WO2016152271A1 - Resin composition, sheet-shaped resin composition integrated with rear-surface grinding tape, sheet-shaped resin composition integrated with dicing tape, method for manufacturing semiconductor device, and semiconductor device - Google Patents

Resin composition, sheet-shaped resin composition integrated with rear-surface grinding tape, sheet-shaped resin composition integrated with dicing tape, method for manufacturing semiconductor device, and semiconductor device Download PDF

Info

Publication number
WO2016152271A1
WO2016152271A1 PCT/JP2016/053341 JP2016053341W WO2016152271A1 WO 2016152271 A1 WO2016152271 A1 WO 2016152271A1 JP 2016053341 W JP2016053341 W JP 2016053341W WO 2016152271 A1 WO2016152271 A1 WO 2016152271A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
sheet
shaped resin
semiconductor device
tape
Prior art date
Application number
PCT/JP2016/053341
Other languages
French (fr)
Japanese (ja)
Inventor
章洋 福井
尚英 高本
博行 花園
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015093874A external-priority patent/JP6514564B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020177022107A priority Critical patent/KR20170130359A/en
Publication of WO2016152271A1 publication Critical patent/WO2016152271A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body

Definitions

  • the present invention relates to a resin composition, a tape-integrated sheet-shaped resin composition for back grinding, a dicing tape-integrated sheet-shaped resin composition, a method for manufacturing a semiconductor device, and a semiconductor device.
  • an epoxy resin is used as a thermosetting resin and a curing agent is used.
  • the temperature range from the curing start temperature to the curing end temperature is relatively wide. For this reason, the present inventors have found that there is a problem that the curing reaction proceeds gradually even at low temperatures, resulting in poor storage stability.
  • a curing agent is employed so that the reaction is started at such a high temperature that the curing reaction does not proceed during storage.
  • heating at a higher temperature and longer time is required in the curing reaction in the manufacturing process of the semiconductor device, and the manufacturing efficiency is lowered.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a resin composition that has good storage stability and has fast curability in a semiconductor device manufacturing process. Moreover, it is providing the tape-integrated sheet-like resin composition for back surface grinding which has the said resin composition. Moreover, it is providing the dicing tape integrated sheet-like resin composition which has the said resin composition. Moreover, it is providing the manufacturing method of the semiconductor device using the said sheet-like resin composition. Moreover, it is providing the semiconductor device manufactured using the said resin composition.
  • the present invention is a resin composition used for interface sealing between an adherend and a semiconductor element flip-chip connected on the adherend, Containing a radical reactive compound, a thermoplastic resin and an inorganic filler,
  • the ratio of the radical reactive compound to the component excluding the inorganic filler from the entire resin composition is 18.5% by weight or more.
  • radical-reactive compounds once a radical is generated and a reaction (for example, an addition reaction) starts, this radical reaction proceeds in a chain. On the other hand, the reaction does not proceed unless radicals are generated. Therefore, while no radicals are generated at room temperature, if the radicals are generated under conditions that are higher than room temperature but relatively low, both room temperature storage and fast curability can be achieved. Under the present circumstances, it becomes possible to perform the said interface sealing suitably by making the content rate of the said radical reactive compound into the said numerical range.
  • an epoxy resin may be contained.
  • thermosetting rate after heating at 120 ° C. for 10 minutes is 40% or less and the thermosetting rate after heating at 200 ° C. for 5 seconds is 20% or more.
  • the thermal curing rate after heating at 120 ° C. for 10 minutes is 40% or less, the progress of the curing reaction at a low temperature is suppressed. Therefore, it is more excellent in storage stability.
  • the thermal curing rate after heating at 200 ° C. for 5 seconds is 20% or more, the curing reaction can proceed in a short time under conditions that are not so high in the curing reaction in the semiconductor device manufacturing process. . As a result, manufacturing efficiency can be further improved.
  • thermosetting rate is a value obtained from reaction heat obtained by differential scanning calorimetry (DSC), assuming that the state before heating is 0% and the state of complete thermosetting is 100%. More details will be described later.
  • the resin composition is preferably in the form of a sheet.
  • the back-grinding tape-integrated sheet-shaped resin composition according to the present invention is characterized in that the sheet-shaped resin composition is laminated on the back-grinding tape.
  • the sheet-like resin composition for backside grinding since the sheet-like resin composition is previously laminated on the backside grinding tape, in the semiconductor device manufacturing process, for backside grinding.
  • the process etc. which affix a tape on a sheet-like resin composition can be skipped.
  • the said resin composition contains a radical reactive compound, a thermoplastic resin, and an inorganic filler,
  • excluding the said inorganic filler from the said whole resin composition is 18. Since it is 5 weight% or more, room temperature preservability and quick curability can be made compatible. Under the present circumstances, it becomes possible to perform the said interface sealing suitably by making the content rate of the said radical reactive compound into the said numerical range.
  • the dicing tape-integrated sheet-shaped resin composition according to the present invention is characterized in that the sheet-shaped resin composition is laminated on a dicing tape.
  • the dicing tape-integrated sheet-shaped resin composition since the sheet-shaped resin composition is previously laminated on the dicing tape, the dicing tape is formed into the sheet-shaped resin composition in the semiconductor device manufacturing process.
  • the process of attaching to an object can be omitted.
  • the said resin composition contains a radical reactive compound, a thermoplastic resin, and an inorganic filler,
  • excluding the said inorganic filler from the said whole resin composition is 18. Since it is 5 weight% or more, room temperature preservability and quick curability can be made compatible. Under the present circumstances, it becomes possible to perform the said interface sealing suitably by making the content rate of the said radical reactive compound into the said numerical range.
  • a method for manufacturing a semiconductor device includes: Step A for preparing a chip with a sheet-shaped resin composition in which the sheet-shaped resin composition is attached to a bump forming surface of a semiconductor chip; Step B for preparing a mounting substrate on which electrodes are formed; The sheet-shaped resin composition-attached chip is attached to the mounting substrate with the sheet-shaped resin composition as a bonding surface, and the bumps formed on the semiconductor chip and the mounting substrate are formed.
  • Step C for making the electrodes face each other; After the step C, the step D of heating and semi-curing the sheet-shaped resin composition, After the step D, the method includes a step E of heating at a higher temperature than the heating in the step D to join the bump and the electrode and curing the sheet-like composition.
  • the thermosetting rate after heating at 120 ° C. for 10 minutes is 40% or less, and the thermosetting rate after heating at 200 ° C. for 5 seconds is 20% or more. Since the sheet-like resin composition is used, the curing reaction starts and ends early even if the temperature is not greatly increased after the process C until the semi-curing process of the process D. Since the process D can be completed quickly, the efficiency of the semiconductor device manufacturing process can be improved.
  • the present invention it is possible to provide a resin composition that has good storability and has fast curability in the semiconductor device manufacturing process. Moreover, the tape-integrated sheet-like resin composition for back surface grinding which has the said sheet-like resin composition can be provided. Moreover, the dicing tape integrated sheet-like resin composition which has the said sheet-like resin composition can be provided. Moreover, the manufacturing method of the semiconductor device using the said sheet-like resin composition can be provided.
  • FIG. 1 is a schematic cross-sectional view showing a back-grinding tape-integrated sheet-shaped resin composition according to an embodiment of the present invention.
  • the back-grinding tape-integrated sheet-shaped resin composition 100 includes a back-grinding tape 12 and a sheet-shaped resin composition 10 laminated on the back-grinding tape 12. Is provided.
  • the back grinding tape 12 includes a substrate 12a and an adhesive layer 12b, and the adhesive layer 12b is provided on the substrate 12a.
  • the sheet-like resin composition 10 is provided on the pressure-sensitive adhesive layer 12b.
  • the sheet-shaped resin composition 10 does not have to be laminated on the entire surface of the back surface grinding tape 12 as shown in FIG. 1, and has a size sufficient for bonding to the semiconductor wafer 16 (see FIG. 2). What is necessary is just to be provided.
  • the sheet-shaped resin composition 10 has a gap (sea surface) between the semiconductor chip 22 (corresponding to the semiconductor element of the present invention) and the mounting substrate 50 when the semiconductor chip 22 is mounted on the mounting substrate 50 (see FIG. 9). Has a function of sealing.
  • the mounting substrate 50 corresponds to the adherend of the present invention. In this embodiment, the case where the adherend of the present invention is the mounting substrate 50 will be described.
  • the adherend of the present invention is not limited to this example, and may be, for example, another semiconductor element. Good. That is, the resin composition of the present invention may perform interface sealing between another semiconductor element as an adherend and a semiconductor element flip-chip connected on the other semiconductor element.
  • the sheet-shaped resin composition 10 contains a radical reactive compound, a thermoplastic resin, and an inorganic filler.
  • the radical reactive compound is a compound in which an addition reaction proceeds in a chain manner by a radical reaction.
  • the radical-reactive compound is a compound having one or more radical-reactive double bonds in one molecule and having a weight average molecular weight of 10,000 or less.
  • Examples of the compound having one or more radical-reactive double bonds in one molecule include epoxy (meth) acrylate resins and bismaleimide resins. Moreover, the compound which has an acryloyl group, an allyl group, and a vinyl group can be mentioned.
  • Epoxy (meth) acrylate means epoxy acrylate or epoxy methacrylate.
  • the molecular weight (weight average molecular weight) of the epoxy (meth) acrylate resin is not particularly limited, but is preferably 100 to 10,000, and more preferably 200 to 1,000. A weight average molecular weight of 100 to 10000 is preferable in that the cohesive force of the cured product becomes strong.
  • the measurement of a weight average molecular weight can be calculated
  • epoxy (meth) acrylate resin examples include bisphenol A type epoxy (meth) acrylates such as ethoxylated (3) bisphenol A diacrylate.
  • the content of the radical reactive compound is such that the ratio of the radical reactive compound to the component excluding the inorganic filler from the entire sheet resin composition is 18.5% by weight or more.
  • the ratio of the radical reactive compound is preferably 25% by weight or more. Since the ratio of the radical reactive compound is 18.5% by weight or more, the interface sealing can be suitably performed.
  • the proportion of the radical reactive compound is preferably 80% by weight or less, more preferably 60% by weight or less, from the viewpoint of connection reliability.
  • the sheet-shaped resin composition 10 preferably contains a radical generator.
  • the radical generator generates radicals at least by heating.
  • radical generators that generate radicals upon heating include organic peroxides and inorganic peroxides such as benzoyl peroxide (BPO), potassium persulfate, and dicumyl peroxide, and azobisisobutyronitrile (AIBN). ) And the like.
  • the content of the radical generator with respect to the entire sheet-shaped resin composition 10 is preferably in the range of 0.01 to 5% by weight, preferably in the range of 0.1 to 1% by weight, from the viewpoint of reaction rate. It is more preferable that
  • thermoplastic resin examples include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, heat Examples thereof include plastic polyimide resins, polyamide resins such as 6-nylon and 6,6-nylon, phenoxy resins, acrylic resins, saturated polyester resins such as PET and PBT, polyamideimide resins, and fluorine resins. These thermoplastic resins can be used alone or in combination of two or more.
  • thermoplastic resins an acrylic resin that has few ionic impurities and high heat resistance and can ensure the reliability of the semiconductor chip is particularly preferable.
  • the thermoplastic resin has a weight average molecular weight of more than 10,000, and may contain a radical-reactive carbon-carbon double bond in the molecule.
  • the acrylic resin is not particularly limited, and includes one or more esters of acrylic acid or methacrylic acid ester having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms.
  • Examples include polymers as components.
  • the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, hexyl group, heptyl group, cyclohexyl group, 2 -Ethylhexyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, lauryl group, tridecyl group, tetradecyl group, stearyl group, octadecyl group,
  • the acrylic resin preferably has a hydroxyl group or an epoxy group.
  • the acrylic resin When the acrylic resin has a hydroxyl group or an epoxy group, it reacts with the epoxy resin, and the adhesive strength after thermosetting can be maintained high.
  • the acrylic resin when the acrylic resin has a hydroxyl group or an epoxy group, the hydroxyl group and the epoxy group are relatively less reactive than other functional groups (for example, a carboxyl group). , Excellent storage stability (especially storage stability at room temperature). That is, when the acrylic resin has a hydroxyl group or an epoxy group, it has excellent storability and can maintain high adhesive strength after thermosetting.
  • the acrylic resin does not deny that it contains a functional group other than a hydroxyl group and an epoxy group (for example, a carboxyl group, an amino group, an isocyanate group, etc.) within a range not departing from the spirit of the present invention. Preferably it does not contain.
  • a functional group other than a hydroxyl group and an epoxy group for example, a carboxyl group, an amino group, an isocyanate group, etc.
  • the acrylic resin containing an epoxy group is preferably a copolymer of a monomer containing an epoxy group (epoxy group-containing monomer) and a monomer not containing an epoxy group, and the mixing ratio is storability, and The selection can be made in consideration of the rapid curability in the manufacturing process of the semiconductor device. Specifically, for example, when the total amount of raw material monomers is 100 parts by weight, the blending ratio of the epoxy group-containing monomer and the monomer not containing an epoxy group is 0.1 to 30 parts by weight of the epoxy group-containing monomer, epoxy group It is preferable to use 70 to 99.9 parts by weight of the monomer containing no benzene.
  • the said mixture ratio is a mixture ratio in case an epoxy group containing monomer has one epoxy group in 1 monomer. Therefore, when the number of epoxy groups contained in one epoxy group-containing monomer is other than 1, the blending ratio can be made in accordance with the case of 1.
  • the acrylic resin containing a hydroxyl group is preferably a copolymer of a monomer containing a hydroxyl group (hydroxyl group-containing monomer) and a monomer not containing a hydroxyl group, and the mixing ratio is storability.
  • the selection can be made in consideration of the rapid curability in the manufacturing process of the semiconductor device. Specifically, for example, when the total amount of raw material monomers is 100 parts by weight, the blending ratio of the hydroxyl group-containing monomer and the monomer not containing hydroxyl group is 0.1-30 parts by weight of hydroxyl group-containing monomer, hydroxyl group It is preferable to use 70 to 99.9 parts by weight of the monomer containing no benzene.
  • the said mixture ratio is a mixture ratio in case a hydroxyl group containing monomer has one hydroxyl group in 1 monomer. Therefore, when the number of hydroxyl groups possessed by one hydroxyl group-containing monomer is other than 1, the blending ratio can be set according to the case of 1.
  • the acrylic resin containing an epoxy group preferably has an epoxy value of 0.001 to 10 eq / kg, and more preferably 0.01 to 2 eq / kg.
  • an epoxy value 0.001 to 10 eq / kg, and more preferably 0.01 to 2 eq / kg.
  • the acrylic resin preferably has a weight average molecular weight of 3 ⁇ 10 5 or more, and more preferably 4 ⁇ 10 5 or more, from the viewpoint of film formability.
  • the thermoplastic resin contains an acrylic resin having a weight average molecular weight of 3 ⁇ 10 5 or more, the resin composition is easily formed into a sheet.
  • the weight average molecular weight is measured by GPC (gel permeation chromatography) and is a value calculated in terms of polystyrene.
  • the content of the thermoplastic resin with respect to the entire sheet-shaped resin composition 10 is preferably 1% by weight or more, and more preferably 3% by weight or more. When it is 1% by weight or more, good flexibility is obtained. On the other hand, the content of the thermoplastic resin in the resin component is preferably 40% by weight or less, more preferably 30% by weight or less, and further preferably 25% by weight or less. Good thermal reliability is acquired as it is 30 weight% or less.
  • the inorganic filler enables, for example, improvement of thermal conductivity, adjustment of storage elastic modulus, and the like.
  • the inorganic filler examples include ceramics such as silica, clay, gypsum, calcium carbonate, barium sulfate, alumina oxide, beryllium oxide, silicon carbide and silicon nitride, and inorganic powder such as carbon. These can be used alone or in combination of two or more. Among these, silica, particularly fused silica is preferably used.
  • the average particle size of the inorganic filler is preferably within the range of 10 to 1000 nm, more preferably within the range of 20 to 500 nm, and even more preferably within the range of 50 to 300 nm.
  • inorganic fillers having different average particle diameters may be combined so that the average particle diameter as a whole falls within the above numerical range.
  • the average particle size of the inorganic filler is 10 nm or more, a film can be easily formed.
  • the average particle size of the inorganic filler is 500 nm or less, transparency can be imparted to the film.
  • the average particle diameter is a value determined by a photometric particle size distribution meter (manufactured by HORIBA, apparatus name: LA-910).
  • the blending amount of the inorganic filler is preferably set to 50 to 1400 parts by weight with respect to 100 parts by weight of the organic resin component. Particularly preferred is 100 to 900 parts by weight.
  • the blending amount of the inorganic filler is 50 parts by weight or more, heat resistance and strength are improved.
  • liquidity is securable by setting it as 1400 weight part or less. Thereby, it can prevent that adhesiveness and embedding fall.
  • the sheet-like resin composition 10 preferably contains an epoxy resin. Including an epoxy resin is preferable in terms of connection reliability.
  • the sheet-shaped resin composition 10 includes a thermoplastic resin and the thermoplastic resin has a functional group that undergoes a crosslinking reaction with an epoxy group, it is preferable to include an epoxy resin.
  • the epoxy resin is not particularly limited as long as it is generally used as an adhesive composition, for example, bisphenol A type, bisphenol F type, bisphenol S type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol AF type.
  • a thiol-based curing agent As a curing agent, from the viewpoint of reactivity with thiol-based curing agents and versatility, among the epoxy resins, bisphenol A type, biphenyl type, naphthalene type, phenol novolac type, orthocresol novolak A mold is particularly preferred.
  • the content of the epoxy resin with respect to the entire sheet-shaped resin composition 10 is preferably in the range of 0.1 to 50% by weight and in the range of 0.4 to 20% by weight from the viewpoint of connection reliability. It is more preferable.
  • an epoxy resin may be included.
  • a curing agent may be included.
  • the sheet-shaped resin composition 10 may contain a thermosetting accelerator.
  • the thermosetting accelerator is not particularly limited and can be appropriately selected from known thermosetting accelerators.
  • a thermosetting accelerator can be used individually or in combination of 2 or more types.
  • the thermosetting accelerator for example, amine-based curing accelerators, phosphorus-based curing accelerators, imidazole-based curing accelerators, boron-based curing accelerators, phosphorus-boron-based curing accelerators, and the like can be used.
  • organic compounds containing nitrogen atoms in the molecule for example, amine-based curing accelerators and imidazole-based curing accelerators
  • the content of the thermosetting accelerator is preferably 0.001 to 1 part by weight, and more preferably 0.01 to 0.5 part by weight with respect to 100 parts by weight of the epoxy resin. When it is 0.001 part by weight or more, it can be sufficiently cured, and when it is 1 part by weight or less, good storage stability can be maintained.
  • additives can be appropriately added to the sheet-shaped resin composition 10 as necessary.
  • other additives include flame retardants, silane coupling agents, ion trapping agents, pigments such as carbon black, and the like.
  • flame retardant include antimony trioxide, antimony pentoxide, brominated epoxy resin, and the like. These can be used alone or in combination of two or more.
  • silane coupling agent include ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and the like.
  • ion trapping agent examples include hydrotalcites and bismuth hydroxide. These can be used alone or in combination of two or more.
  • a flux such as an organic acid can be added for the purpose of removing the oxide film of the solder at the time of mounting.
  • the thickness (total thickness in the case of a multilayer) of the sheet-shaped resin composition 10 is not particularly limited, it is preferably 5 ⁇ m or more and 500 ⁇ m or less in consideration of the strength and fillability of the cured resin. Note that the thickness of the sheet-shaped resin composition 10 can be appropriately set in consideration of the width of the gap between the chip 22 and the mounting substrate 50.
  • the sheet-like resin composition 10 preferably has a thermosetting rate of 40% or less after heating at 120 ° C. for 10 minutes, more preferably 35% or less, and further preferably 30% or less.
  • the sheet-like resin composition 10 has a thermosetting rate of 40% or less after being heated at 120 ° C. for 10 minutes, the progress of the curing reaction at a low temperature is further suppressed. Accordingly, the storage stability in the state of the sheet-shaped resin composition is excellent.
  • the sheet-like resin composition 10 preferably has a thermosetting rate after heating at 200 ° C. for 5 seconds of 20% or more, more preferably 25% or more, and further preferably 30% or more. .
  • the sheet-like resin composition 10 has a heat curing rate of 20% or more after being heated at 200 ° C. for 5 seconds, under a condition that is not so high in the curing reaction in the semiconductor device manufacturing process, and in a short time. Can be further advanced. As a result, manufacturing efficiency can be further improved.
  • the thermosetting rate after heating the sheet-like resin composition 10 at 120 ° C. for 10 minutes and the thermosetting rate after heating at 200 ° C. for 5 seconds are the types of curing agents contained in the sheet-like resin composition 10 and It can be controlled by the type of curing accelerator, the content of curing accelerator, various additives, and the like.
  • the thermosetting rate is obtained by measuring the calorific value using differential scanning calorimetry (DSC). Specifically, first, a sheet-shaped resin composition that has not been heat-cured is prepared, and the temperature is set to 350 ° C. (the thermosetting reaction is assumed to be completely completed from ⁇ 10 ° C. under a temperature rising rate of 10 ° C./min. The amount of heat generated when the temperature is raised to (the temperature of reaction of the uncured sample) is measured. Moreover, the sample which heated the sheet-shaped resin composition before thermosetting on predetermined conditions (The heating for 10 minutes at 120 degreeC or the heating for 5 seconds at 200 degreeC) is created. Next, the heat generated when the sample heated under the predetermined conditions was heated from ⁇ 10 ° C. to 350 ° C.
  • DSC differential scanning calorimetry
  • thermosetting rate is obtained by the following formula (1).
  • the calorific value is determined using the area surrounded by the straight line connecting the two points of the rising temperature of the exothermic peak and the reaction end temperature measured with a differential scanning calorimeter and the peak.
  • Thermal curing rate [ ⁇ (reaction heat amount of uncured sample) ⁇ (reaction heat amount of sample thermally cured under predetermined conditions) ⁇ / (reaction heat amount of uncured sample)] ⁇ 100 (%)
  • the sheet-shaped resin composition 10 is prepared so that the peak temperature of thermosetting is within a range of 130 ° C. to 190 ° C. when measured under a temperature rising condition of 10 ° C./min in differential scanning calorimetry. preferable.
  • Examples of the method for adjusting the peak temperature of thermosetting so as to be within the range of 130 ° C. to 190 ° C. include a method of adjusting depending on the type of the curing accelerator and the content of the curing accelerator.
  • the sheet-like resin composition 10 preferably has a viscosity at 120 ° C. of 0.1 kPa ⁇ s to 20 kPa ⁇ s, more preferably 0.5 kPa ⁇ s to 15 kPa ⁇ s, and more preferably 1 kPa ⁇ s to 1 kPa ⁇ s. More preferably, it is 10 kPa ⁇ s or less. If the viscosity at 120 ° C. of the sheet-shaped resin composition 10 is 0.1 kPa ⁇ s or more, void expansion when the temperature is raised from the temperature in Step C to the temperature in the semi-curing step D can be suppressed. On the other hand, a sheet-like resin composition can be embedded in the unevenness
  • the sheet-like resin composition 10 has a viscosity change rate X1 of 0 to 70% between a viscosity at 120 ° C. after storage for 1 month at a temperature of 25 ° C. and a viscosity at 120 ° C. before storage. It is preferably within the range, and more preferably within the range of 0 to 40%.
  • the sheet-like resin composition 10 preferably has a minimum melt viscosity of less than 200 ° C. within a range of 10 Pa ⁇ s to 5000 Pa ⁇ s, more preferably within a range of 50 Pa ⁇ s to 3000 Pa ⁇ s, and 100 Pa ⁇ s. More preferably, it is in the range of s to 2000 Pa ⁇ s.
  • the minimum melt viscosity at less than 200 ° C. of the sheet-shaped resin composition 10 is in the range of 10 Pa ⁇ s to 5000 Pa ⁇ s
  • the bump 18 formed on the semiconductor chip 22 and the mounting substrate 50 are formed in Step C described later.
  • the formed electrode 52 can be opposed to the sheet-shaped resin composition 10 while being easily embedded.
  • the minimum melt viscosity at less than 200 ° C. of the sheet-shaped resin composition 10 refers to the minimum melt viscosity at less than 200 ° C. before thermosetting.
  • the minimum melt viscosity at less than 200 ° C. of the sheet-shaped resin composition 10 can be controlled by selecting the constituent material of the sheet-shaped resin composition 10. In particular, it can be controlled by selecting a thermoplastic resin. Specifically, for example, when a low molecular weight resin is used as the thermoplastic resin, the minimum melt viscosity at less than 200 ° C. can be reduced. For example, when a high molecular weight resin is used, the minimum melt viscosity at less than 200 ° C. Can be increased.
  • the sheet-shaped resin composition 10 is produced as follows, for example. First, a resin composition solution that is a material for forming the sheet-shaped resin composition 10 is prepared. As described above, the resin composition solution contains the resin composition, filler, and other various additives.
  • the resin composition solution is applied on the base separator so as to have a predetermined thickness to form a coating film, and then the coating film is dried under predetermined conditions to form the sheet-shaped resin composition 10.
  • a coating method For example, roll coating, screen coating, gravure coating, etc. are mentioned.
  • drying conditions for example, a drying temperature of 70 to 160 ° C. and a drying time of 1 to 5 minutes are performed.
  • the back grinding tape 12 includes a base material 12a and an adhesive layer 12b laminated on the base material 12a.
  • the base material 12a is a strength matrix of the back-grinding tape-integrated sheet-shaped resin composition 100.
  • polyolefins such as low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, polymethylpentene, ethylene-acetic acid Vinyl copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyimide, polyetherimide, polyamide, wholly aromatic polyamide, polyphenyls Fuido, aramid (paper), glass, glass
  • the base material 12a can be appropriately selected from the same type or different types, and can be used by blending several types as necessary. Conventional surface treatment can be applied to the surface of the substrate 12a. In order to impart antistatic ability to the base material 12a, a conductive material vapor deposition layer having a thickness of about 30 to 500 mm and made of metal, alloy, oxides thereof, or the like is provided on the base material 12a. it can.
  • the substrate 12a may be a single layer or two or more layers.
  • the thickness of the substrate 12a can be determined as appropriate and is generally about 5 ⁇ m to 200 ⁇ m, preferably 35 ⁇ m to 120 ⁇ m.
  • the base material 12a may contain various additives (for example, a colorant, a filler, a plasticizer, an anti-aging agent, an antioxidant, a surfactant, a flame retardant, etc.).
  • additives for example, a colorant, a filler, a plasticizer, an anti-aging agent, an antioxidant, a surfactant, a flame retardant, etc.
  • the pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer 12b is not particularly limited as long as it can hold the semiconductor wafer during back surface grinding of the semiconductor wafer and can be peeled from the semiconductor wafer after back surface grinding.
  • a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive can be used.
  • the pressure-sensitive adhesive is an acrylic pressure-sensitive adhesive based on an acrylic polymer from the standpoint of cleanability of semiconductor components such as semiconductor wafers and glass with organic solvents such as ultrapure water and alcohol. Is preferred.
  • acrylic polymer examples include those using acrylic acid ester as a main monomer component.
  • acrylic esters include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, Isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester , Octadecyl esters, eicosyl esters, etc., alkyl
  • the acrylic polymer includes units corresponding to the other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance, and the like. You may go out.
  • Such monomer components include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate;
  • the Sulfonic acid groups such as lensulfonic acid, allylsulfonic acid, 2- (meth)
  • a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary.
  • polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) Examples include acrylates. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is preferably 30% by weight
  • the acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization.
  • the polymerization can be carried out by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like. From the viewpoint of preventing contamination of a clean adherend, it is preferable that the content of the low molecular weight substance is small. From this point, the number average molecular weight of the acrylic polymer is preferably 300,000 or more, more preferably about 400,000 to 3 million.
  • an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive in order to increase the number average molecular weight of an acrylic polymer as a base polymer.
  • the external crosslinking method include a method in which a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, or a melamine crosslinking agent is added and reacted.
  • a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, or a melamine crosslinking agent is added and reacted.
  • the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked, and further depending on the intended use as an adhesive. Generally, about 5 parts by weight or less, more preferably 0.1 to 5 parts by weight, is preferably added to 100 parts by weight of the base polymer.
  • additives such as various conventionally known tackifiers and anti-aging agents may be used for the pressure-sensitive adhesive, if necessary
  • the pressure-sensitive adhesive layer 12b can be formed of a radiation curable pressure-sensitive adhesive.
  • the radiation curable pressure-sensitive adhesive can increase the degree of cross-linking by irradiation with radiation such as ultraviolet rays, and can easily reduce its adhesive strength, and can be easily picked up. Examples of radiation include X-rays, ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and neutron rays.
  • radiation curable pressure-sensitive adhesive those having a radiation curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation.
  • radiation curable adhesives include additive radiation curable adhesives in which radiation curable monomer components and oligomer components are blended with general pressure sensitive adhesives such as the above acrylic adhesives and rubber adhesives. An agent can be illustrated.
  • Examples of the radiation curable monomer component to be blended include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol.
  • Examples thereof include stall tetra (meth) acrylate, dipentaerystol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate and the like.
  • the radiation curable oligomer component examples include urethane, polyether, polyester, polycarbonate, and polybutadiene oligomers, and those having a weight average molecular weight in the range of about 100 to 30000 are suitable.
  • the compounding amount of the radiation curable monomer component or oligomer component can be appropriately determined in such an amount that the adhesive force of the pressure-sensitive adhesive layer can be reduced depending on the type of the pressure-sensitive adhesive layer. In general, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of a base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
  • the radiation curable pressure-sensitive adhesive has a carbon-carbon double bond as a base polymer in the polymer side chain or main chain or at the main chain terminal.
  • Intrinsic radiation curable adhesives using Intrinsic radiation-curable pressure-sensitive adhesives do not need to contain oligomer components, which are low-molecular components, or do not contain many, so the oligomer components do not move through the adhesive over time and are stable. This is preferable because an adhesive layer having a layered structure can be formed.
  • the base polymer having a carbon-carbon double bond those having a carbon-carbon double bond and having adhesiveness can be used without particular limitation.
  • an acrylic polymer having a basic skeleton is preferable.
  • the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.
  • the method for introducing the carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted.
  • the carbon-carbon double bond can be easily introduced into the polymer side chain for easy molecular design.
  • a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into a radiation-curable carbon-carbon double bond. Examples of the method include condensation or addition reaction while maintaining the above.
  • combinations of these functional groups include carboxylic acid groups and epoxy groups, carboxylic acid groups and aziridyl groups, hydroxyl groups and isocyanate groups.
  • a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction.
  • the functional group may be on either side of the acrylic polymer and the above compound as long as the acrylic polymer having the carbon-carbon double bond is generated by the combination of these functional groups. In the above preferred combination, it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group.
  • examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, and the like.
  • acrylic polymer those obtained by copolymerizing the above-exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like are used.
  • a base polymer having a carbon-carbon double bond can be used alone, but the radiation-curable monomer does not deteriorate the characteristics.
  • Components and oligomer components can also be blended.
  • the radiation-curable oligomer component is usually in the range of 30 parts by weight, preferably in the range of 0 to 10 parts by weight, based on 100 parts by weight of the base polymer.
  • the radiation curable pressure-sensitive adhesive preferably contains a photopolymerization initiator when cured by ultraviolet rays or the like.
  • the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, ⁇ -hydroxy- ⁇ , ⁇ ′-dimethylacetophenone, 2-methyl-2-hydroxypropio ⁇ -ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropane-1; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; 2-naphthal
  • oxygen air
  • examples thereof include a method of coating the surface of the pressure-sensitive adhesive layer 12b with a separator, and a method of irradiating radiation such as ultraviolet rays in a nitrogen gas atmosphere.
  • the pressure-sensitive adhesive layer 12b has various additives (for example, colorants, thickeners, extenders, fillers, tackifiers, plasticizers, anti-aging agents, antioxidants, surfactants, cross-linking agents, etc. ) May be included.
  • additives for example, colorants, thickeners, extenders, fillers, tackifiers, plasticizers, anti-aging agents, antioxidants, surfactants, cross-linking agents, etc.
  • the thickness of the pressure-sensitive adhesive layer 12b is not particularly limited, it is preferably about 1 to 50 ⁇ m from the viewpoint of preventing chipping of the chip cut surface and compatibility of fixing and holding the sheet-shaped resin composition 10.
  • the thickness is preferably 2 to 30 ⁇ m, more preferably 5 to 25 ⁇ m.
  • the back-grinding tape-integrated sheet-like resin composition 100 can be produced, for example, by separately producing the back-grinding tape 12 and the sheet-like resin composition 10 and finally bonding them together.
  • the manufacturing method of the semiconductor device is as follows: Preparing a chip with a sheet-shaped resin composition in which a sheet-shaped resin composition is attached to a bump-forming surface of a semiconductor chip; and Step B for preparing a mounting substrate on which electrodes are formed;
  • the sheet-shaped resin composition-attached chip is attached to the mounting substrate with the sheet-shaped resin composition as a bonding surface, and the bumps formed on the semiconductor chip and the mounting substrate are formed.
  • Step C for making the electrodes face each other; After the step C, the step D of heating and semi-curing the sheet-shaped resin composition, After the step D, at least a step E of heating at a higher temperature than the heating in the step D, bonding the bumps and the electrodes, and curing the sheet-like composition is included.
  • Step A a chip 40 with a sheet-like resin composition is prepared.
  • step A a specific method for preparing the chip 40 with sheet-shaped resin composition will be described with reference to FIGS.
  • the method for preparing a chip with a sheet-shaped resin composition is a sheet-shaped resin composition of a bump-forming surface 22a on which a bump 18 of a semiconductor wafer 16 is formed and a tape-integrated sheet-shaped resin composition 100 for back grinding.
  • a bonding process for grinding the back surface 16b of the semiconductor wafer 16 a wafer fixing process for bonding the dicing tape 11 to the back surface 16b of the semiconductor wafer 16 a peeling process for peeling the back surface grinding tape 12, a semiconductor It includes a dicing step of dicing the wafer 16 to form the semiconductor chip 40 with the sheet-shaped resin composition, and a pickup step of peeling the semiconductor chip 40 with the sheet-shaped resin composition from the dicing tape 11.
  • a plurality of bumps 18 are formed on the bump forming surface 22a of the semiconductor wafer 16 (see FIG. 2).
  • the height of the bump 18 is determined according to the application, and is generally about 5 to 100 ⁇ m. Of course, the height of each bump 18 in the semiconductor wafer 16 may be the same or different.
  • the height X ( ⁇ m) of the bump 18 formed on the surface of the semiconductor wafer 16 and the thickness Y ( ⁇ m) of the sheet-shaped resin composition 10 satisfy the relationship of 0.5 ⁇ Y / X ⁇ 2. . More preferably, 0.5 ⁇ Y / X ⁇ 1.5, and still more preferably 0.8 ⁇ Y / X ⁇ 1.3.
  • the height X ( ⁇ m) of the bump 18 and the thickness Y ( ⁇ m) of the sheet-shaped resin composition 10 satisfy the above relationship, the space between the semiconductor chip 22 and the mounting substrate 50 is sufficiently filled.
  • the sheet-like resin composition 10 can be prevented from excessively protruding from the space, and contamination of the semiconductor chip 22 by the sheet-like resin composition 10 can be prevented.
  • the heights of the bumps 18 are different, the height of the highest bump 18 is used as a reference.
  • the separator arbitrarily provided on the sheet-shaped resin composition 10 of the tape-integrated sheet-shaped resin composition 100 for back grinding is appropriately peeled to form bumps 18 of the semiconductor wafer 16 as shown in FIG.
  • the formed bump forming surface 22a and the sheet-shaped resin composition 10 are opposed to each other, and the sheet-shaped resin composition 10 and the semiconductor wafer 16 are bonded (mounting).
  • the method of bonding is not particularly limited, but a method by pressure bonding is preferable.
  • the pressure for pressure bonding is preferably 0.1 MPa or more, more preferably 0.2 MPa or more. When the pressure is 0.1 MPa or more, the unevenness of the bump forming surface 22a of the semiconductor wafer 16 can be embedded satisfactorily.
  • the upper limit of the pressure for pressure bonding is not particularly limited, but is preferably 1 MPa or less, more preferably 0.5 MPa or less.
  • the bonding temperature is preferably 40 ° C. or higher, more preferably 60 ° C. or higher. When the temperature is 40 ° C. or higher, the viscosity of the sheet-shaped resin composition 10 is reduced, and the unevenness of the semiconductor wafer 16 can be filled without a gap. Further, the bonding temperature is preferably 100 ° C. or lower, more preferably 80 ° C. or lower. When the temperature is 100 ° C. or lower, bonding can be performed while suppressing the curing reaction of the sheet-shaped resin composition 10.
  • Bonding is preferably performed under reduced pressure, for example, 1000 Pa or less, preferably 500 Pa or less.
  • a minimum is not specifically limited, For example, it is 1 Pa or more.
  • the surface (that is, the back surface) 16b opposite to the bump forming surface 22a of the semiconductor wafer 16 is ground (see FIG. 3).
  • the thin processing machine used for the back surface grinding of the semiconductor wafer 16 is not particularly limited, and examples thereof include a grinding machine (back grinder) and a polishing pad. Further, the back surface grinding may be performed by a chemical method such as etching. The back surface grinding is performed until the semiconductor wafer 16 has a desired thickness (for example, 20 to 700 ⁇ m).
  • the dicing tape 11 is attached to the back surface 16b of the semiconductor wafer 16 (see FIG. 4).
  • the dicing tape 11 has a structure in which an adhesive layer 11b is laminated on a substrate 11a.
  • the base material 11a and the pressure-sensitive adhesive layer 11b can be suitably produced by using the components and the manufacturing methods shown in the paragraphs of the base material 12a and the pressure-sensitive adhesive layer 12b of the back grinding tape 12.
  • the pressure sensitive adhesive layer 12b When the back surface grinding tape 12 is peeled off, if the pressure sensitive adhesive layer 12b has radiation curability, the pressure sensitive adhesive layer 12b is irradiated with radiation to harden the pressure sensitive adhesive layer 12b, so that peeling can be easily performed. Can do.
  • the radiation dose may be set as appropriate in consideration of the type of radiation used and the degree of curing of the pressure-sensitive adhesive layer.
  • ⁇ Dicing process> In the dicing process, as shown in FIG. 6, the semiconductor wafer 40 and the sheet-shaped resin composition 10 are diced to form the diced semiconductor chip 40 with the sheet-shaped resin composition. Dicing is performed according to a conventional method from the bump forming surface 22a on which the sheet-shaped resin composition 10 of the semiconductor wafer 16 is bonded. For example, a cutting method called full cut that cuts up to the dicing tape 11 can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used.
  • the expansion can be performed using a conventionally known expanding apparatus.
  • the semiconductor chip 40 with a sheet-shaped resin composition is peeled from the dicing tape 11 (the semiconductor chip 40 with a sheet-shaped resin composition is picked up).
  • the pickup method is not particularly limited, and various conventionally known methods can be employed.
  • the adhesive layer 11b of the dicing tape 11 is an ultraviolet curable type
  • the pickup is performed after the adhesive layer 11b is irradiated with ultraviolet rays.
  • the adhesive force with respect to the semiconductor chip 22 of the adhesive layer 11b falls, and peeling of the semiconductor chip 22 becomes easy.
  • Chip 40 with a sheet-shaped resin composition obtained as described above includes a semiconductor chip 22 on which bumps 18 are formed and a sheet-shaped resin composition 10 that is attached to a bump forming surface 22a of semiconductor chip 22. (See FIG. 8).
  • the bumps 18 are embedded in the sheet-shaped resin composition 10, and the bump forming surface 22 a of the semiconductor chip 22 is attached to the sheet-shaped resin composition 10.
  • the thickness of the semiconductor chip 22 is not particularly limited, but can be set as appropriate within a range of 10 to 1000 ⁇ m, for example.
  • the height of the bumps 18 formed on the semiconductor chip 22 is not particularly limited, but can be set as appropriate within a range of 2 to 300 ⁇ m, for example.
  • the constituent material of the bump 18 is not particularly limited, but is preferably solder, Sn—Pb, Pb—Sn—Sb, Sn—Sb, Sn—Pb—Bi, Bi—Sn, Sn—Cu.
  • Sn-Pb-Cu, Sn-In, Sn-Ag, Sn-Pb-Ag, Pb-Ag, and Sn-Ag-Cu solders are solders.
  • those having a melting point within the range of 210 to 230 ° C. can be preferably used, and among the above solders, for example, Sn—Ag system is preferable.
  • a mounting substrate 50 having an electrode 52 formed on the surface 50a is prepared (step B).
  • the mounting substrate 50 various substrates such as a lead frame and a circuit substrate (such as a wiring circuit substrate) can be used.
  • the material of such a substrate is not particularly limited, and examples thereof include a ceramic substrate and a plastic substrate.
  • the plastic substrate include an epoxy substrate, a bismaleimide triazine substrate, and a polyimide substrate.
  • a semiconductor wafer can be used as the mounting substrate 50.
  • Step of making bumps formed on semiconductor chip and electrodes formed on mounting substrate face each other After the step A and the step B, as shown in FIG. 10, a chip 40 with a sheet-like resin composition is attached to a mounting substrate 50 with the sheet-like resin composition 10 as a bonding surface, and a semiconductor.
  • the bumps 18 formed on the chip 22 are opposed to the electrodes 52 formed on the mounting substrate 50 (step C).
  • the sheet-shaped resin composition 10 of the chip-shaped resin composition-attached chip 40 is arranged to face the mounting substrate 50, and then a flip-chip bonder is used to insert the chip with the sheet-shaped resin composition. Apply pressure from 40 side.
  • the temperature at the time of bonding is preferably 100 to 200 ° C., more preferably 150 to 190 ° C. However, the temperature is preferably lower than the melting point of the solder. Further, the pressure at the time of bonding is preferably 0.01 to 10 MPa, more preferably 0.1 to 1 MPa. When the bonding temperature is 150 ° C. or higher, the viscosity of the sheet-shaped resin composition 10 is lowered, and the unevenness can be filled without a gap. Moreover, bonding becomes possible, suppressing the hardening reaction of the sheet-like resin composition 10 as the temperature of bonding is 200 degrees C or less.
  • the minimum melt viscosity at less than 200 ° C. of the sheet-shaped resin composition 10 is in the range of 10 Pa ⁇ s to 5000 Pa ⁇ s, the bumps 18 formed on the semiconductor chip 22 and the mounting substrate 50 are formed.
  • the electrode 52 can be opposed to the sheet-shaped resin composition 10 while being easily embedded.
  • Step D the sheet-shaped resin composition 10 is heated and semi-cured (step D).
  • the heating temperature in the step D is preferably 100 to 230 ° C., more preferably 150 to 210 ° C.
  • the heating temperature in the step D is preferably lower than the melting point of the solder.
  • the heating time is preferably in the range of 1 to 300 seconds, and more preferably in the range of 3 to 120 seconds. At this time, if the thermal curing rate after heating the sheet-shaped resin composition 10 at 200 ° C. for 5 seconds is 20% or more, the temperature does not have to be increased greatly after the process C until the semi-curing process of the process D.
  • the curing reaction begins and ends earlier. Since the process D can be completed quickly, the efficiency of the semiconductor device manufacturing process can be improved.
  • Step D heating is performed at a higher temperature than the heating in the step D, and as shown in FIG. 11, the bumps 18 and the electrodes 52 are joined, and the sheet-like composition 10 is cured (step E).
  • FIG. 11 shows a state in which the bump 18 is made of solder, and the bump 18 and the electrode 52 are joined (electrically connected) by melting the bump 18.
  • the heating temperature at this time is preferably 180 to 400 ° C., and more preferably 200 to 300 ° C.
  • the heating time is preferably in the range of 1 to 300 seconds, and more preferably in the range of 3 to 120 seconds.
  • the bumps 18 are solders having a melting point in the range of 180 to 260 ° C.
  • the step D is a step of heating in the range of 100 to 230 ° C.
  • the heating in the step D The temperature is preferably lower than the melting point of the solder.
  • solder having a melting point in the range of 180 to 260 ° C. is used, the solder is not melted by the heating in the step D.
  • the sheet-like resin composition 10 is semi-cured. That is, in the process D, the sheet-shaped resin composition 10 is semi-cured in a mode in which the solder is not melted. In the process D, since solder is not melted, the solder basically does not flow in the process D.
  • this process E it heats at a temperature higher than the heating in the said process D, fuses the bump 18 and the electrode 52 by melting the solder, and hardens the sheet-like composition 10.
  • the resin constituting the sheet-shaped resin composition 10 is difficult to flow. Therefore, even if the solder is melted for bonding the bump 18 and the electrode 52, the solder is prevented from flowing along with the flow of the sheet-shaped resin composition 10. As a result, it is possible to further suppress occurrence of a short circuit or contact failure due to the solder flow.
  • the semiconductor device 60 is obtained.
  • step A in the present invention is not limited to this example.
  • the dicing tape-integrated sheet-shaped resin composition includes a dicing tape and a sheet-shaped resin composition.
  • the dicing tape includes a base material and an adhesive layer, and the adhesive layer is provided on the base material.
  • the sheet-shaped resin composition is provided on the pressure-sensitive adhesive layer.
  • the dicing tape can employ the same configuration as the back grinding tape described above.
  • the method for preparing the chip with sheet-shaped resin composition is a method of bonding a bump forming surface on which a bump of a semiconductor wafer is formed and a sheet-shaped resin composition of a dicing tape-integrated sheet-shaped resin composition.
  • a method for preparing a chip with a sheet-shaped resin composition using a single sheet-shaped resin composition is, for example, a process of bonding a bump-formed surface on which a bump of a semiconductor wafer is formed and a sheet-shaped resin composition.
  • a bonding process a process of bonding a back surface grinding tape to the surface opposite to the semiconductor wafer bonding surface of the sheet-shaped resin composition, a grinding process of grinding the back surface of the semiconductor wafer, and a dicing tape applied to the back surface of the semiconductor wafer Wafer fixing step, peeling step for peeling back surface grinding tape, dicing step for dicing semiconductor wafer to form semiconductor chip with sheet resin composition, and pickup for peeling semiconductor chip with sheet resin composition from dicing tape Process.
  • a bump-forming surface on which a bump of a semiconductor wafer is formed a sheet-shaped resin composition
  • Bonding process bonding the dicing tape to the surface of the sheet-shaped resin composition opposite to the semiconductor wafer bonding surface, dicing the semiconductor wafer to form a semiconductor chip with the sheet-shaped resin composition
  • the sheet-shaped resin composition of the present invention is one that seals the gap between the semiconductor chip and the mounting substrate (so-called underfill sheet) has been described.
  • the sheet-shaped resin composition of the present invention is not particularly limited as long as it is used for manufacturing a semiconductor device, that is, for manufacturing a semiconductor device.
  • it may be a die bond film for die bonding a semiconductor element to an adherend, or a flip chip type semiconductor back film for forming on the back surface of a semiconductor element flip chip connected on the adherend.
  • the sealing film for sealing a semiconductor element may be sufficient.
  • the resin composition of the present invention is in the form of a sheet.
  • the resin composition is not limited to a sheet shape, and may be a liquid or a semisolid at room temperature.
  • it can be used by filling the interface between the adherend and the semiconductor element flip-chip connected on the adherend by capillary action or the like.
  • a semi-solid state at room temperature it can be used by being melted when heated and filled by capillary action.
  • Phenolic curing Agent Trade name “MEH-7851H”, manufactured by Meiwa Kasei Co., Ltd.
  • Radical reactive compound 1 (epoxy acrylate resin: trade name “CN-104NS”, manufactured by Sartomer, having no epoxy group. Weight average molecular weight 10,000 Less than.)
  • Radical reactive compound 2 (Epoxy acrylate resin: trade name “Unidic V-5500”, manufactured by DIC Corporation, has no epoxy group.
  • Radical reactive compound 3 (maleimide resin: trade name “BMI-2300”, manufactured by Daiwa Kasei Kogyo Co., Ltd., weight average molecular weight 10,000 or less)
  • Flux 2-phenoxybenzoic acid
  • Inorganic filler spherical silica (trade name “SO-25R”, manufactured by Admatechs Co., Ltd., average particle size: 500 nm)
  • Thermosetting accelerator Imidazole-based curing accelerator (trade name “2PHZ-PW”, manufactured by Shikoku Kasei Co., Ltd.)
  • Radical generator Organic peroxide (trade name “Park Mill D”, manufactured by NOF Corporation)
  • the solution of this adhesive composition was used as a release liner (separator) on a release treatment film made of a polyethylene terephthalate film having a thickness of 38 ⁇ m and subjected to a silicone release treatment.
  • the sheet-shaped resin compositions according to Examples 1 to 10 and Comparative Example 3 were prepared by drying at 120 ° C. for 3 minutes. In Examples 1 to 10 and Comparative Example 3, all thicknesses were set to 35 ⁇ m.
  • this adhesive composition solution was applied as a release liner (separator) onto a release-treated film made of a polyethylene terephthalate film having a thickness of 38 ⁇ m and subjected to silicone release treatment. Then, the sheet-like resin composition which concerns on the comparative example 1 and the comparative example 2 was produced by making it dry at 130 degreeC for 2 minute (s). In Comparative Example 1 and Comparative Example 2, all the thicknesses were 35 ⁇ m.
  • thermosetting rate after heating at 120 ° C. for 10 minutes was measured as follows. For the measurement, a differential scanning calorimeter manufactured by TA Instruments, product name “Q2000” was used. First, the temperature of the sheet-shaped resin composition that has not been heat-cured is increased from ⁇ 10 ° C. to 350 ° C. (the temperature at which the thermosetting reaction is assumed to be completely completed) at a temperature increase rate of 10 ° C./min. The calorific value (reaction calorie of the uncured sample) was measured. At this time, the exothermic peak temperature was also read. This value is shown in Table 1.
  • thermosetting rate [ ⁇ (reaction heat amount of uncured sample) ⁇ (reaction heat amount of sample heated at 120 ° C.
  • thermosetting rate after heating at 200 degreeC for 5 second was measured as follows.
  • a differential scanning calorimeter manufactured by TA Instruments, product name “Q2000” was used.
  • the temperature of the sheet-shaped resin composition that has not been heat-cured is increased from ⁇ 10 ° C. to 350 ° C. (the temperature at which the thermosetting reaction is assumed to be completely completed) at a temperature increase rate of 10 ° C./min.
  • the calorific value reaction calorie of the uncured sample was measured.
  • a sample was prepared by heating the sheet-shaped resin composition at 200 ° C.
  • thermosetting rate [ ⁇ (reaction heat amount of uncured sample) ⁇ (reaction heat amount of sample heated at 200 ° C.
  • the measured viscosities at 120 ° C. before and after storage were compared, and based on the viscosity before storage, the case where the viscosity after storage was 200% or less was evaluated as ⁇ , and the case where it was larger than 200% was evaluated as ⁇ .
  • the reason for setting the evaluation criteria as described above is that, when the viscosity change is 200% or less, the bonding at the time of mounting becomes good.
  • Table 1 also shows the measured viscosities at 120 ° C. before and after storage.
  • Table 1 also shows the viscosity change rate X1 between the viscosity at 120 ° C. after storage for 1 month at a temperature of 25 ° C. and the viscosity at 120 ° C. before storage.
  • the viscosity change rate X1 is an absolute value of a value obtained by the following formula.
  • [Viscosity change rate X1 (%)] [100 ⁇ ⁇ (viscosity at 120 ° C. after 1 month storage) ⁇ (viscosity at 120 ° C. before storage) ⁇ / (viscosity at 120 ° C. before storage)]
  • a mounting substrate (electrode height: 15 ⁇ m) having electrodes was attached to the sample A.
  • a flip chip bonder FC3000W manufactured by Toray Engineering Co., Ltd. was used. The pasting conditions were a load: 0.5 Mpa, held at 200 ° C. for 10 seconds, and then held at 260 ° C. for 10 seconds.
  • the obtained sample after mounting was polished in parallel with the chip (wafer) to expose the sheet-shaped resin composition.
  • the void state of the exposed resin portion was confirmed with an optical microscope (200 times), and when no void (maximum diameter: more than 3 ⁇ m) was confirmed, “ ⁇ ”, the occurrence of a void was confirmed even at one location. Cases were evaluated as “x”.
  • Table 1 In the examples, since the sheet-shaped resin composition was sufficiently semi-cured when held at 200 ° C. for 10 seconds, it is considered that expansion of voids was suppressed. On the other hand, in Comparative Example 2, it is considered that the expansion of the void was not suppressed because the sheet-shaped resin composition was not sufficiently cured when held at 200 ° C. for 10 seconds.

