WO2016152355A1 - Production method and production system for conjugated diene polymer - Google Patents

Production method and production system for conjugated diene polymer Download PDF

Info

Publication number
WO2016152355A1
WO2016152355A1 PCT/JP2016/055035 JP2016055035W WO2016152355A1 WO 2016152355 A1 WO2016152355 A1 WO 2016152355A1 JP 2016055035 W JP2016055035 W JP 2016055035W WO 2016152355 A1 WO2016152355 A1 WO 2016152355A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
amount
activity index
catalyst
reference value
Prior art date
Application number
PCT/JP2016/055035
Other languages
French (fr)
Japanese (ja)
Inventor
山下 博司
誠 野瀬
純 山下
北村 隆
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to KR1020167023440A priority Critical patent/KR101808476B1/en
Priority to CN201680014038.1A priority patent/CN107614539B/en
Priority to JP2016527482A priority patent/JP6015998B1/en
Publication of WO2016152355A1 publication Critical patent/WO2016152355A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths

Definitions

  • the present invention relates to a production method and production system of a conjugated diene polymer capable of recovering a reduced yield.
  • a cobalt-based catalyst, a non-halogenated organoaluminum compound, and a halogenated organoaluminum compound are added to a monomer solution of 1,3-butadiene. Thereby, 1,4-polybutadiene is obtained.
  • a high yield can be obtained by appropriately using a catalyst and a cocatalyst as described above.
  • the present invention has been made in view of the above problems, and provides a production method and production system of a conjugated diene polymer capable of recovering the yield when the yield is gradually reduced. Objective.
  • the inventors of the present invention have made the present invention as a result of earnestly examining the cause of the yield reduction and countermeasures.
  • the present invention is a method for producing a conjugated diene polymer, and in a conjugated diene polymerization reaction using an organoaluminum compound as a promoter, The supply amount of the co-catalyst is adjusted based on the degree of generation of the deactivated material generated in the reaction system.
  • the polymerization activity index of the reaction is determined based on the degree of formation of the deactivated substance produced in the reaction system, When the polymerization activity index falls below the first reference value, the cocatalyst is supplied in an increased amount compared to before the polymerization activity index falls below the first reference value.
  • the same amount of the catalyst activity index as before the polymerization activity index becomes equal to or lower than the first reference value. Supply co-catalyst.
  • the polymerization activity index when the deactivated substance is not formed is 100.
  • the first reference value is set to 80% or more.
  • the second reference value is set to 95% or more.
  • the organoaluminum compound has a halogen-containing organoaluminum compound and a halogen-free organoaluminum compound.
  • the present invention relates to a conjugated diene polymer production system for controlling a conjugated diene polymerization reaction using an organoaluminum compound as a co-catalyst, and a detection unit for detecting the generation degree of a deactivated substance generated in the reaction system; And a promoter supply amount adjusting unit that adjusts the supply amount of the promoter based on the detected value.
  • the yield can be recovered when the yield gradually decreases.
  • a conjugated diene polymer is produced using a transition metal catalyst and an organoaluminum compound as a promoter.
  • the supply amount of the cocatalyst is adjusted based on the degree of generation of the deactivated material generated in the reaction system. Specifically, the cocatalyst increase is started at an appropriate timing, and the cocatalyst increase is stopped at an appropriate timing. Details will be described as follows.
  • examples of the diene monomer include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 2-phenyl-1,3-butadiene, and the like. These may be used singly or in combination of two or more, and may be used by copolymerizing with other dienes such as 1,3-hexadiene. Of these, 1,3-butadiene is preferred.
  • the concentration of the conjugated diene monomer in the monomer solution is preferably in the range of 10 to 90% by weight, more preferably in the range of 20 to 70% by weight, and still more preferably in the range of 25 to 50% by weight.
  • 1,4-polybutadiene can be obtained by performing cis-1,4 polymerization using 1,3-butadiene as a conjugated diene monomer.
  • Transition metal catalysts include cobalt-based catalysts, nickel-based catalysts, neodymium-based catalysts, vanadium-based catalysts, and titanium-based catalysts. Among these, a cobalt catalyst or a nickel catalyst is preferable, and a cobalt catalyst is more preferable.
  • a transition metal catalyst may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Cobalt catalysts include cobalt halide salts such as cobalt chloride and cobalt bromide; inorganic acid cobalt salts such as cobalt sulfate and cobalt nitrate; cobalt octaate, cobalt octylate, cobalt naphthenate, cobalt acetate, cobalt malonate, etc. And cobalt complexes such as bisacetylacetonate cobalt, trisacetylacetonate cobalt, acetoacetic acid ethyl ester cobalt, cobalt salt pyridine complex, cobalt salt picoline complex, and cobalt salt ethyl alcohol complex. Of these, cobalt octaate is preferable.
  • the amount of the cobalt-based catalyst added is usually preferably 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 4 mol of the cobalt-based catalyst with respect to 1 mol of the diene monomer, and preferably 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 5 mol. Particularly preferred.
  • Organoaluminum cocatalyst is used with a transition metal catalyst.
  • the addition amount of the organoaluminum cocatalyst is preferably in the range of 50 to 2000 mol per 1 mol of the transition metal catalyst.
  • an organoaluminum compound containing halogen and an organoaluminum compound not containing halogen are used in combination.
  • non-halogenated organoaluminum compounds include organoaluminum hydrides such as trialkylaluminum, dialkylaluminum hydride, and alkylaluminum sesquihydride.
  • organoaluminum hydrides such as trialkylaluminum, dialkylaluminum hydride, and alkylaluminum sesquihydride.
  • Trialkylaluminum is preferred, and triethylaluminum (TEA) is more preferred.
  • halogenated organoaluminum examples include dialkylaluminum chloride, dialkylaluminum bromide, alkylaluminum dichloride, alkylaluminum dibromide, alkylaluminum sesquichloride, and alkylaluminum sesquibromide. Of these, organoaluminum chloride is preferable, and diethylaluminum chloride (DEAC) is more preferable.
  • the molar ratio of the halogenated organoaluminum / non-halogenated organoaluminum compound is preferably 1 to 5, and more preferably 2 to 4.
  • ⁇ Deactivated material and degree of generation of deactivated material> When a cobalt-based catalyst and an organoaluminum cocatalyst are added to the butadiene monomer solution and polymerized, 4-vinyl-1-cyclohexene (4-VCH) is generated as a deactivated substance (poisoned substance). The amount of the deactivated substance generated is measured by gas chromatography (GC) as needed from the start of polymerization.
  • GC gas chromatography
  • the molar ratio of deactivation material generation amount / organic aluminum halide supply amount is used.
  • a 4-VCH / DEAC molar ratio is used.
  • the production amount of the deactivated substance itself may be used as an index.
  • the activity index of the polymerization reaction can be judged based on the degree of formation of the deactivated substance. For example, by plotting experimental data, it is possible to obtain a relational expression (approximate curve) between the catalyst deactivation material generation amount and the polymerization activity index (see, for example, FIG. 2 described later).
  • the polymerization activity index is determined based on the degree of formation of the deactivated substance. Furthermore, the start of increase and / or stop of increase is determined based on the polymerization activity index. The degree of formation of the deactivated substance itself may be used as a criterion for starting the increase and / or stopping the increase.
  • the cocatalyst is supplied in an increased amount compared to before the polymerization activity index falls below the first reference value. If the first reference value is set to 80% or more (corresponding to a 4-VCH / DEAC molar ratio of 2.5 or less), sufficient recovery can be expected in practice.
  • the polymerization activity index becomes equal to or higher than the second reference value by increasing the amount of cocatalyst supplied, the increase is stopped and the same amount of auxiliary catalyst as before the polymerization activity index becomes lower than the first reference value.
  • Supply catalyst If the second reference value is set to 95% or higher (corresponding to a 4-VCH / DEAC molar ratio of 2.1 or lower), it can be considered that the second standard value has been sufficiently recovered in practice.
  • the cocatalyst is supplied after an increase of 5-30%. More preferably, it is increased by 10-20%.
  • FIG. 1 is a conceptual diagram of a polybutadiene production system. A basic manufacturing method in the manufacturing system will be described.
  • a polymerization monomer adjustment solution consisting of a butadiene monomer solution is continuously supplied. Water is added in front of the raw material adjustment tank. Next, the cocatalyst is added at a DEAC / TEA molar ratio of 3 in front of the aging tank. Thereafter, a cobalt-based catalyst is added in a polymerization tank to perform polymerization.
  • reaction stop tank a mixed solution of an anti-aging agent and a reaction stop agent is added to stop the polymerization.
  • the polymer solution obtained by these is dried with a hot air drier to obtain a polymer product.
  • the monomer to be polymerized is a part, and the monomer solution that has not been polymerized is supplied again as a raw material.
  • a catalyst deactivator (4-vinyl-1-cyclohexene (4-VCH)) was generated in the polymerization tank and was affected by the catalyst deactivator. The yield gradually decreases.
  • FIG. 2 is a graph showing the relationship between the amount of catalyst deactivation material generated and the polymerization activity index, determined based on experimental data.
  • the horizontal axis represents the molar ratio of 4-VCH / DEAC, and the vertical axis represents the polymerization activity index.
  • the amount of 4-VCH generated is measured by gas chromatography (GC) as needed from the beginning of polymerization.
  • DEAC is continuously supplied in a certain amount.
  • the polymerization activity index is defined as the yield when a deactivated substance is generated / yield when no deactivated substance is generated. That is, the polymerization activity index when no deactivated substance is generated is set to 100%.
  • FIG. 3 is a diagram showing an operation history based on the approximate curve. Details are shown in Table 1.
  • the first reference value is set to 80%, it is determined that the polymerization activity index is less than or equal to the first reference value, and the amount of promoter increased by 16% is continuously supplied.
  • the approximate curve 1 gradually shifts to the approximate curve 2.
  • 4-VCH /DEAC 2.12. Therefore, in the approximate curve 2, the polymerization activity index is recovered to 95%.
  • the first reference value may be set to 80% or more (for example, 90%).
  • the polymerization activity index is judged to be below the first reference value (90%), and the amount of promoter increased by 16% is continuously added. To supply.
  • the second reference value may be set to 95%, and the increase may be stopped before the polymerization activity index recovers to 98%, assuming that the yield is sufficiently recovered. Of course, more yield recovery may be expected by setting the second reference value to 98%.
  • time differentiation 0
  • the cocatalyst increase was started before the polymerization activity index decreased to 80%, and it was confirmed that the polymerization activity index had recovered to 95% or more, and the cocatalyst increase was stopped. preferable.
  • FIG. 4 is a diagram for explaining the results when the present invention is applied to an actual machine.
  • the horizontal axis represents time (year / month) and the vertical axis represents average yield (%).
  • the actual machine a plurality of brands are manufactured at random, and the yield is obtained based on the average production amount of the brands.
  • the average yield (%) was between 99% and 100%, but the average yield (%) gradually decreased from April of the previous year. Therefore, the cocatalyst increase was started in January of this year when the polymerization activity index was 80% (the polymerization activity index and the yield were correlated).
  • the co-catalyst was supplied by returning to the predetermined supply amount before the increase.
  • the yield was almost 100%.
  • FIG. 5 is a functional block diagram relating to a control system for increasing / stopping increase.
  • the control system includes a reference value storage unit 11, a deactivated substance detection unit 12, an increase start / stop determination unit 13, and a promoter supply amount adjustment unit 14.
  • the reference value storage unit 11 stores the first reference value and the second reference value.
  • the first reference value and the second reference value are set in advance based on experimental data.
  • the deactivated substance detection unit 12 detects the amount of deactivated substance generated at any time through gas chromatography provided in the raw material adjustment tank.
  • the increase start / stop determination unit 13 determines the start and stop of the increase in the amount of the cocatalyst based on the detected value of the deactivated substance generation amount. First, the polymerization activity index is estimated based on the detected amount of inactive substance generated. When the polymerization activity index falls below the first reference value, a determination to start increasing is made. On the other hand, if the polymerization activity index recovers to the second reference value or more during continuous increase, an increase stop determination is made.
  • the promoter supply amount adjusting unit 14 continuously supplies a certain amount of promoter. However, in response to an increase start command from the determination unit 13, a continuously increased amount of promoter is supplied. Further, in response to the increase stop command from the determination unit 13, the amount of promoter before the increase is continuously supplied.
  • the inventor of the present application studied the cause of the decrease in yield and found that 4-vinyl-1-cyclohexene (4-VCH) was generated. And there was a suspicion that 4-VCH might act as a deactivating substance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

