WO2016152352A1 - Melanoma-specific biomarker and use thereof - Google Patents

Melanoma-specific biomarker and use thereof Download PDF

Info

Publication number
WO2016152352A1
WO2016152352A1 PCT/JP2016/054968 JP2016054968W WO2016152352A1 WO 2016152352 A1 WO2016152352 A1 WO 2016152352A1 JP 2016054968 W JP2016054968 W JP 2016054968W WO 2016152352 A1 WO2016152352 A1 WO 2016152352A1
Authority
WO
WIPO (PCT)
Prior art keywords
melanoma
gene
protein
expression
brp44l
Prior art date
Application number
PCT/JP2016/054968
Other languages
French (fr)
Japanese (ja)
Inventor
昌志 加藤
伊知朗 矢嶋
湖州恵 武田
友二 後藤
Original Assignee
国立大学法人名古屋大学
学校法人中部大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学, 学校法人中部大学 filed Critical 国立大学法人名古屋大学
Priority to JP2017507616A priority Critical patent/JPWO2016152352A1/en
Publication of WO2016152352A1 publication Critical patent/WO2016152352A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the present invention relates to a melanoma-specific biomarker. Specifically, the present invention relates to a novel biomarker specific to melanoma and a test method using the same.
  • This application claims priority based on Japanese Patent Application No. 2015-058692 filed on Mar. 20, 2015, the entire contents of which are incorporated by reference.
  • Non-Patent Document 1 S100, melanomainhibiting activity (MIA), 5-S-cysteinyldopa (5-S-CD), 6-hydroxy-5-methoxyindole-2-carboxylic acid (6-H-5) are used as tumor markers for the diagnosis of melanoma. -MI-2CA) is used (Non-Patent Document 1).
  • dacarbazine has been used for a long time as a molecular targeted therapeutic drug for melanoma, but recently, new molecular targeted drugs targeting MAP kinase pathway related molecules (BRAF, MEK) have been developed and put into clinical practice. It has appeared (Non-Patent Document 2).
  • Melanoma has the highest rate of increase among all carcinomas (world statistics). Moreover, melanoma with advanced stage has a poor prognosis, and early detection is important. On the other hand, conventional biomarkers for melanoma are effective only for advanced stage melanoma and are less useful for early diagnosis. If a gene or protein that is highly related to malignant melanoma can be used as a new diagnostic marker, a more reliable diagnosis can be made earlier. Moreover, pathological diagnosis of melanoma is not easy, and if a biomarker highly specific to melanoma can be provided, it can contribute to improvement of pathological diagnosis accuracy.
  • This invention responds to the said request, and makes it a subject to contribute to development and improvement of the medical treatment (diagnosis method, treatment method) with respect to melanoma.
  • PDZRN3, DTX3L, CSS3, and BRP44L significantly increased expression levels in both mouse melanoma without Braf mutation (RET-mouse and B16 strain) and human melanoma with BRAF mutation (PDZRN3, DTX3L). , CSS3) or decrease (BRP44L), it can be expected to be an effective target in the treatment of melanoma that is resistant to BRAF inhibitors.
  • a melanoma-specific biomarker comprising a biomolecule selected from the group consisting of PDZRN3 gene, PDZRN3 protein, DTX3L gene, DTX3L protein, CSS3 gene, CSS3 protein, BRP44L gene and BRP44L protein.
  • the PDZRN3 gene PDZRN3 protein, DTX3L gene, DTX3L protein, CSS3 gene and CSS3 protein, according to the criteria that the detection value is high and the malignancy is high, or that the detection possibility is high
  • the melanocyte according to [3] wherein the determination of step (3) is performed according to the criterion that the malignancy is high if the detection value is low, or the criterion that the malignancy is high if it cannot be detected. Tumor examination method.
  • a melanocyte tumor test reagent comprising a substance exhibiting specific binding property to the melanoma-specific biomarker according to [1].
  • a melanocyte-based tumor test kit comprising the melanocyte-based tumor test reagent according to [8] or [9].
  • a melanoma therapeutic agent comprising a compound that suppresses the expression of a target gene selected from the group consisting of a PDZRN3 gene, a DTX3L gene, and a CSS3 gene as an active ingredient.
  • the compound is a compound selected from the group consisting of the following (a) to (e): (a) siRNA targeting the target gene; (b) a nucleic acid construct that generates siRNA targeting the target gene in the cell; (c) a single-stranded RNA having an expression suppressing sequence that suppresses expression of the target gene and a complementary sequence that anneals to the sequence; (d) an antisense nucleic acid that targets the transcript of the target gene; (e) Ribozymes that target transcripts of target genes.
  • a therapeutic agent for melanoma comprising the following (A) or (B) as an active ingredient and used in combination with an anticancer agent or a drug having an antitumor action: (A) BRP44L protein or a part thereof (however, it has an effective effect on the anticancer drug sensitivity of melanoma cells); (B) An expression vector carrying the BRP44L gene or a part thereof (however, it encodes a protein having an action effective for anticancer drug sensitivity of melanoma cells). [14] The melanoma therapeutic agent according to any one of [11] to [13], which is applied to melanoma exhibiting resistance to a BRAF inhibitor. [15] A melanoma treatment method comprising the step of administering the melanoma therapeutic agent according to any one of [11] to [14] to a patient with melanoma.
  • PDZRN3 gene expression level in melanoma model mouse tumors PDZRN3 gene expression levels in benign tumors and malignant melanomas that spontaneously developed in melanoma model mice (RET-Tg) were measured using real-time PCR. PDZRN3 gene expression level is significantly increased in malignant melanoma compared to benign tumors. PDZRN3 gene expression level in human and mouse melanoma cell lines. a) Expression of PDZRN3 protein in human normal skin melanocytes (NHEM) and human melanoma cell lines (6 types). In all melanoma cell lines, the expression level of PDZRN3 protein is increased compared to NHEM.
  • PDZRN3 protein expression level in human melanoma tissue (benign tumor: Benign, primary melanoma: Malignant, metastatic melanoma: Metastasis). After immunostaining with anti-PDZRN3 antibody, the expression level was measured by quantifying the staining level.
  • the expression levels were categorized into three (negative / low, medium and high), and the ratio of each expression level was displayed as a band graph (bottom). Expression levels in primary and metastatic melanoma are significantly higher compared to benign tumors. Expression level of DTX3L gene in melanoma model mouse tumor. Real-time PCR (A), Western blotting (B) and immunohistochemical staining (DTX3L gene (A) and protein (B, C) expression levels in benign tumors and malignant melanomas spontaneously developed in melanoma model mice (RET-Tg) ( Measured using C). The expression levels of DTX3L gene and protein are greatly increased in malignant melanoma compared to benign tumors.
  • Expression level of DTX3L protein in mouse and human melanoma cell lines A) Expression level of Dtx3l protein in mouse melanoma cell lines (4 types). The B16 cell line is known to have lower invasive ability (metastatic activity) than other cell lines.
  • the expression level was measured by quantifying the staining level.
  • the expression levels were categorized into three (negative / low, medium and high), and the ratio of each expression level was displayed as a band graph (bottom).
  • Expression levels in primary and metastatic melanoma are significantly higher compared to benign tumors.
  • CSS1 and CSS2 genes are both benign and malignant and their expression levels are low, but CSS3 gene expression is significantly increased in malignant melanoma.
  • Expression level of CSS3 protein in human melanoma tissue (benign tumor: Benign, primary melanoma: Malignant, metastatic melanoma: Metastatic melanoma). After immunostaining with anti-CSS3 antibody, the expression level was measured by quantifying the staining level. The expression levels were categorized into three (negative / low, medium and high), and the ratio of each expression level was displayed as a band graph (bottom). Expression levels in primary and metastatic melanoma are significantly higher compared to benign tumors. Expression levels of BRP44L gene and protein in melanoma model mouse tumors.
  • BRP44L gene (A) and protein (B) expression levels in benign tumors and malignant melanoma spontaneously developed in melanoma model mice (RET-Tg) were measured using real-time PCR (A) and Western blotting (B).
  • BRP44L mRNA and protein are down-regulated in melanoma compared to benign tumors.
  • Expression level of BRP44L gene in human melanoma tissue The expression level of BRP44L mRNA in human melanoma tissue (benign tumor: nevus, melanoma: melanoma) was measured using real-time PCR.
  • the expression level in human melanoma tissue is greatly reduced compared to benign tumors.
  • a human melanoma cell line (A375P) was exposed to the existing melanoma molecular target drug PLX4720 for a long period of time to create a resistant strain.
  • DTX3L was reduced by siRNA introduction (A)
  • the effect on invasive ability was measured by an invasion assay (B).
  • Suppressing DTX3L expression is also effective against PLX-resistant melanoma cells, and can solve the problems of existing molecular targeting drugs.
  • Change in invasion ability (metastasis ability) in vivo by CSS3 forced expression A stable strain in which CSS3 was forcibly expressed in a mouse melanoma cell line (B16F10) was established, and the invasion ability of each stable strain was measured by an invasion assay.
  • the first aspect of the present invention relates to a melanoma-specific biomarker.
  • the “melanoma-specific biomarker” refers to a biomolecule that serves as an indicator of melanoma.
  • the melanoma-specific biomarker is useful for determining whether or not it is a melanoma and for determining the malignancy of melanoma.
  • the biomarker of the present invention is applied to, for example, a patient suffering from or possibly suffering from melanoma, or a sample / analyte derived from the patient.
  • biomolecule refers to a molecule (compound) found in the living body.
  • a specific biomolecule is used as a biomarker.
  • a biomolecule in a sample / specimen separated from a living body is used. Become.
  • the biomarker of the present invention comprises a biomolecule that has been correlated with the malignancy of melanocyte tumors (in other words, an increase or decrease in melanoma-specific expression level), and is used for evaluating the malignancy of melanocyte tumors. It is a useful indicator.
  • the biomarker of the present invention consists of PDZRN3 gene, PDZRN3 protein, DTX3L gene, DTX3L protein, CSS3 gene, CSS3 protein, BRP44L gene or BRP44L protein.
  • genes and proteins are comprehensively expressed using gene symbols (for example, “PDZRN3” represents both the PDZRN3 gene and the PDZRN3 protein collectively).
  • PDZRN3 SEQ ID NO: 1 (gene sequence, NCBI nucleotide database Accession No .: NM_015009), SEQ ID NO: 2 (amino acid sequence, NCBI protein database Accession No .: NP_055824)
  • DTX3L SEQ ID NO: 3 (gene sequence, NCBI nucleotide database Accession No .: NM_138287), SEQ ID NO: 4 (amino acid sequence, NCBI protein database Accession No .: NP_612144)
  • CSS3 SEQ ID NO: 5 (gene sequence, NCBI nucleotide database Accession No .: NM_175856), SEQ ID NO: 6 (amino acid sequence, NCBI protein database Accession No .: NP_787052)
  • BRP44L SEQ ID NO: SEQ ID NO: 5 (gene sequence, NCBI nucleotide database Accession No .: NM_175856), SEQ ID NO: 6 (amino
  • the second aspect of the present invention relates to the use of the biomarker of the present invention, and provides a test method for melanocyte tumor (hereinafter also referred to as “test method of the present invention”).
  • the test method of the present invention is useful as a means for determining the malignancy of a melanocyte tumor.
  • Malignant melanoline tumors that is, melanoma accounts for only about 5% of skin cancer, but it is highly metastatic and accounts for 80% of skin cancer deaths. For this reason, melanoma is said to be one of the most malignant cancers among skin cancers.
  • the test method of the present invention provides useful information for diagnosing melanocyte tumors and contributes to the prevention and treatment of melanoma. According to the test method of the present invention, it is possible to easily and objectively determine the malignancy of a melanocyte tumor.
  • the level of the biomarker of the present invention in a specimen derived from a subject is used as an index.
  • level typically means “amount” or “concentration”.
  • level is also used to indicate whether or not a molecule to be detected can be detected (ie, the presence or absence of an apparent presence) in accordance with common practice and common technical knowledge.
  • biomarkers PDZRN3, DTX3L, CSS3, BRP44L
  • PDZRN3, DTX3L, CSS3, BRP44L four types of biomarkers
  • Different types of melanocyte tumors can be handled by using different biomarkers. That is, the present invention has an advantage that a wide range of cases can be dealt with.
  • BRP44L in combination with other biomarkers (one or more of PDZRN3, DTX3L, and CSS3) can be expected to have an effect of improving the accuracy of pathological diagnosis in a pathological specimen of a tumor.
  • biomarkers one or more of PDZRN3, DTX3L, and CSS3
  • the number and type of biomarkers to be employed may be determined in consideration of the required accuracy and the ease of inspection.
  • the inspection method of the present invention performs the following steps. (1) A step of preparing a specimen derived from a subject (2) A step of detecting one or more biomolecules in the specimen (that is, one or more biomarkers employed as an index) (3) A step of determining the malignancy of the melanocyte tumor based on the detection result
  • a specimen derived from the subject is prepared.
  • skin tissue, blood, plasma, serum, urine, saliva, sweat, tumor tissue or the like of the subject can be used.
  • the subject is not particularly limited. That is, the present invention can be widely applied to those who need to determine the malignancy of melanocyte tumors.
  • “A person who needs to determine the malignancy of a melanocyte tumor” is typically a person who has developed a melanocyte tumor, but a subject who is suspected of developing a melanocyte tumor (potential patient) It is good.
  • the malignancy of a melanocyte tumor can be determined based on an objective index such as the level of a biomarker (biomolecule).
  • the determination result is useful information for diagnosing melanocyte tumors, and is useful for determining a more appropriate treatment policy (selecting an effective treatment method, etc.). Therefore, the present invention contributes to the improvement of the therapeutic effect and the improvement of the patient's QOL (Quality of Life). In pathological diagnosis of melanocyte tumors, even a skilled laboratory technician or doctor may be at a loss.
  • the highly objective data provided by the present invention provides information that is auxiliary but highly useful, especially in such cases.
  • step (2) biomarkers in the specimen are detected. It is not essential to strictly quantify the level of the biomarker. That is, the level of the biomarker may be detected to the extent that the malignancy of the melanocyte tumor can be determined in the subsequent step (3). For example, detection can be performed so that it can be determined whether or not the level of the biomarker in the sample exceeds a predetermined reference value.
  • Biomarker detection method is not particularly limited.
  • the biomarker adopted is a specific gene, it can be detected by quantifying the mRNA of the gene by a method using a nucleic acid amplification reaction such as RT-PCR.
  • Nucleic acid amplification reactions include PCR (Polymerase reaction) method or its modified method, and LAMP (Loop-Mediated Isothermal Amplification) method (Tsugunori Notomi et al. Nucleic Acids Research, Vol.28, No.12, e63, 2000) ; Kentaro Nagamine, Keiko Watanabe et al.
  • the biomarker employed is a specific protein
  • the biomarker is preferably detected using an immunological technique.
  • immunological techniques rapid and sensitive detection is possible.
  • the operation is simple.
  • a substance having specific binding property to the biomarker to be used is used.
  • an antibody is usually used, but any substance can be used as long as it has a specific binding property to the biomarker and can measure the binding amount.
  • the antibody newly prepared using the immunological method, the phage display method, the ribosome display method etc. may be used.
  • Examples of measurement methods include immunohistochemistry, fluorescence immunoassay (FIA method), enzyme immunoassay (EIA method), radioimmunoassay (RIA method), and Western blot method.
  • the detection target can be detected quickly and with high sensitivity. Also, the operation is simple. Therefore, the burden on the subject (patient) accompanying the detection is reduced.
  • immunohistochemical staining of living tissues generally, (1) fixation / paraffin embedding (or frozen embedding), (2) deparaffinization (not required for free embedding), (3) primary antibody reaction, ( 4) Add the labeling reagent, (5) color reaction, and (6) dehydration, penetration, and encapsulation.
  • antigen activation treatment endogenous peroxidase removal treatment (when peroxidase is used as a labeling substance), nonspecific reaction inhibition (treatment with bovine serum albumin solution, etc.) are performed. Is called.
  • nuclear staining for example, Mayer's hematoxylin can be used
  • immunohistochemical staining of biological tissues for example, “Enzyme Antibody Method, Revised 3rd Edition”, edited by Keiichi Watanabe and Kazuho Nakane, interdisciplinary project).
  • step (3) the malignancy of the melanocyte tumor is determined based on the detection result.
  • control for example, the biomarker level of healthy human skin tissue or the biomarker level of nevi (benign) can be used.
  • the determination of malignancy may be either qualitative or quantitative. It should be noted that the determination here can be automatically / mechanically performed without depending on the determination of a person having specialized knowledge such as a doctor or a laboratory technician, as is apparent from the determination criteria.
  • the biomarker of the present invention includes a biomarker (PDZRN3, DTX3L and CSS3) in which an increase in expression level correlates with malignancy of melanocyte tumor, and a biomarker (BRP44L) in which a decrease in expression level correlates with malignancy of melanocyte tumor )).
  • a biomarker PDZRN3, DTX3L and CSS3
  • BRP44L biomarker
  • the former is referred to as a first group of biomarkers
  • the latter is referred to as a second group of biomarkers.
  • the following criteria are employed for each biomarker. Needless to say, the criterion “high detection value is high malignancy” is synonymous with the criterion “low detection value is low malignancy” (the same applies to other criteria).
  • Biomarkers that adopt the criteria of“ High detection value means high malignancy ”or“ Detection is high malignancy ”: Biomarkers of the first group (PDZRN3, DTX3L, CSS3)
  • Biomarker of the second group (BRP44L)
  • Second group biomarker determination example 1 When the detected value of the biomarker (the level in the sample) is higher than the reference value, it is judged as “malignant” or “high possibility of malignancy”, and the detected value of the biomarker (the level in sample) is higher than the reference value Is low, it is judged as “benign” or “high possibility of benign”.
  • a reference value 1 for distinguishing benign and primary melanoma and a reference value 2 for distinguishing primary melanoma and metastatic melanoma are set (reference value 1 ⁇ reference value 2), and the determination is made as follows. It should be noted that a specific probability (for example, a determination of “80% or more probability”) may be shown instead of the evaluation “high possibility”.
  • a plurality of reference values that divide the malignancy level are set and determined as follows. In this example, four reference values (a ⁇ b ⁇ c ⁇ d) are set, but the number of reference values and the number of malignancy levels associated therewith are not limited to this. If the detected value of the biomarker ⁇ a: Grade 1 When a ⁇ biomarker detection value ⁇ b: Grade 2 When b ⁇ detection value of biomarker ⁇ c: Grade 3 When c ⁇ biomarker detection value ⁇ d: Grade 4 When d ⁇ biomarker detection value: Grade 5
  • a reference value 1 for distinguishing benign and primary melanoma and a reference value 2 for distinguishing primary melanoma and metastatic melanoma are set (reference value 1 ⁇ reference value 2), and the determination is made as follows. It should be noted that a specific probability (for example, a determination of “80% or more probability”) may be shown instead of the evaluation “high possibility”.
  • a plurality of reference values that divide the malignancy level are set and determined as follows. In this example, four reference values (a ⁇ b ⁇ c ⁇ d) are set, but the number of reference values and the number of malignancy levels associated therewith are not limited to this.
  • Biomarker detection value ⁇ a Grade 5 When a ⁇ biomarker detection value ⁇ b: Grade 4 When b ⁇ detection value of biomarker ⁇ c: Grade 3 When c ⁇ biomarker detection value ⁇ d: Grade 2 If d ⁇ biomarker detection value: Grade 1
  • each of the biomarkers 1 and 2 is the first group
  • a determination result may be obtained.
  • a determination result can be obtained according to the following examples.
  • determination may be made as in the following (1) or (2).
  • (1) “malignant” or “malignant” when positive for all of the biomarkers included in the combination greater than or equal to the cutoff value in the case of the first group biomarker and less than or equal to the cutoff value in the case of the second group biomarker) It is determined that “the possibility of malignancy is high”, and other cases are determined as “benign” or “high possibility of benign”.
  • diagnosis (detection) sensitivity and diagnosis (detection) specificity vary depending on the type and number of biomarkers to be combined. Therefore, an optimal combination of biomarkers may be selected according to the purpose. For example, combinations with high diagnostic sensitivity are suitable for screening tests. In contrast, a combination with a high diagnostic specificity is suitable for a test that requires a more reliable determination (for example, a secondary test or a tertiary test). By combining determination methods with different balances of diagnostic sensitivity and diagnostic specificity, it is possible to improve efficiency and improve accuracy or reliability.
  • a final determination is made using a combination of biomarkers giving high diagnostic specificity (secondary test). Not only such a two-step determination but also a three-step or higher determination can be performed.
  • the number of judgment categories, the level of the biomarker associated with each judgment category, and the judgment results can be arbitrarily set through preliminary experiments or the like without being bound by the above example.
  • the “reference value” when judging the grade of malignancy with a predetermined reference value (threshold) as the boundary, and the “biomarker level range” associated with the classification related to the grade of malignancy use a large number of specimens. Can be determined by statistical analysis.
  • the determination result is used to estimate the prognosis of melanoma.
  • the prognosis of melanoma is estimated based on the determination result of step (3).
  • the prognostic level is set in advance corresponding to the malignancy level (for example, 1: very good, 2: good, 3: relatively good, 4: relatively bad, 5: bad, 6: very good. It is also possible to determine which level corresponds to a plurality of levels.
  • the level of a biomarker measured at a certain time point is compared with the level of a biomarker measured in the past, Or examine the degree of increase or decrease.
  • the data regarding the change in the expression level of the biomarker obtained as a result is useful information for monitoring the malignancy, grasping the therapeutic effect, or estimating the prognosis. Specifically, for example, it can be determined that the grade of malignancy has increased or decreased or has not changed between the previous test and the current test based on the change in the biomarker level.
  • the present invention further provides reagents and kits for testing the malignancy of melanocyte tumors.
  • the reagent of the present invention comprises a substance (hereinafter referred to as “binding molecule”) that exhibits specific binding to the biomarker of the present invention.
  • binding molecules include antibodies, nucleic acid aptamers and peptide aptamers that specifically recognize biomarkers.
  • the type and origin of the binding molecule are not particularly limited as long as it has specific binding properties for the biomarker employed. In the case of antibodies, any of polyclonal antibodies, oligoclonal antibodies (mixtures of several to several tens of antibodies), and monoclonal antibodies may be used.
  • an anti-serum-derived IgG fraction obtained by animal immunization, or an affinity-purified antibody using an antigen can be used.
  • Antibody fragments such as Fab, Fab ′, F (ab ′) 2 , scFv, and dsFv antibodies may also be used.
  • the binding molecule may be prepared by a conventional method. If a commercial item is available, the commercial item may be used.
  • antibodies can be prepared using immunological techniques, phage display methods, ribosome display methods, and the like. Preparation of a polyclonal antibody by an immunological technique can be performed by the following procedure. An antigen (biomarker or a part thereof) is prepared, and an animal such as a mouse, rat or rabbit is immunized using the antigen. An antigen can be obtained by purifying a biological sample. A recombinant antigen can also be used.
  • a recombinant antigen can be obtained by, for example, introducing a gene encoding a biomarker (which may be a part of a gene) into a suitable host using a vector and expressing the gene in a recombinant cell obtained. Can be prepared.
  • an antigen to which a carrier protein is bound may be used.
  • the carrier protein KLH (KeyholeHLimpet) Hemocyanin), BSA (Bovine Serum Albumin), OVA (Ovalbumin) and the like are used.
  • the carbodiimide method, the glutaraldehyde method, the diazo condensation method, the MBS (maleimidobenzoyloxysuccinimide) method, etc. can be used for the coupling
  • an antigen in which a biomarker (or part thereof) is expressed as a fusion protein with GST, ⁇ -galactosidase, maltose-binding protein, histidine (His) tag or the like can also be used.
  • a fusion protein can be easily purified by a general method.
  • Immunization is repeated as necessary, and blood is collected when the antibody titer has sufficiently increased, and serum is obtained by centrifugation or the like. The obtained antiserum is affinity purified to obtain a polyclonal antibody.
  • monoclonal antibodies can be prepared by the following procedure. First, an immunization operation is performed in the same procedure as described above. Immunization is repeated as necessary, and antibody-producing cells are removed from the immunized animal when the antibody titer sufficiently increases. Next, the obtained antibody-producing cells and myeloma cells are fused to obtain a hybridoma. Subsequently, after this hybridoma is monoclonalized, a clone that produces an antibody having high specificity for the target protein is selected. The target antibody can be obtained by purifying the culture medium of the selected clone.
  • the desired antibody can be obtained by growing the hybridoma to a desired number or more, then transplanting it into the abdominal cavity of an animal (for example, a mouse), growing it in ascites, and purifying the ascites.
  • affinity chromatography using protein G, protein A or the like is preferably used.
  • affinity chromatography in which an antigen is immobilized may be used.
  • methods such as ion exchange chromatography, gel filtration chromatography, ammonium sulfate fractionation, and centrifugation can also be used. These methods can be used alone or in any combination.
  • a labeled antibody is used as the specific binding molecule, it is possible to directly detect the amount of the bound antibody using the labeled amount as an index. Therefore, a simpler inspection method can be constructed.
  • an indirect detection method such as a method using a secondary antibody to which a labeling substance is bound or a method using a polymer to which a secondary antibody and a labeling substance are bound.
  • the secondary antibody here is an antibody having a specific binding property to an antibody specific to the biomarker employed.
  • an antibody specific for a biomarker when an antibody specific for a biomarker is prepared as a rabbit antibody, an anti-rabbit IgG antibody can be used as a secondary antibody.
  • Labeled secondary antibodies that can be used against various types of antibodies such as rabbits, goats, and mice are commercially available (for example, Funakoshi Co., Ltd., Cosmo Bio Co., Ltd., etc.) and are appropriate for the reagents of the present invention. Can be appropriately selected and used.
  • labeling substances include peroxidase, microperoxidase, horseradish peroxidase (HRP), alkaline phosphatase, ⁇ -D-galactosidase, enzymes such as glucose oxidase and glucose-6-phosphate dehydrogenase, fluorescein isothiocyanate (FITC), Fluorescent materials such as tetramethylrhodamine isothiocyanate (TRITC) and europium, chemiluminescent materials such as luminol, isoluminol and acridinium derivatives, coenzymes such as NAD, biotin, and radioactive materials such as 131 I and 125 I.
  • HRP horseradish peroxidase
  • alkaline phosphatase ⁇ -D-galactosidase
  • enzymes such as glucose oxidase and glucose-6-phosphate dehydrogenase
  • FITC fluorescein isothiocyanate
  • TRITC
  • the reagent of the present invention is solid-phased according to its use.
  • the insoluble support used for the solid phase is not particularly limited.
  • a resin such as polystyrene resin, polycarbonate resin, silicon resin, nylon resin, or an insoluble support made of a water-insoluble substance such as glass can be used.
  • the antibody can be supported on the insoluble support by physical adsorption or chemical adsorption.
  • the kit of the present invention contains the reagent of the present invention as a main component.
  • Other reagents buffers, blocking reagents, enzyme substrates, coloring reagents, etc.
  • devices or instruments used in performing the test method may be included in the kit.
  • biomarker molecule of the present invention or a fragment thereof as a standard sample in a kit.
  • an instruction manual is attached to the kit of the present invention.
  • the present invention provides a therapeutic agent for melanoma (hereinafter referred to as the medicament of the present invention).
  • the medicament of the present invention comprises a compound that suppresses the expression of a target gene as an active ingredient.
  • the target gene here is a PDZRN3 gene, a DTX3L gene, or a CSS3 gene.
  • the compound that suppresses the expression of the target gene is a compound that suppresses the expression process of the target gene (including transcription, post-transcriptional regulation, translation, and post-translational regulation). Examples of the compound are as follows.
  • “suppression of expression” may be either transient suppression or permanent suppression.
  • siRNA targeting the target gene (a) siRNA targeting the target gene (b) Nucleic acid construct that generates siRNA targeting the target gene in the cell (c) Single-stranded RNA having an expression suppressing sequence that suppresses the expression of the target gene and a complementary sequence that anneals to the sequence (d) Antisense nucleic acid targeting the target gene transcript (e) Ribozyme targeting the target gene transcript
  • RNAi RNA interference
  • the expression of the target gene can be suppressed by RNAi.
  • RNAi is a sequence-specific post-transcriptional gene repression process that can occur in eukaryotic cells.
  • siRNA short double-stranded RNA
  • siRNAs are 21-23 base pairs.
  • dsRNA double-stranded RNA
  • sequence-specific pathways relatively long dsRNAs are split into short interfering RNAs (ie siRNAs).
  • ie siRNAs short interfering RNAs
  • a sequence non-specific pathway is considered to be caused by an arbitrary dsRNA regardless of the sequence as long as it has a predetermined length or more.
  • dsRNA is activated by two enzymes, namely PKR, which stops all protein synthesis by phosphorylating the translation initiation factor eIF2, and 2 ', 5' oligoadenyl, which is involved in the synthesis of RNAase L activation molecules.
  • RNA double stranded RNA
  • RNAi RNA composed of a sense RNA homologous to a part of the mRNA sequence of the target gene and an antisense RNA complementary thereto is introduced into the cell or expressed in the cell.
  • a siRNA composed of a sense RNA homologous to a part of the mRNA sequence of the target gene and an antisense RNA complementary thereto is introduced into the cell or expressed in the cell.
  • the above (a) is a compound corresponding to the former method
  • the above (b) is a compound corresponding to the latter method.
  • the siRNA targeting the target gene (in the present invention, the target gene) usually hybridizes with a sense RNA consisting of a sequence homologous to a continuous region in the mRNA sequence of the gene and an antisense RNA consisting of its complementary sequence. Double stranded RNA.
  • the length of the “continuous region” here is usually 15 to 30 bases, preferably 18 to 23 bases, more preferably 19 to 21 bases.
  • the length of the base that forms the overhang is not particularly limited, but is preferably 2 bases (for example, TT, UU).
  • SiRNA consisting of modified RNA may be used.
  • modifications herein include phosphorothioation and the use of modified bases (eg, fluorescently labeled bases).
  • SiRNA can be designed and prepared by conventional methods. In designing siRNA, a sequence unique to a target sequence (continuous sequence) is usually used. Note that programs and algorithms for selecting an appropriate target sequence have been developed.
  • nucleic acid construct that generates siRNA in a cell refers to a nucleic acid molecule that, when introduced into a cell, produces a desired siRNA (siRNA that causes RNAi against a target gene) by a process in the cell.
  • siRNA siRNA that causes RNAi against a target gene
  • shRNA short hairpin RNA
  • shRNA has a structure (hairpin structure) in which a sense RNA and an antisense RNA are linked via a loop structure part, and the loop structure part is cleaved in a cell to form a double-stranded siRNA, resulting in an RNAi effect.
  • the length of the loop structure is not particularly limited, but is usually 3 to 23 bases.
  • nucleic acid construct is a vector that can express a desired siRNA.
  • Such vectors include those that express shRNA that is converted to siRNA by a later process (inserted with a sequence encoding shRNA) (referred to as stem loop type or short hairpin type), sense RNA and antisense RNA.
  • stem loop type or short hairpin type a sequence encoding shRNA
  • sense RNA a sequence encoding shRNA
  • antisense RNA are vectors that are expressed separately (referred to as tandem type).
  • tandem type Those skilled in the art can prepare these vectors according to conventional methods (Brummelkamp TR et al. (2002) Science 296: 550-553; Lee NS et al. (2001) Nature Biotechnology 19: 500-505; Miyagishi M & Taira K (2002) Nature Biotechnology 19: 497-500; Paddison PJ et al. (2002) Proc. Natl.
  • RNAi vectors are available. You may decide to construct
  • a desired RNA for example, shRNA
  • the origin and structure of the vector are not limited as long as it has a function of generating siRNA that exerts RNAi action on the target gene in the cell. Accordingly, various viral vectors (adenovirus vectors, adeno-associated virus vectors, retrovirus vectors, lentivirus vectors, herpes virus vectors, Sendai virus vectors, etc.), non-viral vectors (liposomes, positively charged liposomes, etc.) and the like can be used. it can.
  • promoters that can be used in the vector are U6 promoter, H1 promoter, and tRNA promoter. These promoters are RNA polymerase III type promoters, and high expression efficiency can be expected.
  • single-stranded RNA having a predetermined structure is useful for suppressing the expression of a target gene (for example, WO2012 / 005368, JP2013-55913A, JP2013-138881A, JP2013-13A). No. 153736). Therefore, in one embodiment of the present invention, single-stranded RNA (above (c)) is used to suppress the expression of a target gene by the same mechanism as the suppression of expression by siRNA (that is, RNA interference).
  • the single-stranded RNA of the present invention has an expression suppressing sequence corresponding to the target gene and a complementary sequence that can be annealed to the sequence. The order in which the expression suppressing sequence and the complementary sequence are linked is not particularly limited.
  • the expression suppressing sequence and the complementary sequence may be directly linked or may be linked via a linker region.
  • the linker region can be composed of nucleotide residues or non-nucleotide residues (for example, comprising a structure such as polyalkylene glycol, pyrrolidine skeleton, piperidine skeleton, etc.).
  • a molecule (Example 2) that forms two double-stranded structures (stem structures) by intramolecular annealing of the side regions separately can be given.
  • the expression-suppressing sequence is a sequence showing an activity of suppressing the expression of the target gene when the single-stranded RNA of the present invention is introduced into the cell.
  • a sequence that causes expression suppression (ie, RNA interference) by siRNA is used as the expression suppression sequence.
  • the sequence of RNA constituting the above-described siRNA can be used as an expression suppressing sequence.
  • the length of the expression suppressing sequence is not particularly limited, but is, for example, 18 to 32 bases long, preferably 19 to 30 bases long, and more preferably 19 to 21 bases long.
  • the length of the single-stranded RNA of the present invention is not particularly limited.
  • the total number of bases constituting the single-stranded RNA has a lower limit of, for example, 38 bases, preferably 42 bases, more preferably 50 bases, still more preferably 51 bases, particularly preferably 52 bases.
  • the upper limit is, for example, 300 bases, preferably 200 bases, more preferably 150 bases, still more preferably 100 bases, particularly preferably 80 bases.
  • the single-stranded RNA of the present invention includes a linker region
  • the total number of bases excluding the linker region is, for example, 38 bases, preferably 42 bases, more preferably 50 bases, more preferably 51 bases, particularly preferably the lower limit.
  • Is 52 bases, and the upper limit is, for example, 300 bases, preferably 200 bases, more preferably 150 bases, still more preferably 100 bases, particularly preferably 80 bases.
  • the above (d) is a compound used for expression suppression by the antisense method.
  • the expression of the target gene can be suppressed by the antisense method.
  • an antisense construct that generates RNA complementary to a unique part of mRNA encoding a target gene when transcribed in the target cell is used.
  • Such an antisense construct is introduced into a target cell, for example, in the form of an expression plasmid.
  • an oligonucleotide probe that hybridizes with an mRNA / or genomic DNA sequence encoding a target gene and inhibits its expression when introduced into the target cell can also be employed.
  • an oligonucleotide probe one that is resistant to endogenous nucleases such as exonuclease and / or endonuclease is preferably used.
  • oligodeoxyribonucleotide derived from a region containing a translation initiation site (for example, a region of -10 to +10) of mRNA encoding the target gene is preferable.
  • the complementarity between the antisense nucleic acid and the target nucleic acid is exact, but some mismatch may exist.
  • the ability of an antisense nucleic acid to hybridize to a target nucleic acid generally depends on both the degree of complementarity and the length of both nucleic acids. Usually, the longer the antisense nucleic acid used, the more stable duplexes (or triplexes) can be formed with the target nucleic acid, even if the number of mismatches is large.
  • One skilled in the art can ascertain the degree of acceptable mismatch using standard techniques.
  • the antisense nucleic acid may be DNA, RNA, a chimeric mixture thereof, or a derivative or modified type thereof. Moreover, it may be single-stranded or double-stranded. By modifying the base moiety, sugar moiety, or phosphate skeleton moiety, the stability, hybridization ability, etc. of the antisense nucleic acid can be improved.
  • antisense nucleic acids can be used to promote cell membrane transport (for example, Letsingeretset al., 1989, Proc. Natl. Acad. Sci. USA 86: 6553-6556; 556Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84: 648-652; see PCT Publication No. W088 / 09810, published Dec 15, 15, 1988), or substances that enhance affinity for specific cells.
  • the antisense nucleic acid can be synthesized by a conventional method, for example, using a commercially available automatic DNA synthesizer (for example, Applied Biosystems). For example, Stein et al. (1988), Nucl. Acids Res. 16: 3209 and Sarin et al., (1988), Proc. Natl. Acad. Sci. USA 85: 7448- 7451 etc. can be referred to.
  • Strong promoters such as pol II and pol III can be used to enhance the action of antisense nucleic acids in target cells. That is, when a construct containing an antisense nucleic acid arranged under the control of such a promoter is introduced into a target cell, a sufficient amount of the antisense nucleic acid can be transcribed by the action of the promoter.
  • the expression of the antisense nucleic acid can be performed by any promoter (inducible promoter or constitutive promoter) known to function in mammalian cells (preferably human cells).
  • a promoter inducible promoter or constitutive promoter
  • mammalian cells preferably human cells
  • the SV40 early promoter region (Bernoist and Chambon, 1981, Nature 290: 304-310)
  • the promoter derived from the 3 ′ end region of Rous sarcoma virus Yamamoto et al., 1980, Cell 22: 787-797
  • herpes zoster thymidine A promoter such as a kinase promoter (Wagner et al., 1981, Proc. Natl. Acad. Sci. USA 78: 1441-1445) can be used.
  • expression suppression by ribozyme is used (in the case of the compound (e) above).
  • the target mRNA can be destroyed using a ribozyme that cleaves the mRNA with a site-specific recognition sequence, but preferably a hammerhead ribozyme is used.
  • a ribozyme that cleaves the mRNA with a site-specific recognition sequence but preferably a hammerhead ribozyme is used.
  • a hammerhead ribozyme for example, Haseloff and Gerlach, 1988, Nature, 334: 585-591 can be referred to.
  • a ribozyme may be constructed using a modified oligonucleotide.
  • a nucleic acid construct in which DNA encoding the ribozyme is placed under the control of a strong promoter (for example, pol II or pol III) can be used. preferable.
  • the pharmaceutical of this embodiment contains the following (A) (BRP44L protein) or (B) (expression vector holding the BRP44L gene) as an active ingredient, and is used in combination with an anticancer drug or a drug having an antitumor action.
  • BRP44L protein is an active ingredient.
  • a part (fragment) of the BPP44L protein can also be used as an active ingredient as long as it exhibits an effective action on the anticancer drug sensitivity of melanoma cells.
  • the amino acid sequence of human BRP44L protein is registered in a public database (SEQ ID NO: 8: NCBI protein database Accession No .: NP_057182).
  • a polypeptide containing an amino acid sequence equivalent to the amino acid sequence can also be used as the BRP44L protein.
  • the “equivalent amino acid sequence” here is partially different from the reference amino acid sequence (for example, the amino acid sequence of SEQ ID NO: 8), but the difference is related to the function of the protein (anticancer drug sensitivity of melanoma cells). It means an amino acid sequence that has no substantial effect on the effective action. Therefore, substantial functional identity is recognized between the reference amino acid sequence and the equivalent amino acid sequence. In order to determine the presence or absence of substantial functional identity, for example, using the experimental system (animal model or cell evaluation) described in the examples below, the effect on the anticancer drug sensitivity of melanoma cells What is necessary is just to confirm that there is no substantial difference between two amino acid sequences in terms of effect.
  • “Different in part of amino acid sequence” typically means deletion or substitution of 1 to several amino acids (upper limit is 3, 5, 7, 10) constituting the amino acid sequence. Alternatively, it means that a mutation (change) has occurred in the amino acid sequence due to addition, insertion, or a combination of 1 to several amino acids (the upper limit is, for example, 3, 5, 7, 10). Differences in amino acid sequences here are allowed as long as there is no significant decrease in the above functions. As long as this condition is satisfied, the positions where the amino acid sequences are different are not particularly limited, and differences may occur at a plurality of positions.
  • plural refers to, for example, a number corresponding to less than about 30% of all amino acids, preferably a number corresponding to less than about 20%, and more preferably a number corresponding to less than about 10%.
  • the number is preferably less than about 5%, and most preferably less than about 1%. That is, the equivalent amino acid sequence is, for example, about 70% or more, preferably about 80% or more, more preferably about 90% or more, still more preferably about 95% or more, and most preferably about 99% or more with the reference amino acid sequence.
  • conservative amino acid substitution refers to substitution of a certain amino acid residue with an amino acid residue having a side chain having the same properties.
  • a basic side chain eg lysine, arginine, histidine
  • an acidic side chain eg aspartic acid, glutamic acid
  • an uncharged polar side chain eg glycine, asparagine, glutamine, serine, threonine, tyrosine
  • Cysteine eg alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • ⁇ -branched side chains eg threonine, valine, isoleucine
  • aromatic side chains eg tyrosine, phenylalanine, Like tryptophan and histidine.
  • a conservative amino acid substitution is preferably a substitution between amino acid residues within the same family.
  • sequence identity % of two amino acid sequences or two nucleic acid sequences (hereinafter, “two sequences” is used as a term including them) can be determined, for example, by the following procedure.
  • two sequences are aligned for optimal comparison (eg, a gap may be introduced into the first sequence to optimize alignment with the second sequence).
  • a molecule amino acid residue or nucleotide
  • Gapped BLAST described in Altschul et al. (1997) Amino Acids Research 25 (17): 3389-3402 can be used.
  • BRP44L can be easily prepared by using standard genetic engineering techniques, molecular biological techniques, biochemical techniques, etc. with reference to the sequence information disclosed in this specification or the attached sequence listing. it can. For example, it can be prepared by transforming a suitable host cell (for example, E. coli, yeast) with DNA encoding BRP44L and recovering the protein expressed in the transformant. The recovered protein is appropriately purified according to the purpose. Thus, various modifications are possible if BRP44L is obtained as a recombinant protein.
  • suitable host cell for example, E. coli, yeast
  • BRP44L consisting of a recombinant protein linked to any peptide or protein
  • modification may be performed so that addition of sugar chain and / or lipid, or processing of N-terminal or C-terminal may occur.
  • BRP44L by genetic engineering techniques.
  • the method for preparing BRP44L is not limited to the genetic engineering method.
  • BRP44L can also be prepared from natural materials by standard techniques (crushing, extraction, purification, etc.).
  • an expression vector holding the BRP44L gene is used as an active ingredient. As long as it encodes a protein that exhibits an effective action on the anticancer drug sensitivity of melanoma cells, a part thereof may be used instead of the BRP44L gene.
  • “Expression vector” refers to a vector capable of introducing a nucleic acid inserted therein into a target cell (host cell) and allowing expression in the cell. In the expression vector according to the present invention, the BRP44L gene is retained so that it can be expressed. The type of vector is not particularly limited as long as the BRP44L gene can be introduced into the target cell and expressed in the target cell.
  • the “vector” herein includes viral vectors and non-viral vectors.
  • the gene transfer method using a virus vector skillfully utilizes the phenomenon that a virus infects cells, and high gene transfer efficiency can be obtained.
  • Adenovirus vectors, adeno-associated virus vectors, retrovirus vectors, lentivirus vectors, herpes virus vectors, Sendai virus vectors and the like have been developed as virus vectors.
  • Non-viral vectors include liposomes, positively charged liposomes (Felgner, PL, Gadek, TR, Holm, M. et al., Proc. Natl. Acad. Sci., 84: 7413-7417, 1987), HVJ (Hemagglutinating virus of Japan) -Liposome (Dzau, VJ, Mann, M., Morishita, R. et al., Proc. Natl. Acad. Sci., 93: 11421-11425, 1996, Kaneda, Y., Saeki, Y. & Morishita , R., Molecular Med. Today, 5: 298-303, 1999).
  • the expression vector in the present invention may be constructed as such a non-viral vector. Further, a YAC vector, a BAC vector or the like may be used.
  • Retroviral vectors are not suitable for gene transfer into non-dividing cells because cell division is required for integration of the viral genome into the host chromosome.
  • lentivirus vectors and adeno-associated virus vectors cause integration of foreign genes into the host chromosome after infection even in non-dividing cells. Therefore, these vectors are effective for stably and long-term expressing foreign genes in non-dividing cells.
  • Each virus vector can be prepared according to a previously reported method or using a commercially available dedicated kit.
  • an adenovirus vector can be prepared by the COS-TPC method or full-length DNA introduction method.
  • the COS-TPC method is a homologous recombination that occurs in 293 cells by co-transfecting a recombinant cosmid incorporating the target cDNA or expression cassette and a parent virus DNA-terminal protein complex (DNA-TPC) into 293 cells.
  • DNA-TPC parent virus DNA-terminal protein complex
  • the full-length DNA introduction method is a method for producing a recombinant adenovirus by subjecting a recombinant cosmid inserted with a target gene to restriction digestion and then transfecting 293 cells (Miho Terashima, Koki Kondo). Hiromi Kanegae, Izumi Saito (2003) Experimental Medicine 21 (7) 931.).
  • the COS-TPC method can be performed using Adenovirus® Expression® Vector® Kit® (Dual® Version) (Takara Bio Inc.) and Adenovirus® genome® DNA-TPC (Takara Bio Inc.).
  • the full-length DNA introduction method can be performed using Adenovirus® Expression® Vector® Kit® (Dual® Version) (Takara Bio Inc.).
  • retroviral vectors can be prepared by the following procedure. First, the virus genome (gag, pol, env gene) other than the packaging signal sequence between the LTRs (Long Terminal Repeat) existing at both ends of the virus genome is removed, and the target gene is inserted therein. The viral DNA thus constructed is introduced into a packaging cell that constitutively expresses the gag, pol, and env genes. Thereby, only the vector RNA having the packaging signal sequence is incorporated into the viral particle, and a retroviral vector is produced.
  • the virus genome gag, pol, env gene
  • LTRs Long Terminal Repeat
  • the expression vector of the present invention may be constructed as such a viral vector.
  • the BRP44L gene inserted into the expression vector is preferably composed of a base sequence described in SEQ ID NO: 7 (NCBI nucleotide database Accession No .: NM_016098.
  • a DNA having a base sequence equivalent to the base sequence hereinafter “equivalent” (Referred to as “DNA”) can also be used as the BRP44L gene.
  • the “equivalent base sequence” here is partly different from the reference base sequence (SEQ ID NO: 7), but it is encoded by the difference.
  • a base sequence in which the function of the protein (effective effect on the sensitivity of melanoma cells to anticancer drugs) is not substantially affected.
  • the specific example of equivalent DNA is complementary to the reference base sequence.
  • stringent conditions form a so-called specific hybrid that is non-specific.
  • stringent conditions are known to those skilled in the art, such as Molecular ⁇ ⁇ ⁇ Cloning (Third Edition, Cold Spring Harbor Laboratory Press, New York) and Current protocols in molecular biology (edited by Frederick M Ausubel et al., 1987)
  • hybridization solution 50% formamide, 10 ⁇ SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0), 5 ⁇ Denhardt solution, 1% SDS, 10% dextran sulfate, 10 ⁇ g / ml denatured salmon sperm DNA, 50 mM phosphate buffer (pH 7.5)
  • hybridization solution 50% formamide, 10 ⁇ SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0
  • Denhardt solution 1% SDS
  • 10% dextran sulfate 10 ⁇ g / ml denatured salmon sperm DNA, 50 mM phosphate buffer
  • More preferred stringent conditions include, for example, 50 hybridization solutions. Formamide, 5 ⁇ SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0), 1 ⁇ Denhardt solution, 1% SDS, 10% dextran sulfate, 10 ⁇ g / ml denatured salmon sperm DNA, 50 mM phosphate buffer (pH 7.5) ) Can be mentioned.
  • equivalent DNA it consists of a base sequence that includes substitution, deletion, insertion, addition, or inversion of one or more bases relative to a reference base sequence, and is effective in anticancer drug sensitivity of melanoma cells.
  • Examples thereof include DNA encoding a protein that exhibits an effective action on the protein.
  • Base substitution or deletion may occur at a plurality of sites.
  • the term “plurality” as used herein refers to, for example, 2 to 40 bases, preferably 2 to 20 bases, more preferably 2 to 10 bases, although it depends on the position and type of amino acid residues in the three-dimensional structure of the protein encoded by the DNA It is.
  • Such equivalent DNAs include, for example, restriction enzyme treatment, treatment with exonuclease and DNA ligase, position-directed mutagenesis (MolecularMCloning, Third Edition, Chapter 13, Cold Spring Harbor Laboratory Press, New York) Includes substitutions, deletions, insertions, additions, and / or inversions of bases using mutation introduction methods (Molecular Cloning, ingThird Edition, Chapterhap13, Cold Spring Harbor Laboratory Press, New York) Thus, it can obtain by modifying DNA which has a standard base sequence.
  • the equivalent DNA can also be obtained by other methods such as ultraviolet irradiation.
  • DNA in which a base difference as described above is recognized due to a polymorphism represented by SNP (single nucleotide polymorphism).
  • the BRP44L gene can be prepared by using standard genetic engineering techniques, molecular biological techniques, biochemical techniques, etc. with reference to the sequence information disclosed in this specification or the attached sequence listing.
  • the BRP44L gene can be isolated (and amplified) from a human cDNA library by appropriately using an oligonucleotide probe / primer that can specifically hybridize to the BRP44L gene.
  • the oligonucleotide probe primer for example, DNA complementary to the base sequence shown in SEQ ID NO: 7 or a continuous part thereof is used. Oligonucleotide probes and primers can be easily synthesized using a commercially available automated DNA synthesizer.
  • Molecular® Cloning • Third • Edition, • Cold®Spring®Harbor®Laboratory®Press, and “New York” are helpful.
  • An equivalent DNA can be prepared by using a cDNA library derived from a non-human mammalian cell (for example, monkey, mouse, rat, pig, bovine) instead of the human cDNA library.
  • a cDNA library derived from a non-human mammalian cell (for example, monkey, mouse, rat, pig, bovine) instead of the human cDNA library.
  • a non-human mammalian cell for example, monkey, mouse, rat, pig, bovine
  • the sequence of the mouse-derived Brp44l gene is shown in SEQ ID NO: 15.
  • PDZRN3, DTX3L, CSS3 and BRP44L significantly increased (PDZRN3, DTX3L, CSS3) or decreased the expression level in both mouse melanoma without Braf mutation and human melanoma with BRAF mutation. (BRP44L) was observed (Examples described later). Therefore, it can be said that PDZRN3, DTX3L, CSS3 and BRP44L are useful as target molecules in the treatment of melanoma regardless of the presence or absence of BRAF mutation.
  • the medicament of the present invention is applied to melanomas that are resistant to BRAF inhibitors.
  • the medicament of this embodiment is intended for treatment of melanoma patients who have acquired resistance to a BRAF inhibitor as a result of treatment with the BRAF inhibitor.
  • BRAF inhibitors are PLX4032 and PLX4720.
  • DTX3L is a target molecule. Therefore, as a preferred embodiment, a medicament comprising a compound that suppresses the expression of the DTX3L gene as an active ingredient is provided.
  • the pharmaceutical preparation of the present invention can be prepared according to a conventional method.
  • other pharmaceutically acceptable ingredients for example, carriers, excipients, disintegrants, buffers, emulsifiers, suspending agents, soothing agents, stabilizers, preservatives, preservatives, physiological Saline solution and the like.
  • excipient lactose, starch, sorbitol, D-mannitol, sucrose and the like can be used.
  • As the disintegrant starch, carboxymethylcellulose, calcium carbonate and the like can be used. Phosphate, citrate, acetate, etc. can be used as the buffer.
  • emulsifier gum arabic, sodium alginate, tragacanth and the like can be used.
  • suspending agent glyceryl monostearate, aluminum monostearate, methyl cellulose, carboxymethyl cellulose, hydroxymethyl cellulose, sodium lauryl sulfate and the like can be used.
  • soothing agent benzyl alcohol, chlorobutanol, sorbitol and the like can be used.
  • stabilizer propylene glycol, diethylin sulfite, ascorbic acid or the like can be used.
  • preservatives phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben, and the like can be used.
  • preservatives benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like can be used.
  • the dosage form for formulation is not particularly limited. Examples of dosage forms are tablets, powders, fine granules, granules, capsules, syrups, injections, external preparations, and suppositories.
  • the medicament of the present invention contains an active ingredient in an amount necessary for obtaining an expected therapeutic effect (or preventive effect) (ie, a therapeutically effective amount).
  • the amount of the active ingredient in the medicament of the present invention generally varies depending on the dosage form, but the amount of the active ingredient is set, for example, within the range of about 0.1 wt% to about 95 wt% so as to achieve a desired dose.
  • the medicament of the present invention is administered to the subject by oral administration or parenteral administration (intravenous, intraarterial, subcutaneous, intradermal, intramuscular or intraperitoneal injection, transdermal, nasal, transmucosal, etc.) depending on the dosage form.
  • oral administration or parenteral administration intravenous, intraarterial, subcutaneous, intradermal, intramuscular or intraperitoneal injection, transdermal, nasal, transmucosal, etc.
  • parenteral administration intravenous, intraarterial, subcutaneous, intradermal, intramuscular or intraperitoneal injection, transdermal, nasal, transmucosal, etc.
  • these administration routes are not mutually exclusive, and two or more arbitrarily selected can be used in combination (for example, intravenous injection or the like is performed simultaneously with oral administration or after a predetermined time has elapsed).
  • a nucleic acid construct is an active ingredient (for example, an embodiment using RNAi)
  • ex vivo administration can be employed
  • the “subject” to which the medicament of the present invention is administered is not particularly limited, and includes humans and non-human mammals (pet animals, domestic animals, laboratory animals. Specifically, for example, mice, rats, guinea pigs, hamsters, monkeys, cows) Pigs, goats, sheep, dogs, cats, chickens, quails, etc.).
  • the medicament of the present invention is applied to humans.
  • the dosage varies depending on the patient's symptoms, age, sex, weight, etc., those skilled in the art can appropriately set an appropriate dosage. In setting the administration schedule, it is possible to consider the patient's symptoms and the duration of the effect of the medicine.
  • the present application also provides a method for treating melanoma, which comprises administering a therapeutically effective amount of the medicament of the present invention to a melanoma patient.
  • RET-mice 304 / B6 mice (Kato, M. et al., J Invest Dermatol. 111: 640-4 .; Iwamoto, T. et al., EMBO J. 10: 3167-75 .; Kato, M et al., Oncogene. 17: 1885-8, etc.) was used to collect melanocyte benign tumors and melanoma.
  • the pCMV-c-Fa-Puro3 vector (Invitrogen) was used for the production of the gene forced expression cell line. After introducing the cDNA of the protein coding region into the pCMV-c-Fa-Puro3 vector, the cultured cells were transfected, and the cells were selected with 1 mg / ml puromycin (Wako Pure Chemical Industries, Ltd.). The pRNAT-U6-1-Neo vector (Invitrogen) was used for establishment of the knockdown cell line. After introducing the shRNA sequence into the pRNAT-U6-1-Neo vector, the cultured cells were transfected, and cells were selected with 1 mg / ml neomycin (Wako Pure Chemical Industries, Ltd.).
  • Human PDZRN3 gene SEQ ID NO: 1 (NCBI nucleotide database Accession No .: NM_015009)
  • Human PDZRN3 protein SEQ ID NO: 2 (NCBI protein database Accession No .: NP_055824)
  • Human DTX3L gene SEQ ID NO: 3 (NCBI nucleotide database Accession No .: NM_138287)
  • Human DTX3L protein SEQ ID NO: 4 (NCBI protein database Accession No .: NP_612144)
  • Human CSS3 gene SEQ ID NO: 5 (NCBI nucleotide database Accession No .: NM_175856)
  • Human CSS3 protein SEQ ID NO: 6 (NCBI protein database Accession No .: NP_787052)
  • Human BRP44L gene SEQ ID NO: 7 (NCBI nucleotide database Accession No .: NM_016098) Human
  • Mouse Pdzrn3 gene SEQ ID NO: 9 (NCBI nucleotide database Accession No .: NM_018884) Mouse Pdzrn3 protein: SEQ ID NO: 10 (NCBI protein database Accession No .: NP_061372) Mouse Dtx3l gene: SEQ ID NO: 11 (NCBI nucleotide database Accession No .: NM_001013371) Mouse Dtx3l protein: SEQ ID NO: 12 (NCBI protein database Accession No .: NP_001013389) Mouse Css3 gene: SEQ ID NO: 13 (NCBI nucleotide database Accession No .: NM_001081328) Mouse Css3 protein: SEQ ID NO: 14 (NCBI protein database Accession No .: NP_001074797) Mouse Brp44l gene: SEQ ID NO: 15 (NCBI nucleotide database Accession No .: NM_018819) Mouse Brp44l protein: SEQ ID NO: 16 (NC
  • mRNA was purified from spontaneously occurring melanocyte benign tumors and melanomas in melanoma model mice (RET-Tg), and gene expression analysis was performed using DNA microarrays. Genes with stronger or weaker expression in melanoma compared to benign tumors Thus, PDZ domain containing ring finger 3 (PDZRN3), Deltex-3-like (DTX3L), Chondroitin sulfate synthase 3 (CSS3), and BRP44L gene were identified as melanoma-related genes.
  • PDZ domain containing ring finger 3 PDZRN3
  • DTX3L Deltex-3-like
  • CCS3 Chondroitin sulfate synthase 3
  • BRP44L BRP44L gene were identified as melanoma-related genes.
  • the B16 cell line is known to have lower invasive ability (metastatic activity) than other cell lines. Compared with B16 with low invasive ability, the expression level in other cell lines with high invasive ability is greatly increased (FIG. 2b), suggesting that Pdzrn3 may be associated with invasive ability.
  • the expression level of PDZRN3 protein in human melanoma tissues was measured by quantifying the staining level after immunostaining with anti-PDZRN3 antibody.
  • the expression levels were categorized into 3 (negative / low, moderate, high) and the ratio of each expression level was compared.
  • the expression levels in primary and metastatic melanoma were significantly higher than those in benign tumors. It became clear (Fig. 3).
  • DTX3L DTX3L gene and protein expression levels in benign tumors and malignant melanoma spontaneously developed in RET-Tg mice were measured using real-time PCR (FIG. 4A), Western blotting (FIG. 4B) and immunohistochemical staining (FIG. 4C).
  • the expression level of DTX3L gene and protein was significantly increased in malignant melanoma compared to the expression level in benign tumors.
  • the expression level of Dtx3l protein in mouse melanoma cell lines (4 types) was measured using Western blotting (FIG. 5A).
  • the B16 cell line is known to have lower invasive ability (metastatic activity) than other cell lines.
  • CSS3 CSS3 has the same family genes, CSS1 and CSS2. As a result of measuring the expression levels of these three genes in benign tumors and malignant melanomas spontaneously developed in melanoma model mice (RET-Tg) using real-time PCR, the expression levels of CSS1 and CSS2 genes are both benign and malignant and low. However, the expression level of CSS3 gene was significantly increased in malignant melanoma (FIG. 7). The expression level of CSS3 protein in human melanoma tissue (benign tumor: Benign, primary melanoma: Malignant, metastatic melanoma: Meta) was measured by quantifying the staining level after immunostaining with anti-CSS3 antibody (FIG. 8). ). As a result of categorizing the expression level into 3 (negative / low, moderate, high) and comparing the ratio of each expression level, the expression level in primary melanoma and metastatic melanoma is significantly higher than in benign tumors It became clear.
  • BRP44L BRP44L gene and protein expression levels in benign tumors and malignant melanomas spontaneously developed in melanoma model mice were measured using real-time PCR (FIG. 9A) and Western blotting (FIG. 9B).
  • BRP44L mRNA and protein had decreased expression in melanoma compared to benign tumors.
  • the expression level of BRP44L mRNA in human melanoma tissue was measured using real-time PCR. As a result, the expression level in human melanoma tissue was significantly reduced compared to that in benign tumor. (Fig. 10).
  • FIG. 12a A stable strain with reduced expression of PDZRN3 was injected into the tail vein of nude mice, and the subsequent metastatic activity to the lung was investigated (FIG. 12a).
  • the cell line (shPdzrn3) in which the expression level of PDZRN3 was reduced was greatly inhibited from infiltrating into the lung (metastasis) compared to the control line (shControl).
  • the activation (phosphorylation) level of signal molecule (FAK) related to invasion ability in each stable strain was investigated, the phosphorylation (activity) level of FAK decreased in all PDZRN3 expression-suppressed clones (P1 to P3).
  • FIG. 12b it was suggested that PDZRN3 may control the activity of invasive ability-related signal molecule (FAK).
  • the stable strain was injected into the tail vein of nude mice, and the subsequent metastatic activity to the lung was investigated. Since the injected cells express GFP, lung metastasized cells can be visualized (FIG. 15A). The decrease in the expression level of DTX3L significantly inhibited infiltration (metastasis) of melanoma cells into the lung (FIG. 15).
  • Recently developed molecular therapeutics for BRAF, PLX4032 and PLX4720 are one of the new therapeutic candidates. However, long-term treatment with melanoma produces resistant cells and recurs frequently.
  • the human melanoma cell line (A375P) was exposed to the melanoma molecule targeted drug PLX4720 for a long period of time to create a resistant strain, and the effect on the invasive potential when DTX3L expression was reduced by siRNA introduction (FIG. 16A). Measured by invasion assay ( Figure 16B). Suppressing the expression of DTX3L is also effective against PLX-resistant melanoma cells, and a therapeutic effect on drug-resistant melanoma produced by existing molecular target reagents can be expected.
  • FIG. 17 A stable strain in which CSS3 was forcibly expressed in a mouse melanoma cell line (B16F10) was established, and the invasive ability of each stable strain was measured by an invasion assay (FIG. 17). It was revealed that forced expression of CSS3 further activated the invasive ability inherent in melanoma cells. Using a shRNA forced expression vector, a stable strain with reduced CSS3 expression was established in a mouse melanoma cell line (B16F10 FLAG-CSS3) in which CSS3 was forcibly expressed, and the invasion ability of each stable strain was measured by an invasion assay ( FIG. 18a). Decrease in the expression level of CSS3 inhibited the invasive ability of melanoma cells.
  • B16F10 control cells, CSS3 forced expression strain (+ CSS3), and expression-suppressed stable strain (CSS3 sh) were injected into the tail vein of nude mice, and then examined for metastatic activity to the lung. It was revealed that the number of metastases increased and the number of metastases decreased by suppressing the expression (FIG. 18b).
  • BRP44L Cell death by treatment of human melanoma cell line SKMel28 (SK-GFP # 6) and stable strains forcibly expressing BRP44L (SK-B # 7, SK-B # 8) with one kind of etoposide anticancer agent And cell viability was measured (FIG. 19). Under the high expression of BRP44L, cell death induction by etoposide was more strongly induced, suggesting that forced expression of BRP44L may increase the sensitivity to anticancer drugs.
  • the four genes and proteins analyzed this time can inhibit melanoma activity very sensitively by suppressing or enhancing their expression (see FIGS. 11 to 19).
  • PDZRN3, DTX3L, and CSS3 are mainly involved in invasion and metastasis, and BRP44L is involved in anticancer drug-induced cell death sensitivity.
  • BRP44L is involved in anticancer drug-induced cell death sensitivity.
  • the newly identified melanoma-related molecule (a candidate molecule for molecular target therapy for melanoma) can be said to be effective for the problems of melanoma therapeutic agents such as PLX4032 and PLX4720.
  • New melanoma-related molecules are deeply involved in melanoma metastasis and sensitivity to anticancer drugs.
  • the melanoma-related molecule has a particularly poor prognosis among various carcinomas, and can be expected to make a great contribution to the diagnosis and treatment of melanoma, which requires early detection for effective treatment.
  • the biomarker of the present invention is useful for early detection of melanoma, determination of malignancy of melanoma, and the like.
  • biomolecules constituting biomarkers are deeply involved in melanoma invasion, metastasis, sensitivity to anticancer agents, and the like, and are useful as therapeutic targets. Therefore, not only the diagnosis of melanoma but also the application or application of the present invention to the treatment of melanoma is expected.

