるならば、上記式(X1-1)~(X1-9)又は下記式(X-9)~(X-42)が挙げられる。化合物の入手性の観点から、Xは、X1-1~X1-9、X-17、X-25、X-26,X-27、X-28、X-32、又はX-39が挙げられる。また、直流電圧により蓄積した残留電荷の緩和が早い液晶配向膜を得られるという観点から芳香族環構造を有するテトラカルボン酸二無水物が好ましく、Xとしては、X-26,X-27、X-28、X-32、X-35、又はX-37がより好ましい。
In formula (4), R 4 has the same meaning as R 1 in formula (1), including preferred examples. A 5 and A 6 , including preferred examples, are synonymous with A 1 and A 2 in the above formula (1). X is a tetravalent organic group, and its structure is not particularly limited.
Specific examples include the above formulas (X1-1) to (X1-9) or the following formulas (X-9) to (X-42). From the viewpoint of availability of the compound, X includes X1-1 to X1-9, X-17, X-25, X-26, X-27, X-28, X-32, or X-39. . In addition, tetracarboxylic dianhydrides having an aromatic ring structure are preferable from the viewpoint of obtaining a liquid crystal alignment film in which residual charges accumulated by a DC voltage can be quickly relaxed, and X is X-26, X-27, X -28, X-32, X-35, or X-37 is more preferred.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 上記式(4)において、Yは2価の有機基であり、その構造は特に限定されない。Yの具体例を挙げるならば、下記式(Y-1)~(Y-84)が挙げられる。 In the above formula (4), Y is a divalent organic group, and its structure is not particularly limited. Specific examples of Y 2 include the following formulas (Y-1) to (Y-84).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 液晶配向性が向上するため、Yは、直線性の高い構造が好ましい。具体例としては、Y-7,Y-43~Y-48、Y63、又はY-71~Y-76がより好ましい。直流電圧により蓄積した残留電荷の緩和が早い液晶配向膜が得られるため、Y-77~Y-84がより好ましい。 In order to improve the liquid crystal alignment, Y is preferably a highly linear structure. As specific examples, Y-7, Y-43 to Y-48, Y63, or Y-71 to Y-76 are more preferable. Y-77 to Y-84 are more preferable because a liquid crystal alignment film can be obtained in which the residual charge accumulated by the DC voltage is quickly relaxed.
<ポリアミック酸エステルの製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸エステルは、以下に示す(1)、(2)又は(3)の方法で合成することができる。
(1)ポリアミック酸から合成する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。
 具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
<Method for producing polyamic acid ester>
The polyamic acid ester which is a polyimide precursor used in the present invention can be synthesized by the method (1), (2) or (3) shown below.
(1) When synthesizing from polyamic acid The polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine.
Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の使用量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。 The esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like. The amount of the esterifying agent used is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上用いてもよい。合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。 The solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone from the solubility of the polymer, and these may be used alone or in combination. The concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応による場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成できる。
(2) Case of reaction of tetracarboxylic acid diester dichloride and diamine The polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine.
Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルが好ましい。
 上記の反応に用いる溶媒は、モノマーおよびポリマーの溶解性からN-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上用いてもよい。合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいことから、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
The solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or γ-butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination. The polymer concentration at the time of synthesis is preferably 1 to 30% by mass and more preferably 5 to 20% by mass because polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
(3)テトラカルボン酸ジエステルとジアミンとの反応による場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
 具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3~15時間反応させることによって合成できる。
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルが好ましい。
(3) Case of reaction of tetracarboxylic acid diester and diamine Polyamic acid ester can be synthesized by polycondensation of tetracarboxylic acid diester and diamine.
Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can be synthesized by reacting for a time.
Examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide. Nylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like. The addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいことから、ジアミン成分に対して2~4倍モルが好ましい。
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。
As the base, tertiary amines such as pyridine and triethylamine can be used. The amount of the base added is preferably 2 to 4 moles relative to the diamine component because it can be easily removed and a high molecular weight product can be easily obtained.
In the above reaction, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
 上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の合成法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
Among the methods for synthesizing the three polyamic acid esters, since a high molecular weight polyamic acid ester is obtained, the synthesis method (1) or (2) is particularly preferable.
The polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying. Although a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
<ポリアミック酸の製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下に示す方法により合成することができる。
 具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
<Method for producing polyamic acid>
The polyamic acid which is a polyimide precursor used in the present invention can be synthesized by the following method.
Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
 上記の反応に用いる有機溶媒は、モノマーおよびポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上用いてもよい。ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいことから、1~30質量%が好ましく、5~20質量%がより好ましい。
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収できる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
The organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or γ-butyrolactone from the solubility of the monomer and polymer, and these may be used alone or in combination of two or more. . The concentration of the polymer is preferably 1 to 30% by mass and more preferably 5 to 20% by mass because the polymer does not easily precipitate and a high molecular weight body is easily obtained.
The polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine | purified by performing precipitation several times, washing | cleaning with a poor solvent, and normal temperature or heat-drying can be obtained. Examples of the poor solvent include water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene and the like.
<ポリイミドの製造方法>
 本発明に用いられるポリイミドは、前記ポリアミック酸エステル又はポリアミック酸をイミド化することにより製造することができる。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
<Production method of polyimide>
The polyimide used in the present invention can be produced by imidizing the polyamic acid ester or polyamic acid. When a polyimide is produced from a polyamic acid ester, chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
 化学的イミド化は、イミド化させたいポリアミック酸エステルを、有機溶媒中において塩基性触媒存在下で撹拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用できる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。
 イミド化反応を行う温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は好ましくは1~100時間である。塩基性触媒の量はアミック酸エステル基の0.5~30モル倍、好ましくは2~20モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御できる。イミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、液晶配向剤とすることが好ましい。
Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
The temperature for carrying out the imidization reaction is −20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time is preferably 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid ester group. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below and redissolved in an organic solvent to obtain a liquid crystal aligning agent. It is preferable.
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げられる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げられ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
When manufacturing a polyimide from a polyamic acid, chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction with a diamine component and tetracarboxylic dianhydride is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の1~50モル倍、好ましくは3~30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
 ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
The temperature for carrying out the imidization reaction is −20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. Is double. The imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
In the solution after the imidation reaction of polyamic acid ester or polyamic acid, the added catalyst and the like remain, so the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent. Thus, the liquid crystal aligning agent of the present invention is preferable.
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
The polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
The poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
<液晶配向剤>
 本発明に用いられる液晶配向剤は、特定重合体(A)が有機溶媒中に溶解された溶液の形態を有する。特定重合体(A)の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
 液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更できるが、均一で欠陥のない塗膜を形成させることから1重量%以上が好ましく、溶液の保存安定性ことからは10重量%以下が好ましい。
<Liquid crystal aligning agent>
The liquid crystal aligning agent used in the present invention has a form of a solution in which the specific polymer (A) is dissolved in an organic solvent. The molecular weight of the specific polymer (A) is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, still more preferably 10,000 to 100,000. . The number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
The concentration of the polymer in the liquid crystal aligning agent can be appropriately changed according to the setting of the thickness of the coating film to be formed, but is preferably 1% by weight or more because a uniform and defect-free coating film is formed. 10% by weight or less is preferable from the viewpoint of stability.
 本発明の液晶配向剤に用いる溶媒は、特定重合体(A)を溶解させる溶媒(良溶媒ともいう)であれば特に限定されない。下記に、良溶媒の具体例を挙げる。
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン又は4-ヒドロキシ-4-メチル-2-ペンタノンなどを挙げることができる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトンを用いることが好ましい。
The solvent used for the liquid crystal aligning agent of this invention will not be specifically limited if it is a solvent (it is also called a good solvent) in which a specific polymer (A) is dissolved. Specific examples of good solvents are given below.
For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone Cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, and the like. Of these, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and γ-butyrolactone are preferably used.
 更に、特定重合体(A)の溶媒への溶解性が高い場合は、下記式[D-1]~式[D-3]で示される溶媒が好ましい。
Figure JPOXMLDOC01-appb-C000025
Furthermore, when the solubility of the specific polymer (A) in the solvent is high, solvents represented by the following formulas [D-1] to [D-3] are preferable.
Figure JPOXMLDOC01-appb-C000025
 式[D-1]~式[D-3]中、Dは炭素数1~3のアルキル基を示し、Dは炭素数1~3のアルキル基を示し、Dは炭素数1~4のアルキル基を示す)。
 液晶配向剤における良溶媒の含有量は、溶媒全体の20~99質量%が好ましく、20~90質量%がより好ましく、30~80質量%が特に好ましい。
 液晶配向剤は、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を含有できる。これら貧溶媒は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%特に好ましい。
In formulas [D-1] to [D-3], D 1 represents an alkyl group having 1 to 3 carbon atoms, D 2 represents an alkyl group having 1 to 3 carbon atoms, and D 3 represents 1 to 3 carbon atoms. 4 alkyl groups).
The content of the good solvent in the liquid crystal aligning agent is preferably 20 to 99% by mass of the total solvent, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass.
The liquid crystal aligning agent can contain a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied. These poor solvents are preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass based on the total amount of the solvent contained in the liquid crystal aligning agent.
 下記に、貧溶媒の具体例を挙げる。
 エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル又は前記式[D-1]~式[D-3]。
Specific examples of the poor solvent are given below.
Ethanol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert- Pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol, 2 -Heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2-ethanediol , , 2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 1,5-pentanediol, 2- Methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, dipropyl ether, dibutyl ether, dihexyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2- Butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 2-pentanone, 3-pentanone, 2-hexanone, 2-hepta , 4-heptanone, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate 2- (methoxymethoxy) ethanol, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, 2- (hexyloxy) ethanol, furfuryl alcohol, diethylene glycol, propylene glycol, propylene glycol monobutyl ether, 1- (Butoxyethoxy) propanol, propylene glycol monomethyl ether acetate, dipropylene glycol, dipropiate Lenglycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, ethylene glycol monoacetate , Ethylene glycol diacetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 2- (2-ethoxyethoxy) ethyl acetate, diethylene glycol acetate, triethylene glycol, triethylene glycol monomethyl ether, triethylene glycol mono Ethyl ether, methyl lactate Ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate , 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, methyl lactate, ethyl lactate, n-propyl lactate, n-butyl lactate, isoamyl lactate Alternatively, the formula [D-1] to the formula [D-3].
 なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル又はジプロピレングリコールジメチルエーテルが好ましい。
 本発明の液晶配向剤には、エポキシ基、イソシアネート基、オキセタン基又はシクロカーボネート基を有する架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物、又は重合性不飽和結合を有する架橋性化合物を導入することが好ましい。これら置換基や重合性不飽和結合は、架橋性化合物中に2個以上有する必要がある。
Of these, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether or dipropylene glycol dimethyl ether are preferable.
