WO2016152338A1 - 金属空気電池 - Google Patents

金属空気電池 Download PDF

Info

Publication number
WO2016152338A1
WO2016152338A1 PCT/JP2016/054681 JP2016054681W WO2016152338A1 WO 2016152338 A1 WO2016152338 A1 WO 2016152338A1 JP 2016054681 W JP2016054681 W JP 2016054681W WO 2016152338 A1 WO2016152338 A1 WO 2016152338A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
current collector
metal
layer
conductive layer
Prior art date
Application number
PCT/JP2016/054681
Other languages
English (en)
French (fr)
Inventor
崇介 西浦
正信 相澤
岳弘 清水
和也 亀山
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to CN201680014062.5A priority Critical patent/CN107408745B/zh
Priority to US15/557,981 priority patent/US10505171B2/en
Publication of WO2016152338A1 publication Critical patent/WO2016152338A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • H01M12/065Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode with plate-like electrodes or stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/256Carrying devices, e.g. belts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a metal-air battery.
  • a metal-air battery using a metal as a negative electrode active material and oxygen in the air as a positive electrode active material is known.
  • a negative electrode layer, an electrolyte layer, and a positive electrode layer are concentrically arranged in this order from the central axis toward the outside in the radial direction.
  • a metal-air battery is disclosed.
  • the positive electrode catalyst is supported on the outer surface of the positive electrode conductive layer, and a positive electrode catalyst layer is formed.
  • a current collecting layer is formed by winding a mesh sheet of metal such as nickel around the positive electrode catalyst layer.
  • Reference 1 also describes a case where an interconnector is provided as a current collecting layer. In this case, the interconnector contacts a part of the outer surface of the positive electrode conductive layer on which the positive electrode catalyst is supported. That is, the interconnector is substantially formed on the positive electrode catalyst layer.
  • an interconnector formed of ceramic is provided on a part of the outer surface of the positive electrode catalyst layer, and a liquid repellent layer that covers the outer surface of the positive electrode catalyst layer together with the interconnector is further formed.
  • the positive electrode current collector is formed on the positive electrode catalyst layer, the electric current between the positive electrode current collector and the positive electrode conductive layer is obtained when the conductivity of the positive electrode catalyst layer is low. Resistance increases. In this case, the battery performance of the metal-air battery is degraded. Moreover, it is also required to easily connect the positive electrode current collector to a connection terminal connected to an external circuit or the like.
  • the present invention is directed to a metal-air battery, and facilitates connection between a positive electrode current collector and a connection terminal, and lowers electric resistance between the positive electrode current collector and the positive electrode conductive layer to improve battery performance. It aims to improve.
  • the metal-air battery according to the present invention includes a cylindrical positive electrode centered on a predetermined central axis, a negative electrode facing the inner surface of the positive electrode, and an electrolyte layer disposed between the negative electrode and the positive electrode.
  • the positive electrode is formed on the outer surface of the positive electrode conductive layer, and has a lower conductivity than the positive electrode conductive layer,
  • a positive electrode current collector that is in direct contact with the outer surface by being formed in the absence region of the positive electrode catalyst layer on the outer surface of the positive electrode conductive layer; The thickness is larger than the thickness of the positive electrode catalyst layer.
  • the positive electrode current collector and the connection terminal can be easily connected, and the battery performance can be improved by reducing the electrical resistance between the positive electrode current collector and the positive electrode conductive layer.
  • the positive electrode conductive layer is formed of a conductive ceramic
  • the positive electrode current collector is formed of solder that can be bonded to the ceramic.
  • the positive electrode conductive layer, the positive electrode catalyst layer, and the positive electrode current collector are formed of a perovskite oxide.
  • the metal-air battery further has a plate shape extending in the axial direction along at least the central axis, and further includes a conductive plate having higher conductivity than the positive electrode current collector, and the positive electrode current collector However, it extends in the axial direction on the outer surface of the positive electrode conductive layer, and the conductive plate is joined to approximately the entire positive electrode current collector in the axial direction.
  • a positive electrode current collector of another metal-air battery having the same structure as the metal-air battery is joined to the conductive plate.
  • FIG. 1 is a diagram showing a configuration of a metal-air battery 1 according to an embodiment of the present invention.
  • the metal-air battery 1 in FIG. 1 is a secondary battery that uses zinc ions, and is a zinc-air secondary battery.
  • the metal-air battery 1 may use other metal ions.
  • the metal-air battery 1 has a substantially cylindrical shape centered on the central axis J1, and FIG. 1 shows a cross section of the metal-air battery 1 in a plane perpendicular to the central axis J1 (excluding the negative electrode 3 described later).
  • the metal-air battery 1 includes a positive electrode 2, a negative electrode 3, and an electrolyte layer 4.
  • the negative electrode 3 (also referred to as a metal electrode) is a coiled member centered on the central axis J1.
  • the negative electrode 3 in the present embodiment has a shape in which a linear member having a substantially circular cross section is spirally wound around the central axis J1.
  • the negative electrode 3 includes a coiled base material formed of a conductive material and a deposited metal layer formed on the surface of the base material.
  • a negative electrode connection terminal (not shown) is connected to the end of the negative electrode 3 in the direction of the central axis J1.
  • the base material is formed of copper. From the viewpoint of increasing the conductivity of the base material also serving as the negative electrode current collector, the base material preferably contains copper or a copper alloy.
  • a protective film of other metal such as nickel is formed on the surface of the main body. In this case, the surface of the substrate is the surface of the protective film.
  • the thickness of the protective film is 1 to 20 ⁇ m (micrometer), and the protective film is formed by plating.
  • the deposited metal layer is formed by electrolytic deposition of zinc (Zn).
  • the deposited metal layer may be formed by electrolytic deposition of an alloy containing zinc.
  • a cylindrical or rod-shaped negative electrode 3 may be used.
  • a cylindrical separator 41 is provided around the negative electrode 3, and a cylindrical positive electrode 2 (also referred to as an air electrode) is provided around the separator 41.
  • the inner surface of the positive electrode 2 faces the negative electrode 3 with the separator 41 interposed therebetween.
  • the negative electrode 3, the separator 41, and the positive electrode 2 are provided concentrically with the central axis J1 as the center, and when viewed along the central axis J1, the distance between the outer edge of the negative electrode 3 and the positive electrode 2 is the central axis. It is constant over the entire circumference in the circumferential direction centered on J1. That is, between the negative electrode 3 and the positive electrode 2 in the metal-air battery 1, the equipotential surface interval is constant over the entire circumference.
  • the shape of the positive electrode 2 may be, for example, a regular polygonal cylinder having six or more vertices. Details of the separator 41 will be described later.
  • the positive electrode 2 includes a porous positive electrode conductive layer 21 that is a cylindrical support centering on the central axis J1, and a positive electrode catalyst layer formed on the outer surface of the positive electrode conductive layer 21 opposite to the negative electrode 3. 22. Both the positive electrode conductive layer 21 and the positive electrode catalyst layer 22 are formed of a conductive ceramic. The conductivity of the positive electrode conductive layer 21 is higher than that of the positive electrode catalyst layer 22. A region where the positive electrode catalyst layer 22 is absent is set on the outer surface of the positive electrode conductive layer 21. A positive electrode current collector 24 is provided in the absence region.
  • the positive electrode current collector 24 is an interconnector that is formed of a conductive ceramic having alkali resistance and is in direct contact with a part of the outer surface of the positive electrode conductive layer 21.
  • the conductivity of the positive electrode current collector 24 is higher than that of the positive electrode catalyst layer 22.
  • the positive electrode current collector 24 extends in the axial direction along the central axis J ⁇ b> 1 on the outer surface of the positive electrode conductive layer 21.
  • the positive electrode current collector 24 extends over substantially the entire length of the metal-air battery 1 in the axial direction.
  • the positive electrode current collector 24 may be short in the axial direction.
  • the conductive plate 5 is provided on the surface opposite to the positive electrode conductive layer 21 (that is, the surface facing the outer side in the radial direction with the central axis J1 as the center).
  • the conductive plate 5 is a plate-like metal member extending in the axial direction, and has a higher conductivity than the positive electrode current collector 24.
  • a preferred conductive plate 5 is made of copper.
  • the thickness of the conductive plate 5 is, for example, not less than 0.1 mm (millimeters) and not more than 2.0 mm. Preferably, the thickness of the conductive plate 5 is 0.5 mm or greater and 1.0 mm or less.
  • the conductive plate 5 is joined to approximately the entire positive electrode current collector 24 in the axial direction using a thermosetting metal paste (for example, silver paste) or the like.
  • the conductive plate 5 can be regarded as a positive electrode connection terminal electrically connected to the positive electrode current collector 24.
  • the positive electrode catalyst layer 22 is formed in a region not covered with the positive electrode current collector 24 on the outer surface of the positive electrode conductive layer 21. The entire outer surface of the positive electrode conductive layer 21 is covered with the positive electrode catalyst layer 22 and the positive electrode current collector 24.
  • a porous layer made of a water-repellent material for example, FEP (tetrafluoroethylene / hexafluoropropylene copolymer) or PTFE (polytetrafluoroethylene)
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • PTFE polytetrafluoroethylene
  • the positive electrode conductive layer 21 as a support is formed by extrusion molding and firing of a material containing a conductive ceramic.
  • a perovskite oxide or spinel oxide having conductivity is preferably used.
  • the positive electrode conductive layer 21 is formed of a perovskite oxide (for example, LSM (LaSrMnO 3 ), LSMF (LaSrMnFeO 3 ), LSCF (LaSrCoFeO 3 )).
  • the perovskite oxide used in the positive electrode conductive layer 21 preferably contains at least one of Co, Mn, and Fe. From the viewpoint of preventing deterioration due to oxidation during charging, the positive electrode conductive layer 21 preferably does not contain conductive carbon.
  • the positive electrode conductive layer 21 may be formed of a conductive material other than the conductive ceramic (the same applies to the positive electrode current collector 24).
  • the positive electrode catalyst layer 22 includes a portion where a conductive ceramic powder such as a perovskite oxide (for example, LSMF) is supported on the positive electrode conductive layer 21 by, for example, a slurry coating method and firing.
  • the positive electrode catalyst layer 22 is a porous film formed of ceramic on the outer surface of the positive electrode conductive layer 21 opposite to the negative electrode 3 and is supported by the positive electrode conductive layer 21 as a support.
  • the thickness of the positive electrode catalyst layer 22 is sufficiently smaller than the thickness of the positive electrode conductive layer 21.
  • an interface between air and an electrolyte solution 40 described later is formed in the porous positive electrode catalyst layer 22.
  • the positive electrode catalyst layer 22 may be formed of another catalyst such as manganese dioxide.
  • the positive electrode current collector 24 includes a portion in which a conductive ceramic powder is supported on the positive electrode conductive layer 21 by, for example, a slurry coating method and firing.
  • a conductive ceramic a perovskite oxide or spinel oxide having conductivity is preferably used.
  • the average particle diameter of the powder used for forming the positive electrode current collector 24 is preferably smaller than the powder used for forming the positive electrode conductive layer 21 and the positive electrode catalyst layer 22, and is, for example, 1 ⁇ m or less. Thereby, a dense positive electrode current collector 24 is formed.
  • the thickness of the positive electrode current collector 24 in the radial direction is larger than the thickness of the positive electrode catalyst layer 22.
  • the positive electrode current collector 24 protrudes radially outward from the surrounding region. As a result, the cross-sectional area perpendicular to the axial direction of the positive electrode current collector 24 is increased, and the electrical resistance of the positive electrode current collector 24 between both ends in the axial direction can be reduced.
  • the positive electrode current collector 24 may be provided at a plurality of positions in the circumferential direction.
  • the separator 41 described above is a porous film formed on the inner surface of the positive electrode conductive layer 21 on the negative electrode 3 side, and is formed over the entire circumference of the inner surface.
  • the separator 41 is, for example, mechanical strength and insulation such as silica (SiO 2 ), alumina (Al 2 O 3 ), zirconia (ZrO 2 ), titania (TiO 2 ), hafnia (HfO 2 ), and ceria (CeO 2 ). It is a sintered body of ceramic powder with high properties and has alkali resistance.
  • a slurry containing the ceramic powder and the binder is formed on the inner surface of the positive electrode conductive layer 21 by a slurry coating method and dried, and the binder contained in the slurry is baked at a high temperature. Removed. This prevents the life of the separator from being shortened due to the deterioration of the binder.
  • the separator 41 is preferably composed only of ceramic.
  • the separator 41 may be a mixture or laminate of these ceramics.
  • the separator 41 prevents or suppresses the deposit metal (dendrites or the like) of the negative electrode 3 from reaching the positive electrode 2 during charging described later.
  • the space inside the cylindrical positive electrode 2 (center axis J1 side) is filled with an aqueous electrolyte 40.
  • the electrolytic solution 40 is interposed between the positive electrode 2 and the negative electrode 3 and is in contact with both electrodes. About the entire negative electrode 3 is immersed in the electrolytic solution 40.
  • the electrolyte 40 is also filled in the pores of the porous separator 41 and the positive electrode conductive layer 21. Further, the electrolyte solution 40 is also filled in some of the pores of the positive electrode catalyst layer 22.
  • the space between the negative electrode 3 and the positive electrode 2 when viewed along the central axis J1 is referred to as “electrolyte layer 4”. That is, the electrolyte layer 4 is disposed between the negative electrode 3 and the positive electrode 2.
  • the electrolyte layer 4 includes a separator 41.
  • the electrolytic solution 40 is an alkaline aqueous solution, and preferably contains a potassium hydroxide (caustic potash, KOH) aqueous solution or a sodium hydroxide (caustic soda, NaOH) aqueous solution. Further, the electrolytic solution 40 includes zinc ions or ions containing zinc. That is, the zinc ions contained in the electrolytic solution 40 may exist in various forms and may be regarded as ions containing zinc (that is, zinc atoms). For example, it may exist as tetrahydroxyzinc ions.
  • Disc-shaped blocking members are fixed to both end faces of the negative electrode 3, the electrolyte layer 4, and the positive electrode 2 in the direction of the central axis J1.
  • a through hole is provided in the center of each closing member.
  • the electrolyte solution 40 inside the metal-air battery 1 is moved from outside the through hole to the outside by the positive electrode current collector 24, the liquid repellent layer (a portion near the outer surface of the positive electrode catalyst layer 22) and the blocking member. And leakage is prevented. Further, it is possible to circulate the electrolytic solution between the metal-air battery 1 and a storage tank (not shown) using the through holes of the closing member on both end faces.
  • the negative electrode connection terminal and the positive electrode connection terminal are electrically connected via a load such as a lighting fixture, for example.
  • Zinc included in the negative electrode 3 is oxidized to generate zinc ions, and electrons are supplied to the positive electrode 2 via the negative electrode connection terminal and the positive electrode connection terminal.
  • oxygen in the air that has permeated through the liquid repellent layer is reduced by electrons supplied from the negative electrode 3, and is eluted into the electrolyte as hydroxide ions.
  • the reduction reaction of oxygen is promoted by the positive electrode catalyst.
  • the metal-air battery 1 when the metal-air battery 1 is charged, a voltage is applied between the negative electrode connecting terminal and the positive electrode connecting terminal, and electrons are supplied from the hydroxide ions to the positive electrode 2 and oxygen is generated. To do. In the negative electrode 3, the metal ions are reduced by the electrons supplied to the negative electrode connection terminal via the positive electrode connection terminal, and zinc is deposited.
  • the coiled negative electrode 3 has no corners, so that electric field concentration hardly occurs. That is, there is no significant bias in current density. Further, the negative electrode 3 is in uniform contact with the electrolytic solution 40. As a result, the generation and growth of dendrites in which zinc precipitates in a dendritic shape and whiskers in which the zinc precipitates in a whisker shape (needle shape) are greatly suppressed. Actually, dense zinc is uniformly deposited on almost the entire surface of the negative electrode 3 to form a deposited metal layer. In the positive electrode 2, the generation of oxygen is promoted by the positive electrode catalyst contained in the positive electrode catalyst layer 22. Furthermore, since the positive electrode 2 does not use a carbon material, oxidative deterioration due to oxygen generated during charging does not occur.
  • the positive electrode 2 is manufactured as a member connected to the separator 41.
  • a cylindrical shaped body is formed by extrusion molding of a mixture containing a conductive ceramic powder, an organic binder, an organic solvent, and the like.
  • a perovskite oxide is used as the conductive ceramic.
  • the cylindrical positive electrode conductive layer 21 is formed as a porous support body by baking of a molded object.
  • the molded body Prior to firing, the molded body may be heat-treated at 100 to 800 ° C. to decompose and remove organic components in the molded body.
  • the firing may be performed under the condition that the molded body is sufficiently sintered and can maintain gas permeability, electrolyte solution permeability, and battery performance, and is preferably performed at 1100 to 1500 ° C.
  • the adhesive strength between the molded body and the layer can be improved.
  • the lead time of a baking process can be reduced compared with the case where each layer is baked separately.
  • the positive electrode conductive layer 21 may be formed by a method other than extrusion molding and baking.
  • the positive electrode conductive layer 21 When the positive electrode conductive layer 21 is prepared, a part of the outer surface of the positive electrode conductive layer 21 (a region where the positive electrode current collector 24 is to be formed, hereinafter referred to as “current collection region”). On the other hand, masking is performed. Subsequently, a slurry containing a positive electrode catalyst powder, an organic binder, an organic solvent and the like is formed on the outer surface of the positive electrode conductive layer 21 by a slurry coating method, and the positive electrode catalyst layer 22 is formed by firing the slurry film. Is done. For example, a ceramic such as a perovskite oxide is used as the positive electrode catalyst.
  • the current collecting region is a region where no positive electrode catalyst is present.
  • a casting method such as a casting method, a dipping method, a spray method, and a printing method can be used for forming a slurry film (film formation).
  • the film thickness of each layer in the positive electrode 2 is appropriately adjusted in consideration of maintaining characteristics related to battery performance such as gas permeability and electrolyte solution permeability, and firing shrinkage during firing.
  • the positive electrode catalyst layer 22 may be formed by a method other than the above film formation and baking (the same applies to the positive electrode current collector 24 and the separator 41).
  • the outer surface of the positive electrode catalyst layer 22 is masked. In other words, the masking is substantially performed on the region other than the current collecting region on the outer surface of the positive electrode conductive layer 21. Subsequently, a film containing a fine powder such as a perovskite oxide is used to form a film in the current collecting region, and the positive electrode current collector 24 is formed by firing the film.
  • the positive electrode current collector 24 is in direct contact with the current collecting region spread in a planar shape on the outer surface of the positive electrode conductive layer 21 without the positive electrode catalyst layer 22 being interposed.
  • the positive electrode catalyst layer 22 and the positive electrode current collector 24 may be formed by co-firing (the same applies to other layers formed by firing).
  • the positive electrode catalyst layer 22 may be formed on the entire outer surface of the positive electrode conductive layer 21 without performing masking. In this case, after the portion of the positive electrode catalyst layer 22 adhering to the current collection region is removed by polishing or the like, the positive electrode current collector 24 is formed in the current collection region.
  • the positive electrode current collector 24 has a dense structure, but voids are generated at a constant ratio.
  • the thickness of the positive electrode current collector 24 in the radial direction is larger than the thickness of the positive electrode catalyst layer 22, it is possible to suppress or prevent voids from being connected between both radial surfaces of the positive electrode current collector 24. Is done. Accordingly, leakage of the electrolytic solution 40 from the positive electrode current collector 24 is suppressed or prevented.
  • a certain adhesion area is ensured between the positive electrode current collector 24 and the positive electrode catalyst layer 22 that are thicker than the positive electrode catalyst layer 22. There is no decrease in adhesion. In other words, leakage of the electrolytic solution 40 from the interface between the positive electrode current collector 24 and the positive electrode catalyst layer 22 is suppressed or prevented.
  • a separator 41 is formed on the inner surface of the positive electrode conductive layer 21 by forming a slurry containing a separator forming material by a slurry coating method and baking it.
  • a separator forming material for example, an insulating ceramic is used.
  • alumina is preferably used as the separator forming material.
  • zirconia is preferably used as the separator forming material.
  • a reaction phase is formed between the two, and the conductivity of the positive electrode conductive layer 21 is increased. Decrease or pore blockage may occur. In this case, it is preferable to form a reaction preventing layer containing ceria or the like between the separator 41 and the positive electrode conductive layer 21. Further, when the difference in linear expansion coefficient between the separator 41 and the positive electrode conductive layer 21 is large, cracks may occur during firing. In this case, it is preferable to form a layer for relaxing the linear expansion coefficient difference between the two.
  • a slurry containing a liquid repellent material is applied to the outer surface of the positive electrode catalyst layer 22 and fired. A portion near the outer surface of the positive electrode catalyst layer 22 becomes a liquid repellent layer.
  • the slurry containing the liquid repellent material it is preferable to mask the portion of the positive electrode current collector 24.
  • the liquid repellent material for example, FEP or PTFE is used.
  • the penetration depth to the depth direction of the positive electrode catalyst layer 22 is adjusted by adjusting a slurry viscosity by adding a required amount of thickeners to a slurry.
  • the positive electrode 2 including the separator 41 is manufactured.
  • a metal-air battery of a comparative example in which a current collector is formed on the positive electrode catalyst layer is assumed.
  • the positive electrode current collector is in direct contact with the positive electrode conductive layer through the positive electrode catalyst layer having lower conductivity than the positive electrode conductive layer. Therefore, the electrical resistance between the positive electrode conductive layer and the positive electrode current collector increases, and the battery performance of the metal-air battery decreases.
  • the positive electrode current collector 24 is formed in the absence region of the positive electrode catalyst layer 22 on the outer surface of the positive electrode conductive layer 21. Direct contact with Thereby, it is realized that the loss in the electron conduction between the positive electrode conductive layer 21 and the positive electrode current collector 24 is reduced (the electric resistance is lowered) and the battery performance is improved.
  • the positive electrode current collector 24 in the radial direction is larger than the thickness of the positive electrode catalyst layer 22, the positive electrode current collector 24 and the connection terminal can be easily connected. Since the cross-sectional area of the positive electrode current collector 24 perpendicular to the axial direction also increases, the electric resistance of the positive electrode current collector 24 can be lowered, and the battery performance can be further improved.
  • the positive electrode current collector 24 is formed in the absence region of the positive electrode catalyst layer 22 after the positive electrode catalyst layer 22 is formed on the outer surface of the positive electrode conductive layer 21. Thereby, a shape in which a part of the positive electrode current collector 24 slightly rides on the upper surface near the edge of the positive electrode catalyst layer 22 (surface opposite to the positive electrode conductive layer 21) is realized. With such a shape, leakage of the electrolyte solution from the interface between the positive electrode catalyst layer 22 and the positive electrode current collector 24 can be more reliably prevented. In addition, the area of the positive electrode current collector 24 that faces radially outward can be increased, and the positive electrode current collector 24 and the connection terminal can be more easily connected.
  • the area of the surface used for taking in air is larger than in the case where the positive electrode is disposed on the inner peripheral side. Even if formed relatively large, the battery performance is not affected.
  • the positive electrode catalyst layer 22 may be formed after the positive electrode current collector 24 is formed on the outer surface of the positive electrode conductive layer 21.
  • the positive electrode conductive layer 21, the positive electrode catalyst layer 22, and the positive electrode current collector 24 are formed of a perovskite oxide.
  • the positive electrode current collector 24 extends in the axial direction on the outer surface of the positive electrode conductive layer 21, and the conductive plate 5 that similarly extends in the axial direction has the positive electrode current collector in the axial direction. Bonded to approximately the whole of 24. Thereby, even when the positive electrode current collector 24 is formed of a conductive ceramic having a lower conductivity than that of metal or the like, the loss in the electron conduction in the axial direction can be reduced by the conductive plate 5. . As a result, further improvement of the battery performance of the metal-air battery 1 is realized.
  • the separator 41 can be made much thinner than when using the separator 41 as a support. Thereby, the distance between the negative electrode 3 and the positive electrode 2 can be reduced, and the battery performance of the metal-air battery 1 can be further improved.
  • the thickness of the positive electrode conductive layer 21 is larger than the thickness of the separator 41.
  • the thickness of the positive electrode conductive layer 21 in the metal-air battery 1 is preferably greater than 3 times the thickness of the separator 41, more preferably greater than 5 times.
  • the positive electrode current collector 24 is formed of a conductive ceramic, but the positive electrode current collector 24 may be formed of other materials.
  • the material of the positive electrode current collector 24 is solder that can be bonded to ceramic.
  • solder is also called ceramic special solder.
  • Cerasolzer registered trademark manufactured by Kuroda Techno Co., Ltd. can be used as the solder.
  • the solder includes a metal that is bonded to an oxide.
  • the conductivity of the positive electrode current collector 24 formed of the solder is higher than the conductivity of the positive electrode catalyst layer 22.
  • the positive electrode current collector 24 when the solder that can be bonded to the ceramic is used to form the positive electrode current collector 24, the positive electrode current collector 24 is located in the absence region of the positive electrode catalyst layer 22 on the outer surface of the positive electrode conductive layer 21. By being formed, the performance of the metal-air battery 1 can be improved. Further, in such a metal-air battery 1, the positive electrode current collector 24 can be joined to a connection terminal such as the conductive plate 5 without using other materials such as silver paste. As a result, the metal-air battery 1 can be easily connected to an external circuit. Furthermore, the firing step for forming the positive electrode current collector 24 is not necessary, and the metal-air battery 1 can be manufactured in a short time.
  • FIG. 2 is a diagram illustrating another example of the metal-air battery 1.
  • the metal-air battery 1 in FIG. 2 is different from the metal-air battery 1 in FIG. 1 in that the separator 41 serves as a support.
  • Other configurations are the same as those of the metal-air battery 1 of FIG.
  • the separator 41 serving as a support is a ceramic porous sintered body.
  • the ceramic include alumina or zirconia.
  • the positive electrode 2 is formed on the outer surface of the separator 41 that is a part of the electrolyte layer 4.
  • the positive electrode conductive layer 21 responsible for electronic conduction is formed on the outer surface of the separator 41 in a circumferential shape.
  • a positive electrode catalyst layer 22 responsible for a catalytic reaction is formed on the outer surface of the positive electrode conductive layer 21.
  • the positive electrode conductive layer 21 and the positive electrode catalyst layer 22 are formed, for example, by forming a predetermined slurry and baking it. Examples of the film forming method include a doctor blade method, a rolling method, and a pressing method.
  • a positive electrode current collector 24 formed of a conductive ceramic is provided on a part of the outer surface of the positive electrode conductive layer 21.
  • the positive electrode current collector 24 is an interconnector that is in direct contact with the nonexistent region (current collection region) of the positive electrode catalyst layer 22 on the outer surface of the positive electrode conductive layer 21.
  • the positive electrode current collector 24 extends in the axial direction along the central axis J ⁇ b> 1 on the outer surface of the positive electrode conductive layer 21.
  • the positive electrode catalyst layer 22 described above covers the entire region except the current collecting region on the outer surface of the positive electrode conductive layer 21.
  • a liquid repellent layer 29 is formed on the outer surface of the positive electrode catalyst layer 22.
  • the liquid repellent layer 29 is formed by forming a predetermined slurry and baking it.
  • the liquid repellent layer 29 may include a portion near the outer surface of the positive electrode catalyst layer 22. That is, the boundary between the liquid repellent layer 29 and the positive electrode catalyst layer 22 is not necessarily clear.
  • the conductive plate 5 is provided on the surface opposite to the positive electrode conductive layer 21.
  • the positive electrode current collector 24 and the positive electrode current collector are directly contacted with a part of the outer surface of the positive electrode conductive layer 21.
  • the electrical resistance with the body 24 can be lowered, and the battery performance of the metal-air battery 1 can be improved.
  • the thickness of the positive electrode current collector 24 in the radial direction is larger than the thickness of the stacked body of the positive electrode catalyst layer 22 and the liquid repellent layer 29, the electrical connection between the positive electrode current collector 24 and the connection terminal is achieved. It can be done easily.
  • FIG. 3 is a diagram showing a battery unit 10 to which a plurality of metal-air batteries 1 are connected.
  • the positive electrode current collectors 24 of the plurality of metal-air batteries 1 having the same structure are joined to the conductive plate 5 extending in the axial direction and the direction perpendicular to the axial direction.
  • the thickness of the positive electrode current collector 24 in the radial direction is larger than the thickness of the positive electrode catalyst layer 22, thereby easily connecting the conductive plate 5 serving as a connection terminal and the positive electrode current collector 24. Can be done.
  • the battery unit 10 using the plurality of metal-air batteries 1 can be easily realized.
  • the same metal-air battery 1 as in FIG. 1 is used, but of course, a plurality of metal-air batteries 1 similar to those in FIG. 2 may be used.
  • LaSrMnO 3 (LSM) powder (manufactured by Kyoritsu Material Co., Ltd.) is roughly pulverized by a cutter mill and pulverized by a jet mill (Nisshin Engineering Co., Ltd.), and then a turbo classifier (manufactured by Nisshin Engineering Co., Ltd.). Classification was performed to obtain an LSM powder having an average particle size of 30 ⁇ m. A part of the powder was finely pulverized using ZrO 2 balls to obtain an LSM powder having an average particle size of 0.5 ⁇ m.
  • LSM LaSrMnO 3
  • LaSrMnFeO 3 (LSMF) powder (manufactured by Kyoritsu Material Co., Ltd.) was roughly pulverized with a cutter mill and finely pulverized with a jet mill, and then classified with a turbo classifier, and LSMF with an average particle size of 4.0 ⁇ m. A powder was obtained.
  • a hose-like cap (that functions as a funnel) was attached to the upper opening of the porous tube, and a sealing plug was attached to the lower opening.
  • the hose cap at the upper opening is for preventing the slurry from overflowing.
  • the slurry for separator was poured into the inside of the porous tube with a hose-like cap using a funnel from the upper opening. The slurry was held for 1 minute with the slurry filled to the top. Thereafter, the sealing plug at the lower opening was removed, and the slurry was discharged.
  • the porous tube was dried at room temperature for 15 hours or more and subsequently dried at 50 ° C. for 2 hours or more. The porous tube was turned upside down and the above operation was repeated once more. Then, the separator was formed in the inner surface of the porous pipe
  • LaSrCoFeO 3 (LSCF) powder (manufactured by Kyoritsu Material Co., Ltd.) was coarsely pulverized with a cutter mill and finely pulverized with a jet mill, and then classified with a turbo classifier to obtain an LSCF having an average particle diameter of 0.4 ⁇ m. A powder was obtained. Further, 75 parts by mass of Solmix H-37, 25 parts by mass of 2- (2-n-butoxyethoxy) ethyl acetate and 5 parts by mass of ethyl cellulose were weighed and mixed, and stirred for 1 hour. The LSCF powder obtained previously was weighed to 40 parts by mass, put into a pot mill container together with a ⁇ 10 mm resin ball and the mixture after stirring, and mixed for 50 hours in a ball mill. Thus, a current collector slurry was obtained.
  • the current collector part of the porous tube is covered with tape so that the width of the part where the liquid repellent layer (water repellent layer) overlaps the current collector is 1 mm, and the porous tube is immersed in the above-mentioned dispersion for 1 minute. I let you. Subsequently, the film was dried at room temperature for 30 minutes and at 60 ° C. for 15 hours, and further baked at 280 ° C. for 50 minutes in an air atmosphere. As a result, a porous tube having a liquid repellent layer near the outer surface of the catalyst layer was obtained.
  • a copper plate having a width of 5 mm, a length of 60 mm, and a thickness of 1 mm was prepared as a conductive plate.
  • a thermosetting silver paste (manufactured by Mitsuboshi Belting Co., Ltd.) was applied on the current collector, and a conductive plate was placed on the paste. Firing was performed at 160 ° C. for 1 hour in an air atmosphere.
  • a positive electrode sample in which a separator, a catalyst layer (including a liquid repellent layer), a current collector, and a conductive plate were provided on a porous tube was obtained.
  • the current collector is in direct contact with the outer surface of the porous tube, and the conductive plate is joined to the current collector.
  • Example 2 Except for omitting the bonding of the conductive plates, the same operation as in Example 1 was performed to obtain a positive electrode sample in which a separator, a catalyst layer (including a liquid repellent layer), and a current collector were provided on a porous tube. It was. In the sample of Example 2, the current collector is in direct contact with the outer surface of the porous tube.
  • Example 1 Except for omitting the masking in forming the catalyst layer, the same operation as in Example 1 was performed, and a separator, a catalyst layer (including a liquid repellent layer), a current collector, and a conductive plate were provided on the porous tube. A positive electrode sample was obtained. In the sample of Comparative Example 1, the current collector indirectly contacts the outer surface of the porous tube via the catalyst layer, and the conductive plate is joined to the current collector.
  • Example evaluation> 4 and 5 are diagrams showing the evaluation results of the positive electrode samples of Example 1, Example 2, Comparative Example 1, and Comparative Example 2.
  • FIG. Here, measurement of the electrical resistance of the sample and evaluation of battery performance were performed. In the measurement of electrical resistance, the electrical resistance between two current collectors formed at intervals of 180 degrees in the circumferential direction was measured using a tester. In the column of electrical resistance in FIG. 4, “ ⁇ ” indicates that the measured value of electrical resistance is 1 ⁇ or less, and “x” indicates that it is 5 ⁇ or more. In FIG. 5, the discharge characteristic of the metal air battery in battery performance evaluation is shown.
  • the metal-air battery 1 can be variously modified.
  • the conductive plate 5 has a plate shape that is long in the axial direction, and in the battery unit 10 in FIG. 3, the conductive plate 5 has a plate shape that extends in two directions perpendicular to each other.
  • the conductive plate 5 in the metal-air battery 1 has a plate shape extending at least in the axial direction.
  • both the separator 41 and the positive electrode conductive layer 21 are prepared as cylindrical independent members, and the positive electrode conductive layer 22 and the positive electrode current collector 24 are formed on the outer surface.
  • a separator 41 may be inserted inside the layer 21. Further, the separator 41 may be omitted when the occurrence of dendrites does not matter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 金属空気電池(1)は、所定の中心軸(J1)を中心とする筒状の正極(2)と、正極の内側面に対向する負極(3)と、負極と正極との間に配置される電解質層(4)とを備える。正極は、正極導電層(21)と、正極触媒層(22)と、正極集電体(24)とを備える。正極触媒層は、中心軸を中心とする筒状の正極導電層の外側面上に形成され、正極導電層よりも導電率が低い。正極集電体は、正極導電層の外側面において、正極触媒層の不存在領域に形成され、当該外側面に直接的に接する。これにより、正極導電層と正極集電体との間の電気抵抗を低くすることができ、電池性能を向上することができる。径方向における正極集電体の厚さが、正極触媒層の厚さよりも大きいことにより、正極集電体と接続端子との接続を容易に行うことができる。

Description

金属空気電池
 本発明は、金属空気電池に関する。
 従来より、金属を負極の活物質とし、空気中の酸素を正極の活物質とする金属空気電池が知られている。例えば、特開2014-194892号公報(文献1)および国際公開第2014/156763号(文献2)では、中心軸から径方向の外側に向かって、負極層 、電解質層および正極層が順に同心円状に配置された金属空気電池が開示されている。当該金属空気電池の正極層では、正極導電層の外側面に正極触媒が担持され、正極触媒層が形成される。文献1では、正極触媒層の周囲に、ニッケル等の金属のメッシュシートが巻かれて集電層が形成される。また、文献1では、インターコネクタを集電層として設ける場合についても記載されている。この場合、インターコネクタは、正極触媒が担持された正極導電層の外側面の一部に当接する。すなわち、インターコネクタは、実質的に、正極触媒層上に形成される。文献2では、正極触媒層の外側面の一部に、セラミックにて形成されるインターコネクタが設けられ、正極触媒層の外側面を、インターコネクタと共に覆う撥液層がさらに形成される。
 ところで、文献1および2の金属空気電池では、正極触媒層上に正極集電体が形成されるため、正極触媒層の導電率が低い場合に正極集電体と正極導電層との間の電気抵抗が増大する。この場合、金属空気電池の電池性能が低下してしまう。また、正極集電体と、外部の回路等に接続された接続端子との接続を容易に行うことも求められている。
 本発明は、金属空気電池に向けられており、正極集電体と接続端子との接続を容易に行うとともに、正極集電体と正極導電層との間の電気抵抗を低くして電池性能を向上することを目的としている。
 本発明に係る金属空気電池は、所定の中心軸を中心とする筒状の正極と、前記正極の内側面に対向する負極と、前記負極と前記正極との間に配置される電解質層とを備え、前記正極が、前記中心軸を中心とする筒状の正極導電層と、前記正極導電層の外側面上に形成されるとともに、前記正極導電層よりも導電率が低い正極触媒層と、前記正極導電層の前記外側面において、前記正極触媒層の不存在領域に形成されることにより、前記外側面に直接的に接する正極集電体とを備え、径方向における前記正極集電体の厚さが、前記正極触媒層の厚さよりも大きい。
 本発明によれば、正極集電体と接続端子との接続を容易に行うとともに、正極集電体と正極導電層との間の電気抵抗を低くして電池性能を向上することができる。
 本発明の一の好ましい形態では、前記正極導電層が、導電性セラミックにて形成され、前記正極集電体が、セラミックに対して接合可能な半田にて形成される。
 本発明の他の好ましい形態では、前記正極導電層、前記正極触媒層および前記正極集電体が、ペロブスカイト型酸化物にて形成される。
 本発明の一の局面では、金属空気電池が、少なくとも前記中心軸に沿う軸方向に伸びる板状であり、前記正極集電体よりも導電率が高い導電板をさらに備え、前記正極集電体が、前記正極導電層の前記外側面上にて前記軸方向に伸び、前記導電板が、前記軸方向における前記正極集電体のおよそ全体と接合される。
 この場合に、前記導電板に、前記金属空気電池と同様の構造を有する他の金属空気電池の正極集電体が接合されることが好ましい。
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。
金属空気電池の構成を示す図である。 金属空気電池の他の例を示す図である。 電池ユニットを示す図である。 サンプルの評価結果を示す図である。 金属空気電池の放電特性を示す図である。
 図1は、本発明の一の実施の形態に係る金属空気電池1の構成を示す図である。図1の金属空気電池1は亜鉛イオンを利用する二次電池であり、亜鉛空気二次電池である。金属空気電池1は、他の金属イオンを利用してもよい。金属空気電池1は、中心軸J1を中心とする略円柱状であり、図1では、中心軸J1に垂直な面における金属空気電池1の断面(後述の負極3を除く。)を示す。金属空気電池1は、正極2、負極3および電解質層4を備える。
 負極3(金属極とも呼ばれる。)は、中心軸J1を中心とするコイル状の部材である。本実施の形態における負極3は、断面が略円形の線状の部材を中心軸J1を中心として螺旋状に巻いた形状を有する。負極3は、導電性材料にて形成されるコイル状の基材、および、基材の表面に形成される析出金属層を備える。中心軸J1方向における負極3の端部には負極接続端子(図示省略)が接続される。
 上記基材を形成する材料として、銅(Cu)、ニッケル(Ni)、銀(Ag)、金(Au)、鉄(Fe)、アルミニウム(Al)、マグネシウム(Mg)等の金属、または、いずれかの金属を含む合金が例示される。本実施の形態では、基材は銅にて形成される。負極集電体を兼ねる基材の導電率を高くするという観点では、基材は銅または銅合金を含むことが好ましい。基材の本体が銅にて形成される場合、当該本体の表面にニッケル等の他の金属の保護膜が形成されることが好ましい。この場合、基材の表面は、当該保護膜の表面となる。例えば、保護膜の厚さは、1~20μm(マイクロメートル)であり、保護膜は、めっきにて形成される。析出金属層は、亜鉛(Zn)の電解析出により形成される。析出金属層は、亜鉛を含む合金の電解析出にて形成されてもよい。金属空気電池1の設計によっては、筒状または棒状の負極3が利用されてもよい。
 負極3の周囲には、円筒状のセパレータ41が設けられ、セパレータ41の周囲には、円筒状の正極2(空気極とも呼ばれる。)が設けられる。正極2の内側面は、セパレータ41を介して負極3と対向する。負極3、セパレータ41および正極2は、中心軸J1を中心とする同心状に設けられ、中心軸J1に沿って見た場合に、負極3の外縁と正極2との間の距離は、中心軸J1を中心とする周方向の全周に亘って一定である。すなわち、金属空気電池1における負極3および正極2の間では、全周に亘って、等電位面の間隔が一定である。等電位面に粗密がないため、充放電時の電流分布は周方向において一定となる。なお、全周に亘る電流分布がおよそ均一となるのであるならば、正極2の形状は、例えば、頂点が6個以上の正多角形の筒状であってもよい。セパレータ41の詳細については後述する。
 正極2は、中心軸J1を中心とする筒状の支持体である多孔質の正極導電層21、および、正極導電層21の負極3とは反対側の外側面上に形成された正極触媒層22を有する。正極導電層21および正極触媒層22は、共に導電性セラミックにて形成される。正極導電層21の導電率は、正極触媒層22よりも高い。正極導電層21の外側面には、正極触媒層22の不存在領域が設定される。当該不存在領域には、正極集電体24が設けられる。正極集電体24は、耐アルカリ性を有する導電性セラミックにて形成され、正極導電層21の外側面の一部に直接的に接するインターコネクタである。正極集電体24の導電率は、正極触媒層22よりも高い。正極集電体24は、正極導電層21の外側面上にて中心軸J1に沿う軸方向に伸びる。好ましくは、正極集電体24は、軸方向における金属空気電池1のおよそ全長に亘って伸びる。金属空気電池1の設計によっては、正極集電体24が軸方向に短くてもよい。
 正極集電体24において、正極導電層21とは反対側の面(すなわち、中心軸J1を中心とする径方向の外側を向く面)には、導電板5が設けられる。導電板5は、軸方向に伸びる板状の金属部材であり、正極集電体24よりも導電率が高い。好ましい導電板5は、銅にて形成される。導電板5の厚さは、例えば0.1mm(ミリメートル)以上2.0mm以下である。好ましくは、導電板5の厚さは、0.5mm以上1.0mm以下である。導電板5は、熱硬化型金属ペースト(例えば、銀ペースト)等を用いて、軸方向における正極集電体24のおよそ全体と接合される。導電板5は、正極集電体24と電気的に接続される正極接続端子と捉えることができる。
 正極触媒層22は、正極導電層21の外側面において、正極集電体24にて覆われていない領域に形成される。正極導電層21の外側面の全体は、正極触媒層22および正極集電体24により覆われる。正極触媒層22の外側面には、撥水性を有する材料(例えば、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)やPTFE(ポリテトラフルオロエチレン))による多孔質の層が形成される。実際には、当該材料は正極触媒層22の外側面近傍に分散しており、明確な層として形成される訳ではない。正極触媒層22における外側面近傍の部位が撥液層と捉えられてもよい。当該部位は、高いガス透過性および高い液不透過性を有する。
 支持体である正極導電層21は、導電性セラミックを含む材料の押出成形および焼成により形成される。導電性セラミックとして、好ましくは、導電性を有するペロブスカイト型酸化物またはスピネル型酸化物が利用される。本実施の形態では、正極導電層21は、ペロブスカイト型酸化物(例えば、LSM(LaSrMnO)、LSMF(LaSrMnFeO)、LSCF(LaSrCoFeO))にて形成される。正極導電層21において利用されるペロブスカイト型酸化物は、Co、Mn、Feのうちの少なくとも1種を含むことが好ましい。充電時における酸化による劣化を防止するという観点では、正極導電層21は、導電性カーボンを含まないことが好ましい。金属空気電池1の設計によっては、正極導電層21は、導電性セラミック以外の導電性材料により形成されてよい(正極集電体24において同様)。
 また、正極触媒層22は、ペロブスカイト型酸化物(例えば、LSMF)等の導電性セラミックの粉末を、例えばスラリーコート法および焼成により、正極導電層21上に担持させた部位を含む。正極触媒層22は、正極導電層21の負極3とは反対側の外側面上にセラミックにて形成された多孔膜であり、支持体である正極導電層21により支持される。正極触媒層22の厚さは、正極導電層21の厚さよりも十分に小さい。金属空気電池1では、原則として、多孔質の正極触媒層22において空気と後述の電解液40との界面が形成される。正極触媒層22は、二酸化マンガン等の他の触媒にて形成されてよい。
 正極集電体24は、導電性セラミックの粉末を、例えばスラリーコート法および焼成により、正極導電層21上に担持させた部位を含む。導電性セラミックとして、好ましくは、導電性を有するペロブスカイト型酸化物またはスピネル型酸化物が利用される。正極集電体24の形成に用いる粉末の平均粒径は、正極導電層21および正極触媒層22の形成に用いる粉末よりも小さいことが好ましく、例えば1μm以下である。これにより、緻密な正極集電体24が形成される。径方向における正極集電体24の厚さは、正極触媒層22の厚さよりも大きい。すなわち、金属空気電池1の外側面において、正極集電体24は、周囲の領域よりも径方向外側に突出している。これにより、正極集電体24において軸方向に垂直な断面積が大きくなり、軸方向の両端間における正極集電体24の電気抵抗を低くすることが可能となる。正極集電体24は、周方向における複数の位置に設けられてよい。
 既述のセパレータ41は、正極導電層21の負極3側の内側面に形成される多孔膜であり、当該内側面の全周に亘って形成される。セパレータ41は、例えば、シリカ(SiO)、アルミナ(Al)、ジルコニア(ZrO)、チタニア(TiO)、ハフニア(HfO)およびセリア(CeO)等の機械的強度および絶縁性が高いセラミック粉末の焼結体であり、耐アルカリ性を有する。後述するように、セパレータ41の作製では、正極導電層21の内側面にスラリーコート法等により上記セラミック粉末およびバインダを含むスラリーを成膜して乾燥し、高温の焼成によりスラリーに含まれるバインダが除去される。これにより、バインダの劣化によりセパレータの寿命が短くなることが防止される。セパレータ41は、セラミックのみにて構成されることが好ましい。セパレータ41は、これらのセラミックの混合体や積層体であってもよい。セパレータ41により、後述する充電の際に、負極3の析出金属(デンドライト等)が正極2へと到達することが防止または抑制される。
 筒状の正極2の内側(中心軸J1側)の空間には、水系の電解液40が充填される。電解液40は、正極2と負極3との間に介在し、両極に接する。負極3のおよそ全体は電解液40中に浸漬される。多孔質のセパレータ41、および、正極導電層21の細孔にも電解液40が充填される。さらに、正極触媒層22の一部の細孔にも電解液40が充填される。以下の説明では、中心軸J1に沿って見た場合における負極3と正極2との間の空間を「電解質層4」という。すなわち、電解質層4は、負極3と正極2との間に配置される。本実施の形態では、電解質層4はセパレータ41を含む。
 電解液40は、アルカリ水溶液であり、好ましくは、水酸化カリウム(苛性カリ、KOH)水溶液、または、水酸化ナトリウム(苛性ソーダ、NaOH)水溶液を含む。また、電解液40は、亜鉛イオンまたは亜鉛を含むイオンを含む。すなわち、電解液40に含まれる亜鉛イオンは、様々な態様で存在してよく、亜鉛(すなわち、亜鉛原子)を含むイオンと捉えられてもよい。例えば、テトラヒドロキシ亜鉛イオンとして存在してもよい。
 中心軸J1方向において負極3、電解質層4および正極2の両端面には、円板状の閉塞部材が固定される。各閉塞部材の中央には貫通孔が設けられる。金属空気電池1では、正極集電体24、撥液層(正極触媒層22の外側面近傍の部位)および閉塞部材により、金属空気電池1の内部の電解液40が上記貫通孔以外から外部へと漏出することが防止される。また、両端面上の閉塞部材の貫通孔を利用して、金属空気電池1と図示省略の貯溜タンクとの間にて電解液を循環させることが可能である。
 図1の金属空気電池1において放電が行われる際には、負極接続端子と正極接続端子(導電板5)とが、例えば、照明器具等の負荷を介して電気的に接続される。負極3が有する亜鉛は酸化されて亜鉛イオンが生成され、電子は負極接続端子、および、正極接続端子を介して正極2に供給される。多孔質の正極2では、撥液層を透過した空気中の酸素が、負極3から供給された電子により還元され、水酸化物イオンとして電解液中に溶出する。正極2では、正極触媒により酸素の還元反応が促進される。
 一方、金属空気電池1において充電が行われる際には、負極接続端子と正極接続端子との間に電圧が付与され、正極2に対して水酸化物イオンから電子が供給されるとともに酸素が発生する。負極3では、正極接続端子を介して負極接続端子に供給される電子により金属イオンが還元されて亜鉛が析出する。
 このとき、コイル状の負極3では、角部がないため、電界集中が起こりにくい。すなわち、電流密度に大きな偏りが生じない。また、負極3が、電解液40に均一に接触する。その結果、亜鉛が樹枝状に析出するデンドライトや、ひげ状(針状)に析出するウィスカーの生成および成長が大きく抑制される。実際には、負極3の表面のほぼ全体において緻密な亜鉛が均一に析出し、析出金属層が形成される。正極2では、正極触媒層22に含まれる正極触媒により酸素の発生が促進される。さらに、正極2では、カーボン素材を用いていないことにより、充電時に発生する酸素による酸化劣化が生じることはない。
 金属空気電池1では、正極2がセパレータ41と一繋がりの部材として作製される。このような正極2の作製では、まず、導電性セラミックの粉末、有機バインダ、有機溶剤等を含む混合物の押出成形により筒状の成形体が形成される。導電性セラミックとして、例えば、ペロブスカイト型酸化物が利用される。そして、成形体の焼成により筒状の正極導電層21が多孔質の支持体として形成される。
 焼成の前に、成形体を100~800℃で加熱処理して成形体中の有機成分を分解除去してもよい。焼成は、成形体が十分に焼結し、かつ、ガス透過性や電解液浸透性、電池性能を保持できる条件であればよく、1100~1500℃で行われることが好ましい。また、成形体を後述の他の層と共焼成してもよい。共焼成を行うことにより、成形体と当該層との間の接着強度を向上させることができる。また、各層を個別に焼成する場合に比べて、焼成工程のリードタイムを低減することができる。正極導電層21は、押出成形および焼成以外の手法にて形成されてよい。
 正極導電層21が準備されると、正極導電層21の外側面において、一部の領域(正極集電体24が形成される予定の領域であり、以下、「集電領域」という。)に対してマスキングが行われる。続いて、正極触媒の粉末、有機バインダ、有機溶剤等を含むスラリーを、スラリーコート法により正極導電層21の外側面に成膜し、スラリーの膜を焼成することにより、正極触媒層22が形成される。正極触媒として、例えば、ペロブスカイト型酸化物等のセラミックが利用される。集電領域は、正極触媒の不存在領域となる。
 スラリーの膜の形成(成膜)は、キャスティング法、ディッピング法、スプレー法、印刷法等の様々な手法が利用可能である。正極2における各層の膜厚は、ガス透過性、電解液浸透性等、電池性能に関わる特性を保持させるという観点と、焼成時の焼成収縮を考慮して、適宜調整される。正極触媒層22は、上記成膜および焼成以外の手法にて形成されてよい(正極集電体24およびセパレータ41において同様)。
 正極触媒層22が形成されると、正極触媒層22の外側面に対してマスキングが行われる。換言すると、実質的に、正極導電層21の外側面における集電領域を除く領域に対してマスキングが行われる。続いて、ペロブスカイト型酸化物等の微細な粉末を含むスラリーを用いて、集電領域に膜が形成され、当該膜を焼成することにより、正極集電体24が形成される。正極集電体24は、正極導電層21の外側面における面状に広がった集電領域と、正極触媒層22を介することなく直接的に接する。なお、正極触媒層22と正極集電体24とが共焼成により形成されてもよい(焼成により形成される他の層において同様)。また、正極触媒層22の形成において、マスキングを行うことなく、正極導電層21の外側面の全体に正極触媒層22が形成されてもよい。この場合、集電領域に付着する正極触媒層22の部分を研磨等により除去した後、集電領域に正極集電体24が形成される。
 ここで、正極集電体24は緻密な構造であるが、一定の比率にてボイドが発生する。しかしながら、径方向における正極集電体24の厚さが、正極触媒層22の厚さよりも大きいため、正極集電体24における径方向の両表面間に亘ってボイドが連結することが抑制または防止される。したがって、正極集電体24からの電解液40の漏れが抑制または防止される。また、正極集電体24の厚さがある程度ばらつく場合でも、正極触媒層22よりも厚い正極集電体24と正極触媒層22との間では、一定の接着面積が確保されるため、両者間の接着性が低下することはない。換言すると、正極集電体24と正極触媒層22との界面からの電解液40の漏れが抑制または防止される。
 正極導電層21の内側面には、セパレータ形成材料を含むスラリーをスラリーコート法により成膜し、焼成することにより、セパレータ41が形成される。セパレータ形成材料として、例えば、絶縁性のセラミックが利用される。金属空気電池1の製造コストを削減するという観点では、セパレータ形成材料としてアルミナが用いられることが好ましい。また、セパレータ41の強度および安定性の観点では、セパレータ形成材料としてジルコニアが用いられることが好ましい。
 なお、セパレータ41にアルミナやジルコニア等を用い、正極導電層21にLSC(LaSrCoO)、LSCFを用いた場合には、両者の間に反応相が形成されて、正極導電層21の導電率の低下や細孔の閉塞等が発生することがある。この場合には、セパレータ41と正極導電層21との間にセリア等を含む反応防止層を形成することが好ましい。また、セパレータ41と正極導電層21との間の線膨張係数差が大きい場合には、焼成時にクラックが発生することがある。この場合には、両者の間に線膨張係数差を緩和するための層を形成することが好ましい。
 正極導電層21に対して、正極触媒層22、正極集電体24およびセパレータ41が形成されると、正極触媒層22の外側面に撥液材料を含むスラリーを塗布し、焼成することにより、正極触媒層22の外側面近傍の部位が撥液層となる。撥液材料を含むスラリーの塗布では、正極集電体24の部分をマスキングすることが好ましい。撥液材料として、例えば、FEPやPTFEが利用される。また、スラリーに増粘剤を必要量添加してスラリー粘度を調整することにより、正極触媒層22の深度方向への染み込み深さが調整される。これにより、正極触媒層22における細孔内の粒子表面が撥液材料により完全に覆われることを防止しつつ、正極触媒層22において三相界面を形成することが実現される。以上の処理により、セパレータ41を含む正極2が作製される。
 ここで、正極触媒層上に集電体が形成される比較例の金属空気電池を想定する。比較例の金属空気電池では、正極導電層よりも導電率が低い正極触媒層を介して、正極集電体が正極導電層に間接的に接する。したがって、正極導電層と正極集電体との間の電気抵抗が増大し、金属空気電池の電池性能が低下してしまう。
 これに対し、図1の金属空気電池1の正極2では、正極導電層21の外側面において、正極集電体24が、正極触媒層22の不存在領域に形成されることにより、当該外側面に直接的に接する。これにより、正極導電層21と正極集電体24との間の電子伝導におけるロスを低減して(電気抵抗を低くして)、電池性能を向上することが実現される。
 また、径方向における正極集電体24の厚さが、正極触媒層22の厚さよりも大きいことにより、正極集電体24と接続端子との接続を容易に行うことができる。軸方向に垂直な正極集電体24の断面積も増大するため、正極集電体24の電気抵抗を低くすることができ、電池性能をさらに向上することができる。
 好ましい金属空気電池1では、正極導電層21の外側面上に正極触媒層22を形成した後に、正極触媒層22の不存在領域に、正極集電体24が形成される。これにより、正極集電体24の一部が、正極触媒層22のエッジ近傍の上面(正極導電層21とは反対側の面)に僅かに乗り上げた形状が実現される。このような形状では、正極触媒層22と正極集電体24との界面からの電解液の漏れをより確実に防止することができる。また、正極集電体24において径方向外側を向く面の面積を大きくすることができ、正極集電体24と接続端子との接続をさらに容易に行うことが可能となる。なお、外周側に正極2を配置する金属空気電池1では、内周側に正極を配置する場合に比べて、空気の取り入れに利用される面の面積が大きくなるため、正極集電体24を比較的大きく形成しても、電池性能に影響は生じない。金属空気電池1の設計によっては、正極導電層21の外側面上に正極集電体24を形成した後に、正極触媒層22が形成されてよい。
 好ましい金属空気電池1では、正極導電層21、正極触媒層22および正極集電体24がペロブスカイト型酸化物にて形成される。このように、互いに接するこれらの部材が同じ結晶構造を有することにより、部材間での熱膨張係数差が小さくなり、焼成によるクラックや剥離の発生を抑制することができる。
 また、金属空気電池1では、正極集電体24が、正極導電層21の外側面上にて軸方向に伸びており、同様に軸方向に伸びる導電板5が、軸方向における正極集電体24のおよそ全体と接合される。これにより、金属等と比較して導電率が低い導電性セラミックにて正極集電体24を形成する場合であっても、軸方向への電子伝導におけるロスを導電板5により低減することができる。その結果、金属空気電池1の電池性能をさらに向上することが実現される。
 正極導電層21を支持体とする金属空気電池1では、セパレータ41を支持体とする場合に比べて、セパレータ41を大幅に薄くすることができる。これにより、負極3と正極2との間の距離を小さくして、金属空気電池1の電池性能をさらに向上することができる。好ましい金属空気電池1では、正極導電層21の厚さが、セパレータ41の厚さよりも大きい。金属空気電池1における正極導電層21の厚さは、好ましくは、セパレータ41の厚さの3倍よりも大きく、より好ましくは、5倍よりも大きい。
 上記の例では、正極集電体24が導電性セラミックにて形成されるが、正極集電体24は、他の材料にて形成されてもよい。好ましい他の例では、正極集電体24の材料は、セラミックに対して接合可能な半田である。このような半田は、セラミック用特殊半田とも呼ばれ、例えば、黒田テクノ社製のセラソルザ(登録商標)が上記半田として使用可能である。上記半田は、酸化物と結合する金属を含む。上記半田にて形成される正極集電体24の導電率は、正極触媒層22の導電率よりも高い。
 このように、正極集電体24の形成に、セラミックに対して接合可能な半田を用いる場合も、正極集電体24が、正極導電層21の外側面における正極触媒層22の不存在領域に形成されることにより、金属空気電池1の性能を向上することができる。また、このような金属空気電池1では、銀ペースト等の他の材料を用いることなく、正極集電体24を導電板5等の接続端子と接合することが可能となる。その結果、金属空気電池1と、外部の回路との接続を容易に行うことが可能となる。さらに、正極集電体24の形成に係る焼成工程も不要となり、金属空気電池1を短時間にて製造することが実現される。
 図1の金属空気電池1では、正極導電層21が支持体となるが、他の構成要素が支持体であってもよい。図2は、金属空気電池1の他の例を示す図である。図2の金属空気電池1は、図1の金属空気電池1と比較して、セパレータ41が支持体となる点で相違する。他の構成は、図1の金属空気電池1と同様であり、同じ構成要素に同じ符号を付す。
 図2の金属空気電池1において支持体となるセパレータ41は、セラミックの多孔質焼結体である。当該セラミックとして、アルミナまたはジルコニア等が例示される。正極2は、電解質層4の一部であるセパレータ41の外側面に形成される。具体的には、セパレータ41の外側面上に、電子伝導を担う正極導電層21が周状に形成される。また、正極導電層21の外側面上に、触媒反応を担う正極触媒層22が形成される。正極導電層21および正極触媒層22は、例えば、所定のスラリーを成膜し、焼成することにより形成される。成膜手法として、ドクターブレード法、圧延法、プレス法等が例示される。
 さらに、正極導電層21の外側面の一部には、導電性セラミックにて形成される正極集電体24が設けられる。正極集電体24は、正極導電層21の外側面において、正極触媒層22の不存在領域(集電領域)に直接的に接するインターコネクタである。正極集電体24は、正極導電層21の外側面上にて中心軸J1に沿う軸方向に伸びる。既述の正極触媒層22は、正極導電層21の外側面において、集電領域を除く領域の全体を覆う。図2の金属空気電池1では、正極触媒層22の外側面上に撥液層29が形成される。例えば、撥液層29は、所定のスラリーを成膜し、焼成することにより形成される。撥液層29は、正極触媒層22における外側面近傍の部位を含んでよい。すなわち、撥液層29と正極触媒層22との境界は必ずしも明確でなくてよい。正極集電体24において、正極導電層21とは反対側の面には、導電板5が設けられる。
 セパレータ41が支持体となる図2の金属空気電池1においても、正極導電層21の外側面の一部に、正極集電体24が直接的に接することにより、正極導電層21と正極集電体24との間の電気抵抗を低くすることができ、金属空気電池1の電池性能を向上することができる。また、径方向における正極集電体24の厚さが、正極触媒層22および撥液層29の積層体の厚さよりも大きいことにより、正極集電体24と接続端子との電気的な接続を容易に行うことができる。
 図3は、複数の金属空気電池1が接続された電池ユニット10を示す図である。図3の電池ユニット10では、軸方向および軸方向に垂直な方向に広がる導電板5に対して、互いに同様の構造を有する複数の金属空気電池1の正極集電体24が接合される。各金属空気電池1では、径方向における正極集電体24の厚さが、正極触媒層22の厚さよりも大きいことにより、接続端子である導電板5と正極集電体24との接続を容易に行うことが可能である。その結果、複数の金属空気電池1を用いる電池ユニット10を容易に実現することができる。図3では、図1と同様の金属空気電池1が用いられているが、もちろん、図2と同様の複数の金属空気電池1が用いられてよい。
 <実施例1>
 (多孔質管の作製)
 LaSrMnO(LSM)粉末(共立マテリアル社製)に対してカッターミルでの粗粉砕、および、ジェットミル(日清エンジニアリング社製)での粉砕を行った後、ターボクラシファイア(日清エンジニアリング社製)で分級を行い、平均粒径30μmのLSM粉末を得た。当該粉末の一部を、ZrOボールを用いて微粉砕し、平均粒径0.5μmのLSM粉末を得た。平均粒径30μmの粉末100質量部、平均粒径0.5μmの粉末5質量部、イオン交換水12質量部、バインダー(ユケン工業社製)12質量部、グリセリン4質量部を秤量して混合した混合物の押出成形により外径φ17.0mm、内径12.8mmの円筒管を成形した。当該円筒管を大気雰囲気中にて1450℃で5時間焼成し、その後、長さ70mmに切断した。これにより、支持体を兼ねる導電層となる円筒型の多孔質管を得た。
 (触媒層用スラリーの調製)
 LaSrMnFeO(LSMF)粉末(共立マテリアル社製)に対してカッターミルでの粗粉砕、および、ジェットミルでの微粉砕を行った後、ターボクラシファイアで分級を行い、平均粒径4.0μmのLSMF粉末を得た。また、ソルミックス(登録商標) H-37(日本アルコール販売社製)75質量部、酢酸2―(2-n-ブトキシエトキシ)エチル(関東化学社製)25質量部、エチルセルロース(東京化成工業社製)5質量部を秤量して混合し、1時間撹拌した。先に得られたLSMF粉末を、65質量部となるよう秤量し、φ10mmの樹脂ボールおよび攪拌後の混合物と共にポットミル容器に入れ、ボールミルで50時間混合した。これにより、触媒層用スラリーを得た。
 (触媒層の形成)
 上記多孔質管の外側面において、幅5mm、長さ60mmの2つの領域を周方向に180度の間隔で設定し、マスキングテープで被覆した。当該2つの領域は、集電体を形成する予定の領域(集電領域)である。触媒層用スラリーをメスシリンダーに注入し、多孔質管の上下の開口をシリコンゴムにて封止した状態で、多孔質管をメスシリンダーに挿入(ディップ)し、1分間保持した。続いて、30分の自然乾燥、および、80℃で1時間30分の乾燥を3度繰り返した。その後、大気雰囲気中にて1150℃で5時間焼成を行った。これにより、外側面に触媒層が形成された多孔質管を得た。
 (セパレータ用スラリーの調製)
 ソルミックスH-37を75質量部、酢酸2―(2-n-ブトキシエトキシ)エチルを25質量部、エチルセルロースを3.4質量部秤量して混合し、1時間撹拌した。その後、アルミナ(例えば、昭和電工社製A-43-M)を32質量部となるよう秤量し、φ10mmの樹脂ボールおよび攪拌後の混合物と共にポットミル容器に入れ、ボールミルで50時間混合した。これにより、セパレータ用スラリーを得た。
 (セパレータの形成)
 上記多孔質管の上開口にホース状キャップ(ロートの役割をするもの)を装着し、下開口に封止栓を装着した。上開口のホース状キャップはスラリーが溢れるのを防止するためのものである。ホース状キャップをした多孔質管の内部に、上開口から漏斗を使用してセパレータ用スラリーを注入した。スラリーが上部まで満たされた状態で1分間保持した。その後、下開口の封止栓を取り外し、スラリーを排出した。多孔質管を15時間以上室温で乾燥し、続いて、50℃で2時間以上乾燥させた。多孔質管を上下反転させて、上記作業をもう一度繰り返した。その後、多孔質管を1150℃で4時間焼成することで、多孔質管の内側面にセパレータを形成した。
 (集電体用スラリーの調製)
 LaSrCoFeO(LSCF)粉末(共立マテリアル社製)に対してカッターミルでの粗粉砕、および、ジェットミルでの微粉砕を行った後、ターボクラシファイアで分級を行い、平均粒径0.4μmのLSCF粉末を得た。また、ソルミックスH-37を75質量部、酢酸2―(2-n-ブトキシエトキシ)エチルを25質量部、エチルセルロースを5質量部秤量して混合し、1時間撹拌した。先に得られたLSCF粉末を、40質量部となるよう秤量し、φ10mmの樹脂ボールおよび攪拌後の混合物と共にポットミル容器に入れ、ボールミルで50時間混合した。これにより、集電体用スラリーを得た。
 (集電体の形成)
 上記多孔質管の外側面において、触媒層の形成時に設定した集電領域以外をマスキングした。集電体用スラリーをメスシリンダーに注入し、多孔質管の上下の開口をシリコンゴムにて封止した状態で、多孔質管をメスシリンダーに挿入(ディップ)し、1分間保持した。続いて、30分間の自然乾燥、および、80℃で1時間30分の乾燥を5度繰り返した。その後、大気雰囲気中にて1150℃で4時間焼成を行った。このようにして、多孔質管の集電領域に集電体を形成した。
 (撥液層用ディスパージョンの調製)
 FEPディスパージョン(三井・デュポン フロロケミカル社製)原液を20質量部に希釈し、増粘剤としてアルコックス(登録商標)E-30(名成化学工業社製)を2.5質量部秤量し、FEP希釈溶液に増粘剤が塊にならないように撹拌しながら少量ずつ添加した。
 (撥液層の形成)
 多孔質管の集電体部分に、撥液層(撥水層)が集電体と重なる部分の幅が1mmになるようにテープで被覆し、多孔質管を上述のディスパージョンに1分間浸漬させた。続いて、室温で30分、60℃で15時間乾燥させ、さらに、大気雰囲気中にて280℃で50分間焼成を行った。これにより、触媒層の外側面近傍の部位が撥液層となる多孔質管を得た。
 (導電板の接合)
 幅5mm、長さ60mm、厚さ1mmの銅板を導電板として準備した。集電体上に熱硬化性銀ペースト(三ツ星ベルト社製)を塗布して、ペースト上に導電板を載置した。大気雰囲気中にて160℃で1時間焼成を行った。これにより、多孔質管にセパレータ、触媒層(撥液層を含む。)、集電体、および、導電板が設けられた正極のサンプルを得た。実施例1のサンプルでは、集電体が多孔質管の外側面に直接的に接し、集電体に導電板が接合される。
 <実施例2>
 導電板の接合を省略した以外は、実施例1と同じ作業を行い、多孔質管にセパレータ、触媒層(撥液層を含む。)、および、集電体が設けられた正極のサンプルを得た。実施例2のサンプルでは、集電体が多孔質管の外側面に直接的に接する。
 <比較例1>
 触媒層の形成におけるマスキングを省略した以外は、実施例1と同じ作業を行い、多孔質管にセパレータ、触媒層(撥液層を含む。)、集電体、および、導電板が設けられた正極のサンプルを得た。比較例1のサンプルでは、集電体が多孔質管の外側面に触媒層を介して間接的に接し、集電体に導電板が接合される。
 <比較例2>
 触媒層の形成におけるマスキング、および、導電板の接合を省略した以外は、実施例1と同じ作業を行い、多孔質管にセパレータ、触媒層(撥液層を含む。)、および、集電体が設けられた正極のサンプルを得た。比較例2のサンプルでは、集電体が多孔質管の外側面に触媒層を介して間接的に接する。
 <サンプル評価>
 図4および図5は、実施例1、実施例2、比較例1および比較例2の正極のサンプルの評価結果を示す図である。ここでは、サンプルの電気抵抗の測定、および、電池性能評価を行った。電気抵抗の測定では、周方向に180度の間隔で形成された2つの集電体間の電気抵抗をテスターを用いて測定した。図4の電気抵抗の欄における〇は、電気抵抗の測定値が1Ω以下であることを示し、×は5Ω以上であることを示す。図5では、電池性能評価における金属空気電池の放電特性を示している。電池性能評価では、正極のサンプルの内側に、Znを2g電析させたCuコイルを負極として挿入し、電解液(7M(モーラー)のKOHおよび0.65MのZnO(酸化亜鉛)を含む。)を内側に循環させ、室温にて電池の放電特性を測定した。
 図4に示すように、集電体が触媒層を介して間接的に多孔質管に接続される比較例1および2のサンプルでは、電気抵抗が5Ω以上となった。一方、集電体が直接的に多孔質管に接続される実施例1および2のサンプルでは、電気抵抗を1Ω以下とすることが実現されている。また、図5に示すように、実施例1および2のサンプルでは、比較例1および2に比べて、電流密度の増大に対する電圧の低下が緩やかとなり、電池の放電性能が向上しているといえる。特に、集電体に導電板が接合された実施例1のサンプルは、最も良好な放電性能を示している。なお、図4では、電圧0.7Vとなる際の電流密度を「放電性能」の欄に示している。
 上記金属空気電池1では様々な変形が可能である。
 図1および図2の金属空気電池1では、導電板5は軸方向に長い板状であり、図3の電池ユニット10では、導電板5は互いに直交する2方向に広がる板状である。このように、金属空気電池1における導電板5は、少なくとも軸方向に伸びる板状であることが好ましい。
 金属空気電池1の設計によっては、例えば、セパレータ41および正極導電層21の双方が筒状の独立した部材として準備され、外側面に正極触媒層22および正極集電体24が形成された正極導電層21の内部に、セパレータ41が挿入されてもよい。また、デンドライトの発生が問題とならない場合等には、セパレータ41が省略されてよい。
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。
 1  金属空気電池
 2  正極
 3  負極
 4  電解質層
 5  導電板
 21  正極導電層
 22  正極触媒層
 24  正極集電体
 J1  中心軸

Claims (5)

  1.  金属空気電池であって、
     所定の中心軸を中心とする筒状の正極と、
     前記正極の内側面に対向する負極と、
     前記負極と前記正極との間に配置される電解質層と、
    を備え、
     前記正極が、
     前記中心軸を中心とする筒状の正極導電層と、
     前記正極導電層の外側面上に形成されるとともに、前記正極導電層よりも導電率が低い正極触媒層と、
     前記正極導電層の前記外側面において、前記正極触媒層の不存在領域に形成されることにより、前記外側面に直接的に接する正極集電体と、
    を備え、
     径方向における前記正極集電体の厚さが、前記正極触媒層の厚さよりも大きい。
  2.  請求項1に記載の金属空気電池であって、
     前記正極導電層が、導電性セラミックにて形成され、
     前記正極集電体が、セラミックに対して接合可能な半田にて形成される。
  3.  請求項1に記載の金属空気電池であって、
     前記正極導電層、前記正極触媒層および前記正極集電体が、ペロブスカイト型酸化物にて形成される。
  4.  請求項1ないし3のいずれかに記載の金属空気電池であって、
     少なくとも前記中心軸に沿う軸方向に伸びる板状であり、前記正極集電体よりも導電率が高い導電板をさらに備え、
     前記正極集電体が、前記正極導電層の前記外側面上にて前記軸方向に伸び、
     前記導電板が、前記軸方向における前記正極集電体のおよそ全体と接合される。
  5.  請求項4に記載の金属空気電池であって、
     前記導電板に、前記金属空気電池と同様の構造を有する他の金属空気電池の正極集電体が接合される。
PCT/JP2016/054681 2015-03-24 2016-02-18 金属空気電池 WO2016152338A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680014062.5A CN107408745B (zh) 2015-03-24 2016-02-18 金属空气电池
US15/557,981 US10505171B2 (en) 2015-03-24 2016-02-18 Metal-air battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-061105 2015-03-24
JP2015061105A JP6588716B2 (ja) 2015-03-24 2015-03-24 金属空気電池

Publications (1)

Publication Number Publication Date
WO2016152338A1 true WO2016152338A1 (ja) 2016-09-29

Family

ID=56979044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054681 WO2016152338A1 (ja) 2015-03-24 2016-02-18 金属空気電池

Country Status (4)

Country Link
US (1) US10505171B2 (ja)
JP (1) JP6588716B2 (ja)
CN (1) CN107408745B (ja)
WO (1) WO2016152338A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300058B (zh) * 2021-04-28 2022-11-04 湖南立方新能源科技有限责任公司 一种锂电池的注液方法、锂电池的制作方法及锂电池
CN113644347B (zh) * 2021-09-02 2022-11-11 烟台浩忆生物科技有限公司 一种金属空气电池及其注液方法
CN114373941B (zh) * 2022-01-19 2024-01-02 一汽解放汽车有限公司 一种改性抗反极催化剂及其制备方法与应用
US11404747B1 (en) 2022-02-18 2022-08-02 ZAF Energy Systems, Incorporated Ceria coatings and structures for zinc-based battery separators

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218179A (ja) * 2008-03-12 2009-09-24 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP2010218948A (ja) * 2009-03-18 2010-09-30 Ngk Spark Plug Co Ltd 色素増感型太陽電池
WO2011152464A1 (ja) * 2010-06-04 2011-12-08 日立造船株式会社 金属空気電池
JP2014107063A (ja) * 2012-11-26 2014-06-09 Noritake Co Ltd 単室型固体酸化物形燃料電池およびその空気極
JP2014125367A (ja) * 2012-12-25 2014-07-07 Tohoku Univ 導電性金属が添加された酸化物
WO2014156763A1 (ja) * 2013-03-29 2014-10-02 日立造船株式会社 金属空気電池
JP2014194892A (ja) * 2013-03-29 2014-10-09 Hitachi Zosen Corp 二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218179A (ja) * 2008-03-12 2009-09-24 Ngk Spark Plug Co Ltd 色素増感型太陽電池
JP2010218948A (ja) * 2009-03-18 2010-09-30 Ngk Spark Plug Co Ltd 色素増感型太陽電池
WO2011152464A1 (ja) * 2010-06-04 2011-12-08 日立造船株式会社 金属空気電池
JP2014107063A (ja) * 2012-11-26 2014-06-09 Noritake Co Ltd 単室型固体酸化物形燃料電池およびその空気極
JP2014125367A (ja) * 2012-12-25 2014-07-07 Tohoku Univ 導電性金属が添加された酸化物
WO2014156763A1 (ja) * 2013-03-29 2014-10-02 日立造船株式会社 金属空気電池
JP2014194892A (ja) * 2013-03-29 2014-10-09 Hitachi Zosen Corp 二次電池

Also Published As

Publication number Publication date
JP2016181400A (ja) 2016-10-13
CN107408745A (zh) 2017-11-28
US10505171B2 (en) 2019-12-10
JP6588716B2 (ja) 2019-10-09
US20180047967A1 (en) 2018-02-15
CN107408745B (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
WO2017002654A1 (ja) 電極および金属空気二次電池
WO2016152338A1 (ja) 金属空気電池
JP6596194B2 (ja) 固体イオンキャパシタ
EP2178145B1 (en) Solid Oxide Fuel Cell and Fuel Cell Module Comprising such a Solid Oxide Fuel Cell
JP5834914B2 (ja) 固体酸化物形燃料電池セル
WO2010030300A1 (en) Metal-supported, segmented-in-series high temperature electrochemical device
KR20170057421A (ko) 보호된 음극을 갖는 전기 화학 전지
JP5413808B2 (ja) 固体酸化物形燃料電池セル、及びそれを備える燃料電池モジュール
JP2010238432A (ja) 燃料電池の発電セル
US20170338537A1 (en) Metal-air secondary battery
JP6596213B2 (ja) 金属空気電池
JP2019207885A (ja) 金属空気電池
JP6485123B2 (ja) 燃料電池用アノードおよび燃料電池単セル
WO2016080115A1 (ja) 金属空気電池
JP6068228B2 (ja) セパレータ、金属空気二次電池およびセパレータの製造方法
JP6259815B2 (ja) 金属空気電池
JP6166929B2 (ja) 金属空気二次電池
JP5273584B2 (ja) 固体酸化物形燃料電池セルと固体酸化物形燃料電池セルユニット、及びそれを備える燃料電池モジュール
JPH09129250A (ja) 固体電解質型燃料電池セル
JP2009231209A (ja) 燃料電池の製造方法
JP2009289657A (ja) 固体酸化物形燃料電池セルユニット、及びそれを備える燃料電池モジュール
JP2016004648A (ja) 負極複合体、およびリチウム空気電池
RU2522188C1 (ru) Способ получения двухслойного несущего катода для твердооксидных топливных элементов
KR101220779B1 (ko) 고체 산화물 연료전지 양극 및 그 제조방법
KR20120054336A (ko) 복합 집전체를 구비한 연료전지 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768241

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15557981

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768241

Country of ref document: EP

Kind code of ref document: A1