The present invention is capable of recovering the yield rate when the yield rate gradually becomes lower during production of a conjugated diene polymer. The conjugated diene polymer is produced by using a transition metal catalyst, and an organoaluminum compound as a co-catalyst. The yield rate gradually becomes lower when successive production of the conjugated diene polymer is continued. In response, the supplied amount the co-catalyst is adjusted on the basis of the generation level of inactivate substances generated in the reaction system. Specifically, increasing the amount of the co-catalyst is started when the generation level becomes equal to or lower than a predetermined value. Furthermore, increasing the amount of the co-catalyst is stopped when determined that sufficient recovery has occurred. More specifically, supply of the predetermined amount that had been supplied before the amount was increased is started.

Description

共役ジエン重合体の製造方法および製造システムProduction method and production system of conjugated diene polymer
 本発明は、低下した収率を回復させることのできる共役ジエン重合体の製造方法および製造システムに関するものである。 The present invention relates to a production method and production system of a conjugated diene polymer capable of recovering a reduced yield.
 共役ジエン重合体の製造方法として、共役ジエン系モノマーを含む溶液に、触媒として遷移金属触媒を、助触媒として有機アルミニウム化合物を添加して、重合する方法が提案されている(例えば、特許文献1および2)。 As a method for producing a conjugated diene polymer, a method of polymerizing a solution containing a conjugated diene monomer by adding a transition metal catalyst as a catalyst and an organoaluminum compound as a promoter is proposed (for example, Patent Document 1). And 2).
 具体的には、1,3-ブタジエンのモノマー溶液に対し、コバルト系触媒と非ハロゲン化有機アルミニウム化合物とハロゲン化有機アルミニウム化合物を添加する。これにより、1,4-ポリブタジエンが得られる。 Specifically, a cobalt-based catalyst, a non-halogenated organoaluminum compound, and a halogenated organoaluminum compound are added to a monomer solution of 1,3-butadiene. Thereby, 1,4-polybutadiene is obtained.
特開2013-209470号公報JP 2013-209470 A 特開2013-227524号公報JP 2013-227524 A
 上記のように触媒および助触媒を適切に用いることで高い収率が得られる。 A high yield can be obtained by appropriately using a catalyst and a cocatalyst as described above.
 しかしながら、プラントにおいて、連続的に共役ジエン重合体の製造を継続しているうちに、徐々に収率が低下してくるという問題がある。 However, there is a problem that the yield gradually decreases while the production of the conjugated diene polymer is continued in the plant.
 本発明は、上記問題点に鑑みてなされたものであり、徐々に収率が低下してきた場合に、収率を回復させることのできる共役ジエン重合体の製造方法および製造システムを提供することを目的とする。 The present invention has been made in view of the above problems, and provides a production method and production system of a conjugated diene polymer capable of recovering the yield when the yield is gradually reduced. Objective.
 本発明者らは、収率低下の原因および対応策を鋭意検討した結果、本発明に至った。 The inventors of the present invention have made the present invention as a result of earnestly examining the cause of the yield reduction and countermeasures.
 本発明は共役ジエン重合体の製造方法であって、有機アルミニウム化合物を助触媒として用いた共役ジエン重合反応において、
 該反応系内で生成される失活物質の生成度合に基づいて、該助触媒の供給量を調整する。
The present invention is a method for producing a conjugated diene polymer, and in a conjugated diene polymerization reaction using an organoaluminum compound as a promoter,
The supply amount of the co-catalyst is adjusted based on the degree of generation of the deactivated material generated in the reaction system.
 上記発明において、該反応系内で生成される失活物質の生成度合に基づいて、該反応の重合活性指数を判断し、
 該重合活性指数が第1基準値以下になった場合は、該重合活性指数が第1基準値以下になる前に比べて、該助触媒を増量して供給する。
In the above invention, the polymerization activity index of the reaction is determined based on the degree of formation of the deactivated substance produced in the reaction system,
When the polymerization activity index falls below the first reference value, the cocatalyst is supplied in an increased amount compared to before the polymerization activity index falls below the first reference value.
 上記発明において、該助触媒を増量して供給することにより、該重合活性指数が第2基準値以上になった場合は、該重合活性指数が第1基準値以下になる前と同量の該助触媒を供給する。 In the above invention, when the polymerization activity index becomes equal to or higher than the second reference value by supplying the cocatalyst in an increased amount, the same amount of the catalyst activity index as before the polymerization activity index becomes equal to or lower than the first reference value. Supply co-catalyst.
 上記発明において、該失活物質未生成時の重合活性指数を100とする。該第1基準値は80%以上に設定される。該第2基準値は95%以上に設定される In the above invention, the polymerization activity index when the deactivated substance is not formed is 100. The first reference value is set to 80% or more. The second reference value is set to 95% or more.
 上記発明において、該有機アルミニウム化合物は、ハロゲンを含む有機アルミニウム化合物と、ハロゲンを含まない有機アルミニウム化合物とを有する。 In the above invention, the organoaluminum compound has a halogen-containing organoaluminum compound and a halogen-free organoaluminum compound.
 本発明は、有機アルミニウム化合物を助触媒として用いた共役ジエン重合反応を制御する共役ジエン重合体製造システムであって、該反応系内で生成される失活物質の生成度合を検出する検出部と、該検出値に基づいて該助触媒の供給量を調整する助触媒供給量調整部とを備える。 The present invention relates to a conjugated diene polymer production system for controlling a conjugated diene polymerization reaction using an organoaluminum compound as a co-catalyst, and a detection unit for detecting the generation degree of a deactivated substance generated in the reaction system; And a promoter supply amount adjusting unit that adjusts the supply amount of the promoter based on the detected value.
 本発明の共役ジエン重合体の製造方法および製造システムでは、徐々に収率が低下してきた場合に、収率を回復させることができる。 In the method and system for producing a conjugated diene polymer of the present invention, the yield can be recovered when the yield gradually decreases.
共役ジエン重合体の製造システムの概念図である。It is a conceptual diagram of the manufacturing system of a conjugated diene polymer. 実験データに基づき求めた、触媒失活物質発生量と重合活性指数の関係を示す図である。It is a figure which shows the relationship between the catalyst deactivation substance generation amount calculated | required based on experimental data, and a polymerization activity index. 想定される動作履歴を示す図である。It is a figure which shows the operation | movement history assumed. 本発明を実機に適用したときの結果を説明する図である。It is a figure explaining the result when this invention is applied to a real machine. 制御システムに係る機能ブロック図である。It is a functional block diagram concerning a control system.