Abstract

The present invention is a resin composition used to seal an interface between an adherend and a semiconductor element that is flipchip-bonded to the adherend, wherein the resin composition contains a radical reactive compound, a thermoplastic resin, and an inorganic filler, and the proportion of the radical reactive compound relative to the constituents of the entire resin composition, excluding the inorganic filler, is 18.5 weight% or more.

Description

樹脂組成物、裏面研削用テープ一体型シート状樹脂組成物、ダイシングテープ一体型シート状樹脂組成物、半導体装置の製造方法、及び、半導体装置Resin composition, tape-integrated sheet-shaped resin composition for back grinding, dicing tape-integrated sheet-shaped resin composition, semiconductor device manufacturing method, and semiconductor device
 本発明は、樹脂組成物、裏面研削用テープ一体型シート状樹脂組成物、ダイシングテープ一体型シート状樹脂組成物、半導体装置の製造方法、及び、半導体装置に関する。 The present invention relates to a resin composition, a tape-integrated sheet-shaped resin composition for back grinding, a dicing tape-integrated sheet-shaped resin composition, a method for manufacturing a semiconductor device, and a semiconductor device.
 従来、半導体チップが基板上にフリップチップボンディングにより実装された(フリップチップ接続された)フリップチップ型の半導体装置に用いられるシート状樹脂組成物であって、半導体チップと基板との間隙の封止用に用いるシート状樹脂組成物が知られている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, a sheet-like resin composition used for a flip chip type semiconductor device in which a semiconductor chip is mounted on a substrate by flip chip bonding (flip chip connection), and sealing a gap between the semiconductor chip and the substrate A sheet-shaped resin composition used for the purpose is known (see, for example, Patent Document 1).
特許第4438973号Patent No. 4438973
 特許文献1のようなシート状樹脂組成物においては、熱硬化性樹脂としてエポキシ樹脂が用いられるとともに硬化剤が使用される。 In the sheet-like resin composition as in Patent Document 1, an epoxy resin is used as a thermosetting resin and a curing agent is used.
 しかしながら、エポキシ樹脂の硬化反応においては、硬化開始温度から硬化終了温度までの温度幅は、比較的広い。そのため、低温であっても硬化反応が徐々に進行してしまい、保存性が乏しくなるといった問題があることを本発明者らは突き止めた。
 これを解消する方法としては、保存時に硬化反応が進行しない程度に高温で反応が開始されるような硬化剤を採用する方法が考えられた。しかしながら、このような硬化剤を用いると、半導体装置の製造プロセスにおける硬化反応においてより高温、より長時間の加熱が必要となり、製造効率が低下することとなる。
However, in the epoxy resin curing reaction, the temperature range from the curing start temperature to the curing end temperature is relatively wide. For this reason, the present inventors have found that there is a problem that the curing reaction proceeds gradually even at low temperatures, resulting in poor storage stability.
As a method for solving this problem, there has been considered a method in which a curing agent is employed so that the reaction is started at such a high temperature that the curing reaction does not proceed during storage. However, when such a curing agent is used, heating at a higher temperature and longer time is required in the curing reaction in the manufacturing process of the semiconductor device, and the manufacturing efficiency is lowered.
 本発明は上述した課題に鑑みてなされたものであり、その目的は、保存性がよく、且つ、半導体装置の製造プロセスにおいて速硬化性を有する樹脂組成物を提供することにある。また、当該樹脂組成物を有する裏面研削用テープ一体型シート状樹脂組成物を提供することにある。また、当該樹脂組成物を有するダイシングテープ一体型シート状樹脂組成物を提供することにある。また、当該シート状樹脂組成物を用いた半導体装置の製造方法を提供することにある。また、当該樹脂組成物を用いて製造された半導体装置を提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a resin composition that has good storage stability and has fast curability in a semiconductor device manufacturing process. Moreover, it is providing the tape-integrated sheet-like resin composition for back surface grinding which has the said resin composition. Moreover, it is providing the dicing tape integrated sheet-like resin composition which has the said resin composition. Moreover, it is providing the manufacturing method of the semiconductor device using the said sheet-like resin composition. Moreover, it is providing the semiconductor device manufactured using the said resin composition.
 本願発明者等は、下記の構成を採用することにより、前記の課題を解決できることを見出して本発明を完成させるに至った。 The inventors of the present application have found that the above-mentioned problems can be solved by adopting the following configuration, and have completed the present invention.
 すなわち、本発明は、被着体と前記被着体上にフリップチップ接続された半導体素子との界面封止に用いられる樹脂組成物であって、
 ラジカル反応性化合物と熱可塑性樹脂と無機充填剤とを含有し、
 前記樹脂組成物全体から前記無機充填剤を除いた成分に対する前記ラジカル反応性化合物の割合が18.5重量%以上であることを特徴とする。
That is, the present invention is a resin composition used for interface sealing between an adherend and a semiconductor element flip-chip connected on the adherend,
Containing a radical reactive compound, a thermoplastic resin and an inorganic filler,
The ratio of the radical reactive compound to the component excluding the inorganic filler from the entire resin composition is 18.5% by weight or more.
 ラジカル反応性化合物では、一旦、ラジカルが発生し、反応(例えば、付加反応)が始まると、このラジカル反応は連鎖的に進行する。一方、ラジカルが発生しない限り反応は進行しない。従って、室温ではラジカルを発生させない一方、室温よりは高温であるが比較的低温の条件でラジカルを発生させれば、室温保存性と速硬化性とを両立させることができる。この際、前記ラジカル反応性化合物の含有割合を、前記数値範囲内とすることにより前記界面封止を好適に行うことが可能となる。 In radical-reactive compounds, once a radical is generated and a reaction (for example, an addition reaction) starts, this radical reaction proceeds in a chain. On the other hand, the reaction does not proceed unless radicals are generated. Therefore, while no radicals are generated at room temperature, if the radicals are generated under conditions that are higher than room temperature but relatively low, both room temperature storage and fast curability can be achieved. Under the present circumstances, it becomes possible to perform the said interface sealing suitably by making the content rate of the said radical reactive compound into the said numerical range.
 前記構成においては、エポキシ樹脂を含有してもよい。 In the above configuration, an epoxy resin may be contained.
 エポキシ樹脂をさらに含有すると、接続信頼性向上の点で好ましい。 When an epoxy resin is further contained, it is preferable in terms of improving connection reliability.
 前記構成においては、120℃で10分加熱した後の熱硬化率が40%以下であり、200℃で5秒加熱した後の熱硬化率が20%以上であることが好ましい。 In the above configuration, it is preferable that the thermosetting rate after heating at 120 ° C. for 10 minutes is 40% or less and the thermosetting rate after heating at 200 ° C. for 5 seconds is 20% or more.
 120℃で10分加熱した後の熱硬化率が40%以下であると、低温における硬化反応の進行が抑制されている。従って、保存性により優れる。
 また、200℃で5秒加熱した後の熱硬化率が20%以上であると、半導体装置の製造プロセスにおける硬化反応においてそれほど高温ではない条件、且つ、短時間で硬化反応を進行させることができる。その結果、製造効率をより向上させることができる。
When the thermal curing rate after heating at 120 ° C. for 10 minutes is 40% or less, the progress of the curing reaction at a low temperature is suppressed. Therefore, it is more excellent in storage stability.
In addition, when the thermal curing rate after heating at 200 ° C. for 5 seconds is 20% or more, the curing reaction can proceed in a short time under conditions that are not so high in the curing reaction in the semiconductor device manufacturing process. . As a result, manufacturing efficiency can be further improved.
 前記熱硬化率は、加熱前の状態を0%、完全に熱硬化した状態を100%とし、示差走査熱量測定(DSC)により得られる反応熱から求めた値である。より詳しくは後に説明する。 The thermosetting rate is a value obtained from reaction heat obtained by differential scanning calorimetry (DSC), assuming that the state before heating is 0% and the state of complete thermosetting is 100%. More details will be described later.
 前記樹脂組成物は、シート状であることが好ましい。 The resin composition is preferably in the form of a sheet.
 前記樹脂組成物がシート状であると、取り扱い性に優れる。 When the resin composition is in sheet form, it is excellent in handleability.
 また、本発明に係る裏面研削用テープ一体型シート状樹脂組成物は、前記シート状樹脂組成物が、裏面研削用テープ上に積層されていることを特徴とする。 Further, the back-grinding tape-integrated sheet-shaped resin composition according to the present invention is characterized in that the sheet-shaped resin composition is laminated on the back-grinding tape.
 本発明に係る裏面研削用テープ一体型シート状樹脂組成物によれば、前記シート状樹脂組成物が、予め裏面研削用テープ上に積層されているため、半導体装置の製造プロセスにおいて、裏面研削用テープをシート状樹脂組成物に貼り合わせる工程等を省略することができる。また、前記樹脂組成物は、ラジカル反応性化合物と熱可塑性樹脂と無機充填剤とを含有し、前記樹脂組成物全体から前記無機充填剤を除いた成分に対する前記ラジカル反応性化合物の割合が18.5重量%以上であるため、室温保存性と速硬化性とを両立させることができる。この際、前記ラジカル反応性化合物の含有割合を、前記数値範囲内とすることにより前記界面封止を好適に行うことが可能となる。 According to the tape-integrated sheet-like resin composition for backside grinding according to the present invention, since the sheet-like resin composition is previously laminated on the backside grinding tape, in the semiconductor device manufacturing process, for backside grinding. The process etc. which affix a tape on a sheet-like resin composition can be skipped. Moreover, the said resin composition contains a radical reactive compound, a thermoplastic resin, and an inorganic filler, The ratio of the said radical reactive compound with respect to the component remove | excluding the said inorganic filler from the said whole resin composition is 18. Since it is 5 weight% or more, room temperature preservability and quick curability can be made compatible. Under the present circumstances, it becomes possible to perform the said interface sealing suitably by making the content rate of the said radical reactive compound into the said numerical range.
 また、本発明に係るダイシングテープ一体型シート状樹脂組成物は、前記シート状樹脂組成物が、ダイシングテープ上に積層されていることを特徴とする。 The dicing tape-integrated sheet-shaped resin composition according to the present invention is characterized in that the sheet-shaped resin composition is laminated on a dicing tape.
 本発明に係るダイシングテープ一体型シート状樹脂組成物によれば、前記シート状樹脂組成物が、予めダイシングテープ上に積層されているため、半導体装置の製造プロセスにおいて、ダイシングテープをシート状樹脂組成物に貼り合わせる工程等を省略することができる。また、前記樹脂組成物は、ラジカル反応性化合物と熱可塑性樹脂と無機充填剤とを含有し、前記樹脂組成物全体から前記無機充填剤を除いた成分に対する前記ラジカル反応性化合物の割合が18.5重量%以上であるため、室温保存性と速硬化性とを両立させることができる。この際、前記ラジカル反応性化合物の含有割合を、前記数値範囲内とすることにより前記界面封止を好適に行うことが可能となる。 According to the dicing tape-integrated sheet-shaped resin composition according to the present invention, since the sheet-shaped resin composition is previously laminated on the dicing tape, the dicing tape is formed into the sheet-shaped resin composition in the semiconductor device manufacturing process. The process of attaching to an object can be omitted. Moreover, the said resin composition contains a radical reactive compound, a thermoplastic resin, and an inorganic filler, The ratio of the said radical reactive compound with respect to the component remove | excluding the said inorganic filler from the said whole resin composition is 18. Since it is 5 weight% or more, room temperature preservability and quick curability can be made compatible. Under the present circumstances, it becomes possible to perform the said interface sealing suitably by making the content rate of the said radical reactive compound into the said numerical range.
 また、本発明に係る半導体装置の製造方法は、
 半導体チップのバンプ形成面に、前記シート状樹脂組成物が貼り付けられたシート状樹脂組成物付きチップを準備する工程Aと、
 電極が形成された実装用基板を準備する工程Bと、
 前記実装用基板に、前記シート状樹脂組成物付きチップを、前記シート状樹脂組成物を貼り合わせ面にして貼り付けて、前記半導体チップに形成された前記バンプと前記実装用基板に形成された電極とを対向させる工程Cと、
 前記工程Cの後に、前記シート状樹脂組成物を加熱して半硬化させる工程Dと、
 前記工程Dの後に、前記工程Dにおける加熱よりも高温で加熱し、前記バンプと前記電極とを接合するとともに、前記シート状組成物を硬化させる工程Eとを含むことを特徴とする。
In addition, a method for manufacturing a semiconductor device according to the present invention includes:
Step A for preparing a chip with a sheet-shaped resin composition in which the sheet-shaped resin composition is attached to a bump forming surface of a semiconductor chip;
Step B for preparing a mounting substrate on which electrodes are formed;
The sheet-shaped resin composition-attached chip is attached to the mounting substrate with the sheet-shaped resin composition as a bonding surface, and the bumps formed on the semiconductor chip and the mounting substrate are formed. Step C for making the electrodes face each other;
After the step C, the step D of heating and semi-curing the sheet-shaped resin composition,
After the step D, the method includes a step E of heating at a higher temperature than the heating in the step D to join the bump and the electrode and curing the sheet-like composition.
 本発明に係る半導体装置の製造方法によれば、120℃で10分加熱した後の熱硬化率が40%以下であり、200℃で5秒加熱した後の熱硬化率が20%以上であるシート状樹脂組成物を用いているため、工程Cの後、工程Dの半硬化工程までに大きく温度を上げなくても、硬化反応が始まり早期に終了する。工程Dを速やかに終了させることができるため、半導体装置の製造プロセスの効率化が図れる。 According to the method for manufacturing a semiconductor device of the present invention, the thermosetting rate after heating at 120 ° C. for 10 minutes is 40% or less, and the thermosetting rate after heating at 200 ° C. for 5 seconds is 20% or more. Since the sheet-like resin composition is used, the curing reaction starts and ends early even if the temperature is not greatly increased after the process C until the semi-curing process of the process D. Since the process D can be completed quickly, the efficiency of the semiconductor device manufacturing process can be improved.
 本発明によれば、保存性がよく、且つ、半導体装置の製造プロセスにおいて速硬化性を有す樹脂組成物を提供することができる。また、当該シート状樹脂組成物を有する裏面研削用テープ一体型シート状樹脂組成物を提供することができる。また、当該シート状樹脂組成物を有するダイシングテープ一体型シート状樹脂組成物を提供することができる。また、当該シート状樹脂組成物を用いた半導体装置の製造方法を提供することができる。 According to the present invention, it is possible to provide a resin composition that has good storability and has fast curability in the semiconductor device manufacturing process. Moreover, the tape-integrated sheet-like resin composition for back surface grinding which has the said sheet-like resin composition can be provided. Moreover, the dicing tape integrated sheet-like resin composition which has the said sheet-like resin composition can be provided. Moreover, the manufacturing method of the semiconductor device using the said sheet-like resin composition can be provided.
本発明の一実施形態に係る裏面研削用テープ一体型シート状樹脂組成物を示す断面模式図である。It is a cross-sectional schematic diagram which shows the tape integrated sheet-like resin composition for back surface grinding which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the manufacturing method of the semiconductor device which concerns on one Embodiment of this invention.
 以下、本発明の実施形態について、図面を参照しつつ説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 [裏面研削用テープ一体型シート状樹脂組成物]
 図1は、本発明の一実施形態に係る裏面研削用テープ一体型シート状樹脂組成物を示す断面模式図である。図1に示すように、本実施形態に係る裏面研削用テープ一体型シート状樹脂組成物100は、裏面研削用テープ12と、裏面研削用テープ12上に積層されたシート状樹脂組成物10とを備える。裏面研削用テープ12は、基材12a及び粘着剤層12bを備え、粘着剤層12bは基材12a上に設けられている。シート状樹脂組成物10は粘着剤層12b上に設けられている。なお、シート状樹脂組成物10は、図1に示したように裏面研削用テープ12の全面に積層されていなくてもよく、半導体ウェハ16(図2参照)との貼り合わせに十分なサイズで設けられていればよい。
[Tape-integrated sheet-shaped resin composition for back grinding]
FIG. 1 is a schematic cross-sectional view showing a back-grinding tape-integrated sheet-shaped resin composition according to an embodiment of the present invention. As shown in FIG. 1, the back-grinding tape-integrated sheet-shaped resin composition 100 according to this embodiment includes a back-grinding tape 12 and a sheet-shaped resin composition 10 laminated on the back-grinding tape 12. Is provided. The back grinding tape 12 includes a substrate 12a and an adhesive layer 12b, and the adhesive layer 12b is provided on the substrate 12a. The sheet-like resin composition 10 is provided on the pressure-sensitive adhesive layer 12b. The sheet-shaped resin composition 10 does not have to be laminated on the entire surface of the back surface grinding tape 12 as shown in FIG. 1, and has a size sufficient for bonding to the semiconductor wafer 16 (see FIG. 2). What is necessary is just to be provided.
 (シート状樹脂組成物)
 シート状樹脂組成物10は、半導体チップ22を実装用基板50(図9参照)に実装する際に、半導体チップ22(本発明の半導体素子に相当)と実装用基板50との間隙(海面)を封止する機能を有する。実装用基板50は、本発明の被着体に相当する。なお、本実施形態では、本発明の被着体が実装用基板50である場合について説明するが、本発明の被着体はこの例に限定されず、例えば、他の半導体素子であってもよい。すなわち、本発明の樹脂組成物は、被着体としての他の半導体素子と該他の半導体素子上にフリップチップ接続された半導体素子との界面封止を行うものであってよい。
(Sheet-shaped resin composition)
The sheet-shaped resin composition 10 has a gap (sea surface) between the semiconductor chip 22 (corresponding to the semiconductor element of the present invention) and the mounting substrate 50 when the semiconductor chip 22 is mounted on the mounting substrate 50 (see FIG. 9). Has a function of sealing. The mounting substrate 50 corresponds to the adherend of the present invention. In this embodiment, the case where the adherend of the present invention is the mounting substrate 50 will be described. However, the adherend of the present invention is not limited to this example, and may be, for example, another semiconductor element. Good. That is, the resin composition of the present invention may perform interface sealing between another semiconductor element as an adherend and a semiconductor element flip-chip connected on the other semiconductor element.
 シート状樹脂組成物10は、ラジカル反応性化合物と熱可塑性樹脂と無機充填剤とを含有する。 The sheet-shaped resin composition 10 contains a radical reactive compound, a thermoplastic resin, and an inorganic filler.
 前記ラジカル反応性化合物は、ラジカル反応により付加反応が連鎖的に進行する化合物である。前記ラジカル反応性化合物は、1分子中に1つ以上のラジカル反応性二重結合を有する化合物であり、重量平均分子量が10000以下のものをいう。 The radical reactive compound is a compound in which an addition reaction proceeds in a chain manner by a radical reaction. The radical-reactive compound is a compound having one or more radical-reactive double bonds in one molecule and having a weight average molecular weight of 10,000 or less.
 1分子中に1つ以上のラジカル反応性二重結合を有する化合物としては、エポキシ(メタ)アクリレート樹脂、ビスマレイミド樹脂を挙げることができる。また、アクリロイル基、アリル基、ビニル基を有する化合物を挙げることができる。なお、エポキシ(メタ)アクリレートとは、エポキシアクリレート又はエポキシメタクリレートを意味する。 Examples of the compound having one or more radical-reactive double bonds in one molecule include epoxy (meth) acrylate resins and bismaleimide resins. Moreover, the compound which has an acryloyl group, an allyl group, and a vinyl group can be mentioned. Epoxy (meth) acrylate means epoxy acrylate or epoxy methacrylate.
 前記エポキシ(メタ)アクリレート樹脂の分子量(重量平均分子量)は、特に限定されないが、好ましくは100~10000であり、より好ましくは200~1000である。重量平均分子量が100~10000であると、硬化物の凝集力が強くなる点で好ましい。重量平均分子量の測定は、GPC法によりポリスチレン換算して求めることができる。 The molecular weight (weight average molecular weight) of the epoxy (meth) acrylate resin is not particularly limited, but is preferably 100 to 10,000, and more preferably 200 to 1,000. A weight average molecular weight of 100 to 10000 is preferable in that the cohesive force of the cured product becomes strong. The measurement of a weight average molecular weight can be calculated | required in polystyrene conversion by GPC method.
 前記エポキシ(メタ)アクリレート樹脂の具体例としては、エトキシ化(3)ビスフェノールAジアクリレートなどのビスフェノールA型エポキシ(メタ)アクリレートを挙げることができる。 Specific examples of the epoxy (meth) acrylate resin include bisphenol A type epoxy (meth) acrylates such as ethoxylated (3) bisphenol A diacrylate.
 前記ラジカル反応性化合物の含有量は、シート樹脂組成物全体から前記無機充填剤を除いた成分に対する前記ラジカル反応性化合物の割合が18.5重量%以上である。前記ラジカル反応性化合物の割合は、25重量%以上であることが好ましい。前記ラジカル反応性化合物の割合が18.5重量%以上であるため、界面封止を好適に行うことが可能となる。また、前記ラジカル反応性化合物の割合は、接続信頼性の観点から、80重量%以下が好ましく、60重量%以下がより好ましい。 The content of the radical reactive compound is such that the ratio of the radical reactive compound to the component excluding the inorganic filler from the entire sheet resin composition is 18.5% by weight or more. The ratio of the radical reactive compound is preferably 25% by weight or more. Since the ratio of the radical reactive compound is 18.5% by weight or more, the interface sealing can be suitably performed. The proportion of the radical reactive compound is preferably 80% by weight or less, more preferably 60% by weight or less, from the viewpoint of connection reliability.
 シート状樹脂組成物10は、ラジカル発生剤を含有することが好ましい。前記ラジカル発生剤は、少なくとも加熱によりラジカルを発生させるものである。 The sheet-shaped resin composition 10 preferably contains a radical generator. The radical generator generates radicals at least by heating.
 加熱によりラジカルを発生させるラジカル発生剤としては、例えば、過酸化ベンゾイル(BPO)、過硫酸カリウム、ジクミルパーオキサイドのような有機過酸化物及び無機過酸化物、アゾビスイソブチロニトリル(AIBN)のようなアゾ化合物等が挙げられる。 Examples of radical generators that generate radicals upon heating include organic peroxides and inorganic peroxides such as benzoyl peroxide (BPO), potassium persulfate, and dicumyl peroxide, and azobisisobutyronitrile (AIBN). ) And the like.
 シート状樹脂組成物10全体に対する前記ラジカル発生剤の含有量としては、反応速度の観点から、0.01~5重量%の範囲内であることが好ましく、0.1~1重量%の範囲内であることがより好ましい。 The content of the radical generator with respect to the entire sheet-shaped resin composition 10 is preferably in the range of 0.01 to 5% by weight, preferably in the range of 0.1 to 1% by weight, from the viewpoint of reaction rate. It is more preferable that
 前記熱可塑性樹脂としては、天然ゴム、ブチルゴム、イソプレンゴム、クロロプレンゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、6-ナイロンや6,6-ナイロン等のポリアミド樹脂、フェノキシ樹脂、アクリル樹脂、PETやPBT等の飽和ポリエステル樹脂、ポリアミドイミド樹脂、フッ素樹脂等が挙げられる。これらの熱可塑性樹脂は単独で、又は2種以上を併用して用いることができる。これらの熱可塑性樹脂のうち、イオン性不純物が少なく耐熱性が高く、半導体チップの信頼性を確保できるアクリル樹脂が特に好ましい。なお、本明細書において、熱可塑性樹脂は、重量平均分子量が10000より大きいものをいい、ラジカル反応性の炭素-炭素二重結合を分子内に含んでも良い。 Examples of the thermoplastic resin include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, heat Examples thereof include plastic polyimide resins, polyamide resins such as 6-nylon and 6,6-nylon, phenoxy resins, acrylic resins, saturated polyester resins such as PET and PBT, polyamideimide resins, and fluorine resins. These thermoplastic resins can be used alone or in combination of two or more. Among these thermoplastic resins, an acrylic resin that has few ionic impurities and high heat resistance and can ensure the reliability of the semiconductor chip is particularly preferable. In this specification, the thermoplastic resin has a weight average molecular weight of more than 10,000, and may contain a radical-reactive carbon-carbon double bond in the molecule.
 前記アクリル樹脂としては、特に限定されるものではなく、炭素数30以下、特に炭素数4~18の直鎖若しくは分岐のアルキル基を有するアクリル酸又はメタクリル酸のエステルの1種又は2種以上を成分とする重合体等が挙げられる。前記アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、イソブチル基、アミル基、イソアミル基、へキシル基、へプチル基、シクロヘキシル基、2-エチルヘキシル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、オクタデシル基、又はドデシル基等が挙げられる。 The acrylic resin is not particularly limited, and includes one or more esters of acrylic acid or methacrylic acid ester having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms. Examples include polymers as components. Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, hexyl group, heptyl group, cyclohexyl group, 2 -Ethylhexyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, lauryl group, tridecyl group, tetradecyl group, stearyl group, octadecyl group, dodecyl group and the like.
