WO2016152440A1 - Growth-promoting material for organism conducting photosynthesis in water and use of same - Google Patents

Growth-promoting material for organism conducting photosynthesis in water and use of same Download PDF

Info

Publication number
WO2016152440A1
WO2016152440A1 PCT/JP2016/056599 JP2016056599W WO2016152440A1 WO 2016152440 A1 WO2016152440 A1 WO 2016152440A1 JP 2016056599 W JP2016056599 W JP 2016056599W WO 2016152440 A1 WO2016152440 A1 WO 2016152440A1
Authority
WO
WIPO (PCT)
Prior art keywords
growth
water
growth promoting
algae
phosphor
Prior art date
Application number
PCT/JP2016/056599
Other languages
French (fr)
Japanese (ja)
Inventor
上遠野 正孝
泰司 三宅
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Publication of WO2016152440A1 publication Critical patent/WO2016152440A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management

Definitions

  • the present invention relates to a material for promoting the growth of organisms that perform photosynthesis in water and its use.
  • Producers of crops such as rapeseed, sunflower, soybean, oil palm, and coconut, and biomass such as aquatic plants and algae are being produced.
  • biomass such as aquatic plants and algae
  • the production of useful biomass by conducting photosynthesis in aquatic organisms such as aquatic plants and algae is widely conducted, and research is also actively conducted.
  • a photosynthetic microorganism is attached to a substrate containing a compound having a wavelength conversion function, the first light is irradiated to the photosynthetic microorganism, and the first light and the compound having a wavelength conversion function are used.
  • a method for attaching and cultivating photosynthetic microorganisms in which the wavelength-converted second light is irradiated to the photosynthetic microorganisms has been proposed.
  • microalgae is attracting particular attention because it does not compete with food crops, so it does not cause an increase in food prices, it can be produced in areas where cultivation is difficult, and it has a high potential for biomass production.
  • Euglena algae are not only promising as biofuels, but also contain vitamins, minerals, amino acids, unsaturated fatty acids, etc., and because of their high nutritional value, they are also used as functional foods and feeds. It has been actively studied as a promising organism from both sides.
  • Patent Document 2 proposes a photosynthetic microorganism culturing apparatus characterized by controlling the dissolved CO 2 concentration in a culture solution.
  • the present invention has been made in view of the above-described prior art, and can be used for bioreactors capable of efficiently growing organisms that perform photosynthesis in water, methods for promoting growth, and bioreactors and materials used in the methods.
  • the purpose is to provide.
  • the material for promoting growth according to the present invention is a material for promoting growth of a living organism that performs photosynthesis in water, which is formed from a composition containing a vinylidene fluoride resin and a phosphor.
  • the phosphor preferably includes a fluorescent dye, and more preferably includes a perylene fluorescent dye.
  • the organism that performs photosynthesis in water is preferably at least one selected from aquatic plants and algae. At least one algae selected from algae, Pseudochoricystis ellipsoidea, Schizochytrium sp., Enomoto algae, Solaris marine diatom (Fistulifera sp. JPCC DA0580, possessing power development) More preferably, it is particularly preferably Euglena algae.
  • the composition contains 0.0001 to 10 parts by mass of the phosphor with respect to 100 parts by mass of the vinylidene fluoride resin.
  • the growth promoting material is preferably in the form of a net or a film.
  • the bioreactor of the present invention is a bioreactor in which a living organism that performs photosynthesis in water is grown in a reactor containing water, and the growth promoting material is provided in at least one of the reactor and between the reactor and the light source.
  • the growth promoting method of the present invention is the method for promoting the growth in a reactor containing water and at least one of the reactor and the light source when growing an organism that performs photosynthesis in water. Arrange materials.
  • the growth promoting material of the present invention By using the growth promoting material of the present invention, it is possible to efficiently grow a living organism that performs photosynthesis in water.
  • the growth promoting material of the present invention since the growth promoting material of the present invention has excellent antifouling properties and excellent sedimentation properties, it can efficiently grow organisms that perform photosynthesis in water over a long period of time.
  • the material for promoting growth according to the present invention is a material for promoting growth of a living organism that performs photosynthesis in water, which is formed from a composition containing a vinylidene fluoride resin and a phosphor.
  • the material for promoting growth is formed from a composition containing a phosphor, it is possible to promote photosynthesis of a living organism that performs photosynthesis in water, and growth is promoted by promoting photosynthesis. Moreover, since the said growth promotion material is formed from the composition containing a vinylidene fluoride resin, it is excellent in antifouling property and is excellent in sedimentation property. For this reason, it is possible to efficiently grow a living organism that performs photosynthesis in water over a long period of time without attaching dirt and algae to the growth promoting material.
  • composition used in the present invention contains a vinylidene fluoride resin and a phosphor.
  • the vinylidene fluoride resin a vinylidene fluoride homopolymer or a vinylidene fluoride copolymer can be used.
  • the vinylidene fluoride-based resin may have a structural unit derived from vinylidene fluoride in an amount of 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more.
  • the vinylidene fluoride resin one kind of polymer may be used, or two or more kinds of polymers may be used.
  • Examples of the monomer other than vinylidene fluoride constituting the vinylidene fluoride copolymer include fluorine-based monomers other than vinylidene fluoride and hydrocarbon monomers such as ethylene and propylene.
  • fluorine-based monomers other than vinylidene fluoride include perfluoroalkyl vinyl ethers typified by vinyl fluoride, trifluoroethylene, tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, and perfluoromethyl vinyl ether. Can do.
  • the said other monomer may be used individually by 1 type, and may use 2 or more types.
  • the inherent viscosity ( ⁇ inh ) of the vinylidene fluoride resin is preferably in the range of 0.8 to 2.0 dl / g, more preferably 1.0 to 1.7 dl / g.
  • a phosphor having an excitation wavelength of preferably 300 to 700 nm, more preferably 400 to 600 nm is used. It is preferable for the excitation wavelength to be within the above-mentioned range since the light from the light source such as the sun can be efficiently absorbed.
  • a phosphor having an emission wavelength of preferably 500 to 1000 nm, more preferably 600 to 900 nm is used. It is preferable for the emission wavelength to be in the above-mentioned range since light necessary for photosynthesis can be efficiently given to a living organism that performs photosynthesis in water.
  • 1 type may be used or 2 or more types may be used.
  • the phosphor either an organic phosphor or an inorganic phosphor may be used.
  • organic phosphors examples include perylene fluorescent dyes, europium complexes, and europium salts.
  • a fluorescent dye or a fluorescent pigment may be used as the organic phosphor.
  • the phosphor preferably contains a fluorescent dye, more preferably a perylene fluorescent dye.
  • a fluorescent dye because it is easy to handle, and a perylene phosphor dye is preferred from the viewpoint of compatibility with a vinylidene fluoride resin.
  • the perylene phosphor dye is not particularly limited as long as it is a compound having a perylene skeleton in the molecule.
  • Examples of perylene phosphor dyes include molecules having a perylene skeleton disclosed in JP-A-57-125260, JP-A-58-40359, and JP-A-60-203650. .
  • perylene phosphor dyes examples include LUMOGEN (registered trademark) (Lumogen) F yellow 083, LUMOGEN (registered trademark) F orange 240, LUMOGEN (registered trademark) F red 300, LUMOGEN (registered trademark) F red 305 (or above).
  • Perylene-based fluorescent dyes such as BASF Japan Ltd. and their equivalents.
  • the composition used in the present invention preferably contains 0.0001 to 10 parts by mass, more preferably 0.001 to 5 parts by mass of the phosphor with respect to 100 parts by mass of the vinylidene fluoride resin. It is particularly preferable to contain 0.01 to 1 part by mass. Within the above range, high specific gravity (sedimentability), antifouling property, luminescence and water absorption resistance can be maintained, which is preferable.
  • composition used in the present invention may contain components other than the vinylidene fluoride resin and the phosphor.
  • the composition contains the vinylidene fluoride resin and the phosphor in total, usually 50 to 100 parts by weight, preferably 60 to 100 parts by weight, more preferably 70 to 100 parts by weight per 100 parts by weight of the composition. .
  • components other than the vinylidene fluoride resin and the phosphor include, for example, plasticizers, nucleating agents, resins having good compatibility with vinylidene fluoride resins, metal soaps, ultraviolet absorbers, light stabilizers, and heat stabilizers. And antioxidants.
  • the plasticizer examples include polyester plasticizers and phthalate ester plasticizers.
  • a polyester plasticizer is preferable.
  • the repeating unit composition is an ester of a dialcohol having 2 to 4 carbon atoms and a dicarboxylic acid having 4 to 6 carbon atoms, and the terminal group has 1 to 3 carbon atoms.
  • a polyester having a molecular weight of 1500 to 4000 and having a monovalent acid or monovalent alcohol residue is preferred.
  • Nucleating agents include flavantrons.
  • Examples of the resin having good compatibility with the vinylidene fluoride resin include polymethyl methacrylate, polymethyl acrylate, and methyl acrylate / isobutylene copolymer.
  • a resin having good compatibility polymethyl methacrylate is preferable.
  • the polymethyl methacrylate may be contained in an amount of 1 to 50 parts by mass with respect to 100 parts by mass of the vinylidene fluoride resin. Since polymethyl methacrylate is an amorphous resin, it is more compatible with a fluorescent dye than vinylidene fluoride resin, and an increase in the amount of dye added and an improvement in emission intensity can be expected.
  • metal soap examples include calcium stearate (Ca-St), zinc stearate, magnesium stearate, and lead stearate.
  • Ca-St calcium stearate
  • zinc stearate zinc stearate
  • magnesium stearate magnesium stearate
  • lead stearate Use of metal soap is preferable because adhesion to a manufacturing apparatus due to a decrease in fluidity of the resin can be suppressed.
  • the components other than the vinylidene fluoride resin, the phosphor, and the vinylidene fluoride resin used as necessary and the phosphor are directly melt-kneaded, etc.
  • the components other than the phosphor and the vinylidene fluoride resin and phosphor used as necessary may be melt kneaded with the vinylidene fluoride resin or other resins.
  • a master batch may be prepared, and the master batch and the vinylidene fluoride resin may be melt kneaded or the like.
  • a vinylidene fluoride resin, a phosphor, and a component other than the vinylidene fluoride resin used as necessary and the phosphor, such as a dry blend, are mixed. If necessary, it may be pulverized to obtain a powdery composition.
  • the growth promoting material of the present invention is formed from a composition containing a vinylidene fluoride resin and a phosphor. Although there is no limitation in particular as the manufacturing method, it can be obtained by shape
  • the growth promoting material of the present invention may be formed only from the above-mentioned composition, and is formed as a material having a laminated structure having a layer formed from the above-mentioned composition and a layer formed from another composition. May be.
  • the shape of the material for promoting growth according to the present invention is not particularly limited, but is usually a net shape or a film shape.
  • the net-like growth promoting material is also referred to as a growth promoting net, and the film-like growth promoting material is also referred to as a growth promoting film.
  • a film-like material can be obtained from the composition by a method such as a T-die molding method, an inflation molding method, a calendar molding method, or a hot press molding method.
  • a net-like material can be obtained by manufacturing a thread
  • an extruder In the production of a film or yarn from the composition, an extruder can be used. Extrusion is usually performed at an extrusion temperature of 300 ° C. or lower, preferably 230 to 290 ° C. Moreover, it is preferable to perform rapid cooling with water or a cooling roll after the extrusion.
  • the yarn may be stretched 3 to 6.5 times at a dry heat of 130 to 250 ° C. (Depending on circumstances, the stretching may be performed in two or more stages). In the case of stretching, it is preferable to subsequently perform a heat treatment that relaxes by 0.8 to 1.2 times with a dry heat of 130 to 250 ° C.
  • the residence time of the extruder is preferably within 60 minutes, more preferably 10 to 40 minutes.
  • the residence time in the extruder exceeds 60 minutes, when a perylene fluorescent dye is used as the phosphor, the decomposition starts, and discoloration of the material, foaming, etc. may occur, which is not preferable.
  • the net-like material may be produced by knitting yarns, or may be produced by welding yarns by hot pressing or the like after arranging the yarns on a lattice.
  • the growth promoting material of the present invention is a growth promoting film having a laminated structure
  • a layer formed from the above composition and a layer formed from another composition are simultaneously extruded.
  • a laminated structure may be formed by forming a layer formed from the aforementioned composition and a layer formed from another composition separately, and then bonding them together Also good.
  • the growth promoting material of the present invention can promote the photosynthesis of a living organism that performs photosynthesis in water with a phosphor, and the growth is promoted by promoting photosynthesis. Moreover, since the growth promoting material of the present invention is excellent in antifouling property due to the characteristics of vinylidene fluoride resin, it is less likely to be contaminated with dirt and algae and can be used for a long period of time.
  • the organism that performs photosynthesis in water is not particularly limited, and examples thereof include the following.