<概要>
 本願発明は、遷移金属触媒と、助触媒としての有機アルミニウム化合物とを用いて、共役ジエン重合体を製造するものである。その際に、反応系内で生成される失活物質の生成度合に基づいて、助触媒の供給量を調整する。具体的には、適切なタイミングで助触媒増量を開始し、さらに適切なタイミングで助触媒増量を停止する。詳細について、以下の通り説明する。
<Overview>
In the present invention, a conjugated diene polymer is produced using a transition metal catalyst and an organoaluminum compound as a promoter. At that time, the supply amount of the cocatalyst is adjusted based on the degree of generation of the deactivated material generated in the reaction system. Specifically, the cocatalyst increase is started at an appropriate timing, and the cocatalyst increase is stopped at an appropriate timing. Details will be described as follows.
 <ジエン系モノマー>
 本実施形態において、ジエン系モノマーとしては、例えば、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン、2-フェニル-1,3-ブタジエン等が挙げられる。これらは、1種単独で用いても、2種以上を混合してもよく、さらに1,3-ヘキサジエンなど他のジエンと共重合して用いてもよい。中でも好ましいのは、1,3-ブタジエンである。
<Diene monomer>
In the present embodiment, examples of the diene monomer include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 2-phenyl-1,3-butadiene, and the like. These may be used singly or in combination of two or more, and may be used by copolymerizing with other dienes such as 1,3-hexadiene. Of these, 1,3-butadiene is preferred.
 モノマー液中の共役ジエン系モノマーの濃度は、10~90重量%の範囲が好ましく、20~70重量%の範囲がより好ましく、25~50重量%の範囲がさらに好ましい。 The concentration of the conjugated diene monomer in the monomer solution is preferably in the range of 10 to 90% by weight, more preferably in the range of 20 to 70% by weight, and still more preferably in the range of 25 to 50% by weight.
 例えば、共役ジエン系モノマーとして1,3-ブタジエンを用い、シス-1,4重合を行うことで、1,4-ポリブタジエンが得られる。 For example, 1,4-polybutadiene can be obtained by performing cis-1,4 polymerization using 1,3-butadiene as a conjugated diene monomer.
 <遷移金属触媒>
 遷移金属触媒としては、コバルト系触媒、ニッケル系触媒、ネオジウム系触媒、バナジウム系触媒、チタン系触媒が挙げられる。中でも、コバルト系触媒又はニッケル系触媒が好ましく、コバルト系触媒がより好ましい。遷移金属触媒は、1種を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
<Transition metal catalyst>
Examples of transition metal catalysts include cobalt-based catalysts, nickel-based catalysts, neodymium-based catalysts, vanadium-based catalysts, and titanium-based catalysts. Among these, a cobalt catalyst or a nickel catalyst is preferable, and a cobalt catalyst is more preferable. A transition metal catalyst may be used individually by 1 type, and may be used in combination of 2 or more type.
 コバルト系触媒としては、塩化コバルト、臭化コバルト等のハロゲン化コバルト塩;硫酸コバルト、硝酸コバルト等の無機酸コバルト塩;コバルトオクタエート、オクチル酸コバルト、ナフテン酸コバルト、酢酸コバルト、マロン酸コバルト等の有機酸コバルト塩;ビスアセチルアセトネートコバルト、トリスアセチルアセトネートコバルト、アセト酢酸エチルエステルコバルト、コバルト塩のピリジン錯体、コバルト塩のピコリン錯体、コバルト塩のエチルアルコール錯体等のコバルト錯体が挙げられる。中でも、コバルトオクタエートが好ましい。 Cobalt catalysts include cobalt halide salts such as cobalt chloride and cobalt bromide; inorganic acid cobalt salts such as cobalt sulfate and cobalt nitrate; cobalt octaate, cobalt octylate, cobalt naphthenate, cobalt acetate, cobalt malonate, etc. And cobalt complexes such as bisacetylacetonate cobalt, trisacetylacetonate cobalt, acetoacetic acid ethyl ester cobalt, cobalt salt pyridine complex, cobalt salt picoline complex, and cobalt salt ethyl alcohol complex. Of these, cobalt octaate is preferable.
 コバルト系触媒の添加量は、ジエン系モノマー1モルに対し、通常、コバルト系触媒が1×10-7~1×10-4モルが好ましく、1×10-6~1×10-5モルが特に好ましい。 The amount of the cobalt-based catalyst added is usually preferably 1 × 10 −7 to 1 × 10 −4 mol of the cobalt-based catalyst with respect to 1 mol of the diene monomer, and preferably 1 × 10 −6 to 1 × 10 −5 mol. Particularly preferred.
 <有機アルミニウム助触媒>
 遷移金属触媒とともに有機アルミニウム助触媒を用いる。有機アルミニウム助触媒の添加量は、遷移金属触媒1モルに対し、50~2000モルの範囲が好ましい。
<Organic aluminum promoter>
An organoaluminum cocatalyst is used with a transition metal catalyst. The addition amount of the organoaluminum cocatalyst is preferably in the range of 50 to 2000 mol per 1 mol of the transition metal catalyst.
 特に、本実施形態では、ハロゲンを含む有機アルミニウム化合物とハロゲンを含まない有機アルミニウム化合物とを併用する。 In particular, in the present embodiment, an organoaluminum compound containing halogen and an organoaluminum compound not containing halogen are used in combination.
 非ハロゲン化有機アルミニウム化合物としては、トリアルキルアルミニウム、ジアルキルアルミニウムハイドライド、アルキルアルミニウムセスキハイドライド等の水素化有機アルミニウムが挙げられる。トリアルキルアルミニウムが好ましく、トリエチルアルミニウム(TEA)がより好ましい。 Examples of non-halogenated organoaluminum compounds include organoaluminum hydrides such as trialkylaluminum, dialkylaluminum hydride, and alkylaluminum sesquihydride. Trialkylaluminum is preferred, and triethylaluminum (TEA) is more preferred.
 ハロゲン化有機アルミニウムとしては、ジアルキルアルミニウムクロライド、ジアルキルアルミニウムブロマイド、アルキルアルミニウムジクロライド、アルキルアルミニウムジブロマイド、アルキルアルミニウムセスキクロライド、アルキルアルミニウムセスキブロマイドが挙げられる。なかでも、塩化有機アルミニウムが好ましく、ジエチルアルミニウムクロライド(DEAC)がより好ましい。 Examples of the halogenated organoaluminum include dialkylaluminum chloride, dialkylaluminum bromide, alkylaluminum dichloride, alkylaluminum dibromide, alkylaluminum sesquichloride, and alkylaluminum sesquibromide. Of these, organoaluminum chloride is preferable, and diethylaluminum chloride (DEAC) is more preferable.
 ハロゲン化有機アルミニウム/非ハロゲン化有機アルミニウム化合物のモル比は、1~5であることが好ましく、2~4であることがより好ましい。 The molar ratio of the halogenated organoaluminum / non-halogenated organoaluminum compound is preferably 1 to 5, and more preferably 2 to 4.
 <失活物質および失活物質生成度合>
 ブタジエンモノマー溶液に、コバルト系触媒と有機アルミニウム助触媒とを添加して、重合をすると、失活物質(被毒物質)として4-ビニル-1-シクロヘキセン(4-VCH)が発生する。失活物質の発生量は、重合開始時から随時、ガスクロマトグラフィー(GC)にて測定される。
<Deactivated material and degree of generation of deactivated material>
When a cobalt-based catalyst and an organoaluminum cocatalyst are added to the butadiene monomer solution and polymerized, 4-vinyl-1-cyclohexene (4-VCH) is generated as a deactivated substance (poisoned substance). The amount of the deactivated substance generated is measured by gas chromatography (GC) as needed from the start of polymerization.
 失活物質生成度合の指標として、失活物質生成量/ハロゲン化有機アルミニウム供給量のモル比を用いる。例えば、4-VCH/DEACモル比を用いる。失活物質生成量そのものを指標としてもよい。 As a deactivation material production index, the molar ratio of deactivation material generation amount / organic aluminum halide supply amount is used. For example, a 4-VCH / DEAC molar ratio is used. The production amount of the deactivated substance itself may be used as an index.