 前記アクリル樹脂は、ヒドロキシル基、又は、エポキシ基を有していることが好ましい。前記アクリル樹脂が、ヒドロキシル基、又は、エポキシ基を有していると、エポキシ樹脂と反応し、熱硬化後の接着強度を高く維持することができる。また、前記アクリル樹脂が、ヒドロキシル基、又は、エポキシ基を有している場合、ヒドロキシル基やエポキシ基は、他の官能基(例えば、カルボキシル基等)と比較して比較的反応性が低いため、保存性(特に、室温での保存性)に優れる。つまり、前記アクリル樹脂が、ヒドロキシル基、又は、エポキシ基を有していると、保存性に優れるとともに、熱硬化後は接着強度を高く維持することができる。
 なお、前記アクリル樹脂は、本発明の趣旨に反しない範囲において、ヒドロキシル基、エポキシ基以外の他の官能基(例えば、カルボキシル基、アミノ基、イソシアネート基等)を含有することを否定しないが、好ましくは含有しない。
The acrylic resin preferably has a hydroxyl group or an epoxy group. When the acrylic resin has a hydroxyl group or an epoxy group, it reacts with the epoxy resin, and the adhesive strength after thermosetting can be maintained high. In addition, when the acrylic resin has a hydroxyl group or an epoxy group, the hydroxyl group and the epoxy group are relatively less reactive than other functional groups (for example, a carboxyl group). , Excellent storage stability (especially storage stability at room temperature). That is, when the acrylic resin has a hydroxyl group or an epoxy group, it has excellent storability and can maintain high adhesive strength after thermosetting.
In addition, the acrylic resin does not deny that it contains a functional group other than a hydroxyl group and an epoxy group (for example, a carboxyl group, an amino group, an isocyanate group, etc.) within a range not departing from the spirit of the present invention. Preferably it does not contain.
 前記エポキシ基を含有するアクリル樹脂は、エポキシ基を含有するモノマー(エポキシ基含有モノマー)と、エポキシ基を含有しないモノマーとの共重合体とすることが好ましく、その混合比率は、保存性、及び、半導体装置の製造プロセスにおける速硬化性等を考慮して選択することができる。具体的には、例えば、原料モノマー合計を100重量部としたとき、エポキシ基含有モノマーとエポキシ基を含有しないモノマーとの配合割合は、エポキシ基含有モノマーを0.1~30重量部、エポキシ基を含有しないモノマーを70~99.9重量部とするのが好ましい。なお、上記配合割合は、エポキシ基含有モノマーが1モノマー中にエポキシ基を1つ有する場合の配合割合である。従って、1つのエポキシ基含有モノマーの有するエポキシ基の数が1以外である場合は、1である場合に準じた配合割合とすることができる。 The acrylic resin containing an epoxy group is preferably a copolymer of a monomer containing an epoxy group (epoxy group-containing monomer) and a monomer not containing an epoxy group, and the mixing ratio is storability, and The selection can be made in consideration of the rapid curability in the manufacturing process of the semiconductor device. Specifically, for example, when the total amount of raw material monomers is 100 parts by weight, the blending ratio of the epoxy group-containing monomer and the monomer not containing an epoxy group is 0.1 to 30 parts by weight of the epoxy group-containing monomer, epoxy group It is preferable to use 70 to 99.9 parts by weight of the monomer containing no benzene. In addition, the said mixture ratio is a mixture ratio in case an epoxy group containing monomer has one epoxy group in 1 monomer. Therefore, when the number of epoxy groups contained in one epoxy group-containing monomer is other than 1, the blending ratio can be made in accordance with the case of 1.
 また、前記ヒドロキシル基を含有するアクリル樹脂は、ヒドロキシル基を含有するモノマー(ヒドロキシル基含有モノマー)と、ヒドロキシル基を含有しないモノマーとの共重合体とすることが好ましく、その混合比率は、保存性、及び、半導体装置の製造プロセスにおける速硬化性等を考慮して選択することができる。具体的には、例えば、原料モノマー合計を100重量部としたとき、ヒドロキシル基含有モノマーとヒドロキシル基を含有しないモノマーとの配合割合は、ヒドロキシル基含有モノマーを0.1~30重量部、ヒドロキシル基を含有しないモノマーを70~99.9重量部とするのが好ましい。なお、上記配合割合は、ヒドロキシル基含有モノマーが1モノマー中にヒドロキシル基を1つ有する場合の配合割合である。従って、1つのヒドロキシル基含有モノマーの有するヒドロキシル基の数が1以外である場合は、1である場合に準じた配合割合とすることができる。 The acrylic resin containing a hydroxyl group is preferably a copolymer of a monomer containing a hydroxyl group (hydroxyl group-containing monomer) and a monomer not containing a hydroxyl group, and the mixing ratio is storability. In addition, the selection can be made in consideration of the rapid curability in the manufacturing process of the semiconductor device. Specifically, for example, when the total amount of raw material monomers is 100 parts by weight, the blending ratio of the hydroxyl group-containing monomer and the monomer not containing hydroxyl group is 0.1-30 parts by weight of hydroxyl group-containing monomer, hydroxyl group It is preferable to use 70 to 99.9 parts by weight of the monomer containing no benzene. In addition, the said mixture ratio is a mixture ratio in case a hydroxyl group containing monomer has one hydroxyl group in 1 monomer. Therefore, when the number of hydroxyl groups possessed by one hydroxyl group-containing monomer is other than 1, the blending ratio can be set according to the case of 1.
 前記エポキシ基を含有するアクリル樹脂は、エポキシ価が0.001~10eq/kgであるものが好ましく、0.01~2eq/kgであるものがより好ましい。エポキシ価を0.01eq/kg以上とすることにより、熱硬化後の耐熱信頼性(接着力等)を確保することができる。また、2eq/kg以下とすることにより、室温保存性を向上させることができる。なおエポキシ価は、以下のように測定される。
(エポキシ価の測定方法)
 試料約3~4gを100mlのコニカルフラスコに精秤し、クロロホルム10mlを加えて溶解する。さらに、酢酸30ml、テトラエチルアンモニウムブロマイド溶液5ml及びクリスタルバイオレット指示薬4~6滴を加え、マグネチックスターラーで攪拌しながら、0.1mol/L過塩素酸酢酸規定液で滴定する。また、同様の方法でブランクテストを行う。そして、次式によりエポキシ価が得られる。
   (エポキシ価)=((V-B)×0.1×F)/(W×N)
W:精秤した試料のg数
B:ブランクテストに要した0.1mol/L過塩素酸酢酸規定液のml数
V:試料の滴定に要した0.1mol/L過塩素酸酢酸規定液のml数
F:0.1mol/L過塩素酸酢酸規定液のファクター
N:固形分(%)
The acrylic resin containing an epoxy group preferably has an epoxy value of 0.001 to 10 eq / kg, and more preferably 0.01 to 2 eq / kg. By setting the epoxy value to 0.01 eq / kg or more, heat resistance reliability (adhesive strength, etc.) after thermosetting can be ensured. Moreover, room temperature preservability can be improved by setting it as 2 eq / kg or less. The epoxy value is measured as follows.
(Measurement method of epoxy value)
About 3 to 4 g of the sample is precisely weighed into a 100 ml conical flask, and 10 ml of chloroform is added to dissolve it. Further, 30 ml of acetic acid, 5 ml of tetraethylammonium bromide solution and 4 to 6 drops of crystal violet indicator are added, and the mixture is titrated with a 0.1 mol / L perchloric acid acetic acid normal solution while stirring with a magnetic stirrer. A blank test is performed in the same manner. And an epoxy value is obtained by the following formula.
(Epoxy value) = ((V−B) × 0.1 × F) / (W × N)
W: g number of accurately weighed sample B: ml number of 0.1 mol / L perchloric acid acetic acid normal solution required for blank test V: 0.1 mol / L perchloric acid acetic acid normal solution required for titration of sample ml number F: 0.1 mol / L factor of perchloric acid acetic acid normal solution N: solid content (%)
 前記アクリル樹脂は、製膜性の観点から、重量平均分子量が3×10以上であることが好ましく、4×10以上であることがより好ましい。前記熱可塑性樹脂として重量平均分子量が3×10以上のアクリル樹脂を含有すると、樹脂組成物をシート状とし易い。重量平均分子量の測定は、GPC(ゲル・パーミエーション・クロマトグラフィー)により行い、ポリスチレン換算により算出した値である。 The acrylic resin preferably has a weight average molecular weight of 3 × 10 5 or more, and more preferably 4 × 10 5 or more, from the viewpoint of film formability. When the thermoplastic resin contains an acrylic resin having a weight average molecular weight of 3 × 10 5 or more, the resin composition is easily formed into a sheet. The weight average molecular weight is measured by GPC (gel permeation chromatography) and is a value calculated in terms of polystyrene.
 シート状樹脂組成物10全体に対する熱可塑性樹脂の含有量は、好ましくは1重量%以上であり、より好ましくは3重量%以上である。1重量%以上であると、良好な可とう性が得られる。一方、樹脂成分中の熱可塑性樹脂の含有量は、好ましくは40重量%以下であり、より好ましくは30重量%以下であり、さらに好ましくは25重量%以下である。30重量%以下であると、良好な熱的信頼性が得られる。 The content of the thermoplastic resin with respect to the entire sheet-shaped resin composition 10 is preferably 1% by weight or more, and more preferably 3% by weight or more. When it is 1% by weight or more, good flexibility is obtained. On the other hand, the content of the thermoplastic resin in the resin component is preferably 40% by weight or less, more preferably 30% by weight or less, and further preferably 25% by weight or less. Good thermal reliability is acquired as it is 30 weight% or less.
 前記無機充填剤は、例えば、熱伝導性の向上、貯蔵弾性率の調節等を可能にするものである。 The inorganic filler enables, for example, improvement of thermal conductivity, adjustment of storage elastic modulus, and the like.
 前記無機充填剤としては、例えば、シリカ、クレー、石膏、炭酸カルシウム、硫酸バリウム、酸化アルミナ、酸化ベリリウム、炭化珪素、窒化珪素等のセラミック類、カーボン等の無機粉末が挙げられる。これらは、単独で又は2種以上を併用して用いることができる。なかでも、シリカ、特に溶融シリカが好適に用いられる。 Examples of the inorganic filler include ceramics such as silica, clay, gypsum, calcium carbonate, barium sulfate, alumina oxide, beryllium oxide, silicon carbide and silicon nitride, and inorganic powder such as carbon. These can be used alone or in combination of two or more. Among these, silica, particularly fused silica is preferably used.
 無機充填剤の平均粒径は、10~1000nmの範囲内であることが好ましく、20~500nmの範囲内であることがより好ましく、50~300nmの範囲内であることがさらに好ましい。なお、本発明においては、平均粒径が相互に異なる無機充填剤同士を組み合わせ、全体として平均粒径が上記数値範囲内となるようにしてもよい。前記無機充填剤の平均粒径が10nm以上であると、容易に製膜することができる。一方、前記無機充填剤の平均粒径が500nm以下であると、フィルムに透明性を付与することができる。前記平均粒径は、光度式の粒度分布計(HORIBA製、装置名;LA-910)により求めた値である。 The average particle size of the inorganic filler is preferably within the range of 10 to 1000 nm, more preferably within the range of 20 to 500 nm, and even more preferably within the range of 50 to 300 nm. In the present invention, inorganic fillers having different average particle diameters may be combined so that the average particle diameter as a whole falls within the above numerical range. When the average particle size of the inorganic filler is 10 nm or more, a film can be easily formed. On the other hand, when the average particle size of the inorganic filler is 500 nm or less, transparency can be imparted to the film. The average particle diameter is a value determined by a photometric particle size distribution meter (manufactured by HORIBA, apparatus name: LA-910).
 前記無機充填剤の配合量は、有機樹脂成分100重量部に対し50~1400重量部に設定することが好ましい。特に好ましくは100~900重量部である。無機充填剤の配合量を50重量部以上にすると、耐熱性や強度が向上する。また、1400重量部以下とすることにより、流動性が確保できる。これにより、接着性や埋め込み性が低下することを防止できる。 The blending amount of the inorganic filler is preferably set to 50 to 1400 parts by weight with respect to 100 parts by weight of the organic resin component. Particularly preferred is 100 to 900 parts by weight. When the blending amount of the inorganic filler is 50 parts by weight or more, heat resistance and strength are improved. Moreover, fluidity | liquidity is securable by setting it as 1400 weight part or less. Thereby, it can prevent that adhesiveness and embedding fall.
 シート状樹脂組成物10は、エポキシ樹脂を含むことが好ましい。エポキシ樹脂を含有すると、接続信頼性の点で好ましい。特に、シート状樹脂組成物10が熱可塑性樹脂を含み、かつ、当該熱可塑性樹脂がエポキシ基と架橋反応する官能基を有する場合エポキシ樹脂を含むことが好ましい。 The sheet-like resin composition 10 preferably contains an epoxy resin. Including an epoxy resin is preferable in terms of connection reliability. In particular, when the sheet-shaped resin composition 10 includes a thermoplastic resin and the thermoplastic resin has a functional group that undergoes a crosslinking reaction with an epoxy group, it is preferable to include an epoxy resin.
 前記エポキシ樹脂は、接着剤組成物として一般に用いられるものであれば特に限定は無く、例えばビスフェノールA型、ビスフェノールF型、ビスフェノールS型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールAF型、ビフェニル型、ナフタレン型、フルオンレン型、フェノールノボラック型、オルソクレゾールノボラック型、トリスヒドロキシフェニルメタン型、テトラフェニロールエタン型等の二官能エポキシ樹脂や多官能エポキシ樹脂、又はヒダントイン型、トリスグリシジルイソシアヌレート型若しくはグリシジルアミン型等のエポキシ樹脂が用いられる。これらは単独で、又は2種以上を併用して用いることができる。硬化剤としてチオール系硬化剤を用いる場合、チオール系硬化剤との反応性や汎用性の観点から、前記エポキシ樹脂のなかでも、ビスフェノールA型、ビフェニル型、ナフタレン型、フェノールノボラック型、オルソクレゾールノボラック型が特に好ましい。 The epoxy resin is not particularly limited as long as it is generally used as an adhesive composition, for example, bisphenol A type, bisphenol F type, bisphenol S type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol AF type. Biphenyl type, naphthalene type, fluorene type, phenol novolac type, orthocresol novolak type, trishydroxyphenylmethane type, tetraphenylolethane type, etc., bifunctional epoxy resin or polyfunctional epoxy resin, or hydantoin type, trisglycidyl isocyanurate Type or glycidylamine type epoxy resin is used. These can be used alone or in combination of two or more. When using a thiol-based curing agent as a curing agent, from the viewpoint of reactivity with thiol-based curing agents and versatility, among the epoxy resins, bisphenol A type, biphenyl type, naphthalene type, phenol novolac type, orthocresol novolak A mold is particularly preferred.
 シート状樹脂組成物10全体に対するエポキシ樹脂の含有量は、接続信頼性の観点から、0.1~50重量%の範囲内であることが好ましく、0.4~20重量%の範囲内であることがより好ましい。 The content of the epoxy resin with respect to the entire sheet-shaped resin composition 10 is preferably in the range of 0.1 to 50% by weight and in the range of 0.4 to 20% by weight from the viewpoint of connection reliability. It is more preferable.
 なお、本実施形態では、エポキシ樹脂を含んでいてもよい。また、硬化剤を含んでもよい。 In this embodiment, an epoxy resin may be included. Further, a curing agent may be included.
 シート状樹脂組成物10は、熱硬化促進剤を含有していてもよい。前記熱硬化促進剤としては、特に制限されず、公知の熱硬化促進剤の中から適宜選択して用いることができる。熱硬化促進剤は単独で又は2種以上を組み合わせて用いることができる。熱硬化促進剤としては、例えば、アミン系硬化促進剤、リン系硬化促進剤、イミダゾール系硬化促進剤、ホウ素系硬化促進剤、リン-ホウ素系硬化促進剤などを用いることができる。なかでも、反応性、溶解性の観点から、窒素原子を分子内に含む有機化合物(例えば、アミン系硬化促進剤、イミダゾール系硬化促進剤)が好ましい。 The sheet-shaped resin composition 10 may contain a thermosetting accelerator. The thermosetting accelerator is not particularly limited and can be appropriately selected from known thermosetting accelerators. A thermosetting accelerator can be used individually or in combination of 2 or more types. As the thermosetting accelerator, for example, amine-based curing accelerators, phosphorus-based curing accelerators, imidazole-based curing accelerators, boron-based curing accelerators, phosphorus-boron-based curing accelerators, and the like can be used. Among these, from the viewpoints of reactivity and solubility, organic compounds containing nitrogen atoms in the molecule (for example, amine-based curing accelerators and imidazole-based curing accelerators) are preferable.
 前記熱硬化促進剤の含有量は、エポキシ樹脂100重量部に対して、0.001~1重量部であることが好ましく、0・01~0.5重量部であることがより好ましい。0.001重量部以上であると、十分に硬化することができ、1重量部以下であると良好な保存性を維持することができる。 The content of the thermosetting accelerator is preferably 0.001 to 1 part by weight, and more preferably 0.01 to 0.5 part by weight with respect to 100 parts by weight of the epoxy resin. When it is 0.001 part by weight or more, it can be sufficiently cured, and when it is 1 part by weight or less, good storage stability can be maintained.
 なお、シート状樹脂組成物10には、前記無機充填剤以外に、必要に応じて他の添加剤を適宜に配合することができる。他の添加剤としては、例えば難燃剤、シランカップリング剤、イオントラップ剤、カーボンブラック等の顔料等が挙げられる。前記難燃剤としては、例えば、三酸化アンチモン、五酸化アンチモン、臭素化エポキシ樹脂等が挙げられる。これらは、単独で、又は2種以上を併用して用いることができる。前記シランカップリング剤としては、例えば、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等が挙げられる。これらの化合物は、単独で又は2種以上を併用して用いることができる。前記イオントラップ剤としては、例えばハイドロタルサイト類、水酸化ビスマス等が挙げられる。これらは、単独で又は2種以上を併用して用いることができる。また、実装時に半田の酸化膜を除去することを目的として、有機酸等のフラックスを添加することもできる。 In addition to the inorganic filler, other additives can be appropriately added to the sheet-shaped resin composition 10 as necessary. Examples of other additives include flame retardants, silane coupling agents, ion trapping agents, pigments such as carbon black, and the like. Examples of the flame retardant include antimony trioxide, antimony pentoxide, brominated epoxy resin, and the like. These can be used alone or in combination of two or more. Examples of the silane coupling agent include β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and the like. These compounds can be used alone or in combination of two or more. Examples of the ion trapping agent include hydrotalcites and bismuth hydroxide. These can be used alone or in combination of two or more. In addition, a flux such as an organic acid can be added for the purpose of removing the oxide film of the solder at the time of mounting.
 シート状樹脂組成物10の厚さ(複層の場合は、総厚)は特に限定されないものの、硬化後の樹脂の強度や充填性を考慮すると5μm以上500μm以下が好ましい。なお、シート状樹脂組成物10の厚さは、チップ22と実装用基板50との間隙の幅を考慮して適宜設定することができる。 Although the thickness (total thickness in the case of a multilayer) of the sheet-shaped resin composition 10 is not particularly limited, it is preferably 5 μm or more and 500 μm or less in consideration of the strength and fillability of the cured resin. Note that the thickness of the sheet-shaped resin composition 10 can be appropriately set in consideration of the width of the gap between the chip 22 and the mounting substrate 50.
 シート状樹脂組成物10は、120℃で10分加熱した後の熱硬化率が40%以下であることが好ましく、35%以下であることがより好ましく、30%以下であることがさらに好ましい。シート状樹脂組成物10は、120℃で10分加熱した後の熱硬化率が40%以下であると、低温における硬化反応の進行がより抑制されている。従って、シート状樹脂組成物の状態での保存性により優れる。
 また、シート状樹脂組成物10は、200℃で5秒加熱した後の熱硬化率が好ましくは20%以上であり、25%以上であることがより好ましく、30%以上であることがさらに好ましい。シート状樹脂組成物10は、200℃で5秒加熱した後の熱硬化率が20%以上であると、半導体装置の製造プロセスにおける硬化反応においてそれほど高温ではない条件、且つ、短時間で硬化反応をより進行させることができる。その結果、製造効率をより向上させることができる。
 シート状樹脂組成物10の120℃で10分加熱した後の熱硬化率、及び、200℃で5秒加熱した後の熱硬化率は、シート状樹脂組成物10に含有する硬化剤の種類や、硬化促進剤の種類、硬化促進剤の含有量、各種の添加剤等によりコントロールすることができる。
The sheet-like resin composition 10 preferably has a thermosetting rate of 40% or less after heating at 120 ° C. for 10 minutes, more preferably 35% or less, and further preferably 30% or less. When the sheet-like resin composition 10 has a thermosetting rate of 40% or less after being heated at 120 ° C. for 10 minutes, the progress of the curing reaction at a low temperature is further suppressed. Accordingly, the storage stability in the state of the sheet-shaped resin composition is excellent.
In addition, the sheet-like resin composition 10 preferably has a thermosetting rate after heating at 200 ° C. for 5 seconds of 20% or more, more preferably 25% or more, and further preferably 30% or more. . The sheet-like resin composition 10 has a heat curing rate of 20% or more after being heated at 200 ° C. for 5 seconds, under a condition that is not so high in the curing reaction in the semiconductor device manufacturing process, and in a short time. Can be further advanced. As a result, manufacturing efficiency can be further improved.
The thermosetting rate after heating the sheet-like resin composition 10 at 120 ° C. for 10 minutes and the thermosetting rate after heating at 200 ° C. for 5 seconds are the types of curing agents contained in the sheet-like resin composition 10 and It can be controlled by the type of curing accelerator, the content of curing accelerator, various additives, and the like.
 前記熱硬化率は、示差走査熱量測定(DSC)を用い、発熱量を測定して求める。具体的には、まず、熱硬化させていないシート状樹脂組成物を作成し、-10℃から昇温速度10℃/分の条件で、350℃(熱硬化反応が完全に完了したと想定される温度)まで昇温した際の発熱量(未硬化サンプルの反応熱量)を測定する。また、熱硬化前のシート状樹脂組成物を、所定条件(120℃で10分加熱、又は、200℃で5秒加熱)で加熱したサンプルを作成する。
 次に、所定条件で加熱したサンプルについて、-10℃から昇温速度10℃/分の条件で、350℃(熱硬化反応が完全に完了したと想定される温度)まで昇温した際の発熱量(所定条件で熱硬化させたサンプルの反応熱量)を測定する。その後、以下の式(1)により熱硬化率を得る。なお、発熱量は、示差走査熱量計にて測定される発熱ピークの立ち上がり温度と反応終了温度の2点を結んだ直線とピークで囲まれる面積を用いて求める。
The thermosetting rate is obtained by measuring the calorific value using differential scanning calorimetry (DSC). Specifically, first, a sheet-shaped resin composition that has not been heat-cured is prepared, and the temperature is set to 350 ° C. (the thermosetting reaction is assumed to be completely completed from −10 ° C. under a temperature rising rate of 10 ° C./min. The amount of heat generated when the temperature is raised to (the temperature of reaction of the uncured sample) is measured. Moreover, the sample which heated the sheet-shaped resin composition before thermosetting on predetermined conditions (The heating for 10 minutes at 120 degreeC or the heating for 5 seconds at 200 degreeC) is created.
Next, the heat generated when the sample heated under the predetermined conditions was heated from −10 ° C. to 350 ° C. (temperature at which the thermosetting reaction was completely completed) at a temperature increase rate of 10 ° C./min. The amount (the amount of reaction heat of the sample thermally cured under a predetermined condition) is measured. Then, a thermosetting rate is obtained by the following formula (1). The calorific value is determined using the area surrounded by the straight line connecting the two points of the rising temperature of the exothermic peak and the reaction end temperature measured with a differential scanning calorimeter and the peak.
 式(1):
熱硬化率=[{(未硬化サンプルの反応熱量)-(所定条件で熱硬化させたサンプルの反応熱量)}/(未硬化サンプルの反応熱量)]×100(%)
Formula (1):
Thermal curing rate = [{(reaction heat amount of uncured sample) − (reaction heat amount of sample thermally cured under predetermined conditions)} / (reaction heat amount of uncured sample)] × 100 (%)
 シート状樹脂組成物10は、示差走査熱量測定において10℃/minの昇温条件で測定した際に、熱硬化のピーク温度が130℃~190℃の範囲内となるように調製されたものが好ましい。前記熱硬化のピーク温度を130℃~190℃の範囲内となるように調整する方法としては、例えば、硬化促進剤の種類、硬化促進剤の含有量により調整する方法を挙げることができる。 The sheet-shaped resin composition 10 is prepared so that the peak temperature of thermosetting is within a range of 130 ° C. to 190 ° C. when measured under a temperature rising condition of 10 ° C./min in differential scanning calorimetry. preferable. Examples of the method for adjusting the peak temperature of thermosetting so as to be within the range of 130 ° C. to 190 ° C. include a method of adjusting depending on the type of the curing accelerator and the content of the curing accelerator.
 シート状樹脂組成物10は、120℃における粘度が0.1kPa・s以上20kPa・s以下であることが好ましく、0.5kPa・s以上15kPa・s以下であることがより好ましく、1kPa・s以上10kPa・s以下であることがさらに好ましい。シート状樹脂組成物10の120℃における粘度が0.1kPa・s以上であると、工程Cの温度から半硬化工程Dの温度に昇温する際のボイド膨張を抑制することができる。一方、20kPa・s以下であると、実装用基板の凹凸へシート状樹脂組成物を埋め込むことができる。 The sheet-like resin composition 10 preferably has a viscosity at 120 ° C. of 0.1 kPa · s to 20 kPa · s, more preferably 0.5 kPa · s to 15 kPa · s, and more preferably 1 kPa · s to 1 kPa · s. More preferably, it is 10 kPa · s or less. If the viscosity at 120 ° C. of the sheet-shaped resin composition 10 is 0.1 kPa · s or more, void expansion when the temperature is raised from the temperature in Step C to the temperature in the semi-curing step D can be suppressed. On the other hand, a sheet-like resin composition can be embedded in the unevenness | corrugation of the board | substrate for mounting as it is 20 kPa * s or less.