  • the organism that performs photosynthesis in water is usually at least one selected from aquatic plants and algae.
  • the aquatic plants may be any aquatic plants that perform photosynthesis in water, and are usually submerged aquatic plants.
  • Examples of the submerged aquatic plants include aquatic plants of the family Ibaramoceae, echidaceae, pine family, and Arynotiaceae.
  • algae As a living organism that performs photosynthesis in water, algae is preferable from the viewpoint of the use value as a supplement such as biomass resources such as oil, high protein, high starch, and antioxidant activity.
  • Examples of algae include cyanobacteria, prasino algae, green algae, green algae, euglena algae, dinoflagellates, true eyed algae, diatoms, haptophytes, Pseudochoricystis ellipsoidea, Schizochytrium sp., Examples include Enomoto algae and Solaris marine diatoms (Fistulifera sp.JPCC DA0580, owned by power supply development). Algae may be used alone or in combination of two or more.
  • cyanobacteria examples include Spirulina, among which Arthrospia maxima and Arthrospira platensis. Examples thereof include Aphanothece sacrum, Nostoccommune, N.flagelliforme, Nostochopsis, Oscillatoria agardhii, and Microcystis aeruginosa.
  • platino alga examples include Tetraselmis tetrathele, Tetraselmis sueica and the like.
  • Botryococcus braunii Chlamydomonas sp. (Eg Chlamydomonas reinhardtii), Nannochloris sp., Neochloris oleis oleole ), Squid duck (Scenedesmus), Pseudokirchneriella subcapitata, Dunaliella salina, Dunaliella primolecta, Dunaliella terio Examples include Coccus pluvialis (Haematococcus pluvialis).
  • Euglena algae include Euglena genus (Euglena), among which Euglena gracilis.
  • dinoflagellates examples include Crypthecodinium Cohnii, Cylindrotheca sp., And the like.
  • true eye-point algae examples include Nannochloropsis oculata.
  • diatoms examples include Keetoceros neogracil, Chaetoceros gracilis, Nitzschia sp., Phaeodactylum tricornutum, and the like.
  • haptophytes examples include Pavlova lutheri, Isochrysis sp, Monalanthus salina, and the like.
  • the organism that performs photosynthesis in water is a green algae or a Euglena algae because growth can be particularly preferably promoted.
  • a living organism that performs photosynthesis in water green algae is preferable from the viewpoint that there are many varieties that can be grown even in the presence of various bacteria.
  • Euglena is preferable as a living organism that performs photosynthesis in water from the viewpoint that it can be produced under conditions of high carbon dioxide concentration.
  • the bioreactor of the present invention is a bioreactor in which a living organism that performs photosynthesis in water is grown in a reactor containing water, and the growth promoting material is provided in at least one of the reactor and between the reactor and the light source.
  • the growth promoting method of the present invention is the method for promoting the growth in a reactor containing water and at least one of the reactor and the light source when growing an organism that performs photosynthesis in water. Arrange materials.
  • the growth promotion method of the present invention can be carried out by growing a living organism that performs photosynthesis in water using the bioreactor.
  • the bioreactor of the present invention has the growth promoting material in the reactor and at least one between the reactor and the light source. For this reason, the bioreactor of the present invention can convert the wavelength of light emitted from a light source, and can promote the photosynthesis of a living organism that performs photosynthesis in water.
  • the light source may be the sun or an artificial light source such as a fluorescent lamp, an incandescent lamp, an LED, or an organic EL.
  • the configuration of the bioreactor is not particularly limited, but it has at least a living organism that performs photosynthesis in water and a reactor that is a place where water is introduced to perform photosynthesis.
  • a stirrer a temperature controller, It has aeration, pH meter, illuminance meter and so on.
  • the reactor when a light source is present outside the reactor, a reactor excellent in visible light, particularly 600 to 800 nm necessary for photosynthesis is used. Moreover, when a light source exists inside a reactor, you may use an opaque reactor as a reactor.
  • the reactor contains water, but usually water is added to the reactor as a culture solution containing carbon source, nitrogen, phosphorus, potassium, sodium, calcium, magnesium, iron, manganese, etc. in addition to water. .
  • a film-like growth promoting material may be disposed so as to cover the entire reactor, and a net is formed so as to cover a part of the reactor.
  • a material for promoting growth in a shape may be arranged.
  • a net-like growth promoting material may be arranged, or a film-like growth promoting material may be arranged.
  • a film piece-like material is used in this case.
  • Example 1 Manufacture of growth promotion net 100 parts by mass of polyvinylidene fluoride (PVDF) resin (manufactured by Kureha Co., Ltd., product grade KFW # 1000), 0.01 parts by mass of wavelength converting agent (LUMOGEN (registered trademark) F Red 305 (Lumogen F Red 305), BASF Japan Ltd.) and 0.005 parts by mass of calcium stearate were added and dry blended to obtain a resin composition.
  • PVDF polyvinylidene fluoride
  • LEOGEN registered trademark of wavelength converting agent
  • composition was spun using a 35 mm ⁇ extruder and a hole diameter of 2.0 mm ⁇ ⁇ 12 hole nozzles under conditions of an extrusion resin temperature of 250 to 280 ° C. and an extruder gear pump of 4 cc / rev (pressure control of 3 MPa), followed by cooling. Quenched in water at a temperature of 60 ° C.
  • the film was stretched 5.5 times at a dry heat of 155 ° C. and then relaxed 0.9 times at a dry heat of 175 ° C. to obtain a monofilament having a diameter of 0.17 mm.
  • Example 2 (Production of growth promoting film) 70 parts by mass of PVDF resin (manufactured by Kureha Co., Ltd., product grade KFW # 1000), 30 parts by mass of polymethyl methacrylate (PMMA) resin (manufactured by Asahi Kasei Corporation, Dell Powder 70HS), and 0.01 parts by mass
  • a wavelength conversion agent (LUMOGEN (registered trademark) F Red 305, manufactured by BASF Japan Ltd.) is introduced into a mixer (manufactured by Kawada Manufacturing Co., Ltd., trade name: Supermixer), and is sufficiently stirred and mixed for about 5 minutes. Thus, a kneaded product was obtained.
  • the obtained kneaded product was formed into a pellet-shaped resin composition having a diameter of about 3 mm with a twin-screw extruder (temperature: 190 ° C.).
  • the pellet-shaped resin composition is supplied to a T-type die (die temperature 230 ° C.) with a lip clearance of 0.9 mm by a single screw extruder, and the molten resin extruded from the die is 90 ⁇ m thick by a 54 ° C. cast roll.
  • the film was formed into a film to produce a growth promoting film (phosphor content: 0.01 phr).
  • Example 3 (Production of growth promoting film) A growth promoting film (phosphor content: 0.02 phr) was produced in the same manner as in Example 2 except that the amount of the wavelength converting agent was changed from 0.01 parts by mass to 0.02 parts by mass.
  • Example 4 (Pseudokirchneriella subcapitata growth test) ALGALTOXKIT F (product code TK41: manufactured by MicroBioTests) was purchased, and a culture solution containing 1 ⁇ 10 4 cells / mL of Pseudokirchneriella subcapitata was prepared. The growth promoting net (3 ⁇ 6 cm) obtained in Example 1 was added.
  • the culture solution was placed in a lighted incubator (model FLI-2000A; manufactured by Tokyo Rika Kikai Co., Ltd.), temperature-controlled at 23 ° C., and the light irradiated to the plastic container was controlled to 1,500 Lux.
  • a lighted incubator model FLI-2000A; manufactured by Tokyo Rika Kikai Co., Ltd.
  • the transmittance at a wavelength of 670 nm was measured over time, and the optical density (Optical Density) was calculated by the following formula (1).
  • Optical density (OD) ⁇ log 10 (transmittance ⁇ 100) Equation (1)
  • the change in optical density is shown in Table 1.
  • the growth promoting net used in Example 4 is referred to as KF Net.
  • Example 2 (Pseudokirchneriella subcapitata growth test) Except that the growth promotion net obtained in Example 1 was changed to an agricultural polyethylene terephthalate net (PET Net commercial product (trade name: photoconverted photosynthesis promotion net, thickness 400 dt, mesh 4 mm)) Performed in the same manner as 4.
  • PET Net commercial product trade name: photoconverted photosynthesis promotion net, thickness 400 dt, mesh 4 mm
  • the change in optical density is shown in Table 1.
  • Table 1 the agricultural polyethylene terephthalate net used in Comparative Example 2 is referred to as PET Net.
  • Example 5 (Pseudokirchneriella subcapitata growth test) A culture solution containing 1 ⁇ 10 4 cells / mL Pseudokirchneriella subcapitata is placed in a transparent plastic container (reactor), and the plastic container is covered with the growth promoting film (phosphor content: 0.02 phr) obtained in Example 3 did.
  • the culture solution was controlled at 23 ° C., and the light applied to the growth promoting film covering the plastic container was controlled to be 1,500 Lux.
  • Example 4 the transmittance at a wavelength of 670 nm was measured over time, and the optical density was calculated.
  • Table 2 shows the change in optical density.
  • the growth promoting film (phosphor content: 0.02 phr) used in Example 5 is referred to as KF Film (phosphor content: 0.02 phr).
  • Example 4 (Pseudokirchneriella subcapitata growth test) The same procedure as in Example 5 was performed except that the growth promoting film (phosphor content: 0.02 phr) obtained in Example 3 was changed to the film (phosphor content: 0 phr) obtained in Comparative Example 1. .
  • Table 2 shows the change in optical density.
  • the film (phosphor content: 0 phr) used in Comparative Example 4 is referred to as KF Film (phosphor content: 0 phr).
  • Example 5 (Pseudokirchneriella subcapitata growth test) The same procedure as in Example 5 was performed except that the growth promoting film (phosphor content: 0.02 phr) obtained in Example 3 was not used.
  • Table 2 shows the change in optical density.
  • Example 6 (Growth test of Euglena gracilis Klebs NIES-48) A culture solution containing 1 ⁇ 10 4 cells / mL Euglena gracilis Klebs NIES-48 (Euglena gracilis Krebs NIES-48) was placed in a transparent plastic container (reactor), and the growth promoting film obtained in Example 3 was used. A plastic container was coated with (phosphor content: 0.02 phr).
  • the culture solution was controlled at 23 ° C., and the light applied to the growth promoting film covering the plastic container was controlled to be 1,500 Lux.
  • Example 4 the transmittance at a wavelength of 670 nm was measured over time, and the optical density was calculated.
  • Table 3 shows changes in optical density.
  • the growth promoting film (phosphor content: 0.02 phr) used in Example 6 is referred to as KF Film (phosphor content: 0.02 phr).
  • Example 6 (Growth test of Euglena gracilis Klebs NIES-48) The same procedure as in Example 6 was performed except that the growth promoting film (phosphor content: 0.02 phr) obtained in Example 3 was changed to the film (phosphor content: 0 phr) obtained in Comparative Example 1. .
  • Table 3 shows changes in optical density.
  • the film (phosphor content: 0 phr) used in Comparative Example 6 is referred to as KF Film (phosphor content: 0 phr).
  • Example 7 (Growth test of Euglena gracilis Klebs NIES-48) The same procedure as in Example 6 was performed except that the growth promoting film (phosphor content: 0.02 phr) obtained in Example 3 was not used.
  • Table 3 shows changes in optical density.
  • calculation of the growth promotion degree of Example 4 is calculated from the results of Example 4 and Comparative Example 3
  • calculation of the growth promotion degree of Example 5 is calculated from the results of Example 5 and Comparative Example 5
  • the degree of growth promotion in Example 6 was calculated from the results of Example 6 and Comparative Example 7.
  • the present invention is a biological organism that performs photosynthesis in water such as green algae and Euglena. Useful for promoting growth.
  • the film and sheet were each cut into 3 cm ⁇ 5 cm, and the cut film and sheet were exposed to the external environment for 3 months.
  • films and sheets cut to the same size were allowed to settle in water and exposed to water for 2 weeks.
  • the transmittance of light at 670 nm before and after the test was measured with a spectrophotometer (U4100, manufactured by Hitachi, Ltd.).
  • the growth promoting film (phosphor content: 0.02 phr) used in the antifouling test is denoted as KF Film (phosphor content: 0.02 phr), and agricultural polyethylene: PET: polyethylene 3
  • the layer structure sheet is referred to as PE / PET / PE Sheet.
  • a monofilament having a volume of 0.376 mm 3 was added to water in a 500 ml beaker, and the settling time (seconds) until reaching the bottom was measured. The results are shown in Table 6.
  • the monofilament mainly composed of polyvinylidene fluoride (PVDF) resin constituting the growth promoting net of the present invention settles in a short time compared with the monofilament mainly composed of polyethylene terephthalate, and is settled. It was confirmed that it was excellent.
  • PVDF polyvinylidene fluoride
  • the monofilament obtained in the production stage of the growth promoting net in Example 1 used in the antifouling test is denoted as KF filament, and the monofilament constituting the net for agricultural terephthalate used in Comparative Example 2 Is referred to as a PET filament.
  • the material growth promoting material of the present invention is excellent in antifouling property and excellent in sedimentation property. That is, the present invention can efficiently grow an organism that performs photosynthesis in water over a long period of time.
  • Tomato, cucumber, and lettuce were 5 in 1 plant / pot, and 10 radish plants were transplanted to a planter (20 cm ⁇ 70 cm).
  • a mulch with the following film stretched in an arch shape or a mulch without a film was prepared in a greenhouse, and the transplanted plant was placed inside the mulch.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Environmental Sciences (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The purpose of the present invention is to provide a bioreactor wherein an organism that conducts photosynthesis in water can be efficiently grown, a growth promotion method, and a material to be used in the aforesaid bioreactor or method. The growth-promoting material according to the present invention is a material for promoting the growth of an organism that conducts photosynthesis in water such as an aquatic plant or alga, said material being formed of a composition comprising a fluorovinylidene-based resin and a fluorescent body such as a perylene-based fluorescent dye. In the bioreactor and growth promotion method according to the present invention, the aforesaid growth-promoting material is used.