 更に、失活物質の生成度合に基づいて、重合反応の活性指数を判断できる。たとえば、実験データをプロットすることにより、触媒失活物質発生量と重合活性指数の関係式(近似曲線)(例えば後述する図2参照)を得ることができる。 Furthermore, the activity index of the polymerization reaction can be judged based on the degree of formation of the deactivated substance. For example, by plotting experimental data, it is possible to obtain a relational expression (approximate curve) between the catalyst deactivation material generation amount and the polymerization activity index (see, for example, FIG. 2 described later).
 <増量開始判断および増量停止判断>
 失活物質の生成度合に基づいて、重合活性指数を判断する。さらに、重合活性指数に基づいて、増量開始および/または増量停止を判断する。失活物質の生成度合そのものを増量開始および/または増量停止の判断基準としてもよい。
<Determination of start of increase and stop of increase>
The polymerization activity index is determined based on the degree of formation of the deactivated substance. Furthermore, the start of increase and / or stop of increase is determined based on the polymerization activity index. The degree of formation of the deactivated substance itself may be used as a criterion for starting the increase and / or stopping the increase.
 たとえば、重合活性指数が第1基準値以下になった場合は、重合活性指数が第1基準値以下になる前に比べて、助触媒を増量して供給する。第1基準値を80%以上(およそ4-VCH/DEACモル比2.5以下に相当)に設定しておけば、実務上、充分な回復を期待できる。 For example, when the polymerization activity index falls below the first reference value, the cocatalyst is supplied in an increased amount compared to before the polymerization activity index falls below the first reference value. If the first reference value is set to 80% or more (corresponding to a 4-VCH / DEAC molar ratio of 2.5 or less), sufficient recovery can be expected in practice.
 一方、助触媒を増量して供給することにより、重合活性指数が第2基準値以上になった場合は、増量を停止し、重合活性指数が第1基準値以下になる前と同量の助触媒を供給する。第2基準値を95%以上(およそ4-VCH/DEACモル比2.1以下に相当)に設定しておけば、実務上、充分に回復したとみなすことができる。 On the other hand, when the polymerization activity index becomes equal to or higher than the second reference value by increasing the amount of cocatalyst supplied, the increase is stopped and the same amount of auxiliary catalyst as before the polymerization activity index becomes lower than the first reference value. Supply catalyst. If the second reference value is set to 95% or higher (corresponding to a 4-VCH / DEAC molar ratio of 2.1 or lower), it can be considered that the second standard value has been sufficiently recovered in practice.
 なお、第2基準値により増量停止を判断せず、失活物質発生量のモニタリングにより4-VCH /DEACの減少がなくなったとき(時間微分=0)を増量停止の判断基準としてもよい。 It should be noted that the increase stoppage may not be determined based on the second reference value, but when the decrease in 4-VCH / DEAC is eliminated by monitoring the amount of inactivated substance generated (time differentiation = 0).
 <増量割合>
 増量が必要と判断したときは、5-30%増量して助触媒を供給する。より好ましくは、10-20%増量する。
<Increase ratio>
When it is determined that an increase is necessary, the cocatalyst is supplied after an increase of 5-30%. More preferably, it is increased by 10-20%.
 図1は、ポリブタジエンの製造システムの概念図である。製造システムにおける基本的な製造方法について説明する。 FIG. 1 is a conceptual diagram of a polybutadiene production system. A basic manufacturing method in the manufacturing system will be described.
 ブタジエンモノマー溶液からなる重合モノマー調整溶液を連続的に供給する。原料調整槽の前にて水を添加する。次いで、熟成槽の前にてDEAC/TEAのモル比3の割合で助触媒を添加する。その後重合槽にてコバルト系触媒を添加し、重合を行う。 A polymerization monomer adjustment solution consisting of a butadiene monomer solution is continuously supplied. Water is added in front of the raw material adjustment tank. Next, the cocatalyst is added at a DEAC / TEA molar ratio of 3 in front of the aging tank. Thereafter, a cobalt-based catalyst is added in a polymerization tank to perform polymerization.
 ついで、反応停止槽にて、老化防止剤と反応停止剤の混合溶液を添加し、重合を停止させる。これらによって得られたポリマー溶液は、熱風乾燥機で乾燥され、ポリマー製品が得られる。 Next, in the reaction stop tank, a mixed solution of an anti-aging agent and a reaction stop agent is added to stop the polymerization. The polymer solution obtained by these is dried with a hot air drier to obtain a polymer product.
 一方で、重合されるモノマーは一部であり、重合されなかったモノマー溶液は再び原料として供給される。 On the other hand, the monomer to be polymerized is a part, and the monomer solution that has not been polymerized is supplied again as a raw material.
 以上のように連続的に製造を継続しているうちに、重合槽において触媒失活物質(4-ビニル-1-シクロヘキセン(4-VCH))が発生し、触媒失活物質の影響を受けて、徐々に収率が低下してくる。 As described above, during continuous production, a catalyst deactivator (4-vinyl-1-cyclohexene (4-VCH)) was generated in the polymerization tank and was affected by the catalyst deactivator. The yield gradually decreases.
 図2は、実験データに基づき求めた、触媒失活物質発生量と重合活性指数の関係を示す図である。横軸に4-VCH /DEACのモル比、縦軸に重合活性指数を取る。 FIG. 2 is a graph showing the relationship between the amount of catalyst deactivation material generated and the polymerization activity index, determined based on experimental data. The horizontal axis represents the molar ratio of 4-VCH / DEAC, and the vertical axis represents the polymerization activity index.
 4-VCHの発生量は、重合開始時から随時、ガスクロマトグラフィー(GC)にて測定する。DEACは連続的に一定量供給される。 The amount of 4-VCH generated is measured by gas chromatography (GC) as needed from the beginning of polymerization. DEAC is continuously supplied in a certain amount.
 重合活性指数は、失活物質が発生時の収量/失活物質未発生時の収量と定義する。すなわち、失活物質未発生時の重合活性指数を100%とする。 The polymerization activity index is defined as the yield when a deactivated substance is generated / yield when no deactivated substance is generated. That is, the polymerization activity index when no deactivated substance is generated is set to 100%.
 ただし、ただ単に助触媒を増量すると、触媒と助触媒のバランスが崩れて、所望の物性の製品が得られない。また、有機アルミニウム化合物は、比較的高価であるので、経済性の観点から闇雲に増量することは好ましくない。したがって、本願発明では、下記の様な工夫をしている。 However, simply increasing the amount of cocatalyst breaks the balance between the catalyst and the cocatalyst, making it impossible to obtain a product with desired physical properties. Moreover, since an organoaluminum compound is comparatively expensive, it is not preferable to increase the amount to a dark cloud from an economical viewpoint. Therefore, in the present invention, the following measures are taken.
 図3は、上記近似曲線に基づいた動作履歴を示す図である。詳細を表1に示す。
Figure JPOXMLDOC01-appb-T000001