 シート状樹脂組成物10は、温度:25℃の条件で、1ヶ月保存した後の120℃での粘度と、保存前における120℃での粘度との粘度変化率X1が、0~70%の範囲内であることが好ましく、0~40%の範囲内であることがより好ましい。なお、粘度変化率X1は、下記式により得られる値の絶対値である。
  [粘度変化率X1(%)]=[100×{(1ヶ月保存後の120℃での粘度)-(保存前の120℃での粘度)}/(保存前の120℃での粘度)]
The sheet-like resin composition 10 has a viscosity change rate X1 of 0 to 70% between a viscosity at 120 ° C. after storage for 1 month at a temperature of 25 ° C. and a viscosity at 120 ° C. before storage. It is preferably within the range, and more preferably within the range of 0 to 40%. The viscosity change rate X1 is an absolute value of a value obtained by the following formula.
[Viscosity change rate X1 (%)] = [100 × {(viscosity at 120 ° C. after storage for one month) − (viscosity at 120 ° C. before storage)} / (viscosity at 120 ° C. before storage)]
 シート状樹脂組成物10は200℃未満における最低溶融粘度が10Pa・s~5000Pa・sの範囲内にあることが好ましく、50Pa・s~3000Pa・sの範囲内にあることがより好ましく、100Pa・s~2000Pa・sの範囲内にあることがさらに好ましい。シート状樹脂組成物10の200℃未満における最低溶融粘度が10Pa・s~5000Pa・sの範囲内にあると、後述する工程Cにおいて、半導体チップ22に形成されたバンプ18と実装用基板50に形成された電極52とを容易にシート状樹脂組成物10に埋め込みながら、対向させることができる。 The sheet-like resin composition 10 preferably has a minimum melt viscosity of less than 200 ° C. within a range of 10 Pa · s to 5000 Pa · s, more preferably within a range of 50 Pa · s to 3000 Pa · s, and 100 Pa · s. More preferably, it is in the range of s to 2000 Pa · s. When the minimum melt viscosity at less than 200 ° C. of the sheet-shaped resin composition 10 is in the range of 10 Pa · s to 5000 Pa · s, the bump 18 formed on the semiconductor chip 22 and the mounting substrate 50 are formed in Step C described later. The formed electrode 52 can be opposed to the sheet-shaped resin composition 10 while being easily embedded.
 シート状樹脂組成物10の200℃未満における最低溶融粘度とは、熱硬化前の200℃未満における最低溶融粘度をいう。 The minimum melt viscosity at less than 200 ° C. of the sheet-shaped resin composition 10 refers to the minimum melt viscosity at less than 200 ° C. before thermosetting.
 シート状樹脂組成物10の200℃未満における最低溶融粘度は、シート状樹脂組成物10の構成材料の選択によりコントロールすることができる。特に、熱可塑性樹脂の選択によりコントロールすることができる。具体的に、熱可塑性樹脂として、例えば、低分子量のものを使用すると、200℃未満における最低溶融粘度を小さくすることができ、例えば、高分子量のものを使用すると、200℃未満における最低溶融粘度を大きくすることができる。 The minimum melt viscosity at less than 200 ° C. of the sheet-shaped resin composition 10 can be controlled by selecting the constituent material of the sheet-shaped resin composition 10. In particular, it can be controlled by selecting a thermoplastic resin. Specifically, for example, when a low molecular weight resin is used as the thermoplastic resin, the minimum melt viscosity at less than 200 ° C. can be reduced. For example, when a high molecular weight resin is used, the minimum melt viscosity at less than 200 ° C. Can be increased.
 シート状樹脂組成物10は、例えば、次の通りにして作製される。まず、シート状樹脂組成物10の形成材料である樹脂組成物溶液を作製する。当該樹脂組成物溶液には、前述の通り、前記樹脂組成物やフィラー、その他各種の添加剤等が配合されている。 The sheet-shaped resin composition 10 is produced as follows, for example. First, a resin composition solution that is a material for forming the sheet-shaped resin composition 10 is prepared. As described above, the resin composition solution contains the resin composition, filler, and other various additives.
 次に、樹脂組成物溶液を基材セパレータ上に所定厚みとなる様に塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させ、シート状樹脂組成物10を形成する。塗布方法としては特に限定されず、例えば、ロール塗工、スクリーン塗工、グラビア塗工等が挙げられる。また、乾燥条件としては、例えば乾燥温度70~160℃、乾燥時間1~5分間の範囲内で行われる。 Next, the resin composition solution is applied on the base separator so as to have a predetermined thickness to form a coating film, and then the coating film is dried under predetermined conditions to form the sheet-shaped resin composition 10. It does not specifically limit as a coating method, For example, roll coating, screen coating, gravure coating, etc. are mentioned. As drying conditions, for example, a drying temperature of 70 to 160 ° C. and a drying time of 1 to 5 minutes are performed.
 (裏面研削用テープ)
 裏面研削用テープ12は、基材12aと、基材12a上に積層された粘着剤層12bとを備えている。
(Back grinding tape)
The back grinding tape 12 includes a base material 12a and an adhesive layer 12b laminated on the base material 12a.
 上記基材12aは裏面研削用テープ一体型シート状樹脂組成物100の強度母体となるものである。例えば、低密度ポリエチレン、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテンなどのポリオレフィン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、ポリウレタン、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリフェニルスルフイド、アラミド(紙)、ガラス、ガラスクロス、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース系樹脂、シリコーン樹脂、金属(箔)、紙などが挙げられる。粘着剤層12bが紫外線硬化型である場合、基材12aは紫外線に対し透過性を有するものが好ましい。 The base material 12a is a strength matrix of the back-grinding tape-integrated sheet-shaped resin composition 100. For example, polyolefins such as low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, polymethylpentene, ethylene-acetic acid Vinyl copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyimide, polyetherimide, polyamide, wholly aromatic polyamide, polyphenyls Fuido, aramid (paper), glass, glass cloth, fluorine resin, polyvinyl chloride, polyvinylidene chloride, cellulose resin, silicone resin, metal (foil), and paper. In the case where the pressure-sensitive adhesive layer 12b is of an ultraviolet curable type, the base material 12a is preferably permeable to ultraviolet rays.
 上記基材12aは、同種又は異種のものを適宜に選択して使用することができ、必要に応じて数種をブレンドしたものを用いることができる。基材12aの表面には、慣用の表面処理を施すことができる。基材12aには、帯電防止能を付与するため、上記の基材12a上に金属、合金、これらの酸化物などからなる厚さが30~500Å程度の導電性物質の蒸着層を設けることができる。基材12aは単層又は2種以上の複層でもよい。 The base material 12a can be appropriately selected from the same type or different types, and can be used by blending several types as necessary. Conventional surface treatment can be applied to the surface of the substrate 12a. In order to impart antistatic ability to the base material 12a, a conductive material vapor deposition layer having a thickness of about 30 to 500 mm and made of metal, alloy, oxides thereof, or the like is provided on the base material 12a. it can. The substrate 12a may be a single layer or two or more layers.
 基材12aの厚さは適宜に決定でき、一般的には5μm以上200μm以下程度であり、好ましくは35μm以上120μm以下である。 The thickness of the substrate 12a can be determined as appropriate and is generally about 5 μm to 200 μm, preferably 35 μm to 120 μm.
 なお、基材12aには、各種添加剤(例えば、着色剤、充填剤、可塑剤、老化防止剤、酸化防止剤、界面活性剤、難燃剤など)が含まれていてもよい。 The base material 12a may contain various additives (for example, a colorant, a filler, a plasticizer, an anti-aging agent, an antioxidant, a surfactant, a flame retardant, etc.).
 粘着剤層12bの形成に用いる粘着剤は、半導体ウェハの裏面研削時に半導体ウェハを保持でき、裏面研削後に半導体ウェハから剥離できるものであれば特に制限されない。例えば、アクリル系粘着剤、ゴム系粘着剤などの一般的な感圧性接着剤を用いることができる。上記感圧性接着剤としては、半導体ウェハやガラスなどの汚染をきらう電子部品の超純水やアルコールなどの有機溶剤による清浄洗浄性などの点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。 The pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer 12b is not particularly limited as long as it can hold the semiconductor wafer during back surface grinding of the semiconductor wafer and can be peeled from the semiconductor wafer after back surface grinding. For example, a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive can be used. The pressure-sensitive adhesive is an acrylic pressure-sensitive adhesive based on an acrylic polymer from the standpoint of cleanability of semiconductor components such as semiconductor wafers and glass with organic solvents such as ultrapure water and alcohol. Is preferred.
 上記アクリル系ポリマーとしては、アクリル酸エステルを主モノマー成分として用いたものが挙げられる。上記アクリル酸エステルとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、s-ブチルエステル、t-ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2-エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステルなどのアルキル基の炭素数1~30、特に炭素数4~18の直鎖状又は分岐鎖状のアルキルエステルなど)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステルなど)の1種又は2種以上を単量体成分として用いたアクリル系ポリマーなどが挙げられる。なお、(メタ)アクリル酸エステルとはアクリル酸エステル及び/又はメタクリル酸エステルをいい、本発明の(メタ)とは全て同様の意味である。 Examples of the acrylic polymer include those using acrylic acid ester as a main monomer component. Examples of the acrylic esters include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, Isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester , Octadecyl esters, eicosyl esters, etc., alkyl groups having 1 to 30 carbon atoms, in particular, linear or branched alkyl esters having 4 to 18 carbon atoms) Beauty (meth) acrylic acid cycloalkyl esters (e.g., cyclopentyl ester, cyclohexyl ester, etc.), etc. One or acrylic polymer using two or more of the monomer component thereof. In addition, (meth) acrylic acid ester means acrylic acid ester and / or methacrylic acid ester, and (meth) of the present invention has the same meaning.
 上記アクリル系ポリマーは、凝集力、耐熱性などの改質を目的として、必要に応じ、上記(メタ)アクリル酸アルキルエステル又はシクロアルキルエステルと共重合可能な他のモノマー成分に対応する単位を含んでいてもよい。このようなモノマー成分として、例えば、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸などのカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸などの酸無水物モノマー;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレートなどのヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸などのスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェートなどのリン酸基含有モノマー;アクリルアミド、アクリロニトリルなどがあげられる。これら共重合可能なモノマー成分は、1種又は2種以上使用できる。これら共重合可能なモノマーの使用量は、全モノマー成分の40重量%以下が好ましい。 The acrylic polymer includes units corresponding to the other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance, and the like. You may go out. Examples of such monomer components include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate; The Sulfonic acid groups such as lensulfonic acid, allylsulfonic acid, 2- (meth) acrylamide-2-methylpropanesulfonic acid, (meth) acrylamidepropanesulfonic acid, sulfopropyl (meth) acrylate, (meth) acryloyloxynaphthalenesulfonic acid Containing monomers; Phosphoric acid group-containing monomers such as 2-hydroxyethylacryloyl phosphate; acrylamide, acrylonitrile and the like. One or more of these copolymerizable monomer components can be used. The amount of these copolymerizable monomers used is preferably 40% by weight or less based on the total monomer components.
 さらに、上記アクリル系ポリマーは、架橋させるため、多官能性モノマーなども、必要に応じて共重合用モノマー成分として含むことができる。このような多官能性モノマーとして、例えば、ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレートなどがあげられる。これらの多官能性モノマーも1種又は2種以上用いることができる。多官能性モノマーの使用量は、粘着特性などの点から、全モノマー成分の30重量%以下が好ましい。 Furthermore, since the acrylic polymer is crosslinked, a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary. Examples of such polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) Examples include acrylates. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is preferably 30% by weight or less of the total monomer components from the viewpoint of adhesive properties and the like.
 上記アクリル系ポリマーは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合、乳化重合、塊状重合、懸濁重合などの何れの方式で行うこともできる。清浄な被着体への汚染防止などの点から、低分子量物質の含有量が小さいのが好ましい。この点から、アクリル系ポリマーの数平均分子量は、好ましくは30万以上、さらに好ましくは40万~300万程度である。 The acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization. The polymerization can be carried out by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like. From the viewpoint of preventing contamination of a clean adherend, it is preferable that the content of the low molecular weight substance is small. From this point, the number average molecular weight of the acrylic polymer is preferably 300,000 or more, more preferably about 400,000 to 3 million.
 また、上記粘着剤には、ベースポリマーであるアクリル系ポリマーなどの数平均分子量を高めるため、外部架橋剤を適宜に採用することもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤などのいわゆる架橋剤を添加し反応させる方法があげられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、さらには、粘着剤としての使用用途によって適宜決定される。一般的には、上記ベースポリマー100重量部に対して、5重量部程度以下、さらには0.1~5重量部配合するのが好ましい。さらに、粘着剤には、必要により、上記成分のほかに、従来公知の各種の粘着付与剤、老化防止剤などの添加剤を用いてもよい。 In addition, an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive in order to increase the number average molecular weight of an acrylic polymer as a base polymer. Specific examples of the external crosslinking method include a method in which a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, or a melamine crosslinking agent is added and reacted. When using an external cross-linking agent, the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked, and further depending on the intended use as an adhesive. Generally, about 5 parts by weight or less, more preferably 0.1 to 5 parts by weight, is preferably added to 100 parts by weight of the base polymer. Furthermore, additives such as various conventionally known tackifiers and anti-aging agents may be used for the pressure-sensitive adhesive, if necessary, in addition to the above components.
 粘着剤層12bは放射線硬化型粘着剤により形成することができる。放射線硬化型粘着剤は、紫外線などの放射線の照射により架橋度を増大させてその粘着力を容易に低下させることができ、ピックアップを容易に行うことができる。放射線としては、X線、紫外線、電子線、α線、β線、中性子線などが挙げられる。 The pressure-sensitive adhesive layer 12b can be formed of a radiation curable pressure-sensitive adhesive. The radiation curable pressure-sensitive adhesive can increase the degree of cross-linking by irradiation with radiation such as ultraviolet rays, and can easily reduce its adhesive strength, and can be easily picked up. Examples of radiation include X-rays, ultraviolet rays, electron beams, α rays, β rays, and neutron rays.
 放射線硬化型粘着剤は、炭素-炭素二重結合などの放射線硬化性の官能基を有し、かつ粘着性を示すものを特に制限なく使用することができる。放射線硬化型粘着剤としては、例えば、上記アクリル系粘着剤、ゴム系粘着剤などの一般的な感圧性粘着剤に、放射線硬化性のモノマー成分やオリゴマー成分を配合した添加型の放射線硬化性粘着剤を例示できる。 As the radiation curable pressure-sensitive adhesive, those having a radiation curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation. Examples of radiation curable adhesives include additive radiation curable adhesives in which radiation curable monomer components and oligomer components are blended with general pressure sensitive adhesives such as the above acrylic adhesives and rubber adhesives. An agent can be illustrated.
 配合する放射線硬化性のモノマー成分としては、例えば、ウレタンオリゴマー、ウレタン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、ジペンタエリストールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレートなどがあげられる。また放射線硬化性のオリゴマー成分はウレタン系、ポリエーテル系、ポリエステル系、ポリカーボネート系、ポリブタジエン系など種々のオリゴマーがあげられ、その重量平均分子量が100~30000程度の範囲のものが適当である。放射線硬化性のモノマー成分やオリゴマー成分の配合量は、上記粘着剤層の種類に応じて、粘着剤層の粘着力を低下できる量を、適宜に決定することができる。一般的には、粘着剤を構成するアクリル系ポリマーなどのベースポリマー100重量部に対して、例えば5~500重量部、好ましくは40~150重量部程度である。 Examples of the radiation curable monomer component to be blended include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol. Examples thereof include stall tetra (meth) acrylate, dipentaerystol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate and the like. Examples of the radiation curable oligomer component include urethane, polyether, polyester, polycarbonate, and polybutadiene oligomers, and those having a weight average molecular weight in the range of about 100 to 30000 are suitable. The compounding amount of the radiation curable monomer component or oligomer component can be appropriately determined in such an amount that the adhesive force of the pressure-sensitive adhesive layer can be reduced depending on the type of the pressure-sensitive adhesive layer. In general, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of a base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
 また、放射線硬化型粘着剤としては、上記説明した添加型の放射線硬化性粘着剤のほかに、ベースポリマーとして、炭素-炭素二重結合をポリマー側鎖または主鎖中もしくは主鎖末端に有するものを用いた内在型の放射線硬化性粘着剤があげられる。内在型の放射線硬化性粘着剤は、低分子成分であるオリゴマー成分などを含有する必要がなく、または多くは含まないため、経時的にオリゴマー成分などが粘着剤在中を移動することなく、安定した層構造の粘着剤層を形成することができるため好ましい。 In addition to the additive-type radiation curable adhesive described above, the radiation curable pressure-sensitive adhesive has a carbon-carbon double bond as a base polymer in the polymer side chain or main chain or at the main chain terminal. Intrinsic radiation curable adhesives using Intrinsic radiation-curable pressure-sensitive adhesives do not need to contain oligomer components, which are low-molecular components, or do not contain many, so the oligomer components do not move through the adhesive over time and are stable. This is preferable because an adhesive layer having a layered structure can be formed.
 上記炭素-炭素二重結合を有するベースポリマーは、炭素-炭素二重結合を有し、かつ粘着性を有するものを特に制限なく使用できる。このようなベースポリマーとしては、アクリル系ポリマーを基本骨格とするものが好ましい。アクリル系ポリマーの基本骨格としては、上記例示したアクリル系ポリマーがあげられる。 As the base polymer having a carbon-carbon double bond, those having a carbon-carbon double bond and having adhesiveness can be used without particular limitation. As such a base polymer, an acrylic polymer having a basic skeleton is preferable. Examples of the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.
 上記アクリル系ポリマーへの炭素-炭素二重結合の導入法は特に制限されず、様々な方法を採用できるが、炭素-炭素二重結合はポリマー側鎖に導入するのが分子設計が容易である。例えば、予め、アクリル系ポリマーに官能基を有するモノマーを共重合した後、この官能基と反応しうる官能基および炭素-炭素二重結合を有する化合物を、炭素-炭素二重結合の放射線硬化性を維持したまま縮合または付加反応させる方法があげられる。 The method for introducing the carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted. However, the carbon-carbon double bond can be easily introduced into the polymer side chain for easy molecular design. . For example, after a monomer having a functional group is copolymerized in advance with an acrylic polymer, a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into a radiation-curable carbon-carbon double bond. Examples of the method include condensation or addition reaction while maintaining the above.
 これら官能基の組合せの例としては、カルボン酸基とエポキシ基、カルボン酸基とアジリジル基、ヒドロキシル基とイソシアネート基などがあげられる。これら官能基の組合せのなかでも反応追跡の容易さから、ヒドロキシル基とイソシアネート基との組合せが好適である。また、これら官能基の組み合わせにより、上記炭素-炭素二重結合を有するアクリル系ポリマーを生成するような組合せであれば、官能基はアクリル系ポリマーと上記化合物のいずれの側にあってもよいが、上記の好ましい組み合わせでは、アクリル系ポリマーがヒドロキシル基を有し、上記化合物がイソシアネート基を有する場合が好適である。この場合、炭素-炭素二重結合を有するイソシアネート化合物としては、例えば、メタクリロイルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネートなどがあげられる。また、アクリル系ポリマーとしては、上記例示のヒドロキシ基含有モノマーや2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングルコールモノビニルエーテルのエーテル系化合物などを共重合したものが用いられる。 Examples of combinations of these functional groups include carboxylic acid groups and epoxy groups, carboxylic acid groups and aziridyl groups, hydroxyl groups and isocyanate groups. Among these combinations of functional groups, a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction. In addition, the functional group may be on either side of the acrylic polymer and the above compound as long as the acrylic polymer having the carbon-carbon double bond is generated by the combination of these functional groups. In the above preferred combination, it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group. In this case, examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl-α, α-dimethylbenzyl isocyanate, and the like. As the acrylic polymer, those obtained by copolymerizing the above-exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like are used.
 上記内在型の放射線硬化性粘着剤は、上記炭素-炭素二重結合を有するベースポリマー(特にアクリル系ポリマー)を単独で使用することができるが、特性を悪化させない程度に上記放射線硬化性のモノマー成分やオリゴマー成分を配合することもできる。放射線硬化性のオリゴマー成分などは、通常ベースポリマー100重量部に対して30重量部の範囲内であり、好ましくは0~10重量部の範囲である。 As the intrinsic radiation-curable pressure-sensitive adhesive, a base polymer having a carbon-carbon double bond (particularly an acrylic polymer) can be used alone, but the radiation-curable monomer does not deteriorate the characteristics. Components and oligomer components can also be blended. The radiation-curable oligomer component is usually in the range of 30 parts by weight, preferably in the range of 0 to 10 parts by weight, based on 100 parts by weight of the base polymer.
 上記放射線硬化型粘着剤には、紫外線などにより硬化させる場合には光重合開始剤を含有させることが好ましい。光重合開始剤としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α´-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトンなどのα-ケトール系化合物;メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフエノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1などのアセトフェノン系化合物;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アニソインメチルエーテルなどのベンゾインエーテル系化合物;ベンジルジメチルケタールなどのケタール系化合物;2-ナフタレンスルホニルクロリドなどの芳香族スルホニルクロリド系化合物;1-フェノン-1,1―プロパンジオン-2-(o-エトキシカルボニル)オキシムなどの光活性オキシム系化合物;ベンゾフェノン、ベンゾイル安息香酸、3,3′-ジメチル-4-メトキシベンゾフェノンなどのベンゾフェノン系化合物;チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソンなどのチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナートなどがあげられる。光重合開始剤の配合量は、粘着剤を構成するアクリル系ポリマーなどのベースポリマー100重量部に対して、例えば0.05~20重量部程度である。 The radiation curable pressure-sensitive adhesive preferably contains a photopolymerization initiator when cured by ultraviolet rays or the like. Examples of the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, α-hydroxy-α, α′-dimethylacetophenone, 2-methyl-2-hydroxypropio Α-ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropane-1; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; 2-naphthalenesulfo D Aromatic sulfonyl chloride compounds such as luchloride; photoactive oxime compounds such as 1-phenone-1,1-propanedione-2- (o-ethoxycarbonyl) oxime; benzophenone, benzoylbenzoic acid, 3,3′-dimethyl Benzophenone compounds such as -4-methoxybenzophenone; thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2 Thioxanthone compounds such as 1,4-diethylthioxanthone and 2,4-diisopropylthioxanthone; camphorquinone; halogenated ketone; acyl phosphinoxide; acyl phosphonate. The blending amount of the photopolymerization initiator is, for example, about 0.05 to 20 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
 なお、放射線照射の際に、酸素による硬化阻害が起こる場合は、放射線硬化型の粘着剤層12bの表面よりなんらかの方法で酸素(空気)を遮断するのが望ましい。例えば、上記粘着剤層12bの表面をセパレータで被覆する方法や、窒素ガス雰囲気中で紫外線などの放射線の照射を行う方法などが挙げられる。 In the case where curing is inhibited by oxygen during irradiation, it is desirable to block oxygen (air) from the surface of the radiation-curing pressure-sensitive adhesive layer 12b by some method. Examples thereof include a method of coating the surface of the pressure-sensitive adhesive layer 12b with a separator, and a method of irradiating radiation such as ultraviolet rays in a nitrogen gas atmosphere.