Description

水中で光合成を行う生物の生育促進用資材およびその用途Materials for promoting the growth of organisms that perform photosynthesis in water and their uses
 本発明は水中で光合成を行う生物の生育促進用資材およびその用途に関する。 The present invention relates to a material for promoting the growth of organisms that perform photosynthesis in water and its use.
 ナタネ、ヒマワリ、ダイズ、アブラヤシ、ココナッツなどの作物や、水草・藻等のバイオマス生産が行なわれている。中でも水草や藻等の水中で光合成を行う生物に光合成を行わせることにより、有用なバイオマスを産出することは広く行われており、研究も盛んに行われている。 Producers of crops such as rapeseed, sunflower, soybean, oil palm, and coconut, and biomass such as aquatic plants and algae are being produced. In particular, the production of useful biomass by conducting photosynthesis in aquatic organisms such as aquatic plants and algae is widely conducted, and research is also actively conducted.
 しかしながら、光合成によりバイオマスを得る方法は、一般に太陽光等の光の利用効率が悪く、改善が望まれていた。 However, methods for obtaining biomass by photosynthesis generally have poor utilization efficiency of light such as sunlight, and improvement has been desired.
 例えば、特許文献1では、波長変換機能を有する化合物を含む基材上に光合成微生物を付着させ、光合成微生物に第1の光を照射し、該第1の光と、波長変換機能を有する化合物によって波長変換された第2の光とが、光合成微生物に照射される光合成微生物の付着培養方法が提案されている。 For example, in Patent Document 1, a photosynthetic microorganism is attached to a substrate containing a compound having a wavelength conversion function, the first light is irradiated to the photosynthetic microorganism, and the first light and the compound having a wavelength conversion function are used. A method for attaching and cultivating photosynthetic microorganisms in which the wavelength-converted second light is irradiated to the photosynthetic microorganisms has been proposed.
 また、微細藻類の生産は食料作物と競合しないため食料価格高騰を引き起こさないこと、耕作が困難な地域でも生産可能であること、さらにはバイオマス生産のポテンシャルが高いことから、特に注目されている。 Also, the production of microalgae is attracting particular attention because it does not compete with food crops, so it does not cause an increase in food prices, it can be produced in areas where cultivation is difficult, and it has a high potential for biomass production.
 このうち、ユーグレナ藻は、バイオ燃料として有望であるだけでなく、ビタミン、ミネラル、アミノ酸、不飽和脂肪酸等を含み、栄養価が高いことから、機能性食品や飼料としても利用され、食料、環境の両面から有望な生物として盛んに研究されている。 Among these, Euglena algae are not only promising as biofuels, but also contain vitamins, minerals, amino acids, unsaturated fatty acids, etc., and because of their high nutritional value, they are also used as functional foods and feeds. It has been actively studied as a promising organism from both sides.
 中でも、ユーグレナ藻の培養効率を高め、生産性の向上を図ることは、非常に重要な研究課題であった。 Above all, increasing the culture efficiency of Euglena algae and improving productivity were very important research subjects.
 例えば、特許文献2では、培養液中の溶存CO2濃度をコントロールすることを特徴とする光合成微生物培養装置が提案されている。 For example, Patent Document 2 proposes a photosynthetic microorganism culturing apparatus characterized by controlling the dissolved CO 2 concentration in a culture solution.
特開2012-26号公報JP 2012-26 A 特開2012-023978号公報JP 2012-023978 A
 特許文献1に開示された発明では、光合成により培養が進むと、基材上の光合成微生物が増えてくるが、基材上に存在する光合成微生物の量が増えてくると、相対的に各光合成微生物に照射される光量が減少するため、徐々に培養の効率が悪化するという問題があった。 In the invention disclosed in Patent Document 1, as the culture proceeds by photosynthesis, the number of photosynthetic microorganisms on the substrate increases, but when the amount of photosynthetic microorganisms present on the substrate increases, each photosynthesis is relatively There was a problem that the efficiency of culture gradually deteriorated because the amount of light irradiated to the microorganisms decreased.
 このため、特許文献1に開示された発明では、こまめに培養された光合成微生物を回収する必要があった。 For this reason, in the invention disclosed in Patent Document 1, it was necessary to collect photosynthetic microorganisms that were cultured frequently.
 本発明は上記従来技術を鑑みてされたものであり、効率的に水中で光合成を行う生物の生育を行うことが可能なバイオリアクタ、生育の促進方法および、バイオリアクタや前記方法に用いられる資材を提供することを目的とする。 The present invention has been made in view of the above-described prior art, and can be used for bioreactors capable of efficiently growing organisms that perform photosynthesis in water, methods for promoting growth, and bioreactors and materials used in the methods. The purpose is to provide.
 本発明者らは、前記課題を解決するために鋭意検討を行った結果、特定の資材を用いることにより、効率的に水中で光合成を行う生物の生育を行うことが可能であることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found that by using a specific material, it is possible to grow a living organism that efficiently performs photosynthesis in water, The present invention has been completed.
 すなわち、本発明の生育促進用資材は、フッ化ビニリデン系樹脂および蛍光体を含む組成物から形成される、水中で光合成を行う生物の生育促進用資材である。 That is, the material for promoting growth according to the present invention is a material for promoting growth of a living organism that performs photosynthesis in water, which is formed from a composition containing a vinylidene fluoride resin and a phosphor.
 前記蛍光体が、蛍光染料を含むことが好ましく、ペリレン系蛍光染料を含むことがより好ましい。 The phosphor preferably includes a fluorescent dye, and more preferably includes a perylene fluorescent dye.
 前記水中で光合成を行う生物が、水草および藻から選択される少なくとも1種であることが好ましく、藍藻、プラシノ藻、アオサ藻、緑藻、ユーグレナ藻、渦鞭毛藻、真正眼点藻、珪藻、ハプト藻、シュードコリシスティス・エリプソイディア(Pseudochoricystis ellipsoidea)、シゾキトラム(Schizochytrium sp.)、榎本藻、ソラリス株海洋珪藻(Fistulifera sp.JPCC DA0580株、電源開発保有)から選択される少なくとも1種の藻であることがより好ましく、ユーグレナ藻であることが特に好ましい。 The organism that performs photosynthesis in water is preferably at least one selected from aquatic plants and algae. At least one algae selected from algae, Pseudochoricystis ellipsoidea, Schizochytrium sp., Enomoto algae, Solaris marine diatom (Fistulifera sp. JPCC DA0580, possessing power development) More preferably, it is particularly preferably Euglena algae.
 前記組成物が、フッ化ビニリデン系樹脂100質量部に対して、蛍光体を0.0001~10質量部含むことが好ましい。 It is preferable that the composition contains 0.0001 to 10 parts by mass of the phosphor with respect to 100 parts by mass of the vinylidene fluoride resin.
 前記生育促進用資材が、ネット状またはフィルム状であることが好ましい。 The growth promoting material is preferably in the form of a net or a film.
 本発明のバイオリアクタは、水を含む反応器中で、水中で光合成を行う生物の生育を行うバイオリアクタにおいて、反応器中、および反応器と光源との間の少なくとも一方に前記生育促進用資材を有する。 The bioreactor of the present invention is a bioreactor in which a living organism that performs photosynthesis in water is grown in a reactor containing water, and the growth promoting material is provided in at least one of the reactor and between the reactor and the light source. Have
 本発明の生育の促進方法は、水を含む反応器中で、水中で光合成を行う生物の生育を行う際に、反応器中、および反応器と光源との間の少なくとも一方に前記生育促進用資材を配置する。 The growth promoting method of the present invention is the method for promoting the growth in a reactor containing water and at least one of the reactor and the light source when growing an organism that performs photosynthesis in water. Arrange materials.
 本発明の生育促進用資材を用いることにより、水中で光合成を行う生物を効率的に生育することができる。 By using the growth promoting material of the present invention, it is possible to efficiently grow a living organism that performs photosynthesis in water.
 また、本発明の生育促進用資材は、防汚性に優れ、沈降性に優れるため、長期にわたって水中で光合成を行う生物を効率的に生育することができる。 Moreover, since the growth promoting material of the present invention has excellent antifouling properties and excellent sedimentation properties, it can efficiently grow organisms that perform photosynthesis in water over a long period of time.
 次に本発明について具体的に説明する。 Next, the present invention will be specifically described.
 [生育促進用資材]
 本発明の生育促進用資材は、フッ化ビニリデン系樹脂および蛍光体を含む組成物から形成される、水中で光合成を行う生物の生育促進用資材である。
[Growth promotion materials]
The material for promoting growth according to the present invention is a material for promoting growth of a living organism that performs photosynthesis in water, which is formed from a composition containing a vinylidene fluoride resin and a phosphor.
 前記生育促進用資材は、蛍光体を含む組成物から形成されるため、水中で光合成を行う生物の光合成を促進することが可能であり、光合成が促進されることにより、生育が促進される。また、前記生育促進用資材は、フッ化ビニリデン系樹脂を含む組成物から形成されるため、防汚性に優れ、かつ沈降性に優れている。このため、生育促進用資材に汚れや藻が付着することなく、長期にわたって水中で光合成を行う生物を効率的に生育することが可能である。 Since the material for promoting growth is formed from a composition containing a phosphor, it is possible to promote photosynthesis of a living organism that performs photosynthesis in water, and growth is promoted by promoting photosynthesis. Moreover, since the said growth promotion material is formed from the composition containing a vinylidene fluoride resin, it is excellent in antifouling property and is excellent in sedimentation property. For this reason, it is possible to efficiently grow a living organism that performs photosynthesis in water over a long period of time without attaching dirt and algae to the growth promoting material.
 本発明に用いられる組成物は、フッ化ビニリデン系樹脂および蛍光体を含む。 The composition used in the present invention contains a vinylidene fluoride resin and a phosphor.
 フッ化ビニリデン系樹脂としては、フッ化ビニリデン単独重合体、フッ化ビニリデン系共重合体を用いることができる。フッ化ビニリデン系樹脂としては、フッ化ビニリデン由来の構成単位を50モル%以上有していればよく、好ましくは70モル%以上、より好ましくは80モル%以上有している。フッ化ビニリデン系樹脂としては、1種の重合体を用いても、2種以上の重合体を用いてもよい。 As the vinylidene fluoride resin, a vinylidene fluoride homopolymer or a vinylidene fluoride copolymer can be used. The vinylidene fluoride-based resin may have a structural unit derived from vinylidene fluoride in an amount of 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more. As the vinylidene fluoride resin, one kind of polymer may be used, or two or more kinds of polymers may be used.
 フッ化ビニリデン系共重合体を構成するフッ化ビニリデン以外のモノマーとしては、フッ化ビニリデン以外のフッ素系単量体、エチレン、プロピレン等の炭化水素系単量体が挙げられる。 Examples of the monomer other than vinylidene fluoride constituting the vinylidene fluoride copolymer include fluorine-based monomers other than vinylidene fluoride and hydrocarbon monomers such as ethylene and propylene.
 フッ化ビニリデン以外のフッ素系単量体としては、フッ化ビニル、トリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、パーフルオロメチルビニルエーテルに代表されるパーフルオロアルキルビニルエーテル等を挙げることができる。 Examples of fluorine-based monomers other than vinylidene fluoride include perfluoroalkyl vinyl ethers typified by vinyl fluoride, trifluoroethylene, tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, and perfluoromethyl vinyl ether. Can do.
 なお、前記他のモノマーは、1種単独で用いてもよく、2種以上を用いてもよい。 In addition, the said other monomer may be used individually by 1 type, and may use 2 or more types.
 フッ化ビニリデン系樹脂のインヘレント粘度(ηinh)は、好ましくは0.8~2.0dl/g、さらに好ましくは1.0~1.7dl/gの範囲である。 The inherent viscosity (η inh ) of the vinylidene fluoride resin is preferably in the range of 0.8 to 2.0 dl / g, more preferably 1.0 to 1.7 dl / g.
 蛍光体としては、励起波長が、好ましくは300~700nm、より好ましくは400~600nmの蛍光体が用いられる。励起波長が前記範囲内であると、太陽等の光源の光を効率よく吸収できるため好ましい。 As the phosphor, a phosphor having an excitation wavelength of preferably 300 to 700 nm, more preferably 400 to 600 nm is used. It is preferable for the excitation wavelength to be within the above-mentioned range since the light from the light source such as the sun can be efficiently absorbed.
 蛍光体としては、発光波長が、好ましくは500~1000nm、より好ましくは600~900nmの蛍光体が用いられる。発光波長が前記範囲内であると、光合成に必要な光を効率的に水中で光合成を行う生物に与えることができるため好ましい。また、蛍光体としては1種を用いても、2種以上を用いてもよい。 As the phosphor, a phosphor having an emission wavelength of preferably 500 to 1000 nm, more preferably 600 to 900 nm is used. It is preferable for the emission wavelength to be in the above-mentioned range since light necessary for photosynthesis can be efficiently given to a living organism that performs photosynthesis in water. Moreover, as a fluorescent substance, 1 type may be used or 2 or more types may be used.
 蛍光体としては、有機蛍光体、無機蛍光体のいずれを用いてもよい。 As the phosphor, either an organic phosphor or an inorganic phosphor may be used.
 有機蛍光体としては、例えば、ペリレン系蛍光染料、ユーロピウム錯体、ユーロピウム塩が挙げられる。有機蛍光体としては、蛍光染料、蛍光顔料のいずれを用いてもよい。 Examples of organic phosphors include perylene fluorescent dyes, europium complexes, and europium salts. As the organic phosphor, either a fluorescent dye or a fluorescent pigment may be used.
 蛍光体が、蛍光染料を含むことが好ましく、ペリレン系蛍光染料を含むことがより好ましい。蛍光体としては、蛍光染料を用いることが、取扱いが容易であるため好ましく、ペリレン系蛍光体染料がフッ化ビニリデン系樹脂との相溶性の観点から好ましい。 The phosphor preferably contains a fluorescent dye, more preferably a perylene fluorescent dye. As the phosphor, it is preferable to use a fluorescent dye because it is easy to handle, and a perylene phosphor dye is preferred from the viewpoint of compatibility with a vinylidene fluoride resin.
 ペリレン系蛍光体染料としては、分子内にペリレン骨格を有する化合物であればよく、特に制限はない。ペリレン系蛍光体染料としては、例えば特開昭57-125260号公報、特開昭58-40359号公報および特開昭60-203650号公報に開示されているペリレン骨格を有する分子を挙げることができる。 The perylene phosphor dye is not particularly limited as long as it is a compound having a perylene skeleton in the molecule. Examples of perylene phosphor dyes include molecules having a perylene skeleton disclosed in JP-A-57-125260, JP-A-58-40359, and JP-A-60-203650. .