The liquid crystal aligning agent of the present invention includes at least one substituent selected from the group consisting of a crosslinkable compound having an epoxy group, an isocyanate group, an oxetane group or a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group. It is preferable to introduce a crosslinkable compound having a crosslinkable compound or a crosslinkable compound having a polymerizable unsaturated bond. It is necessary to have two or more of these substituents and polymerizable unsaturated bonds in the crosslinkable compound.
 エポキシ基又はイソシアネート基を有する架橋性化合物としては、例えば、ビスフェノールアセトングリシジルエーテル、フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、トリグリシジルイソシアヌレート、テトラグリシジルアミノジフェニレン、テトラグリシジル-m-キシレンジアミン、テトラグリシジル-1,3-ビス(アミノエチル)シクロヘキサン、テトラフェニルグリシジルエーテルエタン、トリフェニルグリシジルエーテルエタン、ビスフェノールヘキサフルオロアセトジグリシジルエーテル、1,3-ビス(1-(2,3-エポキシプロポキシ)-1-トリフルオロメチル-2,2,2-トリフルオロメチル)ベンゼン、4,4-ビス(2,3-エポキシプロポキシ)オクタフルオロビフェニル、トリグリシジル-p-アミノフェノール、テトラグリシジルメタキシレンジアミン、2-(4-(2,3-エポキシプロポキシ)フェニル)-2-(4-(1,1-ビス(4-(2,3-エポキシプロポキシ)フェニル)エチル)フェニル)プロパン又は1,3-ビス(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-(4-(1-(4-(2,3-エポキシプロポキシ)フェニル)-1-メチルエチル)フェニル)エチル)フェノキシ)-2-プロパノールなどが挙げられる。 Examples of the crosslinkable compound having an epoxy group or an isocyanate group include bisphenolacetone glycidyl ether, phenol novolac epoxy resin, cresol novolac epoxy resin, triglycidyl isocyanurate, tetraglycidylaminodiphenylene, tetraglycidyl-m-xylenediamine, tetra Glycidyl-1,3-bis (aminoethyl) cyclohexane, tetraphenyl glycidyl ether ethane, triphenyl glycidyl ether ethane, bisphenol hexafluoroacetodiglycidyl ether, 1,3-bis (1- (2,3-epoxypropoxy)- 1-trifluoromethyl-2,2,2-trifluoromethyl) benzene, 4,4-bis (2,3-epoxypropoxy) octafluorobiphenyl Triglycidyl-p-aminophenol, tetraglycidylmetaxylenediamine, 2- (4- (2,3-epoxypropoxy) phenyl) -2- (4- (1,1-bis (4- (2,3-epoxy) Propoxy) phenyl) ethyl) phenyl) propane or 1,3-bis (4- (1- (4- (2,3-epoxypropoxy) phenyl) -1- (4- (1- (4- (2,3 -Epoxypropoxy) phenyl) -1-methylethyl) phenyl) ethyl) phenoxy) -2-propanol and the like.
 オキセタン基を有する架橋性化合物は、下記式[4A]で示されるオキセタン基を少なくとも2個有する化合物である。
Figure JPOXMLDOC01-appb-C000026
 具体的には、国際公開公報WO2011/132751号(2011.10.27公開)の58~59頁に掲載される式[4a]~式[4k]で示される架橋性化合物が挙げられる。
The crosslinkable compound having an oxetane group is a compound having at least two oxetane groups represented by the following formula [4A].
Figure JPOXMLDOC01-appb-C000026
Specific examples include crosslinkable compounds represented by the formulas [4a] to [4k] published on pages 58 to 59 of International Publication No. WO2011 / 132751 (published on October 27, 2011).
 シクロカーボネート基を有する架橋性化合物としては、下記式[5A]で示されるシクロカーボネート基を少なくとも2個有する架橋性化合物である。
Figure JPOXMLDOC01-appb-C000027
The crosslinkable compound having a cyclocarbonate group is a crosslinkable compound having at least two cyclocarbonate groups represented by the following formula [5A].
Figure JPOXMLDOC01-appb-C000027
 具体的には、国際公開公報WO2012/014898号(2012.2.2公開)の76~82頁に掲載される式[5-1]~式[5-42]で示される架橋性化合物が挙げられる。
 ヒドロキシル基及びアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物としては、例えば、ヒドロキシル基又はアルコキシル基を有するアミノ樹脂、例えば、メラミン樹脂、尿素樹脂、グアナミン樹脂、グリコールウリル-ホルムアルデヒド樹脂、スクシニルアミド-ホルムアルデヒド樹脂又はエチレン尿素-ホルムアルデヒド樹脂などが挙げられる。具体的には、アミノ基の水素原子がメチロール基又はアルコキシメチル基又はその両方で置換されたメラミン誘導体、ベンゾグアナミン誘導体、又はグリコールウリルを用いることができる。このメラミン誘導体又はベンゾグアナミン誘導体は、2量体又は3量体として存在することも可能である。これらはトリアジン環1個当たり、メチロール基又はアルコキシメチル基を平均3個以上6個以下有するものが好ましい。
Specific examples include crosslinkable compounds represented by the formulas [5-1] to [5-42] described on pages 76 to 82 of International Publication No. WO2012 / 014898 (published on 2.2.2.2012).
Examples of the crosslinkable compound having at least one substituent selected from the group consisting of a hydroxyl group and an alkoxyl group include an amino resin having a hydroxyl group or an alkoxyl group, such as a melamine resin, a urea resin, a guanamine resin, and a glycoluril. -Formaldehyde resin, succinylamide-formaldehyde resin or ethylene urea-formaldehyde resin. Specifically, a melamine derivative, a benzoguanamine derivative, or glycoluril in which a hydrogen atom of an amino group is substituted with a methylol group, an alkoxymethyl group, or both can be used. The melamine derivative or benzoguanamine derivative can exist as a dimer or a trimer. These preferably have an average of 3 to 6 methylol groups or alkoxymethyl groups per triazine ring.
 上記のメラミン誘導体又はベンゾグアナミン誘導体の例としては、市販品のトリアジン環1個当たりメトキシメチル基が平均3.7個置換されているMX-750、トリアジン環1個当たりメトキシメチル基が平均5.8個置換されているMW-30(以上、三和ケミカル社製)やサイメル300、301、303、350、370、771、325、327、703、712などのメトキシメチル化メラミン、サイメル235、236、238、212、253、254などのメトキシメチル化ブトキシメチル化メラミン、サイメル506、508などのブトキシメチル化メラミン、サイメル1141のようなカルボキシル基含有メトキシメチル化イソブトキシメチル化メラミン、サイメル1123のようなメトキシメチル化エトキシメチル化ベンゾグアナミン、サイメル1123-10のようなメトキシメチル化ブトキシメチル化ベンゾグアナミン、サイメル1128のようなブトキシメチル化ベンゾグアナミン、サイメル1125-80のようなカルボキシル基含有メトキシメチル化エトキシメチル化ベンゾグアナミン(以上、三井サイアナミド社製)が挙げられる。 Examples of the melamine derivative or benzoguanamine derivative include MX-750, which has an average of 3.7 substituted methoxymethyl groups per triazine ring, and an average of 5.8 methoxymethyl groups per triazine ring. MW-30 (manufactured by Sanwa Chemical Co., Ltd.) and Cymel 300, 301, 303, 350, 370, 771, 325, 327, 703, 712 and the like methoxymethylated melamine, Cymel 235, 236, Methoxymethylated butoxymethylated melamine such as 238, 212, 253, 254, butoxymethylated melamine such as Cymel 506, 508, carboxyl group-containing methoxymethylated isobutoxymethylated melamine such as Cymel 1141, Cymel 1123, etc. Methoxymethylated ethoxyme Benzomethylamine, methoxymethyl butoxymethylated benzoguanamine such as Cymel 1123-10, butoxymethylated benzoguanamine such as Cymel 1128, carboxymethyl-containing methoxymethylated ethoxymethylated benzoguanamine such as Cymel 1125-80 Cyanamide).
 また、グリコールウリルの例として、サイメル1170のようなブトキシメチル化グリコールウリル、サイメル1172のようなメチロール化グリコールウリルなど、パウダーリンク1174のようなメトキシメチロール化グリコールウリル等が挙げられる。
 ヒドロキシル基又はアルコキシル基を有するベンゼン又はフェノール性化合物としては、例えば、1,3,5-トリス(メトキシメチル)ベンゼン、1,2,4-トリス(イソプロポキシメチル)ベンゼン、1,4-ビス(sec-ブトキシメチル)ベンゼン又は2,6-ジヒドロキシメチル-p-tert-ブチルフェノールが挙げられる。
 より具体的には、国際公開公報WO2011/132751号(2011.10.27公開)の62~66頁に掲載される、式[6-1]~式[6-48]の架橋性化合物が挙げられる。
Examples of glycoluril include butoxymethylated glycoluril such as Cymel 1170, methylolated glycoluril such as Cymel 1172, and methoxymethylolated glycoluril such as Powderlink 1174.
Examples of the benzene or phenolic compound having a hydroxyl group or an alkoxyl group include 1,3,5-tris (methoxymethyl) benzene, 1,2,4-tris (isopropoxymethyl) benzene, 1,4-bis ( sec-butoxymethyl) benzene or 2,6-dihydroxymethyl-p-tert-butylphenol.
More specifically, the crosslinkable compounds represented by the formulas [6-1] to [6-48] described in pages 62 to 66 of International Publication No. WO2011 / 132751 (published on 10.27.2011) can be mentioned.
 重合性不飽和結合を有する架橋性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン又はグリセリンポリグリシジルエーテルポリ(メタ)アクリレートなどの重合性不飽和基を分子内に3個有する架橋性化合物、更に、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイドビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイドビスフェノール型ジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート又はヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレートなどの重合性不飽和基を分子内に2個有する架橋性化合物、加えて、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルリン酸エステル又はN-メチロール(メタ)アクリルアミド等の重合性不飽和基を分子内に1個有する架橋性化合物等が挙げられる。 Examples of the crosslinkable compound having a polymerizable unsaturated bond include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, and tri (meth) acryloyloxyethoxytrimethylol. Crosslinkable compounds having three polymerizable unsaturated groups in the molecule such as propane or glycerin polyglycidyl ether poly (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (Meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol Rudi (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide bisphenol A type di (meth) acrylate, propylene oxide bisphenol type di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin Di (meth) acrylate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, diglycidyl phthalate di (meth) acrylate or hydroxypivalic acid neo Crosslinkable compounds having two polymerizable unsaturated groups in the molecule, such as pentyl glycol di (meth) acrylate, in addition, 2-hydroxyethyl (meth) acrylate 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, 3-chloro-2 Crosslinkability having one polymerizable unsaturated group in the molecule such as hydroxypropyl (meth) acrylate, glycerin mono (meth) acrylate, 2- (meth) acryloyloxyethyl phosphate ester or N-methylol (meth) acrylamide Compounds and the like.