FIG. 3 is a diagram showing an operation history based on the approximate curve. Details are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 実施例1について説明する。今、近似曲線1において、連続的な製造により、4-VCH /DEAC=2.46まで触媒失活物質が発生し、重合活性指数が80%まで低下したとする。 Example 1 will be described. Now, in the approximate curve 1, it is assumed that the catalyst deactivation material is generated up to 4-VCH /DEAC=2.46 by continuous production, and the polymerization activity index decreases to 80%.
 このとき、第1基準値を80%と定めておき、重合活性指数が第1基準値以下となった判断し、16%増量した量の助触媒を連続的に供給する。これにより、近似曲線1から徐々に近似曲線2に移行するものと想定する。触媒失活物質の発生量は直ちに変わらない(不変)と仮定し、助触媒の量が増えるため、4-VCH /DEAC=2.12となる。したがって、近似曲線2において、重合活性指数が95%まで回復する。 At this time, the first reference value is set to 80%, it is determined that the polymerization activity index is less than or equal to the first reference value, and the amount of promoter increased by 16% is continuously supplied. As a result, it is assumed that the approximate curve 1 gradually shifts to the approximate curve 2. Assuming that the amount of catalyst deactivation material does not change immediately (no change), and the amount of cocatalyst increases, 4-VCH /DEAC=2.12. Therefore, in the approximate curve 2, the polymerization activity index is recovered to 95%.
 第2基準値を95%と定めておき、第2基準値以上となったことを確認して、充分な収率回復とみなし、増量を停止する。すなわち、増量前の所定供給量に戻す。なお、重合活性指数と収率は相関関係にある。 ¡Set the second reference value as 95%, confirm that the second reference value is exceeded, consider it as a sufficient recovery in yield, and stop the increase. That is, it returns to the predetermined supply amount before the increase. The polymerization activity index and the yield are correlated.
 これにより、製品の物性を変えることなく、収率を回復させることができる。さらに、適切なタイミングで増量を停止するため、無用の助触媒の浪費を抑制できる。 This makes it possible to recover the yield without changing the physical properties of the product. Furthermore, since the increase is stopped at an appropriate timing, it is possible to suppress waste of unnecessary promoters.
 実施例2について説明する。より早期の回復を望む場合は、第1基準値を80%以上(例えば90%)と定めてもよい。触媒失活物質が発生し、4-VCH /DEAC=1.23となったときに、重合活性指数が第1基準値(90%)以下となった判断し、16%増量した量の助触媒を連続的に供給する。 Example 2 will be described. If an earlier recovery is desired, the first reference value may be set to 80% or more (for example, 90%). When the catalyst deactivation material is generated and 4-VCH /DEAC=1.23, the polymerization activity index is judged to be below the first reference value (90%), and the amount of promoter increased by 16% is continuously added. To supply.
 これにより、近似曲線1から徐々に近似曲線2に移行し、4-VCH /DEAC=1.06となり、理論上、重合活性指数が98%まで回復可能となる。 This gradually shifts from the approximate curve 1 to the approximate curve 2 and becomes 4-VCH /DEAC=1.06, and it is theoretically possible to recover the polymerization activity index to 98%.
 このとき、第2基準値を95%と定めておき、充分な収率回復とみなし、重合活性指数が98%まで回復する前に、増量を停止してもよい。もちろん、第2基準値を98%と定めて、より多くの収率回復を期待してもよい。 At this time, the second reference value may be set to 95%, and the increase may be stopped before the polymerization activity index recovers to 98%, assuming that the yield is sufficiently recovered. Of course, more yield recovery may be expected by setting the second reference value to 98%.
 さらに、第2基準値により判断せず、4-VCH /DEACの減少がなくなったとき(時間微分=0)を増量停止の判断基準としても良い。 Furthermore, it is possible to use the time when the decrease of 4-VCH / DEAC stops (time differentiation = 0) as the determination criterion for stopping the increase without determining with the second reference value.
 実施例3(参考例)について説明する。触媒失活物質が発生し、4-VCH /DEAC=7.33となり、重合活性指数が34%まで低下したとする。この時点で、16%増量すると、近似曲線1から徐々に近似曲線2に移行し、4-VCH /DEAC=6.32となり、理論上、重合活性指数が83%まで回復可能となる。 Example 3 (reference example) will be described. It is assumed that a catalyst deactivating material is generated, 4-VCH /DEAC=7.33, and the polymerization activity index is lowered to 34%. At this point, when the amount is increased by 16%, the curve gradually shifts from the approximate curve 1 to the approximate curve 2 to 4-VCH /DEAC=6.32, and theoretically, the polymerization activity index can be recovered to 83%.
 ただし、83%程度の回復では実務上不充分とみなされるおそれもある。 However, recovery of about 83% may be considered inadequate in practice.
 ところで、助触媒を増量させなかった場合は、近似曲線は移行せず、4-VCH/DEACの割合は高まるばかりであり、重合活性指数は低下する一方である。 By the way, when the amount of the cocatalyst is not increased, the approximate curve does not shift, the ratio of 4-VCH / DEAC only increases, and the polymerization activity index is decreasing.
 以上の実施例によれば、重合活性指数が80%に低下するまでに、助触媒増量を開始し、重合活性指数が95%以上に回復したことを確認し、助触媒増量を停止することが好ましい。 According to the above examples, the cocatalyst increase was started before the polymerization activity index decreased to 80%, and it was confirmed that the polymerization activity index had recovered to 95% or more, and the cocatalyst increase was stopped. preferable.
 図4は、本発明を実機に適用したときの結果を説明する図である。横軸に時間(年/月)、縦軸に平均収率(%)を取る。なお、実機では複数の銘柄をランダムに製造しており、銘柄の平均的な生産量に基づいて収率を求めている。 FIG. 4 is a diagram for explaining the results when the present invention is applied to an actual machine. The horizontal axis represents time (year / month) and the vertical axis represents average yield (%). In the actual machine, a plurality of brands are manufactured at random, and the yield is obtained based on the average production amount of the brands.
 99%~100%の平均収率(%)にて推移していたが、前年4月より平均収率(%)が徐々に低下してきた。そこで、重合活性指数80%(重合活性指数と収率は相関関係にある)となった当年1月に助触媒増量を開始した。 The average yield (%) was between 99% and 100%, but the average yield (%) gradually decreased from April of the previous year. Therefore, the cocatalyst increase was started in January of this year when the polymerization activity index was 80% (the polymerization activity index and the yield were correlated).
 助触媒増量を継続したところ、収率回復傾向がみられた。重合活性指数95%まで回復した時点(当年1月)で、助触媒増量を停止した。 When the cocatalyst increase was continued, the yield recovery trend was observed. When the polymerization activity index recovered to 95% (January of this year), the cocatalyst increase was stopped.
 その後、増量前の所定供給量に戻して、助触媒を供給した。収率ほぼ100%の生産量にて推移した。 Thereafter, the co-catalyst was supplied by returning to the predetermined supply amount before the increase. The yield was almost 100%.
 ~制御システム~
 図5は、増量開始/増量停止の制御システムに係る機能ブロック図である。