 ペリレン系蛍光体染料としては、例えば、LUMOGEN(登録商標)(ルモゲン) F イエロー083、LUMOGEN(登録商標) F オレンジ240、LUMOGEN(登録商標) F レッド300、LUMOGEN(登録商標) F レッド305(以上、BASFジャパン(株)社製)などのペリレン系蛍光染料およびこれらの同等品を挙げることができる。 Examples of perylene phosphor dyes include LUMOGEN (registered trademark) (Lumogen) F yellow 083, LUMOGEN (registered trademark) F orange 240, LUMOGEN (registered trademark) F red 300, LUMOGEN (registered trademark) F red 305 (or above). Perylene-based fluorescent dyes such as BASF Japan Ltd. and their equivalents.
 本発明に用いられる組成物は、フッ化ビニリデン系樹脂100質量部に対して、蛍光体を0.0001~10質量部含むことが好ましく、0.001~5質量部含むことがより好ましく、0.01~1質量部含むことが特に好ましい。前記範囲内では、高い比重(沈降性)、防汚性、発光性、耐吸水性が維持できるため好ましい。 The composition used in the present invention preferably contains 0.0001 to 10 parts by mass, more preferably 0.001 to 5 parts by mass of the phosphor with respect to 100 parts by mass of the vinylidene fluoride resin. It is particularly preferable to contain 0.01 to 1 part by mass. Within the above range, high specific gravity (sedimentability), antifouling property, luminescence and water absorption resistance can be maintained, which is preferable.
 また、本発明に用いられる組成物には、前記フッ化ビニリデン系樹脂および蛍光体以外の成分が含まれていてもよい。前記組成物は、該組成物100質量部あたり、フッ化ビニリデン系樹脂および蛍光体を合計で、通常は50~100質量部、好ましくは60~100質量部、より好ましくは70~100質量部含む。 In addition, the composition used in the present invention may contain components other than the vinylidene fluoride resin and the phosphor. The composition contains the vinylidene fluoride resin and the phosphor in total, usually 50 to 100 parts by weight, preferably 60 to 100 parts by weight, more preferably 70 to 100 parts by weight per 100 parts by weight of the composition. .
 前記フッ化ビニリデン系樹脂および蛍光体以外の成分としては、例えば可塑剤、核剤、フッ化ビニリデン系樹脂との相溶性が良好な樹脂、金属石鹸、紫外線吸収剤、光安定剤、熱安定剤、酸化防止剤等が挙げられる。 Examples of components other than the vinylidene fluoride resin and the phosphor include, for example, plasticizers, nucleating agents, resins having good compatibility with vinylidene fluoride resins, metal soaps, ultraviolet absorbers, light stabilizers, and heat stabilizers. And antioxidants.
 可塑剤としては、ポリエステル系可塑剤、フタル酸エステル系可塑剤が挙げられる。可塑剤としては、ポリエステル系可塑剤が好ましく、特に、繰り返し単位組成が、炭素数2~4のジアルコールと炭素数4~6のジカルボン酸とのエステルからなり、末端基が炭素数1~3の一価の酸もしくは一価のアルコール残基よりなり、分子量が1500~4000のポリエステルが好ましい。 Examples of the plasticizer include polyester plasticizers and phthalate ester plasticizers. As the plasticizer, a polyester plasticizer is preferable. In particular, the repeating unit composition is an ester of a dialcohol having 2 to 4 carbon atoms and a dicarboxylic acid having 4 to 6 carbon atoms, and the terminal group has 1 to 3 carbon atoms. A polyester having a molecular weight of 1500 to 4000 and having a monovalent acid or monovalent alcohol residue is preferred.
 核剤としては、フラバントロンが挙げられる。 Nucleating agents include flavantrons.
 フッ化ビニリデン系樹脂との相溶性が良好な樹脂としては、ポリメタクリル酸メチル、ポリアクリル酸メチル、アクリル酸メチル/イソブチレン共重合体が挙げられる。相溶性が良好な樹脂としては、ポリメタクリル酸メチルが好ましい。ポリメタクリル酸メチルとしては、フッ化ビニリデン系樹脂100質量部に対して1~50質量部含まれていてもよい。ポリメタクリル酸メチルは、非結晶樹脂であるため、フッ化ビニリデン系樹脂よりも蛍光染料との相溶性に優れ、染料の添加量増加、発光強度の向上が期待できる。 Examples of the resin having good compatibility with the vinylidene fluoride resin include polymethyl methacrylate, polymethyl acrylate, and methyl acrylate / isobutylene copolymer. As a resin having good compatibility, polymethyl methacrylate is preferable. The polymethyl methacrylate may be contained in an amount of 1 to 50 parts by mass with respect to 100 parts by mass of the vinylidene fluoride resin. Since polymethyl methacrylate is an amorphous resin, it is more compatible with a fluorescent dye than vinylidene fluoride resin, and an increase in the amount of dye added and an improvement in emission intensity can be expected.
 金属石鹸としては、ステアリン酸カルシウム(Ca-St)、ステアリン酸亜鉛、ステアリン酸マグネシウム、ステアリン酸鉛が挙げられる。金属石鹸を用いると、樹脂の流動性低下による製造装置への接着を抑制できるため好ましい。 Examples of the metal soap include calcium stearate (Ca-St), zinc stearate, magnesium stearate, and lead stearate. Use of metal soap is preferable because adhesion to a manufacturing apparatus due to a decrease in fluidity of the resin can be suppressed.
 本発明に用いられる組成物の調製方法としては特に限定は無いが、フッ化ビニリデン系樹脂、蛍光体および必要に応じて用いられるフッ化ビニリデン系樹脂および蛍光体以外の成分を直接、溶融混練等を行うことにより得てもよく、蛍光体や、必要に応じて用いられるフッ化ビニリデン系樹脂および蛍光体以外の成分を、フッ化ビニリデン系樹脂や、その他の樹脂と、溶融混練等を行うことにより、マスターバッチを作成し、該マスターバッチとフッ化ビニリデン系樹脂とを溶融混練等を行うことにより得てもよい。 There is no particular limitation on the method for preparing the composition used in the present invention, but the components other than the vinylidene fluoride resin, the phosphor, and the vinylidene fluoride resin used as necessary and the phosphor are directly melt-kneaded, etc. The components other than the phosphor and the vinylidene fluoride resin and phosphor used as necessary may be melt kneaded with the vinylidene fluoride resin or other resins. Thus, a master batch may be prepared, and the master batch and the vinylidene fluoride resin may be melt kneaded or the like.
 また、本発明に用いられる組成物の別の調製方法としては、フッ化ビニリデン系樹脂、蛍光体および必要に応じて用いられるフッ化ビニリデン系樹脂および蛍光体以外の成分を、ドライブレンド等の混合、必要により粉砕することにより、粉末状態の組成物として得てもよい。 In addition, as another method for preparing the composition used in the present invention, a vinylidene fluoride resin, a phosphor, and a component other than the vinylidene fluoride resin used as necessary and the phosphor, such as a dry blend, are mixed. If necessary, it may be pulverized to obtain a powdery composition.
 本発明の生育促進用資材は、フッ化ビニリデン系樹脂および蛍光体を含む組成物から形成される。その製造方法としては、特に限定は無いが、前記組成物を、所望の形状に成形することにより得ることができる。 The growth promoting material of the present invention is formed from a composition containing a vinylidene fluoride resin and a phosphor. Although there is no limitation in particular as the manufacturing method, it can be obtained by shape | molding the said composition in a desired shape.
 本発明の生育促進用資材は、前述の組成物のみから形成されてもよく、前述の組成物から形成される層、他の組成物から形成される層を有する積層構造を有する資材として形成してもよい。 The growth promoting material of the present invention may be formed only from the above-mentioned composition, and is formed as a material having a laminated structure having a layer formed from the above-mentioned composition and a layer formed from another composition. May be.
 本発明の生育促進用資材の形状としては、特に限定は無いが、通常はネット状、またはフィルム状である。なお、ネット状の生育促進用資材を生育促進ネットとも記し、フィルム状の生育促進用資材を生育促進フィルムとも記す。 The shape of the material for promoting growth according to the present invention is not particularly limited, but is usually a net shape or a film shape. The net-like growth promoting material is also referred to as a growth promoting net, and the film-like growth promoting material is also referred to as a growth promoting film.
 本発明の生育促進用資材としては、前記組成物から、T-ダイ成形法、インフレーション成形法、カレンダー成形法、熱プレス成型法などの方法によりフィルム状の資材を得ることができる。また、前記組成物から、糸(フィラメント)を製造し、該糸を二次加工することによりネット状の資材を得ることができる。 As the material for promoting growth according to the present invention, a film-like material can be obtained from the composition by a method such as a T-die molding method, an inflation molding method, a calendar molding method, or a hot press molding method. Moreover, a net-like material can be obtained by manufacturing a thread | yarn (filament) from the said composition and carrying out secondary processing of this thread | yarn.
 前記組成物からフィルムや糸を製造する際には、押出機を用いることができるが、押出温度が、通常300℃以下、好ましくは230~290℃で押出しを行う。また、押出した後、30~90℃の水中や冷却ロール等で急冷を行うことが好ましい。 In the production of a film or yarn from the composition, an extruder can be used. Extrusion is usually performed at an extrusion temperature of 300 ° C. or lower, preferably 230 to 290 ° C. Moreover, it is preferable to perform rapid cooling with water or a cooling roll after the extrusion.
 また、糸は押出を行った後に、乾熱130~250℃で3~6.5倍延伸してもよい(場合により、延伸を2段階以上で行うこともある)。延伸した場合には、その後、乾熱130~250℃で0.8~1.2倍に緩和する熱処理を行うことが好ましい。 In addition, after the extrusion, the yarn may be stretched 3 to 6.5 times at a dry heat of 130 to 250 ° C. (Depending on circumstances, the stretching may be performed in two or more stages). In the case of stretching, it is preferable to subsequently perform a heat treatment that relaxes by 0.8 to 1.2 times with a dry heat of 130 to 250 ° C.
 前記組成物を、押出機を用いて成形する場合には、押出機滞留時間は、好ましくは60分以内、より好ましくは10~40分である。押出機での滞留時間が60分を越えると蛍光体としてペリレン系蛍光染料を用いた場合等にはその分解が始まり、資材の変色、発泡などが発生することがあるので好ましくない。 When the composition is molded using an extruder, the residence time of the extruder is preferably within 60 minutes, more preferably 10 to 40 minutes. When the residence time in the extruder exceeds 60 minutes, when a perylene fluorescent dye is used as the phosphor, the decomposition starts, and discoloration of the material, foaming, etc. may occur, which is not preferable.
 ネット状の資材は、糸を編みこむことにより製造してもよく、糸を格子上に配置した後、熱プレス等により糸同士を溶着することにより製造してもよい。 The net-like material may be produced by knitting yarns, or may be produced by welding yarns by hot pressing or the like after arranging the yarns on a lattice.
 本発明の生育促進用資材が、例えば積層構造を有する生育促進フィルムである場合には、前述の組成物から形成される層と、他の組成物から形成される層とを、同時に押出成形等することにより、積層構造を形成してもよく、前述の組成物から形成される層と、他の組成物から形成される層とを別々に形成した後に、両者を接着することにより形成してもよい。 When the growth promoting material of the present invention is a growth promoting film having a laminated structure, for example, a layer formed from the above composition and a layer formed from another composition are simultaneously extruded. A laminated structure may be formed by forming a layer formed from the aforementioned composition and a layer formed from another composition separately, and then bonding them together Also good.
 本発明の生育促進用資材は、蛍光体により水中で光合成を行う生物の光合成を促進することが可能であり、光合成が促進されることにより、生育が促進される。また、本発明の生育促進用資材は、フッ化ビニリデン系樹脂の特性で防汚性に優れるため、汚れや藻が付着することが少なく、長期間にわたって使用することが可能である。 The growth promoting material of the present invention can promote the photosynthesis of a living organism that performs photosynthesis in water with a phosphor, and the growth is promoted by promoting photosynthesis. Moreover, since the growth promoting material of the present invention is excellent in antifouling property due to the characteristics of vinylidene fluoride resin, it is less likely to be contaminated with dirt and algae and can be used for a long period of time.
 なお、水中で光合成を行う生物としては、特に限定は無いが、例えば以下のものを挙げることができる。 In addition, the organism that performs photosynthesis in water is not particularly limited, and examples thereof include the following.
 (水中で光合成を行う生物)
 水中で光合成を行う生物としては、通常は、水草および藻から選択される少なくとも1種である。
(An organism that performs photosynthesis in water)
The organism that performs photosynthesis in water is usually at least one selected from aquatic plants and algae.
 水草としては、水中で光合成を行う水草であればよく、通常は沈水性の水草である。沈水性の水草としては、イバラモ科、ヒルムシロ科、マツモ科、アリノトウグサ科の水草が挙げられる。 The aquatic plants may be any aquatic plants that perform photosynthesis in water, and are usually submerged aquatic plants. Examples of the submerged aquatic plants include aquatic plants of the family Ibaramoceae, echidaceae, pine family, and Arynotiaceae.
 水中で光合成を行う生物としては、オイルなどのバイオマス資源や高タンパク質、高デンプン、抗酸化作用などのサプリメントとしての利用価値の観点から、藻が好ましい。 As a living organism that performs photosynthesis in water, algae is preferable from the viewpoint of the use value as a supplement such as biomass resources such as oil, high protein, high starch, and antioxidant activity.
 藻としては、藍藻、プラシノ藻、アオサ藻、緑藻、ユーグレナ藻、渦鞭毛藻、真正眼点藻、珪藻、ハプト藻、シュードコリシスティス・エリプソイディア(Pseudochoricystis ellipsoidea)、シゾキトラム(Schizochytrium sp.)、榎本藻、ソラリス株海洋珪藻(Fistulifera sp.JPCC DA0580株、電源開発保有)が挙げられる。藻としては一種単独で用いても、二種以上を用いてもよい。 Examples of algae include cyanobacteria, prasino algae, green algae, green algae, euglena algae, dinoflagellates, true eyed algae, diatoms, haptophytes, Pseudochoricystis ellipsoidea, Schizochytrium sp., Examples include Enomoto algae and Solaris marine diatoms (Fistulifera sp.JPCC DA0580, owned by power supply development). Algae may be used alone or in combination of two or more.
 藍藻としては、スピルリナ(Spirulina)が挙げられ、中でもアルスロスピア・マキシマ(Arthrospia maxima)、アルスロスピア・プラテンシス(Arthrospira platensis)が挙げられる。また、スイゼンジノリ(Aphanothece sacrum)、イシクラゲ(Nostoccommune)、髪菜(N.flagelliforme)、ノストコプシス(Nostochopsis)、オスキラトリア・アガルディ(Oscillatoria agardhii)、ミクロシスティス・エルギノサ(Microcystis aeruginosa)等が挙げられる。 Examples of cyanobacteria include Spirulina, among which Arthrospia maxima and Arthrospira platensis. Examples thereof include Aphanothece sacrum, Nostoccommune, N.flagelliforme, Nostochopsis, Oscillatoria agardhii, and Microcystis aeruginosa.
 プラシノ藻としては、テトラセルミス・テトラテル(Tetraselmis tetrathele)、テトラセルミス・スエイカ(Tetraselmis sueica)等が挙げられる。 Examples of the platino alga include Tetraselmis tetrathele, Tetraselmis sueica and the like.