Abstract

The present invention addresses the problem of providing: a marker molecule which enables the highly efficient diagnosis of melanoma; and a novel therapy target molecule which can be utilized in an effective therapy method. As melanoma-specific markers, PDZRN3, DTX3L, CSS3 and BRP44L are provided. Also provided are a test method, a therapy method and others each using these biological molecules.

Description

メラノーマ特異的バイオマーカー及びその利用Melanoma-specific biomarkers and uses thereof
 本発明はメラノーマ特異的バイオマーカーに関する。詳しくは、メラノーマ特異的な新規バイオマーカー及びそれを利用した検査法等に関する。本出願は、2015年3月20日に出願された日本国特許出願第2015-058692号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。 The present invention relates to a melanoma-specific biomarker. Specifically, the present invention relates to a novel biomarker specific to melanoma and a test method using the same. This application claims priority based on Japanese Patent Application No. 2015-058692 filed on Mar. 20, 2015, the entire contents of which are incorporated by reference.
 従来、メラノーマの診断には腫瘍マーカーとしてS100、melanoma inhibiting activity (MIA)、5-S-cysteinyldopa(5-S-CD)、6-hydroxy-5-methoxyindole-2-carboxylic acid(6-H-5-MI-2CA)等が使用されている(非特許文献1)。一方、メラノーマの分子標的治療薬は長い間ダカルバジン(Dacarbazine)が利用されてきたが、近年MAPキナーゼ経路関連分子(BRAF、MEK)を標的とした新たな分子標的薬が開発され、臨床の現場に登場している(非特許文献2)。 Conventionally, S100, melanomainhibiting activity (MIA), 5-S-cysteinyldopa (5-S-CD), 6-hydroxy-5-methoxyindole-2-carboxylic acid (6-H-5) are used as tumor markers for the diagnosis of melanoma. -MI-2CA) is used (Non-Patent Document 1). On the other hand, Dacarbazine has been used for a long time as a molecular targeted therapeutic drug for melanoma, but recently, new molecular targeted drugs targeting MAP kinase pathway related molecules (BRAF, MEK) have been developed and put into clinical practice. It has appeared (Non-Patent Document 2).
 メラノーマは全ての癌腫の中で増加率が第1位である(世界統計)。また、ステージの進行したメラノーマは予後不良であり、早期発見が重要である。一方、メラノーマに対する従来のバイオマーカーは進行期メラノーマにのみ有効であり、早期診断には有用性が低い。メラノーマの悪性化との関連性が高い遺伝子やタンパク質等を新たな診断マーカーとして利用できれば、より早期に、信頼性の高い診断が可能となる。また、メラノーマの病理診断は容易ではなく、メラノーマに特異性の高いバイオマーカーを提供できれば、病理診断精度の向上にも貢献できる。 Melanoma has the highest rate of increase among all carcinomas (world statistics). Moreover, melanoma with advanced stage has a poor prognosis, and early detection is important. On the other hand, conventional biomarkers for melanoma are effective only for advanced stage melanoma and are less useful for early diagnosis. If a gene or protein that is highly related to malignant melanoma can be used as a new diagnostic marker, a more reliable diagnosis can be made earlier. Moreover, pathological diagnosis of melanoma is not easy, and if a biomarker highly specific to melanoma can be provided, it can contribute to improvement of pathological diagnosis accuracy.
 メラノーマ治療において多用されているダカルバジンの効果は限られており、また、BRAFを標的とした分子標的薬は一時的には大変高い効果を示すが、数ヶ月後には薬剤耐性メラノーマが再発する。また、これらの分子標的薬は細胞内シグナルの特定経路をターゲットとしており、この経路を介さずにメラノーマとしての機能を発現している場合には適用できない。 The effect of dacarbazine, which is frequently used in the treatment of melanoma, is limited, and molecular targeted drugs targeting BRAF are temporarily very effective, but drug resistant melanoma recurs after several months. In addition, these molecular target drugs target specific pathways of intracellular signals, and cannot be applied when the function of melanoma is expressed without going through this pathway.
 上記の背景から、メラノーマを効率よく診断するマーカー分子や、効果的な治療法に利用できる新たな治療標的分子の登場が期待されている。本発明は当該要望に応え、メラノーマに対する医療(診断法、治療法)の発展・向上に貢献することを課題とする。 From the above background, the appearance of a marker molecule for efficiently diagnosing melanoma and a new therapeutic target molecule that can be used for an effective therapeutic method is expected. This invention responds to the said request, and makes it a subject to contribute to development and improvement of the medical treatment (diagnosis method, treatment method) with respect to melanoma.
 本発明者らの研究グループはメラノーマ特異的なマーカー分子の同定を目標として研究を進めてきた。その成果として、メラノーマに対する効果的な診断や治療に利用できる4種類の新規メラノーマ関連分子(遺伝子)、即ちPDZ domain containing ring inger 3 (PDZRN3)、Deltex-3-like (DTX3L)、Chondroitin sulfate synthase 3 (CSS3)、brain protein 44-like(BRP44L)の同定に成功した。これら4種類の遺伝子及びその発現産物(タンパク質)のレベルは、良性腫瘍と悪性腫瘍の間で大きな差が認められた。また、詳細な検討の結果、これらの分子がメラノーマの発症又は進展(悪性化)や、抗がん剤や抗腫瘍作用を持つ薬剤に対する感受性や耐性に深く関与していることが判明した。特筆すべきことに、PDZRN3、DTX3L、CSS3及びBRP44Lは、Braf変異のないマウスメラノーマ(RET-マウスやB16系)や、BRAF変異のあるヒトメラノーマの両方において有意な発現量の増加(PDZRN3、DTX3L、CSS3)又は減少(BRP44L)を認めたことから、BRAF阻害剤に耐性を示すメラノーマの治療においても有効な標的となることが期待できる。即ち、同定に成功したこれらの分子は、現在のメラノーマ治療で使用される分子標的薬の抱える問題にも解決策を提供し得る。
 以下の発明は、主として上記の成果及び考察に基づく。
 [1]PDZRN3遺伝子、PDZRN3タンパク質、DTX3L遺伝子、DTX3Lタンパク質、CSS3遺伝子、CSS3タンパク質、BRP44L遺伝子及びBRP44Lタンパク質からなる群より選択される生体分子からなる、メラノーマ特異的バイオマーカー。
 [2]PDZRN3遺伝子、PDZRN3タンパク質、DTX3L遺伝子、DTX3Lタンパク質、CSS3遺伝子、CSS3タンパク質、BRP44L遺伝子及びBRP44Lタンパク質からなる群より選択される一又は二以上の生体分子の検体中レベルを指標として用いることを特徴とする、メラノサイト系腫瘍検査法。
 [3]以下のステップ(1)~(3)を含む、[2]に記載のメラノサイト系腫瘍検査法:
 (1)被検者由来の検体を用意するステップ;
 (2)前記検体中の一又は二以上の前記生体分子を検出するステップ;及び
 (3)検出結果に基づいて、メラノサイト系腫瘍の悪性度を判定するステップ。
 [4]PDZRN3遺伝子、PDZRN3タンパク質、DTX3L遺伝子、DTX3Lタンパク質、CSS3遺伝子及びCSS3タンパク質については、検出値が高いと悪性度が高いとの基準、又は検出できると発症可能性が高いとの基準に従い、
 BRP44L遺伝子及びBRP44Lタンパク質については、検出値が低いと悪性度が高いとの基準、又は検出できないと悪性度が高いとの基準に従い、ステップ(3)の判定を行う、[3]に記載のメラノサイト系腫瘍検査法。
 [5]ステップ(2)で得られた検出値と対照検体の検出値との比較に基づきステップ(3)の判定を行う、[3]又は[4]に記載のメラノサイト系腫瘍検査法。
 [6]ステップ(2)で得られた検出値と、同一の被検者から過去に採取された検体中の検出値との比較に基づきステップ(3)の判定を行う、[3]又は[4]に記載のメラノサイト系腫瘍検査法。
 [7]前記検体が皮膚組織、血液、血漿、血清、尿、唾液、汗又は腫瘍組織である、[2]~[6]のいずれか一項に記載のメラノサイト系腫瘍検査法。
 [8][1]に記載のメラノーマ特異的バイオマーカーに特異的結合性を示す物質からなる、メラノサイト系腫瘍検査試薬。
 [9]前記物質が抗体である、[8]に記載のメラノサイト系腫瘍検査試薬。
 [10][8]又は[9]に記載のメラノサイト系腫瘍検査試薬を含む、メラノサイト系腫瘍検査用キット。
 [11]PDZRN3遺伝子、DTX3L遺伝子及びCSS3遺伝子からなる群より選択される標的遺伝子の発現を抑制する化合物を有効成分とする、メラノーマ治療薬。
 [12]前記化合物が以下の(a)~(e)からなる群より選択される化合物である、[11]に記載のメラノーマ治療薬:
 (a)標的遺伝子を標的とするsiRNA;
 (b)標的遺伝子を標的とするsiRNAを細胞内で生成する核酸コンストラクト;
 (c)標的遺伝子の発現を抑制する発現抑制配列と該配列にアニーリングする相補配列を有する一本鎖RNA;
 (d)標的遺伝子の転写産物を標的とするアンチセンス核酸;
 (e)標的遺伝子の転写産物を標的とするリボザイム。
 [13]以下の(A)又は(B)を有効成分として含み、抗がん剤又は抗腫瘍作用を持つ薬物と併用される、メラノーマ治療薬:
 (A)BRP44Lタンパク質又はその一部(但し、メラノーマ細胞の抗がん剤感受性に対して有効な作用を有する);
 (B)BRP44L遺伝子又はその一部(但し、メラノーマ細胞の抗がん剤感受性に対して有効な作用を有するタンパク質をコードする)を保持する発現ベクター。
 [14]BRAF阻害剤に耐性を示すメラノーマに適用される、[11]~[13]のいずれか一項に記載のメラノーマ治療薬。
 [15][11]~[14]のいずれか一項に記載のメラノーマ治療薬を、メラノーマの患者に投与するステップ、を含むメラノーマ治療法。
Our research group has been conducting research with the goal of identifying melanoma-specific marker molecules. As a result, four types of novel melanoma-related molecules (genes) that can be used for effective diagnosis and treatment of melanoma: PDZ domain containing ring inger 3 (PDZRN3), Deltex-3-like (DTX3L), and Chondroitin sulfate synthase 3 (CSS3), brain protein 44-like (BRP44L) was successfully identified. The levels of these four genes and their expression products (proteins) were significantly different between benign and malignant tumors. Further, as a result of detailed studies, it has been found that these molecules are deeply involved in the onset or progression (malignant transformation) of melanoma and the sensitivity and resistance to anticancer drugs and drugs having antitumor effects. Notably, PDZRN3, DTX3L, CSS3, and BRP44L significantly increased expression levels in both mouse melanoma without Braf mutation (RET-mouse and B16 strain) and human melanoma with BRAF mutation (PDZRN3, DTX3L). , CSS3) or decrease (BRP44L), it can be expected to be an effective target in the treatment of melanoma that is resistant to BRAF inhibitors. That is, these molecules that have been successfully identified can provide a solution to the problems of molecular targeted drugs used in current melanoma treatment.
The following invention is mainly based on the above results and considerations.
[1] A melanoma-specific biomarker comprising a biomolecule selected from the group consisting of PDZRN3 gene, PDZRN3 protein, DTX3L gene, DTX3L protein, CSS3 gene, CSS3 protein, BRP44L gene and BRP44L protein.
[2] Using the level in a sample of one or more biomolecules selected from the group consisting of PDZRN3 gene, PDZRN3 protein, DTX3L gene, DTX3L protein, CSS3 gene, CSS3 protein, BRP44L gene and BRP44L protein as an index Characteristic melanocyte tumor testing method.
[3] The melanocyte-based tumor examination method according to [2], comprising the following steps (1) to (3):
(1) a step of preparing a subject-derived specimen;
(2) detecting one or more of the biomolecules in the specimen; and (3) determining the malignancy of the melanocyte tumor based on the detection result.
[4] For the PDZRN3 gene, PDZRN3 protein, DTX3L gene, DTX3L protein, CSS3 gene and CSS3 protein, according to the criteria that the detection value is high and the malignancy is high, or that the detection possibility is high,
For the BRP44L gene and the BRP44L protein, the melanocyte according to [3], wherein the determination of step (3) is performed according to the criterion that the malignancy is high if the detection value is low, or the criterion that the malignancy is high if it cannot be detected. Tumor examination method.
[5] The melanocyte-based tumor examination method according to [3] or [4], wherein the determination in step (3) is performed based on a comparison between the detection value obtained in step (2) and the detection value of the control sample.
[6] The determination in step (3) is performed based on a comparison between the detection value obtained in step (2) and the detection value in a sample collected in the past from the same subject, [3] or [ 4] The melanocyte tumor test method according to [4].
[7] The melanocyte tumor test method according to any one of [2] to [6], wherein the specimen is skin tissue, blood, plasma, serum, urine, saliva, sweat, or tumor tissue.
[8] A melanocyte tumor test reagent comprising a substance exhibiting specific binding property to the melanoma-specific biomarker according to [1].
[9] The melanocyte tumor test reagent according to [8], wherein the substance is an antibody.
[10] A melanocyte-based tumor test kit comprising the melanocyte-based tumor test reagent according to [8] or [9].
[11] A melanoma therapeutic agent comprising a compound that suppresses the expression of a target gene selected from the group consisting of a PDZRN3 gene, a DTX3L gene, and a CSS3 gene as an active ingredient.
[12] The melanoma therapeutic agent according to [11], wherein the compound is a compound selected from the group consisting of the following (a) to (e):
(a) siRNA targeting the target gene;
(b) a nucleic acid construct that generates siRNA targeting the target gene in the cell;
(c) a single-stranded RNA having an expression suppressing sequence that suppresses expression of the target gene and a complementary sequence that anneals to the sequence;
(d) an antisense nucleic acid that targets the transcript of the target gene;
(e) Ribozymes that target transcripts of target genes.
[13] A therapeutic agent for melanoma comprising the following (A) or (B) as an active ingredient and used in combination with an anticancer agent or a drug having an antitumor action:
(A) BRP44L protein or a part thereof (however, it has an effective effect on the anticancer drug sensitivity of melanoma cells);
(B) An expression vector carrying the BRP44L gene or a part thereof (however, it encodes a protein having an action effective for anticancer drug sensitivity of melanoma cells).
[14] The melanoma therapeutic agent according to any one of [11] to [13], which is applied to melanoma exhibiting resistance to a BRAF inhibitor.
[15] A melanoma treatment method comprising the step of administering the melanoma therapeutic agent according to any one of [11] to [14] to a patient with melanoma.
メラノーマモデルマウス腫瘍におけるPDZRN3遺伝子の発現量。メラノーマモデルマウス(RET-Tg)に自然発症した良性腫瘍及び悪性メラノーマにおける、PDZRN3遺伝子発現レベルをリアルタイムPCRを用いて測定した。PDZRN3遺伝子の発現量は、良性腫瘍と比べて悪性メラノーマで大きく上昇する。PDZRN3 gene expression level in melanoma model mouse tumors. PDZRN3 gene expression levels in benign tumors and malignant melanomas that spontaneously developed in melanoma model mice (RET-Tg) were measured using real-time PCR. PDZRN3 gene expression level is significantly increased in malignant melanoma compared to benign tumors. ヒト及びマウスメラノーマ細胞株におけるPDZRN3遺伝子の発現量。a)ヒト正常皮膚メラノサイト(NHEM)と、ヒトメラノーマ細胞株(6種)におけるPDZRN3タンパク質の発現。全てのメラノーマ細胞株において、PDZRN3タンパク質の発現量がNHEMと比べて上昇している。b)マウスメラノーマ細胞株(4種)におけるPdzrn3タンパク質の発現量。B16細胞株は他の細胞株と比べて、浸潤能(転移活性)が低いことが知られている。浸潤能の低いB16と比べて、浸潤能の高い他の細胞株での発現量が大きく上昇している。Pdzrn3が浸潤能と関連している可能性を示唆している。PDZRN3 gene expression level in human and mouse melanoma cell lines. a) Expression of PDZRN3 protein in human normal skin melanocytes (NHEM) and human melanoma cell lines (6 types). In all melanoma cell lines, the expression level of PDZRN3 protein is increased compared to NHEM. b) Expression level of Pdzrn3 protein in mouse melanoma cell lines (4 types). The B16 cell line is known to have lower invasive ability (metastatic activity) than other cell lines. The expression level in other cell lines with high invasive ability is greatly increased compared to B16 with low invasive ability. This suggests that Pdzrn3 may be associated with invasive ability. ヒトメラノーマ組織(良性腫瘍: Benign、原発性メラノーマ: Malignant、転移性メラノーマ: Metastasis)におけるPDZRN3タンパク質の発現量。抗PDZRN3抗体による免疫染色後、染色レベルを数値化することで発現量を測定した。発現レベルを3つにカテゴライズ(陰性/低い、中程度、高い)し、各発現レベルの割合を帯グラフで表示した(下)。原発性メラノーマ及び転移性メラノーマでの発現レベルは良性腫瘍と比較して有意に高い。PDZRN3 protein expression level in human melanoma tissue (benign tumor: Benign, primary melanoma: Malignant, metastatic melanoma: Metastasis). After immunostaining with anti-PDZRN3 antibody, the expression level was measured by quantifying the staining level. The expression levels were categorized into three (negative / low, medium and high), and the ratio of each expression level was displayed as a band graph (bottom). Expression levels in primary and metastatic melanoma are significantly higher compared to benign tumors. メラノーマモデルマウス腫瘍におけるDTX3L遺伝子の発現量。メラノーマモデルマウス(RET-Tg)に自然発症した良性腫瘍及び悪性メラノーマにおける、DTX3L遺伝子(A)及びタンパク質(B、C)発現レベルをリアルタイムPCR(A)、ウェスタンブロッティング(B)及び免疫組織染色(C)を用いて測定した。DTX3L遺伝子及びタンパク質の発現量は、良性腫瘍と比べて悪性メラノーマで大きく上昇する。Expression level of DTX3L gene in melanoma model mouse tumor. Real-time PCR (A), Western blotting (B) and immunohistochemical staining (DTX3L gene (A) and protein (B, C) expression levels in benign tumors and malignant melanomas spontaneously developed in melanoma model mice (RET-Tg) ( Measured using C). The expression levels of DTX3L gene and protein are greatly increased in malignant melanoma compared to benign tumors. マウス及びヒトメラノーマ細胞株におけるDTX3Lタンパク質の発現量。A)マウスメラノーマ細胞株(4種)におけるDtx3lタンパク質の発現量。B16細胞株は他の細胞株と比べて、浸潤能(転移活性)が低いことが知られている。B)ヒト正常皮膚メラノサイト(NHEM)と、ヒトメラノーマ細胞株(5種)におけるDTX3Lタンパク質の発現。全てのメラノーマ細胞株において、DTX3Lタンパク質の発現量がNHEMと比べて上昇している。Expression level of DTX3L protein in mouse and human melanoma cell lines. A) Expression level of Dtx3l protein in mouse melanoma cell lines (4 types). The B16 cell line is known to have lower invasive ability (metastatic activity) than other cell lines. B) Expression of DTX3L protein in human normal skin melanocytes (NHEM) and human melanoma cell lines (5 species). In all melanoma cell lines, the expression level of DTX3L protein is increased compared to NHEM. ヒトメラノーマ組織(良性腫瘍: Benign、原発性メラノーマ: primary melanoma、転移性メラノーマ: Metastatic melanoma)におけるDTX3Lタンパク質の発現量。抗DTX3L抗体による免疫染色後、染色レベルを数値化することで発現量を測定した。発現レベルを3つ(陰性/低い、中程度、高い)にカテゴライズし、各発現レベルの割合を帯グラフで表示した(下)。原発性メラノーマ及び転移性メラノーマでの発現レベルは良性腫瘍と比較して有意に高い。Expression level of DTX3L protein in human melanoma tissue (benign tumor: Benign, primary melanoma: primary melanoma, metastatic melanoma: Metastatic melanoma). After immunostaining with anti-DTX3L antibody, the expression level was measured by quantifying the staining level. The expression levels were categorized into three (negative / low, medium and high), and the ratio of each expression level was displayed as a band graph (bottom). Expression levels in primary and metastatic melanoma are significantly higher compared to benign tumors. メラノーマモデルマウス腫瘍におけるCSS3遺伝子の発現量。CSS3にはCSS1、CSS2という同じファミリー遺伝子が存在する。メラノーマモデルマウス(RET-Tg)に自然発症した良性腫瘍及び悪性メラノーマにおける、これら3つの遺伝子発現レベルをリアルタイムPCRを用いて測定した。CSS1、CSS2遺伝子は良性・悪性の両方で発現量は低いが、CSS3遺伝子は悪性メラノーマで発現量が大きく上昇する。Expression level of CSS3 gene in melanoma model mouse tumor. CSS3 has the same family genes, CSS1 and CSS2. The expression levels of these three genes in benign tumors and malignant melanomas spontaneously developed in melanoma model mice (RET-Tg) were measured using real-time PCR. CSS1 and CSS2 genes are both benign and malignant and their expression levels are low, but CSS3 gene expression is significantly increased in malignant melanoma. ヒトメラノーマ組織(良性腫瘍: Benign、原発性メラノーマ: Malignant、転移性メラノーマ: Metastatic melanoma)におけるCSS3タンパク質の発現量。抗CSS3抗体による免疫染色後、染色レベルを数値化することで発現量を測定した。発現レベルを3つ(陰性/低い、中程度、高い)にカテゴライズし、各発現レベルの割合を帯グラフで表示した(下)。原発性メラノーマ及び転移性メラノーマでの発現レベルは良性腫瘍と比較して有意に高い。Expression level of CSS3 protein in human melanoma tissue (benign tumor: Benign, primary melanoma: Malignant, metastatic melanoma: Metastatic melanoma). After immunostaining with anti-CSS3 antibody, the expression level was measured by quantifying the staining level. The expression levels were categorized into three (negative / low, medium and high), and the ratio of each expression level was displayed as a band graph (bottom). Expression levels in primary and metastatic melanoma are significantly higher compared to benign tumors. メラノーマモデルマウス腫瘍におけるBRP44L遺伝子及びタンパク質の発現量。メラノーマモデルマウス(RET-Tg)に自然発症した良性腫瘍及び悪性メラノーマにおける、BRP44L遺伝子(A)及びタンパク質(B)発現レベルをリアルタイムPCR(A)、ウェスタンブロッティング(B)を用いて測定した。BRP44L mRNA及びタンパク質は、良性腫瘍と比較してメラノーマで発現が減少する。Expression levels of BRP44L gene and protein in melanoma model mouse tumors. BRP44L gene (A) and protein (B) expression levels in benign tumors and malignant melanoma spontaneously developed in melanoma model mice (RET-Tg) were measured using real-time PCR (A) and Western blotting (B). BRP44L mRNA and protein are down-regulated in melanoma compared to benign tumors. ヒトメラノーマ組織におけるBRP44L遺伝子の発現量。ヒトメラノーマ組織(良性腫瘍: nevus、メラノーマ: melanoma)におけるBRP44L mRNAの発現量をリアルタイムPCRを用いて測定した。ヒトメラノーマ組織における発現量は良性腫瘍と比較して大きく減少している。Expression level of BRP44L gene in human melanoma tissue. The expression level of BRP44L mRNA in human melanoma tissue (benign tumor: nevus, melanoma: melanoma) was measured using real-time PCR. The expression level in human melanoma tissue is greatly reduced compared to benign tumors. PDZRN3発現抑制によるin vitro浸潤能(転移能)の変化。shRNA強制発現ベクターを用い、マウスメラノーマ細胞株(B16F10)においてPDZRN3の発現が低下した安定株を樹立し(a)、各安定株の浸潤能を浸潤アッセイ(invasion assay)によって測定した(b)。PDZRN3の発現量低下は、メラノーマ細胞が本来有する浸潤能を大きく阻害する。Change of in vitro invasion ability (metastasis ability) by suppressing PDZRN3 expression. Using a shRNA forced expression vector, stable strains with reduced PDZRN3 expression were established in a mouse melanoma cell line (B16F10) (a), and the invasive ability of each stable strain was measured by an invasion assay (invasion assay) (b). Reduction in the expression level of PDZRN3 greatly inhibits the invasive ability inherent in melanoma cells. PDZRN3発現抑制によるin vivo浸潤能(転移能)の変化。shRNA強制発現ベクターを用い、マウスメラノーマ細胞株(B16F10)においてPDZRN3の発現が低下した安定株を樹立した。各安定株の浸潤能を調べるために、安定株をヌードマウス尾部静脈へ注入し、その後の肺への転移活性を調査した(a)。PDZRN3の発現量低下は、メラノーマ細胞の肺への浸潤(転移)を大きく阻害する。一方、各安定株における浸潤能関連シグナル分子(FAK)の活性化(リン酸化)レベルを調査した。全てのPDZRN3発現抑制クローンでFAKのリン酸化(活性)レベルが低下した(b)Changes in invasion ability (metastasis ability) in vivo by suppressing PDZRN3 expression. Using a shRNA forced expression vector, a stable strain in which PDZRN3 expression was reduced in a mouse melanoma cell line (B16F10) was established. In order to examine the invasive ability of each stable strain, the stable strain was injected into the tail vein of nude mice, and the subsequent metastatic activity to the lung was investigated (a). Reduction in the expression level of PDZRN3 greatly inhibits melanoma cell infiltration (metastasis) into the lung. On the other hand, the level of activation (phosphorylation) of invasive ability-related signal molecule (FAK) in each stable strain was investigated. All PDZRN3 expression-suppressed clones had decreased FAK phosphorylation (activity) levels (b) DTX3L発現抑制によるin vitro浸潤能(転移能)の変化(マウスメラノーマ細胞株)。shRNA強制発現ベクターを用い、マウスメラノーマ細胞株(B16F10)においてDTX3Lの発現が低下した安定株を樹立し、各安定株の浸潤能を浸潤アッセイによって測定すると共に(A)、浸潤に関与する細胞内シグナル分子の活性を測定した(B)。DTX3Lの発現量低下は、Fak、Pi3k、Aktシグナルの活性を抑制し、マウスメラノーマ細胞が本来有する浸潤能を大きく阻害する。Changes in invitro invasion ability (metastasis ability) by suppressing DTX3L expression (mouse melanoma cell line). Establish stable strains with reduced DTX3L expression in mouse melanoma cell lines (B16F10) using shRNA forced expression vectors, and measure the infiltrating capacity of each stable strain by invasion assay (A) The activity of the signal molecule was measured (B). Decreasing the expression level of DTX3L suppresses the activity of Fak, Pi3k, and Akt signals, and greatly inhibits the invasion ability inherent in mouse melanoma cells. DTX3L発現抑制によるin vitro浸潤能(転移能)の変化(ヒトメラノーマ細胞株)。shRNA強制発現ベクターを用い、ヒトメラノーマ細胞株(G361)においてDTX3Lの発現が低下した安定株を樹立し、各安定株の浸潤能を浸潤アッセイによって測定すると共に(A)、浸潤に関与する細胞内シグナル分子の活性を測定した(B)。DTX3Lの発現量低下は、Fak、Pi3k、Aktシグナルの活性を抑制し、ヒトメラノーマ細胞が本来有する浸潤能を大きく阻害する。Change of in vitro invasion ability (metastasis ability) by suppressing DTX3L expression (human melanoma cell line). Establish stable strains with reduced expression of DTX3L in human melanoma cell line (G361) using shRNA forced expression vector, and measure the invasive ability of each stable strain by invasion assay (A) The activity of the signal molecule was measured (B). Decreasing the expression level of DTX3L suppresses the activities of Fak, Pi3k, and Akt signals, and greatly inhibits the invasive ability inherent to human melanoma cells. DTX3L発現抑制によるin vivo浸潤能(転移能)の変化。shRNA強制発現ベクターを用い、マウスメラノーマ細胞株(B16F10)においてDTX3Lの発現が低下した安定株を樹立し、各安定株の浸潤能を調べるために、安定株をヌードマウス尾部静脈へ注入し、その後の肺への転移活性を調査した。A)注入した細胞はGFPを発現するため、肺転移した細胞を可視化できる。B)肺転移した細胞株由来腫瘍の組織切片。C)肺転移した腫瘍数の比較。DTX3Lの発現量低下は、メラノーマ細胞の肺への浸潤(転移)を大きく阻害する。Change in in vivo invasion ability (metastasis ability) by suppressing DTX3L expression. In order to establish stable strains with reduced DTX3L expression in mouse melanoma cell line (B16F10) using shRNA forced expression vector, and to examine the invasive ability of each stable strain, stable strains were injected into the tail vein of nude mice, and then The lung metastasis activity was investigated. A) Since the injected cells express GFP, the lung metastasized cells can be visualized. B) Tissue section of a tumor derived from a lung cell line. C) Comparison of the number of tumors with lung metastases. Decreased expression level of DTX3L greatly inhibits infiltration (metastasis) of melanoma cells into the lung. 薬剤耐性メラノーマ細胞に対するDTX3L機能阻害の効果。ヒトメラノーマ細胞株(A375P)に既存のメラノーマ分子標的薬PLX4720を長期暴露し耐性株を作製した。siRNA導入によりDTX3Lの発現を低下をさせた場合(A)の浸潤能への効果を浸潤アッセイによって測定した(B)。PLX耐性メラノーマ細胞に対してもDTX3Lの発現抑制は効果的であり、既存の分子標的薬がもつ問題を解決できる。Effect of DTX3L function inhibition on drug resistant melanoma cells. A human melanoma cell line (A375P) was exposed to the existing melanoma molecular target drug PLX4720 for a long period of time to create a resistant strain. When the expression of DTX3L was reduced by siRNA introduction (A), the effect on invasive ability was measured by an invasion assay (B). Suppressing DTX3L expression is also effective against PLX-resistant melanoma cells, and can solve the problems of existing molecular targeting drugs. CSS3強制発現によるin vivo浸潤能(転移能)の変化。マウスメラノーマ細胞株(B16F10)においてCSS3を強制発現させた安定株を樹立し、各安定株の浸潤能を浸潤アッセイによって測定した。CSS3の強制発現は、メラノーマ細胞が本来有する浸潤能を大きく活性化する。*P<0.05Change in invasion ability (metastasis ability) in vivo by CSS3 forced expression. A stable strain in which CSS3 was forcibly expressed in a mouse melanoma cell line (B16F10) was established, and the invasion ability of each stable strain was measured by an invasion assay. Forced expression of CSS3 greatly activates the invasive ability inherent in melanoma cells. * P <0.05 CSS3発現抑制による浸潤能(転移能)の変化。a) shRNA強制発現ベクターを用い、CSS3を強制発現させたマウスメラノーマ細胞株(B16F10 FLAG-CSS3)においてCSS3の発現を低下させた安定株を樹立し、各安定株の浸潤能を浸潤アッセイによって測定した。CSS3の発現量低下は、メラノーマ細胞が本来有する浸潤能を阻害する。b) CSS3強制発現株(+CSS3)、発現抑制安定株(CSS3 sh)をヌードマウス尾部静脈へ細胞注入し、その後の肺への転移活性を調査した。CCS3強制発現によって肺への転移数は増加し、発現抑制によって転移数は減少した。Changes in invasion ability (metastasis ability) by suppressing CSS3 expression. a) Establish a stable strain with reduced CSS3 expression in a mouse melanoma cell line (B16F10 FLAG-CSS3) in which CSS3 was forcibly expressed using a shRNA forced expression vector, and measure the invasion ability of each stable strain by an invasion assay did. Decrease in the expression level of CSS3 inhibits the invasive ability inherent in melanoma cells. b) A CSS3 forced expression strain (+ CSS3) and an expression-suppressed stable strain (CSS3 sh) were injected into the tail vein of nude mice, and the subsequent metastatic activity to the lung was investigated. The number of metastases to the lung increased by CCS3 forced expression, and the number of metastases decreased by suppression of the expression. BRP44L強制発現よる、抗癌剤に対する反応の変化。ヒトメラノーマ細胞株SKMel28 (SK-GFP#6)と、BRP44Lを強制発現させた安定株(SK-B#7、SK-B#8)に対し、抗癌剤の1種エトポシド処理を行うことで細胞死を誘導し、細胞生存率を測定した。BRP44L高発現下ではエトポシドによる細胞死誘導がより強く誘導されたことから、BRP44Lの強制発現は、抗癌剤に対する感受性を高める可能性がある。Change in response to anticancer drugs by forced expression of BRP44L. Cell death by treating human melanoma cell line SKMel28 (SK-GFP # 6) and stable strains forcibly expressing BRP44L (SK-B # 7, SK-B # 8) with one kind of etoposide as an anticancer agent And cell viability was measured. Under the high expression of BRP44L, cell death induction by etoposide was more strongly induced, so forced expression of BRP44L may increase the sensitivity to anticancer agents.
1.メラノーマ特異的バイオマーカー
 本発明の第1の局面はメラノーマ特異的バイオマーカーに関する。本明細書において「メラノーマ特異的バイオマーカー」とは、メラノーマの指標となる生体分子のことをいう。メラノーマ特異的バイオマーカーは、後述の通り、メラノーマであるか否かの判定、及びメラノーマの悪性度の判定に有用である。本発明のバイオマーカーは、例えば、メラノーマに罹患している又は罹患している可能性のある患者、或いは当該患者に由来する試料/検体に対して適用される。
1. Melanoma-specific biomarker The first aspect of the present invention relates to a melanoma-specific biomarker. In the present specification, the “melanoma-specific biomarker” refers to a biomolecule that serves as an indicator of melanoma. As will be described later, the melanoma-specific biomarker is useful for determining whether or not it is a melanoma and for determining the malignancy of melanoma. The biomarker of the present invention is applied to, for example, a patient suffering from or possibly suffering from melanoma, or a sample / analyte derived from the patient.
 本明細書において「生体分子」とは、生体中に見出される分子(化合物)をいう。本発明では特定の生体分子をバイオマーカーとして用いるが、その利用(典型的にはメラノサイト系腫瘍検査法への適用)に際しては、生体から分離された試料/検体中の生体分子が用いられることになる。 In the present specification, “biomolecule” refers to a molecule (compound) found in the living body. In the present invention, a specific biomolecule is used as a biomarker. In its use (typically, application to a melanocyte-based tumor examination method), a biomolecule in a sample / specimen separated from a living body is used. Become.
 本発明のバイオマーカーは、メラノサイト系腫瘍の悪性度との相関(言い換えれば、メラノーマ特異的な発現レベルの上昇又は低下)を認めた生体分子からなり、メラノサイト系腫瘍の悪性度を評価する上で有用な指標である。本発明のバイオマーカーは、PDZRN3遺伝子、PDZRN3タンパク質、DTX3L遺伝子、DTX3Lタンパク質、CSS3遺伝子、CSS3タンパク質、BRP44L遺伝子又はBRP44Lタンパク質からなる。説明の便宜上、特に言及しない場合には、遺伝子シンボルを用いて遺伝子とタンパク質を包括的に表現する(例えば「PDZRN3」はPDZRN3遺伝子とPDZRN3タンパク質の両者を一括して表す)。本発明のバイオマーカーを構成する分子の特定のために、公共のデータベースに登録された各分子の配列(遺伝子配列、アミノ酸配列)を以下に示す。
 PDZRN3:配列番号1(遺伝子配列、NCBI nucleotide database Accession No.: NM_015009)、配列番号2(アミノ酸配列、NCBI protein database Accession No.: NP_055824)
 DTX3L:配列番号3(遺伝子配列、NCBI nucleotide database Accession No.: NM_138287)、配列番号4(アミノ酸配列、NCBI protein database Accession No.: NP_612144)
 CSS3:配列番号5(遺伝子配列、NCBI nucleotide database Accession No.: NM_175856)、配列番号6(アミノ酸配列、NCBI protein database Accession No.: NP_787052)
 BRP44L:配列番号7(遺伝子配列、NCBI nucleotide database Accession No.: NM_016098)、配列番号8(アミノ酸配列、NCBI protein database Accession No.: NP_057182)
The biomarker of the present invention comprises a biomolecule that has been correlated with the malignancy of melanocyte tumors (in other words, an increase or decrease in melanoma-specific expression level), and is used for evaluating the malignancy of melanocyte tumors. It is a useful indicator. The biomarker of the present invention consists of PDZRN3 gene, PDZRN3 protein, DTX3L gene, DTX3L protein, CSS3 gene, CSS3 protein, BRP44L gene or BRP44L protein. For convenience of explanation, unless otherwise mentioned, genes and proteins are comprehensively expressed using gene symbols (for example, “PDZRN3” represents both the PDZRN3 gene and the PDZRN3 protein collectively). In order to identify the molecules constituting the biomarker of the present invention, the sequences (gene sequences and amino acid sequences) of each molecule registered in a public database are shown below.
PDZRN3: SEQ ID NO: 1 (gene sequence, NCBI nucleotide database Accession No .: NM_015009), SEQ ID NO: 2 (amino acid sequence, NCBI protein database Accession No .: NP_055824)
DTX3L: SEQ ID NO: 3 (gene sequence, NCBI nucleotide database Accession No .: NM_138287), SEQ ID NO: 4 (amino acid sequence, NCBI protein database Accession No .: NP_612144)
CSS3: SEQ ID NO: 5 (gene sequence, NCBI nucleotide database Accession No .: NM_175856), SEQ ID NO: 6 (amino acid sequence, NCBI protein database Accession No .: NP_787052)
BRP44L: SEQ ID NO: 7 (gene sequence, NCBI nucleotide database Accession No .: NM_016098), SEQ ID NO: 8 (amino acid sequence, NCBI protein database Accession No .: NP_057182)
2.メラノーマ系腫瘍検査法
 本発明の第2の局面は本発明のバイオマーカーの用途に関し、メラノサイト系腫瘍の検査法(以下、「本発明の検査法」とも呼ぶ)を提供する。本発明の検査法は、メラノサイト系腫瘍の悪性度を判定するための手段として有用である。悪性のメラノライト系腫瘍、即ちメラノーマの占める割合は皮膚癌の5%程度でしかないが、転移性が高く、皮膚癌の死者数の80%をも占める。このことから、メラノーマは皮膚癌の中でも最も悪性度の高い癌の一つといわれている。本発明の検査法はメラノサイト系腫瘍を診断するために有用な情報を与え、メラノーマの予防及び治療に貢献する。本発明の検査法によればメラノサイト系腫瘍の悪性度を簡便且つ客観的に判定することが可能となる。
2. Melanoma Tumor Test Method The second aspect of the present invention relates to the use of the biomarker of the present invention, and provides a test method for melanocyte tumor (hereinafter also referred to as “test method of the present invention”). The test method of the present invention is useful as a means for determining the malignancy of a melanocyte tumor. Malignant melanoline tumors, that is, melanoma accounts for only about 5% of skin cancer, but it is highly metastatic and accounts for 80% of skin cancer deaths. For this reason, melanoma is said to be one of the most malignant cancers among skin cancers. The test method of the present invention provides useful information for diagnosing melanocyte tumors and contributes to the prevention and treatment of melanoma. According to the test method of the present invention, it is possible to easily and objectively determine the malignancy of a melanocyte tumor.
 本発明の検査法では、被検者由来の検体中における、本発明のバイオマーカーのレベルが指標として用いられる。ここでの「レベル」は、典型的には「量」ないし「濃度」を意味する。但し、慣例及び技術常識に従い、検出対象の分子を検出できるか否か(即ち見かけ上の存在の有無)を表す場合にも用語「レベル」が用いられる。 In the test method of the present invention, the level of the biomarker of the present invention in a specimen derived from a subject is used as an index. Here, “level” typically means “amount” or “concentration”. However, the term “level” is also used to indicate whether or not a molecule to be detected can be detected (ie, the presence or absence of an apparent presence) in accordance with common practice and common technical knowledge.
 本発明では、大別して4種類のバイオマーカー(PDZRN3、DTX3L、CSS3、BRP44L)を単独又は任意に組み合わせて用いることができる。バイオマーカーを使い分けることで様々なタイプのメラノサイト系腫瘍に対応可能となる。即ち、本発明は幅広い症例に対処することができるという利点も有する。 In the present invention, four types of biomarkers (PDZRN3, DTX3L, CSS3, BRP44L) can be used alone or in any combination. Different types of melanocyte tumors can be handled by using different biomarkers. That is, the present invention has an advantage that a wide range of cases can be dealt with.
 基本的には、併用するバイオマーカーの種類が多い程、検査精度や信頼性等が向上する。そこで、好ましくは2種類以上(例えば、PDZRN3とDTX3Lの組合せ、DTX3LとCSS3の組合せ、CSS3とBRP44Lの組合せ)、更に好ましくは3種類以上を併用する。特に好ましい態様では、上記4種類の全部を併用する。後述の実施例に示す通り、BRP44Lは他の分子(PDZRN3、DTX3L、CSS3)とは対照的に、メラノーマ細胞で発現量が低下するという特徴的な傾向を示した。この事実を考慮すると、他のバイオマーカー(PDZRN3、DTX3L、CSS3の中の一又は二以上)とBRP44Lを併用すれば、腫瘍の病理標本における病理診断精度の向上等の効果を期待できる。尚、求められる精度や検査の簡便性等を考慮し、採用するバイオマーカーの数、種類を決定すればよい。 Basically, the more types of biomarkers that are used together, the better the inspection accuracy and reliability. Therefore, preferably two or more types (for example, a combination of PDZRN3 and DTX3L, a combination of DTX3L and CSS3, a combination of CSS3 and BRP44L), more preferably three or more types are used in combination. In a particularly preferred embodiment, all of the above four types are used in combination. In contrast to other molecules (PDZRN3, DTX3L, CSS3), BRP44L showed a characteristic tendency that the expression level decreased in melanoma cells, as shown in Examples described later. In consideration of this fact, the use of BRP44L in combination with other biomarkers (one or more of PDZRN3, DTX3L, and CSS3) can be expected to have an effect of improving the accuracy of pathological diagnosis in a pathological specimen of a tumor. Note that the number and type of biomarkers to be employed may be determined in consideration of the required accuracy and the ease of inspection.
 典型的には、本発明の検査法では以下のステップを行う。
 (1)被検者由来の検体を用意するステップ
 (2)前記検体中の一又は二以上の前記生体分子(即ち、指標として採用した一又は二以上のバイオマーカー)を検出するステップ
 (3)検出結果に基づいて、メラノサイト系腫瘍の悪性度を判定するステップ
Typically, the inspection method of the present invention performs the following steps.
(1) A step of preparing a specimen derived from a subject (2) A step of detecting one or more biomolecules in the specimen (that is, one or more biomarkers employed as an index) (3) A step of determining the malignancy of the melanocyte tumor based on the detection result
 ステップ(1)では被検者由来の検体を用意する。検体としては被検者の皮膚組織、血液、血漿、血清、尿、唾液、汗又は腫瘍組織等を用いることができる。被検者は特に限定されない。即ち、メラノサイト系腫瘍の悪性度の判定が必要な者に対して広く本発明を適用することができる。「メラノサイト系腫瘍の悪性度の判定が必要な者」は典型的にはメラノサイト系腫瘍を発症している者であるが、メラノサイト系腫瘍の発症が疑われるもの(潜在的患者)を被検者としてもよい。本発明の検査法によれば、バイオマーカー(生体分子)のレベルという客観的な指標に基づいて、メラノサイト系腫瘍の悪性度を判定できる。判定結果は、メラノサイト系腫瘍の診断に有用な情報となり、より適切な治療方針の決定(効果的な治療法の選択など)に役立つ。従って、本発明は、治療効果の向上や患者のQOL(Quality of Life、生活の質)の向上に貢献する。メラノサイト系腫瘍の病理診断においては、熟練した検査技師や医師であっても判断に迷うことがある。本発明がもたらす客観性の高いデータは、特にこのような場合において、補助的でありながらも有用性の高い情報を提供する。 In step (1), a specimen derived from the subject is prepared. As the specimen, skin tissue, blood, plasma, serum, urine, saliva, sweat, tumor tissue or the like of the subject can be used. The subject is not particularly limited. That is, the present invention can be widely applied to those who need to determine the malignancy of melanocyte tumors. “A person who needs to determine the malignancy of a melanocyte tumor” is typically a person who has developed a melanocyte tumor, but a subject who is suspected of developing a melanocyte tumor (potential patient) It is good. According to the test method of the present invention, the malignancy of a melanocyte tumor can be determined based on an objective index such as the level of a biomarker (biomolecule). The determination result is useful information for diagnosing melanocyte tumors, and is useful for determining a more appropriate treatment policy (selecting an effective treatment method, etc.). Therefore, the present invention contributes to the improvement of the therapeutic effect and the improvement of the patient's QOL (Quality of Life). In pathological diagnosis of melanocyte tumors, even a skilled laboratory technician or doctor may be at a loss. The highly objective data provided by the present invention provides information that is auxiliary but highly useful, especially in such cases.
 ステップ(2)では検体中におけるバイオマーカーを検出する。バイオマーカーのレベルを厳密に定量することは必須でない。即ち、後続のステップ(3)においてメラノサイト系腫瘍の悪性度が判定可能となる程度にバイオマーカーのレベルを検出すればよい。例えば、検体中のバイオマーカーのレベルが所定の基準値を超えるか否かが判別可能なように検出を行うこともできる。 In step (2), biomarkers in the specimen are detected. It is not essential to strictly quantify the level of the biomarker. That is, the level of the biomarker may be detected to the extent that the malignancy of the melanocyte tumor can be determined in the subsequent step (3). For example, detection can be performed so that it can be determined whether or not the level of the biomarker in the sample exceeds a predetermined reference value.
 バイオマーカーの検出方法は特に限定されない。採用するバイオマーカーが特定の遺伝子である場合には、当該遺伝子のmRNAを、RT-PCR等の核酸増幅反応を利用した方法で定量することによって検出可能である。核酸増幅反応としては、PCR(Polymerase chain reaction)法若しくはその変法の他、LAMP(Loop-Mediated Isothermal Amplification)法(Tsugunori Notomi et al. Nucleic Acids Research, Vol.28, No.12, e63, 2000; Kentaro Nagamine, Keiko Watanabe et al. Clinical Chemistry, Vol.47, No.9, 1742-1743, 2001)、ICAN(Isothermal and Chimeric primer-initiated Amplification of Nucleic acids)法(特許第3433929号、特許第3883476号)、NASBA(Nucleic Acid Sequence-Based Amplification)法、LCR(Ligase Chain Reaction)法、3SR(Self-sustained Sequence Replication)法、SDA(Standard Displacement Amplification)法、TMA(Transcription Mediated Amplification)法、RCA(Rolling Circle Amplification)等を採用することができる。 検 出 Biomarker detection method is not particularly limited. When the biomarker adopted is a specific gene, it can be detected by quantifying the mRNA of the gene by a method using a nucleic acid amplification reaction such as RT-PCR. Nucleic acid amplification reactions include PCR (Polymerase reaction) method or its modified method, and LAMP (Loop-Mediated Isothermal Amplification) method (Tsugunori Notomi et al. Nucleic Acids Research, Vol.28, No.12, e63, 2000) ; Kentaro Nagamine, Keiko Watanabe et al. Clinical Chemistry, Vol.47, No.9, 1742-1743, 2001), ICAN (Isothermal and Chimeric primer-initiated Amplification of Nucleic acids) (Patent No. 3433834) ), NASBA (Nucleic Acid Sequence-Based Amplification) method, LCR (Ligase Chain Reaction) method, 3SR (Self-sustained Sequence Replication) method, SDA (Standard Displacement Amplification) method, TMA (Transcription Medium Amplification) method, RCA ( Rolling Circle Amplification) can be used.
 一方、採用するバイオマーカーが特定のタンパク質である場合には、好ましくは免疫学的手法を利用してバイオマーカーを検出する。免疫学的手法によれば迅速且つ感度のよい検出が可能である。また、操作も簡便である。免疫学的手法による測定では、採用するバイオマーカーに特異的結合性を有する物質を使用する。当該物質としては通常は抗体が用いられるが、当該バイオマーカーに特異的結合性を有し、その結合量を測定可能な物質であれば抗体に限らず採用できる。尚、市販の抗体に限らず、免疫学的手法、ファージディスプレイ法、リボソームディスプレイ法などを利用して新たに調製した抗体を使用してもよい。 On the other hand, when the biomarker employed is a specific protein, the biomarker is preferably detected using an immunological technique. According to immunological techniques, rapid and sensitive detection is possible. Also, the operation is simple. In measurement by an immunological technique, a substance having specific binding property to the biomarker to be used is used. As the substance, an antibody is usually used, but any substance can be used as long as it has a specific binding property to the biomarker and can measure the binding amount. In addition, not only a commercially available antibody but the antibody newly prepared using the immunological method, the phage display method, the ribosome display method etc. may be used.
 測定法として、免疫組織化学、蛍光免疫測定法(FIA法)、酵素免疫測定法(EIA法)、放射免疫測定法(RIA法)、ウエスタンブロット法を例示することができる。免疫組織化学的染色法によれば、迅速に且つ感度よく検出対象を検出できる。また、操作も簡便である。従って、検出に伴う被検者(患者)への負担も小さくなる。生体組織の免疫組織化学的染色では、一般に、(1)固定・パラフィン包埋(又は凍結包埋)、(2)脱パラフィン(凍結包埋の場合は不要)、(3)一次抗体反応、(4)標識試薬の添加、(5)発色反応、及び(6)脱水・透徹・封入の操作を順に行う。必要に応じて、一次抗体反応の前に、抗原賦活処理、内因性ペルオキシダーゼ除去処理(標識物質としてペルオキシダーゼを使用する場合)、非特異的反応の阻害(ウシ血清アルブミン溶液などによる処理)等が行われる。また、必要に応じて、脱水・透徹・封入の前に核染色(例えばマイヤーのヘマトキシリンを使用できる)が行われる。尚、生体組織の免疫組織化学的染色法については様々な文献及び成書を参照することができる(例えば、「酵素抗体法、改訂第3版」、渡辺慶一、中根一穂編集、学際企画)。 Examples of measurement methods include immunohistochemistry, fluorescence immunoassay (FIA method), enzyme immunoassay (EIA method), radioimmunoassay (RIA method), and Western blot method. According to the immunohistochemical staining method, the detection target can be detected quickly and with high sensitivity. Also, the operation is simple. Therefore, the burden on the subject (patient) accompanying the detection is reduced. In immunohistochemical staining of living tissues, generally, (1) fixation / paraffin embedding (or frozen embedding), (2) deparaffinization (not required for free embedding), (3) primary antibody reaction, ( 4) Add the labeling reagent, (5) color reaction, and (6) dehydration, penetration, and encapsulation. If necessary, prior to the primary antibody reaction, antigen activation treatment, endogenous peroxidase removal treatment (when peroxidase is used as a labeling substance), nonspecific reaction inhibition (treatment with bovine serum albumin solution, etc.) are performed. Is called. If necessary, nuclear staining (for example, Mayer's hematoxylin can be used) is performed before dehydration, penetration, and encapsulation. Various documents and books can be referred to for immunohistochemical staining of biological tissues (for example, “Enzyme Antibody Method, Revised 3rd Edition”, edited by Keiichi Watanabe and Kazuho Nakane, interdisciplinary project).
 ステップ(3)では、検出結果に基づいてメラノサイト系腫瘍の悪性度を判定する。精度のよい判定を可能にするため、ステップ(2)で得られた検出値を対照検体(コントロール)の検出値と比較した上で判定を行うとよい。コントロールには例えば、健常者の皮膚組織のバイオマーカーレベル、又は母斑(良性)のバイオマーカーレベルを用いることができる。 In step (3), the malignancy of the melanocyte tumor is determined based on the detection result. In order to enable accurate determination, it is preferable to perform the determination after comparing the detection value obtained in step (2) with the detection value of the control sample (control). For the control, for example, the biomarker level of healthy human skin tissue or the biomarker level of nevi (benign) can be used.
 悪性度の判定は定性的、定量的のいずれであってもよい。尚、ここでの判定は、その判定基準から明らかな通り、医師や検査技師など専門知識を有する者の判断によらずとも自動的/機械的に行うことができる。 The determination of malignancy may be either qualitative or quantitative. It should be noted that the determination here can be automatically / mechanically performed without depending on the determination of a person having specialized knowledge such as a doctor or a laboratory technician, as is apparent from the determination criteria.
 本発明のバイオマーカーは、発現レベルの上昇がメラノサイト系腫瘍の悪性度と相関するバイオマーカー(PDZRN3、DTX3L及びCSS3)と、発現レベルの低下がメラノサイト系腫瘍の悪性度と相関するバイオマーカー(BRP44L)の二種類に分類することができる。以下、説明の便宜上、前者を第1グループのバイオマーカー、後者を第2グループのバイオマーカーと呼ぶ。典型的には、各バイオマーカーについて以下の基準が採用される。言うまでもないが、「検出値が高いと悪性度が高い」との基準は「検出値が低いと悪性度が低い」との基準と同義である(その他の基準についても同様)。 The biomarker of the present invention includes a biomarker (PDZRN3, DTX3L and CSS3) in which an increase in expression level correlates with malignancy of melanocyte tumor, and a biomarker (BRP44L) in which a decrease in expression level correlates with malignancy of melanocyte tumor )). Hereinafter, for convenience of explanation, the former is referred to as a first group of biomarkers, and the latter is referred to as a second group of biomarkers. Typically, the following criteria are employed for each biomarker. Needless to say, the criterion “high detection value is high malignancy” is synonymous with the criterion “low detection value is low malignancy” (the same applies to other criteria).
 「検出値が高いと悪性度が高い」との基準、又は「検出できると悪性度が高い」との基準を採用するバイオマーカー:第1グループのバイオマーカー(PDZRN3、DTX3L、CSS3) ”Biomarkers that adopt the criteria of“ High detection value means high malignancy ”or“ Detection is high malignancy ”: Biomarkers of the first group (PDZRN3, DTX3L, CSS3)
 「検出値が低いと悪性度が高い」との基準、又は「検出できないと悪性度が高い」との基準を採用するバイオマーカー:第2グループのバイオマーカー(BRP44L) ”Biomarker that adopts the criterion of“ high malignancy when detection value is low ”or the criterion of“ high malignancy when detection is not possible ”: Biomarker of the second group (BRP44L)
 バイオマーカー毎に基準値を設定することにより、より具体的な判定が可能になる。基準値を設定する場合の判定手法の具体例を以下に示す。 ∙ More specific determination is possible by setting a reference value for each biomarker. A specific example of the determination method when setting the reference value is shown below.
(第1グループのバイオマーカーの判定例1)
 基準値よりもバイオマーカーの検出値(検体中レベル)が高いときに「悪性である」又は「悪性の可能性が高い」と判定し、基準値よりもバイオマーカーの検出値(検体中レベル)が低いときに「良性である」又は「良性の可能性が高い」と判定する。
(First group biomarker determination example 1)
When the detected value of the biomarker (the level in the sample) is higher than the reference value, it is judged as “malignant” or “high possibility of malignancy”, and the detected value of the biomarker (the level in sample) is higher than the reference value Is low, it is judged as “benign” or “high possibility of benign”.
(第1グループのバイオマーカーの判定例2)
 良性と原発性メラノーマを区別する基準値1と、原発性メラノーマと転移性メラノーマを区別する基準値2(基準値1<基準値2)を設定し、以下の様に判定する。尚、「可能性が高い」との評価に代えて、具体的な確率(例えば、「80%以上の確率」と判定)を示すことにしてもよい。
 バイオマーカーの検出値<基準値1の場合: 「良性である」又は「良性の可能性が高い」
 基準値1≦バイオマーカーの検出値<基準値2の場合: 「原発性メラノーマである」又は「原発性メラノーマの可能性が高い」
 基準値2<バイオマーカーの検出値の場合: 「転移性メラノーマである」又は「転移性メラノーマの可能性が高い」
(Judgment example 2 of biomarker of the first group)
A reference value 1 for distinguishing benign and primary melanoma and a reference value 2 for distinguishing primary melanoma and metastatic melanoma are set (reference value 1 <reference value 2), and the determination is made as follows. It should be noted that a specific probability (for example, a determination of “80% or more probability”) may be shown instead of the evaluation “high possibility”.
When the detected value of the biomarker is smaller than the reference value 1: “benign” or “high possibility of benign”
When reference value 1 ≦ detection value of biomarker <reference value 2: “Primary melanoma” or “High possibility of primary melanoma”
Reference value 2 <detection value of biomarker: “metastatic melanoma” or “high possibility of metastatic melanoma”
(第1グループのバイオマーカーの判定例3)
 悪性度のレベルを分ける複数の基準値を設定し、以下の様に判定する。この例では、4つの基準値(a<b<c<d)を設定することにしているが、基準値の数及びそれに伴う悪性度のレベルの数はこれに限られるものではない。
 バイオマーカーの検出値<aの場合: 悪性度1
 a≦バイオマーカーの検出値<bの場合: 悪性度2
 b≦バイオマーカーの検出値<cの場合: 悪性度3
 c≦バイオマーカーの検出値<dの場合: 悪性度4
 d≦バイオマーカーの検出値の場合: 悪性度5
(Judgment example 3 of biomarker of the first group)
A plurality of reference values that divide the malignancy level are set and determined as follows. In this example, four reference values (a <b <c <d) are set, but the number of reference values and the number of malignancy levels associated therewith are not limited to this.
If the detected value of the biomarker <a: Grade 1
When a ≦ biomarker detection value <b: Grade 2
When b ≦ detection value of biomarker <c: Grade 3
When c ≦ biomarker detection value <d: Grade 4
When d ≦ biomarker detection value: Grade 5
(第2グループのバイオマーカーの判定例1)
 基準値よりもバイオマーカーの検出値(検体中レベル)が低いときに「悪性である」又は「悪性の可能性が高い」と判定し、基準値よりもバイオマーカーの検出値(検体中レベル)が高いときに「良性である」又は「良性の可能性が高い」と判定する。
(Example 2 of determination of biomarkers in the second group)
When the detected value of the biomarker (level in the sample) is lower than the reference value, it is determined as “malignant” or “high possibility of malignancy”, and the detected value of the biomarker (level in the sample) is higher than the reference value Is determined to be “benign” or “high possibility of benign”.
(第2グループのバイオマーカーの判定例2)
 良性と原発性メラノーマを区別する基準値1と、原発性メラノーマと転移性メラノーマを区別する基準値2(基準値1<基準値2)を設定し、以下の様に判定する。尚、「可能性が高い」との評価に代えて、具体的な確率(例えば、「80%以上の確率」と判定)を示すことにしてもよい。
 バイオマーカーの検出値<基準値1の場合: 「転移性メラノーマである」又は「転移性メラノーマの可能性が高い」
 基準値1≦バイオマーカーの検出値<基準値2の場合: 「原発性メラノーマである」又は「原発性メラノーマの可能性が高い」
 基準値2<バイオマーカーの検出値の場合: 「良性である」又は「良性の可能性が高い」
(Second group biomarker determination example 2)
A reference value 1 for distinguishing benign and primary melanoma and a reference value 2 for distinguishing primary melanoma and metastatic melanoma are set (reference value 1 <reference value 2), and the determination is made as follows. It should be noted that a specific probability (for example, a determination of “80% or more probability”) may be shown instead of the evaluation “high possibility”.
When the detection value of the biomarker is smaller than the reference value 1: “It is a metastatic melanoma” or “It has a high possibility of a metastatic melanoma”
When reference value 1 ≦ detection value of biomarker <reference value 2: “Primary melanoma” or “High possibility of primary melanoma”
Reference value 2 <detection value of biomarker: “benign” or “high possibility of benign”
(第2グループのバイオマーカーの判定例3)
 悪性度のレベルを分ける複数の基準値を設定し、以下の様に判定する。この例では、4つの基準値(a<b<c<d)を設定することにしているが、基準値の数及びそれに伴う悪性度のレベルの数はこれに限られるものではない。
 バイオマーカーの検出値<aの場合: 悪性度5
 a≦バイオマーカーの検出値<bの場合: 悪性度4
 b≦バイオマーカーの検出値<cの場合: 悪性度3
 c≦バイオマーカーの検出値<dの場合: 悪性度2
 d≦バイオマーカーの検出値の場合: 悪性度1
(Example 3 of determination of biomarkers of the second group)
A plurality of reference values that divide the malignancy level are set and determined as follows. In this example, four reference values (a <b <c <d) are set, but the number of reference values and the number of malignancy levels associated therewith are not limited to this.
Biomarker detection value <a: Grade 5
When a ≦ biomarker detection value <b: Grade 4
When b ≦ detection value of biomarker <c: Grade 3
When c ≦ biomarker detection value <d: Grade 2
If d ≤ biomarker detection value: Grade 1
 二種類以上のバイオマーカーを組み合わせて用いる場合には、例えば、バイオマーカー毎に判定結果を得た後、全ての判定結果を総合評価して最終的な判定結果を得ることにする。或いは、以下の例(この例ではバイオマーカー1、2はいずれも第1グループ)のように、バイオマーカーの検出値の組合せと判定結果を関連付けておくことにより、各バイオマーカーの検出値から直接判定結果を得ることにしてもよい。尚、三種類以上のバイオマーカーを組み合わせた場合も、以下の例に準じて判定結果を得ることができる。
 バイオマーカー1の検出値<a、バイオマーカー2の検出値<a’の場合 :悪性度1
 a≦バイオマーカー1の検出値<b、a’≦バイオマーカー2の検出値<b’、の場合 悪性度2
 b≦バイオマーカー1の検出値<c、b’≦バイオマーカー2の検出値<c’の場合 悪性度3
 c≦バイオマーカー1の検出値<d、c’≦バイオマーカー2の検出値<d’の場合 悪性度4
 d≦バイオマーカー1の検出値、d’≦バイオマーカー2の検出値の場合 悪性度5
When two or more types of biomarkers are used in combination, for example, after obtaining a determination result for each biomarker, all the determination results are comprehensively evaluated to obtain a final determination result. Alternatively, as shown in the following example (in this example, each of the biomarkers 1 and 2 is the first group), by associating the combination of the detection values of the biomarkers with the determination result, A determination result may be obtained. In addition, also when combining 3 or more types of biomarkers, a determination result can be obtained according to the following examples.
When detection value of biomarker 1 <a, detection value of biomarker 2 <a ′: Grade 1
When a ≦ detection value of biomarker 1 <b, a ′ ≦ detection value of biomarker 2 <b ′, Grade 2
When b ≦ detection value of biomarker 1 <c, b ′ ≦ detection value of biomarker 2 <c ′ Grade 3
When c ≦ detection value of biomarker 1 <d and c ′ ≦ detection value of biomarker 2 <d ′ Grade 4
When d ≦ detection value of biomarker 1 and d ′ ≦ detection value of biomarker 2 Grade 5
 二種類以上のバイオマーカーを組み合わせて用いる場合には、以下の(1)又は(2)の如く判定してもよい。
 (1)組合せに含まれるバイオマーカーの全てに関して陽性(第1グループのバイオマーカーの場合はカットオフ値以上、第2グループのバイオマーカーの場合はカットオフ値以下)である場合を「悪性」又は「悪性の可能性が高い」と判定し、それ以外の場合を「良性」又は「良性の可能性が高い」と判定する。
 (2)組合せに含まれるバイオマーカーの一つでも陽性(第1グループのバイオマーカーの場合はカットオフ値以上、第2グループのバイオマーカーの場合はカットオフ値以下)の場合を「悪性」又は「悪性の可能性が高い」と判定し、それ以外の場合を「良性」又は「良性の可能性が高い」と判定する。
When two or more types of biomarkers are used in combination, determination may be made as in the following (1) or (2).
(1) “malignant” or “malignant” when positive for all of the biomarkers included in the combination (greater than or equal to the cutoff value in the case of the first group biomarker and less than or equal to the cutoff value in the case of the second group biomarker) It is determined that “the possibility of malignancy is high”, and other cases are determined as “benign” or “high possibility of benign”.
(2) If any one of the biomarkers included in the combination is positive (in the case of the first group of biomarkers, the cut-off value or more, and in the case of the second group of biomarkers, the cut-off value or less), It is determined that “the possibility of malignancy is high”, and other cases are determined as “benign” or “high possibility of benign”.
 通常、組み合わせるバイオマーカーの種類及び数によって診断(検出)感度及び診断(検出)特異度が異なる。従って、目的に合わせて最適なバイオマーカーの組合せを選択するとよい。例えば、診断感度の高い組合せはスクリーニング的な検査に適する。対照的に、診断特異度の高い組み合わせは、より信頼性の高い判定が必要な検査(例えば2次検査や3次検査)に適する。診断感度及び診断特異度のバランスの異なる判定法を組み合わせることによって、効率化や確度ないし信頼性の向上を図ることが可能である。例えば、高い診断感度を与えるバイオマーカーの組合せを用いて絞り込んだ後(一次検査、スクリーニング検査)、高い診断特異度を与えるバイオマーカーの組合せを用いて最終的な判定を行う(2次検査)。このような2段階の判定に限らず、3段階以上の判定を行うことも可能である。 Usually, diagnosis (detection) sensitivity and diagnosis (detection) specificity vary depending on the type and number of biomarkers to be combined. Therefore, an optimal combination of biomarkers may be selected according to the purpose. For example, combinations with high diagnostic sensitivity are suitable for screening tests. In contrast, a combination with a high diagnostic specificity is suitable for a test that requires a more reliable determination (for example, a secondary test or a tertiary test). By combining determination methods with different balances of diagnostic sensitivity and diagnostic specificity, it is possible to improve efficiency and improve accuracy or reliability. For example, after narrowing down using a combination of biomarkers giving high diagnostic sensitivity (primary test, screening test), a final determination is made using a combination of biomarkers giving high diagnostic specificity (secondary test). Not only such a two-step determination but also a three-step or higher determination can be performed.
 判定区分の数、及び各判定区分に関連付けられるバイオマーカーのレベル及び判定結果はいずれも上記の例に何らとらわれることなく、予備実験等を通して任意に設定することができる。例えば、所定の基準値(閾値)を境界として悪性度の高低を判定する場合の「基準値」や、悪性度の高低に係る区分に関連づける「バイオマーカーのレベル範囲」は、多数の検体を用いた統計的解析によって決定することができる。 The number of judgment categories, the level of the biomarker associated with each judgment category, and the judgment results can be arbitrarily set through preliminary experiments or the like without being bound by the above example. For example, the “reference value” when judging the grade of malignancy with a predetermined reference value (threshold) as the boundary, and the “biomarker level range” associated with the classification related to the grade of malignancy use a large number of specimens. Can be determined by statistical analysis.
 本発明の一態様では判定結果をメラノーマの予後推定に用いる。この態様では、ステップ(3)の判定の結果に基づきメラノーマの予後を推定する。典型的には、悪性度が高いとの判定結果の場合に予後は悪い(予後不良)と推定し、悪性度が低いとの判定結果の場合に予後は良い(予後良好)と推定する。予め悪性度のレベルに対応させて予後のレベルを設定しておき(例えば、1:非常によい、2:よい、3:比較的よい、4:比較的悪い、5:悪い、6:非常によい、のように複数のレベルを設定する)、いずれのレベルに該当するかを決定することにしてもよい。 In one embodiment of the present invention, the determination result is used to estimate the prognosis of melanoma. In this aspect, the prognosis of melanoma is estimated based on the determination result of step (3). Typically, it is estimated that the prognosis is bad (poor prognosis) in the case of a determination result that the malignancy is high, and the prognosis is good (good prognosis) in the case of the determination result that the malignancy is low. The prognostic level is set in advance corresponding to the malignancy level (for example, 1: very good, 2: good, 3: relatively good, 4: relatively bad, 5: bad, 6: very good. It is also possible to determine which level corresponds to a plurality of levels.
 本発明の一態様では、同一の被検者について、ある時点で測定されたバイオマーカーのレベルと、過去に測定されたバイオマーカーのレベルとを比較し、バイオマーカーのレベルの増減の有無及び/又は増減の程度を調べる。その結果得られる、バイオマーカーの発現レベル変化に関するデータは、悪性度をモニターするため、治療効果を把握するため、或いは予後推定に有用な情報となる。具体的には例えば、バイオマーカーレベルの変動を根拠として、前回の検査から今回の検査までの間に悪性度が高くなった又は低くなった或いは変化がないとの判定を行うことができる。このような評価をメラノーマの治療と並行して行えば、治療効果の確認が行えることはもとより、メラノーマの再発の兆候を事前に把握することができる。これによって、より適切な治療方針の決定が可能となる。このように本発明は、治療効果の最大化及び患者のQOL(生活の質)向上に多大な貢献をし得る。 In one embodiment of the present invention, for the same subject, the level of a biomarker measured at a certain time point is compared with the level of a biomarker measured in the past, Or examine the degree of increase or decrease. The data regarding the change in the expression level of the biomarker obtained as a result is useful information for monitoring the malignancy, grasping the therapeutic effect, or estimating the prognosis. Specifically, for example, it can be determined that the grade of malignancy has increased or decreased or has not changed between the previous test and the current test based on the change in the biomarker level. If such evaluation is performed in parallel with the treatment of melanoma, not only can the therapeutic effect be confirmed, but also the signs of recurrence of melanoma can be grasped in advance. This makes it possible to determine a more appropriate treatment policy. Thus, the present invention can make a great contribution to maximizing the therapeutic effect and improving the patient's QOL (quality of life).
3.検査試薬・キット
 本発明はさらに、メラノサイト系腫瘍の悪性度を検査するための試薬及びキットも提供する。本発明の試薬は本発明のバイオマーカーに特異的結合性を示す物質(以下、「結合分子」と呼ぶ)からなる。結合分子の例として、バイオマーカーを特異的に認識する抗体、核酸アプタマー及びペプチドアプタマーを挙げることができる。結合分子は、採用するバイオマーカーに対する特異的結合性を有する限り、その種類や由来などは特に限定されない。また、抗体の場合、ポリクローナル抗体、オリゴクローナル抗体(数種~数十種の抗体の混合物)、及びモノクローナル抗体のいずれでもよい。ポリクローナル抗体又はオリゴクローナル抗体としては、動物免疫して得た抗血清由来のIgG画分のほか、抗原によるアフィニティー精製抗体を使用できる。Fab、Fab'、F(ab')2、scFv、dsFv抗体などの抗体断片であってもよい。
3. Test Reagents / Kits The present invention further provides reagents and kits for testing the malignancy of melanocyte tumors. The reagent of the present invention comprises a substance (hereinafter referred to as “binding molecule”) that exhibits specific binding to the biomarker of the present invention. Examples of binding molecules include antibodies, nucleic acid aptamers and peptide aptamers that specifically recognize biomarkers. The type and origin of the binding molecule are not particularly limited as long as it has specific binding properties for the biomarker employed. In the case of antibodies, any of polyclonal antibodies, oligoclonal antibodies (mixtures of several to several tens of antibodies), and monoclonal antibodies may be used. As a polyclonal antibody or an oligoclonal antibody, an anti-serum-derived IgG fraction obtained by animal immunization, or an affinity-purified antibody using an antigen can be used. Antibody fragments such as Fab, Fab ′, F (ab ′) 2 , scFv, and dsFv antibodies may also be used.
 結合分子は常法で調製すればよい。市販品が入手可能であれば、当該市販品を用いても良い。例えば、抗体であれば免疫学的手法、ファージディスプレイ法、リボソームディスプレイ法などを利用して調製することができる。免疫学的手法によるポリクローナル抗体の調製は次の手順で行うことができる。抗原(バイオマーカー又はその一部)を調製し、これを用いてマウスやラット或いはウサギ等の動物に免疫を施す。生体試料を精製することにより抗原を得ることができる。また、組換え型抗原を用いることもできる。組換え型抗原は、例えば、バイオマーカーをコードする遺伝子(遺伝子の一部であってもよい)を、ベクターを用いて適当な宿主に導入し、得られた組換え細胞内で発現させることにより調製することができる。 The binding molecule may be prepared by a conventional method. If a commercial item is available, the commercial item may be used. For example, antibodies can be prepared using immunological techniques, phage display methods, ribosome display methods, and the like. Preparation of a polyclonal antibody by an immunological technique can be performed by the following procedure. An antigen (biomarker or a part thereof) is prepared, and an animal such as a mouse, rat or rabbit is immunized using the antigen. An antigen can be obtained by purifying a biological sample. A recombinant antigen can also be used. A recombinant antigen can be obtained by, for example, introducing a gene encoding a biomarker (which may be a part of a gene) into a suitable host using a vector and expressing the gene in a recombinant cell obtained. Can be prepared.
 免疫惹起作用を増強するために、キャリアタンパク質を結合させた抗原を用いてもよい。キャリアタンパク質としてはKLH(Keyhole Limpet Hemocyanin)、BSA(Bovine Serum Albumin)、OVA(Ovalbumin)などが使用される。キャリアタンパク質の結合にはカルボジイミド法、グルタルアルデヒド法、ジアゾ縮合法、MBS(マレイミドベンゾイルオキシコハク酸イミド)法などを使用できる。一方、バイオマーカー(又はその一部)を、GST、βガラクトシダーゼ、マルトース結合タンパク、又はヒスチジン(His)タグ等との融合タンパク質として発現させた抗原を用いることもできる。このような融合タンパク質は、汎用的な方法により簡便に精製することができる。 In order to enhance the immunity-inducing action, an antigen to which a carrier protein is bound may be used. As the carrier protein, KLH (KeyholeHLimpet) Hemocyanin), BSA (Bovine Serum Albumin), OVA (Ovalbumin) and the like are used. The carbodiimide method, the glutaraldehyde method, the diazo condensation method, the MBS (maleimidobenzoyloxysuccinimide) method, etc. can be used for the coupling | bonding of carrier protein. On the other hand, an antigen in which a biomarker (or part thereof) is expressed as a fusion protein with GST, β-galactosidase, maltose-binding protein, histidine (His) tag or the like can also be used. Such a fusion protein can be easily purified by a general method.
 必要に応じて免疫を繰り返し、十分に抗体価が上昇した時点で採血し、遠心処理などによって血清を得る。得られた抗血清をアフィニティー精製し、ポリクローナル抗体とする。 Immunization is repeated as necessary, and blood is collected when the antibody titer has sufficiently increased, and serum is obtained by centrifugation or the like. The obtained antiserum is affinity purified to obtain a polyclonal antibody.
 一方、モノクローナル抗体については次の手順で調製することができる。まず、上記と同様の手順で免疫操作を実施する。必要に応じて免疫を繰り返し、十分に抗体価が上昇した時点で免疫動物から抗体産生細胞を摘出する。次に、得られた抗体産生細胞と骨髄腫細胞とを融合してハイブリドーマを得る。続いて、このハイブリドーマをモノクローナル化した後、目的タンパク質に対して高い特異性を有する抗体を産生するクローンを選択する。選択されたクローンの培養液を精製することによって目的の抗体が得られる。一方、ハイブリドーマを所望数以上に増殖させた後、これを動物(例えばマウス)の腹腔内に移植し、腹水内で増殖させて腹水を精製することにより目的の抗体を取得することもできる。上記培養液の精製又は腹水の精製には、プロテインG、プロテインA等を用いたアフィニティークロマトグラフィーが好適に用いられる。また、抗原を固相化したアフィニティークロマトグラフィーを用いることもできる。更には、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィー、硫安分画、及び遠心分離等の方法を用いることもできる。これらの方法は単独ないし任意に組み合わされて用いられる。 On the other hand, monoclonal antibodies can be prepared by the following procedure. First, an immunization operation is performed in the same procedure as described above. Immunization is repeated as necessary, and antibody-producing cells are removed from the immunized animal when the antibody titer sufficiently increases. Next, the obtained antibody-producing cells and myeloma cells are fused to obtain a hybridoma. Subsequently, after this hybridoma is monoclonalized, a clone that produces an antibody having high specificity for the target protein is selected. The target antibody can be obtained by purifying the culture medium of the selected clone. On the other hand, the desired antibody can be obtained by growing the hybridoma to a desired number or more, then transplanting it into the abdominal cavity of an animal (for example, a mouse), growing it in ascites, and purifying the ascites. For purification of the culture medium or ascites, affinity chromatography using protein G, protein A or the like is preferably used. Alternatively, affinity chromatography in which an antigen is immobilized may be used. Furthermore, methods such as ion exchange chromatography, gel filtration chromatography, ammonium sulfate fractionation, and centrifugation can also be used. These methods can be used alone or in any combination.
 バイオマーカーへの特異的結合性を保持することを条件として、得られた抗体に種々の改変を施すことができる。このような改変抗体を本発明の試薬としてもよい。 Various modifications can be made to the obtained antibody on condition that the specific binding property to the biomarker is maintained. Such a modified antibody may be used as the reagent of the present invention.
 特異的結合分子として標識化抗体を使用すれば、標識量を指標に結合抗体量を直接検出することが可能である。従って、より簡便な検査法を構築できる。その反面、標識物質を結合させた抗体を用意する必要があることに加えて、検出感度が一般に低くなるという問題点がある。そこで、標識物質を結合させた二次抗体を利用する方法、二次抗体と標識物質を結合させたポリマーを利用する方法など、間接的検出方法を利用することが好ましい。ここでの二次抗体とは、採用するバイオマーカーに特異的な抗体に対して特異的結合性を有する抗体である。例えば、バイオマーカーに特異的な抗体をウサギ抗体として調製した場合には抗ウサギIgG抗体を二次抗体として使用することができる。ウサギやヤギ、マウスなど様々な種の抗体に対して使用可能な標識二次抗体が市販されており(例えばフナコシ株式会社やコスモ・バイオ株式会社など)、本発明の試薬に応じて適切なものを適宜選択して使用することができる。 If a labeled antibody is used as the specific binding molecule, it is possible to directly detect the amount of the bound antibody using the labeled amount as an index. Therefore, a simpler inspection method can be constructed. On the other hand, in addition to the necessity of preparing an antibody to which a labeling substance is bound, there is a problem that detection sensitivity is generally lowered. Therefore, it is preferable to use an indirect detection method such as a method using a secondary antibody to which a labeling substance is bound or a method using a polymer to which a secondary antibody and a labeling substance are bound. The secondary antibody here is an antibody having a specific binding property to an antibody specific to the biomarker employed. For example, when an antibody specific for a biomarker is prepared as a rabbit antibody, an anti-rabbit IgG antibody can be used as a secondary antibody. Labeled secondary antibodies that can be used against various types of antibodies such as rabbits, goats, and mice are commercially available (for example, Funakoshi Co., Ltd., Cosmo Bio Co., Ltd., etc.) and are appropriate for the reagents of the present invention. Can be appropriately selected and used.
 標識物質の例は、ペルオキシダーゼ、マイクロペルオキシダーゼ、ホースラディッシュペルオキシダーゼ(HRP)、アルカリホスファターゼ、β-D-ガラクトシダーゼ、グルコースオキシダーゼ及びグルコース-6-リン酸脱水素酵素などの酵素、フルオレセインイソチオシアネート(FITC)、テトラメチルローダミンイソチオシアネート(TRITC)及びユーロピウムなどの蛍光物質、ルミノール、イソルミノール及びアクリジニウム誘導体などの化学発光物質、NADなどの補酵素、ビオチン、並びに131I及び125Iなどの放射性物質である。 Examples of labeling substances include peroxidase, microperoxidase, horseradish peroxidase (HRP), alkaline phosphatase, β-D-galactosidase, enzymes such as glucose oxidase and glucose-6-phosphate dehydrogenase, fluorescein isothiocyanate (FITC), Fluorescent materials such as tetramethylrhodamine isothiocyanate (TRITC) and europium, chemiluminescent materials such as luminol, isoluminol and acridinium derivatives, coenzymes such as NAD, biotin, and radioactive materials such as 131 I and 125 I.
 一態様では、本発明の試薬はその用途に合わせて固相化されている。固相化に用いる不溶性支持体は特に限定されない。例えばポリスチレン樹脂、ポリカーボネート樹脂、シリコン樹脂、ナイロン樹脂等の樹脂や、ガラス等の水に不溶性の物質からなる不溶性支持体を用いることができる。不溶性支持体への抗体の担持は物理吸着又は化学吸着によって行うことができる。 In one aspect, the reagent of the present invention is solid-phased according to its use. The insoluble support used for the solid phase is not particularly limited. For example, a resin such as polystyrene resin, polycarbonate resin, silicon resin, nylon resin, or an insoluble support made of a water-insoluble substance such as glass can be used. The antibody can be supported on the insoluble support by physical adsorption or chemical adsorption.
 本発明のキットは主要構成要素として本発明の試薬を含む。検査法を実施する際に使用するその他の試薬(緩衝液、ブロッキング用試薬、酵素の基質、発色試薬など)及び/又は装置ないし器具(容器、反応装置、蛍光リーダーなど)をキットに含めてもよい。また、標準試料として本発明のバイオマーカー分子又はその断片をキットに含めることが好ましい。尚、通常、本発明のキットには取り扱い説明書が添付される。 The kit of the present invention contains the reagent of the present invention as a main component. Other reagents (buffers, blocking reagents, enzyme substrates, coloring reagents, etc.) and / or devices or instruments (containers, reaction devices, fluorescent readers, etc.) used in performing the test method may be included in the kit. Good. Moreover, it is preferable to include the biomarker molecule of the present invention or a fragment thereof as a standard sample in a kit. Usually, an instruction manual is attached to the kit of the present invention.
4.メラノーマ治療薬
<標的遺伝子の発現抑制>
 本発明は更なる局面として、メラノーマ治療薬(以下、本発明の医薬と呼ぶ)を提供する。一態様では、本発明の医薬は標的遺伝子の発現を抑制する化合物を有効成分とする。ここでの標的遺伝子は、PDZRN3遺伝子、DTX3L遺伝子又はCSS3遺伝子である。標的遺伝子の発現を抑制する化合物とは、標的遺伝子の発現過程(転写、転写後調節、翻訳、翻訳後調節を含む)を抑制する化合物である。当該化合物の例は次の通りである。尚、本発明における「発現の抑制」は一過的抑制及び恒常的抑制のいずれでもよい。
 (a)標的遺伝子を標的とするsiRNA
 (b)標的遺伝子を標的とするsiRNAを細胞内で生成する核酸コンストラクト
 (c)標的遺伝子の発現を抑制する発現抑制配列と該配列にアニーリングする相補配列を有する一本鎖RNA
 (d)標的遺伝子の転写産物を標的とするアンチセンス核酸
 (e)標的遺伝子の転写産物を標的とするリボザイム
4). Melanoma treatment <Inhibition of target gene expression>
As a further aspect, the present invention provides a therapeutic agent for melanoma (hereinafter referred to as the medicament of the present invention). In one aspect, the medicament of the present invention comprises a compound that suppresses the expression of a target gene as an active ingredient. The target gene here is a PDZRN3 gene, a DTX3L gene, or a CSS3 gene. The compound that suppresses the expression of the target gene is a compound that suppresses the expression process of the target gene (including transcription, post-transcriptional regulation, translation, and post-translational regulation). Examples of the compound are as follows. In the present invention, “suppression of expression” may be either transient suppression or permanent suppression.
(a) siRNA targeting the target gene
(b) Nucleic acid construct that generates siRNA targeting the target gene in the cell (c) Single-stranded RNA having an expression suppressing sequence that suppresses the expression of the target gene and a complementary sequence that anneals to the sequence
(d) Antisense nucleic acid targeting the target gene transcript (e) Ribozyme targeting the target gene transcript
 上記(a)及び(b)は、いわゆるRNAi(RNA interference;RNA干渉)による発現抑制に利用される化合物である。換言すれば、上記(a)又は(b)の化合物を有効成分とする本発明の医薬によればRNAiにより標的遺伝子の発現を抑制することができる。RNAiは真核細胞内で引き起こすことが可能な、配列特異的な転写後遺伝子抑制のプロセスである。哺乳動物細胞に対するRNAiでは、標的mRNAの配列に対応する配列の短い二本鎖RNA(siRNA)が使用される。通常、siRNAは21~23塩基対である。哺乳動物細胞は二本鎖RNA(dsRNA)の影響を受ける2つの経路(配列特異的経路及び配列非特異的経路)を有することが知られている。配列特異的経路においては、比較的長いdsRNAが短い干渉性のRNA(即ちsiRNA)に分割される。他方、配列非特異的経路は、所定の長さ以上であれば配列に関係なく、任意のdsRNAによって惹起されると考えられている。この経路ではdsRNAが二つの酵素、即ち活性型となり翻訳開始因子eIF2をリン酸化することでタンパク質合成のすべてを停止させるPKRと、RNAase L活性化分子の合成に関与する2',5'オリゴアデニル酸シンターゼが活性化される。この非特異的経路の進行を最小限に留めるためには約30塩基対より短い二本鎖RNA(siRNA)を使用することが好ましい(Hunter et al. (1975) J Biol Chem 250: 409-17; Manche et al. (1992) Mol Cell Biol 12: 5239-48; Minks et al. (1979) J Biol Chem 254: 10180-3; 及び Elbashir et al. (2001) Nature 411: 494-8を参照されたい)。 The above (a) and (b) are compounds used for expression suppression by so-called RNAi (RNA interference). In other words, according to the medicament of the present invention containing the compound (a) or (b) as an active ingredient, the expression of the target gene can be suppressed by RNAi. RNAi is a sequence-specific post-transcriptional gene repression process that can occur in eukaryotic cells. In RNAi for mammalian cells, a short double-stranded RNA (siRNA) having a sequence corresponding to the sequence of the target mRNA is used. Usually siRNAs are 21-23 base pairs. Mammalian cells are known to have two pathways (sequence specific pathway and sequence non-specific pathway) that are affected by double-stranded RNA (dsRNA). In sequence-specific pathways, relatively long dsRNAs are split into short interfering RNAs (ie siRNAs). On the other hand, a sequence non-specific pathway is considered to be caused by an arbitrary dsRNA regardless of the sequence as long as it has a predetermined length or more. In this pathway, dsRNA is activated by two enzymes, namely PKR, which stops all protein synthesis by phosphorylating the translation initiation factor eIF2, and 2 ', 5' oligoadenyl, which is involved in the synthesis of RNAase L activation molecules. Acid synthase is activated. In order to minimize the progression of this non-specific pathway, it is preferable to use double stranded RNA (siRNA) shorter than about 30 base pairs (Hunter et al. (1975) J Biol Chem 250: -17409-17 Manche et al. (1992) Mol Cell Biol 12: 5239-48; Minks et al. (1979) J Biol Chem 254: 10180-3; and Elbashir et al. (2001) Nature 411: 494-8 Wanna)
 標的特異的なRNAiを生じさせるためには標的遺伝子のmRNA配列の一部と相同なセンスRNA及びこれに相補的なアンチセンスRNAからなるsiRNAを細胞内に導入するか、又は細胞内で発現させればよい。上記(a)は前者の方法に対応する化合物であり、同様に上記(b)は後者の方法に対応する化合物である。 In order to generate target-specific RNAi, a siRNA composed of a sense RNA homologous to a part of the mRNA sequence of the target gene and an antisense RNA complementary thereto is introduced into the cell or expressed in the cell. Just do it. The above (a) is a compound corresponding to the former method, and similarly the above (b) is a compound corresponding to the latter method.
 標的遺伝子(本発明の場合は標的遺伝子)を標的とするsiRNAは、通常、当該遺伝子のmRNAの配列における連続する領域と相同な配列からなるセンスRNAとその相補配列からなるアンチセンスRNAがハイブリダイズした二本鎖RNAである。ここでの「連続する領域」の長さは通常15~30塩基長、好ましくは18~23塩基長、より好ましくは19~21塩基長である。 The siRNA targeting the target gene (in the present invention, the target gene) usually hybridizes with a sense RNA consisting of a sequence homologous to a continuous region in the mRNA sequence of the gene and an antisense RNA consisting of its complementary sequence. Double stranded RNA. The length of the “continuous region” here is usually 15 to 30 bases, preferably 18 to 23 bases, more preferably 19 to 21 bases.
 末端に数塩基のオーバーハングを有する二本鎖RNAが高いRNAi効果を発揮することが知られている。そこで本発明においても、そのような構造のsiRNAを採用することが好ましい。オーバーハングを形成する塩基の長さは特に限定されないが、好ましくは2塩基長(例えばTT、UU)である。 It is known that double-stranded RNA having an overhang of several bases at the end exhibits a high RNAi effect. Therefore, in the present invention, it is preferable to employ siRNA having such a structure. The length of the base that forms the overhang is not particularly limited, but is preferably 2 bases (for example, TT, UU).
 修飾したRNAからなるsiRNAを用いることにしてもよい。ここでの修飾の例としてホスホロチオエート化、修飾塩基(例えば蛍光標識塩基)の使用が挙げられる。 SiRNA consisting of modified RNA may be used. Examples of modifications herein include phosphorothioation and the use of modified bases (eg, fluorescently labeled bases).
 siRNAの設計及び調製は常法で行うことができる。siRNAの設計には通常、標的配列に固有の配列(連続配列)が利用される。尚、適当な標的配列を選択するためのプログラム及びアルゴリズムが開発されている。 SiRNA can be designed and prepared by conventional methods. In designing siRNA, a sequence unique to a target sequence (continuous sequence) is usually used. Note that programs and algorithms for selecting an appropriate target sequence have been developed.
 上記(b)の「siRNAを細胞内で生成する核酸コンストラクト」とは、それを細胞に導入すると細胞内でのプロセスによって所望のsiRNA(標的遺伝子に対するRNAiを引き起こすsiRNA)が生ずる核酸性分子をいう。当該核酸コンストラクトの一つの例はshRNA(short hairpin RNA)である。shRNAは、センスRNAとアンチセンスRNAがループ構造部を介して連結された構造(ヘアピン構造)を有し、細胞内でループ構造部が切断されて二本鎖siRNAとなり、RNAi効果をもたらす。ループ構造部の長さは特に限定されないが、通常は3~23塩基である。 The “nucleic acid construct that generates siRNA in a cell” in (b) above refers to a nucleic acid molecule that, when introduced into a cell, produces a desired siRNA (siRNA that causes RNAi against a target gene) by a process in the cell. . One example of the nucleic acid construct is shRNA (short hairpin RNA). shRNA has a structure (hairpin structure) in which a sense RNA and an antisense RNA are linked via a loop structure part, and the loop structure part is cleaved in a cell to form a double-stranded siRNA, resulting in an RNAi effect. The length of the loop structure is not particularly limited, but is usually 3 to 23 bases.
 核酸コンストラクトの別の例は、所望のsiRNAを発現し得るベクターである。このようなベクターとしては、後のプロセスによってsiRNAに変換されるshRNAを発現する(shRNAをコードする配列がインサートされた)ベクター(ステムループタイプ又はショートヘアピンタイプと呼ばれる)、センスRNAとアンチセンスRNAを別々に発現するベクター(タンデムタイプと呼ばれる)が挙げられる。これらのベクターは当業者であれば常法に従い作製することができる(Brummelkamp TR et al.(2002) Science 296:550-553; Lee NS et al.(2001) Nature Biotechnology 19:500-505; Miyagishi M & Taira K (2002) Nature Biotechnology 19:497-500; Paddison PJ et al.(2002) Proc. Natl. Acad. Sci. USA 99:1443-1448; Paul CP et al.(2002) Nature Biotechnology 19 :505-508; Sui G et al.(2002) Proc Natl Acad Sci USA 99(8):5515-5520; Paddison PJ et al.(2002) Genes Dev. 16:948-958等が参考になる)。現在、種々のRNAi用ベクターが利用可能である。このような公知のベクターを利用して本発明のベクターを構築することにしてもよい。この場合、所望のRNA(例えばshRNA)をコードするインサートDNAを用意した後、ベクターのクローニングサイトに挿入し、RNAi発現ベクターとする。 Another example of a nucleic acid construct is a vector that can express a desired siRNA. Such vectors include those that express shRNA that is converted to siRNA by a later process (inserted with a sequence encoding shRNA) (referred to as stem loop type or short hairpin type), sense RNA and antisense RNA. Are vectors that are expressed separately (referred to as tandem type). Those skilled in the art can prepare these vectors according to conventional methods (Brummelkamp TR et al. (2002) Science 296: 550-553; Lee NS et al. (2001) Nature Biotechnology 19: 500-505; Miyagishi M & Taira K (2002) Nature Biotechnology 19: 497-500; Paddison PJ et al. (2002) Proc. Natl. Acad. Sci. USA 99: 1443-1448; Paul CP et al. (2002) Nature Biotechnology 19: 505-508; Sui G et.al. (2002) Proc Natl Acad Sci USA 99 (8): 5515-5520; addPaddison PJ et al. (2002) Genes Dev. 16: 948-958 etc.). Currently, various RNAi vectors are available. You may decide to construct | assemble the vector of this invention using such a well-known vector. In this case, after preparing an insert DNA encoding a desired RNA (for example, shRNA), it is inserted into a cloning site of the vector to obtain an RNAi expression vector.
 尚、標的遺伝子に対するRNAi作用を発揮するsiRNAを細胞内で生じさせるという機能を有する限り、ベクターの由来や構造は限定されるものではない。従って、各種ウイルスベクター(アデノウイルスベクター、アデノ随伴ウイルスベクター、レトロウイルスベクター、レンチウイルスベクター、ヘルペスウイルスベクター、センダイウイルスベクター等)、非ウイルスベクター(リポソーム、正電荷型リポソーム等)等を用いることができる。ベクターに利用可能なプロモーターの例を示すと、U6プロモーター、H1プロモーター、tRNAプロモーターである。これらのプロモーターはRNAポリメラーゼIII系のプロモーターであり、高い発現効率を期待できる。 It should be noted that the origin and structure of the vector are not limited as long as it has a function of generating siRNA that exerts RNAi action on the target gene in the cell. Accordingly, various viral vectors (adenovirus vectors, adeno-associated virus vectors, retrovirus vectors, lentivirus vectors, herpes virus vectors, Sendai virus vectors, etc.), non-viral vectors (liposomes, positively charged liposomes, etc.) and the like can be used. it can. Examples of promoters that can be used in the vector are U6 promoter, H1 promoter, and tRNA promoter. These promoters are RNA polymerase III type promoters, and high expression efficiency can be expected.
 所定の構造の一本鎖RNAが標的遺伝子の発現抑制に有用であることが報告されている(例えばWO2012/005368、特開2013-55913号公報、特開2013-138681号公報、特開2013-153736号公報)。そこで本発明の一態様では、一本鎖RNA(上記(c))を利用し、siRNAによる発現抑制(即ちRNA干渉)と同様のメカニズムで標的遺伝子の発現を抑制する。本発明の一本鎖RNAは、標的遺伝子に対応した発現抑制配列と当該配列にアニーリング可能な相補配列を有する。発現抑制配列と相補配列の連結順序は特に限定されない。また、発現抑制配列と相補配列は直接連結されていても、或いはリンカー領域を介して連結されていても良い。リンカー領域はヌクレオチド残基又は非ヌクレオチド残基(例えばポリアルキレングリコール、ピロリジン骨格、ピペリジン骨格などの構造からなる)で構成することができる。本発明の一本鎖RNAの形態の例として、5'側領域と3'側領域がアニーリングして二本鎖構造(ステム構造)を形成する分子(例1)、5'側領域及び3'側領域がそれぞれ別個に分子内アニーリングすることで二つの二本鎖構造(ステム構造)を形成する分子(例2)を挙げることができる。 It has been reported that a single-stranded RNA having a predetermined structure is useful for suppressing the expression of a target gene (for example, WO2012 / 005368, JP2013-55913A, JP2013-138881A, JP2013-13A). No. 153736). Therefore, in one embodiment of the present invention, single-stranded RNA (above (c)) is used to suppress the expression of a target gene by the same mechanism as the suppression of expression by siRNA (that is, RNA interference). The single-stranded RNA of the present invention has an expression suppressing sequence corresponding to the target gene and a complementary sequence that can be annealed to the sequence. The order in which the expression suppressing sequence and the complementary sequence are linked is not particularly limited. Further, the expression suppressing sequence and the complementary sequence may be directly linked or may be linked via a linker region. The linker region can be composed of nucleotide residues or non-nucleotide residues (for example, comprising a structure such as polyalkylene glycol, pyrrolidine skeleton, piperidine skeleton, etc.). As an example of the form of the single-stranded RNA of the present invention, a molecule that forms a double-stranded structure (stem structure) by annealing a 5′-side region and a 3′-side region (Example 1), a 5′-side region, and a 3′-side region A molecule (Example 2) that forms two double-stranded structures (stem structures) by intramolecular annealing of the side regions separately can be given.
 発現抑制配列は、本発明の一本鎖RNAが細胞内に導入されたときに標的遺伝子の発現を抑制する活性を示す配列である。典型的には、siRNAによる発現抑制(即ちRNA干渉)を生じさせる配列を発現抑制配列として用いる。例えば、上述のsiRNA(上記(a))を構成するRNAの配列を発現抑制配列として用いることができる。発現抑制配列の長さは特に限定されないが、例えば18~32塩基長、好ましくは19~30塩基長、より好ましくは19~21塩基長である。 The expression-suppressing sequence is a sequence showing an activity of suppressing the expression of the target gene when the single-stranded RNA of the present invention is introduced into the cell. Typically, a sequence that causes expression suppression (ie, RNA interference) by siRNA is used as the expression suppression sequence. For example, the sequence of RNA constituting the above-described siRNA (above (a)) can be used as an expression suppressing sequence. The length of the expression suppressing sequence is not particularly limited, but is, for example, 18 to 32 bases long, preferably 19 to 30 bases long, and more preferably 19 to 21 bases long.
 本発明の一本鎖RNAの長さは特に限定されない。一本鎖RNAを構成する塩基の数の合計(全長の塩基数)は、下限が例えば38塩基、好ましくは42塩基、より好ましくは50塩基、さらに好ましくは51塩基、特に好ましくは52塩基であり、上限が例えば300塩基、好ましくは200塩基、より好ましくは150塩基、さらに好ましくは100塩基、特に好ましくは80塩基である。本発明の一本鎖RNAがリンカー領域を含む場合において、リンカー領域を除く塩基数の合計は、下限が例えば38塩基、好ましくは42塩基、より好ましくは50塩基、さらに好ましくは51塩基、特に好ましくは52塩基であり、上限が例えば300塩基、好ましくは200塩基、より好ましくは150塩基、さらに好ましくは100塩基、特に好ましくは80塩基である。 The length of the single-stranded RNA of the present invention is not particularly limited. The total number of bases constituting the single-stranded RNA (the total number of bases) has a lower limit of, for example, 38 bases, preferably 42 bases, more preferably 50 bases, still more preferably 51 bases, particularly preferably 52 bases. The upper limit is, for example, 300 bases, preferably 200 bases, more preferably 150 bases, still more preferably 100 bases, particularly preferably 80 bases. When the single-stranded RNA of the present invention includes a linker region, the total number of bases excluding the linker region is, for example, 38 bases, preferably 42 bases, more preferably 50 bases, more preferably 51 bases, particularly preferably the lower limit. Is 52 bases, and the upper limit is, for example, 300 bases, preferably 200 bases, more preferably 150 bases, still more preferably 100 bases, particularly preferably 80 bases.
 尚、本発明の一本鎖RNAを設計ないし調製する際には、上掲の特許公報など、過去の報告を参考にすることができる。 In addition, when designing or preparing the single-stranded RNA of the present invention, it is possible to refer to past reports such as the above-mentioned patent publications.
 上記(d)はアンチセンス法による発現抑制に利用される化合物である。換言すれば、上記(d)の化合物を有効成分とする本発明の医薬によれば、アンチセンス法により標的遺伝子の発現を抑制することができる。アンチセンス法による発現阻害を行う場合には例えば、標的細胞内で転写されたときに、標的遺伝子をコードするmRNAの固有の部分に相補的なRNAを生成するアンチセンス・コンストラクトが使用される。このようなアンチセンス・コンストラクトは例えば、発現プラスミドの形態で標的細胞に導入される。一方、アンチセンス・コンストラクトとして、標的細胞内に導入されたときに、標的遺伝子をコードするmRNA/又はゲノムDNA配列とハイブリダイズしてその発現を阻害するオリゴヌクレオチド・プローブを採用することもできる。このようなオリゴヌクレオチド・プローブとしては、好ましくは、エキソヌクレアーゼ及び/又はエンドヌクレアーゼなどの内因性ヌクレアーゼに対して抵抗性であるものが用いられる。 The above (d) is a compound used for expression suppression by the antisense method. In other words, according to the medicament of the present invention containing the compound (d) as an active ingredient, the expression of the target gene can be suppressed by the antisense method. In the case of inhibiting expression by an antisense method, for example, an antisense construct that generates RNA complementary to a unique part of mRNA encoding a target gene when transcribed in the target cell is used. Such an antisense construct is introduced into a target cell, for example, in the form of an expression plasmid. On the other hand, as an antisense construct, an oligonucleotide probe that hybridizes with an mRNA / or genomic DNA sequence encoding a target gene and inhibits its expression when introduced into the target cell can also be employed. As such an oligonucleotide probe, one that is resistant to endogenous nucleases such as exonuclease and / or endonuclease is preferably used.
 アンチセンス核酸としてDNA分子を使用する場合、標的遺伝子をコードするmRNAの翻訳開始部位(例えば-10~+10の領域)を含む領域に由来するオリゴデオキシリボヌクレオチドが好ましい。 When a DNA molecule is used as the antisense nucleic acid, oligodeoxyribonucleotide derived from a region containing a translation initiation site (for example, a region of -10 to +10) of mRNA encoding the target gene is preferable.
 アンチセンス核酸と、標的核酸との間の相補性は厳密であることが好ましいが、多少のミスマッチが存在していてもよい。標的核酸に対するアンチセンス核酸のハイブリダイズ能は一般に両核酸の相補性の程度及び長さの両方に依存する。通常、使用するアンチセンス核酸が長いほど、ミスマッチの数が多くても、標的核酸との間に安定な二重鎖(又は三重鎖)を形成することができる。当業者であれば、標準的な手法を用いて、許容可能なミスマッチの程度を確認することができる。 It is preferable that the complementarity between the antisense nucleic acid and the target nucleic acid is exact, but some mismatch may exist. The ability of an antisense nucleic acid to hybridize to a target nucleic acid generally depends on both the degree of complementarity and the length of both nucleic acids. Usually, the longer the antisense nucleic acid used, the more stable duplexes (or triplexes) can be formed with the target nucleic acid, even if the number of mismatches is large. One skilled in the art can ascertain the degree of acceptable mismatch using standard techniques.
 アンチセンス核酸はDNA、RNA、若しくはこれらのキメラ混合物、又はこれらの誘導体や改変型であってもよい。また、一本鎖でも二本鎖でもよい。塩基部分、糖部分、又はリン酸骨格部分を修飾することで、アンチセンス核酸の安定性、ハイブリダイゼーション能等を向上させることなどができる。また、アンチセンス核酸に、細胞膜輸送を促す物質(例えば Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. W088/09810, published December 15, 1988を参照されたい)や、特定の細胞に対する親和性を高める物質などを付加してもよい。 The antisense nucleic acid may be DNA, RNA, a chimeric mixture thereof, or a derivative or modified type thereof. Moreover, it may be single-stranded or double-stranded. By modifying the base moiety, sugar moiety, or phosphate skeleton moiety, the stability, hybridization ability, etc. of the antisense nucleic acid can be improved. In addition, antisense nucleic acids can be used to promote cell membrane transport (for example, Letsingeretset al., 1989, Proc. Natl. Acad. Sci. USA 86: 6553-6556; 556Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84: 648-652; see PCT Publication No. W088 / 09810, published Dec 15, 15, 1988), or substances that enhance affinity for specific cells.
 アンチセンス核酸は例えば市販の自動DNA合成装置(例えばアプライド・バイオシステムズ社等)を使用するなど、常法で合成することができる。核酸修飾体や誘導体の作製には例えば、Stein et al.(1988), Nucl. Acids Res. 16:3209やSarin et al., (1988), Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451等を参照することができる。 The antisense nucleic acid can be synthesized by a conventional method, for example, using a commercially available automatic DNA synthesizer (for example, Applied Biosystems). For example, Stein et al. (1988), Nucl. Acids Res. 16: 3209 and Sarin et al., (1988), Proc. Natl. Acad. Sci. USA 85: 7448- 7451 etc. can be referred to.
 標的細胞内におけるアンチセンス核酸の作用を高めるために、pol IIやpol IIIといった強力なプロモーターを利用することができる。即ち、このようなプロモーターの制御下に配置されたアンチセンス核酸を含むコンストラクトを標的細胞に導入すれば、当該プロモーターの作用によって十分な量のアンチセンス核酸の転写を確保できる。 Strong promoters such as pol II and pol III can be used to enhance the action of antisense nucleic acids in target cells. That is, when a construct containing an antisense nucleic acid arranged under the control of such a promoter is introduced into a target cell, a sufficient amount of the antisense nucleic acid can be transcribed by the action of the promoter.
 アンチセンス核酸の発現は、哺乳動物細胞(好ましくはヒト細胞)で機能することが知られている任意のプロモーター(誘導性プロモーター又は構成的プロモーター)によって行うことができる。例えば、SV40初期プロモーター領域 (Bernoist and Chambon, 1981, Nature 290:304-310)、ラウス肉腫ウイルスの3'末端領域由来のプロモーター(Yamamoto et al., 1980, Cell 22:787-797)、疱疹チミジン・キナーゼ・プロモーター(Wagner et al., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:1441-1445)等のプロモーターを使用することができる。 The expression of the antisense nucleic acid can be performed by any promoter (inducible promoter or constitutive promoter) known to function in mammalian cells (preferably human cells). For example, the SV40 early promoter region (Bernoist and Chambon, 1981, Nature 290: 304-310), the promoter derived from the 3 ′ end region of Rous sarcoma virus (Yamamoto et al., 1980, Cell 22: 787-797), herpes zoster thymidine A promoter such as a kinase promoter (Wagner et al., 1981, Proc. Natl. Acad. Sci. USA 78: 1441-1445) can be used.
 本発明の一態様では、リボザイムによる発現抑制を利用する(上記(e)の化合物の場合)。部位特異的認識配列でmRNAを開裂させるリボザイムを用いて標的mRNAを破壊することもできるが、好ましくはハンマーヘッド・リボザイムを使用する。ハンマーヘッド・リボザイムの構築方法については例えばHaseloff and Gerlach, 1988, Nature, 334:585-591を参考にすることができる。 In one embodiment of the present invention, expression suppression by ribozyme is used (in the case of the compound (e) above). The target mRNA can be destroyed using a ribozyme that cleaves the mRNA with a site-specific recognition sequence, but preferably a hammerhead ribozyme is used. For the construction method of the hammerhead ribozyme, for example, Haseloff and Gerlach, 1988, Nature, 334: 585-591 can be referred to.
 アンチセンス法を利用する場合と同様に、例えば安定性やターゲット能を向上させることを目的として、修飾されたオリゴヌクレオチドを用いてリボザイムを構築してもよい。効果的な量のリボザイムを標的細胞内で生成させるために、例えば、強力なプロモーター(例えばpol IIやpol III)の制御下に、当該リボザイムをコードするDNAを配置した核酸コンストラクトを使用することが好ましい。 As in the case of using the antisense method, for example, for the purpose of improving stability and target ability, a ribozyme may be constructed using a modified oligonucleotide. In order to generate an effective amount of ribozyme in a target cell, for example, a nucleic acid construct in which DNA encoding the ribozyme is placed under the control of a strong promoter (for example, pol II or pol III) can be used. preferable.
<抗がん剤との併用>
 本発明者らの検討の結果、BRP44Lが抗がん剤に対する耐性に関与しているとの事実が明らかになった(後述の実施例)。この知見に基づき、本発明の医薬の別の態様では、標的細胞におけるBRP44L発現量を高めることで抗がん剤に対する感受性を高め、抗がん剤の治療効果の増大を図る。この態様の医薬で治療すれば、抗がん剤単独で治療した場合に比較して治療成績が向上する。ここでの「治療成績の向上」には、治療効果の増大、奏功率ないし有効率の向上、及び副作用の低減ないし回避が含まれる(本発明によれば、この中の少なくとも一つが達成される)。また、この態様の医薬によれば、抗がん剤の効果が高められることから、抗がん剤の使用量や抗がん剤の種類(2種類以上の抗がん剤を併用する場合)の低減も図ることが可能である。
<Combination with anticancer agents>
As a result of the study by the present inventors, the fact that BRP44L is involved in resistance to anticancer agents has been clarified (examples described later). Based on this finding, in another embodiment of the medicament of the present invention, the sensitivity to an anticancer agent is increased by increasing the expression level of BRP44L in the target cells, thereby increasing the therapeutic effect of the anticancer agent. When treated with the medicament of this embodiment, the therapeutic results are improved as compared to treatment with the anticancer agent alone. “Improving therapeutic results” here includes an increase in therapeutic effect, an improvement in response rate or effectiveness rate, and a reduction or avoidance of side effects (at least one of which is achieved according to the present invention). ). Moreover, according to the medicine of this aspect, since the effect of the anticancer agent is enhanced, the amount of the anticancer agent used and the type of the anticancer agent (when two or more anticancer agents are used in combination) It is also possible to reduce this.
 この態様の医薬は、以下の(A)(BRP44Lタンパク質)、又は(B)(BRP44L遺伝子を保持する発現ベクター)を有効成分とし、抗がん剤又は抗腫瘍作用を持つ薬物と併用される。 The pharmaceutical of this embodiment contains the following (A) (BRP44L protein) or (B) (expression vector holding the BRP44L gene) as an active ingredient, and is used in combination with an anticancer drug or a drug having an antitumor action.
(A)BPP44Lタンパク質
 本発明の一態様では、BRP44Lタンパク質を有効成分とする。メラノーマ細胞の抗がん剤感受性に対して有効な作用を示す限り、BPP44Lタンパク質の一部(断片)を有効成分として用いることもできる。ヒトBRP44Lタンパク質のアミノ酸配列は公共のデータベースに登録されている(配列番号8:NCBI protein database Accession No.: NP_057182)。当該アミノ酸配列と等価なアミノ酸配列を含むポリペプチドをBRP44Lタンパク質として用いることもできる。ここでの「等価なアミノ酸配列」とは、基準となるアミノ酸配列(例えば配列番号8のアミノ酸配列)と一部で相違するが、当該相違がタンパク質の機能(メラノーマ細胞の抗がん剤感受性に対して有効な作用)に実質的な影響を与えていないアミノ酸配列のことをいう。従って、基準となるアミノ酸配列と、それに等価なアミノ酸配列との間には機能上の実質的な同一性が認められる。機能上の実質的な同一性の有無を判定するためには、例えば、後述の実施例に記載した実験系(動物モデル又は細胞による評価)を用い、メラノーマ細胞の抗がん剤感受性に関する作用・効果の点において二つのアミノ酸配列の間に実質的な差がないことを確認すればよい。
(A) BPP44L protein In one embodiment of the present invention, BRP44L protein is an active ingredient. A part (fragment) of the BPP44L protein can also be used as an active ingredient as long as it exhibits an effective action on the anticancer drug sensitivity of melanoma cells. The amino acid sequence of human BRP44L protein is registered in a public database (SEQ ID NO: 8: NCBI protein database Accession No .: NP_057182). A polypeptide containing an amino acid sequence equivalent to the amino acid sequence can also be used as the BRP44L protein. The “equivalent amino acid sequence” here is partially different from the reference amino acid sequence (for example, the amino acid sequence of SEQ ID NO: 8), but the difference is related to the function of the protein (anticancer drug sensitivity of melanoma cells). It means an amino acid sequence that has no substantial effect on the effective action. Therefore, substantial functional identity is recognized between the reference amino acid sequence and the equivalent amino acid sequence. In order to determine the presence or absence of substantial functional identity, for example, using the experimental system (animal model or cell evaluation) described in the examples below, the effect on the anticancer drug sensitivity of melanoma cells What is necessary is just to confirm that there is no substantial difference between two amino acid sequences in terms of effect.
 「アミノ酸配列の一部で相違する」とは、典型的には、アミノ酸配列を構成する1~数個(上限は例えば3個、5個、7個、10個)のアミノ酸の欠失、置換、若しくは1~数個(上限は例えば3個、5個、7個、10個)のアミノ酸の付加、挿入、又はこれらの組合せによりアミノ酸配列に変異(変化)が生じていることをいう。ここでのアミノ酸配列の相違は上記機能の大幅な低下がない限り許容される。この条件を満たす限りアミノ酸配列が相違する位置は特に限定されず、また複数の位置で相違が生じていてもよい。ここでの複数とは例えば全アミノ酸の約30%未満に相当する数であり、好ましくは約20%未満に相当する数であり、さらに好ましくは約10%未満に相当する数であり、より一層好ましくは約5%未満に相当する数であり、最も好ましくは約1%未満に相当する数である。即ち等価アミノ酸配列は、基準となるアミノ酸配列と例えば約70%以上、好ましくは約80%以上、さらに好ましくは約90%以上、より一層好ましくは約95%以上、最も好ましくは約99%以上の配列同一性を有する。 “Different in part of amino acid sequence” typically means deletion or substitution of 1 to several amino acids (upper limit is 3, 5, 7, 10) constituting the amino acid sequence. Alternatively, it means that a mutation (change) has occurred in the amino acid sequence due to addition, insertion, or a combination of 1 to several amino acids (the upper limit is, for example, 3, 5, 7, 10). Differences in amino acid sequences here are allowed as long as there is no significant decrease in the above functions. As long as this condition is satisfied, the positions where the amino acid sequences are different are not particularly limited, and differences may occur at a plurality of positions. The term “plurality” as used herein refers to, for example, a number corresponding to less than about 30% of all amino acids, preferably a number corresponding to less than about 20%, and more preferably a number corresponding to less than about 10%. The number is preferably less than about 5%, and most preferably less than about 1%. That is, the equivalent amino acid sequence is, for example, about 70% or more, preferably about 80% or more, more preferably about 90% or more, still more preferably about 95% or more, and most preferably about 99% or more with the reference amino acid sequence. Has sequence identity.
 基準となるアミノ酸配列と等価アミノ酸配列との間の相違が保存的アミノ酸置換基によって生じていることが好ましい。ここでの「保存的アミノ酸置換」とは、あるアミノ酸残基を、同様の性質の側鎖を有するアミノ酸残基に置換することをいう。アミノ酸残基はその側鎖によって塩基性側鎖(例えばリシン、アルギニン、ヒスチジン)、酸性側鎖(例えばアスパラギン酸、グルタミン酸)、非荷電極性側鎖(例えばグリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン)、非極性側鎖(例えばアラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、β分岐側鎖(例えばスレオニン、バリン、イソロイシン)、芳香族側鎖(例えばチロシン、フェニルアラニン、トリプトファン、ヒスチジン)のように、いくつかのファミリーに分類されている。保存的アミノ酸置換は好ましくは、同一のファミリー内のアミノ酸残基間の置換である。 It is preferable that the difference between the reference amino acid sequence and the equivalent amino acid sequence is caused by a conservative amino acid substituent. As used herein, “conservative amino acid substitution” refers to substitution of a certain amino acid residue with an amino acid residue having a side chain having the same properties. Depending on the side chain of the amino acid residue, a basic side chain (eg lysine, arginine, histidine), an acidic side chain (eg aspartic acid, glutamic acid), an uncharged polar side chain (eg glycine, asparagine, glutamine, serine, threonine, tyrosine) Cysteine), non-polar side chains (eg alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), β-branched side chains (eg threonine, valine, isoleucine), aromatic side chains (eg tyrosine, phenylalanine, Like tryptophan and histidine). A conservative amino acid substitution is preferably a substitution between amino acid residues within the same family.
 ところで、二つのアミノ酸配列又は二つの核酸配列(以下、これらを含む用語として「二つの配列」を使用する)の配列同一性(%)は例えば以下の手順で決定することができる。まず、最適な比較ができるよう二つの配列を並べる(例えば、第一の配列にギャップを導入して第二の配列とのアライメントを最適化してもよい)。第一の配列の特定位置の分子(アミノ酸残基又はヌクレオチド)が、第二の配列における対応する位置の分子と同じであるとき、その位置の分子が同一であるといえる。配列同一性は、その二つの配列に共通する同一位置の数の関数であり(すなわち、配列同一性(%)=同一位置の数/位置の総数 × 100)、好ましくは、アライメントの最適化に要したギャップの数及びサイズも考慮に入れる。 Incidentally, the sequence identity (%) of two amino acid sequences or two nucleic acid sequences (hereinafter, “two sequences” is used as a term including them) can be determined, for example, by the following procedure. First, two sequences are aligned for optimal comparison (eg, a gap may be introduced into the first sequence to optimize alignment with the second sequence). When a molecule (amino acid residue or nucleotide) at a specific position in the first sequence is the same as the molecule at the corresponding position in the second sequence, it can be said that the molecule at that position is the same. Sequence identity is a function of the number of identical positions common to the two sequences (ie, sequence identity (%) = number of identical positions / total number of positions × 100), preferably for alignment optimization Take into account the number and size of gaps required.
 二つの配列の比較及び同一性の決定は数学的アルゴリズムを用いて実現可能である。配列の比較に利用可能な数学的アルゴリズムの具体例としては、Karlin及びAltschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-68に記載され、Karlin及びAltschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-77において改変されたアルゴリズムがあるが、これに限定されることはない。このようなアルゴリズムは、Altschulら (1990) J. Mol. Biol. 215:403-10に記載のNBLASTプログラム及びXBLASTプログラム(バージョン2.0)に組み込まれている。本発明の核酸分子に等価なヌクレオチド配列を得るには例えば、NBLASTプログラムでscore = 100、wordlength = 12としてBLASTヌクレオチド検索を行えばよい。基準となるアミノ酸配列に等価なアミノ酸配列を得るには例えば、XBLASTプログラムでscore = 50、wordlength = 3としてBLASTポリペプチド検索を行えばよい。比較のためのギャップアライメントを得るためには、Altschulら (1997) Amino Acids Research 25(17):3389-3402に記載のGapped BLASTが利用可能である。BLAST及びGapped BLASTを利用する場合は、対応するプログラム(例えばXBLAST及びNBLAST)のデフォルトパラメータを使用することができる。詳しくは例えばNCBIのウェブページを参照されたい。配列の比較に利用可能な他の数学的アルゴリズムの例としては、Myers及びMiller (1988) Comput Appl Biosci. 4:11-17に記載のアルゴリズムがある。このようなアルゴリズムは、例えばGENESTREAMネットワークサーバー(IGH Montpellier、フランス)またはISRECサーバーで利用可能なALIGNプログラムに組み込まれている。アミノ酸配列の比較にALIGNプログラムを利用する場合は例えば、PAM120残基質量表を使用し、ギャップ長ペナルティ=12、ギャップペナルティ=4とすることができる。 比較 Comparison of two sequences and determination of identity can be achieved using a mathematical algorithm. Specific examples of mathematical algorithms that can be used for sequence comparison are described in Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87: 2264-68, and Karlin and Altschul (1993) Proc. Natl. There is a modified algorithm in Acad. Sci. USA 90: 5873-77, but it is not limited to this. Such an algorithm is incorporated in the NBLAST program and XBLAST program (version 2.0) described in Altschul et al. (1990) J. Mol. Biol. 215: 403-10. In order to obtain a nucleotide sequence equivalent to the nucleic acid molecule of the present invention, for example, a BLAST nucleotide search may be carried out with the score = s100 and wordlength = 12 in the NBLAST program. In order to obtain an amino acid sequence equivalent to the reference amino acid sequence, for example, a BLAST polypeptide search may be performed using the XBLAST program with score = 50 and wordlength = 3. In order to obtain a gap alignment for comparison, Gapped BLAST described in Altschul et al. (1997) Amino Acids Research 25 (17): 3389-3402 can be used. When using BLAST and Gapped BLAST, the default parameters of the corresponding programs (eg, XBLAST and NBLAST) can be used. For details, refer to the NCBI web page. Examples of other mathematical algorithms that can be used for sequence comparison include those described in Myers and Miller (1988) Comput Appl Biosci. 4: 11-17. Such an algorithm is incorporated in the ALIGN program available on, for example, the GENESTREAM network server (IGH (Montpellier, France) or the ISREC server. When using the ALIGN program for comparison of amino acid sequences, for example, a PAM120 residue mass table can be used, with a gap length penalty = 12 and a gap penalty = 4.
 二つのアミノ酸配列の同一性を、GCGソフトウェアパッケージのGAPプログラムを用いて、Blossom 62マトリックスまたはPAM250マトリックスを使用し、ギャップ加重=12、10、8、6、又は4、ギャップ長加重=2、3、又は4として決定することができる。また、二つの核酸配列の同一性を、GCGソフトウェアパッケージのGAPプログラムを用いて、ギャップ加重=50、ギャップ長加重=3として決定することができる。 The identity of two amino acid sequences, using the Gloss program in the GCG software package, using a Blossom 62 matrix or PAM250 matrix, gap weight = 12, 10, 8, 6, or 4, gap length weight = 2, 3 Or 4 can be determined. Also, the identity of two nucleic acid sequences can be determined using the GAP program of the GCG software package, with gap weight = 50 and gap length weight = 3.
 BRP44Lは、本明細書又は添付の配列表が開示する配列情報を参考にして、標準的な遺伝子工学的手法、分子生物学的手法、生化学的手法などを用いることによって容易に調製することができる。例えば、BRP44LをコードするDNAで適当な宿主細胞(例えば大腸菌、酵母)を形質転換し、形質転換体内で発現されたタンパク質を回収することにより調製することができる。回収されたタンパク質は目的に応じて適宜精製される。このように組換えタンパク質としてBRP44Lを得ることにすれば種々の修飾が可能である。例えば、BRP44LをコードするDNAと他の適当なDNAとを同じベクターに挿入し、当該ベクターを用いて組換えタンパク質の生産を行えば、任意のペプチドないしタンパク質が連結された組換えタンパク質からなるBRP44Lを得ることができる。また、糖鎖及び/又は脂質の付加や、あるいはN末端若しくはC末端のプロセッシングが生ずるような修飾を施してもよい。以上のような修飾により、組換えタンパク質の抽出、精製の簡便化、又は生物学的機能の付加等が可能である。 BRP44L can be easily prepared by using standard genetic engineering techniques, molecular biological techniques, biochemical techniques, etc. with reference to the sequence information disclosed in this specification or the attached sequence listing. it can. For example, it can be prepared by transforming a suitable host cell (for example, E. coli, yeast) with DNA encoding BRP44L and recovering the protein expressed in the transformant. The recovered protein is appropriately purified according to the purpose. Thus, various modifications are possible if BRP44L is obtained as a recombinant protein. For example, if a DNA encoding BRP44L and other appropriate DNA are inserted into the same vector and a recombinant protein is produced using the vector, BRP44L consisting of a recombinant protein linked to any peptide or protein Can be obtained. In addition, modification may be performed so that addition of sugar chain and / or lipid, or processing of N-terminal or C-terminal may occur. By the modification as described above, extraction of recombinant protein, simplification of purification, addition of biological function, and the like are possible.
 質的均一性及び純度の面などから、BRP44Lを遺伝子工学的手法によって調製することが好ましい。しかしながら、BRP44Lの調製法は遺伝子工学的手法によるものに限られない。例えば、天然材料から標準的な手法(破砕、抽出、精製など)によってBRP44Lを調製することもできる。 From the viewpoint of qualitative uniformity and purity, it is preferable to prepare BRP44L by genetic engineering techniques. However, the method for preparing BRP44L is not limited to the genetic engineering method. For example, BRP44L can also be prepared from natural materials by standard techniques (crushing, extraction, purification, etc.).
(B)BRP44L遺伝子を保持する発現ベクター
 本発明の一態様では、BRP44L遺伝子を保持する発現ベクターを有効成分とする。メラノーマ細胞の抗がん剤感受性に対して有効な作用を示すタンパク質をコードする限り、BRP44L遺伝子に代えて、その一部を用いることにしてもよい。「発現ベクター」とは、それに挿入された核酸を目的の細胞(宿主細胞)内に導入することができ、且つ当該細胞内において発現させることが可能なベクターをいう。本発明に係る発現ベクターでは、BRP44L遺伝子が発現可能に保持されることになる。BRP44L遺伝子を標的細胞に導入し、標的細胞内で発現させることが可能である限り、ベクターの種類は特に限定されない。ここでの「ベクター」にはウイルスベクター及び非ウイルスベクターが含まれる。ウイルスベクターを用いた遺伝子導入法は、ウイルスが細胞へと感染する現象を巧みに利用するものであり、高い遺伝子導入効率が得られる。ウイルスベクターとしてアデノウイルスベクター、アデノ随伴ウイルスベクター、レトロウイルスベクター、レンチウイルスベクター、ヘルペスウイルスベクター、センダイウイルスベクター等が開発されている。
(B) Expression vector holding BRP44L gene In one embodiment of the present invention, an expression vector holding the BRP44L gene is used as an active ingredient. As long as it encodes a protein that exhibits an effective action on the anticancer drug sensitivity of melanoma cells, a part thereof may be used instead of the BRP44L gene. “Expression vector” refers to a vector capable of introducing a nucleic acid inserted therein into a target cell (host cell) and allowing expression in the cell. In the expression vector according to the present invention, the BRP44L gene is retained so that it can be expressed. The type of vector is not particularly limited as long as the BRP44L gene can be introduced into the target cell and expressed in the target cell. The “vector” herein includes viral vectors and non-viral vectors. The gene transfer method using a virus vector skillfully utilizes the phenomenon that a virus infects cells, and high gene transfer efficiency can be obtained. Adenovirus vectors, adeno-associated virus vectors, retrovirus vectors, lentivirus vectors, herpes virus vectors, Sendai virus vectors and the like have been developed as virus vectors.
 非ウイルスベクターとしてリポソーム、正電荷型リポソーム(Felgner, P.L., Gadek, T.R., Holm, M. et al., Proc. Natl. Acad. Sci., 84:7413-7417, 1987)、HVJ(Hemagglutinating virus of Japan)-リポソーム(Dzau, V.J., Mann, M., Morishita, R. et al., Proc. Natl. Acad. Sci., 93:11421-11425, 1996、Kaneda, Y., Saeki, Y. & Morishita, R., Molecular Med. Today, 5:298-303, 1999)等が開発されている。本発明における発現ベクターをこのような非ウイルス性ベクターとして構築してもよい。また、YACベクター、BACベクター等を利用することにしてもよい。 Non-viral vectors include liposomes, positively charged liposomes (Felgner, PL, Gadek, TR, Holm, M. et al., Proc. Natl. Acad. Sci., 84: 7413-7417, 1987), HVJ (Hemagglutinating virus of Japan) -Liposome (Dzau, VJ, Mann, M., Morishita, R. et al., Proc. Natl. Acad. Sci., 93: 11421-11425, 1996, Kaneda, Y., Saeki, Y. & Morishita , R., Molecular Med. Today, 5: 298-303, 1999). The expression vector in the present invention may be constructed as such a non-viral vector. Further, a YAC vector, a BAC vector or the like may be used.
 アデノ随伴ウイルスベクター、レトロウイルスベクター、レンチウイルスベクターではベクターに組み込んだ外来遺伝子が宿主染色体へと組み込まれ、安定かつ長期的な発現が期待できる。レトロウイルスベクターの場合はウイルスゲノムの宿主染色体への組み込みには細胞の分裂が必要であることから非分裂細胞への遺伝子導入には適さない。一方、レンチウイルスベクターやアデノ随伴ウイルスベクターは非分裂細胞においても感染後に外来遺伝子の宿主染色体への組み込みが生ずる。従って、これらのベクターは非分裂細胞において安定かつ長期的に外来遺伝子を発現させるために有効である。 In adeno-associated virus vectors, retrovirus vectors, and lentivirus vectors, a foreign gene incorporated into the vector is incorporated into the host chromosome, and stable and long-term expression can be expected. Retroviral vectors are not suitable for gene transfer into non-dividing cells because cell division is required for integration of the viral genome into the host chromosome. On the other hand, lentivirus vectors and adeno-associated virus vectors cause integration of foreign genes into the host chromosome after infection even in non-dividing cells. Therefore, these vectors are effective for stably and long-term expressing foreign genes in non-dividing cells.
 各ウイルスベクターは既報の方法に従い又は市販される専用のキットを用いて作製することができる。例えば、アデノウイルスベクターの作製はCOS-TPC法や完全長DNA導入法などで行うことができる。COS-TPC法は、目的のcDNA又は発現カセットを組み込んだ組換えコスミドと、親ウイルスDNA-末端タンパク質複合体(DNA-TPC)を293細胞に同時トランスフェクションし、293細胞内でおこる相同組換えを利用して組換えアデノウイルスを作製する方法である(Miyake,S., Makimura,M., Kanegae,Y., Harada,S., Takamori,K., Tokuda,C., and Saito,I. (1996) Proc. Natl. Acad. Sci. USA, 93, 1320.)。一方、完全長DNA導入法は、目的の遺伝子を挿入した組換えコスミドを制限消化処理した後、293細胞にトランスフェクションすることによって組換えアデノウイルスを作製する方法である(寺島美保、近藤小貴、鐘ヶ江裕美、斎藤泉(2003)実験医学 21(7)931.)。COS-TPC法はAdenovirus Expression Vector Kit (Dual Version)(タカラバイオ株式会社)、Adenovirus genome DNA-TPC(タカラバイオ株式会社)を利用して行うことができる。また、完全長DNA導入法は、Adenovirus Expression Vector Kit (Dual Version)(タカラバイオ株式会社)を利用して行うことができる。 Each virus vector can be prepared according to a previously reported method or using a commercially available dedicated kit. For example, an adenovirus vector can be prepared by the COS-TPC method or full-length DNA introduction method. The COS-TPC method is a homologous recombination that occurs in 293 cells by co-transfecting a recombinant cosmid incorporating the target cDNA or expression cassette and a parent virus DNA-terminal protein complex (DNA-TPC) into 293 cells. (Mayake, S., Makimura, M., Kanegae, Y., Harada, S., Takamori, K., Tokuda, C., and Saito, I. (1996) Proc. Natl. Acad. Sci. USA, 93, 1320.). On the other hand, the full-length DNA introduction method is a method for producing a recombinant adenovirus by subjecting a recombinant cosmid inserted with a target gene to restriction digestion and then transfecting 293 cells (Miho Terashima, Koki Kondo). Hiromi Kanegae, Izumi Saito (2003) Experimental Medicine 21 (7) 931.). The COS-TPC method can be performed using Adenovirus® Expression® Vector® Kit® (Dual® Version) (Takara Bio Inc.) and Adenovirus® genome® DNA-TPC (Takara Bio Inc.). In addition, the full-length DNA introduction method can be performed using Adenovirus® Expression® Vector® Kit® (Dual® Version) (Takara Bio Inc.).
 一方、レトロウイルスベクターは以下の手順で作製することができる。まず、ウイルスゲノムの両端に存在するLTR(Long Terminal Repeat)の間のパッケージングシグナル配列以外のウイルスゲノム(gag、pol、env遺伝子)を取り除き、そこへ目的の遺伝子を挿入する。このようにして構築したウイルスDNAを、gag、pol、env遺伝子を構成的に発現するパッケージング細胞に導入する。これによって、パッケージングシグナル配列をもつベクターRNAのみがウイルス粒子に組み込まれ、レトロウイルスベクターが産生される。 On the other hand, retroviral vectors can be prepared by the following procedure. First, the virus genome (gag, pol, env gene) other than the packaging signal sequence between the LTRs (Long Terminal Repeat) existing at both ends of the virus genome is removed, and the target gene is inserted therein. The viral DNA thus constructed is introduced into a packaging cell that constitutively expresses the gag, pol, and env genes. Thereby, only the vector RNA having the packaging signal sequence is incorporated into the viral particle, and a retroviral vector is produced.
 アデノベクターを応用ないし改良したベクターとして、ファイバータンパク質の改変により特異性を向上させたもの(特異的感染ベクター)や目的遺伝子の発現効率向上が期待できるguttedベクター(ヘルパー依存性型ベクター)などが開発されている。本発明の発現ベクターをこのようなウイルスベクターとして構築してもよい。 Developed by improving or specificizing fiber protein by modifying adeno vectors (specific infection vectors) and gutted vectors (helper-dependent vectors) that can be expected to improve the expression efficiency of target genes. Has been. The expression vector of the present invention may be constructed as such a viral vector.
 発現ベクターに挿入されるBRP44L遺伝子は好ましくは配列番号7(NCBI nucleotide database Accession No.: NM_016098に記載の塩基配列からなる。但し、当該塩基配列に等価な塩基配列かならなるDNA(以下、「等価DNA」と呼ぶ)をBRP44L遺伝子として用いることもできる。ここでの「等価な塩基配列」とは、基準の塩基配列(配列番号7)と一部で相違するが、当該相違によってそれがコードするタンパク質の機能(メラノーマ細胞の抗がん剤感受性に対して有効な作用)が実質的な影響を受けていない塩基配列のことをいう。等価DNAの具体例は、基準の塩基配列に相補的な塩基配列に対してストリンジェントな条件下でハイブリダイズするDNAである。ここでの「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。このようなストリンジェントな条件は当業者に公知であって例えばMolecular Cloning(Third Edition, Cold Spring Harbor Laboratory Press, New York)やCurrent protocols in molecular biology(edited by Frederick M. Ausubel et al., 1987)を参照して設定することができる。ストリンジェントな条件として例えば、ハイブリダイゼーション液(50%ホルムアミド、10×SSC(0.15M NaCl, 15mM sodium citrate, pH 7.0)、5×Denhardt溶液、1% SDS、10% デキストラン硫酸、10μg/mlの変性サケ精子DNA、50mMリン酸バッファー(pH7.5))を用いて約42℃~約50℃でインキュベーションし、その後0.1×SSC、0.1% SDSを用いて約65℃~約70℃で洗浄する条件を挙げることができる。更に好ましいストリンジェントな条件として例えば、ハイブリダイゼーション液として50%ホルムアミド、5×SSC(0.15M NaCl, 15mM sodium citrate, pH 7.0)、1×Denhardt溶液、1%SDS、10%デキストラン硫酸、10μg/mlの変性サケ精子DNA、50mMリン酸バッファー(pH7.5))を用いる条件を挙げることができる。 The BRP44L gene inserted into the expression vector is preferably composed of a base sequence described in SEQ ID NO: 7 (NCBI nucleotide database Accession No .: NM_016098. However, a DNA having a base sequence equivalent to the base sequence (hereinafter "equivalent" (Referred to as “DNA”) can also be used as the BRP44L gene. The “equivalent base sequence” here is partly different from the reference base sequence (SEQ ID NO: 7), but it is encoded by the difference. A base sequence in which the function of the protein (effective effect on the sensitivity of melanoma cells to anticancer drugs) is not substantially affected.The specific example of equivalent DNA is complementary to the reference base sequence. A DNA that hybridizes under stringent conditions to a nucleotide sequence, where “stringent conditions” form a so-called specific hybrid that is non-specific. Such stringent conditions are known to those skilled in the art, such as Molecular 例 え ば Cloning (Third Edition, Cold Spring Harbor Laboratory Press, New York) and Current protocols in molecular biology (edited by Frederick M Ausubel et al., 1987) As stringent conditions, for example, hybridization solution (50% formamide, 10 × SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0), 5 × Denhardt solution, 1% SDS, 10% dextran sulfate, 10 μg / ml denatured salmon sperm DNA, 50 mM phosphate buffer (pH 7.5)), incubated at about 42 ° C. to about 50 ° C., then 0.1 × SSC And washing with 0.1% SDS at about 65 ° C. to about 70 ° C. More preferred stringent conditions include, for example, 50 hybridization solutions. Formamide, 5 × SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0), 1 × Denhardt solution, 1% SDS, 10% dextran sulfate, 10 μg / ml denatured salmon sperm DNA, 50 mM phosphate buffer (pH 7.5) ) Can be mentioned.
 等価DNAの他の具体例として、基準の塩基配列に対して1若しくは複数の塩基の置換、欠失、挿入、付加、又は逆位を含む塩基配列からなり、メラノーマ細胞の抗がん剤感受性に対して有効な作用を示すタンパク質をコードするDNAを挙げることができる。塩基の置換や欠失などは複数の部位に生じていてもよい。ここでの「複数」とは、当該DNAがコードするタンパク質の立体構造におけるアミノ酸残基の位置や種類によっても異なるが例えば2~40塩基、好ましくは2~20塩基、より好ましくは2~10塩基である。以上のような等価DNAは例えば、制限酵素処理、エキソヌクレアーゼやDNAリガーゼ等による処理、位置指定突然変異導入法(Molecular Cloning, Third Edition, Chapter 13 ,Cold Spring Harbor Laboratory Press, New York)やランダム突然変異導入法(Molecular Cloning, Third Edition, Chapter 13 ,Cold Spring Harbor Laboratory Press, New York)による変異の導入などを利用して、塩基の置換、欠失、挿入、付加、及び/又は逆位を含むように基準の塩基配列を有するDNAを改変することによって得ることができる。また、紫外線照射など他の方法によっても等価DNAを得ることができる。 As another specific example of equivalent DNA, it consists of a base sequence that includes substitution, deletion, insertion, addition, or inversion of one or more bases relative to a reference base sequence, and is effective in anticancer drug sensitivity of melanoma cells. Examples thereof include DNA encoding a protein that exhibits an effective action on the protein. Base substitution or deletion may occur at a plurality of sites. The term “plurality” as used herein refers to, for example, 2 to 40 bases, preferably 2 to 20 bases, more preferably 2 to 10 bases, although it depends on the position and type of amino acid residues in the three-dimensional structure of the protein encoded by the DNA It is. Such equivalent DNAs include, for example, restriction enzyme treatment, treatment with exonuclease and DNA ligase, position-directed mutagenesis (MolecularMCloning, Third Edition, Chapter 13, Cold Spring Harbor Laboratory Press, New York) Includes substitutions, deletions, insertions, additions, and / or inversions of bases using mutation introduction methods (Molecular Cloning, ingThird Edition, Chapterhap13, Cold Spring Harbor Laboratory Press, New York) Thus, it can obtain by modifying DNA which has a standard base sequence. The equivalent DNA can also be obtained by other methods such as ultraviolet irradiation.
 等価DNAの更に他の例として、SNP(一塩基多型)に代表される多型に起因して上記のごとき塩基の相違が認められるDNAを挙げることができる。 As yet another example of equivalent DNA, there can be mentioned DNA in which a base difference as described above is recognized due to a polymorphism represented by SNP (single nucleotide polymorphism).
 BRP44L遺伝子は、本明細書又は添付の配列表が開示する配列情報を参考にし、標準的な遺伝子工学的手法、分子生物学的手法、生化学的手法などを用いることによって調製することができる。例えば、BRP44L遺伝子に対して特異的にハイブリダイズ可能なオリゴヌクレオチドプローブ・プライマーを適宜利用することによってヒトcDNAライブラリーよりBRP44L遺伝子を単離(及び増幅)することができる。オリゴヌクレオチドプローブ・プライマーとしては、例えば、配列番号7に示す塩基配列に相補的なDNA又はその連続した一部が用いられる。オリゴヌクレオチドプローブ・プライマーは市販の自動化DNA合成装置などを用いて容易に合成することができる。尚、BRP44L遺伝子を調製するために用いるライブラリーの作製方法については、例えばMolecular Cloning, Third Edition, Cold Spring Harbor Laboratory Press, New Yorkが参考になる。 The BRP44L gene can be prepared by using standard genetic engineering techniques, molecular biological techniques, biochemical techniques, etc. with reference to the sequence information disclosed in this specification or the attached sequence listing. For example, the BRP44L gene can be isolated (and amplified) from a human cDNA library by appropriately using an oligonucleotide probe / primer that can specifically hybridize to the BRP44L gene. As the oligonucleotide probe primer, for example, DNA complementary to the base sequence shown in SEQ ID NO: 7 or a continuous part thereof is used. Oligonucleotide probes and primers can be easily synthesized using a commercially available automated DNA synthesizer. For the method of preparing a library used for preparing the BRP44L gene, for example, Molecular® Cloning, • Third • Edition, • Cold®Spring®Harbor®Laboratory®Press, and “New York” are helpful.
 ヒトcDNAライブラリーに代えてヒト以外の哺乳動物細胞(例えば、サル、マウス、ラット、ブタ、ウシ)由来のcDNAライブラリーを用いれば等価DNAを調製可能である。尚、ヒト以外の哺乳動物由来のBRP44L遺伝子の例として、マウス由来のBrp44l遺伝子の配列を配列番号15に示す。 An equivalent DNA can be prepared by using a cDNA library derived from a non-human mammalian cell (for example, monkey, mouse, rat, pig, bovine) instead of the human cDNA library. As an example of the BRP44L gene derived from mammals other than humans, the sequence of the mouse-derived Brp44l gene is shown in SEQ ID NO: 15.
 本発明の治療薬と併用される「抗がん剤」又は「抗腫瘍作用を持つ薬剤」の例は、シスプラチン、カルボプラチン、オキサリプラチン等のプラチナ製剤、サイクロフォスファミド、フルオロウラシル(5-FU)、エトポシド、ドキソルビシン、ブレオマイシン、マイトマイシン、スタウロスポリンである。 Examples of “anticancer agents” or “agents having antitumor activity” used in combination with the therapeutic agent of the present invention include platinum preparations such as cisplatin, carboplatin, and oxaliplatin, cyclophosphamide, fluorouracil (5-FU). Etoposide, doxorubicin, bleomycin, mitomycin, staurosporine.
<BRAF阻害剤に耐性を示すメラノーマへの適用>
 本発明者らの検討の結果、PDZRN3、DTX3L、CSS3及びBRP44Lは、Braf変異のないマウスメラノーマとBRAF変異のあるヒトメラノーマの両方において、有意な発現量の増加(PDZRN3、DTX3L、CSS3)又は減少(BRP44L)を認めた(後述の実施例)。従って、PDZRN3、DTX3L、CSS3及びBRP44Lは、BRAF変異の有無にかかわらず、メラノーマの治療における標的分子として有用であるといえる。実際、DTX3Lは、BRAF阻害剤であるPLXに耐性を獲得したメラノーマ細胞(BRAF変異を有する)において有効な標的となった(後述の実施例)。そこで、好ましい一態様では、本発明の医薬は、BRAF阻害剤に耐性を示すメラノーマに適用される。典型的には、この態様の医薬は、BRAF阻害剤を使用した治療の結果としてBRAF阻害剤に耐性を獲得したメラノーマの患者を治療対象とする。しかしながら、その本来の特性として、或いはBRAF阻害剤の使用とは別の原因(例えば、症状の進展に付随する変異や他の薬剤の影響による変異)によって、BRAF阻害剤に耐性を示すメラノーマの患者を治療対象にすることもできる。尚、BRAF阻害剤の例はPLX4032、PLX4720である。
<Application to melanoma resistant to BRAF inhibitor>
As a result of the study by the present inventors, PDZRN3, DTX3L, CSS3 and BRP44L significantly increased (PDZRN3, DTX3L, CSS3) or decreased the expression level in both mouse melanoma without Braf mutation and human melanoma with BRAF mutation. (BRP44L) was observed (Examples described later). Therefore, it can be said that PDZRN3, DTX3L, CSS3 and BRP44L are useful as target molecules in the treatment of melanoma regardless of the presence or absence of BRAF mutation. In fact, DTX3L became an effective target in melanoma cells (having a BRAF mutation) that acquired resistance to the BRAF inhibitor PLX (Examples described later). Thus, in a preferred embodiment, the medicament of the present invention is applied to melanomas that are resistant to BRAF inhibitors. Typically, the medicament of this embodiment is intended for treatment of melanoma patients who have acquired resistance to a BRAF inhibitor as a result of treatment with the BRAF inhibitor. However, patients with melanoma that are resistant to BRAF inhibitors because of their intrinsic characteristics or other causes than the use of BRAF inhibitors (for example, mutations associated with the development of symptoms or mutations due to the effects of other drugs) Can also be treated. Examples of BRAF inhibitors are PLX4032 and PLX4720.
 BRAF阻害剤に耐性を示すメラノーマに適用される医薬では、好ましくは、DTX3Lを標的分子とする。従って、好ましい態様として、DTX3L遺伝子の発現を抑制する化合物を有効成分とした医薬が提供される。 In a drug applied to a melanoma resistant to a BRAF inhibitor, preferably, DTX3L is a target molecule. Therefore, as a preferred embodiment, a medicament comprising a compound that suppresses the expression of the DTX3L gene as an active ingredient is provided.
<医薬の製剤化、投与、治療対象>
 本発明の医薬の製剤化は常法に従って行うことができる。製剤化する場合には、製剤上許容される他の成分(例えば、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、生理食塩水など)を含有させることができる。賦形剤としては乳糖、デンプン、ソルビトール、D-マンニトール、白糖等を用いることができる。崩壊剤としてはデンプン、カルボキシメチルセルロース、炭酸カルシウム等を用いることができる。緩衝剤としてはリン酸塩、クエン酸塩、酢酸塩等を用いることができる。乳化剤としてはアラビアゴム、アルギン酸ナトリウム、トラガント等を用いることができる。懸濁剤としてはモノステアリン酸グリセリン、モノステアリン酸アルミニウム、メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース、ラウリル硫酸ナトリウム等を用いることができる。無痛化剤としてはベンジルアルコール、クロロブタノール、ソルビトール等を用いることができる。安定剤としてはプロピレングリコール、ジエチリン亜硫酸塩、アスコルビン酸等を用いることができる。保存剤としてはフェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベン等を用いることができる。防腐剤としては塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等と用いることができる。
<Pharmaceutical formulation, administration, treatment target>
The pharmaceutical preparation of the present invention can be prepared according to a conventional method. In the case of formulating, other pharmaceutically acceptable ingredients (for example, carriers, excipients, disintegrants, buffers, emulsifiers, suspending agents, soothing agents, stabilizers, preservatives, preservatives, physiological Saline solution and the like). As the excipient, lactose, starch, sorbitol, D-mannitol, sucrose and the like can be used. As the disintegrant, starch, carboxymethylcellulose, calcium carbonate and the like can be used. Phosphate, citrate, acetate, etc. can be used as the buffer. As the emulsifier, gum arabic, sodium alginate, tragacanth and the like can be used. As the suspending agent, glyceryl monostearate, aluminum monostearate, methyl cellulose, carboxymethyl cellulose, hydroxymethyl cellulose, sodium lauryl sulfate and the like can be used. As the soothing agent, benzyl alcohol, chlorobutanol, sorbitol and the like can be used. As the stabilizer, propylene glycol, diethylin sulfite, ascorbic acid or the like can be used. As preservatives, phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben, and the like can be used. As preservatives, benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like can be used.
 製剤化する場合の剤型も特に限定されない。剤型の例は錠剤、散剤、細粒剤、顆粒剤、カプセル剤、シロップ剤、注射剤、外用剤、及び座剤である。本発明の医薬には、期待される治療効果(又は予防効果)を得るために必要な量(即ち治療上有効量)の有効成分が含有される。本発明の医薬中の有効成分量は一般に剤型によって異なるが、所望の投与量を達成できるように有効成分量を例えば約0.1重量%~約95重量%の範囲内で設定する。本発明の医薬はその剤型に応じて経口投与又は非経口投与(静脈内、動脈内、皮下、皮内、筋肉内、又は腹腔内注射、経皮、経鼻、経粘膜など)によって対象に適用される。これらの投与経路は互いに排他的なものではなく、任意に選択される二つ以上を併用することもできる(例えば、経口投与と同時に又は所定時間経過後に静脈注射等を行う等)。核酸コンストラクトを有効成分とした場合(例えばRNAiを利用する態様)、in vivo投与に限らず、ex vivo投与を採用することもできる。 The dosage form for formulation is not particularly limited. Examples of dosage forms are tablets, powders, fine granules, granules, capsules, syrups, injections, external preparations, and suppositories. The medicament of the present invention contains an active ingredient in an amount necessary for obtaining an expected therapeutic effect (or preventive effect) (ie, a therapeutically effective amount). The amount of the active ingredient in the medicament of the present invention generally varies depending on the dosage form, but the amount of the active ingredient is set, for example, within the range of about 0.1 wt% to about 95 wt% so as to achieve a desired dose. The medicament of the present invention is administered to the subject by oral administration or parenteral administration (intravenous, intraarterial, subcutaneous, intradermal, intramuscular or intraperitoneal injection, transdermal, nasal, transmucosal, etc.) depending on the dosage form. Applied. These administration routes are not mutually exclusive, and two or more arbitrarily selected can be used in combination (for example, intravenous injection or the like is performed simultaneously with oral administration or after a predetermined time has elapsed). When a nucleic acid construct is an active ingredient (for example, an embodiment using RNAi), not only in vivo administration but also ex vivo administration can be employed.
 本発明の医薬を投与する「対象」は特に限定されず、ヒト及びヒト以外の哺乳動物(ペット動物、家畜、実験動物を含む。具体的には例えばマウス、ラット、モルモット、ハムスター、サル、ウシ、ブタ、ヤギ、ヒツジ、イヌ、ネコ、ニワトリ、ウズラ等である)を含む。好ましい一態様では本発明の医薬はヒトに対して適用される。投与量は患者の症状、年齢、性別、及び体重などによって異なるが、当業者であれば適宜適当な投与量を設定することが可能である。投与スケジュールの設定においては、患者の症状や医薬の効果持続時間などを考慮することができる。 The “subject” to which the medicament of the present invention is administered is not particularly limited, and includes humans and non-human mammals (pet animals, domestic animals, laboratory animals. Specifically, for example, mice, rats, guinea pigs, hamsters, monkeys, cows) Pigs, goats, sheep, dogs, cats, chickens, quails, etc.). In a preferred embodiment, the medicament of the present invention is applied to humans. Although the dosage varies depending on the patient's symptoms, age, sex, weight, etc., those skilled in the art can appropriately set an appropriate dosage. In setting the administration schedule, it is possible to consider the patient's symptoms and the duration of the effect of the medicine.
 以上の記述から明らかな通り本出願は、メラノーマの患者に対して本発明の医薬を治療上有効量投与することを特徴とする、メラノーマの治療法も提供する。 As is apparent from the above description, the present application also provides a method for treating melanoma, which comprises administering a therapeutically effective amount of the medicament of the present invention to a melanoma patient.
 メラノーマ特異的な生体分子(バイオマーカーや治療標的)を見出すべく、以下の検討を行った。 The following studies were conducted in order to find melanoma-specific biomolecules (biomarkers and therapeutic targets).
1.材料と方法
(1)細胞及びマウス
 正常ヒト皮膚メラノサイト(NHEM)は倉敷紡績株式会社(KURABO, Japan)より購入した。ヒトメラノーマ細胞株SK-Mel28及びG361は理研バイオリソースセンターから、ヒトメラノーマ細胞株MNT1はVJ Hearing博士 (National Cancer Institute, NIH, Bethesda, MD)から、ヒトメラノーマ細胞株A375P及びA375MはDorothy C Bennett博士(St George's, UK)より提供された。マウスメラノーマ細胞株(B16, B16F1, B16F10, B16BL6)は東北大学細胞バンクより提供された。304/B6マウス(RET-mice)(Kato, M. et al., J Invest Dermatol. 111:640-4.; Iwamoto, T. et al., EMBO J. 10:3167-75.; Kato, M. et al., Oncogene. 17:1885-8.等を参照)は、メラノサイト系良性腫瘍及びメラノーマの採取に利用した。
1. Materials and Methods (1) Cells and mice Normal human skin melanocytes (NHEM) were purchased from Kurashiki Boseki Co., Ltd. (KURABO, Japan). Human melanoma cell lines SK-Mel28 and G361 are from RIKEN BioResource Center, human melanoma cell line MNT1 is from Dr. VJ Hearing (National Cancer Institute, NIH, Bethesda, MD), human melanoma cell lines A375P and A375M are from Dr. Dorothy C Bennett ( Provided by St George's, UK). Mouse melanoma cell lines (B16, B16F1, B16F10, B16BL6) were provided by Tohoku University Cell Bank. 304 / B6 mice (RET-mice) (Kato, M. et al., J Invest Dermatol. 111: 640-4 .; Iwamoto, T. et al., EMBO J. 10: 3167-75 .; Kato, M et al., Oncogene. 17: 1885-8, etc.) was used to collect melanocyte benign tumors and melanoma.
(2)リアルタイムPCR
 全RNAをHigh Pure RNA Kit (Roche Diagnostics)を用いて培養細胞及び組織から抽出し、Super-criptTMIII reverse transcriptase (Invitrogen)を用いてcDNAを合成した。リアルタイムRT-PCRはpower SYBR1 Green PCR master mix (Applied Biosystems)の試薬を使用し、ABI Prism7500 sequence detection system (Applied Biosystems)を用いて行った。
(2) Real-time PCR
Total RNA was extracted from cultured cells and tissues using High Pure RNA Kit (Roche Diagnostics), and cDNA was synthesized using Super-criptTM III reverse transcriptase (Invitrogen). Real-time RT-PCR was performed using a reagent of power SYBR1 Green PCR master mix (Applied Biosystems) and ABI Prism7500 sequence detection system (Applied Biosystems).
(3)遺伝子強制発現細胞株及びノックダウン細胞株の樹立
 遺伝子強制発現細胞株の作製にはpCMV-c-Fa-Puro3ベクター(Invitrogen)を使用した。タンパク質コード領域のcDNAをpCMV-c-Fa-Puro3ベクターに導入後、培養細胞にトランスフェクションし、1 mg/ml ピューロマイシン(和光純薬工業株式会社)による細胞の選別を行った。ノックダウン細胞株の樹立には、pRNAT-U6-1-Neoベクター(Invitrogen)を使用した。shRNA配列をpRNAT-U6-1-Neoベクターに導入後、培養細胞にトランスフェクションし、1 mg/ml ネオマイシン(和光純薬工業株式会社)による細胞の選別を行った。
(3) Establishment of gene forced expression cell line and knockdown cell line The pCMV-c-Fa-Puro3 vector (Invitrogen) was used for the production of the gene forced expression cell line. After introducing the cDNA of the protein coding region into the pCMV-c-Fa-Puro3 vector, the cultured cells were transfected, and the cells were selected with 1 mg / ml puromycin (Wako Pure Chemical Industries, Ltd.). The pRNAT-U6-1-Neo vector (Invitrogen) was used for establishment of the knockdown cell line. After introducing the shRNA sequence into the pRNAT-U6-1-Neo vector, the cultured cells were transfected, and cells were selected with 1 mg / ml neomycin (Wako Pure Chemical Industries, Ltd.).
(4)メラノーマ浸潤能活性のin vitro及びin vivo解析
 In vitro解析では、セルカルチャーインサート(FALCON)をマトリゲル(Corning)コートし、1% FBS条件下で培養した細胞を播種、10% FBS入り培養液を24穴ディッシュに加えた後、セルカルチャーインサートをセットした。24~48時間後、セルカルチャーインサートをホルマリン固定し、クリスタルバイオレットによる細胞染色を行った。In vivo解析では、1% FBS条件下で培養した細胞をヌードマウスの尾静脈から注入し、14日間飼育後に解剖し、肺への転移を調査した。
(4) In vitro and in vivo analysis of melanoma invasion activity In in vitro analysis, cell culture insert (FALCON) was coated with Matrigel (Corning), seeded with cells cultured under 1% FBS conditions, and cultured with 10% FBS After adding the liquid to the 24-well dish, the cell culture insert was set. After 24-48 hours, the cell culture insert was fixed in formalin, and the cells were stained with crystal violet. In in vivo analysis, cells cultured under 1% FBS conditions were injected from the tail vein of nude mice, dissected after 14 days, and examined for metastasis to the lung.
(5)認可
 本研究は名古屋大学及び中部大学に設置されている動物実験委員会(名古屋大学認可番号26317、中部大学認可番号2410062)、組換えDNA実験委員会(名古屋大学認可番号13-76、中部大学認可番号12-03)及び倫理委員会(名古屋大学認可番号2013-0070、中部大学認可番号250007)によって認可されている。
(5) Authorization This study was conducted at the Animal Experiment Committee (Nagoya University authorization number 26317, Chubu University authorization number 2410062), Recombinant DNA Experiment Committee (Nagoya University authorization number 13-76) Approved by Chubu University Approval Number 12-03) and Ethics Committee (Nagoya University Approval Number 2013-0070, Chubu University Approval Number 250007).
(6)遺伝子配列及びタンパク質配列
 以下、公共のデータベースに登録されている、各遺伝子及びタンパク質の配列を記載する。
 ヒトPDZRN3遺伝子:配列番号1(NCBI nucleotide database Accession No.: NM_015009)
 ヒトPDZRN3タンパク質:配列番号2(NCBI protein database Accession No.: NP_055824)
 ヒトDTX3L遺伝子:配列番号3(NCBI nucleotide database Accession No.: NM_138287)
 ヒトDTX3Lタンパク質:配列番号4(NCBI protein database Accession No.: NP_612144)
 ヒトCSS3遺伝子:配列番号5(NCBI nucleotide database Accession No.: NM_175856)
 ヒトCSS3タンパク質:配列番号6(NCBI protein database Accession No.: NP_787052)
 ヒトBRP44L遺伝子:配列番号7(NCBI nucleotide database Accession No.: NM_016098)
 ヒトBRP44Lタンパク質:配列番号8(NCBI protein database Accession No.: NP_057182)
(6) Gene sequence and protein sequence The sequence of each gene and protein registered in a public database is described below.
Human PDZRN3 gene: SEQ ID NO: 1 (NCBI nucleotide database Accession No .: NM_015009)
Human PDZRN3 protein: SEQ ID NO: 2 (NCBI protein database Accession No .: NP_055824)
Human DTX3L gene: SEQ ID NO: 3 (NCBI nucleotide database Accession No .: NM_138287)
Human DTX3L protein: SEQ ID NO: 4 (NCBI protein database Accession No .: NP_612144)
Human CSS3 gene: SEQ ID NO: 5 (NCBI nucleotide database Accession No .: NM_175856)
Human CSS3 protein: SEQ ID NO: 6 (NCBI protein database Accession No .: NP_787052)
Human BRP44L gene: SEQ ID NO: 7 (NCBI nucleotide database Accession No .: NM_016098)
Human BRP44L protein: SEQ ID NO: 8 (NCBI protein database Accession No .: NP_057182)
 マウスPdzrn3遺伝子:配列番号9(NCBI nucleotide database Accession No.: NM_018884)
 マウスPdzrn3タンパク質:配列番号10(NCBI protein database Accession No.: NP_061372)
 マウスDtx3l遺伝子:配列番号11(NCBI nucleotide database Accession No.: NM_001013371)
 マウスDtx3lタンパク質:配列番号12(NCBI protein database Accession No.: NP_001013389)
 マウスCss3遺伝子:配列番号13(NCBI nucleotide database Accession No.: NM_001081328)
 マウスCss3タンパク質:配列番号14(NCBI protein database Accession No.: NP_001074797)
 マウスBrp44l遺伝子:配列番号15(NCBI nucleotide database Accession No.: NM_018819)
 マウスBrp44lタンパク質:配列番号16(NCBI protein database Accession No.: NP_061289)
Mouse Pdzrn3 gene: SEQ ID NO: 9 (NCBI nucleotide database Accession No .: NM_018884)
Mouse Pdzrn3 protein: SEQ ID NO: 10 (NCBI protein database Accession No .: NP_061372)
Mouse Dtx3l gene: SEQ ID NO: 11 (NCBI nucleotide database Accession No .: NM_001013371)
Mouse Dtx3l protein: SEQ ID NO: 12 (NCBI protein database Accession No .: NP_001013389)
Mouse Css3 gene: SEQ ID NO: 13 (NCBI nucleotide database Accession No .: NM_001081328)
Mouse Css3 protein: SEQ ID NO: 14 (NCBI protein database Accession No .: NP_001074797)
Mouse Brp44l gene: SEQ ID NO: 15 (NCBI nucleotide database Accession No .: NM_018819)
Mouse Brp44l protein: SEQ ID NO: 16 (NCBI protein database Accession No .: NP_061289)
2.結果
 メラノーマモデルマウス(RET-Tg)の自然発症したメラノサイト系良性腫瘍とメラノーマからmRNAを精製し、DNAマイクロアレイによる遺伝子発現解析を行い、良性腫瘍と比較してメラノーマでの発現が強い、或いは弱い遺伝子を選定することで、PDZ domain containing ring finger 3 (PDZRN3)、Deltex-3-like (DTX3L)、Chondroitin sulfate synthase 3 (CSS3)、BRP44L遺伝子をメラノーマ関連遺伝子として同定した。
2. Result: mRNA was purified from spontaneously occurring melanocyte benign tumors and melanomas in melanoma model mice (RET-Tg), and gene expression analysis was performed using DNA microarrays. Genes with stronger or weaker expression in melanoma compared to benign tumors Thus, PDZ domain containing ring finger 3 (PDZRN3), Deltex-3-like (DTX3L), Chondroitin sulfate synthase 3 (CSS3), and BRP44L gene were identified as melanoma-related genes.
(1)遺伝子・タンパク質発現解析
(a) PDZRN3
 メラノーマモデルマウス(RET-Tg)に自然発症した良性腫瘍及び悪性メラノーマにおける、PDZRN3遺伝子発現レベルをリアルタイムPCRを用いて測定したところ、PDZRN3遺伝子は良性腫瘍での発現量と比べて、悪性メラノーマでの発現量が大きく上昇していた(図1)。ヒト正常皮膚メラノサイト(NHEM)と、ヒトメラノーマ細胞株(6種)におけるPDZRN3タンパク質の発現を調査したところ、全てのメラノーマ細胞株において、PDZRN3タンパク質の発現量がNHEMと比べて上昇していた(図2a)。また、マウスメラノーマ細胞株(4種)におけるPdzrn3タンパク質の発現量を調査した。B16細胞株は他の細胞株と比べて、浸潤能(転移活性)が低いことが知られている。浸潤能の低いB16と比べて、浸潤能の高い他の細胞株での発現量が大きく上昇しており(図2b)、Pdzrn3が浸潤能と関連している可能性を示唆している。
(1) Gene / protein expression analysis
(a) PDZRN3
When the expression level of PDZRN3 gene in benign tumor and malignant melanoma spontaneously developed in melanoma model mice (RET-Tg) was measured using real-time PCR, PDZRN3 gene was compared with the expression level in benign tumors. The expression level was greatly increased (FIG. 1). When the expression of PDZRN3 protein in human normal skin melanocytes (NHEM) and human melanoma cell lines (6 types) was investigated, the expression level of PDZRN3 protein was increased in all melanoma cell lines compared to NHEM (Fig. 2a). In addition, the expression level of Pdzrn3 protein in mouse melanoma cell lines (4 types) was investigated. The B16 cell line is known to have lower invasive ability (metastatic activity) than other cell lines. Compared with B16 with low invasive ability, the expression level in other cell lines with high invasive ability is greatly increased (FIG. 2b), suggesting that Pdzrn3 may be associated with invasive ability.
 ヒトメラノーマ組織(良性腫瘍: Benign、原発性メラノーマ: Malignant、転移性メラノーマ: Metastasis)におけるPDZRN3タンパク質の発現量を抗PDZRN3抗体による免疫染色後、染色レベルを数値化することで発現量を測定した。発現レベルを3つ(陰性/低い、中程度、高い)にカテゴライズし、各発現レベルの割合を比較したところ、原発性メラノーマ及び転移性メラノーマでの発現レベルは良性腫瘍と比較して有意に高いことが明らかとなった(図3)。 The expression level of PDZRN3 protein in human melanoma tissues (benign tumor: Benign, primary melanoma: Malignant, metastatic melanoma: Metastasis) was measured by quantifying the staining level after immunostaining with anti-PDZRN3 antibody. The expression levels were categorized into 3 (negative / low, moderate, high) and the ratio of each expression level was compared. The expression levels in primary and metastatic melanoma were significantly higher than those in benign tumors. It became clear (Fig. 3).
(b) DTX3L
 RET-Tgマウスに自然発症した良性腫瘍及び悪性メラノーマにおける、DTX3L遺伝子及びタンパク質発現レベルをリアルタイムPCR(図4A)、ウェスタンブロッティング(図4B)及び免疫組織染色(図4C)を用いて測定した。DTX3L遺伝子及びタンパク質は良性腫瘍での発現量と比べて、悪性メラノーマでの発現量が大きく上昇することが明らかとなった。マウスメラノーマ細胞株(4種)におけるDtx3lタンパク質の発現量をウェスタンブロッティングを用いて測定した(図5A)。B16細胞株は他の細胞株と比べて、浸潤能(転移活性)が低いことが知られている。浸潤能の低いB16と比べて、浸潤能の高い他の細胞株での発現量が大きく上昇しており、Dtx3lが浸潤能と関連している可能性を示唆している。また、ヒト正常皮膚メラノサイト(NHEM)と、ヒトメラノーマ細胞株(5種)におけるDTX3Lタンパク質の発現量をウェスタンブロッティングを用いて測定した(図5B)。全てのヒトメラノーマ細胞株において、DTX3Lタンパク質の発現量がNHEMと比べて上昇していた。ヒトメラノーマ組織(良性腫瘍: Benign、原発性メラノーマ: primary melanoma、転移性メラノーマ: Metastatic melanoma)におけるDTX3Lタンパク質の発現量を、抗DTX3L抗体による免疫染色後、染色レベルを数値化することで測定した。発現レベルを3つ(陰性/低い、中程度、高い)にカテゴライズし、各発現レベルの割合を比較した結果、原発性メラノーマ及び転移性メラノーマでの発現レベルは良性腫瘍と比較して有意に高いことが明らかとなった(図6A,B)。
(b) DTX3L
DTX3L gene and protein expression levels in benign tumors and malignant melanoma spontaneously developed in RET-Tg mice were measured using real-time PCR (FIG. 4A), Western blotting (FIG. 4B) and immunohistochemical staining (FIG. 4C). The expression level of DTX3L gene and protein was significantly increased in malignant melanoma compared to the expression level in benign tumors. The expression level of Dtx3l protein in mouse melanoma cell lines (4 types) was measured using Western blotting (FIG. 5A). The B16 cell line is known to have lower invasive ability (metastatic activity) than other cell lines. Compared to B16, which has low invasive ability, the expression level in other cell lines with high invasive ability is greatly increased, suggesting that Dtx3l may be associated with invasive ability. In addition, the expression level of DTX3L protein in human normal skin melanocytes (NHEM) and human melanoma cell lines (5 types) was measured using Western blotting (FIG. 5B). In all human melanoma cell lines, the expression level of DTX3L protein was increased compared to NHEM. The expression level of DTX3L protein in human melanoma tissues (benign tumor: Benign, primary melanoma: metastatic melanoma) was measured by quantifying the staining level after immunostaining with anti-DTX3L antibody. As a result of categorizing the expression level into 3 (negative / low, moderate, high) and comparing the ratio of each expression level, the expression level in primary melanoma and metastatic melanoma is significantly higher than in benign tumors It became clear (FIG. 6A, B).
(c) CSS3
 CSS3にはCSS1、CSS2という同じファミリー遺伝子が存在する。メラノーマモデルマウス(RET-Tg)に自然発症した良性腫瘍及び悪性メラノーマにおける、これら3つの遺伝子発現レベルをリアルタイムPCRを用いて測定した結果、CSS1、CSS2遺伝子は良性・悪性の両方で発現量は低いが、CSS3遺伝子は悪性メラノーマでの発現量が大きく上昇していた(図7)。ヒトメラノーマ組織(良性腫瘍: Benign、原発性メラノーマ: Malignant、転移性メラノーマ: Meta)におけるCSS3タンパク質の発現量を、抗CSS3抗体による免疫染色後、染色レベルを数値化することで測定した(図8)。発現レベルを3つ(陰性/低い、中程度、高い)にカテゴライズし、各発現レベルの割合を比較した結果、原発性メラノーマ及び転移性メラノーマでの発現レベルは良性腫瘍と比較して有意に高いことが明らかとなった。
(c) CSS3
CSS3 has the same family genes, CSS1 and CSS2. As a result of measuring the expression levels of these three genes in benign tumors and malignant melanomas spontaneously developed in melanoma model mice (RET-Tg) using real-time PCR, the expression levels of CSS1 and CSS2 genes are both benign and malignant and low. However, the expression level of CSS3 gene was significantly increased in malignant melanoma (FIG. 7). The expression level of CSS3 protein in human melanoma tissue (benign tumor: Benign, primary melanoma: Malignant, metastatic melanoma: Meta) was measured by quantifying the staining level after immunostaining with anti-CSS3 antibody (FIG. 8). ). As a result of categorizing the expression level into 3 (negative / low, moderate, high) and comparing the ratio of each expression level, the expression level in primary melanoma and metastatic melanoma is significantly higher than in benign tumors It became clear.
(d) BRP44L
 メラノーマモデルマウス(RET-Tg)に自然発症した良性腫瘍及び悪性メラノーマにおける、BRP44L遺伝子及びタンパク質発現レベルをリアルタイムPCR(図9A)、ウェスタンブロッティング(図9B)を用いて測定した。BRP44L mRNA及びタンパク質は、良性腫瘍と比較してメラノーマでの発現が減少していた。ヒトメラノーマ組織(良性腫瘍: nevus、メラノーマ: melanoma)におけるBRP44L mRNAの発現量をリアルタイムPCRを用いて測定した結果、ヒトメラノーマ組織における発現量は良性腫瘍と比較して大きく減少していることが明らかとなった(図10)。
(d) BRP44L
BRP44L gene and protein expression levels in benign tumors and malignant melanomas spontaneously developed in melanoma model mice (RET-Tg) were measured using real-time PCR (FIG. 9A) and Western blotting (FIG. 9B). BRP44L mRNA and protein had decreased expression in melanoma compared to benign tumors. The expression level of BRP44L mRNA in human melanoma tissue (benign tumor: nevus, melanoma: melanoma) was measured using real-time PCR. As a result, the expression level in human melanoma tissue was significantly reduced compared to that in benign tumor. (Fig. 10).
(2)各遺伝子の機能解析
(a) PDZRN3
 shRNA強制発現ベクターを用い、マウスメラノーマ細胞株(B16F10)においてPDZRN3の発現を低下させた安定株を樹立し(図11a)、各安定株の浸潤能を浸潤アッセイによって測定した(図11b)。PDZRN3の発現量が低下した細胞は、浸潤細胞数(図11bの原図では紫色に染色された細胞)が大きく低下しており(図11bのP1、P2)、メラノーマ細胞が本来有する浸潤能を大きく阻害していた。PDZRN3の発現を低下させた安定株をヌードマウス尾部静脈へ注入し、その後の肺への転移活性を調査した(図12a)。PDZRN3の発現量が低下した細胞株(shPdzrn3)は、コントロール株(shControl)と比較して肺への浸潤(転移)が大きく阻害された。各安定株における浸潤能関連シグナル分子(FAK)の活性化(リン酸化)レベルを調査したところ、全てのPDZRN3発現抑制クローン(P1~P3)でFAKのリン酸化(活性)レベルが低下しており(図12b)、PDZRN3は浸潤能関連シグナル分子(FAK)の活性を制御している可能性が示唆された。
(2) Functional analysis of each gene
(a) PDZRN3
Using a shRNA forced expression vector, stable strains with reduced expression of PDZRN3 in a mouse melanoma cell line (B16F10) were established (FIG. 11a), and the invasive ability of each stable strain was measured by an invasion assay (FIG. 11b). Cells with reduced expression of PDZRN3 have a greatly reduced number of infiltrating cells (cells stained in purple in the original image of FIG. 11b) (P1, P2 in FIG. 11b), and have a greater invasive ability inherent to melanoma cells. It was inhibiting. A stable strain with reduced expression of PDZRN3 was injected into the tail vein of nude mice, and the subsequent metastatic activity to the lung was investigated (FIG. 12a). The cell line (shPdzrn3) in which the expression level of PDZRN3 was reduced was greatly inhibited from infiltrating into the lung (metastasis) compared to the control line (shControl). When the activation (phosphorylation) level of signal molecule (FAK) related to invasion ability in each stable strain was investigated, the phosphorylation (activity) level of FAK decreased in all PDZRN3 expression-suppressed clones (P1 to P3). (FIG. 12b), it was suggested that PDZRN3 may control the activity of invasive ability-related signal molecule (FAK).
(b) DTX3L
 shRNA強制発現ベクターを用い、マウスメラノーマ細胞株(B16F10)においてDtx3lの発現を低下させた安定株を樹立し、各安定株の浸潤能を浸潤アッセイによって測定すると共に(図13A)、浸潤に関与する細胞内シグナル分子の活性を測定した(図13B)。Dtx3lの発現量低下は、Fak、Pi3k、Aktシグナルの活性を抑制し、マウスメラノーマ細胞が本来有する浸潤能を大きく阻害することが明らかとなった。一方、shRNA強制発現ベクターを用い、ヒトメラノーマ細胞株(G361)においてDTX3Lの発現を低下させた安定株を樹立し、各安定株の浸潤能を浸潤アッセイによって測定すると共に(図14A)、浸潤に関与する細胞内シグナル分子の活性を測定した(図14B)。細胞の浸潤能、浸潤に関与する細胞内シグナル分子の両方が抑制されており、DTX3Lによる、メラノーマ浸潤能(転移能)活性の制御は、マウスだけでなく、ヒトでも同様に機能していることが明らかとなった。次に、shRNA強制発現ベクターを用い、マウスメラノーマ細胞株(B16F10)においてDTX3Lの発現を低下させた安定株を樹立した。各安定株の浸潤能を調べるため、安定株をヌードマウス尾部静脈へ注入し、その後の肺への転移活性を調査した。注入した細胞はGFPを発現するため、肺転移した細胞を可視化できる(図15A)。DTX3Lの発現量低下は、メラノーマ細胞の肺への浸潤(転移)を大きく阻害した(図15)。近年開発されたBRAFに対する分子治療薬であるPLX4032やPLX4720は新たな治療薬候補の一つであるが、メラノーマへの長期処理によって耐性細胞を生み出し、高頻度で再発する。本実験では、ヒトメラノーマ細胞株(A375P)にメラノーマ分子標的薬PLX4720を長期暴露して耐性株を作製し、siRNA導入によってDTX3Lの発現を低下させた場合(図16A)の浸潤能への効果を浸潤アッセイによって測定した(図16B)。PLX耐性メラノーマ細胞に対してもDTX3Lの発現抑制は効果的であり、既存の分子標的試薬によって生み出された薬剤耐性メラノーマに対する治療効果が期待できる。
(b) DTX3L
Using a shRNA forced expression vector, stable strains with reduced expression of Dtx3l in a mouse melanoma cell line (B16F10) were established, and the invasion ability of each stable strain was measured by an invasion assay (FIG. 13A) and involved in invasion. The activity of intracellular signal molecules was measured (FIG. 13B). It was revealed that the decrease in the expression level of Dtx3l suppressed the activity of Fak, Pi3k, and Akt signals and greatly inhibited the invasion ability inherent in mouse melanoma cells. On the other hand, using the shRNA forced expression vector, stable strains with reduced expression of DTX3L were established in the human melanoma cell line (G361), and the invasive ability of each stable strain was measured by an invasion assay (FIG. 14A). The activity of intracellular signal molecules involved was measured (FIG. 14B). Both cell invasive ability and intracellular signal molecules involved in invasion are suppressed, and DTX3L controls melanoma invasion (metastasis) activity not only in mice but also in humans Became clear. Next, a stable strain in which DTX3L expression was reduced in a mouse melanoma cell line (B16F10) was established using an shRNA forced expression vector. In order to examine the invasive ability of each stable strain, the stable strain was injected into the tail vein of nude mice, and the subsequent metastatic activity to the lung was investigated. Since the injected cells express GFP, lung metastasized cells can be visualized (FIG. 15A). The decrease in the expression level of DTX3L significantly inhibited infiltration (metastasis) of melanoma cells into the lung (FIG. 15). Recently developed molecular therapeutics for BRAF, PLX4032 and PLX4720, are one of the new therapeutic candidates. However, long-term treatment with melanoma produces resistant cells and recurs frequently. In this experiment, the human melanoma cell line (A375P) was exposed to the melanoma molecule targeted drug PLX4720 for a long period of time to create a resistant strain, and the effect on the invasive potential when DTX3L expression was reduced by siRNA introduction (FIG. 16A). Measured by invasion assay (Figure 16B). Suppressing the expression of DTX3L is also effective against PLX-resistant melanoma cells, and a therapeutic effect on drug-resistant melanoma produced by existing molecular target reagents can be expected.
(c) CSS3
 マウスメラノーマ細胞株(B16F10)においてCSS3を強制発現させた安定株を樹立し、各安定株の浸潤能を浸潤アッセイによって測定した(図17)。CSS3の強制発現は、メラノーマ細胞が本来有する浸潤能をさらに活性化することが明らかとなった。shRNA強制発現ベクターを用い、CSS3を強制発現させたマウスメラノーマ細胞株(B16F10 FLAG-CSS3)においてCSS3の発現を低下させた安定株を樹立し、各安定株の浸潤能を浸潤アッセイによって測定した(図18a)。CSS3の発現量低下は、メラノーマ細胞が有する浸潤能を阻害した。B16F10コントロール細胞、CSS3強制発現株(+CSS3)、及び発現抑制安定株(CSS3 sh)をヌードマウス尾部静脈へ細胞注入し、その後の肺への転移活性を調査した結果、CCS3強制発現によって肺への転移数は増加し、発現抑制によって転移数は減少することが明らかとなった(図18b)。
(c) CSS3
A stable strain in which CSS3 was forcibly expressed in a mouse melanoma cell line (B16F10) was established, and the invasive ability of each stable strain was measured by an invasion assay (FIG. 17). It was revealed that forced expression of CSS3 further activated the invasive ability inherent in melanoma cells. Using a shRNA forced expression vector, a stable strain with reduced CSS3 expression was established in a mouse melanoma cell line (B16F10 FLAG-CSS3) in which CSS3 was forcibly expressed, and the invasion ability of each stable strain was measured by an invasion assay ( FIG. 18a). Decrease in the expression level of CSS3 inhibited the invasive ability of melanoma cells. B16F10 control cells, CSS3 forced expression strain (+ CSS3), and expression-suppressed stable strain (CSS3 sh) were injected into the tail vein of nude mice, and then examined for metastatic activity to the lung. It was revealed that the number of metastases increased and the number of metastases decreased by suppressing the expression (FIG. 18b).
(d) BRP44L
 ヒトメラノーマ細胞株SKMel28 (SK-GFP#6)と、BRP44Lを強制発現させた安定株(SK-B#7, SK-B#8)に対し、抗癌剤の1種エトポシド処理を行うことで細胞死を誘導し、細胞生存率を測定した(図19)。BRP44L高発現下ではエトポシドによる細胞死誘導がより強く誘導されたことから、BRP44Lの強制発現は、抗癌剤に対する感受性を高める可能性を示唆している。
(d) BRP44L
Cell death by treatment of human melanoma cell line SKMel28 (SK-GFP # 6) and stable strains forcibly expressing BRP44L (SK-B # 7, SK-B # 8) with one kind of etoposide anticancer agent And cell viability was measured (FIG. 19). Under the high expression of BRP44L, cell death induction by etoposide was more strongly induced, suggesting that forced expression of BRP44L may increase the sensitivity to anticancer drugs.
3.考察
 今回解析した4種類の遺伝子及び遺伝子産物(タンパク質)はいずれも良性腫瘍と悪性腫瘍の間でその発現量に大きな差があり(図1~10参照)、その機能についても、実際のメラノーマ発症、或いは抗癌剤に対する感受性に深く関連していた(図11~19参照)。これらの分子をバイオマーカー(診断マーカー)として使用すれば、しばしば診断に苦慮するメラノサイト系腫瘍の病理診断精度をあげることができるだけでなく、悪性化レベルをも考慮した検査・診断が可能となる。これらのバイオマーカーを併用することは、メラノーマの早期診断と病理診断の両方において、詳細且つ有用な情報を提供する。BRP44Lは他の3遺伝子とは対照的にメラノーマで発現が減少していたことから、BRP44Lを他のバイオマーカー(PDZRN3、DTX3L、CSS3の一つ以上)に組み合わせて使用した場合に得られる情報は特に有用である。
3. Discussion All four types of genes and gene products (proteins) analyzed this time have large differences in their expression levels between benign tumors and malignant tumors (see Figs. 1 to 10), and their functions are also related to actual melanoma development. Or closely related to sensitivity to anti-cancer drugs (see FIGS. 11-19). If these molecules are used as biomarkers (diagnostic markers), not only can the accuracy of pathological diagnosis of melanocyte tumors, which are often difficult to diagnose, be improved, but also examination / diagnosis considering the level of malignancy becomes possible. The combined use of these biomarkers provides detailed and useful information in both early diagnosis and pathological diagnosis of melanoma. Since BRP44L had decreased expression in melanoma as opposed to the other 3 genes, the information obtained when BRP44L was used in combination with other biomarkers (one or more of PDZRN3, DTX3L, CSS3) It is particularly useful.
 今回解析した4つの遺伝子・タンパク質は、その発現を抑制又は増強することで極めて鋭敏にメラノーマの活性を阻害できる(図11~19参照)。PDZRN3、DTX3L、CSS3は浸潤・転移に主に関与し、BRP44Lは抗癌剤誘導性の細胞死感受性に関与している。これらの分子を各患者のメラノーマの性格によって使い分けることで、様々なタイプのメラノーマに対応できる可能性がある。近年開発されたBRAFに対する分子治療薬であるPLX4032やPLX4720はメラノーマ治療薬の候補の一つであるが、メラノーマへの長期処理によって耐性細胞を生み出し、高頻度でメラノーマが再発する。今回の実験において、DTX3L遺伝子の発現を抑制することにより、PLX4720耐性細胞の転移を大幅に抑制することに成功した(図16)。つまり、新たに同定されたメラノーマ関連分子(メラノーマに対する分子標的療法の候補分子)は、PLX4032やPLX4720等のメラノーマ治療薬の抱える問題に対しても有効であるといえる。 The four genes and proteins analyzed this time can inhibit melanoma activity very sensitively by suppressing or enhancing their expression (see FIGS. 11 to 19). PDZRN3, DTX3L, and CSS3 are mainly involved in invasion and metastasis, and BRP44L is involved in anticancer drug-induced cell death sensitivity. By using these molecules according to the melanoma characteristics of each patient, it may be possible to deal with various types of melanoma. Recently developed molecular therapeutics for BRAF, PLX4032 and PLX4720, are candidates for melanoma treatment. However, long-term treatment with melanoma produces resistant cells, and melanoma recurs frequently. In this experiment, we succeeded in significantly suppressing the metastasis of PLX4720-resistant cells by suppressing the expression of the DTX3L gene (FIG. 16). In other words, the newly identified melanoma-related molecule (a candidate molecule for molecular target therapy for melanoma) can be said to be effective for the problems of melanoma therapeutic agents such as PLX4032 and PLX4720.
 新たなメラノーマ関連分子はメラノーマの転移や抗癌剤に対する感受性に深く関与している。当該メラノーマ関連分子には、様々な癌腫の中でも特に予後が悪く、有効な治療のためには早期発見が必須のメラノーマの診断や治療に対する大きな貢献を期待できる。 New melanoma-related molecules are deeply involved in melanoma metastasis and sensitivity to anticancer drugs. The melanoma-related molecule has a particularly poor prognosis among various carcinomas, and can be expected to make a great contribution to the diagnosis and treatment of melanoma, which requires early detection for effective treatment.
 本発明のバイオマーカーはメラノーマの早期検出、メラノーマの悪性度の判定などに有用である。また、バイオマーカーを構成する生体分子は、メラノーマの浸潤、転移、抗癌剤に対する感受性などに深く関与しており、治療の標的としても有用である。従って、メラノーマの診断はもとより、メラノーマの治療への本発明の適用ないし応用も期待される。 The biomarker of the present invention is useful for early detection of melanoma, determination of malignancy of melanoma, and the like. In addition, biomolecules constituting biomarkers are deeply involved in melanoma invasion, metastasis, sensitivity to anticancer agents, and the like, and are useful as therapeutic targets. Therefore, not only the diagnosis of melanoma but also the application or application of the present invention to the treatment of melanoma is expected.
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。 The present invention is not limited to the description of the embodiments and examples of the above invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims. The contents of papers, published patent gazettes, patent gazettes, and the like specified in this specification are incorporated by reference in their entirety.

Claims (15)

  1.  PDZRN3遺伝子、PDZRN3タンパク質、DTX3L遺伝子、DTX3Lタンパク質、CSS3遺伝子、CSS3タンパク質、BRP44L遺伝子及びBRP44Lタンパク質からなる群より選択される生体分子からなる、メラノーマ特異的バイオマーカー。 Melanoma-specific biomarker consisting of a biomolecule selected from the group consisting of PDZRN3 gene, PDZRN3 protein, DTX3L gene, DTX3L protein, CSS3 gene, CSS3 protein, BRP44L gene and BRP44L protein.
  2.  PDZRN3遺伝子、PDZRN3タンパク質、DTX3L遺伝子、DTX3Lタンパク質、CSS3遺伝子、CSS3タンパク質、BRP44L遺伝子及びBRP44Lタンパク質からなる群より選択される一又は二以上の生体分子の検体中レベルを指標として用いることを特徴とする、メラノサイト系腫瘍検査法。 It is characterized in that the level in the sample of one or more biomolecules selected from the group consisting of PDZRN3 gene, PDZRN3 protein, DTX3L gene, DTX3L protein, CSS3 gene, CSS3 protein, BRP44L gene and BRP44L protein is used as an indicator. , Melanocyte tumor testing.
  3.  以下のステップ(1)~(3)を含む、請求項2に記載のメラノサイト系腫瘍検査法:
     (1)被検者由来の検体を用意するステップ;
     (2)前記検体中の一又は二以上の前記生体分子を検出するステップ;及び
     (3)検出結果に基づいて、メラノサイト系腫瘍の悪性度を判定するステップ。
    The melanocyte-based tumor examination method according to claim 2, comprising the following steps (1) to (3):
    (1) a step of preparing a subject-derived specimen;
    (2) detecting one or more of the biomolecules in the specimen; and (3) determining the malignancy of the melanocyte tumor based on the detection result.
  4.  PDZRN3遺伝子、PDZRN3タンパク質、DTX3L遺伝子、DTX3Lタンパク質、CSS3遺伝子及びCSS3タンパク質については、検出値が高いと悪性度が高いとの基準、又は検出できると発症可能性が高いとの基準に従い、
     BRP44L遺伝子及びBRP44Lタンパク質については、検出値が低いと悪性度が高いとの基準、又は検出できないと悪性度が高いとの基準に従い、ステップ(3)の判定を行う、請求項3に記載のメラノサイト系腫瘍検査法。
    For the PDZRN3 gene, PDZRN3 protein, DTX3L gene, DTX3L protein, CSS3 gene and CSS3 protein, according to the standard that the detection value is high and the malignancy is high, or that the possibility of onset is high if it can be detected,
    The melanocyte according to claim 3, wherein the BRP44L gene and the BRP44L protein are determined in step (3) according to a criterion that the detection value is low and the malignancy is high, or a criterion that the detection is high and the malignancy is high. Tumor examination method.
  5.  ステップ(2)で得られた検出値と対照検体の検出値との比較に基づきステップ(3)の判定を行う、請求項3又は4に記載のメラノサイト系腫瘍検査法。 The melanocyte-based tumor examination method according to claim 3 or 4, wherein the determination in step (3) is performed based on a comparison between the detection value obtained in step (2) and the detection value of the control sample.
  6.  ステップ(2)で得られた検出値と、同一の被検者から過去に採取された検体中の検出値との比較に基づきステップ(3)の判定を行う、請求項3又は4に記載のメラノサイト系腫瘍検査法。 The determination in step (3) is performed based on a comparison between the detection value obtained in step (2) and the detection value in a sample collected in the past from the same subject. Melanocyte tumor testing.
  7.  前記検体が皮膚組織、血液、血漿、血清、尿、唾液、汗又は腫瘍組織である、請求項2~6のいずれか一項に記載のメラノサイト系腫瘍検査法。 The melanocyte-based tumor examination method according to any one of claims 2 to 6, wherein the specimen is skin tissue, blood, plasma, serum, urine, saliva, sweat, or tumor tissue.
  8.  請求項1に記載のメラノーマ特異的バイオマーカーに特異的結合性を示す物質からなる、メラノサイト系腫瘍検査試薬。 A melanocyte-based tumor test reagent comprising a substance exhibiting specific binding to the melanoma-specific biomarker according to claim 1.
  9.  前記物質が抗体である、請求項8に記載のメラノサイト系腫瘍検査試薬。 The melanocyte-based tumor test reagent according to claim 8, wherein the substance is an antibody.
  10.  請求項8又は9に記載のメラノサイト系腫瘍検査試薬を含む、メラノサイト系腫瘍検査用キット。 A melanocyte tumor test kit comprising the melanocyte tumor test reagent according to claim 8 or 9.
  11.  PDZRN3遺伝子、DTX3L遺伝子及びCSS3遺伝子からなる群より選択される標的遺伝子の発現を抑制する化合物を有効成分とする、メラノーマ治療薬。 A melanoma therapeutic agent comprising, as an active ingredient, a compound that suppresses the expression of a target gene selected from the group consisting of PDZRN3 gene, DTX3L gene and CSS3 gene.
  12.  前記化合物が以下の(a)~(e)からなる群より選択される化合物である、請求項11に記載のメラノーマ治療薬:
     (a)標的遺伝子を標的とするsiRNA;
     (b)標的遺伝子を標的とするsiRNAを細胞内で生成する核酸コンストラクト;
     (c)標的遺伝子の発現を抑制する発現抑制配列と該配列にアニーリングする相補配列を有する一本鎖RNA;
     (d)標的遺伝子の転写産物を標的とするアンチセンス核酸;
     (e)標的遺伝子の転写産物を標的とするリボザイム。
    The melanoma therapeutic agent according to claim 11, wherein the compound is a compound selected from the group consisting of the following (a) to (e):
    (a) siRNA targeting the target gene;
    (b) a nucleic acid construct that generates siRNA targeting the target gene in the cell;
    (c) a single-stranded RNA having an expression suppressing sequence that suppresses expression of the target gene and a complementary sequence that anneals to the sequence;
    (d) an antisense nucleic acid that targets the transcript of the target gene;
    (e) Ribozymes that target transcripts of target genes.
  13.  以下の(A)又は(B)を有効成分として含み、抗がん剤又は抗腫瘍作用を持つ薬物と併用される、メラノーマ治療薬:
     (A)BRP44Lタンパク質又はその一部(但し、メラノーマ細胞の抗がん剤感受性に対して有効な作用を有する);
     (B)BRP44L遺伝子又はその一部(但し、メラノーマ細胞の抗がん剤感受性に対して有効な作用を有するタンパク質をコードする)を保持する発現ベクター。
    Melanoma therapeutic agent containing the following (A) or (B) as an active ingredient and used in combination with an anticancer agent or a drug having an antitumor action:
    (A) BRP44L protein or a part thereof (however, it has an effective effect on the anticancer drug sensitivity of melanoma cells);
    (B) An expression vector carrying the BRP44L gene or a part thereof (however, it encodes a protein having an action effective for anticancer drug sensitivity of melanoma cells).
  14.  BRAF阻害剤に耐性を示すメラノーマに適用される、請求項11~13のいずれか一項に記載のメラノーマ治療薬。 The melanoma therapeutic agent according to any one of claims 11 to 13, which is applied to a melanoma having resistance to a BRAF inhibitor.
  15.  請求項11~14のいずれか一項に記載のメラノーマ治療薬を、メラノーマの患者に投与するステップ、を含むメラノーマ治療法。 A melanoma treatment method comprising the step of administering the melanoma therapeutic agent according to any one of claims 11 to 14 to a melanoma patient.
PCT/JP2016/054968 2015-03-20 2016-02-20 Melanoma-specific biomarker and use thereof WO2016152352A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017507616A JPWO2016152352A1 (en) 2015-03-20 2016-02-20 Melanoma-specific biomarkers and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-058692 2015-03-20
JP2015058692 2015-03-20

Publications (1)

Publication Number Publication Date
WO2016152352A1 true WO2016152352A1 (en) 2016-09-29

Family

ID=56977316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054968 WO2016152352A1 (en) 2015-03-20 2016-02-20 Melanoma-specific biomarker and use thereof

Country Status (2)

Country Link
JP (1) JPWO2016152352A1 (en)
WO (1) WO2016152352A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143475A1 (en) * 2017-02-06 2018-08-09 日産化学工業株式会社 Single-stranded oligonucleotide
CN108884462A (en) * 2016-01-26 2018-11-23 日产化学株式会社 Single-stranded oligonucleotide
CN109985244A (en) * 2017-12-29 2019-07-09 广州威溶特医药科技有限公司 E3 connection enzyme inhibitor and oncolytic virus are in the application for preparing anti-tumor drug
CN110241219A (en) * 2019-07-18 2019-09-17 北京泱深生物信息技术有限公司 Application of the MYOM3 in melanoma metastasis
CN110273002A (en) * 2019-07-18 2019-09-24 北京泱深生物信息技术有限公司 Application of the biomarker in melanoma metastasis diagnosis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537629A (en) * 2007-08-30 2010-12-09 アカデミシュ ジーケンハウス ビイ デ ユニヴェアズィテート ファン アムステルダム Pathways involved in arteriogenesis and use thereof
JP2011520451A (en) * 2008-05-14 2011-07-21 ダームテック インターナショナル Diagnosis of melanoma and Nikko Kuroko by nucleic acid analysis
WO2013148845A1 (en) * 2012-03-30 2013-10-03 The Procter & Gamble Company System for identifying connections between perturbagens and genes associated with a skin hyperpigmentation condition
WO2013192616A1 (en) * 2012-06-22 2013-12-27 Htg Molecular Diagnostics, Inc. Molecular malignancy in melanocytic lesions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537629A (en) * 2007-08-30 2010-12-09 アカデミシュ ジーケンハウス ビイ デ ユニヴェアズィテート ファン アムステルダム Pathways involved in arteriogenesis and use thereof
JP2011520451A (en) * 2008-05-14 2011-07-21 ダームテック インターナショナル Diagnosis of melanoma and Nikko Kuroko by nucleic acid analysis
WO2013148845A1 (en) * 2012-03-30 2013-10-03 The Procter & Gamble Company System for identifying connections between perturbagens and genes associated with a skin hyperpigmentation condition
WO2013192616A1 (en) * 2012-06-22 2013-12-27 Htg Molecular Diagnostics, Inc. Molecular malignancy in melanocytic lesions

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DANTE L. ET AL.: "Cloning and developmental expression of zebrafish pdzrn3.", INT J DEV BIOL., vol. 55, no. 10-12, 2011, pages 989 - 993, XP055317704 *
DATABASE EMBL 24 May 2008 (2008-05-24), ISOGAI T ET AL.: "Homo sapiens brain protein 44-like (BRP44L), mRNA.", XP055317729, Database accession no. AK312201 *
THANG ND. ET AL.: "Deltex-3-like (DTX3L) stimulates metastasis of melanoma through FAK/PI3K/AKT but not MEK/ERK pathway.", ONCOTARGET, vol. 6, no. 16, 10 June 2015 (2015-06-10), pages 14290 - 14299, XP055317738 *
YADA T. ET AL.: "Chondroitin sulfate synthase-3. Molecular cloning and characterization.", J BIOL CHEM., vol. 278, no. 41, 2003, pages 39711 - 39725, XP002976568 *
YAJIMA I ET AL.: "Functional analysis of GNG2 in human malignant melanoma cells.", J DERMATOL SCI., vol. 68, no. 3, 2012, pages 172 - 178, XP055317739 *
YAJIMA I. ET AL.: "Reduced GNG2 expression levels in mouse malignant melanomas and human melanoma cell lines.", AM J CANCER RES., vol. 2, no. 3, 2012, pages 322 - 329, XP055317709 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108884462A (en) * 2016-01-26 2018-11-23 日产化学株式会社 Single-stranded oligonucleotide
US11530409B2 (en) 2016-01-26 2022-12-20 Nissan Chemical Corporation Single-stranded oligonucleotide
WO2018143475A1 (en) * 2017-02-06 2018-08-09 日産化学工業株式会社 Single-stranded oligonucleotide
JPWO2018143475A1 (en) * 2017-02-06 2019-12-12 日産化学株式会社 Single-stranded oligonucleotide
JP7188087B2 (en) 2017-02-06 2022-12-13 日産化学株式会社 single-stranded oligonucleotide
US11572558B2 (en) 2017-02-06 2023-02-07 Nissan Chemical Corporation Single-stranded oligonucleotide
JP2023025156A (en) * 2017-02-06 2023-02-21 日産化学株式会社 Single-stranded oligonucleotides
CN109985244A (en) * 2017-12-29 2019-07-09 广州威溶特医药科技有限公司 E3 connection enzyme inhibitor and oncolytic virus are in the application for preparing anti-tumor drug
CN110241219A (en) * 2019-07-18 2019-09-17 北京泱深生物信息技术有限公司 Application of the MYOM3 in melanoma metastasis
CN110273002A (en) * 2019-07-18 2019-09-24 北京泱深生物信息技术有限公司 Application of the biomarker in melanoma metastasis diagnosis
CN110241219B (en) * 2019-07-18 2024-04-16 北京泱深生物信息技术有限公司 Application of MYOM3 in melanoma metastasis

Also Published As

Publication number Publication date
JPWO2016152352A1 (en) 2018-01-11

Similar Documents

Publication Publication Date Title
Guo et al. RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner
Liu et al. PRMT5-dependent transcriptional repression of c-Myc target genes promotes gastric cancer progression
EP2999797B1 (en) Isoforms of gata6 and nkx2-1 as markers for diagnosis and therapy of cancer and as targets for anti-cancer therapy
WO2016152352A1 (en) Melanoma-specific biomarker and use thereof
TWI816712B (en) Screening reagent for active ingredient of cancer promoting factor expression inhibitor and screening method thereof, screening reagent for active ingredient of cancer preventive or therapeutic agent and screening method thereof, cancer promoting factor expression inhibitor, and cancer preventive or therapeutic agent
WO2010011642A2 (en) Methods and compositions using splicing regulatory proteins involved in tumor suppression
Chen et al. SOX6 represses tumor growth of clear cell renal cell carcinoma by HMG domain‐dependent regulation of Wnt/β‐catenin signaling
JP2017006117A (en) Bard1 isoform and the use thereof in pulmonary cancer and colorectal cancer
Wang et al. Estrogen receptor beta increases clear cell renal cell carcinoma stem cell phenotype via altering the circPHACTR4/miR‐34b‐5p/c‐Myc signaling
WO2015093557A1 (en) Novel fusion gene as factor responsible for stomach cancer
US20130149320A1 (en) Asf1b as a Prognosis Marker and Therapeutic Target in Human Cancer
US11510911B2 (en) Method for prediction of susceptibility to sorafenib treatment by using SULF2 gene, and composition for treatment of cancer comprising SULF2 inhibitor
WO2011129427A1 (en) Diagnostic agent and therapeutic agent for cancer
WO2019031637A1 (en) Cancer marker genes for p53-non mutational cancer, and therapeutic agent screening method
US10865415B2 (en) Prevention, diagnosis and treatment of cancer overexpressing GPR160
CN104630338B (en) Application of RRM2B gene or protein thereof in liver cancer metastasis
CN112899275B (en) Application of circRHBDD1 in preparation of drugs for treating hepatocellular carcinoma
JP2005073548A (en) UTILIZATION OF HNF-1beta FOR INSPECTING AND TREATING OVARIAN CLEAR CELL ADENOMATOUS CARCINOMA AND FOR SCREENING REMEDY
US20210164982A1 (en) Pharmaceutical use of actinin-4 involved in induction of cervical cancer
US20230272478A1 (en) Biomarker specific for liver cancer, and use thereof
US20190264292A1 (en) Use of h2a.z.1 as a hepatocellular carcinoma biomarker
KR102042332B1 (en) TCIRG1 biomarker for diagnosing recurrent and prognosis of liver cancer and use thereof
KR101793174B1 (en) Method for Diagnosing Recurrent Cancer Using GOLGB1 or SF3B3 and Composition for Treating Recurrent Cancer Containing Inhibitors of GOLGB1 or SF3B3
Yu et al. Increase of ASH1L Expression Promotes Hepatocellular Carcinoma Development and Affects the Prognosis of Liver Transplantation Patients
Xiong et al. METTL14 Promotes Lipid Metabolism Reprogramming and Sustains Nasopharyngeal Carcinoma Progression via Enhancing m6A Modification of ANKRD22 mRNA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507616

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768255

Country of ref document: EP

Kind code of ref document: A1