 更に、下記式[7A]で示される化合物を用いることもできる。
Figure JPOXMLDOC01-appb-C000028
(式[7A]中、Eはシクロヘキサン環、ビシクロヘキサン環、ベンゼン環、ビフェニル環、ターフェニル環、ナフタレン環、フルオレン環、アントラセン環又はフェナントレン環からからなる群から選ばれる基を示し、Eは下記式[7a]又は式[7b]から選ばれる基を示し、nは1~4の整数を示す)。
Furthermore, a compound represented by the following formula [7A] can also be used.
Figure JPOXMLDOC01-appb-C000028
(In the formula [7A], E 1 represents a group selected from the group consisting of a cyclohexane ring, a bicyclohexane ring, a benzene ring, a biphenyl ring, a terphenyl ring, a naphthalene ring, a fluorene ring, an anthracene ring or a phenanthrene ring; 2 represents a group selected from the following formula [7a] or [7b], and n represents an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000029
 上記は架橋性化合物の一例であり、これらに限定されるものではない。また、液晶配向剤に用いる架橋性化合物は、1種類でも、2種類以上組み合わせてもよい。
Figure JPOXMLDOC01-appb-C000029
The above is an example of a crosslinkable compound, but is not limited thereto. Moreover, the crosslinkable compound used for a liquid crystal aligning agent may be 1 type, or may combine 2 or more types.
 液晶配向剤における架橋性化合物の含有量は、全ての重合体成分100質量部に対して、0.1~150質量部が好ましい。なかでも、架橋反応が進行し目的の効果を発現させるためには、全ての重合体成分100質量部に対して、0.1~100質量部が好ましい。より好ましいのは、1~50質量部である。 The content of the crosslinkable compound in the liquid crystal aligning agent is preferably 0.1 to 150 parts by mass with respect to 100 parts by mass of all the polymer components. Among these, in order for the crosslinking reaction to proceed and to exhibit the desired effect, the amount is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of all the polymer components. More preferred is 1 to 50 parts by mass.
 本発明の液晶配向剤は、液晶配向剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を用いることができる。
 液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
 より具体的には、例えば、エフトップEF301、EF303、EF352(以上、トーケムプロダクツ社製)、メガファックF171、F173、R-30(以上、大日本インキ社製)、フロラードFC430、FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(以上、旭硝子社製)などが挙げられる。
The liquid crystal aligning agent of this invention can use the compound which improves the uniformity of the film thickness of a liquid crystal aligning film at the time of apply | coating a liquid crystal aligning agent, and surface smoothness.
Examples of the compound that improves the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
More specifically, for example, F-top EF301, EF303, EF352 (above, manufactured by Tochem Products), MegaFuck F171, F173, R-30 (above, manufactured by Dainippon Ink), Florard FC430, FC431 (or more) And Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (above, manufactured by Asahi Glass Co., Ltd.).
 界面活性剤の使用量は、液晶配向剤に含有される全ての重合体成分100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
 更に、液晶配向剤には、液晶配向膜中の電荷移動を促進して素子の電荷抜けを促進させる化合物として、国際公開公報WO2011/132751号(2011.10.27公開)の69~73頁に掲載される、式[M1]~式[M156]で示される窒素含有複素環アミン化合物を添加することもできる。このアミン化合物は、液晶配向剤に直接添加しても構わないが、濃度0.1~10質量%、好ましくは1~7質量%の溶液にしてから添加することが好ましい。この溶媒は、特定重合体(A)を溶解させるならば特に限定されない。
The amount of the surfactant used is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of all the polymer components contained in the liquid crystal aligning agent.
Furthermore, the liquid crystal aligning agent is published on pages 69 to 73 of International Publication No. WO2011 / 132751 (published on 10.27.2011) as a compound that promotes charge transfer in the liquid crystal alignment film and promotes charge release of the device. It is also possible to add nitrogen-containing heterocyclic amine compounds represented by the formulas [M1] to [M156]. The amine compound may be added directly to the liquid crystal aligning agent, but it is preferable to add the amine compound after forming a solution having a concentration of 0.1 to 10% by mass, preferably 1 to 7% by mass. The solvent is not particularly limited as long as the specific polymer (A) is dissolved.
 本発明の液晶配向剤には、上記の貧溶媒、架橋性化合物、樹脂被膜又は液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物及び電荷抜けを促進させる化合物の他に、本発明の効果が損なわれない範囲であれば、本発明に記載の重合体以外の重合体、配向膜と基板との密着性を向上させる目的のシランカップリング剤、さらには塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。 The liquid crystal aligning agent of the present invention includes, in addition to the above-mentioned poor solvent, crosslinkable compound, resin film or compound that improves the film thickness uniformity and surface smoothness of the liquid crystal aligning film, and a compound that promotes charge removal. As long as the effects of the invention are not impaired, a polymer other than the polymer described in the present invention, a silane coupling agent for the purpose of improving the adhesion between the alignment film and the substrate, and further when firing the coating film An imidization accelerator for the purpose of efficiently progressing imidization by heating of the polyimide precursor may be added to.
<液晶配向膜・液晶表示素子>
 液晶配向膜は、上記の液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。
<Liquid crystal alignment film and liquid crystal display element>
The liquid crystal alignment film is a film obtained by applying the above liquid crystal aligning agent to a substrate, drying and baking. The substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with a glass substrate or a silicon nitride substrate. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is used from the viewpoint of simplification of the process. In the reflective liquid crystal display element, an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate, and a material that reflects light such as aluminum can be used for the electrode in this case.
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷又はインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法又はスプレー法などがあり、目的に応じてこれらを用いてもよい。
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させて液晶配向膜とすることができる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために50~120℃で1~10分焼成し、その後、150~300℃で5~120分焼成する条件が挙げられる。焼成後の液晶配向膜の厚みは、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。
A method for applying the liquid crystal aligning agent is not particularly limited, but industrially, a method of performing screen printing, offset printing, flexographic printing, an inkjet method, or the like is common. Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, or a spray method, and these may be used depending on the purpose.
After the liquid crystal aligning agent is applied onto the substrate, the solvent can be evaporated by a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven to form a liquid crystal alignment film. Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention. Usually, a condition of baking at 50 to 120 ° C. for 1 to 10 minutes and then baking at 150 to 300 ° C. for 5 to 120 minutes is mentioned in order to sufficiently remove the contained solvent. If the thickness of the liquid crystal alignment film after baking is too thin, the reliability of the liquid crystal display element may be lowered, and thus it is preferably 5 to 300 nm, and more preferably 10 to 200 nm.
 本発明の液晶配向剤から得られる液晶配向膜を配向処理する方法は、ラビング処理法でもよいが、光配向処理法が好適である。光配向処理法の好ましい例としては、前記液晶配向膜の表面に、一定方向に偏向された放射線を照射し、場合により、好ましくは、150~250℃の温度で加熱処理を行い、液晶配向性(液晶配向能ともいう)を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線又は可視光線を用いることができる。なかでも、好ましくは100~400nm、より好ましくは200~400nmの波長を有する紫外線である。 The method for aligning the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention may be a rubbing method, but the photo alignment method is preferred. As a preferred example of the photo-alignment treatment method, the surface of the liquid crystal alignment film is irradiated with radiation deflected in a certain direction, and in some cases, preferably, a heat treatment is performed at a temperature of 150 to 250 ° C. And a method of imparting (also referred to as liquid crystal alignment ability). As the radiation, ultraviolet rays or visible rays having a wavelength of 100 to 800 nm can be used. Among these, ultraviolet rays having a wavelength of preferably 100 to 400 nm, more preferably 200 to 400 nm are preferable.
 また、液晶配向性を改善するために、液晶配向膜が塗膜された基板を50~250℃で加熱しながら、放射線を照射してもよい。また、前記放射線の照射量は、1~10,000mJ/cmが好ましく、100~5,000mJ/cmがより好ましい。これによる液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 偏光された紫外線の消光比が高いほど、より高い異方性が付与できるため、好ましい。具体的には、直線に偏光された紫外線の消光比は、10:1以上が好ましく、20:1以上がより好ましい。
Further, in order to improve the liquid crystal alignment, the substrate coated with the liquid crystal alignment film may be irradiated with radiation while heating at 50 to 250 ° C. The irradiation amount of the radiation is preferably 1 ~ 10,000mJ / cm 2, more preferably 100 ~ 5,000mJ / cm 2. Thus, the liquid crystal alignment film can stably align liquid crystal molecules in a certain direction.
A higher extinction ratio of polarized ultraviolet rays is preferable because higher anisotropy can be imparted. Specifically, the extinction ratio of linearly polarized ultraviolet light is preferably 10: 1 or more, and more preferably 20: 1 or more.
 更に、前記の方法で、偏光された放射線を照射した液晶配向膜に、水や溶媒を用いて、接触処理をすることもできる。
 上記接触処理に使用する溶媒としては、放射線の照射によって液晶配向膜から生成した分解物を溶解する溶媒であれば、特に限定されない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル又は酢酸シクロヘキシルなどが挙げられる。なかでも、汎用性や溶媒の安全性から、水、2-プロパンール、1-メトキシ-2-プロパノール又は乳酸エチルが好ましく、水、1-メトキシ-2-プロパノール又は乳酸エチルがより好ましい。溶媒は、1種でも、2種類以上組み合わせてもよい。
Further, the liquid crystal alignment film irradiated with polarized radiation can be subjected to contact treatment using water or a solvent by the above method.
The solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves a decomposition product generated from the liquid crystal alignment film by irradiation with radiation. Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples thereof include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate or cyclohexyl acetate. Of these, water, 2-propanol, 1-methoxy-2-propanol or ethyl lactate is preferable, and water, 1-methoxy-2-propanol or ethyl lactate is more preferable in view of versatility and solvent safety. A solvent may be used alone or in combination of two or more.