 緑藻としては、ボツリオコッカス・ブラウニー(Botryococcus braunii)、クラミドモナス(Chlamydomonas sp.)(例えば、クラミドモナス・レインハーディティ(Chlamydomonas reinhardtii))、ナンノクロリス(Nannochloris sp.)、ネオクロリス・オレオアバンダン(Neochloris oleoabundans)、イカダモ(Scenedesmus)、シュードキルチネリエラ・サブカピタタ(Pseudokirchneriella subcapitata)、デュナリエラ・サリナ(Dunaliella salina)、デュナリエラ・プリモレクタ(Dunaliella primolecta)、デュナリエラ・ターチオレクタ(Dunaliella tertiolecta)、クロレラ(Chlorella sp.)、ヘマトコッカス・プルビアリス(Haematococcus pluvialis)等が挙げられる。 Among the green algae are Botryococcus braunii, Chlamydomonas sp. (Eg Chlamydomonas reinhardtii), Nannochloris sp., Neochloris oleis oleole ), Squid duck (Scenedesmus), Pseudokirchneriella subcapitata, Dunaliella salina, Dunaliella primolecta, Dunaliella terio Examples include Coccus pluvialis (Haematococcus pluvialis).
 ユーグレナ藻としては、ミドリムシ属(Euglena)が挙げられ、中でもユーグレナ・グラシリス(Euglena gracilis)が挙げられる。 Euglena algae include Euglena genus (Euglena), among which Euglena gracilis.
 渦鞭毛藻としては、クリプテコディニウム・コーニイ(Crypthecodinium Cohnii)、シンドロテカ(Cylindrotheca sp.)等が挙げられる。 Examples of dinoflagellates include Crypthecodinium Cohnii, Cylindrotheca sp., And the like.
 真正眼点藻としては、ナンノクロロプシス・オキュターラ(Nannochloropsis oculata)等が挙げられる。 Examples of true eye-point algae include Nannochloropsis oculata.
 珪藻としては、キートセロス・ネオグラシル(Chaetoceros neogracile)、キートセロス・グラシリス(Chaetoceros gracilis)、ニヅキア(Nitzschia sp.)、ファエオダクティラム・トリコーナタム(Phaeodactylum tricornutum)等が挙げられる。 Examples of diatoms include Keetoceros neogracil, Chaetoceros gracilis, Nitzschia sp., Phaeodactylum tricornutum, and the like.
 ハプト藻としては、パブロバ・ルテーリ(Pavlova lutheri)、イソクリシス(Isochrysis sp.)、モナラントゥス・サリナ(Monallanthus salina)等が挙げられる。 Examples of haptophytes include Pavlova lutheri, Isochrysis sp, Monalanthus salina, and the like.
 本発明では、水中で光合成を行う生物が、緑藻、ユーグレナ藻であると、特に好適に生育を促進することができるため好ましい。水中で光合成を行う生物としては、雑菌存在下でも育成可能な品種が多いという観点から緑藻が好ましい。また、水中で光合成を行う生物としては、二酸化炭素濃度高条件下で製造可能という観点からユーグレナが好ましい。 In the present invention, it is preferable that the organism that performs photosynthesis in water is a green algae or a Euglena algae because growth can be particularly preferably promoted. As a living organism that performs photosynthesis in water, green algae is preferable from the viewpoint that there are many varieties that can be grown even in the presence of various bacteria. Moreover, Euglena is preferable as a living organism that performs photosynthesis in water from the viewpoint that it can be produced under conditions of high carbon dioxide concentration.
 [バイオリアクタ、生育の促進方法]
 本発明のバイオリアクタは、水を含む反応器中で、水中で光合成を行う生物の生育を行うバイオリアクタにおいて、反応器中、および反応器と光源との間の少なくとも一方に前記生育促進用資材を有する。
[Bioreactor, growth promotion method]
The bioreactor of the present invention is a bioreactor in which a living organism that performs photosynthesis in water is grown in a reactor containing water, and the growth promoting material is provided in at least one of the reactor and between the reactor and the light source. Have
 本発明の生育の促進方法は、水を含む反応器中で、水中で光合成を行う生物の生育を行う際に、反応器中、および反応器と光源との間の少なくとも一方に前記生育促進用資材を配置する。本発明の生育の促進方法は、前記バイオリアクタを用いて、水中で光合成を行う生物の生育を行うことにより、実行することが可能である。 The growth promoting method of the present invention is the method for promoting the growth in a reactor containing water and at least one of the reactor and the light source when growing an organism that performs photosynthesis in water. Arrange materials. The growth promotion method of the present invention can be carried out by growing a living organism that performs photosynthesis in water using the bioreactor.
 本発明のバイオリアクタは、前記生育促進用資材を、反応器中、および反応器と光源との間の少なくとも一方に有する。このため、本発明のバイオリアクタは、光源から照射された光を、波長変換することが可能であり、水中で光合成を行う生物の光合成を促進することが可能である。 The bioreactor of the present invention has the growth promoting material in the reactor and at least one between the reactor and the light source. For this reason, the bioreactor of the present invention can convert the wavelength of light emitted from a light source, and can promote the photosynthesis of a living organism that performs photosynthesis in water.
 なお、光源としては、太陽でもよく、蛍光灯、白熱電球、LED、有機EL等の人工の光源でもよい。 The light source may be the sun or an artificial light source such as a fluorescent lamp, an incandescent lamp, an LED, or an organic EL.
 バイオリアクタの構成としては、特に限定は無いが、水中で光合成を行う生物や、水を投入し、光合成を行わせる場所である反応器を少なくとも有しており、通常は、攪拌機、温度コントローラー、エアレーション、pHメーター、照度計等を有している。 The configuration of the bioreactor is not particularly limited, but it has at least a living organism that performs photosynthesis in water and a reactor that is a place where water is introduced to perform photosynthesis. Usually, a stirrer, a temperature controller, It has aeration, pH meter, illuminance meter and so on.
 反応器としては、光源が反応器の外に存在する場合には、可視光、特に光合成に必要な600~800nmの透過性に優れた反応器を用いる。また、光源が反応器の内側に存在する場合には、反応器として不透明の反応器を用いてもよい。 As the reactor, when a light source is present outside the reactor, a reactor excellent in visible light, particularly 600 to 800 nm necessary for photosynthesis is used. Moreover, when a light source exists inside a reactor, you may use an opaque reactor as a reactor.
 反応器の中には水を含むが、通常水は、水に加えて炭素源、窒素、リン、カリウム、ナトリウム、カルシウム、マグネシウム、鉄、マンガン等を含む培養液として、反応器中に入れられる。 The reactor contains water, but usually water is added to the reactor as a culture solution containing carbon source, nitrogen, phosphorus, potassium, sodium, calcium, magnesium, iron, manganese, etc. in addition to water. .
 生育促進用資材を反応器と光源との間に有する場合には、反応器全体を覆うように、フィルム状の生育促進用資材を配置してもよく、反応器の一部を覆うようにネット状の生育促進用資材を配置してもよい。 When a growth promoting material is provided between the reactor and the light source, a film-like growth promoting material may be disposed so as to cover the entire reactor, and a net is formed so as to cover a part of the reactor. A material for promoting growth in a shape may be arranged.
 生育促進用資材を反応器中に有する場合には、ネット状の生育促進用資材を配置してもよく、フィルム状の生育促進用資材を配置してもよい。なお、反応器中に、大きなフィルム状の資材が存在すると撹拌性を悪化させる場合があるため、この場合には、フィルム片状の資材を用いる。 When the reactor has the growth promoting material, a net-like growth promoting material may be arranged, or a film-like growth promoting material may be arranged. In addition, since a stirring property may be deteriorated when a large film-like material exists in the reactor, a film piece-like material is used in this case.
 次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 〔実施例1〕
 (生育促進ネットの製造)
 100質量部のポリフッ化ビニリデン(PVDF)樹脂(株式会社クレハ製、商品グレードKFW#1000)に、0.01質量部の波長変換剤(LUMOGEN(登録商標) F レッド305(ルモゲンFレッド305)、BASFジャパン(株)製)および0.005質量部のステアリン酸カルシウムを添加し、ドライブレンドして樹脂組成物を得た。
[Example 1]
(Manufacture of growth promotion net)
100 parts by mass of polyvinylidene fluoride (PVDF) resin (manufactured by Kureha Co., Ltd., product grade KFW # 1000), 0.01 parts by mass of wavelength converting agent (LUMOGEN (registered trademark) F Red 305 (Lumogen F Red 305), BASF Japan Ltd.) and 0.005 parts by mass of calcium stearate were added and dry blended to obtain a resin composition.
 次いで、前記組成物を35mmφの押出機、孔径2.0mmφ×12ホールノズルを使用し、押出樹脂温度250~280℃、押出機ギヤーポンプ4cc/rev(圧力制御3MPa)の条件で紡糸した後、冷却温度60℃の水中で急冷した。 Next, the composition was spun using a 35 mmφ extruder and a hole diameter of 2.0 mmφ × 12 hole nozzles under conditions of an extrusion resin temperature of 250 to 280 ° C. and an extruder gear pump of 4 cc / rev (pressure control of 3 MPa), followed by cooling. Quenched in water at a temperature of 60 ° C.
 次いで、乾熱155℃で5.5倍延伸、その後、乾熱175℃で0.9倍に緩和し、直径0.17mmのモノフィラメントを得た。 Subsequently, the film was stretched 5.5 times at a dry heat of 155 ° C. and then relaxed 0.9 times at a dry heat of 175 ° C. to obtain a monofilament having a diameter of 0.17 mm.
 得られたモノフィラメントを用いて、4mm角目のラッセル網(3cm×6cm)(生育促進ネット)を作製した。 Using the obtained monofilament, a 4 mm square Russell net (3 cm × 6 cm) (growth promotion net) was produced.
 〔実施例2〕
 (生育促進フィルムの製造)
 70質量部のPVDF樹脂(株式会社クレハ製、商品グレードKFW#1000)と、30質量部のポリメタクリル酸メチル(PMMA)樹脂(旭化成株式会社製、デルパウダー70HS)と、0.01質量部の波長変換剤(LUMOGEN(登録商標) F レッド305、BASFジャパン(株)製)を、混合機(川田製作所社製、商品名:スーパーミキサー)に投入して、200rpm、約5分間充分に撹拌混合し、混練物を得た。
[Example 2]
(Production of growth promoting film)
70 parts by mass of PVDF resin (manufactured by Kureha Co., Ltd., product grade KFW # 1000), 30 parts by mass of polymethyl methacrylate (PMMA) resin (manufactured by Asahi Kasei Corporation, Dell Powder 70HS), and 0.01 parts by mass A wavelength conversion agent (LUMOGEN (registered trademark) F Red 305, manufactured by BASF Japan Ltd.) is introduced into a mixer (manufactured by Kawada Manufacturing Co., Ltd., trade name: Supermixer), and is sufficiently stirred and mixed for about 5 minutes. Thus, a kneaded product was obtained.
 得られた混練物を、二軸押出機(温度190℃)で、直径約3mm程度のペレット状の樹脂組成物とした。 The obtained kneaded product was formed into a pellet-shaped resin composition having a diameter of about 3 mm with a twin-screw extruder (temperature: 190 ° C.).
 前記ペレット状の樹脂組成物を単軸押出機で、リップクリアランス0.9mmのT型ダイ(ダイ温度230℃)に供給し、ダイから押出された溶融樹脂を54℃のキャストロールによって厚み90μmのフィルムに成形し、生育促進フィルム(蛍光体含量:0.01phr)を作製した。 The pellet-shaped resin composition is supplied to a T-type die (die temperature 230 ° C.) with a lip clearance of 0.9 mm by a single screw extruder, and the molten resin extruded from the die is 90 μm thick by a 54 ° C. cast roll. The film was formed into a film to produce a growth promoting film (phosphor content: 0.01 phr).
 〔実施例3〕
 (生育促進フィルムの製造)
 波長変換剤の量を、0.01質量部から0.02質量部に変更した以外は、実施例2と同様に行い、生育促進フィルム(蛍光体含量:0.02phr)を作製した。
Example 3
(Production of growth promoting film)
A growth promoting film (phosphor content: 0.02 phr) was produced in the same manner as in Example 2 except that the amount of the wavelength converting agent was changed from 0.01 parts by mass to 0.02 parts by mass.
 〔比較例1〕
 (フィルムの製造)
 波長変換剤を使用しない以外は、実施例2と同様に行い、フィルム(蛍光体含量:0phr)を作製した。
[Comparative Example 1]
(Film production)
A film (phosphor content: 0 phr) was produced in the same manner as in Example 2 except that the wavelength converting agent was not used.
 〔実施例4〕
 (Pseudokirchneriella subcapitataの生育試験)
 ALGALTOXKIT F(製品コードTK41:MicroBioTests社製)を購入し、1×104cells/mLのPseudokirchneriella subcapitataを含む培養液を作製し、その25mlを透明のプラスチック容器(反応器:5×8×1cm)に入れ、実施例1で得られた生育促進ネット(3×6cm)を入れた。
Example 4
(Pseudokirchneriella subcapitata growth test)
ALGALTOXKIT F (product code TK41: manufactured by MicroBioTests) was purchased, and a culture solution containing 1 × 10 4 cells / mL of Pseudokirchneriella subcapitata was prepared. The growth promoting net (3 × 6 cm) obtained in Example 1 was added.
 培養液は、照明付インキュベーター(型式FLI-2000A;東京理化器械製)中に設置し、23℃で温度管理し、プラスチック容器に照射される光は1,500Luxとなるように管理した。 The culture solution was placed in a lighted incubator (model FLI-2000A; manufactured by Tokyo Rika Kikai Co., Ltd.), temperature-controlled at 23 ° C., and the light irradiated to the plastic container was controlled to 1,500 Lux.
 分光光度計(U-4100、(株)日立製作所製)を用いて、波長670nmの透過率を経時的に測定し、下記式(1)により光学濃度(Optical Density)を算出した。 Using a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.), the transmittance at a wavelength of 670 nm was measured over time, and the optical density (Optical Density) was calculated by the following formula (1).
 光学濃度(O.D.)=-log10(透過率÷100)     式(1)
 光学濃度の変化を表1に示す。なお表1において、実施例4で用いた生育促進ネットを、KF Netと記す。なお、光学濃度が大きいほど光合成により培養された藻(実施例4におけるPseudokirchneriella subcapitata)が多いこと、言い換えるとより生育が促進されたことを示す。
Optical density (OD) = − log 10 (transmittance ÷ 100) Equation (1)
The change in optical density is shown in Table 1. In Table 1, the growth promoting net used in Example 4 is referred to as KF Net. In addition, it shows that there are many algae (Pseudokirchneriella subcapitata in Example 4) cultured by photosynthesis, so that growth was promoted more so that optical density was large.
 〔比較例2〕
 (Pseudokirchneriella subcapitataの生育試験)
 実施例1で得られた生育促進ネットを、農業用のポリエチレンテレフタレート製ネット(PET Net 市販品(商品名:光変換光合成促進ネット、太さ400dt、網目4mm))に変更した以外は、実施例4と同様に行った。
[Comparative Example 2]
(Pseudokirchneriella subcapitata growth test)
Except that the growth promotion net obtained in Example 1 was changed to an agricultural polyethylene terephthalate net (PET Net commercial product (trade name: photoconverted photosynthesis promotion net, thickness 400 dt, mesh 4 mm)) Performed in the same manner as 4.
 光学濃度の変化を表1に示す。なお表1において、比較例2で用いた農業用のポリエチレンテレフタレート製ネットを、PET Netと記す。 The change in optical density is shown in Table 1. In Table 1, the agricultural polyethylene terephthalate net used in Comparative Example 2 is referred to as PET Net.
 〔比較例3〕
 (Pseudokirchneriella subcapitataの生育試験)
 実施例1で得られた生育促進ネットを使用しない以外は、実施例4と同様に行った。
[Comparative Example 3]
(Pseudokirchneriella subcapitata growth test)
It carried out similarly to Example 4 except not using the growth promotion net | network obtained in Example 1. FIG.
 光学濃度の変化を表1に示す。 The change in optical density is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 〔実施例5〕
 (Pseudokirchneriella subcapitataの生育試験)
 1×104cells/mLのPseudokirchneriella subcapitataを含む培養液を透明のプラスチック容器(反応器)に入れ、実施例3で得られた生育促進フィルム(蛍光体含量:0.02phr)でプラスチック容器を被覆した。