 なお、粘着剤層12bには、各種添加剤(例えば、着色剤、増粘剤、増量剤、充填剤、粘着付与剤、可塑剤、老化防止剤、酸化防止剤、界面活性剤、架橋剤など)が含まれていてもよい。 The pressure-sensitive adhesive layer 12b has various additives (for example, colorants, thickeners, extenders, fillers, tackifiers, plasticizers, anti-aging agents, antioxidants, surfactants, cross-linking agents, etc. ) May be included.
 粘着剤層12bの厚さは特に限定されないが、チップ切断面の欠け防止、シート状樹脂組成物10の固定保持の両立性などの観点から1~50μm程度であるのが好ましい。好ましくは2~30μm、さらには好ましくは5~25μmである。 Although the thickness of the pressure-sensitive adhesive layer 12b is not particularly limited, it is preferably about 1 to 50 μm from the viewpoint of preventing chipping of the chip cut surface and compatibility of fixing and holding the sheet-shaped resin composition 10. The thickness is preferably 2 to 30 μm, more preferably 5 to 25 μm.
 (裏面研削用テープ一体型シート状樹脂組成物の製造方法)
 裏面研削用テープ一体型シート状樹脂組成物100は、例えば裏面研削用テープ12及びシート状樹脂組成物10を別々に作製しておき、最後にこれらを貼り合わせることにより作成することができる。
(Production method of tape-integrated sheet-shaped resin composition for back surface grinding)
The back-grinding tape-integrated sheet-like resin composition 100 can be produced, for example, by separately producing the back-grinding tape 12 and the sheet-like resin composition 10 and finally bonding them together.
 (半導体装置の製造方法)
 次に、本発明の一実施形態に係る半導体装置の製造方法について説明する。図2~図11は、本発明の一実施形態に係る半導体装置の製造方法を説明するための断面模式図である。
(Method for manufacturing semiconductor device)
Next, a method for manufacturing a semiconductor device according to an embodiment of the present invention will be described. 2 to 11 are schematic sectional views for explaining a method for manufacturing a semiconductor device according to an embodiment of the present invention.
 本実施形態に係る半導体装置の製造方法は、
 半導体チップのバンプ形成面にシート状樹脂組成物が貼り付けられたシート状樹脂組成物付きチップを準備する工程Aと、
 電極が形成された実装用基板を準備する工程Bと、
 前記実装用基板に、前記シート状樹脂組成物付きチップを、前記シート状樹脂組成物を貼り合わせ面にして貼り付けて、前記半導体チップに形成された前記バンプと前記実装用基板に形成された電極とを対向させる工程Cと、
 前記工程Cの後に、前記シート状樹脂組成物を加熱して半硬化させる工程Dと、
 前記工程Dの後に、前記工程Dにおける加熱よりも高温で加熱し、前記バンプと前記電極とを接合するとともに、前記シート状組成物を硬化させる工程Eとを少なくとも含む。
The manufacturing method of the semiconductor device according to this embodiment is as follows:
Preparing a chip with a sheet-shaped resin composition in which a sheet-shaped resin composition is attached to a bump-forming surface of a semiconductor chip; and
Step B for preparing a mounting substrate on which electrodes are formed;
The sheet-shaped resin composition-attached chip is attached to the mounting substrate with the sheet-shaped resin composition as a bonding surface, and the bumps formed on the semiconductor chip and the mounting substrate are formed. Step C for making the electrodes face each other;
After the step C, the step D of heating and semi-curing the sheet-shaped resin composition,
After the step D, at least a step E of heating at a higher temperature than the heating in the step D, bonding the bumps and the electrodes, and curing the sheet-like composition is included.
 [シート状樹脂組成物付きチップを準備する工程]
 本実施形態に係る半導体装置の製造方法においては、まず、図8に示すように、シート状樹脂組成物付きチップ40を準備する(工程A)。以下、図2~図7を参照しながら、シート状樹脂組成物付チップ40の具体的な準備方法について説明する。
[Step of preparing chip with sheet-shaped resin composition]
In the method for manufacturing a semiconductor device according to the present embodiment, first, as shown in FIG. 8, a chip 40 with a sheet-like resin composition is prepared (step A). Hereinafter, a specific method for preparing the chip 40 with sheet-shaped resin composition will be described with reference to FIGS.
 (シート状樹脂組成物付チップの準備方法)
 本実施形態に係るシート状樹脂組成物付チップの準備方法は、半導体ウェハ16のバンプ18が形成されたバンプ形成面22aと裏面研削用テープ一体型シート状樹脂組成物100のシート状樹脂組成物10とを貼り合わせる貼合せ工程、半導体ウェハ16の裏面16bを研削する研削工程、半導体ウェハ16の裏面16bにダイシングテープ11を貼りつけるウェハ固定工程、裏面研削用テープ12を剥離する剥離工程、半導体ウェハ16をダイシングしてシート状樹脂組成物付き半導体チップ40を形成するダイシング工程、及びシート状樹脂組成物付き半導体チップ40をダイシングテープ11から剥離するピックアップ工程を含む。
(Preparation method of chip with sheet-shaped resin composition)
The method for preparing a chip with a sheet-shaped resin composition according to this embodiment is a sheet-shaped resin composition of a bump-forming surface 22a on which a bump 18 of a semiconductor wafer 16 is formed and a tape-integrated sheet-shaped resin composition 100 for back grinding. 10, a bonding process for grinding the back surface 16b of the semiconductor wafer 16, a wafer fixing process for bonding the dicing tape 11 to the back surface 16b of the semiconductor wafer 16, a peeling process for peeling the back surface grinding tape 12, a semiconductor It includes a dicing step of dicing the wafer 16 to form the semiconductor chip 40 with the sheet-shaped resin composition, and a pickup step of peeling the semiconductor chip 40 with the sheet-shaped resin composition from the dicing tape 11.
 <貼合せ工程>
 貼合せ工程では、半導体ウェハ16のバンプ18が形成されたバンプ形成面22aと裏面研削用テープ一体型シート状樹脂組成物100のシート状樹脂組成物10とを貼り合わせる(図2参照)。
<Lamination process>
In the bonding step, the bump forming surface 22a on which the bumps 18 of the semiconductor wafer 16 are formed and the sheet-shaped resin composition 10 of the back-grinding tape-integrated sheet-shaped resin composition 100 are bonded (see FIG. 2).
 半導体ウェハ16のバンプ形成面22aには、複数のバンプ18が形成されている(図2参照)。バンプ18の高さは用途に応じて定められ、一般的には5~100μm程度である。もちろん、半導体ウェハ16における個々のバンプ18の高さは同一でも異なっていてもよい。 A plurality of bumps 18 are formed on the bump forming surface 22a of the semiconductor wafer 16 (see FIG. 2). The height of the bump 18 is determined according to the application, and is generally about 5 to 100 μm. Of course, the height of each bump 18 in the semiconductor wafer 16 may be the same or different.
 半導体ウェハ16表面に形成されたバンプ18の高さX(μm)とシート状樹脂組成物10の厚さY(μm)とが、0.5≦Y/X≦2の関係を満たすことが好ましい。より好ましくは、0.5≦Y/X≦1.5であり、さらに好ましくは、0.8≦Y/X≦1.3である。 It is preferable that the height X (μm) of the bump 18 formed on the surface of the semiconductor wafer 16 and the thickness Y (μm) of the sheet-shaped resin composition 10 satisfy the relationship of 0.5 ≦ Y / X ≦ 2. . More preferably, 0.5 ≦ Y / X ≦ 1.5, and still more preferably 0.8 ≦ Y / X ≦ 1.3.
 バンプ18の高さX(μm)とシート状樹脂組成物10の厚さY(μm)とが上記関係を満たすことにより、半導体チップ22と実装用基板50との間の空間を十分に充填することができると共に、当該空間からのシート状樹脂組成物10の過剰のはみ出しを防止することができ、シート状樹脂組成物10による半導体チップ22の汚染などを防止することができる。なお、各バンプ18の高さが異なる場合は、最も高いバンプ18の高さを基準とする。 When the height X (μm) of the bump 18 and the thickness Y (μm) of the sheet-shaped resin composition 10 satisfy the above relationship, the space between the semiconductor chip 22 and the mounting substrate 50 is sufficiently filled. In addition, the sheet-like resin composition 10 can be prevented from excessively protruding from the space, and contamination of the semiconductor chip 22 by the sheet-like resin composition 10 can be prevented. When the heights of the bumps 18 are different, the height of the highest bump 18 is used as a reference.
 まず、裏面研削用テープ一体型シート状樹脂組成物100のシート状樹脂組成物10上に任意に設けられたセパレータを適宜に剥離し、図2に示すように、半導体ウェハ16のバンプ18が形成されたバンプ形成面22aとシート状樹脂組成物10とを対向させ、シート状樹脂組成物10と半導体ウェハ16とを貼り合わせる(マウント)。 First, the separator arbitrarily provided on the sheet-shaped resin composition 10 of the tape-integrated sheet-shaped resin composition 100 for back grinding is appropriately peeled to form bumps 18 of the semiconductor wafer 16 as shown in FIG. The formed bump forming surface 22a and the sheet-shaped resin composition 10 are opposed to each other, and the sheet-shaped resin composition 10 and the semiconductor wafer 16 are bonded (mounting).
 貼り合わせの方法は特に限定されないが、圧着による方法が好ましい。圧着の圧力は、好ましくは0.1MPa以上、より好ましくは0.2MPa以上である。0.1MPa以上であると、半導体ウェハ16のバンプ形成面22aの凹凸を良好に埋め込むことができる。また、圧着の圧力の上限は特に限定されないが、好ましくは1MPa以下、より好ましくは0.5MPa以下である。 The method of bonding is not particularly limited, but a method by pressure bonding is preferable. The pressure for pressure bonding is preferably 0.1 MPa or more, more preferably 0.2 MPa or more. When the pressure is 0.1 MPa or more, the unevenness of the bump forming surface 22a of the semiconductor wafer 16 can be embedded satisfactorily. Moreover, the upper limit of the pressure for pressure bonding is not particularly limited, but is preferably 1 MPa or less, more preferably 0.5 MPa or less.
 貼り合わせの温度は、好ましくは40℃以上であり、より好ましくは60℃以上である。40℃以上であると、シート状樹脂組成物10の粘度が低下し、半導体ウェハ16の凹凸を空隙なく充填できる。また、貼り合わせの温度は、好ましくは100℃以下であり、より好ましくは80℃以下である。100℃以下であると、シート状樹脂組成物10の硬化反応を抑制したまま貼り合わせが可能となる。 The bonding temperature is preferably 40 ° C. or higher, more preferably 60 ° C. or higher. When the temperature is 40 ° C. or higher, the viscosity of the sheet-shaped resin composition 10 is reduced, and the unevenness of the semiconductor wafer 16 can be filled without a gap. Further, the bonding temperature is preferably 100 ° C. or lower, more preferably 80 ° C. or lower. When the temperature is 100 ° C. or lower, bonding can be performed while suppressing the curing reaction of the sheet-shaped resin composition 10.
 貼り合わせは、減圧下で行うことが好ましく、例えば、1000Pa以下、好ましくは500Pa以下である。下限は特に限定されず、例えば、1Pa以上である。 Bonding is preferably performed under reduced pressure, for example, 1000 Pa or less, preferably 500 Pa or less. A minimum is not specifically limited, For example, it is 1 Pa or more.
 <研削工程>
 研削工程では、半導体ウェハ16のバンプ形成面22aとは反対側の面(すなわち、裏面)16bを研削する(図3参照)。半導体ウェハ16の裏面研削に用いる薄型加工機としては特に限定されず、例えば研削機(バックグラインダー)、研磨パッドなどを例示できる。また、エッチングなどの化学的方法にて裏面研削を行ってもよい。裏面研削は、半導体ウェハ16が所望の厚さ(例えば、20~700μm)になるまで行われる。
<Grinding process>
In the grinding step, the surface (that is, the back surface) 16b opposite to the bump forming surface 22a of the semiconductor wafer 16 is ground (see FIG. 3). The thin processing machine used for the back surface grinding of the semiconductor wafer 16 is not particularly limited, and examples thereof include a grinding machine (back grinder) and a polishing pad. Further, the back surface grinding may be performed by a chemical method such as etching. The back surface grinding is performed until the semiconductor wafer 16 has a desired thickness (for example, 20 to 700 μm).
 <ウェハ固定工程>
 研削工程後、半導体ウェハ16の裏面16bにダイシングテープ11を貼りつける(図4参照)。なお、ダイシングテープ11は、基材11a上に粘着剤層11bが積層された構造を有する。基材11a及び粘着剤層11bとしては、裏面研削用テープ12の基材12a及び粘着剤層12bの項で示した成分及び製法を用いて好適に作製することができる。
<Wafer fixing process>
After the grinding step, the dicing tape 11 is attached to the back surface 16b of the semiconductor wafer 16 (see FIG. 4). The dicing tape 11 has a structure in which an adhesive layer 11b is laminated on a substrate 11a. The base material 11a and the pressure-sensitive adhesive layer 11b can be suitably produced by using the components and the manufacturing methods shown in the paragraphs of the base material 12a and the pressure-sensitive adhesive layer 12b of the back grinding tape 12.
 <剥離工程>
 次いで、裏面研削用テープ12を剥離する(図5参照)。これにより、シート状樹脂組成物10が露出した状態となる。
<Peeling process>
Next, the back surface grinding tape 12 is peeled off (see FIG. 5). Thereby, the sheet-shaped resin composition 10 is exposed.
 裏面研削用テープ12を剥離する際、粘着剤層12bが放射線硬化性を有する場合には、粘着剤層12bに放射線を照射して粘着剤層12bを硬化させることで、剥離を容易に行うことができる。放射線の照射量は、用いる放射線の種類や粘着剤層の硬化度などを考慮して適宜設定すればよい。 When the back surface grinding tape 12 is peeled off, if the pressure sensitive adhesive layer 12b has radiation curability, the pressure sensitive adhesive layer 12b is irradiated with radiation to harden the pressure sensitive adhesive layer 12b, so that peeling can be easily performed. Can do. The radiation dose may be set as appropriate in consideration of the type of radiation used and the degree of curing of the pressure-sensitive adhesive layer.
 <ダイシング工程>
 ダイシング工程では、図6に示すように半導体ウェハ16及びシート状樹脂組成物10をダイシングしてダイシングされたシート状樹脂組成物付き半導体チップ40を形成する。ダイシングは、半導体ウェハ16のシート状樹脂組成物10を貼り合わせたバンプ形成面22aから常法に従い行われる。例えば、ダイシングテープ11まで切込みを行うフルカットと呼ばれる切断方式などを採用できる。本工程で用いるダイシング装置としては特に限定されず、従来公知のものを用いることができる。
<Dicing process>
In the dicing process, as shown in FIG. 6, the semiconductor wafer 40 and the sheet-shaped resin composition 10 are diced to form the diced semiconductor chip 40 with the sheet-shaped resin composition. Dicing is performed according to a conventional method from the bump forming surface 22a on which the sheet-shaped resin composition 10 of the semiconductor wafer 16 is bonded. For example, a cutting method called full cut that cuts up to the dicing tape 11 can be adopted. It does not specifically limit as a dicing apparatus used at this process, A conventionally well-known thing can be used.
 なお、ダイシング工程に続いてダイシングテープ11のエキスパンドを行う場合、該エキスパンドは従来公知のエキスパンド装置を用いて行うことができる。 In addition, when expanding the dicing tape 11 following the dicing step, the expansion can be performed using a conventionally known expanding apparatus.
 <ピックアップ工程>
 図7に示すように、シート状樹脂組成物付き半導体チップ40をダイシングテープ11から剥離する(シート状樹脂組成物付き半導体チップ40をピックアップする)。ピックアップの方法としては特に限定されず、従来公知の種々の方法を採用できる。
<Pickup process>
As shown in FIG. 7, the semiconductor chip 40 with a sheet-shaped resin composition is peeled from the dicing tape 11 (the semiconductor chip 40 with a sheet-shaped resin composition is picked up). The pickup method is not particularly limited, and various conventionally known methods can be employed.
 ここでピックアップは、ダイシングテープ11の粘着剤層11bが紫外線硬化型の場合、粘着剤層11bに紫外線を照射した後に行う。これにより、粘着剤層11bの半導体チップ22に対する粘着力が低下し、半導体チップ22の剥離が容易になる。 Here, when the adhesive layer 11b of the dicing tape 11 is an ultraviolet curable type, the pickup is performed after the adhesive layer 11b is irradiated with ultraviolet rays. Thereby, the adhesive force with respect to the semiconductor chip 22 of the adhesive layer 11b falls, and peeling of the semiconductor chip 22 becomes easy.
 以上により、シート状樹脂組成物付き半導体チップ40の準備が完了する。 Thus, the preparation of the semiconductor chip 40 with the sheet-shaped resin composition is completed.
 上記のようにして得られたシート状樹脂組成物付きチップ40は、バンプ18が形成された半導体チップ22と、半導体チップ22のバンプ形成面22aに貼り付けられたシート状樹脂組成物10とを有する(図8参照)。シート状樹脂組成物付きチップ40では、バンプ18がシート状樹脂組成物10に埋め込まれるとともに、半導体チップ22のバンプ形成面22aがシート状樹脂組成物10に貼り付けられている。 Chip 40 with a sheet-shaped resin composition obtained as described above includes a semiconductor chip 22 on which bumps 18 are formed and a sheet-shaped resin composition 10 that is attached to a bump forming surface 22a of semiconductor chip 22. (See FIG. 8). In the chip 40 with the sheet-shaped resin composition, the bumps 18 are embedded in the sheet-shaped resin composition 10, and the bump forming surface 22 a of the semiconductor chip 22 is attached to the sheet-shaped resin composition 10.
 半導体チップ22の厚さとしては、特に限定されないが、例えば、10~1000μmの範囲内で適宜設定することができる。 The thickness of the semiconductor chip 22 is not particularly limited, but can be set as appropriate within a range of 10 to 1000 μm, for example.
 半導体チップ22に形成されているバンプ18の高さとしては、特に限定されないが、例えば、2~300μmの範囲内で適宜設定できる。 The height of the bumps 18 formed on the semiconductor chip 22 is not particularly limited, but can be set as appropriate within a range of 2 to 300 μm, for example.
 バンプ18の構成材料としては、特に限定されないが、ハンダが好ましく、Sn-Pb系、Pb-Sn-Sb系、Sn-Sb系、Sn-Pb-Bi系、Bi-Sn系、Sn-Cu系、Sn-Pb-Cu系、Sn-In系、Sn-Ag系、Sn-Pb-Ag系、Pb-Ag系、Sn-Ag-Cu系のハンダを挙げることができる。なかでも、融点が210~230℃の範囲内にあるものを好ましく用いることができ、前記のハンダのなかでも、例えば、Sn-Ag系が好ましい。 The constituent material of the bump 18 is not particularly limited, but is preferably solder, Sn—Pb, Pb—Sn—Sb, Sn—Sb, Sn—Pb—Bi, Bi—Sn, Sn—Cu. Sn-Pb-Cu, Sn-In, Sn-Ag, Sn-Pb-Ag, Pb-Ag, and Sn-Ag-Cu solders. Among these, those having a melting point within the range of 210 to 230 ° C. can be preferably used, and among the above solders, for example, Sn—Ag system is preferable.
 [実装用基板を準備する工程]
 また、図9に示すように、表面50aに電極52が形成された実装用基板50を準備する(工程B)。
[Process for preparing mounting substrate]
Further, as shown in FIG. 9, a mounting substrate 50 having an electrode 52 formed on the surface 50a is prepared (step B).
 実装用基板50としては、リードフレームや回路基板(配線回路基板など)等の各種基板を用いることができる。このような基板の材質としては、特に限定されるものではないが、セラミック基板や、プラスチック基板が挙げられる。プラスチック基板としては、例えば、エポキシ基板、ビスマレイミドトリアジン基板、ポリイミド基板等が挙げられる。
また、実装用基板50として半導体ウエハを用いることもできる。
As the mounting substrate 50, various substrates such as a lead frame and a circuit substrate (such as a wiring circuit substrate) can be used. The material of such a substrate is not particularly limited, and examples thereof include a ceramic substrate and a plastic substrate. Examples of the plastic substrate include an epoxy substrate, a bismaleimide triazine substrate, and a polyimide substrate.
Further, a semiconductor wafer can be used as the mounting substrate 50.
 [半導体チップに形成されたバンプと実装用基板に形成された電極とを対向させる工程]
 前記工程A及び前記工程Bの後、図10に示すように、実装用基板50に、シート状樹脂組成物付きチップ40を、シート状樹脂組成物10を貼り合わせ面にして貼り付けて、半導体チップ22に形成されたバンプ18と実装用基板50に形成された電極52とを対向させる(工程C)。具体的には、まず、シート状樹脂組成物付きチップ40のシート状樹脂組成物10を実装用基板50に対向させて配置し、次に、フリップチップボンダーを用い、シート状樹脂組成物付きチップ40側から圧力を加える。これにより、バンプ18と電極52とは、シート状樹脂組成物10に埋め込まれながら、対向される。貼り合わせ時の温度は、100~200℃が好ましく、より好ましくは150~190℃である。ただし、ハンダの融点よりも低い温度であることが好ましい。また、貼り合わせ時の圧力は0.01~10MPaが好ましく、より好ましくは0.1~1MPaである。
 貼り合わせの温度が150℃以上であると、シート状樹脂組成物10の粘度が低下し、凹凸を空隙なく充填できる。また、貼り合わせの温度が、200℃以下であると、シート状樹脂組成物10の硬化反応を抑制したまま貼り合わせが可能となる。
 この際、シート状樹脂組成物10の200℃未満における最低溶融粘度が10Pa・s~5000Pa・sの範囲内にあると、半導体チップ22に形成されたバンプ18と実装用基板50に形成された電極52とを容易にシート状樹脂組成物10に埋め込みながら、対向させることができる。
[Step of making bumps formed on semiconductor chip and electrodes formed on mounting substrate face each other]
After the step A and the step B, as shown in FIG. 10, a chip 40 with a sheet-like resin composition is attached to a mounting substrate 50 with the sheet-like resin composition 10 as a bonding surface, and a semiconductor. The bumps 18 formed on the chip 22 are opposed to the electrodes 52 formed on the mounting substrate 50 (step C). Specifically, first, the sheet-shaped resin composition 10 of the chip-shaped resin composition-attached chip 40 is arranged to face the mounting substrate 50, and then a flip-chip bonder is used to insert the chip with the sheet-shaped resin composition. Apply pressure from 40 side. Thereby, the bump 18 and the electrode 52 are opposed to each other while being embedded in the sheet-shaped resin composition 10. The temperature at the time of bonding is preferably 100 to 200 ° C., more preferably 150 to 190 ° C. However, the temperature is preferably lower than the melting point of the solder. Further, the pressure at the time of bonding is preferably 0.01 to 10 MPa, more preferably 0.1 to 1 MPa.
When the bonding temperature is 150 ° C. or higher, the viscosity of the sheet-shaped resin composition 10 is lowered, and the unevenness can be filled without a gap. Moreover, bonding becomes possible, suppressing the hardening reaction of the sheet-like resin composition 10 as the temperature of bonding is 200 degrees C or less.
At this time, when the minimum melt viscosity at less than 200 ° C. of the sheet-shaped resin composition 10 is in the range of 10 Pa · s to 5000 Pa · s, the bumps 18 formed on the semiconductor chip 22 and the mounting substrate 50 are formed. The electrode 52 can be opposed to the sheet-shaped resin composition 10 while being easily embedded.
 [シート状樹脂組成物を半硬化させる工程]
 前記工程Cの後、シート状樹脂組成物10を加熱して半硬化させる(工程D)。前記工程Dにおける加熱温度は、100~230℃であることが好ましく、150~210℃であることがより好ましい。前記工程Dにおける加熱温度は、ハンダの融点よりも低い温度であることが好ましい。また、加熱時間は、1~300秒の範囲内であることが好ましく、3~120秒の範囲内であることがより好ましい。
 この際、シート状樹脂組成物10の200℃で5秒加熱した後の熱硬化率が20%以上であると、工程Cの後、工程Dの半硬化工程までに大きく温度を上げなくても、硬化反応が始まりより早期に終了する。工程Dを速やかに終了させることができるため、半導体装置の製造プロセスの効率化が図れる。
[Step of semi-curing sheet resin composition]
After the step C, the sheet-shaped resin composition 10 is heated and semi-cured (step D). The heating temperature in the step D is preferably 100 to 230 ° C., more preferably 150 to 210 ° C. The heating temperature in the step D is preferably lower than the melting point of the solder. The heating time is preferably in the range of 1 to 300 seconds, and more preferably in the range of 3 to 120 seconds.
At this time, if the thermal curing rate after heating the sheet-shaped resin composition 10 at 200 ° C. for 5 seconds is 20% or more, the temperature does not have to be increased greatly after the process C until the semi-curing process of the process D. The curing reaction begins and ends earlier. Since the process D can be completed quickly, the efficiency of the semiconductor device manufacturing process can be improved.
 [バンプと電極とを接合するとともに、シート状組成物を硬化させる工程]
 前記工程Dの後、前記工程Dにおける加熱よりも高温で加熱し、図11に示すように、バンプ18と電極52とを接合するとともに、シート状組成物10を硬化させる(工程E)。図11では、バンプ18がハンダで構成され、バンプ18が溶融することによりバンプ18と電極52とが接合(電気的に接続)されている様子を示している。
 この際の加熱温度は、180~400℃であることが好ましく、200~300℃であることがより好ましい。また、加熱時間は、1~300秒の範囲内であることが好ましく、3~120秒の範囲内であることがより好ましい。
[Step of bonding the bump and the electrode and curing the sheet-like composition]
After the step D, heating is performed at a higher temperature than the heating in the step D, and as shown in FIG. 11, the bumps 18 and the electrodes 52 are joined, and the sheet-like composition 10 is cured (step E). FIG. 11 shows a state in which the bump 18 is made of solder, and the bump 18 and the electrode 52 are joined (electrically connected) by melting the bump 18.
The heating temperature at this time is preferably 180 to 400 ° C., and more preferably 200 to 300 ° C. The heating time is preferably in the range of 1 to 300 seconds, and more preferably in the range of 3 to 120 seconds.
 上述の通り、本実施形態では、バンプ18が融点180~260℃の範囲内にあるハンダであり、前記工程Dは、100~230℃の範囲内で加熱する工程であり、前記工程Dにおける加熱温度は、前記ハンダの前記融点よりも低い温度であることが好ましい。融点が180~260℃の範囲内にあるハンダを用いると、前記工程Dにおける加熱では、ハンダは溶融しない。その一方で、シート状樹脂組成物10は半硬化する。すなわち、工程Dでは、ハンダを溶融させない態様でシート状樹脂組成物10を半硬化させる。工程Dでは、ハンダを溶融させないので、工程Dにおいてハンダが流れることは基本的にない。
 その後、この工程Eにおいて、前記工程Dにおける加熱よりも高温で加熱し、バンプ18と電極52とをハンダを溶融させて接合するとともに、シート状組成物10を硬化させる。工程Eの段階では、すでにシート状樹脂組成物10は半硬化しているため、シート状樹脂組成物10を構成する樹脂が流れ難くなっている。従って、バンプ18と電極52との接合のためにハンダを溶融させてもシート状樹脂組成物10の流れに伴ってハンダが流れることは、抑制されている。その結果、ハンダ流れによる短絡や接触不良が発生することをさらに抑制することができる。