 上記の接触処理、すなわち、偏光された放射線を照射した液晶配向膜に水や溶媒を処理としては、浸漬処理や噴霧処理(スプレー処理)が挙げられる。これらの処理における時間は、放射線によって液晶配向膜から生成した分解物を効率的に溶解させる点から、10秒~1時間が好ましく、1分~30分間浸漬処理をすることが好ましい。また、接触処理時の溶媒は、常温でも加温しても良いが、好ましくは、10~80℃である。なかでも、20~50℃が好ましい。加えて、分解物の溶解性の点から、必要に応じて、超音波処理などを行っても良い。 Examples of the above-described contact treatment, that is, treatment of water or a solvent on the liquid crystal alignment film irradiated with polarized radiation includes immersion treatment and spray treatment (spray treatment). The time for these treatments is preferably 10 seconds to 1 hour, and preferably immersion treatment for 1 to 30 minutes, from the viewpoint of efficiently dissolving the decomposition products generated from the liquid crystal alignment film by radiation. In addition, the solvent for the contact treatment may be heated at normal temperature, but is preferably 10 to 80 ° C. Of these, 20 to 50 ° C. is preferable. In addition, from the viewpoint of the solubility of the decomposition product, ultrasonic treatment or the like may be performed as necessary.
 前記接触処理の後に、水、メタノール、エタノール、2-プロパノール、アセトン又はメチルエチルケトンなどの低沸点溶媒によるすすぎ(リンスともいう)や液晶配向膜の焼成を行うことが好ましい。その際、リンスと焼成のどちらか一方を行っても、又は、両方を行っても良い。焼成温度は、150~300℃が好ましく、180~250℃がより好ましく、200~230℃が特に好ましい。焼成時間は、10秒~30分が好ましく、1~10分がより好ましい。 After the contact treatment, it is preferable to perform rinsing (also referred to as rinsing) with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, or methyl ethyl ketone, and baking of the liquid crystal alignment film. At that time, either one of rinsing and firing, or both may be performed. The firing temperature is preferably 150 to 300 ° C, more preferably 180 to 250 ° C, and particularly preferably 200 to 230 ° C. The firing time is preferably 10 seconds to 30 minutes, more preferably 1 to 10 minutes.
 本発明の液晶配向膜は、IPS方式やFFS方式などの横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子に有用である。液晶表示素子は、本発明の液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して得られる。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子でもよい。
The liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film for a horizontal electric field type liquid crystal display element such as an IPS mode or an FFS mode, and is particularly useful for an FFS mode liquid crystal display element. The liquid crystal display element is obtained using a liquid crystal cell by preparing a liquid crystal cell by a known method after obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention.
As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
 具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOの膜とすることができる。
 次に、各基板の上に液晶配向膜を形成し、一方の基板に他方の基板を互いの液晶配向膜面が対向するようにして重ね合わせ、周辺をシール剤で接着する。シール剤には、基板間隙を制御するために、通常、スペーサーを混入しておき、また、シール剤を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール剤の一部には、外部から液晶を充填可能な開口部を設けておく。
Specifically, a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate. These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image. Next, an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode. The insulating film can be, for example, a SiO 2 —TiO 2 film formed by a sol-gel method.
Next, a liquid crystal alignment film is formed on each substrate, the other substrate is overlaid on one substrate so that the liquid crystal alignment film faces each other, and the periphery is bonded with a sealant. In order to control the substrate gap, a spacer is usually mixed in the sealant, and it is preferable to spray a spacer for controlling the substrate gap on the in-plane portion where no sealant is provided. A part of the sealant is provided with an opening that can be filled with liquid crystal from the outside.
 次いで、シール剤に設けた開口部を通じて、2枚の基板とシール剤で包囲された空間内に液晶材料を注入し、その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。液晶材料は、ポジ型液晶材料やネガ型液晶材料のいずれを用いてもよいが、好ましいのは、ネガ型液晶材料である。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。
 上記のようにして、本発明の液晶配向剤を用いることで、交流駆動による残像を抑制し、かつ、シール剤及び下地基板との密着性を両立する液晶配向膜が得られ。特に、偏光された放射線を照射して得られる光配向処理法用の液晶配向膜に対して有用である。
Next, a liquid crystal material is injected into the space surrounded by the two substrates and the sealing agent through the opening provided in the sealing agent, and then the opening is sealed with an adhesive. For the injection, a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used. As the liquid crystal material, either a positive liquid crystal material or a negative liquid crystal material may be used, but a negative liquid crystal material is preferable. Next, a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
As described above, by using the liquid crystal aligning agent of the present invention, it is possible to obtain a liquid crystal aligning film that suppresses afterimages due to AC driving and has both adhesiveness with the sealing agent and the base substrate. In particular, it is useful for a liquid crystal alignment film for photo-alignment treatment obtained by irradiating polarized radiation.
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定して解釈されるものではない。
 以下で使用した化合物の略号、及び測定方法は、次のとおりである。
NMP:N-メチル-2-ピロリドン、 BCS:ブチルセロソルブ
DA-1:1,2-ビス(4-アミノフェノキシ)エタン 
DA-2:1,3-ビス(4-アミノフェノキシ)プロパン
DA-3:p-フェニレンジアミン
DA-6:4-(2-(メチルアミノ)エチル)アニリン
The present invention will be described in more detail with reference to the following examples, but the present invention should not be construed as being limited thereto.
The abbreviations and measurement methods of the compounds used below are as follows.
NMP: N-methyl-2-pyrrolidone, BCS: Butyl cellosolve DA-1: 1,2-bis (4-aminophenoxy) ethane
DA-2: 1,3-bis (4-aminophenoxy) propane DA-3: p-phenylenediamine DA-6: 4- (2- (methylamino) ethyl) aniline
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
[粘度]
 ポリアミック酸エステル及びポリアミック酸溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[分子量]
 ポリアミック酸エステルの分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
GPC装置:Shodex社製(GPC-101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp)約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定。
[viscosity]
The viscosity of the polyamic acid ester and the polyamic acid solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24), temperature 25 Measured at ° C.
[Molecular weight]
The molecular weight of the polyamic acid ester is measured by a GPC (room temperature gel permeation chromatography) apparatus, and is a number average molecular weight (hereinafter also referred to as Mn) and a weight average molecular weight (hereinafter also referred to as Mw) in terms of polyethylene glycol and polyethylene oxide. Was calculated.
GPC device: manufactured by Shodex (GPC-101)
Column: manufactured by Shodex (series of KD803 and KD805)
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 ml / L)
Flow rate: 1.0 ml / min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polymer laboratory Polyethylene glycol manufactured by the company (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000). In order to avoid the overlapping of peaks, the measurement was performed by mixing four types of 900,000, 100,000, 12,000, and 1,000, and three types of 150,000, 30,000, and 4,000. Two samples of mixed samples are measured separately.
[イミド化率の測定]
 ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式中、xはアミド酸のNH基由来のプロトンピーク積算値であり、yは基準プロトンのピーク積算値であり、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
[Measurement of imidization rate]
20 mg of polyimide powder is put into an NMR sample tube (NMR sampling tube standard, φ5 (manufactured by Kusano Kagaku)) and deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixture) (0.53 ml) ) Was added and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum). The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated | required by the following formula | equation using the integrated value.
Imidization rate (%) = (1−α · x / y) × 100
In the above formula, x is the proton peak integrated value derived from the NH group of the amic acid, y is the peak integrated value of the reference proton, and α is the NH of the amic acid in the case of polyamic acid (imidation rate is 0%). This is the ratio of the number of reference protons to one group proton.
[配向膜の異方性]
 モリテックス社製の液晶配向膜評価システム「レイ・スキャン ラボH」(LYS-LH30S-1A)を用いて測定を行った。膜厚100nmのポリイミド膜に偏光板を介して紫外線を照射し、得られた配向膜の配向方向に対する異方性の大きさを測定した。
[Anisotropy of alignment film]
Measurement was performed using a liquid crystal alignment film evaluation system “Ray Scan Lab H” (LYS-LH30S-1A) manufactured by Moritex Corporation. The polyimide film having a thickness of 100 nm was irradiated with ultraviolet rays through a polarizing plate, and the magnitude of anisotropy with respect to the alignment direction of the obtained alignment film was measured.
[液晶セルの作製]
 フリンジフィールドスィッチング(Fringe Field Switching:FFS)モード液晶表示素子の構成を備えた液晶セルを作製する。
 初めに電極付きの基板を準備した。縦30mm、横0mm、厚さ0.7mmのガラス基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素および第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
[Production of liquid crystal cell]
A liquid crystal cell having a configuration of a fringe field switching (FFS) mode liquid crystal display element is manufactured.
First, a substrate with electrodes was prepared. On a glass substrate having a length of 30 mm, a width of 0 mm, and a thickness of 0.7 mm, an ITO electrode having a solid pattern constituting a counter electrode as a first layer is formed. On the counter electrode of the first layer, a SiN (silicon nitride) film formed by the CVD method is formed as the second layer. The second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film. On the second SiN film, a comb-like pixel electrode formed by patterning an ITO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing. The size of each pixel is 10 mm long and about 5 mm wide. At this time, the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
 第3層目の画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字の「くの字」に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。 The pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of electrode elements having a dogleg shape whose central portion is bent. The width in the short direction of each electrode element is 3 μm, and the distance between the electrode elements is 6 μm. Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold “Koji”. Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。 When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel. The electrode elements of the electrode are formed so as to form an angle of −10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
 次に、得られた液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比10:1以上の直線偏光した波長254nmの紫外線を照射した。この基板を、水及び有機溶媒から選ばれる少なくとも1種類の溶媒に3分間浸漬させ、次いで純水に1分間浸漬させ、150℃~300℃のホットプレート上で5分間加熱し、液晶配向膜付き基板を得た。上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-7026-100(メルク株式会社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置してから各評価に使用した。 Next, after filtering the obtained liquid crystal aligning agent through a 1.0 μm filter, the prepared substrate with electrodes and a glass substrate having a columnar spacer with a height of 4 μm on which an ITO film is formed on the back surface, It applied by spin coat application. After drying on an 80 ° C. hot plate for 5 minutes, baking was carried out in a hot air circulating oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. This coating film surface was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 10: 1 or more via a polarizing plate. This substrate is immersed in at least one solvent selected from water and an organic solvent for 3 minutes, then immersed in pure water for 1 minute, and heated on a hot plate at 150 ° C. to 300 ° C. for 5 minutes to provide a liquid crystal alignment film A substrate was obtained. The two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added. An empty cell was produced by curing. Liquid crystal MLC-7026-100 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and allowed to stand overnight before being used for each evaluation.
[長期交流駆動による残像評価]
 上記した残像評価に使用した液晶セルと同様の構造の液晶セルを準備した。
 この液晶セルを用い、60℃の恒温環境下、周波数60Hzで±5Vの交流電圧を120時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し同様の角度Δを算出した。
[Afterimage evaluation by long-term AC drive]
A liquid crystal cell having the same structure as the liquid crystal cell used for the above-described afterimage evaluation was prepared.
Using this liquid crystal cell, an AC voltage of ± 5 V was applied for 120 hours at a frequency of 60 Hz in a constant temperature environment of 60 ° C. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for one day.
After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized. The arrangement angle of the liquid crystal cell was adjusted. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle Δ. Similarly, in the second pixel, the second region and the first region were compared to calculate a similar angle Δ.
[液晶セルの輝点の評価(コントラスト)]
 上記で作製した液晶セルの輝点の評価を行った。液晶セルの輝点の評価は、液晶セルを偏光顕微鏡(ECLIPSE E600WPOL)(ニコン社製)で観察することで行った。具体的には、液晶セルをクロスニコルで設置し、倍率を5倍にした偏光顕微鏡で液晶セルを観察して確認された輝点の数を数え、輝点の数が10個未満を「良好」、それ以上を「不良」とした。
[Evaluation of bright spot of liquid crystal cell (contrast)]
The bright spot of the liquid crystal cell produced above was evaluated. Evaluation of the bright spot of the liquid crystal cell was performed by observing the liquid crystal cell with a polarizing microscope (ECLIPSE E600WPOL) (manufactured by Nikon Corporation). Specifically, the number of bright spots confirmed by observing the liquid crystal cell with a polarizing microscope in which the liquid crystal cell was installed in crossed Nicol and the magnification was 5 times was counted. ”And more than that,“ bad ”.
<合成例1>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1を0.81g(3.30mmol)、DA-2を0.57g(2.20mmol)、DA-3を0.36g(3.30mmol)、DA-4を0.88g(2.20mmol)を取り、NMPを29.99g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を2.35g(10.51mmol)添加し、更に固形分濃度が12質量%になるようにNMPを6.40g加え、室温で24時間撹拌してポリアミック酸溶液(A)を得た。このポリアミック酸溶液の温度25℃における粘度は316mPa・sであった。また、このポリアミック酸の分子量はMn=13230、Mw=29550であった。
<Synthesis Example 1>
In a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 0.81 g (3.30 mmol) of DA-1, 0.57 g (2.20 mmol) of DA-2, and 0.36 g of DA-3 ( 3.30 mmol) and 0.84 g (2.20 mmol) of DA-4 were added, 29.99 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 2.35 g (10.51 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and the solid content concentration became 12% by mass. Thus, 6.40 g of NMP was added and stirred at room temperature for 24 hours to obtain a polyamic acid solution (A). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 316 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 13230 and Mw = 29550.
<合成例2>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1を0.54g(2.20mmol)、DA-2を0.85g(3.30mmol)、DA-3を0.36g(3.30mmol)、DA-4を0.88g(2.20mmol)を取り、NMPを30.17g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を2.35g(10.51mmol)添加し、更に固形分濃度が12質量%になるようにNMPを6.34g加え、室温で24時間撹拌してポリアミック酸溶液(B)を得た。このポリアミック酸溶液の温度25℃における粘度は356mPa・sであった。また、このポリアミック酸の分子量はMn=14120、Mw=31210であった。
<Synthesis Example 2>
In a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 0.5-1 g (2.20 mmol) DA-1, 0.85 g (3.30 mmol) DA-2, and 0.36 g DA-3 ( 3.30 mmol) and 0.84 g (2.20 mmol) of DA-4 were added, 30.17 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 2.35 g (10.51 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and the solid content concentration became 12% by mass. In this way, 6.34 g of NMP was added and stirred at room temperature for 24 hours to obtain a polyamic acid solution (B). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 356 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 14120 and Mw = 31210.
<合成例3>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1を0.88g(3.60mmol)、DA-2を0.31g(1.20mmol)、DA-3を0.52g(4.80mmol)、DA-4を0.96g(2.40mmol)を取り、NMPを30.64g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を2.57g(11.46mmol)添加し、更に固形分濃度が12質量%になるようにNMPを7.74g加え、室温で24時間撹拌してポリアミック酸溶液(C)を得た。このポリアミック酸溶液の温度25℃における粘度は336mPa・sであった。また、このポリアミック酸の分子量はMn=13410、Mw=30110であった。
<Synthesis Example 3>
In a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 0.81 g (3.60 mmol) DA-1, 0.31 g (1.20 mmol) DA-2, 0.52 g DA-3 ( 4.80 mmol) and 0.96 g (2.40 mmol) of DA-4 were added, 30.64 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 2.57 g (11.46 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and the solid content concentration became 12% by mass. Thus, 7.74 g of NMP was added and stirred at room temperature for 24 hours to obtain a polyamic acid solution (C). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 336 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 13410 and Mw = 30110.
<合成例4>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1を0.54g(2.20mmol)、DA-2を0.57g(2.20mmol)、DA-3を0.48g(4.40mmol)、DA-4を0.88g(2.20mmol)を取り、NMPを28.27g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を2.35g(10.51mmol)添加し、更に固形分濃度が12質量%になるようにNMPを7.03g加え、室温で24時間撹拌してポリアミック酸溶液(D)を得た。このポリアミック酸溶液の温度25℃における粘度は366mPa・sであった。また、このポリアミック酸の分子量はMn=14530、Mw=36150であった。
<Synthesis Example 4>
In a 50 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, DA-1 0.54 g (2.20 mmol), DA-2 0.57 g (2.20 mmol), DA-3 0.48 g ( 4.40 mmol), 0.88 g (2.20 mmol) of DA-4 was added, 28.27 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 2.35 g (10.51 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and the solid content concentration became 12% by mass. Thus, 7.03 g of NMP was added and stirred at room temperature for 24 hours to obtain a polyamic acid solution (D). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 366 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 14530 and Mw = 36150.
<合成例5>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1を0.95g(3.90mmol)、DA-2を0.67g(2.60mmol)、DA-3を0.70g(6.50mmol)を取り、NMPを26.76g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を2.78g(12.42mmol)添加し、更に固形分濃度が12質量%になるようにNMPを10.71g加え、室温で24時間撹拌してポリアミック酸溶液(E)を得た。このポリアミック酸溶液の温度25℃における粘度は301mPa・sであった。また、このポリアミック酸の分子量はMn=11990、Mw=25310であった。
<Synthesis Example 5>
In a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 0.91 g (3.90 mmol) of DA-1, 0.67 g (2.60 mmol) of DA-2, and 0.70 g of DA-3 ( 6.50 mmol), 26.76 g of NMP were added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring the diamine solution, 2.78 g (12.42 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and the solid content concentration became 12% by mass. Thus, 10.71 g of NMP was added and stirred at room temperature for 24 hours to obtain a polyamic acid solution (E). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 301 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 11990 and Mw = 25310.
<合成例6>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1を0.81g(3.30mmol)、DA-2を0.57g(2.20mmol)、DA-3を0.36g(3.30mmol)、DA-5を0.75g(2.20mmol)を取り、NMPを28.55g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を2.35g(10.51mmol)添加し、更に固形分濃度が12質量%になるようにNMPを6.93g加え、室温で24時間撹拌してポリアミック酸溶液(F)を得た。このポリアミック酸溶液の温度25℃における粘度は350mPa・sであった。また、このポリアミック酸の分子量はMn=15220、Mw=31850であった。
<Synthesis Example 6>
In a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 0.81 g (3.30 mmol) of DA-1, 0.57 g (2.20 mmol) of DA-2, and 0.36 g of DA-3 ( 3.30 mmol) and 0.75 g (2.20 mmol) of DA-5 were added, 28.55 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 2.35 g (10.51 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and the solid content concentration became 12% by mass. Thus, 6.93 g of NMP was added and stirred at room temperature for 24 hours to obtain a polyamic acid solution (F). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 350 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 15220 and Mw = 31850.
<合成例7>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1を0.88g(3.60mmol)、DA-3を0.65g(6.00mmol)、DA-4を0.96g(2.40mmol)を取り、NMPを28.57g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を2.57g(11.46mmol)添加し、更に固形分濃度が12質量%になるようにNMPを8.49g加え、室温で24時間撹拌してポリアミック酸溶液(G)を得た。このポリアミック酸溶液の温度25℃における粘度は386mPa・sであった。また、このポリアミック酸の分子量はMn=16530、Mw=37220であった。
<Synthesis Example 7>
In a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, 0.81 g (3.60 mmol) of DA-1, 0.65 g (6.00 mmol) of DA-3, and 0.96 g of DA-4 ( 2.40 mmol) was taken, 28.57 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 2.57 g (11.46 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and the solid content concentration became 12% by mass. As above, 8.49 g of NMP was added and stirred at room temperature for 24 hours to obtain a polyamic acid solution (G). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 386 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 16530 and Mw = 37220.
<合成例8>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1を1.59g(6.50mmol)、DA-3を0.70g(6.50mmol)を取り、NMPを26.34g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を2.78g(12.42mmol)添加し、更に固形分濃度が12質量%になるようにNMPを10.86g加え、室温で24時間撹拌してポリアミック酸溶液(H)を得た。このポリアミック酸溶液の温度25℃における粘度は310mPa・sであった。また、このポリアミック酸の分子量はMn=13310、Mw=26210であった。
<Synthesis Example 8>
Take 1.59 g (6.50 mmol) of DA-1 and 0.70 g (6.50 mmol) of DA-3 and add 26.34 g of NMP to a 50 mL four-necked flask with a stirrer and a nitrogen inlet tube. The mixture was stirred and dissolved while feeding nitrogen. While stirring the diamine solution, 2.78 g (12.42 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and the solid content concentration became 12% by mass. Thus, 10.86 g of NMP was added and stirred at room temperature for 24 hours to obtain a polyamic acid solution (H). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 310 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 13310 and Mw = 26210.
<合成例9>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-2を1.68g(6.50mmol)、DA-3を0.70g(6.50mmol)を取り、NMPを27.39g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を2.78g(12.42mmol)添加し、更に固形分濃度が12質量%になるようにNMPを10.48g加え、室温で24時間撹拌してポリアミック酸溶液(I)を得た。このポリアミック酸溶液の温度25℃における粘度は322mPa・sであった。また、このポリアミック酸の分子量はMn=14430、Mw=29950であった。
<Synthesis Example 9>
1.68 g (6.50 mmol) of DA-2, 0.70 g (6.50 mmol) of DA-3 and 27.39 g of NMP were added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube. The mixture was stirred and dissolved while feeding nitrogen. While stirring the diamine solution, 2.78 g (12.42 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and the solid content concentration became 12% by mass. In this way, 10.48 g of NMP was added and stirred at room temperature for 24 hours to obtain a polyamic acid solution (I). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 322 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 14430 and Mw = 29950.
<合成例10>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-3を1.46g(13.50mmol)、DA-6を0.36g(1.50mmol)を取り、NMPを20.88g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を3.21g(14.33mmol)添加し、更に固形分濃度が12質量%になるようにNMPを15.98g加え、室温で24時間撹拌してポリアミック酸溶液(J)を得た。このポリアミック酸溶液の温度25℃における粘度は344mPa・sであった。また、このポリアミック酸の分子量はMn=14430、Mw=34850であった。
<Synthesis Example 10>
Take 1.46 g (13.50 mmol) of DA-3 and 0.36 g (1.50 mmol) of DA-6 and add 20.88 g of NMP to a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube. The mixture was stirred and dissolved while feeding nitrogen. While stirring the diamine solution, 3.21 g (14.33 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and the solid content concentration became 12% by mass. In this way, 15.98 g of NMP was added and stirred at room temperature for 24 hours to obtain a polyamic acid solution (J). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 344 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 14430 and Mw = 34850.
<合成例11>
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1を2.69g(11.00mmol)を取り、NMPを30.90g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を2.35g(10.51mmol)添加し、更に固形分濃度が12質量%になるようにNMPを6.07g加え、室温で24時間撹拌してポリアミック酸溶液(K)を得た。このポリアミック酸溶液の温度25℃における粘度は367mPa・sであった。また、このポリアミック酸の分子量はMn=17110、Mw=33310であった。
<Synthesis Example 11>
2.69 g (11.00 mmol) of DA-1 was added to a 50 mL four-necked flask equipped with a stirrer and a nitrogen introduction tube, and 30.90 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 2.35 g (10.51 mmol) of 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride was added, and the solid content concentration became 12% by mass. As such, 6.07 g of NMP was added and stirred at room temperature for 24 hours to obtain a polyamic acid solution (K). The viscosity of this polyamic acid solution at a temperature of 25 ° C. was 367 mPa · s. Moreover, the molecular weight of this polyamic acid was Mn = 17110 and Mw = 33310.
<実施例1>
 合成例1で得られた12質量%のポリアミック酸溶液(A)15.00gを100ml三角フラスコに取り、NMP9.00g、BCS6.00gを加え、25℃にて8時間混合して、液晶配向剤(1)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Example 1>
15.00 g of the 12% by mass polyamic acid solution (A) obtained in Synthesis Example 1 was placed in a 100 ml Erlenmeyer flask, 9.00 g of NMP and 6.00 g of BCS were added, and the mixture was mixed at 25 ° C. for 8 hours. (1) was obtained. This liquid crystal aligning agent was confirmed to be a uniform solution without any abnormality such as turbidity and precipitation.
<実施例2~6>
 合成例2~6で得られた、それぞれ、12質量%のポリアミック酸溶液(B)~(F)を使用した他は、実施例1と同様にして実施することにより、液晶配向剤(2)~(6)を得た。これらの液晶配向剤には、いずれも、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Examples 2 to 6>
The liquid crystal aligning agent (2) was obtained in the same manner as in Example 1 except that 12% by mass of the polyamic acid solutions (B) to (F) obtained in Synthesis Examples 2 to 6 were used. To (6) were obtained. All of these liquid crystal aligning agents were confirmed to be uniform solutions without any abnormality such as turbidity and precipitation.
<比較例1~5>
 合成例7~11で得られた、それぞれ、12質量%のポリアミック酸溶液(G)~(K)を使用した他は、実施例1と同様にして実施することにより、液晶配向剤(7)~(11)を得た。これらの液晶配向剤には、いずれも、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Comparative Examples 1 to 5>
The liquid crystal aligning agent (7) was obtained in the same manner as in Example 1 except that 12% by mass of the polyamic acid solutions (G) to (K) obtained in Synthesis Examples 7 to 11 were used. To (11) were obtained. All of these liquid crystal aligning agents were confirmed to be uniform solutions without any abnormality such as turbidity and precipitation.
(実施例7)
 実施例1で得られた液晶配向剤(1)を1.0μmのフィルターで濾過した後、30mm×40mmのITO基板に、スピンコート塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を照射し、得られた液晶配向膜の配向方向に対する異方性の高さを測定した。上記紫外線の照射量が100/cmでの異方性の値は1.31で、150mJ/cmでの異方性の値は3.10で、200mJ/cmでの異方性の値は2.25であった。最も異方性が高くなる上記紫外線の照射量は、150mJ/cmであり、光配向処理での最適照射条件とした。
(Example 7)
The liquid crystal aligning agent (1) obtained in Example 1 was filtered through a 1.0 μm filter, and then spin-coated on a 30 mm × 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the height of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured. In anisotropy value 1.31 in dose is 100 / cm 2 in the UV, anisotropy value at 150 mJ / cm 2 at 3.10, the anisotropy at 200 mJ / cm 2 The value was 2.25. The irradiation amount of the ultraviolet ray having the highest anisotropy was 150 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
(実施例8)
 実施例2で得られた液晶配向剤(2)を1.0μmのフィルターで濾過した後、30mm×40mmのITO基板に、スピンコート塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を照射し、得られた液晶配向膜の配向方向に対する異方性の高さを測定した。上記紫外線の照射量が50mJ/cmでの異方性の値は0.43で、100mJ/cmでの異方性の値は3.53で、150mJ/cmでの異方性の値は3.26であった。最も異方性が高くなる上記紫外線の照射量は、150mJ/cmであり、光配向処理での最適照射条件とした。
(Example 8)
The liquid crystal aligning agent (2) obtained in Example 2 was filtered through a 1.0 μm filter, and then spin-coated on a 30 mm × 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the height of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured. In anisotropy value 0.43 in the irradiation amount is 50 mJ / cm 2 of the ultraviolet, anisotropy value at 100 mJ / cm 2 at 3.53, the anisotropy at 150 mJ / cm 2 The value was 3.26. The irradiation amount of the ultraviolet ray having the highest anisotropy was 150 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
(実施例9)
 実施例3で得られた液晶配向剤(3)を1.0μmのフィルターで濾過した後、30mm×40mmのITO基板に、スピンコート塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を照射し、得られた液晶配向膜の配向方向に対する異方性の高さを測定した。上記紫外線の照射量が200mJ/cmでの異方性の値は2.24で、300mJ/cmでの異方性の値は3.41で、400mJ/cmでの異方性の値は1.51であった。最も異方性が高くなる上記紫外線の照射量は、300mJ/cmであり、光配向処理での最適照射条件とした。
Example 9
The liquid crystal aligning agent (3) obtained in Example 3 was filtered through a 1.0 μm filter, and then spin-coated on a 30 mm × 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the height of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured. The anisotropy value when the UV irradiation dose is 200 mJ / cm 2 is 2.24, the anisotropy value at 300 mJ / cm 2 is 3.41, and the anisotropy value at 400 mJ / cm 2 . The value was 1.51. The irradiation amount of the ultraviolet ray having the highest anisotropy was 300 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
(実施例10)
 実施例4で得られた液晶配向剤(4)を1.0μmのフィルターで濾過した後、30mm×40mmのITO基板に、スピンコート塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を照射し、得られた液晶配向膜の配向方向に対する異方性の高さを測定した。上記紫外線の照射量が100mJ/cmでの異方性の値は1.15で、200mJ/cmでの異方性の値は2.30で、300mJ/cmでの異方性の値は2.26であった。最も異方性が高くなる上記紫外線の照射量は、200mJ/cmであり、光配向処理での最適照射条件とした。
(Example 10)
The liquid crystal aligning agent (4) obtained in Example 4 was filtered through a 1.0 μm filter, and spin-coated on a 30 mm × 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the height of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured. The anisotropy value when the UV irradiation dose is 100 mJ / cm 2 is 1.15, the anisotropy value at 200 mJ / cm 2 is 2.30, and the anisotropy value at 300 mJ / cm 2 is 300 mJ / cm 2 . The value was 2.26. The irradiation amount of the ultraviolet ray having the highest anisotropy was 200 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
(実施例11)
 実施例5で得られた液晶配向剤(5)を1.0μmのフィルターで濾過した後、30mm×40mmのITO基板に、スピンコート塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を照射し、得られた液晶配向膜の配向方向に対する異方性の高さを測定した。上記紫外線の照射量が100mJ/cmでの異方性の値は4.29で、150mJ/cmでの異方性の値は5.23で、200mJ/cmでの異方性の値は3.00であった。最も異方性が高くなる上記紫外線の照射量は、150mJ/cmであり、光配向処理での最適照射条件とした。
(Example 11)
The liquid crystal aligning agent (5) obtained in Example 5 was filtered through a 1.0 μm filter, and spin-coated on a 30 mm × 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the height of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured. The dose of the ultraviolet light at 4.29 anisotropy value at 100 mJ / cm 2, anisotropy value at 150 mJ / cm 2 at 5.23, the anisotropy at 200 mJ / cm 2 The value was 3.00. The irradiation amount of the ultraviolet ray having the highest anisotropy was 150 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
(実施例12)
 実施例6で得られた液晶配向剤(6)を1.0μmのフィルターで濾過した後、30mm×40mmのITO基板に、スピンコート塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を照射し、得られた液晶配向膜の配向方向に対する異方性の高さを測定した。上記紫外線の照射量が100mJ/cmでの異方性の値は2.76で、150mJ/cmでの異方性の値は4.87で、200mJ/cmでの異方性の値は4.01であった。最も異方性が高くなる上記紫外線の照射量は、150mJ/cmであり、光配向処理での最適照射条件とした。
(Example 12)
The liquid crystal aligning agent (6) obtained in Example 6 was filtered through a 1.0 μm filter, and then spin-coated on a 30 mm × 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the height of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured. In anisotropy value 2.76 in dose is 100 mJ / cm 2 of the ultraviolet, anisotropy value at 150 mJ / cm 2 at 4.87, the anisotropy at 200 mJ / cm 2 The value was 4.01. The irradiation amount of the ultraviolet ray having the highest anisotropy was 150 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
(比較例6)
 比較例1で得られた液晶配向剤(7)を1.0μmのフィルターで濾過した後、30mm×40mmのITO基板に、スピンコート塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を照射し、得られた液晶配向膜の配向方向に対する異方性の大きさを測定した。上記紫外線の照射量が100mJ/cmでの異方性の値は2.02で、200mJ/cmでの異方性の値は2.87で、300mJ/cmでの異方性の値は2.51であった。最も異方性が大きくなる上記紫外線の照射量は、200mJ/cmであり、光配向処理での最適照射条件とした。
(Comparative Example 6)
The liquid crystal aligning agent (7) obtained in Comparative Example 1 was filtered through a 1.0 μm filter, and then spin-coated on a 30 mm × 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the degree of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured. The dose of the ultraviolet light in anisotropic value 2.02 at 100 mJ / cm 2, in anisotropy value 2.87 at 200 mJ / cm 2, the anisotropy at 300 mJ / cm 2 The value was 2.51. The irradiation amount of the ultraviolet ray having the greatest anisotropy was 200 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
(比較例7)
 比較例2で得られた液晶配向剤(8)を1.0μmのフィルターで濾過した後、30mm×40mmのITO基板に、スピンコート塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を照射し、得られた液晶配向膜の配向方向に対する異方性の大きさを測定した。上記紫外線の照射量が100mJ/cmでの異方性の値は5.02で、150mJ/cmでの異方性の値は7.37で、200mJ/cmでの異方性の値は6.40であった。最も異方性が大きくなる上記紫外線の照射量は、150mJ/cmであり、光配向処理での最適照射条件とした。
(Comparative Example 7)
The liquid crystal aligning agent (8) obtained in Comparative Example 2 was filtered through a 1.0 μm filter, and then spin-coated on a 30 mm × 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the degree of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured. The dose of the ultraviolet light in the anisotropy value 5.02 at 100 mJ / cm 2, anisotropy value at 150 mJ / cm 2 at 7.37, the anisotropy at 200 mJ / cm 2 The value was 6.40. The irradiation amount of the ultraviolet ray having the largest anisotropy was 150 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
(比較例8)
 比較例3で得られた液晶配向剤(9)を1.0μmのフィルターで濾過した後、30mm×40mmのITO基板に、スピンコート塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を照射し、得られた液晶配向膜の配向方向に対する異方性の大きさを測定した。上記紫外線の照射量が50mJ/cmでの異方性の値は4.11で、100mJ/cmでの異方性の値は5.78で、150mJ/cmでの異方性の値は4.55であった。最も異方性が大きくなる上記紫外線の照射量は、100mJ/cmであり、光配向処理での最適照射条件とした。
(Comparative Example 8)
The liquid crystal aligning agent (9) obtained in Comparative Example 3 was filtered through a 1.0 μm filter, and then spin-coated on a 30 mm × 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the degree of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured. The dose of the ultraviolet light at 4.11 anisotropy value at 50 mJ / cm 2, anisotropy value at 100 mJ / cm 2 at 5.78, the anisotropy at 150 mJ / cm 2 The value was 4.55. The irradiation amount of the ultraviolet ray having the greatest anisotropy was 100 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
(比較例9)
 比較例4で得られた液晶配向剤(10)を1.0μmのフィルターで濾過した後、30mm×40mmのITO基板に、スピンコート塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を照射し、得られた液晶配向膜の配向方向に対する異方性の大きさを測定した。上記紫外線の照射量が400mJ/cmでの異方性の値は1.60で、600mJ/cmでの異方性の値は1.78で、800mJ/cmでの異方性の値は1.33であった。最も異方性が大きくなる上記紫外線の照射量は、600mJ/cmであり、光配向処理での最適照射条件とした。
(Comparative Example 9)
The liquid crystal aligning agent (10) obtained in Comparative Example 4 was filtered through a 1.0 μm filter, and then spin-coated on a 30 mm × 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the degree of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured. The dose of the ultraviolet light in anisotropic value 1.60 at 400 mJ / cm 2, in anisotropy value 1.78 at 600 mJ / cm 2, the anisotropy at 800 mJ / cm 2 The value was 1.33. The irradiation amount of the ultraviolet ray having the greatest anisotropy was 600 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
(比較例10)
 比較例5で得られた液晶配向剤(11)を1.0μmのフィルターで濾過した後、30mm×40mmのITO基板に、スピンコート塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで14分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を照射し、得られた液晶配向膜の配向方向に対する異方性の大きさを測定した。上記紫外線の照射量が50mJ/cmでの異方性の値は5.54で、100mJ/cmでの異方性の値は7.34で、200mJ/cmでの異方性の値は6.40であった。最も異方性が大きくなる上記紫外線の照射量は、100mJ/cmであり、光配向処理での最適照射条件とした。
(Comparative Example 10)
The liquid crystal aligning agent (11) obtained in Comparative Example 5 was filtered through a 1.0 μm filter, and then spin-coated on a 30 mm × 40 mm ITO substrate. After drying on an 80 ° C. hot plate for 2 minutes, baking was performed in a hot air circulation oven at 230 ° C. for 14 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with linearly polarized ultraviolet light having a wavelength of 254 nm with an extinction ratio of 26: 1 via a polarizing plate, and the degree of anisotropy with respect to the alignment direction of the obtained liquid crystal alignment film was measured. The anisotropy value at 5.5 mJ / cm 2 of the UV irradiation is 5.54, the anisotropy value at 100 mJ / cm 2 is 7.34, and the anisotropy value at 200 mJ / cm 2 . The value was 6.40. The irradiation amount of the ultraviolet ray having the greatest anisotropy was 100 mJ / cm 2 , and was the optimum irradiation condition in the photo-alignment treatment.
(実施例13)
 実施例1で得られた液晶配向剤(1)を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を150mJ/cm照射した後、230℃のホットプレート上で14分間加熱して、液晶配向膜付き基板を得た。上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-7026-100(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置して、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、0.08度であった。また、セル中の輝点観察を行った結果、輝点の数が10個未満であり、良好であった。
(Example 13)
After the liquid crystal aligning agent (1) obtained in Example 1 is filtered through a 1.0 μm filter, the prepared substrate with electrodes and a columnar spacer with a height of 4 μm on which an ITO film is formed on the back surface are provided. It apply | coated to the glass substrate by spin coat application | coating. After drying on an 80 ° C. hot plate for 5 minutes, baking was carried out in a hot air circulating oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. The surface of the coating film was irradiated with 150 mJ / cm 2 of linearly polarized UV light having a extinction ratio of 26: 1 through a polarizing plate at 150 mJ / cm 2 and then heated on a hot plate at 230 ° C. for 14 minutes to obtain a substrate with a liquid crystal alignment film Got. The two substrates are combined as a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film faces and the alignment direction is 0 °, and then the sealant is added. An empty cell was produced by curing. Liquid crystal MLC-7026-100 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS drive liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 1 hour and left to stand for evaluation of afterimages by long-term AC driving. The value of the angle Δ of this liquid crystal cell after long-term AC driving was 0.08 degrees. Further, as a result of observing the bright spots in the cell, the number of bright spots was less than 10, which was favorable.
(実施例14)
 実施例1で得られた液晶配向剤(1)について、偏光紫外線を照射した後、2-プロパノールに3分間浸漬させ、次いで純水に1分間浸漬させた以外は、実施例13と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、長期交流駆動による残像評価を実施した。長期交流駆動後におけるこの液晶セルの角度Δの値は、0.10度であった。また、セル中の輝点観察を行った結果、輝点の数が10個未満であり、良好であった。
(Example 14)
The same method as in Example 13 except that the liquid crystal aligning agent (1) obtained in Example 1 was irradiated with polarized ultraviolet light, then immersed in 2-propanol for 3 minutes, and then immersed in pure water for 1 minute. Thus, an FFS drive liquid crystal cell was produced. This FFS drive liquid crystal cell was subjected to afterimage evaluation by long-term AC drive. The value of the angle Δ of this liquid crystal cell after long-term AC driving was 0.10 degrees. Further, as a result of observing the bright spots in the cell, the number of bright spots was less than 10, which was favorable.
(実施例15~19)
 実施例2~6で得られた液晶配向剤(2)~(6)をそれぞれ用いた以外は、実施例13と同様の方法で膜厚100nmの各塗膜を形成させた。これらの各塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を、それぞれ、下記の表1に記載される照射量(単位:mJ/cm)で照射した以外は、実施例13と同様にして、液晶配向膜付き基板、次いで、各FFS駆動液晶セルを作製し、長期交流駆動による残像評価を実施した。長期交流駆動後における各液晶セルの角度Δの値、セル中の輝点観察を行った結果を表1に示す。なお、輝点の数が10個未満を良好とし、輝点の数が10個以上を不良と評価した。
(Examples 15 to 19)
Each coating film having a thickness of 100 nm was formed in the same manner as in Example 13 except that the liquid crystal aligning agents (2) to (6) obtained in Examples 2 to 6 were used. Each of these coating surfaces was irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm with an extinction ratio of 26: 1 through a polarizing plate at an irradiation amount (unit: mJ / cm 2 ) described in Table 1 below. Except for the above, a substrate with a liquid crystal alignment film and then each FFS drive liquid crystal cell were prepared in the same manner as in Example 13, and afterimage evaluation was performed by long-term alternating current drive. Table 1 shows the value of the angle Δ of each liquid crystal cell after long-term AC driving and the results of observation of the bright spots in the cell. In addition, the number of luminescent spots was evaluated as good when it was less than 10, and the number of luminescent spots as 10 or more was evaluated as defective.
(比較例11~15)
 比較例1~5で得られた液晶配向剤(7)~(11)をそれぞれ用いた以外は、実施例13と同様の方法で膜厚100nmの各塗膜を形成させた。これらの各塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を、それぞれ、下記の表1に記載される照射量(単位:mJ/cm)で照射した以外は、実施例13と同様にして、液晶配向膜付き基板、次いで、各FFS駆動液晶セルを作製し、長期交流駆動による残像評価を実施した。長期交流駆動後における各液晶セルの角度Δの値、セル中の輝点観察を行った結果を表1に示す。なお、輝点の数が10個未満を良好とし、輝点の数が10個以上を不良と評価した。
(Comparative Examples 11 to 15)
Each coating film having a thickness of 100 nm was formed in the same manner as in Example 13 except that the liquid crystal aligning agents (7) to (11) obtained in Comparative Examples 1 to 5 were used. Each of these coating surfaces was irradiated with a linearly polarized ultraviolet ray having a wavelength of 254 nm with an extinction ratio of 26: 1 through a polarizing plate at an irradiation amount (unit: mJ / cm 2 ) described in Table 1 below. Except for the above, a substrate with a liquid crystal alignment film and then each FFS drive liquid crystal cell were prepared in the same manner as in Example 13, and afterimage evaluation was performed by long-term alternating current drive. Table 1 shows the value of the angle Δ of each liquid crystal cell after long-term AC driving and the results of observation of the bright spots in the cell. In addition, the number of luminescent spots was evaluated as good when it was less than 10, and the number of luminescent spots as 10 or more was evaluated as defective.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 本発明の液晶配向剤により、ネガ液晶を用いた場合でも、光配向処理時に発生する液晶配向膜由来の分解物による輝点が発生せず、良好な残像特性を有する液晶配向膜を得ることが出来る。よって、本発明の液晶配向剤から得られる液晶配向膜は、コントラスト低下の要因である輝点が少なく、且つIPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を低減することができ、残像特性に優れたIPS駆動方式やFFS駆動方式の液晶表示素子が得られる。そのため、高い表示品位が求められる液晶表示素子における利用が可能である。 With the liquid crystal aligning agent of the present invention, even when a negative liquid crystal is used, a bright spot due to a decomposition product derived from the liquid crystal aligning film generated during the photo-alignment treatment does not occur, and a liquid crystal aligning film having good afterimage characteristics can be obtained. I can do it. Therefore, the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention has few bright spots that cause a decrease in contrast, and reduces afterimages caused by alternating current driving in liquid crystal display elements of the IPS driving method and the FFS driving method. Thus, an IPS driving type or FFS driving type liquid crystal display element having excellent afterimage characteristics can be obtained. Therefore, it can be used in a liquid crystal display element that requires high display quality.