Figure JPOXMLDOC01-appb-T000001
Example 5
(Pseudokirchneriella subcapitata growth test)
A culture solution containing 1 × 10 4 cells / mL Pseudokirchneriella subcapitata is placed in a transparent plastic container (reactor), and the plastic container is covered with the growth promoting film (phosphor content: 0.02 phr) obtained in Example 3 did.
 培養液は、23℃で管理し、プラスチック容器を被覆する生育促進フィルムに照射される光は1,500Luxとなるように管理した。 The culture solution was controlled at 23 ° C., and the light applied to the growth promoting film covering the plastic container was controlled to be 1,500 Lux.
 実施例4と同様に、波長670nmの透過率を経時的に測定し、光学濃度を算出した。 As in Example 4, the transmittance at a wavelength of 670 nm was measured over time, and the optical density was calculated.
 光学濃度の変化を表2に示す。なお表2において、実施例5で用いた生育促進フィルム(蛍光体含量:0.02phr)を、KF Film(蛍光体含量:0.02phr)と記す。 Table 2 shows the change in optical density. In Table 2, the growth promoting film (phosphor content: 0.02 phr) used in Example 5 is referred to as KF Film (phosphor content: 0.02 phr).
 〔比較例4〕
 (Pseudokirchneriella subcapitataの生育試験)
 実施例3で得られた生育促進フィルム(蛍光体含量:0.02phr)を、比較例1で得られたフィルム(蛍光体含量:0phr)に変更した以外は、実施例5と同様に行った。
[Comparative Example 4]
(Pseudokirchneriella subcapitata growth test)
The same procedure as in Example 5 was performed except that the growth promoting film (phosphor content: 0.02 phr) obtained in Example 3 was changed to the film (phosphor content: 0 phr) obtained in Comparative Example 1. .
 光学濃度の変化を表2に示す。なお表2において、比較例4で用いたフィルム(蛍光体含量:0phr)を、KF Film(蛍光体含量:0phr)と記す。 Table 2 shows the change in optical density. In Table 2, the film (phosphor content: 0 phr) used in Comparative Example 4 is referred to as KF Film (phosphor content: 0 phr).
 〔比較例5〕
 (Pseudokirchneriella subcapitataの生育試験)
 実施例3で得られた生育促進フィルム(蛍光体含量:0.02phr)を使用しない以外は、実施例5と同様に行った。
[Comparative Example 5]
(Pseudokirchneriella subcapitata growth test)
The same procedure as in Example 5 was performed except that the growth promoting film (phosphor content: 0.02 phr) obtained in Example 3 was not used.
 光学濃度の変化を表2に示す。 Table 2 shows the change in optical density.
Figure JPOXMLDOC01-appb-T000002
 〔実施例6〕
 (Euglena gracilis Klebs NIES-48の生育試験)
 1×104cells/mLのEuglena gracilis Klebs NIES-48(ユーグレナ・グラシリス・クレブスNIES-48)を含む培養液を透明のプラスチック容器(反応器)に入れ、実施例3で得られた生育促進フィルム(蛍光体含量:0.02phr)でプラスチック容器を被覆した。
Figure JPOXMLDOC01-appb-T000002
Example 6
(Growth test of Euglena gracilis Klebs NIES-48)
A culture solution containing 1 × 10 4 cells / mL Euglena gracilis Klebs NIES-48 (Euglena gracilis Krebs NIES-48) was placed in a transparent plastic container (reactor), and the growth promoting film obtained in Example 3 was used. A plastic container was coated with (phosphor content: 0.02 phr).
 培養液は、23℃で管理し、プラスチック容器を被覆する生育促進フィルムに照射される光は1,500Luxとなるように管理した。 The culture solution was controlled at 23 ° C., and the light applied to the growth promoting film covering the plastic container was controlled to be 1,500 Lux.
 実施例4と同様に、波長670nmの透過率を経時的に測定し、光学濃度を算出した。 As in Example 4, the transmittance at a wavelength of 670 nm was measured over time, and the optical density was calculated.
 光学濃度の変化を表3に示す。なお表3において、実施例6で用いた生育促進フィルム(蛍光体含量:0.02phr)を、KF Film(蛍光体含量:0.02phr)と記す。 Table 3 shows changes in optical density. In Table 3, the growth promoting film (phosphor content: 0.02 phr) used in Example 6 is referred to as KF Film (phosphor content: 0.02 phr).
 〔比較例6〕
 (Euglena gracilis Klebs NIES-48の生育試験)
 実施例3で得られた生育促進フィルム(蛍光体含量:0.02phr)を、比較例1で得られたフィルム(蛍光体含量:0phr)に変更した以外は、実施例6と同様に行った。
[Comparative Example 6]
(Growth test of Euglena gracilis Klebs NIES-48)
The same procedure as in Example 6 was performed except that the growth promoting film (phosphor content: 0.02 phr) obtained in Example 3 was changed to the film (phosphor content: 0 phr) obtained in Comparative Example 1. .
 光学濃度の変化を表3に示す。なお表3において、比較例6で用いたフィルム(蛍光体含量:0phr)を、KF Film(蛍光体含量:0phr)と記す。 Table 3 shows changes in optical density. In Table 3, the film (phosphor content: 0 phr) used in Comparative Example 6 is referred to as KF Film (phosphor content: 0 phr).
 〔比較例7〕
 (Euglena gracilis Klebs NIES-48の生育試験)
 実施例3で得られた生育促進フィルム(蛍光体含量:0.02phr)を使用しない以外は、実施例6と同様に行った。
[Comparative Example 7]
(Growth test of Euglena gracilis Klebs NIES-48)
The same procedure as in Example 6 was performed except that the growth promoting film (phosphor content: 0.02 phr) obtained in Example 3 was not used.
 光学濃度の変化を表3に示す。 Table 3 shows changes in optical density.
Figure JPOXMLDOC01-appb-T000003
 実施例4、5、6の生育促進度を、以下の式で算出した。
生育促進度= 実施例のO.D./資材を用いない比較例のO.D.     式(2)
 培養日数7日における生育促進度の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
The growth promotion degree of Examples 4, 5, and 6 was calculated by the following formula.
Growth promotion = O. D. / O. of the comparative example which does not use material. D. Formula (2)
Table 4 shows the results of the degree of growth promotion after 7 days of culture.
 なお、実施例4の生育促進度の算出は、実施例4および比較例3の結果より算出し、実施例5の生育促進度の算出は、実施例5および比較例5の結果より算出し、実施例6の生育促進度の算出は、実施例6および比較例7の結果より算出した。 In addition, calculation of the growth promotion degree of Example 4 is calculated from the results of Example 4 and Comparative Example 3, and calculation of the growth promotion degree of Example 5 is calculated from the results of Example 5 and Comparative Example 5, The degree of growth promotion in Example 6 was calculated from the results of Example 6 and Comparative Example 7.
Figure JPOXMLDOC01-appb-T000004
 表4より、本発明の資材を用いることにより、Pseudokirchneriella subcapitataや、Euglena gracilis Klebs NIES-48の生育が促進されたことがわかる、すなわち、本発明は緑藻やユーグレナ等の水中で光合成を行う生物の生育促進に有用である。
Figure JPOXMLDOC01-appb-T000004
From Table 4, it can be seen that the growth of Pseudokirchneriella subcapitata and Euglena gracilis Klebs NIES-48 was promoted by using the material of the present invention, that is, the present invention is a biological organism that performs photosynthesis in water such as green algae and Euglena. Useful for promoting growth.
 〔防汚性試験〕
 実施例3で得られた生育促進フィルム(蛍光体含量:0.02phr)および農業用のポリエチレン:PET:ポリエチレンの3層構造シート(商品名:光変換光合成促進シート、マテリアルサイエンス株式会社製、厚さ0.09mm)について、防汚性試験を行った。
[Anti-fouling test]
Growth promoting film obtained in Example 3 (phosphor content: 0.02 phr) and agricultural polyethylene: PET: polyethylene three-layer structure sheet (trade name: photoconversion photosynthesis promotion sheet, manufactured by Material Science Co., Ltd., thickness And 0.09 mm) was subjected to an antifouling test.
 前記フィルムおよびシートをそれぞれ3cm×5cmにカットし、カットしたフィルムおよびシートを3か月間外部環境に暴露した。 The film and sheet were each cut into 3 cm × 5 cm, and the cut film and sheet were exposed to the external environment for 3 months.
 また、同様のサイズにカットしたフィルムおよびシートを水中に沈降させ、2週間水中に暴露した。 Also, films and sheets cut to the same size were allowed to settle in water and exposed to water for 2 weeks.
 試験前と試験後の670nmの光の透過率を分光光度計(U4100、(株)日立製作所製)で測定した。 The transmittance of light at 670 nm before and after the test was measured with a spectrophotometer (U4100, manufactured by Hitachi, Ltd.).
 試験前後での透過率から、下記式により透過率の保持率を算出した。結果を表5に示す。
透過率の保持率(%)=試験後の透過率(%)/試験前の透過率(%)×100
 その結果、本発明の生育促進フィルム(蛍光体含量:0.02phr)の方が、汚れがつきにくく、透過率の保持率が高かった。すなわち、本発明の生育促進フィルム(蛍光体含量:0.02phr)の方が長期にわたって生物の育成に必要な光を透過することができる。
From the transmittance before and after the test, the transmittance retention was calculated by the following formula. The results are shown in Table 5.
Transmittance retention rate (%) = transmittance after test (%) / transmittance before test (%) × 100
As a result, the growth promoting film of the present invention (phosphor content: 0.02 phr) was less likely to get dirty and had a high transmittance retention. That is, the growth promotion film of the present invention (phosphor content: 0.02 phr) can transmit light necessary for growing organisms over a long period of time.
 なお表5において、防汚性試験で用いた生育促進フィルム(蛍光体含量:0.02phr)を、KF Film(蛍光体含量:0.02phr)と記し、農業用のポリエチレン:PET:ポリエチレンの3層構造シートを、PE/PET/PE Sheetと記す。 In Table 5, the growth promoting film (phosphor content: 0.02 phr) used in the antifouling test is denoted as KF Film (phosphor content: 0.02 phr), and agricultural polyethylene: PET: polyethylene 3 The layer structure sheet is referred to as PE / PET / PE Sheet.
Figure JPOXMLDOC01-appb-T000005
 〔沈降性試験〕
 実施例1における生育促進ネットの製造段階で得られたモノフィラメントおよび比較例2で用いた農業用のポリエチレンテレフタレート製ネットを構成するモノフィラメントについて、沈降性試験を行った。
Figure JPOXMLDOC01-appb-T000005
(Settling test)
A sedimentation test was conducted on the monofilament obtained in the production stage of the growth promoting net in Example 1 and the monofilament composing the agricultural polyethylene terephthalate net used in Comparative Example 2.
 体積が0.376mm3のモノフィラメントを500mlビーカー中の水の中に添加し、底に到達するまでの沈降時間(秒)を測定した。結果を表6に示す。 A monofilament having a volume of 0.376 mm 3 was added to water in a 500 ml beaker, and the settling time (seconds) until reaching the bottom was measured. The results are shown in Table 6.
 その結果、本発明の生育促進ネットを構成する、主にポリフッ化ビニリデン(PVDF)樹脂から形成されるモノフィラメントは、主にポリエチレンテレフタレートから構成されるモノフィラメントと比べて、短時間で沈降し、沈降性に優れることが確認できた。 As a result, the monofilament mainly composed of polyvinylidene fluoride (PVDF) resin constituting the growth promoting net of the present invention settles in a short time compared with the monofilament mainly composed of polyethylene terephthalate, and is settled. It was confirmed that it was excellent.
 なお表6において、防汚性試験で用いた実施例1における生育促進ネットの製造段階で得られたモノフィラメントをKF フィラメントと記し、比較例2で用いた農業用のポリエチレンテレフタレート製ネットを構成するモノフィラメントをPET フィラメントと記す。 In Table 6, the monofilament obtained in the production stage of the growth promoting net in Example 1 used in the antifouling test is denoted as KF filament, and the monofilament constituting the net for agricultural terephthalate used in Comparative Example 2 Is referred to as a PET filament.
Figure JPOXMLDOC01-appb-T000006
 防汚性試験および沈降性試験より、本発明の資材生育促進用資材は、防汚性に優れ、沈降性に優れることがわかる。すなわち、本発明は、長期にわたって水中で光合成を行う生物を効率的に生育することができる。
Figure JPOXMLDOC01-appb-T000006
From the antifouling property test and the sedimentation property test, it can be seen that the material growth promoting material of the present invention is excellent in antifouling property and excellent in sedimentation property. That is, the present invention can efficiently grow an organism that performs photosynthesis in water over a long period of time.
 〔比較例8〕
 (トマト、キュウリ、レタス、ハツカダイコンの生育試験)
 トマト(甘福)、キュウリ(相模半白)、レタス(メルボルンMT)、ハツカダイコン(キスミー)の各種子をセル用培土に播種し(レタス、キュウリは2014年10月15日、トマト、ハツカダイコンは2014年10月22日)、適宜灌水して温室内の温度を23℃に保って育苗した。
[Comparative Example 8]
(Growth test of tomato, cucumber, lettuce, radish)
Tomato (Amafuku), cucumber (Sagamihanjiro), lettuce (Melbourne MT), radish (kiss me) seedlings were sown in cell culture soil (lettuce, cucumber on October 15, 2014, tomato, radish on 2014 (October 22), the plants were irrigated appropriately and the temperature in the greenhouse was maintained at 23 ° C. to raise the seedlings.
 2014年11月12日に各植物の均一な苗を選抜し、プラスチックポットに入れた園芸培土に移植した。 On November 12, 2014, uniform seedlings of each plant were selected and transplanted to horticultural soil in a plastic pot.
 トマト、キュウリ、レタスは1個体/ポットで5連とし、ハツカダイコンはプランター(20cm×70cm)に10個体移植した。 Tomato, cucumber, and lettuce were 5 in 1 plant / pot, and 10 radish plants were transplanted to a planter (20 cm × 70 cm).
 下記フィルムをアーチ状に張ったマルチ、あるいはフィルムを張らなかったマルチを温室内に準備し、移植した植物をマルチ内部に置いた。 A mulch with the following film stretched in an arch shape or a mulch without a film was prepared in a greenhouse, and the transplanted plant was placed inside the mulch.
 温室内の温度を20℃に保って栽培し、2014年12月4日に草丈(自然高および伸長高、単位cm)と植物体湿重量(全体、地上部、地下部および可食部、単位g)を測定した。 Cultivated while keeping the temperature in the greenhouse at 20 ° C., plant height (natural height and elongation height, unit cm) and plant wet weight (whole, above-ground part, underground part and edible part, unit) on December 4, 2014 g) was measured.
 比較例8では、実施例3で得られたKF Film(蛍光体含量:0.02phr)、を使用した。 In Comparative Example 8, KF Film (phosphor content: 0.02 phr) obtained in Example 3 was used.
 結果を表7に示す。 The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
 比較例8より、本発明の資材を用いた場合の生育促進度は、トマト、キュウリ、レタス、ハツカダイコン等の植物を生育した場合よりも、ユーグレナ藻を生育した場合に顕著に大きいことがわかる。すなわち、本発明はユーグレナ藻の生育促進に極めて有用である。
Figure JPOXMLDOC01-appb-T000007
From Comparative Example 8, it can be seen that the degree of growth promotion when the material of the present invention is used is significantly greater when Euglena algae are grown than when plants such as tomatoes, cucumbers, lettuce, and radish are grown. That is, the present invention is extremely useful for promoting the growth of Euglena algae.