As described above, in this embodiment, the bumps 18 are solders having a melting point in the range of 180 to 260 ° C., and the step D is a step of heating in the range of 100 to 230 ° C. The heating in the step D The temperature is preferably lower than the melting point of the solder. When solder having a melting point in the range of 180 to 260 ° C. is used, the solder is not melted by the heating in the step D. On the other hand, the sheet-like resin composition 10 is semi-cured. That is, in the process D, the sheet-shaped resin composition 10 is semi-cured in a mode in which the solder is not melted. In the process D, since solder is not melted, the solder basically does not flow in the process D.
Then, in this process E, it heats at a temperature higher than the heating in the said process D, fuses the bump 18 and the electrode 52 by melting the solder, and hardens the sheet-like composition 10. At the stage of step E, since the sheet-shaped resin composition 10 is already semi-cured, the resin constituting the sheet-shaped resin composition 10 is difficult to flow. Therefore, even if the solder is melted for bonding the bump 18 and the electrode 52, the solder is prevented from flowing along with the flow of the sheet-shaped resin composition 10. As a result, it is possible to further suppress occurrence of a short circuit or contact failure due to the solder flow.
 以上により、半導体装置60が得られる。 Thus, the semiconductor device 60 is obtained.
 上述した実施形態では、シート状樹脂組成物付きチップを準備する工程Aとして、裏面研削用テープ一体型シート状樹脂組成物を用いた場合について説明した。しかしながら、本発明における工程Aは、この例に限定されない。例えば、ダイシングテープ一体型シート状樹脂組成物を用いて準備してもよい。ダイシングテープ一体型シート状樹脂組成物は、ダイシングテープと、シート状樹脂組成物とを備える。ダイシングテープは、基材及び粘着剤層を備え、粘着剤層は基材上に設けられている。シート状樹脂組成物は粘着剤層上に設けられている。ダイシングテープは、上述した裏面研削用テープと同様の構成を採用することができる。
 具体的に、当該シート状樹脂組成物付チップの準備方法は、半導体ウェハのバンプが形成されたバンプ形成面とダイシングテープ一体型シート状樹脂組成物のシート状樹脂組成物とを貼り合わせる貼合せ工程、半導体ウェハをダイシングしてシート状樹脂組成物付き半導体チップを形成するダイシング工程、及びシート状樹脂組成物付き半導体チップをダイシングテープから剥離するピックアップ工程を含む。
In embodiment mentioned above, the case where the tape integrated sheet-like resin composition for back surface grinding was used as process A which prepares the chip | tip with a sheet-like resin composition was demonstrated. However, step A in the present invention is not limited to this example. For example, you may prepare using a dicing tape integrated sheet-like resin composition. The dicing tape-integrated sheet-shaped resin composition includes a dicing tape and a sheet-shaped resin composition. The dicing tape includes a base material and an adhesive layer, and the adhesive layer is provided on the base material. The sheet-shaped resin composition is provided on the pressure-sensitive adhesive layer. The dicing tape can employ the same configuration as the back grinding tape described above.
Specifically, the method for preparing the chip with sheet-shaped resin composition is a method of bonding a bump forming surface on which a bump of a semiconductor wafer is formed and a sheet-shaped resin composition of a dicing tape-integrated sheet-shaped resin composition. A dicing step of dicing the semiconductor wafer to form a semiconductor chip with a sheet-like resin composition, and a pickup step of peeling the semiconductor chip with a sheet-like resin composition from a dicing tape.
 また、シート状樹脂組成物付き半導体チップを準備する工程Aとして、単体のシート状樹脂組成物を用いて準備してもよい。
 具体的に、単体のシート状樹脂組成物を用いたシート状樹脂組成物付チップの準備方法は、例えば、半導体ウェハのバンプが形成されたバンプ形成面とシート状樹脂組成物とを貼り合わせる貼合せ工程、シート状樹脂組成物の半導体ウエハ貼り合わせ面とは反対側の面に裏面研削用テープを貼り合わせる工程、半導体ウェハの裏面を研削する研削工程、半導体ウェハの裏面にダイシングテープを貼りつけるウェハ固定工程、裏面研削用テープを剥離する剥離工程、半導体ウェハをダイシングしてシート状樹脂組成物付き半導体チップを形成するダイシング工程、及びシート状樹脂組成物付き半導体チップをダイシングテープから剥離するピックアップ工程を含む。
 また、単体のシート状樹脂組成物を用いたシート状樹脂組成物付き半導体チップを準備する工程Aの他の例としては、半導体ウェハのバンプが形成されたバンプ形成面とシート状樹脂組成物とを貼り合わせる貼合せ工程、シート状樹脂組成物の半導体ウエハ貼り合わせ面とは反対側の面にダイシングテープを貼り合わせる工程、半導体ウェハをダイシングしてシート状樹脂組成物付き半導体チップを形成するダイシング工程、及びシート状樹脂組成物付き半導体チップをダイシングテープから剥離するピックアップ工程を含む。
Moreover, you may prepare using the single sheet-like resin composition as the process A which prepares the semiconductor chip with a sheet-like resin composition.
Specifically, a method for preparing a chip with a sheet-shaped resin composition using a single sheet-shaped resin composition is, for example, a process of bonding a bump-formed surface on which a bump of a semiconductor wafer is formed and a sheet-shaped resin composition. A bonding process, a process of bonding a back surface grinding tape to the surface opposite to the semiconductor wafer bonding surface of the sheet-shaped resin composition, a grinding process of grinding the back surface of the semiconductor wafer, and a dicing tape applied to the back surface of the semiconductor wafer Wafer fixing step, peeling step for peeling back surface grinding tape, dicing step for dicing semiconductor wafer to form semiconductor chip with sheet resin composition, and pickup for peeling semiconductor chip with sheet resin composition from dicing tape Process.
Further, as another example of the process A for preparing a semiconductor chip with a sheet-shaped resin composition using a single sheet-shaped resin composition, a bump-forming surface on which a bump of a semiconductor wafer is formed, a sheet-shaped resin composition, Bonding process, bonding the dicing tape to the surface of the sheet-shaped resin composition opposite to the semiconductor wafer bonding surface, dicing the semiconductor wafer to form a semiconductor chip with the sheet-shaped resin composition And a pick-up step of peeling the semiconductor chip with the sheet-shaped resin composition from the dicing tape.
 また、上述した実施形態では、本発明のシート状樹脂組成物が、半導体チップと実装用基板との間隙を封止するもの(いわゆる、アンダーフィル用シート)である場合について説明した。しかしながら、本発明のシート状樹脂組成物は、半導体装置の製造に用いられるもの、すなわち、半導体装置製造用であれば、特に限定されない。例えば、被着体に半導体素子をダイボンドするためのダイボンドフィルムであってもよく、被着体上にフリップチップ接続された半導体素子の裏面に形成するためのフリップチップ型半導体裏面用フィルムであってもよく、半導体素子を封止するための封止フィルムであってもよい。 Further, in the above-described embodiment, the case where the sheet-shaped resin composition of the present invention is one that seals the gap between the semiconductor chip and the mounting substrate (so-called underfill sheet) has been described. However, the sheet-shaped resin composition of the present invention is not particularly limited as long as it is used for manufacturing a semiconductor device, that is, for manufacturing a semiconductor device. For example, it may be a die bond film for die bonding a semiconductor element to an adherend, or a flip chip type semiconductor back film for forming on the back surface of a semiconductor element flip chip connected on the adherend. The sealing film for sealing a semiconductor element may be sufficient.
 上述した実施形態では、本発明の樹脂組成物がシート状である場合について説明した。しかしながら、本発明において樹脂組成物は、シート状に限定されず、液状であってもよく、室温で半固形状であってもよい。液状である場合、被着体と前記被着体上にフリップチップ接続された半導体素子との界面に毛細管現象等により充填させる等して使用することができる。また、室温で半固形状の場合、加熱した際に溶融し、毛細管現象によって充填させる等して使用できる。 In the above-described embodiment, the case where the resin composition of the present invention is in the form of a sheet has been described. However, in the present invention, the resin composition is not limited to a sheet shape, and may be a liquid or a semisolid at room temperature. When it is in liquid form, it can be used by filling the interface between the adherend and the semiconductor element flip-chip connected on the adherend by capillary action or the like. Further, in the case of a semi-solid state at room temperature, it can be used by being melted when heated and filled by capillary action.
 以下に、この発明の好適な実施例を例示的に詳しく説明する。但し、この実施例に記載されている材料や配合量などは、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in the examples are not intended to limit the scope of the present invention only to those unless otherwise limited.
 <シート状樹脂組成物の作製>
 以下の成分を表1に示す割合でメチルエチルケトンに溶解して、固形分濃度が25.4~60.6重量%となる接着剤組成物の溶液を調製した。
 ヒドロキシル基含有アクリルポリマー:アクリル酸エチル-メチルメタクリレートを主成分とするヒドロキシル基を含有するアクリル酸エステル系ポリマー(商品名「パラクロンW-197C」、根上工業株式会社製、重量平均分子量:4×10
 エポキシ基含有ポリマー1:アクリル酸エチル-アクリル酸ブチル-アクリロニトリルを主成分とする、エポキシ基を含有するアクリル酸エステル系ポリマー(商品名「テイサンレジンSG-P3」、ナガセケムテックス株式会社製、エポキシ価:0.21eq/kg、重量平均分子量:8.5×10
 エポキシ基含有ポリマー2:エポキシ基を含有するアクリル酸エステル系ポリマー(エポキシ価:0.7eq/kg、重量平均分子量: 9.3  ×10
 エポキシ基含有ポリマー3:エポキシ基を含有するアクリル酸エステル系ポリマー(エポキシ価:0.88eq/kg、重量平均分子量:9.3×10
 エポキシ樹脂1:商品名「エピコート1004」、JER株式会社製
 エポキシ樹脂2:商品名「エピコート828」、JER株式会社製
 エポキシ樹脂3:商品名「DA-MGIC」、四国化成株式会社製
 フェノール系硬化剤:商品名「MEH-7851H」、明和化成株式会社製
 ラジカル反応性化合物1:(エポキシアクリレート樹脂:商品名「CN-104NS」、Sartomer社製、エポキシ基を有していない。重量平均分子量10000以下。)
 ラジカル反応性化合物2:(エポキシアクリレート樹脂:商品名「ユニディック V-5500」、DIC株式会社製、エポキシ基を有していない。重量平均分子量10000以下。)
 ラジカル反応性化合物3:(マレイミド樹脂:商品名「BMI―2300」、大和化成工業社製、重量平均分子量10000以下。)
 フラックス:2-フェノキシ安息香酸
 無機充填剤:球状シリカ(商品名「SO-25R」、株式会社アドマテックス製、平均粒径:500nm)
 熱硬化促進剤:イミダゾール系硬化促進剤(商品名「2PHZ-PW」、四国化成株式会社製)
 ラジカル発生剤:有機過酸化物(商品名「パークミルD」、日油社製)
<Preparation of sheet-shaped resin composition>
The following components were dissolved in methyl ethyl ketone in the proportions shown in Table 1 to prepare an adhesive composition solution having a solid content concentration of 25.4 to 60.6% by weight.
Hydroxyl group-containing acrylic polymer: Acrylic acid ester-based polymer having a hydroxyl group composed mainly of ethyl acrylate-methyl methacrylate (trade name “Paracron W-197C”, manufactured by Negami Kogyo Co., Ltd., weight average molecular weight: 4 × 10 5 )
Epoxy group-containing polymer 1: Epoxy group-containing acrylate ester polymer (trade name “Taisan Resin SG-P3”, manufactured by Nagase ChemteX Corporation, epoxy, mainly composed of ethyl acrylate-butyl acrylate-acrylonitrile) Value: 0.21 eq / kg, weight average molecular weight: 8.5 × 10 5 )
Epoxy group-containing polymer 2: Acrylic ester-based polymer containing an epoxy group (epoxy value: 0.7 eq / kg, weight average molecular weight: 9.3 × 10 5 )
Epoxy group-containing polymer 3: An acrylic acid ester-based polymer containing an epoxy group (epoxy value: 0.88 eq / kg, weight average molecular weight: 9.3 × 10 5 )
Epoxy resin 1: Trade name “Epicoat 1004”, JER Corporation Epoxy resin 2: Trade name “Epicoat 828”, JER Corporation Epoxy resin 3: Trade name “DA-MGIC”, Shikoku Kasei Co., Ltd. Phenolic curing Agent: Trade name “MEH-7851H”, manufactured by Meiwa Kasei Co., Ltd. Radical reactive compound 1: (epoxy acrylate resin: trade name “CN-104NS”, manufactured by Sartomer, having no epoxy group. Weight average molecular weight 10,000 Less than.)
Radical reactive compound 2: (Epoxy acrylate resin: trade name “Unidic V-5500”, manufactured by DIC Corporation, has no epoxy group. Weight average molecular weight of 10,000 or less.)
Radical reactive compound 3: (maleimide resin: trade name “BMI-2300”, manufactured by Daiwa Kasei Kogyo Co., Ltd., weight average molecular weight 10,000 or less)
Flux: 2-phenoxybenzoic acid Inorganic filler: spherical silica (trade name “SO-25R”, manufactured by Admatechs Co., Ltd., average particle size: 500 nm)
Thermosetting accelerator: Imidazole-based curing accelerator (trade name “2PHZ-PW”, manufactured by Shikoku Kasei Co., Ltd.)
Radical generator: Organic peroxide (trade name “Park Mill D”, manufactured by NOF Corporation)
 実施例1~実施例10、比較例3に関しては、この接着剤組成物の溶液を、剥離ライナ(セパレータ)としてシリコーン離型処理した厚さが38μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、120℃で3分間乾燥させることにより、実施例1~実施例10、比較例3に係るシート状樹脂組成物を作製した。実施例1~実施例10、比較例3においては、厚さは、すべて、35μmとした。 For Examples 1 to 10 and Comparative Example 3, the solution of this adhesive composition was used as a release liner (separator) on a release treatment film made of a polyethylene terephthalate film having a thickness of 38 μm and subjected to a silicone release treatment. After coating, the sheet-shaped resin compositions according to Examples 1 to 10 and Comparative Example 3 were prepared by drying at 120 ° C. for 3 minutes. In Examples 1 to 10 and Comparative Example 3, all thicknesses were set to 35 μm.
 また、比較例1、比較例2に関しては、この接着剤組成物の溶液を、剥離ライナ(セパレータ)としてシリコーン離型処理した厚さが38μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、130℃で2分間乾燥させることにより、比較例1、比較例2に係るシート状樹脂組成物を作製した。比較例1、比較例2においては、厚さは、すべて、35μmとした。 For Comparative Example 1 and Comparative Example 2, this adhesive composition solution was applied as a release liner (separator) onto a release-treated film made of a polyethylene terephthalate film having a thickness of 38 μm and subjected to silicone release treatment. Then, the sheet-like resin composition which concerns on the comparative example 1 and the comparative example 2 was produced by making it dry at 130 degreeC for 2 minute (s). In Comparative Example 1 and Comparative Example 2, all the thicknesses were 35 μm.
 (120℃で10分加熱した後の熱硬化率の測定)
 実施例、比較例のシート状樹脂組成物について、以下のようにして、120℃で10分加熱した後の熱硬化率を測定した。測定には、ティー・エイ・インスツルメント社製の示差走査熱量計、製品名「Q2000」を用いた。
 まず、熱硬化処理をしていないシート状樹脂組成物を-10℃から昇温速度10℃/分の条件で、350℃(熱硬化反応が完全に完了したと想定される温度)まで昇温した際の発熱量(未硬化サンプルの反応熱量)を測定した。なお、この際、発熱ピーク温度についても読み取った。この値を表1に示した。
 また、シート状樹脂組成物を120℃で10分加熱したサンプルを準備し、-10℃から昇温速度10℃/分の条件で、350℃(熱硬化反応が完全に完了したと想定される温度)まで昇温した際の発熱量(200℃で10秒間加熱したサンプルの反応熱量)を測定した。その後、以下の式(1a)により熱硬化率を得た。
 式(1a):
熱硬化率=[{(未硬化サンプルの反応熱量)-(120℃で10分加熱したサンプルの反応熱量)}/(未硬化サンプルの反応熱量)]×100(%)
 なお、発熱量は、示差走査熱量計にて測定される発熱ピークの立ち上がり温度と反応終了温度の2点を結んだ直線とピークで囲まれる面積を用いて求める。
 結果を表1に示す。
(Measurement of thermosetting rate after heating at 120 ° C. for 10 minutes)
About the sheet-like resin composition of an Example and a comparative example, the thermosetting rate after heating at 120 degreeC for 10 minutes was measured as follows. For the measurement, a differential scanning calorimeter manufactured by TA Instruments, product name “Q2000” was used.
First, the temperature of the sheet-shaped resin composition that has not been heat-cured is increased from −10 ° C. to 350 ° C. (the temperature at which the thermosetting reaction is assumed to be completely completed) at a temperature increase rate of 10 ° C./min. The calorific value (reaction calorie of the uncured sample) was measured. At this time, the exothermic peak temperature was also read. This value is shown in Table 1.
In addition, a sample was prepared by heating the sheet-shaped resin composition at 120 ° C. for 10 minutes, and 350 ° C. (it was assumed that the thermosetting reaction was completely completed from −10 ° C. under the temperature increase rate of 10 ° C./min. The amount of heat generated when the temperature was raised to (temperature) (the amount of reaction heat of the sample heated at 200 ° C. for 10 seconds) was measured. Then, the thermosetting rate was obtained by the following formula (1a).
Formula (1a):
Thermal curing rate = [{(reaction heat amount of uncured sample) − (reaction heat amount of sample heated at 120 ° C. for 10 minutes)} / (reaction heat amount of uncured sample)] × 100 (%)
The calorific value is determined using the area surrounded by the straight line connecting the two points of the rising temperature of the exothermic peak and the reaction end temperature measured with a differential scanning calorimeter and the peak.
The results are shown in Table 1.
 (200℃で5秒加熱した後の熱硬化率の測定)
 実施例、比較例のシート状樹脂組成物について、以下のようにして、200℃で5秒加熱した後の熱硬化率を測定した。測定には、ティー・エイ・インスツルメント社製の示差走査熱量計、製品名「Q2000」を用いた。
 まず、熱硬化処理をしていないシート状樹脂組成物を-10℃から昇温速度10℃/分の条件で、350℃(熱硬化反応が完全に完了したと想定される温度)まで昇温した際の発熱量(未硬化サンプルの反応熱量)を測定した。
 また、シート状樹脂組成物を200℃で5秒加熱したサンプルを準備し、-10℃から昇温速度10℃/分の条件で、350℃(熱硬化反応が完全に完了したと想定される温度)まで昇温した際の発熱量(200℃で10秒間加熱したサンプルの反応熱量)を測定した。その後、以下の式(1b)により熱硬化率を得た。
 式(1b):
熱硬化率=[{(未硬化サンプルの反応熱量)-(200℃で5秒加熱したサンプルの反応熱量)}/(未硬化サンプルの反応熱量)]×100(%)
 なお、発熱量は、示差走査熱量計にて測定される発熱ピークの立ち上がり温度と反応終了温度の2点を結んだ直線とピークで囲まれる面積を用いて求める。
 結果を表1に示す。
(Measurement of thermosetting rate after heating at 200 ° C. for 5 seconds)
About the sheet-like resin composition of an Example and a comparative example, the thermosetting rate after heating at 200 degreeC for 5 second was measured as follows. For the measurement, a differential scanning calorimeter manufactured by TA Instruments, product name “Q2000” was used.
First, the temperature of the sheet-shaped resin composition that has not been heat-cured is increased from −10 ° C. to 350 ° C. (the temperature at which the thermosetting reaction is assumed to be completely completed) at a temperature increase rate of 10 ° C./min. The calorific value (reaction calorie of the uncured sample) was measured.
In addition, a sample was prepared by heating the sheet-shaped resin composition at 200 ° C. for 5 seconds, and the temperature was set to 350 ° C. (the thermosetting reaction was completely completed from −10 ° C. under the temperature increase rate of 10 ° C./min. The amount of heat generated when the temperature was raised to (temperature) (the amount of reaction heat of the sample heated at 200 ° C. for 10 seconds) was measured. Then, the thermosetting rate was obtained by the following formula (1b).
Formula (1b):
Thermal curing rate = [{(reaction heat amount of uncured sample) − (reaction heat amount of sample heated at 200 ° C. for 5 seconds)} / (reaction heat amount of uncured sample)] × 100 (%)
The calorific value is determined using the area surrounded by the straight line connecting the two points of the rising temperature of the exothermic peak and the reaction end temperature measured with a differential scanning calorimeter and the peak.
The results are shown in Table 1.
 [保存性評価]
 まず、熱硬化処理をしていないシート状樹脂組成物の静的粘度を、回転式粘度計(サーモフィッシャーサイエンティフィック社製、製品名「HAAKE MARSIII」)にて測定した。測定条件は、ギャップ100μm、回転プレート直径20mm、昇温速度10℃/min、せん断速度5(1/s)とし、80℃~230℃における粘度を測定した。
 また、温度:25℃の条件で、1ヶ月の期間放置(保存)したシート状樹脂組成物について、上記と同様に粘度を測定した。
 保存前と保存後の120℃における測定粘度を比較し、保存前の粘度を基準とし、保存後の粘度が200%以下の場合を〇、200%より大きい場合を×として評価した。評価基準を上記のように設定した理由は、前記の粘度変化が200%以下であると、実装時の接合が良好となるためである。結果を表1に示す。なお、表1には、保存前と保存後の120℃における測定粘度も合わせて示した。
 また、温度:25℃の条件で、1ヶ月保存した後の120℃での粘度と、保存前における120℃での粘度との粘度変化率X1も表1に示した。粘度変化率X1は、下記式により得られる値の絶対値である。
  [粘度変化率X1(%)]=[100×{(1ヶ月保存後の120℃での粘度)-(保存前の120℃での粘度)}/(保存前の120℃での粘度)]
[Preservation evaluation]
First, the static viscosity of the sheet-shaped resin composition not subjected to thermosetting treatment was measured with a rotary viscometer (manufactured by Thermo Fisher Scientific, product name “HAAKE MARSIII”). The measurement conditions were a gap of 100 μm, a rotating plate diameter of 20 mm, a heating rate of 10 ° C./min, and a shear rate of 5 (1 / s), and the viscosity at 80 ° C. to 230 ° C. was measured.
Moreover, the viscosity was measured in the same manner as described above for a sheet-like resin composition that was left (stored) for a period of one month at a temperature of 25 ° C.
The measured viscosities at 120 ° C. before and after storage were compared, and based on the viscosity before storage, the case where the viscosity after storage was 200% or less was evaluated as ◯, and the case where it was larger than 200% was evaluated as ×. The reason for setting the evaluation criteria as described above is that, when the viscosity change is 200% or less, the bonding at the time of mounting becomes good. The results are shown in Table 1. Table 1 also shows the measured viscosities at 120 ° C. before and after storage.
Table 1 also shows the viscosity change rate X1 between the viscosity at 120 ° C. after storage for 1 month at a temperature of 25 ° C. and the viscosity at 120 ° C. before storage. The viscosity change rate X1 is an absolute value of a value obtained by the following formula.
[Viscosity change rate X1 (%)] = [100 × {(viscosity at 120 ° C. after 1 month storage) − (viscosity at 120 ° C. before storage)} / (viscosity at 120 ° C. before storage)]
 [ボイド評価]
 (株)ウォルツ社のテストビークル(厚さ725μmのウエハに、高さ40μmのバンプが形成されたもの)に、厚さ40μmのシート状樹脂組成物を貼り付けた。貼付条件は、真空度:100Paの条件下において、温度:60℃、貼り付け圧力:0.5Mpaとした。これにより図8に示すような形態のサンプルAを得た。
[Void evaluation]
A sheet-shaped resin composition having a thickness of 40 μm was attached to a test vehicle manufactured by Waltz Co., Ltd. (a wafer having a thickness of 725 μm on which bumps having a height of 40 μm were formed). The pasting conditions were a temperature of 60 ° C. and a pasting pressure of 0.5 Mpa under a vacuum degree of 100 Pa. As a result, a sample A having a form as shown in FIG. 8 was obtained.
 次に、このサンプルAに電極を有する実装用基板(電極の高さ:15μm)を貼り付けた。貼り付けには、東レエンジニアリング社のフリップチップボンダー(FC3000W)を用い、貼付条件は、荷重:0.5Mpaの条件で、200℃で10秒間保持した後、260℃で10秒保持した。 Next, a mounting substrate (electrode height: 15 μm) having electrodes was attached to the sample A. For the pasting, a flip chip bonder (FC3000W) manufactured by Toray Engineering Co., Ltd. was used. The pasting conditions were a load: 0.5 Mpa, held at 200 ° C. for 10 seconds, and then held at 260 ° C. for 10 seconds.
 得られた実装後のサンプルをチップ(ウエハ)と平行に研磨し、シート状樹脂組成物を露出させた。露出した樹脂部分のボイド状態を光学顕微鏡(200倍)にて確認し、ボイド(最大径:3μm超)の発生が確認されなかった場合を「○」、1箇所でもボイドの発生が確認された場合を「×」として評価した。結果を表1に示す。実施例では、200℃で10秒間保持した際にシート状樹脂組成物の半硬化が充分に行なわれたため、ボイドの膨張が抑制されたと考えられる。一方、比較例2では、200℃で10秒間保持した際にシート状樹脂組成物の半硬化が充分に行なわれていないため、ボイドの膨張が抑制されなかったと考えられる。 The obtained sample after mounting was polished in parallel with the chip (wafer) to expose the sheet-shaped resin composition. The void state of the exposed resin portion was confirmed with an optical microscope (200 times), and when no void (maximum diameter: more than 3 μm) was confirmed, “◯”, the occurrence of a void was confirmed even at one location. Cases were evaluated as “x”. The results are shown in Table 1. In the examples, since the sheet-shaped resin composition was sufficiently semi-cured when held at 200 ° C. for 10 seconds, it is considered that expansion of voids was suppressed. On the other hand, in Comparative Example 2, it is considered that the expansion of the void was not suppressed because the sheet-shaped resin composition was not sufficiently cured when held at 200 ° C. for 10 seconds.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
10 シート状樹脂組成物
18 バンプ
22 半導体チップ
22a バンプ形成面
40 シート状樹脂組成物付きチップ
50 実装用基板
52 電極
60 半導体装置
DESCRIPTION OF SYMBOLS 10 Sheet-like resin composition 18 Bump 22 Semiconductor chip 22a Bump formation surface 40 Chip with sheet-like resin composition 50 Mounting substrate 52 Electrode 60 Semiconductor device

Claims (9)

  1.  被着体と前記被着体上にフリップチップ接続された半導体素子との界面封止に用いられる樹脂組成物であって、
     ラジカル反応性化合物と熱可塑性樹脂と無機充填剤とを含有し、
     前記樹脂組成物全体から前記無機充填剤を除いた成分に対する前記ラジカル反応性化合物の割合が18.5重量%以上であることを特徴とする樹脂組成物。
    A resin composition used for interfacial sealing between an adherend and a semiconductor element flip-chip connected on the adherend,
    Containing a radical reactive compound, a thermoplastic resin and an inorganic filler,
    The resin composition, wherein a ratio of the radical reactive compound to a component excluding the inorganic filler from the whole resin composition is 18.5% by weight or more.
  2.  エポキシ樹脂を含有することを特徴とする請求項1に記載の樹脂組成物。 The resin composition according to claim 1, comprising an epoxy resin.
  3.  120℃で10分加熱した後の熱硬化率が40%以下であり、
     200℃で5秒加熱した後の熱硬化率が20%以上であることを特徴とする請求項1又は2に記載の樹脂組成物。
    The thermosetting rate after heating at 120 ° C. for 10 minutes is 40% or less,
    The resin composition according to claim 1 or 2, wherein a thermosetting rate after heating at 200 ° C for 5 seconds is 20% or more.
  4.  前記熱可塑性樹脂は、ヒドロキシル基、又は、エポキシ基を有するアクリル樹脂であることを特徴とする請求項1~3のいずれか1に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the thermoplastic resin is an acrylic resin having a hydroxyl group or an epoxy group.
  5.  シート状であることを特徴とする請求項1~3のいずれか1に記載の樹脂組成物。 4. The resin composition according to claim 1, wherein the resin composition is in the form of a sheet.
  6.  請求項5に記載のシート状の樹脂組成物が、裏面研削用テープ上に積層されていることを特徴とする裏面研削用テープ一体型シート状樹脂組成物。 6. A tape-integrated sheet-like resin composition for back grinding, wherein the sheet-like resin composition according to claim 5 is laminated on a back grinding tape.
  7.  請求項5に記載のシート状の樹脂組成物が、ダイシングテープ上に積層されていることを特徴とするダイシングテープ一体型シート状樹脂組成物。 6. A sheet-shaped resin composition integrated with a dicing tape, wherein the sheet-shaped resin composition according to claim 5 is laminated on a dicing tape.
  8.  半導体チップのバンプ形成面に、請求項5に記載のシート状の樹脂組成物が貼り付けられたシート状樹脂組成物付きチップを準備する工程Aと、
     電極が形成された実装用基板を準備する工程Bと、
     前記実装用基板に、前記シート状樹脂組成物付きチップを、前記シート状樹脂組成物を貼り合わせ面にして貼り付けて、前記半導体チップに形成された前記バンプと前記実装用基板に形成された電極とを対向させる工程Cと、
     前記工程Cの後に、前記シート状樹脂組成物を加熱して半硬化させる工程Dと、
     前記工程Dの後に、前記工程Dにおける加熱よりも高温で加熱し、前記バンプと前記電極とを接合するとともに、前記シート状組成物を硬化させる工程Eとを含むことを特徴とする半導体装置の製造方法。
    Preparing a chip with a sheet-like resin composition, wherein the sheet-like resin composition according to claim 5 is attached to a bump-forming surface of a semiconductor chip; and
    Step B for preparing a mounting substrate on which electrodes are formed;
    The sheet-shaped resin composition-attached chip is attached to the mounting substrate with the sheet-shaped resin composition as a bonding surface, and the bumps formed on the semiconductor chip and the mounting substrate are formed. Step C for making the electrodes face each other;
    After the step C, the step D of heating and semi-curing the sheet-shaped resin composition,
    After the step D, the semiconductor device includes the step E of heating at a temperature higher than the heating in the step D, bonding the bump and the electrode, and curing the sheet-like composition. Production method.
  9.  請求項5に記載のシート状の樹脂組成物を用いて製造された半導体装置。 A semiconductor device manufactured using the sheet-like resin composition according to claim 5.
PCT/JP2016/053341 2015-03-25 2016-02-04 Resin composition, sheet-shaped resin composition integrated with rear-surface grinding tape, sheet-shaped resin composition integrated with dicing tape, method for manufacturing semiconductor device, and semiconductor device WO2016152271A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020177022107A KR20170130359A (en) 2015-03-25 2016-02-04 Resin composition, sheet-on-sheet resin composition for back grinding, sheet-like resin composition with integral dicing tape, semiconductor device manufacturing method, and semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015062764 2015-03-25
JP2015-062764 2015-03-25
JP2015-093874 2015-05-01
JP2015093874A JP6514564B2 (en) 2015-03-25 2015-05-01 Resin composition, tape-integrated sheet-shaped resin composition for back surface grinding, dicing tape-integrated sheet-shaped resin composition, method of manufacturing semiconductor device, and semiconductor device