-Control system-
FIG. 5 is a functional block diagram relating to a control system for increasing / stopping increase.
 制御システムは、基準値記憶部11と、失活物質検出部12と、増量開始/停止判断部13と、助触媒供給量調整部14とを備える。 The control system includes a reference value storage unit 11, a deactivated substance detection unit 12, an increase start / stop determination unit 13, and a promoter supply amount adjustment unit 14.
 基準値記憶部11は、第1基準値および第2基準値を記憶する。第1基準値および第2基準値は、実験データに基づき、予め設定される。 The reference value storage unit 11 stores the first reference value and the second reference value. The first reference value and the second reference value are set in advance based on experimental data.
 失活物質検出部12は、原料調整槽に設けられたガスクロマトグラフィーを介して随時失活物質発生量を検出する。 The deactivated substance detection unit 12 detects the amount of deactivated substance generated at any time through gas chromatography provided in the raw material adjustment tank.
 増量開始/停止判断部13は、失活物質発生量検出値に基づいて助触媒の増量開始および増量停止を判断する。まず、失活物質発生量検出値に基づいて重合活性指数を推定する。重合活性指数が第1基準値以下まで低下した場合は、増量開始判断をおこなう。一方、増量継続時に重合活性指数が第2基準値以上まで回復した場合は、増量停止判断をおこなう。 The increase start / stop determination unit 13 determines the start and stop of the increase in the amount of the cocatalyst based on the detected value of the deactivated substance generation amount. First, the polymerization activity index is estimated based on the detected amount of inactive substance generated. When the polymerization activity index falls below the first reference value, a determination to start increasing is made. On the other hand, if the polymerization activity index recovers to the second reference value or more during continuous increase, an increase stop determination is made.
 助触媒供給量調整部14は、連続的に一定量の助触媒を供給する。ただし、判断部13より増量開始指令を受け、連続的に増量した量の助触媒を供給する。さらに、判断部13より増量停止指令を受け、連続的に増量前の量の助触媒を供給する。 The promoter supply amount adjusting unit 14 continuously supplies a certain amount of promoter. However, in response to an increase start command from the determination unit 13, a continuously increased amount of promoter is supplied. Further, in response to the increase stop command from the determination unit 13, the amount of promoter before the increase is continuously supplied.
 ~補足事項~
 ・補足事項1
 本願発明者は、ブタジエンのモノマー溶液に対し、コバルト系触媒と有機アルミニウム系助触媒を添加して、高い収率でブタジエンのポリマーを製造した。しかしながら、連続的に製造を継続するうちに、収量が低下してきた。
-Supplementary items-
Additional matter 1
The inventor of the present application added a cobalt-based catalyst and an organoaluminum-based cocatalyst to a butadiene monomer solution to produce a butadiene polymer in a high yield. However, yields have declined as production continues continuously.
 本願発明者は収率低下の原因を研究したところ、4-ビニル-1-シクロヘキセン(4-VCH)が発生していることが分かった。そして、4-VCHが失活物質として作用しているのではないかとの疑念を持った。 The inventor of the present application studied the cause of the decrease in yield and found that 4-vinyl-1-cyclohexene (4-VCH) was generated. And there was a suspicion that 4-VCH might act as a deactivating substance.
 ・補足事項2
 本願発明者は、収率を回復する方法を検討した。まず、失活物質を除去する方法を検討したが、有効な方法を見いだせなかった。次に、触媒を増量して重合を活性化する方法を検討したが、触媒を増量しても顕著な効果は得られなかった。そこで、助触媒に着目するに至った。
・ Additional matter 2
The inventor of the present application studied a method for recovering the yield. First, a method for removing a deactivating substance was examined, but an effective method could not be found. Next, a method for activating the polymerization by increasing the amount of catalyst was examined, but no significant effect was obtained even when the amount of catalyst was increased. Then, it came to pay attention to a co-catalyst.
 一方で、助触媒(特にTEA)が失活物質発生の遠因ではないかとの疑念を持った。そこで、助触媒の供給量を減量することも検討した。しかし、助触媒や触媒の供給量は、種々の検討を経て、バランスの良い最適量が決定されているため、増減変更を検討することは容易ではなかった。 On the other hand, there was a suspicion that cocatalyst (especially TEA) might be a distant cause of the generation of deactivated substances. Therefore, it was also considered to reduce the amount of cocatalyst supplied. However, the supply amount of the co-catalyst and the catalyst has been determined through various studies, and an optimal amount with a good balance has been determined.
 ・補足事項3
 実験により、助触媒を増量すれば、収率低下が抑制されることが推測された(図2参照)。しかしながら、ただ単に助触媒を増量すると、触媒と助触媒のバランスが崩れて、所望の物性の製品が得られなかった(分岐度が異なる)。また、有機アルミニウム化合物は、比較的高価であるので、経済性の観点から闇雲に増量することは好ましくない。
・ Supplement 3
From experiments, it was presumed that a decrease in yield would be suppressed if the amount of promoter was increased (see FIG. 2). However, simply increasing the amount of cocatalyst broke the balance between the catalyst and the cocatalyst, making it impossible to obtain a product with the desired physical properties (difference in branching). Moreover, since an organoaluminum compound is comparatively expensive, it is not preferable to increase the amount to a dark cloud from an economical viewpoint.
 このような前提に基づいて、助触媒を一時的に増量するに想い至った。失活物質発生後に助触媒を一時的に増量した場合、増量分(特にDEAC増量分)は触媒の作用を補助するのでなく、失活物質の作用を抑制するではないかと仮説をたてた。すなわち、増量分は助触媒本来の作用をしないため、製品の物性に影響を与えないと推測した。 Based on this assumption, I came up with a temporary increase in the amount of promoter. When the cocatalyst was temporarily increased after the deactivated material was generated, it was hypothesized that the increased amount (especially the DEAC increased amount) would not support the action of the catalyst but would suppress the action of the deactivated material. That is, it was assumed that the increased amount does not affect the physical properties of the product because it does not act as the promoter.
 実験の結果、製品の物性は変わらないことを確認した。一方、収率を回復させることができた。以上のように仮説の妥当性を検証した。 As a result of experiment, it was confirmed that the physical properties of the product did not change. On the other hand, the yield could be recovered. The validity of the hypothesis was verified as described above.
 なお、助触媒増量は一時的であるので、経済的な影響は限定的である。 Note that the increase in the cocatalyst is temporary, so the economic impact is limited.
 11 基準値記憶部
 12 失活物質検出部
 13 増量開始/停止判断部
 14 助触媒供給量調整部
DESCRIPTION OF SYMBOLS 11 Reference value memory | storage part 12 Deactivated substance detection part 13 Increase start / stop determination part 14 Promoter catalyst supply amount adjustment part

Claims (7)

  1.  有機アルミニウム化合物を助触媒として用いた共役ジエン重合反応において、
     該反応系内で生成される失活物質の生成度合に基づいて、該助触媒の供給量を調整する
     ことを特徴とする共役ジエン重合体の製造方法。
    In a conjugated diene polymerization reaction using an organoaluminum compound as a promoter,
    A method for producing a conjugated diene polymer, characterized in that the supply amount of the cocatalyst is adjusted based on the degree of production of a deactivated substance produced in the reaction system.
  2.  有機アルミニウム化合物を助触媒として用いた共役ジエン重合反応において、
     該反応系内で生成される失活物質の生成度合に基づいて、該反応の重合活性指数を判断し、
     該重合活性指数が第1基準値以下になった場合は、該重合活性指数が第1基準値以下になる前に比べて、該助触媒を増量して供給する
     ことを特徴とする共役ジエン重合体の製造方法。
    In a conjugated diene polymerization reaction using an organoaluminum compound as a promoter,
    Determining the polymerization activity index of the reaction based on the degree of production of the deactivated substance produced in the reaction system;
    When the polymerization activity index falls below the first reference value, the cocatalyst is supplied in an increased amount compared to before the polymerization activity index falls below the first reference value. Manufacturing method of coalescence.
  3.  該助触媒を増量して供給することにより、該重合活性指数が第2基準値以上になった場合は、該重合活性指数が第1基準値以下になる前と同量の該助触媒を供給する
     ことを特徴とする請求項2記載の共役ジエン重合体の製造方法。
    When the polymerization activity index becomes equal to or higher than the second reference value by supplying the cocatalyst in an increased amount, the same amount of the cocatalyst as before the polymerization activity index becomes lower than the first reference value is supplied. The method for producing a conjugated diene polymer according to claim 2.
  4.  該失活物質未生成時の重合活性指数を100とし、
     該第1基準値は80%以上に設定される
     ことを特徴とする請求項2記載の共役ジエン重合体の製造方法。
    The polymerization activity index when the deactivated material is not formed is 100,
    The method for producing a conjugated diene polymer according to claim 2, wherein the first reference value is set to 80% or more.
  5.  該失活物質未生成時の重合活性指数を100とし、
     該第2基準値は95%以上に設定される
     ことを特徴とする請求項3記載の共役ジエン重合体の製造方法。
    The polymerization activity index when the deactivated material is not formed is 100,
    The method for producing a conjugated diene polymer according to claim 3, wherein the second reference value is set to 95% or more.
  6.  該有機アルミニウム化合物は、
     ハロゲンを含む有機アルミニウム化合物と、ハロゲンを含まない有機アルミニウム化合物と
     を有することを特徴とする請求項1~5いずれか記載の共役ジエン重合体の製造方法。
    The organoaluminum compound is
    6. The process for producing a conjugated diene polymer according to claim 1, comprising an organoaluminum compound containing halogen and an organoaluminum compound not containing halogen.
  7.  有機アルミニウム化合物を助触媒として用いた共役ジエン重合反応を制御するシステムであって、
     該反応系内で生成される失活物質の生成度合を検出する検出部と、
     該検出値に基づいて該助触媒の供給量を調整する助触媒供給量調整部と
     を備えた共役ジエン重合体製造システム。
    A system for controlling a conjugated diene polymerization reaction using an organoaluminum compound as a promoter,
    A detection unit for detecting the degree of generation of the deactivated substance generated in the reaction system;
    A conjugated diene polymer production system comprising: a promoter supply amount adjusting unit that adjusts the supply amount of the promoter based on the detected value.
PCT/JP2016/055035 2015-03-26 2016-02-22 Production method and production system for conjugated diene polymer WO2016152355A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167023440A KR101808476B1 (en) 2015-03-26 2016-02-22 Method for producing conjugated diene polymer and a production system
CN201680014038.1A CN107614539B (en) 2015-03-26 2016-02-22 The manufacturing method and manufacture system of conjugated diolefin polymer
JP2016527482A JP6015998B1 (en) 2015-03-26 2016-02-22 Production method and production system of conjugated diene polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015064360 2015-03-26
JP2015-064360 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016152355A1 true WO2016152355A1 (en) 2016-09-29

Family

ID=56978279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055035 WO2016152355A1 (en) 2015-03-26 2016-02-22 Production method and production system for conjugated diene polymer

Country Status (6)

Country Link
JP (1) JP6015998B1 (en)
KR (1) KR101808476B1 (en)
CN (1) CN107614539B (en)
MY (1) MY176186A (en)
TW (1) TWI615412B (en)
WO (1) WO2016152355A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109679683A (en) * 2017-10-18 2019-04-26 中国石油化工股份有限公司 A kind of desulfuration adsorbent activity measurement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131408A (en) * 1984-07-23 1986-02-13 ザ・フアイヤ−スト−ン・タイヤ・アンド・ラバ−・カンパニ− Continuous manufacture of high cis-1,4-polybutadiene
JPH09176242A (en) * 1995-12-22 1997-07-08 Japan Synthetic Rubber Co Ltd Production of 1,2-polybutadiene polymer
JPH10158316A (en) * 1996-12-04 1998-06-16 Jsr Corp Production of conjugated diene based polymer
JP2000072823A (en) * 1998-06-16 2000-03-07 Ube Ind Ltd Polybutadiene and its production
JP2012207052A (en) * 2011-03-29 2012-10-25 Ube Industries Ltd Method of producing vinyl-cis-polybutadiene rubber and vinyl-cis-polybutadiene rubber
JP2013209471A (en) * 2012-03-30 2013-10-10 Ube Industries Ltd Method for producing diene rubber and method for producing polymer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1918311A1 (en) 2006-10-31 2008-05-07 Ineos Europe Limited Diene polymerisation
CN104109251B (en) * 2013-04-19 2017-06-27 宇部兴产株式会社 Conjugated diolefin polymer and its manufacture method and the method for preventing conjugated diolefin polymer coloring

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131408A (en) * 1984-07-23 1986-02-13 ザ・フアイヤ−スト−ン・タイヤ・アンド・ラバ−・カンパニ− Continuous manufacture of high cis-1,4-polybutadiene
JPH09176242A (en) * 1995-12-22 1997-07-08 Japan Synthetic Rubber Co Ltd Production of 1,2-polybutadiene polymer
JPH10158316A (en) * 1996-12-04 1998-06-16 Jsr Corp Production of conjugated diene based polymer
JP2000072823A (en) * 1998-06-16 2000-03-07 Ube Ind Ltd Polybutadiene and its production
JP2012207052A (en) * 2011-03-29 2012-10-25 Ube Industries Ltd Method of producing vinyl-cis-polybutadiene rubber and vinyl-cis-polybutadiene rubber
JP2013209471A (en) * 2012-03-30 2013-10-10 Ube Industries Ltd Method for producing diene rubber and method for producing polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109679683A (en) * 2017-10-18 2019-04-26 中国石油化工股份有限公司 A kind of desulfuration adsorbent activity measurement method
CN109679683B (en) * 2017-10-18 2021-02-09 中国石油化工股份有限公司 Method for measuring activity of desulfurization adsorbent

Also Published As

Publication number Publication date
KR101808476B1 (en) 2017-12-12
JPWO2016152355A1 (en) 2017-04-27
CN107614539A (en) 2018-01-19
KR20170104368A (en) 2017-09-15
CN107614539B (en) 2019-01-01
TWI615412B (en) 2018-02-21
MY176186A (en) 2020-07-24
TW201638114A (en) 2016-11-01
JP6015998B1 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
US4260707A (en) Solution polymerization of conjugated dienes
EP2291415B1 (en) Catalysts for preparing cis 1,4-polydienes
JP6015998B1 (en) Production method and production system of conjugated diene polymer
KR101506345B1 (en) Nickel-Based Catalyst Composition
US3068180A (en) Polymerization of diolefins with a co or ni halide-aluminum alkyl compound catalyst
RU2442653C2 (en) Method of the butadiene polymerization catalytic system production and the method of the 1.4-cis-polybutadiene production
Wang et al. Lanthanide complexes mediated coordinative chain transfer polymerization of conjugated dienes
US9803032B2 (en) Processes for the preparation of high-cis polydienes
JP2011184510A (en) Method for manufacturing color-suppressed butadiene rubber
JP5962139B2 (en) Method for producing diene rubber
JP2011201972A (en) Diene rubber free of time-dependent discoloration and production method thereof
US20120296055A1 (en) High-cis polybutadiene rubber in benign solvents and process for preparation thereof
KR101731748B1 (en) Method for producing hydrogenated unsaturated polyhydroxyhydrocarbon polymer
JP5447709B2 (en) Method for producing vinyl cis-polybutadiene
JP5447708B2 (en) Method for producing vinyl cis-polybutadiene
JP3959630B2 (en) Method for producing high cis polybutadiene
Rocha et al. Effect of alkylaluminum structure on Ziegler-Natta catalyst systems based on neodymium for producing high-cis polybutadiene
JP2015183170A (en) Method for removing catalyst
JPH0219126B2 (en)
JPH11349636A (en) Production of chloroprene polymer and polymerization catalyst therefor
NO146473B (en) PROCEDURE FOR SOLUTION-FREE HOMO- AND COPOLYMERIZATION OF BUTADIA OR ALKYL-SUBSTITUTED BUTADIA WITH OTHER OR VINYLAROMATIC COMPOUNDS
JP2000072823A (en) Polybutadiene and its production
EP1103567A1 (en) Process for increasing molecular weight of polybutadiene or polyisoprene produced in a gas phase polymerization using a polymerization catalyst
JPH11181026A (en) Polybutadiene and its production
JP2000017012A (en) Preparation of conjugated diene polymer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016527482

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167023440

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768258

Country of ref document: EP

Kind code of ref document: A1