Claims (10)

  1.  フッ化ビニリデン系樹脂および蛍光体を含む組成物から形成される、
     水中で光合成を行う生物の生育促進用資材。
    Formed from a composition comprising a vinylidene fluoride-based resin and a phosphor,
    Materials for promoting the growth of organisms that perform photosynthesis in water.
  2.  前記蛍光体が、蛍光染料を含む請求項1に記載の生育促進用資材。 The growth promoting material according to claim 1, wherein the phosphor contains a fluorescent dye.
  3.  前記蛍光体が、ペリレン系蛍光染料を含む請求項1に記載の生育促進用資材。 The growth promoting material according to claim 1, wherein the phosphor comprises a perylene fluorescent dye.
  4.  前記水中で光合成を行う生物が、水草および藻から選択される少なくとも1種である請求項1~3のいずれか一項に記載の生育促進用資材。 The growth promoting material according to any one of claims 1 to 3, wherein the organism that performs photosynthesis in water is at least one selected from aquatic plants and algae.
  5.  前記水中で光合成を行う生物が、藍藻、プラシノ藻、アオサ藻、緑藻、ユーグレナ藻、渦鞭毛藻、真正眼点藻、珪藻、ハプト藻、シュードコリシスティス・エリプソイディア(Pseudochoricystis ellipsoidea)、シゾキトラム(Schizochytrium sp.)、榎本藻、ソラリス株海洋珪藻(Fistulifera sp.JPCC DA0580株、電源開発保有)から選択される少なくとも1種の藻である請求項1~3のいずれか一項に記載の生育促進用資材。 Living organisms that perform photosynthesis in water are cyanobacteria, prasino algae, green algae, green algae, euglena algae, dinoflagellates, true eyed algae, diatoms, haptophytes, Pseudochoricystis ellipsoidea, Schizotram ( The growth promotion according to any one of claims 1 to 3, which is at least one kind of algae selected from Schizochytrium sp. Materials.
  6.  前記水中で光合成を行う生物が、ユーグレナ藻である請求項1~3のいずれか一項に記載の生育促進用資材。 The growth promoting material according to any one of claims 1 to 3, wherein the organism that performs photosynthesis in water is Euglena algae.
  7.  前記組成物が、フッ化ビニリデン系樹脂100質量部に対して、蛍光体を0.0001~10質量部含む請求項1~6のいずれか一項に記載の生育促進用資材。 The growth promoting material according to any one of claims 1 to 6, wherein the composition contains 0.0001 to 10 parts by mass of a phosphor with respect to 100 parts by mass of the vinylidene fluoride resin.
  8.  ネット状またはフィルム状である請求項1~7のいずれか一項に記載の生育促進用資材。 The growth promoting material according to any one of claims 1 to 7, which is in the form of a net or a film.
  9.  水を含む反応器中で、水中で光合成を行う生物の生育を行うバイオリアクタにおいて、
     反応器中、および反応器と光源との間の少なくとも一方に請求項1~8のいずれか一項に記載の生育促進用資材を有するバイオリアクタ。
    In a bioreactor that grows organisms that perform photosynthesis in water in a reactor containing water,
    A bioreactor having the growth promoting material according to any one of claims 1 to 8 in the reactor and at least one between the reactor and the light source.
  10.  水を含む反応器中で、水中で光合成を行う生物の生育を行う際に、
     反応器中、および反応器と光源との間の少なくとも一方に請求項1~8のいずれか一項に記載の生育促進用資材を配置する生育の促進方法。
    When growing organisms that perform photosynthesis in water in a reactor containing water,
    A growth promoting method, wherein the growth promoting material according to any one of claims 1 to 8 is disposed in at least one of the reactor and between the reactor and the light source.
PCT/JP2016/056599 2015-03-25 2016-03-03 Growth-promoting material for organism conducting photosynthesis in water and use of same WO2016152440A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-062673 2015-03-25
JP2015062673 2015-03-25
JP2015-062674 2015-03-25
JP2015062674 2015-03-25