Publications (1)

Publication Number Publication Date
WO2016152271A1 true WO2016152271A1 (en) 2016-09-29

Family

ID=56977260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053341 WO2016152271A1 (en) 2015-03-25 2016-02-04 Resin composition, sheet-shaped resin composition integrated with rear-surface grinding tape, sheet-shaped resin composition integrated with dicing tape, method for manufacturing semiconductor device, and semiconductor device

Country Status (1)

Country Link
WO (1) WO2016152271A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212215A1 (en) * 2017-05-16 2018-11-22 デクセリアルズ株式会社 Underfill material, underfill film, and method for manufacturing semiconductor device using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287848A (en) * 2009-06-15 2010-12-24 Sekisui Chem Co Ltd Dicing/die bonding tape and method of manufacturing semiconductor chip
JP2012244115A (en) * 2011-05-24 2012-12-10 Sekisui Chem Co Ltd Backgrind-underfill integrated tape, and mounting method of semiconductor chip
JP2014145028A (en) * 2013-01-29 2014-08-14 Hitachi Chemical Co Ltd Circuit connection material, connection structure of circuit components, and method for manufacturing a connection structure of circuit components

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287848A (en) * 2009-06-15 2010-12-24 Sekisui Chem Co Ltd Dicing/die bonding tape and method of manufacturing semiconductor chip
JP2012244115A (en) * 2011-05-24 2012-12-10 Sekisui Chem Co Ltd Backgrind-underfill integrated tape, and mounting method of semiconductor chip
JP2014145028A (en) * 2013-01-29 2014-08-14 Hitachi Chemical Co Ltd Circuit connection material, connection structure of circuit components, and method for manufacturing a connection structure of circuit components

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212215A1 (en) * 2017-05-16 2018-11-22 デクセリアルズ株式会社 Underfill material, underfill film, and method for manufacturing semiconductor device using same
US11084941B2 (en) 2017-05-16 2021-08-10 Dexerials Corporation Underfill material, underfill film, and method for manufacturing semiconductor device using same

Similar Documents

Publication Publication Date Title
JP5976573B2 (en) Reinforcing sheet and method for manufacturing secondary mounting semiconductor device
WO2014171404A1 (en) Thermosetting resin composition and semiconductor device manufacturing method
JP6514564B2 (en) Resin composition, tape-integrated sheet-shaped resin composition for back surface grinding, dicing tape-integrated sheet-shaped resin composition, method of manufacturing semiconductor device, and semiconductor device
WO2016013310A1 (en) Sheet-like resin composition, sheet-like resin composition with integrated tape for back grinding, and method for producing semiconductor device
JP2012191046A (en) Die-bonding film and use thereof
JP6222941B2 (en) Underfill sheet, back-grinding tape-integrated underfill sheet, dicing tape-integrated underfill sheet, and semiconductor device manufacturing method
WO2014162974A1 (en) Underfill adhesive film, underfill adhesive film with integrated backgrinding tape, underfill adhesive film with integrated dicing tape, and semiconductor device
WO2015174184A1 (en) Method for producing semiconductor device
JP6407684B2 (en) Sheet-like resin composition, laminated sheet, and method for manufacturing semiconductor device
WO2015046082A1 (en) Method for producing semiconductor device
WO2016152271A1 (en) Resin composition, sheet-shaped resin composition integrated with rear-surface grinding tape, sheet-shaped resin composition integrated with dicing tape, method for manufacturing semiconductor device, and semiconductor device
JP6502026B2 (en) Sheet-like resin composition, laminated sheet and method of manufacturing semiconductor device
JP5907717B2 (en) Manufacturing method of semiconductor device
JP2017092365A (en) Dicing tape integrated adhesive sheet, and manufacturing method of semiconductor device
WO2015046073A1 (en) Semiconductor device manufacturing method
JP5889625B2 (en) Manufacturing method of semiconductor device
JP2013127997A (en) Semiconductor device manufacturing method
WO2016084707A1 (en) Sheet-like resin composition, laminate sheet, and semiconductor device production method
JP2017098316A (en) Dicing tape integrated adhesive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768174

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177022107

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768174

Country of ref document: EP

Kind code of ref document: A1