Claims (12)

  1.  下記式(1)と下記式(2)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体(A)を含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
     (式(1)、式(2)中、X及びXそれぞれ独立して、4価の有機基であり、R及びRは、それぞれ独立して、水素原子、又は炭素数1~4のアルキル基であり、A、A,A,Aはそれぞれ独立して、水素原子、又は炭素数1~4のアルキル基であり、Z、Z、Z、及びZは、それぞれ独立して、水素原子、ハロゲン原子、及び炭素数1~4のアルキル基であり、nは、1~4の整数である。)
    It contains at least one polymer (A) selected from the group consisting of a polyimide precursor having structural units represented by the following formula (1) and the following formula (2) and an imidized polymer of the polyimide precursor. A liquid crystal aligning agent characterized by that.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), equation (2), X 1 and X 2 are each independently a tetravalent organic group, R 1 and R 2 are each independently a hydrogen atom, or carbon atoms An alkyl group having 1 to 4; A 1 , A 2 , A 3 , and A 4 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms; and Z 1 , Z 2 , Z 3 , And Z 4 are each independently a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms, and n is an integer of 1 to 4).
  2.  上記式(1)で表される構造単位の含有割合が、上記重合体(A)の全構造単位1モルに対して、10~50モル%であり、上記式(2)で表される構造単位の含有割合が、上記重合体(A)の全構造単位1モルに対して、20~90モル%である請求項1に記載の液晶配向剤。 The content ratio of the structural unit represented by the formula (1) is 10 to 50 mol% with respect to 1 mol of all the structural units of the polymer (A), and the structure represented by the formula (2) The liquid crystal aligning agent according to claim 1, wherein the content ratio of the units is 20 to 90 mol% with respect to 1 mol of all the structural units of the polymer (A).
  3.  式(1)、式(2)、及び式(3)中、X、X及びXが下記式(X1-1)~(X1-9)で表される構造からなる群から選ばれる少なくとも1種である請求項1又は2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (式(X1-1)において、R、R、R、及びRはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルキニル基、又はフェニル基であり、同一でも異なってもよい。)
    In formula (1), formula (2), and formula (3), X 1 , X 2 and X 3 are selected from the group consisting of structures represented by the following formulas (X1-1) to (X1-9) The liquid crystal aligning agent according to claim 1, wherein the liquid crystal aligning agent is at least one kind.
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (X1-1), R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms. , An alkynyl group or a phenyl group, which may be the same or different.)
  4.  重合体(A)が、式(1)及び式(2)以外の構造単位として下記式(3)で表される構造単位を有する請求項1~3のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)、Xそれぞれ独立して、上記式(X1-1)~(X1-9)で表される構造からなる群から選ばれる少なくとも1種であり、Rは、水素原子、又は炭素数1~4のアルキル基であり、Yは下記式[1d-1]~[1d-7]で表される構造からなる群から選ばれる少なくとも1種類である。)
    Figure JPOXMLDOC01-appb-C000004
    (式[1d-1]~式[1d-7]中、Dは、tert-ブトキシメトキシカルボニル基であり、n1~n5は、それぞれ独立して、1~5の整数である。)
    The liquid crystal aligning agent according to any one of claims 1 to 3, wherein the polymer (A) has a structural unit represented by the following formula (3) as a structural unit other than the formula (1) and the formula (2).
    Figure JPOXMLDOC01-appb-C000003
    (Equation (3), X 3 are each independently at least one selected from the group consisting of structures represented by the formula (X1-1) ~ (X1-9), R 3 is hydrogen An atom or an alkyl group having 1 to 4 carbon atoms, and Y 1 is at least one selected from the group consisting of structures represented by the following formulas [1d-1] to [1d-7].
    Figure JPOXMLDOC01-appb-C000004
    (In the formulas [1d-1] to [1d-7], D is a tert-butoxymethoxycarbonyl group, and n1 to n5 are each independently an integer of 1 to 5.)
  5.  式(3)で表される構造単位の含有比率が、上記重合体(A)の全構造単位1モルに対して、10~50モル%である上記1~4のいずれかに記載の液晶配向剤。 5. The liquid crystal alignment according to any one of 1 to 4 above, wherein the content ratio of the structural unit represented by the formula (3) is 10 to 50 mol% with respect to 1 mol of all the structural units of the polymer (A). Agent.
  6.  式(1)、式(2)、及び式(3)中、X、X及びXが上記式(X1-1)で表される構造からなる群から選ばれる少なくとも1種である請求項1~5のいずれかに記載の液晶配向剤。 In Formula (1), Formula (2), and Formula (3), X 1 , X 2, and X 3 are at least one selected from the group consisting of structures represented by Formula (X1-1) above Item 6. The liquid crystal aligning agent according to any one of Items 1 to 5.
  7.  式(1)、式(2)、及び式(3)中、X、X及びXが下記式(X1-10)及び(X1-11)で表される構造からなる群から選ばれる少なくとも1種である請求項1~6のいずれかに記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    Equation (1) is selected from the group consisting of structural formula (2), and that in the formula (3), X 1, X 2 and X 3 are represented by the following formula (X1-10) and (X1-11) 7. The liquid crystal aligning agent according to claim 1, wherein the liquid crystal aligning agent is at least one kind.
    Figure JPOXMLDOC01-appb-C000005
  8.  式(1)、式(2)、及び式(3)中、X、X及びXが前記式(X1-11)である請求項1~7のいずれかに記載の液晶配向剤。 The liquid crystal aligning agent according to any one of claims 1 to 7, wherein in the formulas (1), (2), and (3), X 1 , X 2, and X 3 are the formula (X1-11).
  9.  請求項1~8のいずれかに記載の液晶配向剤を塗布、焼成して得られた膜に、偏光された紫外線を照射して得られる液晶配向膜。 A liquid crystal alignment film obtained by irradiating a film obtained by applying and baking the liquid crystal aligning agent according to any one of claims 1 to 8 with polarized ultraviolet rays.
  10.  請求項1~8のいずれかに記載の液晶配向剤を用いて、インクジェット法にて得られる液晶配向膜。 A liquid crystal alignment film obtained by an ink jet method using the liquid crystal aligning agent according to any one of claims 1 to 8.
  11.  請求項9及び請求項10のいずれかに記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display element having the liquid crystal alignment film according to claim 9.
  12.  液晶が、ネガ型液晶材料である請求項11に記載の液晶表示素子。 The liquid crystal display element according to claim 11, wherein the liquid crystal is a negative liquid crystal material.
PCT/JP2016/088770 2016-12-26 2016-12-26 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element WO2018122936A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018558546A JP7001063B2 (en) 2016-12-26 2016-12-26 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR1020197021860A KR20190095477A (en) 2016-12-26 2016-12-26 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
CN201680092089.6A CN110325901B (en) 2016-12-26 2016-12-26 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
PCT/JP2016/088770 WO2018122936A1 (en) 2016-12-26 2016-12-26 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/088770 WO2018122936A1 (en) 2016-12-26 2016-12-26 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Publications (1)

Publication Number Publication Date
WO2018122936A1 true WO2018122936A1 (en) 2018-07-05

Family

ID=62707124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088770 WO2018122936A1 (en) 2016-12-26 2016-12-26 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Country Status (4)

Country Link
JP (1) JP7001063B2 (en)
KR (1) KR20190095477A (en)
CN (1) CN110325901B (en)
WO (1) WO2018122936A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095593A1 (en) * 2019-11-14 2021-05-20 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114456378B (en) * 2020-11-09 2024-02-27 江苏三月科技股份有限公司 Polyimide for liquid crystal alignment agent and liquid crystal alignment film prepared from polyimide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016170409A (en) * 2015-03-11 2016-09-23 Jnc株式会社 Liquid crystal alignment agent for forming liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display using the same
WO2016152928A1 (en) * 2015-03-24 2016-09-29 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276132A (en) * 1991-03-11 1994-01-04 Japan Synthetic Rubber Co., Ltd. Liquid crystal aligning agent and aligning agent-applied liquid crystal display device
JP3893659B2 (en) 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
JP4844712B2 (en) * 2005-07-05 2011-12-28 Jsr株式会社 Liquid crystal aligning agent and liquid crystal display element
JP5654228B2 (en) 2009-11-13 2015-01-14 株式会社ジャパンディスプレイ Liquid crystal display device and method of manufacturing liquid crystal display device
CN104603683B (en) * 2012-07-11 2017-05-10 日产化学工业株式会社 Liquid crystal alignment agent containing polyamic acid ester, liquid crystal alignment film, and liquid crystal display element
KR102275484B1 (en) * 2013-10-23 2021-07-08 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP6578948B2 (en) * 2013-10-23 2019-09-25 日産化学株式会社 Liquid crystal aligning agent containing polyimide precursor and / or polyimide having thermally detachable group
KR102241784B1 (en) * 2013-10-23 2021-04-16 닛산 가가쿠 가부시키가이샤 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP6652739B2 (en) 2015-10-07 2020-02-26 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016170409A (en) * 2015-03-11 2016-09-23 Jnc株式会社 Liquid crystal alignment agent for forming liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display using the same
WO2016152928A1 (en) * 2015-03-24 2016-09-29 日産化学工業株式会社 Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095593A1 (en) * 2019-11-14 2021-05-20 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element using same

Also Published As

Publication number Publication date
JP7001063B2 (en) 2022-01-19
CN110325901B (en) 2022-03-22
KR20190095477A (en) 2019-08-14
CN110325901A (en) 2019-10-11
JPWO2018122936A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
JP2018083943A (en) Composition, liquid crystal orientation treatment agent, liquid crystal orientation film and liquid crystal display element
WO2017061575A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JP7351382B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2015060358A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP5930239B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP6299977B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6368955B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2015053394A1 (en) Composition, treatment agent for liquid crystal alignment, liquid crystal alignment film, and liquid crystal display element
JP6079627B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
WO2014084309A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2014119682A1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
WO2015141598A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2017047596A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP6652739B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display device
JP5930238B2 (en) Composition, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element
JP7001063B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2013146589A1 (en) Liquid crystal display element and manufacturing method thereof
WO2017094786A1 (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
TWI726965B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6776897B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
JPWO2016076412A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558546

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197021860

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16924932

Country of ref document: EP

Kind code of ref document: A1