Publications (1)

Publication Number Publication Date
WO2016152440A1 true WO2016152440A1 (en) 2016-09-29

Family

ID=56978286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056599 WO2016152440A1 (en) 2015-03-25 2016-03-03 Growth-promoting material for organism conducting photosynthesis in water and use of same

Country Status (1)

Country Link
WO (1) WO2016152440A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138378A (en) * 1981-02-19 1982-08-26 Takashi Mori Light radiator
JP2001271220A (en) * 2000-03-22 2001-10-02 Kureha Chem Ind Co Ltd Colored polyvinylidene fluoride-based monofilament and method for producing the same
JP2002541788A (en) * 1999-04-13 2002-12-10 フラウンホッファー−ゲゼルシャフト ツール フェルデルング デル アンゲヴァンテン フォールシュング イー.ヴィ. Photobioreactor with improved light input through increased surface area, wavelength shifter or light transmission
JP2013500363A (en) * 2009-07-27 2013-01-07 ゲオルク フィッシャー デカ ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymer compositions for photobioreactors
JP2015050986A (en) * 2013-09-09 2015-03-19 株式会社日立製作所 Cell culture device and cell culture method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138378A (en) * 1981-02-19 1982-08-26 Takashi Mori Light radiator
JP2002541788A (en) * 1999-04-13 2002-12-10 フラウンホッファー−ゲゼルシャフト ツール フェルデルング デル アンゲヴァンテン フォールシュング イー.ヴィ. Photobioreactor with improved light input through increased surface area, wavelength shifter or light transmission
JP2001271220A (en) * 2000-03-22 2001-10-02 Kureha Chem Ind Co Ltd Colored polyvinylidene fluoride-based monofilament and method for producing the same
JP2013500363A (en) * 2009-07-27 2013-01-07 ゲオルク フィッシャー デカ ゲゼルシャフト ミット ベシュレンクテル ハフツング Polymer compositions for photobioreactors
JP2015050986A (en) * 2013-09-09 2015-03-19 株式会社日立製作所 Cell culture device and cell culture method

Similar Documents

Publication Publication Date Title
JP5926834B2 (en) Algae culture method and algae culture apparatus
Khalili et al. Influence of nutrients and LED light intensities on biomass production of microalgae Chlorella vulgaris
CN102870600B (en) Cordyceps militaris fruit body cultivation technology for stabilizing cordycepin content
CN102036551A (en) Algal culture production, harvesting, and processing
US20140315291A1 (en) Solar Conversion System And Methods
Bergmann et al. Disposable flat panel airlift photobioreactors
AU2008261616A1 (en) Apparatus and method for the culture of photosynthetic microorganisms
JP2009022218A (en) Method for culturing new fruit body
KR101129716B1 (en) Method for production of specific fatty acid and lipid from microalgae using light from light emitting diodes
CN105754903A (en) Method for cultivating photosynthetic bacteria in Rhodopseudomonas on large scale
Sreenikethanam et al. Algae based bio-plastics: Future of green economy
WO2015085631A1 (en) Method for culturing botryococcus spp. with high yield
CN107556611A (en) It is a kind of suitable for conversion film of vegetables greenhouse cultivation and preparation method thereof
Masojídek et al. Solar bioreactors used for the industrial production of microalgae
İhsan Types of microalgae cultivation photobioreactors and production process of microalgal biodiesel as alternative fuel
WO2016152440A1 (en) Growth-promoting material for organism conducting photosynthesis in water and use of same
Webb et al. Light spectral effect on a consortium of filamentous green algae grown on anaerobic digestate piggery effluent (ADPE)
CN106480155A (en) A kind of method being suitable for promoting Haematococcus pluvialis production astaxanthin under the high temperature conditions
CN111164197B (en) Methods and systems for heterotrophic and mixotrophic culture of microalgae
CN103408338A (en) Nutrition formula used for promoting rapid growth of benthic naviculaceae
CN101781622A (en) Vegetal bait culture method
CN107726251A (en) A kind of light fixture
KR101670703B1 (en) Culturing method of microalgae for increasing lipid content
ES2378102B1 (en) METHOD OF PREPARATION OF A MICROALGAS BASED UNTABLE PRODUCT AND PRODUCT OBTAINED BY SUCH METHOD
Dolganyuk et al. Selection of microalgae cultivation parameters for maximum productivity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768343

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP