WO2016152225A1 - Bodily fluid measurement chip and component measurement device set - Google Patents

Bodily fluid measurement chip and component measurement device set Download PDF

Info

Publication number
WO2016152225A1
WO2016152225A1 PCT/JP2016/051761 JP2016051761W WO2016152225A1 WO 2016152225 A1 WO2016152225 A1 WO 2016152225A1 JP 2016051761 W JP2016051761 W JP 2016051761W WO 2016152225 A1 WO2016152225 A1 WO 2016152225A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
boundary
respect
chip
thickness direction
Prior art date
Application number
PCT/JP2016/051761
Other languages
French (fr)
Japanese (ja)
Inventor
嘉哉 佐藤
健行 森内
雅夫 滝浪
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2016152225A1 publication Critical patent/WO2016152225A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator

Definitions

  • the present invention relates to a body fluid measurement chip and a component measurement device set, and in particular, even when the body fluid as a specimen has a high viscosity (particularly, whole blood having a high hematocrit value),
  • the present invention relates to a body fluid measurement chip and a component measurement device set that can quickly flow into a flow path portion provided with a reagent.
  • a component measuring apparatus for measuring a predetermined component in a body fluid such as blood or urine has been widely used (for example, see Patent Documents 1 and 2).
  • this type of component measuring device there is a colorimetric component measuring device that optically measures the degree of coloration when a body fluid such as blood is injected into a body fluid measuring chip having a reagent and the reagent and the body fluid are reacted. It is known (see, for example, Patent Document 3).
  • This colorimetric component measuring device includes a chip mounting portion on which a body fluid measurement chip is mounted, an irradiation unit that irradiates a reaction product of a body fluid and a reagent, and a measurement light that is transmitted through or reflected from the reaction product. And a processing unit for processing a signal obtained from the measurement light.
  • Such a component measuring apparatus needs to set a small cross-sectional area of the flow path portion where the reagent is provided due to the limitation of the sample amount.
  • a body fluid measurement chip has a problem in that when measuring a component in a highly viscous body fluid (particularly, whole blood having a high hematocrit value), the component cannot be measured accurately.
  • the present inventors surprisingly found that the high-viscosity bodily fluid has a body fluid measuring chip 700 as shown in FIG. Even when supplied to the supply port 10, if the inner diameter (width and thickness direction distance) of the flow path 20 is small and constant, it cannot quickly flow into the flow path portion 20 b provided with the reagent 30. (See FIG. 9B).
  • an object of the present invention is to provide a body fluid measurement chip capable of quickly flowing a body fluid having a high viscosity into a flow channel portion provided with a reagent even when the body fluid as a specimen has a high viscosity. It is to provide a component measuring device set.
  • a bodily fluid measurement chip is a bodily fluid measurement chip that can be attached to a component measurement device that measures a predetermined component in a bodily fluid.
  • a cross-sectional area of the flow path when the position of the upstream end of the reagent in the flow path is a boundary. And the downstream side is reduced from the upstream side.
  • the distance in the chip thickness direction of the flow path is decreased on the downstream side from the upstream side across the boundary. It is preferable.
  • the width of the flow path in the direction orthogonal to the chip thickness direction sandwiches the boundary, and the upstream It is preferable that the downstream side is decreased from the side.
  • the distance in the chip thickness direction of the flow channel on the upstream side with respect to the boundary is 80 ⁇ m or more.
  • a component measuring device set as a second aspect of the present invention is a component measuring device set comprising a body fluid measuring chip as a first aspect of the present invention and a component measuring device for measuring a predetermined component in body fluid.
  • the component measuring device includes an irradiation unit that irradiates light to a reaction product of the body fluid and the reagent, a light receiving unit that receives measurement light transmitted through the reaction product or reflected from the reaction product, and the measurement light. And a processing unit for processing the obtained signal.
  • the body fluid measurement chip and the component measurement capable of quickly flowing the high viscosity body fluid into the flow path portion provided with the reagent A device set can be provided.
  • FIG. 1 It is a top view which shows the bodily fluid measurement chip
  • FIG. 9 is a photograph showing a state after blood inflow (3 seconds after blood with a hematocrit value of 70) flows in a flow path portion provided with a reagent in a blood inflow experiment using the body fluid measurement chip shown in FIG. 8.
  • the yellowish green part in a photograph is a flow-path part into which the blood does not flow in, and a reddish brown part is blood.
  • Body fluid measurement chip Body fluid measurement chip
  • an embodiment of a body fluid measurement chip according to the present invention will be described with reference to FIGS.
  • symbol is attached
  • FIG. 1 is a plan view showing a body fluid measurement chip according to an embodiment of the present invention.
  • 2A is a cross-sectional view taken along line II in FIG.
  • FIG. 2B is a cross-sectional view showing a modification of the body fluid measurement chip shown in FIG.
  • FIG. 3 is a cross-sectional view showing another modification of the body fluid measurement chip shown in FIG.
  • FIG. 4 is a plan view showing still another modification of the body fluid measurement chip shown in FIG.
  • the body fluid measurement chip 100 in this embodiment includes a supply port 10, a flow path 20, and a reagent 30.
  • the body fluid measuring chip 100 includes a first base material 1 that forms a bottom surface portion, a second base material 2 that forms a top surface portion, and the first base material 1 and the second base material 2.
  • Adhesives 3 and 4 are provided between the base materials 2 and at both ends in the width direction orthogonal to the chip thickness direction.
  • the first base material 1 and the first base material 1 and the second base material 2 are sandwiched with a spacer (not shown) having an arbitrary thickness.
  • a spacer not shown
  • the gap of the predetermined size becomes a flow path 20 having the supply port 10 formed at one end, and body fluid can flow into the body fluid measurement chip 100.
  • a reagent 30 is provided in the flow path 20.
  • a material of the 1st base material 1 According to the objective (light irradiation and light reception), it can select suitably, for example, a polyethylene terephthalate (PET), polymethylmethacrylate, polystyrene, And transparent organic resin materials such as cyclic polyolefin, cyclic olefin copolymer, and polycarbonate; transparent inorganic materials such as glass and quartz; and the like.
  • PET polyethylene terephthalate
  • transparent organic resin materials such as cyclic polyolefin, cyclic olefin copolymer, and polycarbonate
  • transparent inorganic materials such as glass and quartz; and the like.
  • the objective light irradiation / light reception
  • transparent organic resin materials such as a hydrophilic treatment polyester film, etc. are mentioned. It is done.
  • the thickness of the bonding portions 3 and 4 is appropriately adjusted in order to set the distance in the chip thickness direction of the flow path 20 to a desired value.
  • a spacer having an arbitrary thickness is disposed between the first base material and the second base material and then bonded or fused, or the spacer is used as an adhesive member for bonding the first base material and the second base material. You may use the double-sided tape which serves as a function.
  • the reagent 30 is not particularly limited as long as it reacts with body fluids, and can be appropriately selected according to the purpose.
  • the reagent 30 is a known color that reacts with blood to give a color corresponding to the blood glucose concentration. Reagents, and the like.
  • reagent 30 is formed on the first base material 1 by a known method such as coating, but is not limited thereto, and is provided in the flow channel 20 without closing the flow channel 20. It only has to be.
  • the cross-sectional area of the flow channel 20 is The downstream side is decreased from the upstream side across the boundary B.
  • the cross-sectional area of the flow path 20 is such that the downstream side is smaller than the upstream side across the boundary B” means, for example, the cross-sectional area A1 of the flow path 20 (20a) on the upstream side with respect to the boundary B. (Not shown) means that it is larger than the cross-sectional area A2 (not shown) of the flow path 20 (20b) on the downstream side with respect to the boundary B.
  • the “boundary B” is “the position of the upstream end 30a of the reagent 30”. In other words, “the channel portion 20a where the reagent 30 is not provided” and “the reagent 30”. This is a boundary with the flow path portion 20b "provided. Therefore, the reagent 30 is not provided on the upstream side of the boundary B, and the reagent 30 is provided on the downstream side of the boundary B.
  • a step X as a cross-sectional area changing portion may be formed between the flow path portion 20a and the flow path portion 20b.
  • the taper part Y as a cross-sectional area change part straddling the flow-path part 20a and the flow-path part 20b may be formed.
  • the second base material 2 that forms the flow path portion 20a is in line contact with the second base material 2 that forms the flow path portion 20b.
  • the present invention is not limited to this. As shown in FIG.
  • the second base material 2 that forms the flow path portion 20a and the second base material 2 that forms the flow path portion 20b may overlap and overlap each other.
  • the boundary B and the position of the cross-sectional area change portion do not necessarily match as shown in FIG. 2A, and may be in the vicinity even if they are shifted as shown in FIG. 2B. .
  • the cross-sectional area A1 of the channel 20 (20a) on the upstream side with respect to the boundary B means “the boundary B or a portion located in the vicinity thereof in the channel portion 20a where the reagent 30 is not provided”.
  • the boundary B and the position of the cross-sectional area changing portion (step X) coincide with each other.
  • “cross-sectional area A1” is “a cross-sectional area of a portion of the flow path portion 20a not provided with the reagent 30 that is closest to the flow path portion 20b provided with the reagent 30”.
  • Cross-sectional area A1 is “the flow path portion 20a where the reagent 30 is not provided.
  • the cross-sectional area A2 of the flow channel 20 (20b) on the downstream side with respect to the boundary B” means “the cross-sectional area located at or near the boundary B in the flow channel portion 20b where the reagent 30 is provided”.
  • Cross-sectional area of flow path 20 (20b) after change (after decrease) in the change part for example, when the boundary B and the position of the cross-sectional area change part (step X) coincide as shown in FIG. 2A
  • Cross-sectional area A2 is “the cross-sectional area of the flow channel portion 20b provided with the reagent 30 that is closest to the flow channel portion 20a provided with no reagent 30”. As shown in FIG.
  • the cross-sectional area A1 of the flow path 20 (20a) on the upstream side with respect to the boundary B is not particularly limited as long as it is larger than the cross-sectional area A2 of the flow path 20 (20b) on the downstream side with respect to the boundary B.
  • it can be selected appropriately according to the above, 0.1 mm 2 to 0.5 mm 2 is preferable, and 0.13 mm 2 to 0.42 mm 2 is more preferable.
  • the cross-sectional area A2 of the flow path 20 (20b) on the downstream side with respect to the boundary B is not particularly limited as long as it is smaller than the cross-sectional area A1 of the flow path 20 (20a) on the upstream side with respect to the boundary B. Although it can be appropriately selected depending on the thickness, 0.05 mm 2 to 0.2 mm 2 is preferable, and 0.08 mm 2 to 0.16 mm 2 is more preferable.
  • the ratio (A1 / A2) between the cross-sectional area A1 and the cross-sectional area A2 is not particularly limited as long as it is larger than 1, and can be appropriately selected according to the purpose, but is preferably 1.6 to 2.6. When the ratio is within a preferable range, a highly viscous body fluid as a specimen can be quickly flowed into the flow path portion 20b.
  • the position of the upstream end 30a of the reagent 30 in the flow path 20 is defined as the boundary B as shown in FIGS.
  • This distance is preferably such that the downstream side is smaller than the upstream side across the boundary B.
  • “the distance in the chip thickness direction of the flow path 20 is smaller on the downstream side than the upstream side across the boundary B” means, for example, that of the flow path 20 (20a) on the upstream side with respect to the boundary B
  • the distance D1 in the chip thickness direction is larger than the distance D2 in the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B.
  • the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 80 ⁇ m or more, and preferably 130 ⁇ m to 1 mm. More preferably, 130 ⁇ m to 200 ⁇ m is particularly preferable.
  • the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is larger, it becomes possible to quickly cause a highly viscous body fluid as a specimen to flow into the flow path portion 20b. This is advantageous in that the measurement time can be shortened.
  • a smaller distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is advantageous in that the sample amount can be reduced. Therefore, the upper limit and the lower limit of the distance D1 are determined in consideration of the balance between the flow of the sample into the flow path portion 20b and the sample amount.
  • the distance D2 in the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 ⁇ m to 100 ⁇ m.
  • the distance D2 in the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is larger, it becomes possible to quickly flow a highly viscous body fluid as a specimen into the flow path portion 20b. It is advantageous in that the measurement time can be shortened, and the smaller one is advantageous in that transmitted light can be obtained efficiently and the amount of specimen can be further reduced.
  • the upper limit and the lower limit of the distance D2 are determined in consideration of the balance between the inflow of the sample into the flow channel portion 20b, the sample amount, and the obtained transmitted light amount. Note that, by reducing the amount of the sample, it is possible to prevent the sample flowing into the flow path portion 20b from scattering the measurement light and accurately measure a predetermined component in the body fluid.
  • the thickness T of the reagent 30 formed on the first substrate 1 is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 15 ⁇ m to 30 ⁇ m.
  • the position of the upstream end 30 a of the reagent 30 in the flow path 20 is defined as the boundary B, it is orthogonal to the chip thickness direction of the flow path 20.
  • the width in the direction is preferably such that the downstream side is smaller than the upstream side across the boundary B.
  • “the width of the flow path 20 in the direction perpendicular to the chip thickness direction is smaller on the downstream side than the upstream side across the boundary B”
  • the width W1 in the direction orthogonal to the chip thickness direction of the path 20 (20a) is larger than the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B.
  • the width in the direction perpendicular to the chip thickness direction means “to the chip thickness direction (see FIGS. 2 and 3)” and the flow channel longitudinal direction (see FIGS. 1 to 4).
  • the width W1 and the width W2 in FIGS. 1 and 4 are applicable.
  • the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is not particularly limited and may be appropriately selected depending on the intended purpose. Is preferred.
  • the larger the width W1 in the direction orthogonal to the chip thickness direction of the channel 20 (20a) on the upstream side with respect to the boundary B the faster the sample can flow into the channel portion 20b.
  • the smaller one is advantageous, and the smaller one is advantageous in that the sample amount can be reduced. Therefore, the upper limit and the lower limit of the width W1 are determined in consideration of the balance between the flow of the sample into the flow channel portion 20b and the sample amount.
  • the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is not particularly limited and may be appropriately selected depending on the intended purpose. ⁇ 2 mm is preferred.
  • the larger the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B the larger the area of the irradiation spot can be taken in the width direction. It is advantageous in that the measurement can be performed, and the smaller one is advantageous in that the amount of the sample can be reduced. Therefore, the upper limit and the lower limit of the width W2 are determined in consideration of the balance between the area of the irradiation spot and the sample amount.
  • the length L1 in the direction (flow channel longitudinal direction) orthogonal to the chip thickness direction of the flow channel 20 (20a) on the upstream side with respect to the boundary B is not particularly limited and may be appropriately selected depending on the purpose. However, 5 mm to 10 mm is preferable.
  • the longer length L1 in the direction (flow channel longitudinal direction) perpendicular to the chip thickness direction of the flow channel 20 (20a) on the upstream side with respect to the boundary B is attached to the component measuring device ( This is advantageous in that it is easy to insert) and the entry of ambient light into the optical measurement unit is reduced.
  • the shorter one is advantageous in that the amount of specimen can be reduced. Therefore, the upper limit and the lower limit of the length L1 are determined in consideration of the ease of mounting (insertion) on the component measuring apparatus, the influence of ambient light, and the balance of the sample amount.
  • the length L2 in the direction (flow channel longitudinal direction) orthogonal to the chip thickness direction of the flow channel 20 (20b) on the downstream side with respect to the boundary B is not particularly limited and may be appropriately selected depending on the purpose. However, 1 mm to 4 mm is preferable, and 1 mm to 2 mm is more preferable.
  • the longer one of the length L2 in the direction (flow channel longitudinal direction) perpendicular to the chip thickness direction of the flow channel 20 (20b) on the downstream side with respect to the boundary B is the length of the irradiation spot area. Since it can be greatly taken in the direction, it is advantageous in that the measurement can be performed with high accuracy, but the shorter one is advantageous in that the amount of the sample can be reduced. Therefore, the upper limit and the lower limit of the length L2 are determined in consideration of the balance between the measurement accuracy and the sample amount.
  • a component measuring device set as an embodiment of the present invention includes the above-described body fluid measuring chip of the present invention and a component measuring device that measures a predetermined component in the body fluid.
  • a component measurement device set including a transmission-type component measurement device that measures light transmitted through a reaction product of a body fluid and a reagent will be described, the present invention is not limited to this, for example, the reaction It may be a component measuring device set including a reflection type component measuring device that measures light reflected from an object.
  • FIG. 5 shows a blood glucose meter set 500 as a component measuring device set according to an embodiment of the present invention.
  • the blood glucose meter set 500 includes a blood glucose meter 110 and a blood glucose measurement chip 100a as the body fluid measurement chip 100.
  • the blood glucose measurement chip 100a is attached to the tip of the blood glucose meter 110.
  • the blood glucose meter 110 includes a display 111 for displaying measurement results and operation details, a power button 112 for instructing activation and termination of the blood glucose meter 110, an operation button 113, a removal lever 114 for removing the blood glucose measurement chip 100a, It has.
  • the display 111 is composed of a liquid crystal or LED.
  • FIG. 6 is a longitudinal sectional view showing separately the tip of the blood glucose meter 110 of the blood glucose meter set 500 and the blood glucose measurement chip 100a.
  • a mounting portion 22 having an opening 21 formed at the tip of the blood glucose meter 110 is provided, and a mounting hole 23 for mounting the blood glucose measuring chip 100a is defined inside the blood glucose meter 110.
  • a predetermined component of a body fluid collected in the blood glucose measurement chip 100a (this embodiment will be described mainly using blood as an example) (this embodiment will be described mainly using a blood glucose level as an example).
  • An optical measurement unit 24 is provided for measuring.
  • the blood glucose meter 110 includes a processing unit 25 that processes a signal obtained from the measurement light and calculates a blood glucose level, and an eject pin 26 that removes the blood glucose measurement chip 100a in conjunction with the removal lever 114.
  • a processing unit 25 that processes a signal obtained from the measurement light and calculates a blood glucose level
  • an eject pin 26 that removes the blood glucose measurement chip 100a in conjunction with the removal lever 114.
  • the blood glucose measuring chip 100a When measuring, the blood glucose measuring chip 100a is mounted in the mounting hole 23.
  • the mounting operation is performed manually by the user.
  • an appropriate lock mechanism or the like for fixing the blood glucose measurement chip 100a to a predetermined position in the mounting hole 23 is preferably installed.
  • the optical measurement unit 24 includes an irradiation unit 31 that irradiates light to a reaction product of a reagent and blood, and a light receiving unit 32 that receives light transmitted through the reaction product as measurement light.
  • a light emitting diode LED
  • a halogen lamp, a laser, or the like may be used.
  • a photodiode (PD) is used for the light receiving unit 32.
  • the light receiving unit 32 may be any device that can convert received light into a predetermined signal, and may be a CCD, a CMOS, or the like.
  • the irradiation unit 31 includes a first light emitting element 51 that emits light having a first wavelength, and a second light emitting element 52 that emits light having a second wavelength different from the first wavelength.
  • the first wavelength is a wavelength for detecting the degree of color development according to the blood glucose level, and is in the wavelength band of 600 to 900 nm, for example.
  • the second wavelength is a wavelength for detecting the concentration of red blood cells in blood, and is in the wavelength band of 510 to 590 nm, for example.
  • the arrangement of the irradiation unit 31 and the light receiving unit 32 and the positional relationship between them will be described.
  • a first space 41 and a second space 42 are formed inside the blood glucose meter 110.
  • the irradiation unit 31 is disposed in the first space 41
  • the light receiving unit 32 is disposed in the second space 42.
  • the first space 41 and the second space 42 face each other with the attachment hole 23 therebetween (see FIG. 6).
  • the first space 41 and the second space 42 sandwich the position where the reagent 30 on the blood glucose measurement chip 100a is held. opposite.
  • the irradiation part 31 is arrange
  • a spectral filter may be provided to extract only a specific wavelength as the irradiation light 33.
  • a method including a condensing lens is also suitable for effective implementation with low-energy irradiation.
  • the processing unit 25 includes a calculation unit 25A that calculates a blood glucose level based on a signal obtained from the measurement light, and a prediction unit 25B that predicts a predetermined range including the blood glucose level based on a signal obtained from the measurement light. Including.
  • First base material 1 Polyethylene terephthalate (PET) film (manufacturing company name: Toray Industries, Inc., trade name: Lumirror T60, thickness: 188 ⁇ m)
  • Second base material 2 hydrophilic treatment polyester film (manufacturer name: 3M company, trade name: hydrophilic treatment polyester film 9901P, thickness: 100 ⁇ m)
  • Adhesion part 3 4: Double-sided tape (manufacturer name: 3M company, product name: polyester film substrate, double-sided adhesive tape 9965, thickness: 80 ⁇ m)
  • Reagent 30 Mixture of WST-4 (manufacturer name: Dojindo Laboratories), m-PMS (manufacturer name:
  • ⁇ Blood inflow experiment> The prepared blood sample 6 mm 3 is supplied to the supply port of the prepared body fluid measurement chip, and the state after blood inflow (3 seconds after blood inflow) in the flow path portion 20b provided with the reagent 30 is observed. Evaluation was performed according to the following evaluation criteria. The evaluation results are shown in Table 1. -Evaluation criteria- ⁇ : Blood completely flowed into the flow path portion 20b (for example, FIG. 7B). (Triangle
  • Comparative Example 2 In Comparative Example 1, (1) the first base material 1: the length of the polyethylene terephthalate (PET) film is 8 mm, (2) the second base material 2: the length of the hydrophilic polyester film is 8 mm, ( 3) Adhering portions 3 and 4: The length of the double-sided tape is 8 mm, and (9) the direction perpendicular to the chip thickness direction of the flow channel 20 (20a) on the upstream side with respect to the boundary B (flow channel longitudinal direction) (1) First base material 1: Polyethylene terephthalate (PET) film length is 11 mm, and (2) Second base material 2: length of hydrophilic treated polyester fill Length: 11 mm, (3) Adhesive part 3, 4: Double-sided tape length is 11 mm, and (9) Direction perpendicular to the chip thickness direction of the flow path 20 (20a) upstream from the boundary B (Flow channel longitudinal direction) Except that the L1 and 9mm is, in the same manner as in Comparative Example 1, preparation of the body fluid measuring chip, the preparation of the specimen
  • Example 1 In Comparative Example 1, a bodily fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 8 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set. Instead of 80 ⁇ m, a bodily fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. In the same manner as in Comparative Example 1, except that the thickness was set to 130 ⁇ m, the preparation of the body fluid measurement chip, the preparation of the specimen, and the blood inflow experiment were performed. The evaluation results are shown in Table 1.
  • Example 2 In Comparative Example 2, a body fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 8 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set. Instead of 80 ⁇ m, a body fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 2 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B was prepared in the same manner as in Comparative Example 2 except that the body fluid measurement chip was prepared, the sample was prepared, and the blood inflow experiment was performed. The evaluation results are shown in Table 1.
  • Example 3 In Comparative Example 1, a bodily fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 8 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set. Instead of 80 ⁇ m, a bodily fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. The sample was prepared for the body fluid measurement chip, the sample was prepared, and the blood inflow experiment was conducted in the same manner as in Comparative Example 1 except that the thickness was set to 160 ⁇ m. The evaluation results are shown in Table 1.
  • Example 4 In Comparative Example 2, a body fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 8 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set. Instead of 80 ⁇ m, a body fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 2 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B In the same manner as in Comparative Example 2 except that the thickness was set to 160 ⁇ m, the preparation of the body fluid measurement chip, the preparation of the specimen, and the blood inflow experiment were performed. The evaluation results are shown in Table 1.
  • Example 5 In Comparative Example 1, a bodily fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 8 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set. Instead of 80 ⁇ m, a body fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 2 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B The preparation of the body fluid measurement chip, the preparation of the sample, and the blood inflow experiment were performed in the same manner as in Comparative Example 1 except that the thickness was 210 ⁇ m. The evaluation results are shown in Table 1.
  • Example 6 In Comparative Example 2, a body fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 8 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set. Instead of 80 ⁇ m, a body fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 2 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B
  • the preparation of the body fluid measurement chip, the preparation of the sample, and the blood inflow experiment were performed in the same manner as in Comparative Example 2 except that the thickness was 210 ⁇ m. The evaluation results are shown in Table 1.
  • Comparative Example 3 In Comparative Example 1, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Comparative example except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in Example 1, preparation of a body fluid measurement chip, preparation of a specimen, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
  • Comparative Example 4 In Comparative Example 2, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Comparative example except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in Example 2, preparation of a body fluid measurement chip, preparation of a sample, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
  • Example 7 In Example 1, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Example 13 except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in Example 1, preparation of a body fluid measurement chip, preparation of a specimen, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
  • Example 8 the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to (12) the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) is set to 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm.
  • Example 9 the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to (12) the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) is set to 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm.
  • Example 10 the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to (12) the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) is set to 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm.
  • Example 11 In Example 5, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) is set to 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm.
  • Example 12 the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) is set to 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm.
  • Example 13 In Example 1, (1) the first base material 1: the length of the polyethylene terephthalate (PET) film is 8 mm, (2) the second base material 2: the length of the hydrophilic treated polyester film: 8 mm, ( 3) Adhering portions 3 and 4: The length of the double-sided tape is 8 mm, and (10) the direction perpendicular to the chip thickness direction of the flow channel 20 (20b) on the downstream side with respect to the boundary B (flow channel longitudinal direction) (1) First base material 1: Polyethylene terephthalate (PET) film length is 9 mm, and (2) Second base material 2: length of hydrophilic treated polyester fill Length: 9 mm, (3) Adhesive part 3, 4: Double-sided tape length is 9 mm, (10) Direction perpendicular to chip thickness direction of flow path 20 (20b) on the downstream side with respect to boundary B Length of (flow channel longitudinal direction) Except that 2 was a 3 mm, in the same manner as in Example 1, preparation of the body fluid measuring chip, the preparation of the sample
  • Example 14 In Example 2, (1) 1st base material 1: The length of a polyethylene terephthalate (PET) film shall be 11 mm, (2) 2nd base material 2: The length of a hydrophilic treatment polyester fill: 11 mm, ( 3) Adhering portions 3 and 4: The length of the double-sided tape is 11 mm, and (10) the direction perpendicular to the chip thickness direction of the flow channel 20 (20b) on the downstream side with respect to the boundary B (flow channel longitudinal direction) (1) First base material 1: Polyethylene terephthalate (PET) film length is 12 mm, and (2) Second base material 2: length of hydrophilic treated polyester fill Length: 12 mm, (3) Adhesive part 3, 4: Double-sided tape length is 12 mm, (10) Direction orthogonal to chip thickness direction of flow path 20 (20b) on the downstream side with respect to boundary B (Flow path length Except that the length L2 of the direction) was set to 3 mm, in the same manner as in Example 2, preparation of the body fluid measurement chip, the
  • Example 15 In Example 3, (1) the first base material 1: the length of the polyethylene terephthalate (PET) film is 8 mm, (2) the second base material 2: the length of the hydrophilic treated polyester film: 8 mm, ( 3) Adhering portions 3 and 4: The length of the double-sided tape is 8 mm, and (10) the direction perpendicular to the chip thickness direction of the flow channel 20 (20b) on the downstream side with respect to the boundary B (flow channel longitudinal direction) (1) First base material 1: Polyethylene terephthalate (PET) film length is 9 mm, and (2) Second base material 2: length of hydrophilic treated polyester fill Length: 9 mm, (3) Adhesive part 3, 4: Double-sided tape length is 9 mm, (10) Direction perpendicular to chip thickness direction of flow path 20 (20b) on the downstream side with respect to boundary B Length of (flow channel longitudinal direction) Except that 2 was a 3 mm, in the same manner as in Example 3, preparation of the body fluid measuring chip, the preparation of the sample
  • Example 16 In Example 4, (1) 1st base material 1: The length of a polyethylene terephthalate (PET) film shall be 11 mm, (2) 2nd base material 2: The length of a hydrophilic treatment polyester fill: 11 mm, ( 3) Adhering portions 3 and 4: The length of the double-sided tape is 11 mm, and (10) the direction perpendicular to the chip thickness direction of the flow channel 20 (20b) on the downstream side with respect to the boundary B (flow channel longitudinal direction) (1) First base material 1: Polyethylene terephthalate (PET) film length is 12 mm, and (2) Second base material 2: length of hydrophilic treated polyester fill Length: 12 mm, (3) Adhesive part 3, 4: Double-sided tape length is 12 mm, (10) Direction orthogonal to chip thickness direction of flow path 20 (20b) on the downstream side with respect to boundary B (Flow path length Except that the length L2 of the direction) was set to 3 mm, in the same manner as in Example 4, preparation of the body fluid measuring chip, the
  • Example 17 In Example 5, (1) 1st base material 1: The length of a polyethylene terephthalate (PET) film shall be 8 mm, (2) 2nd base material 2: The length of a hydrophilic treatment polyester fill: 8 mm, ( 3) Adhering portions 3 and 4: The length of the double-sided tape is 8 mm, and (10) the direction perpendicular to the chip thickness direction of the flow channel 20 (20b) on the downstream side with respect to the boundary B (flow channel longitudinal direction) (1) First base material 1: Polyethylene terephthalate (PET) film length is 9 mm, and (2) Second base material 2: length of hydrophilic treated polyester fill Length: 9 mm, (3) Adhesive part 3, 4: Double-sided tape length is 9 mm, (10) Direction perpendicular to chip thickness direction of flow path 20 (20b) on the downstream side with respect to boundary B Length of (flow channel longitudinal direction) Except that 2 was a 3 mm, in the same manner as in Example 5, preparation of the body fluid measuring chip, the
  • Example 18 In Example 6, (1) 1st base material 1: The length of a polyethylene terephthalate (PET) film shall be 11 mm, (2) 2nd base material 2: The length of a hydrophilic treatment polyester fill: 11 mm, ( 3) Adhering portions 3 and 4: The length of the double-sided tape is 11 mm, and (10) the direction perpendicular to the chip thickness direction of the flow channel 20 (20b) on the downstream side with respect to the boundary B (flow channel longitudinal direction) (1) First base material 1: Polyethylene terephthalate (PET) film length is 12 mm, and (2) Second base material 2: length of hydrophilic treated polyester fill Length: 12 mm, (3) Adhesive part 3, 4: Double-sided tape length is 12 mm, (10) Direction orthogonal to chip thickness direction of flow path 20 (20b) on the downstream side with respect to boundary B (Flow path length Except that the length L2 of the direction) was set to 3 mm, in the same manner as in Example 6, preparation of the body fluid measurement chip, the
  • Comparative Example 7 In Comparative Example 5, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Comparative example except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm.
  • preparation of a body fluid measurement chip, preparation of a specimen, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
  • Example 19 In Example 13, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Example 13 except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in Example 13, preparation of a body fluid measurement chip, preparation of a sample, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
  • Example 20 In Example 14, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) is 1 mm
  • (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Example 13 except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm.
  • preparation of a body fluid measurement chip, preparation of a specimen, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
  • Example 21 In Example 15, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) is set to 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm.
  • body fluid measurement chip preparation, sample preparation, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
  • Example 22 In Example 16, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) is set to 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm.
  • Example 23 In Example 17, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) is set to 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm.
  • Example 24 In Example 18, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) is set to 1 mm, and (13) on the downstream side with respect to the boundary B.
  • the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm.
  • Example 25 In Comparative Example 7, a body fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 8 is prepared, and (13) in the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to 2 mm, a bodily fluid measurement chip having the configuration shown in the plan view of FIG. 4 and the cross-sectional view of FIG. 8 is prepared. (13) The preparation of the body fluid measurement chip, the preparation of the sample, and the blood inflow experiment were performed in the same manner as in Comparative Example 7, except that the width W2 in the direction orthogonal to the chip thickness direction of the channel 20 (20b) was set to 1 mm. It was. The evaluation results are shown in Table 1.
  • Example 26 In Comparative Example 8, a bodily fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 8 is prepared. (13) In the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B Instead of setting the width W2 in the direction orthogonal to 2 mm, a bodily fluid measurement chip having the configuration shown in the plan view of FIG. 4 and the cross-sectional view of FIG. 8 is prepared. (13) The preparation of the body fluid measurement chip, the preparation of the sample, and the blood inflow experiment were performed in the same manner as in Comparative Example 8 except that the width W2 in the direction orthogonal to the chip thickness direction of the channel 20 (20b) was set to 1 mm. It was. The evaluation results are shown in Table 1.
  • the present invention relates to a body fluid measurement chip and a component measurement device set, and in particular, even when the body fluid as a specimen has a high viscosity (particularly, whole blood having a high hematocrit value),
  • the present invention relates to a body fluid measurement chip and a component measurement device set that can quickly flow into a flow path portion provided with a reagent.
  • Adhesion part 4 Adhesion part 10: Supply port 20: Channel 20a: Channel part 20b without a reagent: Channel part with a reagent 21: Opening part 22: Mounting part 23: Mounting hole 24: Optical measurement part 25: Processing part 25A: Calculation part 25B: Prediction part 26: Eject pin 30: Reagent 30a: Upstream end 31: Irradiation part 32: Light receiving part 33 : Irradiation light 41: First space 42: Second space 51: First light emitting element 52: Second light emitting element 100: Body fluid measurement chip 100a: Blood glucose measurement chip 110: Blood glucose meter 111: Display 112: Power button 113: Operation button 114: Detach lever 500: Blood glucose meter set (component measuring device) 700: Body fluid measurement chip B: Boundary D1: Distance in the chip thickness direction of the channel on the upstream side with respect to the boundary D2: Distance L1 in the chip thickness direction of the channel on the downstream side with

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

A bodily fluid measurement chip (100) mountable in a component measurement device (500) that measures predetermined components of a bodily fluid comprises a supply port (10) to which a bodily fluid is supplied, a flow path (20) at one end of which the supply port (10) is formed, and a reagent (30) that is provided in the flow path (20). When the position of the upstream side end (30a) of the reagent (30) in the flow path (20) is treated as a border (B), the cross-sectional area of the flow path (20) is less on the downstream side than the upstream side of the border (B).

Description

体液測定チップ及び成分測定装置セットBody fluid measurement chip and component measurement device set
 本発明は、体液測定チップ及び成分測定装置セットに関し、特に、検体としての体液が高粘度である(特に、高ヘマトクリット値の全血である)場合であっても、この高粘度の体液を、試薬が設けられた流路部分に素早く流入させることが可能な体液測定チップ及び成分測定装置セットに関する。 The present invention relates to a body fluid measurement chip and a component measurement device set, and in particular, even when the body fluid as a specimen has a high viscosity (particularly, whole blood having a high hematocrit value), The present invention relates to a body fluid measurement chip and a component measurement device set that can quickly flow into a flow path portion provided with a reagent.
 従来、血液や尿等の体液中の所定成分を測定する成分測定装置が広汎に利用されている(例えば、特許文献1、2参照)。この種の成分測定装置として、試薬を有する体液測定チップに血液等の体液を注入し、試薬と体液とを反応させた際の呈色度合を光学的に測定する比色式の成分測定装置が知られている(例えば、特許文献3参照)。 Conventionally, a component measuring apparatus for measuring a predetermined component in a body fluid such as blood or urine has been widely used (for example, see Patent Documents 1 and 2). As this type of component measuring device, there is a colorimetric component measuring device that optically measures the degree of coloration when a body fluid such as blood is injected into a body fluid measuring chip having a reagent and the reagent and the body fluid are reacted. It is known (see, for example, Patent Document 3).
 この比色式の成分測定装置は、体液測定チップが装着されるチップ装着部と、体液と試薬との反応物に光を照射する照射部と、反応物を透過又は反応物から反射した測定光を受光する受光部と、測定光から得られる信号を処理する処理部とを備えている。 This colorimetric component measuring device includes a chip mounting portion on which a body fluid measurement chip is mounted, an irradiation unit that irradiates a reaction product of a body fluid and a reagent, and a measurement light that is transmitted through or reflected from the reaction product. And a processing unit for processing a signal obtained from the measurement light.
国際公開第2014/049704号International Publication No. 2014/049744 特開2006−215034号公報JP 2006-215034 A 特表平10−505676号公報Japanese National Patent Publication No. 10-505676
 このような成分測定装置は、検体量の制限から試薬が設けられた流路部分の断面積を小さく設定する必要がある。しかしそのような体液測定チップにおいては、高粘度の体液(特に、高ヘマトクリット値の全血)中の成分を測定する場合、正確に成分測定することができないという問題があった。 Such a component measuring apparatus needs to set a small cross-sectional area of the flow path portion where the reagent is provided due to the limitation of the sample amount. However, such a body fluid measurement chip has a problem in that when measuring a component in a highly viscous body fluid (particularly, whole blood having a high hematocrit value), the component cannot be measured accurately.
 本発明者らは、高粘度の体液中の成分を正確に測定することができない原因について鋭意研究した結果、驚くべきことに、高粘度の体液は、図8に示すような体液測定チップ700の供給口10に供給された場合であっても、流路20の内径(幅及び厚み方向距離)が小径かつ一定であると、試薬30が設けられた流路部分20bに素早く流入させることができないこと(図9B参照)を発見した。 As a result of diligent research on the cause of the inability to accurately measure the components in the high-viscosity bodily fluid, the present inventors surprisingly found that the high-viscosity bodily fluid has a body fluid measuring chip 700 as shown in FIG. Even when supplied to the supply port 10, if the inner diameter (width and thickness direction distance) of the flow path 20 is small and constant, it cannot quickly flow into the flow path portion 20 b provided with the reagent 30. (See FIG. 9B).
 そこで、本発明の目的は、検体としての体液が高粘度である場合であっても、この高粘度の体液を、試薬が設けられた流路部分に素早く流入させることが可能な体液測定チップ及び成分測定装置セットを提供することである。 Therefore, an object of the present invention is to provide a body fluid measurement chip capable of quickly flowing a body fluid having a high viscosity into a flow channel portion provided with a reagent even when the body fluid as a specimen has a high viscosity. It is to provide a component measuring device set.
 本発明の第1の態様としての体液測定チップは、体液中の所定成分を測定する成分測定装置に装着可能な体液測定チップであって、体液が供給される供給口と、該供給口が一端に形成された流路と、該流路内に設けられた試薬と、を備え、前記流路における試薬の上流側端の位置を境界とした場合に、前記流路の断面積は、前記境界を挟み、上流側より下流側が減少していることを特徴とするものである。 A bodily fluid measurement chip according to a first aspect of the present invention is a bodily fluid measurement chip that can be attached to a component measurement device that measures a predetermined component in a bodily fluid. A cross-sectional area of the flow path when the position of the upstream end of the reagent in the flow path is a boundary. And the downstream side is reduced from the upstream side.
 本発明の1つの実施形態として、前記流路における試薬の上流側端の位置を境界とした場合に、前記流路のチップ厚み方向の距離は、前記境界を挟み、上流側より下流側が減少していることが好ましい。 As one embodiment of the present invention, when the position of the upstream end of the reagent in the flow path is used as a boundary, the distance in the chip thickness direction of the flow path is decreased on the downstream side from the upstream side across the boundary. It is preferable.
 本発明の1つの実施形態として、前記流路における試薬の上流側端の位置を境界とした場合に、前記流路のチップ厚み方向に対して直交する方向の幅は、前記境界を挟み、上流側より下流側が減少していることが好ましい。 As one embodiment of the present invention, when the position of the upstream end of the reagent in the flow path is used as a boundary, the width of the flow path in the direction orthogonal to the chip thickness direction sandwiches the boundary, and the upstream It is preferable that the downstream side is decreased from the side.
 本発明の1つの実施形態として、前記境界に対して上流側における前記流路のチップ厚み方向の距離が、80μm以上であることが好ましい。 As one embodiment of the present invention, it is preferable that the distance in the chip thickness direction of the flow channel on the upstream side with respect to the boundary is 80 μm or more.
 本発明の第2の態様としての成分測定装置セットは、本発明の第1の態様としての体液測定チップと、体液中の所定成分を測定する成分測定装置とを備える成分測定装置セットであって、前記成分測定装置が、前記体液と前記試薬との反応物に光を照射する照射部と、前記反応物を透過又は前記反応物から反射した測定光を受光する受光部と、前記測定光から得られる信号を処理する処理部と、を備えることを特徴とするものである。 A component measuring device set as a second aspect of the present invention is a component measuring device set comprising a body fluid measuring chip as a first aspect of the present invention and a component measuring device for measuring a predetermined component in body fluid. The component measuring device includes an irradiation unit that irradiates light to a reaction product of the body fluid and the reagent, a light receiving unit that receives measurement light transmitted through the reaction product or reflected from the reaction product, and the measurement light. And a processing unit for processing the obtained signal.
 本発明によれば、検体としての体液が高粘度である場合であっても、この高粘度の体液を、試薬が設けられた流路部分に素早く流入させることが可能な体液測定チップ及び成分測定装置セットを提供することができる。 According to the present invention, even when the body fluid as a specimen has a high viscosity, the body fluid measurement chip and the component measurement capable of quickly flowing the high viscosity body fluid into the flow path portion provided with the reagent A device set can be provided.
本発明の一実施形態に係る体液測定チップを示す平面図である。It is a top view which shows the bodily fluid measurement chip | tip which concerns on one Embodiment of this invention. 図1における線I−Iに沿った断面図である。It is sectional drawing along line II in FIG. 図1に示す体液測定チップの変形例を示す断面図である。It is sectional drawing which shows the modification of the bodily fluid measurement chip | tip shown in FIG. 図1に示す体液測定チップの別の変形例を示す断面図である。It is sectional drawing which shows another modification of the bodily fluid measurement chip | tip shown in FIG. 図1に示す体液測定チップのさらに別の変形例を示す平面図である。It is a top view which shows another modification of the bodily fluid measurement chip | tip shown in FIG. 本発明の一実施形態に係る血糖計セットを示す平面図である。It is a top view which shows the blood glucose meter set which concerns on one Embodiment of this invention. 図5に示す血糖計セットの血糖計及び血糖測定チップを示す縦断面図である。It is a longitudinal cross-sectional view which shows the blood glucose meter and blood glucose measurement chip | tip of the blood glucose meter set shown in FIG. 本発明の一実施形態としての体液測定チップを用いた血液流入実験における試薬が設けられた流路部分の血液流入前の状態を示す写真である。It is a photograph which shows the state before the blood inflow of the flow-path part in which the reagent was provided in the blood inflow experiment using the bodily fluid measurement chip | tip as one Embodiment of this invention. 本発明の一実施形態としての体液測定チップを用いた血液流入実験における試薬が設けられた流路部分の血液流入後(ヘマトクリット値70の血液が流入してから3秒後)の状態を示す写真である。なお、赤褐色部分は血液である。The photograph which shows the state after the blood inflow (3 seconds after the blood of hematocrit value 70 flows in) of the flow-path part in which the reagent was provided in the blood inflow experiment using the bodily fluid measurement chip | tip as one Embodiment of this invention. It is. The reddish brown part is blood. 比較例としての体液測定チップを示す断面図である。It is sectional drawing which shows the bodily fluid measurement chip | tip as a comparative example. 図8に示す体液測定チップを用いた血液流入実験における試薬が設けられた流路部分の血液流入前の状態を示す写真である。It is a photograph which shows the state before the blood inflow of the flow-path part in which the reagent was provided in the blood inflow experiment using the bodily fluid measurement chip | tip shown in FIG. 図8に示す体液測定チップを用いた血液流入実験における試薬が設けられた流路部分の血液流入後(ヘマトクリット値70の血液が流入してから3秒後)の状態を示す写真である。なお、写真における黄緑色部分は血液が流入していない流路部分であり、赤褐色部分は血液である。FIG. 9 is a photograph showing a state after blood inflow (3 seconds after blood with a hematocrit value of 70) flows in a flow path portion provided with a reagent in a blood inflow experiment using the body fluid measurement chip shown in FIG. 8. In addition, the yellowish green part in a photograph is a flow-path part into which the blood does not flow in, and a reddish brown part is blood.
(体液測定チップ)
 以下、本発明に係る体液測定チップの実施形態について、図1~図4を参照して説明する。なお、各図において共通の部材には、同一の符号を付している。
(Body fluid measurement chip)
Hereinafter, an embodiment of a body fluid measurement chip according to the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the common member in each figure.
 図1は、本発明の一実施形態に係る体液測定チップを示す平面図である。また、図2Aは、図1における線I−Iに沿った断面図である。また、図2Bは、図1に示す体液測定チップの変形例を示す断面図である。また、図3は、図1に示す体液測定チップの別の変形例を示す断面図である。さらに、図4は、図1に示す体液測定チップのさらに別の変形例を示す平面図である。 FIG. 1 is a plan view showing a body fluid measurement chip according to an embodiment of the present invention. 2A is a cross-sectional view taken along line II in FIG. FIG. 2B is a cross-sectional view showing a modification of the body fluid measurement chip shown in FIG. FIG. 3 is a cross-sectional view showing another modification of the body fluid measurement chip shown in FIG. FIG. 4 is a plan view showing still another modification of the body fluid measurement chip shown in FIG.
 図1~図4に示すように、本実施形態における体液測定チップ100は、供給口10と、流路20と、試薬30と、を備えている。 As shown in FIGS. 1 to 4, the body fluid measurement chip 100 in this embodiment includes a supply port 10, a flow path 20, and a reagent 30.
 以下、本実施形態における体液測定チップ100の各部材及び各部材により構成される特徴部の詳細について説明する。 Hereinafter, each member of the bodily fluid measurement chip 100 according to the present embodiment and details of a characteristic part constituted by each member will be described.
<供給口10、流路20、及び試薬30>
 図1~図4に示すように、体液測定チップ100は、底面部を形成する第1基材1と、天面部を形成する第2基材2と、これらの第1基材1及び第2基材2の間に、且つ、チップ厚み方向に対して直交する幅方向の両端に設けられた接着部3,4とを備える。
 このように、接着部3,4において、第1基材1及び第2基材2の間に任意の厚みを有するスペーサ(図には示していない)を挟んだまま、第1基材1及び第2基材2を接着させることで、第1基材1と第2基材2との間に所定の大きさの空隙が形成される。この所定の大きさの空隙が、供給口10が一端に形成された流路20となり、体液を体液測定チップ100内に流入することができる。さらに、流路20内には、試薬30が設けられている。
<Supply port 10, flow path 20, and reagent 30>
As shown in FIGS. 1 to 4, the body fluid measuring chip 100 includes a first base material 1 that forms a bottom surface portion, a second base material 2 that forms a top surface portion, and the first base material 1 and the second base material 2. Adhesives 3 and 4 are provided between the base materials 2 and at both ends in the width direction orthogonal to the chip thickness direction.
As described above, in the bonding portions 3 and 4, the first base material 1 and the first base material 1 and the second base material 2 are sandwiched with a spacer (not shown) having an arbitrary thickness. By bonding the second base material 2, a gap having a predetermined size is formed between the first base material 1 and the second base material 2. The gap of the predetermined size becomes a flow path 20 having the supply port 10 formed at one end, and body fluid can flow into the body fluid measurement chip 100. Furthermore, a reagent 30 is provided in the flow path 20.
 第1基材1の材質としては、特に制限はなく、目的(光の照射・受光)に応じて適宜選択することができ、例えば、ポリエチレンテレフターレート(PET)、ポリメチルメタアクリレート、ポリスチレン、環状ポリオレフィン、環状オレフィンコポリマー、ポリカーボネート等の透明な有機樹脂材料;ガラス、石英等の透明性な無機材料;などが挙げられる。 There is no restriction | limiting in particular as a material of the 1st base material 1, According to the objective (light irradiation and light reception), it can select suitably, For example, a polyethylene terephthalate (PET), polymethylmethacrylate, polystyrene, And transparent organic resin materials such as cyclic polyolefin, cyclic olefin copolymer, and polycarbonate; transparent inorganic materials such as glass and quartz; and the like.
 第2基材2の材質としては、特に制限はなく、目的(光の照射・受光)に応じて適宜選択することができ、例えば、親水処理ポリエステルフィルム等の透明な有機樹脂材料、などが挙げられる。 There is no restriction | limiting in particular as a material of the 2nd base material 2, According to the objective (light irradiation / light reception), it can select suitably, For example, transparent organic resin materials, such as a hydrophilic treatment polyester film, etc. are mentioned. It is done.
 接着部3,4の厚みは、流路20のチップ厚み方向の距離を所望の値にするために、適宜調整される。例えば、第1基材と第2基材との間に任意の厚みを有するスペーサを配置してから接着あるいは融着したり、第1基材と第2基材を接着させる接着部材としてスペーサの機能を兼ねる両面テープを用いてもよい。 The thickness of the bonding portions 3 and 4 is appropriately adjusted in order to set the distance in the chip thickness direction of the flow path 20 to a desired value. For example, a spacer having an arbitrary thickness is disposed between the first base material and the second base material and then bonded or fused, or the spacer is used as an adhesive member for bonding the first base material and the second base material. You may use the double-sided tape which serves as a function.
 試薬30としては、体液と反応するものである限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、血液と反応することにより血糖濃度に応じた色に呈色する公知の試薬、などが挙げられる。
 前記公知の試薬としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(I)(i)グルコースオキシダーゼ(GOD)と(ii)ペルオキシダーゼ(POD)と(iii)1−(4−スルホフェニル)−2,3−ジメチル−4−アミノ−5−ピラゾロンと(iv)N−エチル−N−(2−ヒドロキシ−3−スルホプロピル)−3,5−ジメチルアニリン,ナトリウム塩,1水和物(MAOS)との混合試薬;(II)グルコースデヒドロゲナーゼ(GDH)と、テトラゾリウム塩と、電子メディエーターとの混合試薬;などが挙げられる。
 試薬30は、塗布等の公知の方法により、第1基材1上に形成されているが、これに限定されるものではなく、流路20を閉塞することなく、流路20内に設けられていればよい。
The reagent 30 is not particularly limited as long as it reacts with body fluids, and can be appropriately selected according to the purpose. For example, the reagent 30 is a known color that reacts with blood to give a color corresponding to the blood glucose concentration. Reagents, and the like.
There is no restriction | limiting in particular as said well-known reagent, According to the objective, it can select suitably, For example, (I) (i) glucose oxidase (GOD), (ii) peroxidase (POD), and (iii) 1- (4-sulfophenyl) -2,3-dimethyl-4-amino-5-pyrazolone and (iv) N-ethyl-N- (2-hydroxy-3-sulfopropyl) -3,5-dimethylaniline, sodium salt , Monohydrate (MAOS) mixed reagent; (II) glucose dehydrogenase (GDH), tetrazolium salt, and electron mediator mixed reagent;
The reagent 30 is formed on the first base material 1 by a known method such as coating, but is not limited thereto, and is provided in the flow channel 20 without closing the flow channel 20. It only has to be.
 本実施形態における体液測定チップ100において、図2A,B及び図3に示すように、流路20における試薬30の上流側端30aの位置を境界Bとした場合に、流路20の断面積は、境界Bを挟み、上流側より下流側が減少している。ここで、「流路20の断面積は、境界Bを挟み、上流側より下流側が減少している」とは、例えば、境界Bに対して上流側における流路20(20a)の断面積A1(不図示)が、境界Bに対して下流側における流路20(20b)の断面積A2(不図示)よりも大きいことを意味する。これにより、検体としての体液が高粘度である(特に、高ヘマトクリット値の全血である)場合であっても、この高粘度の体液を試薬が設けられた流路部分20bに素早く流入させることができる(図7B参照)。
 なお、本明細書において、「境界B」とは、「試薬30の上流側端30aの位置」であり、また、換言すると、「試薬30が設けられていない流路部分20a」と「試薬30が設けられた流路部分20b」との境界である。よって、境界Bの上流側には、試薬30が設けられておらず、境界Bの下流側には、試薬30が設けられている。
In the bodily fluid measurement chip 100 according to the present embodiment, when the position of the upstream side end 30a of the reagent 30 in the flow channel 20 is the boundary B as shown in FIGS. 2A, 2B, and 3, the cross-sectional area of the flow channel 20 is The downstream side is decreased from the upstream side across the boundary B. Here, “the cross-sectional area of the flow path 20 is such that the downstream side is smaller than the upstream side across the boundary B” means, for example, the cross-sectional area A1 of the flow path 20 (20a) on the upstream side with respect to the boundary B. (Not shown) means that it is larger than the cross-sectional area A2 (not shown) of the flow path 20 (20b) on the downstream side with respect to the boundary B. Thereby, even when the body fluid as the specimen has a high viscosity (particularly, whole blood having a high hematocrit value), the high-viscosity body fluid is allowed to quickly flow into the flow path portion 20b provided with the reagent. (See FIG. 7B).
In this specification, the “boundary B” is “the position of the upstream end 30a of the reagent 30”. In other words, “the channel portion 20a where the reagent 30 is not provided” and “the reagent 30”. This is a boundary with the flow path portion 20b "provided. Therefore, the reagent 30 is not provided on the upstream side of the boundary B, and the reagent 30 is provided on the downstream side of the boundary B.
 流路部分20aと流路部分20bとの境界Bにおいて、図2Aに示すように、流路部分20aと流路部分20bとの間に断面積変化部としての段差Xが形成されていてもよく、図3に示すように、流路部分20aと流路部分20bとに跨る断面積変化部としてのテーパー部Yが形成されていてもよい。ここで、図2Aにおいて、流路部分20aを形成する第2基材2は、流路部分20bを形成する第2基材2と、線接触しているが、これに限定されるものではなく、図2Bに示すように、流路部分20aを形成する第2基材2と流路部分20bを形成する第2基材2とが、重なってオーバーラップして設けられていてもよい。
 このように、境界Bと断面積変化部(例えば、段差X)の位置とは、図2Aに示すように必ずしも一致する必要はなく、図2Bに示すようにずれていても近傍であればよい。
At the boundary B between the flow path portion 20a and the flow path portion 20b, as shown in FIG. 2A, a step X as a cross-sectional area changing portion may be formed between the flow path portion 20a and the flow path portion 20b. As shown in FIG. 3, the taper part Y as a cross-sectional area change part straddling the flow-path part 20a and the flow-path part 20b may be formed. Here, in FIG. 2A, the second base material 2 that forms the flow path portion 20a is in line contact with the second base material 2 that forms the flow path portion 20b. However, the present invention is not limited to this. As shown in FIG. 2B, the second base material 2 that forms the flow path portion 20a and the second base material 2 that forms the flow path portion 20b may overlap and overlap each other.
As described above, the boundary B and the position of the cross-sectional area change portion (for example, the step X) do not necessarily match as shown in FIG. 2A, and may be in the vicinity even if they are shifted as shown in FIG. 2B. .
 ここで、「境界Bに対して上流側における流路20(20a)の断面積A1」とは、「試薬30が設けられていない流路部分20aのうち、境界B乃至その近傍に位置する断面積変化部における変化前(減少前)の流路20(20a)の断面積」であり、例えば、図2Aに示すように、境界Bと断面積変化部(段差X)の位置とが一致する場合は、「断面積A1」は、「試薬30が設けられていない流路部分20aのうち、試薬30が設けられている流路部分20bに最も近接した部分の断面積」であるが、図2Bに示すように、境界Bと断面積変化部(段差X)の位置とが一致しないでずれている(但し、断面積変化部(段差X)の位置が境界Bの近傍である)場合は、「断面積A1」は、「試薬30が設けられていない流路部分20aのうち、境界Bの近傍に位置する断面積変化部における変化前(減少前)の断面積」である。
 また、「境界Bに対して下流側における流路20(20b)の断面積A2」とは、「試薬30が設けられている流路部分20bのうち、境界B乃至その近傍に位置する断面積変化部における変化後(減少後)の流路20(20b)の断面積」であり、例えば、図2Aに示すように、境界Bと断面積変化部(段差X)の位置とが一致する場合は、「断面積A2」は、「試薬30が設けられている流路部分20bのうち、試薬30が設けられていない流路部分20aに最も近接した部分の断面積」であるが、図2Bに示すように、境界Bと断面積変化部(段差X)の位置とが一致しないでずれている(但し、断面積変化部(段差X)の位置が境界Bの近傍である)場合は、「断面積A2」は、「試薬30が設けられている流路部分20bのうち、境界Bの近傍に位置する断面積変化部における変化後(減少後)の断面積」である。
 なお、上述した内容は、「チップ厚み方向の距離を変化させることにより形成された断面積変化部」に対してのみに適用されるものではなく、「チップ厚み方向と直交する方向の幅を変化させることにより形成された断面積変化部」に対しても同様に適用できるものである。
Here, “the cross-sectional area A1 of the channel 20 (20a) on the upstream side with respect to the boundary B” means “the boundary B or a portion located in the vicinity thereof in the channel portion 20a where the reagent 30 is not provided”. For example, as shown in FIG. 2A, the boundary B and the position of the cross-sectional area changing portion (step X) coincide with each other. In this case, “cross-sectional area A1” is “a cross-sectional area of a portion of the flow path portion 20a not provided with the reagent 30 that is closest to the flow path portion 20b provided with the reagent 30”. As shown in 2B, when the boundary B and the position of the cross-sectional area change portion (step X) are shifted without matching (however, the position of the cross-sectional area change portion (step X) is near the boundary B) , “Cross-sectional area A1” is “the flow path portion 20a where the reagent 30 is not provided. Chi, a cross-sectional area "before the change in cross-sectional area changing portion located in the vicinity of the boundary B (before reduction).
Further, “the cross-sectional area A2 of the flow channel 20 (20b) on the downstream side with respect to the boundary B” means “the cross-sectional area located at or near the boundary B in the flow channel portion 20b where the reagent 30 is provided”. “Cross-sectional area of flow path 20 (20b) after change (after decrease) in the change part”, for example, when the boundary B and the position of the cross-sectional area change part (step X) coincide as shown in FIG. 2A “Cross-sectional area A2” is “the cross-sectional area of the flow channel portion 20b provided with the reagent 30 that is closest to the flow channel portion 20a provided with no reagent 30”. As shown in FIG. 4, when the boundary B and the position of the cross-sectional area change portion (step X) are shifted without matching (however, the position of the cross-sectional area change portion (step X) is in the vicinity of the boundary B), “Cross-sectional area A2” is “of the flow path portion 20b where the reagent 30 is provided, The cross-sectional area "after the change in cross-sectional area changing portion located in the vicinity of the field B (after the reduction).
The above-mentioned contents are not applied only to “the cross-sectional area changing portion formed by changing the distance in the chip thickness direction”, but “the width in the direction orthogonal to the chip thickness direction is changed. The present invention can be similarly applied to the “cross-sectional area changing portion formed by the above”.
 境界Bに対して上流側における流路20(20a)の断面積A1としては、境界Bに対して下流側における流路20(20b)の断面積A2よりも大きい限り、特に制限はなく、目的に応じて適宜選択することができるが、0.1mm~0.5mmが好ましく、0.13mm~0.42mmがより好ましい。 The cross-sectional area A1 of the flow path 20 (20a) on the upstream side with respect to the boundary B is not particularly limited as long as it is larger than the cross-sectional area A2 of the flow path 20 (20b) on the downstream side with respect to the boundary B. Although it can be selected appropriately according to the above, 0.1 mm 2 to 0.5 mm 2 is preferable, and 0.13 mm 2 to 0.42 mm 2 is more preferable.
 境界Bに対して下流側における流路20(20b)の断面積A2としては、境界Bに対して上流側における流路20(20a)の断面積A1よりも小さい限り、特に制限はなく、目的に応じて適宜選択することができるが、0.05mm~0.2mmが好ましく、0.08mm~0.16mmがより好ましい。 The cross-sectional area A2 of the flow path 20 (20b) on the downstream side with respect to the boundary B is not particularly limited as long as it is smaller than the cross-sectional area A1 of the flow path 20 (20a) on the upstream side with respect to the boundary B. Although it can be appropriately selected depending on the thickness, 0.05 mm 2 to 0.2 mm 2 is preferable, and 0.08 mm 2 to 0.16 mm 2 is more preferable.
 断面積A1と断面積A2との比(A1/A2)としては、1より大きい限り、特に制限はなく、目的に応じて適宜選択することができるが、1.6~2.6が好ましい。
 前記比が、好ましい範囲内であると、検体としての高粘度の体液を流路部分20bに素早く流入させることができる。
The ratio (A1 / A2) between the cross-sectional area A1 and the cross-sectional area A2 is not particularly limited as long as it is larger than 1, and can be appropriately selected according to the purpose, but is preferably 1.6 to 2.6.
When the ratio is within a preferable range, a highly viscous body fluid as a specimen can be quickly flowed into the flow path portion 20b.
 本実施形態における体液測定チップ100において、図2A,B及び図3に示すように、流路20における試薬30の上流側端30aの位置を境界Bとした場合に、流路20のチップ厚み方向の距離は、境界Bを挟み、上流側より下流側が減少していることが好ましい。ここで、「流路20のチップ厚み方向の距離は、境界Bを挟み、上流側より下流側が減少している」とは、例えば、境界Bに対して上流側における流路20(20a)のチップ厚み方向の距離D1が、境界Bに対して下流側における流路20(20b)のチップ厚み方向の距離D2よりも大きいことを意味する。
 境界Bに対して上流側における流路20(20a)のチップ厚み方向の距離D1としては、特に制限はなく、目的に応じて適宜選択することができるが、80μm以上が好ましく、130μm~1mmがより好ましく、130μm~200μmが特に好ましい。ここで、境界Bに対して上流側における流路20(20a)のチップ厚み方向の距離D1は、大きい方が、検体としての高粘度の体液を流路部分20bに素早く流入させることが可能となり、測定時間を短縮できる点で有利である。境界Bに対して上流側における流路20(20a)のチップ厚み方向の距離D1は、小さい方が、検体量を少なくできる点で有利となる。よって、検体の流路部分20bへの流入と検体量とのバランスを考慮して、距離D1の上限と下限が決定される。
In the bodily fluid measurement chip 100 according to the present embodiment, when the position of the upstream end 30a of the reagent 30 in the flow path 20 is defined as the boundary B as shown in FIGS. This distance is preferably such that the downstream side is smaller than the upstream side across the boundary B. Here, “the distance in the chip thickness direction of the flow path 20 is smaller on the downstream side than the upstream side across the boundary B” means, for example, that of the flow path 20 (20a) on the upstream side with respect to the boundary B This means that the distance D1 in the chip thickness direction is larger than the distance D2 in the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B.
The distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 80 μm or more, and preferably 130 μm to 1 mm. More preferably, 130 μm to 200 μm is particularly preferable. Here, when the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is larger, it becomes possible to quickly cause a highly viscous body fluid as a specimen to flow into the flow path portion 20b. This is advantageous in that the measurement time can be shortened. A smaller distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is advantageous in that the sample amount can be reduced. Therefore, the upper limit and the lower limit of the distance D1 are determined in consideration of the balance between the flow of the sample into the flow path portion 20b and the sample amount.
 境界Bに対して下流側における流路20(20b)のチップ厚み方向の距離D2としては、特に制限はなく、目的に応じて適宜選択することができるが、50μm~100μmが好ましい。ここで、境界Bに対して下流側における流路20(20b)のチップ厚み方向の距離D2は、大きい方が、検体としての高粘度の体液を流路部分20bに素早く流入させることが可能となり、測定時間を短縮できる点で有利となり、小さい方が、透過光を効率良く得ることが可能となり、さらに検体量を少なくできる点で有利となる。よって、検体の流路部分20bへの流入、検体量、及び得られる透過光量のバランスを考慮して、距離D2の上限と下限が決定される。
 なお、検体量を少なくすることにより、流路部分20bに流入された検体が測定光を散乱するのを防止して、体液中の所定成分を正確に測定することが可能となる。
The distance D2 in the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 μm to 100 μm. Here, when the distance D2 in the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is larger, it becomes possible to quickly flow a highly viscous body fluid as a specimen into the flow path portion 20b. It is advantageous in that the measurement time can be shortened, and the smaller one is advantageous in that transmitted light can be obtained efficiently and the amount of specimen can be further reduced. Accordingly, the upper limit and the lower limit of the distance D2 are determined in consideration of the balance between the inflow of the sample into the flow channel portion 20b, the sample amount, and the obtained transmitted light amount.
Note that, by reducing the amount of the sample, it is possible to prevent the sample flowing into the flow path portion 20b from scattering the measurement light and accurately measure a predetermined component in the body fluid.
 第1基材1上に形成された試薬30の厚みTとしては、特に制限はなく、目的に応じて適宜選択することができるが、15μm~30μmが好ましい。ここで、第1基材1上に形成された試薬30の厚みTは、厚い方が、体液との反応を確実にすることができる点で有利となり、薄い方が、検体を流路部分20bに素早く流入させることができる点で有利となる。よって、体液との反応と、検体の流路部分20bへの流入とのバランスを考慮して、厚みTの上限と下限が決定される。 The thickness T of the reagent 30 formed on the first substrate 1 is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 15 μm to 30 μm. Here, the thicker the thickness T of the reagent 30 formed on the first base material 1 is, the more advantageous it is that the reaction with the body fluid can be ensured, and the thinner the thickness T is, the sample is allowed to pass through the flow channel portion 20b. It is advantageous in that it can be quickly introduced into the water. Therefore, the upper limit and the lower limit of the thickness T are determined in consideration of the balance between the reaction with the body fluid and the inflow of the specimen into the flow channel portion 20b.
 本実施形態における体液測定チップ100において、図4に示すように、流路20における試薬30の上流側端30aの位置を境界Bとした場合に、流路20のチップ厚み方向に対して直交する方向の幅は、境界Bを挟み、上流側より下流側が減少していることが好ましい。ここで、「流路20のチップ厚み方向に対して直交する方向の幅は、境界Bを挟み、上流側より下流側が減少している」とは、例えば、境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1が、境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2よりも大きいことを意味する。
 なお、本明細書において、「チップ厚み方向に対して直交する方向の幅」とは、「チップ厚み方向(図2及び図3参照)及び流路長手方向(図1~図4参照)に対して直交する方向の幅」を意味し、例えば、図1及び図4における幅W1及び幅W2が該当する。
In the bodily fluid measurement chip 100 according to the present embodiment, as shown in FIG. 4, when the position of the upstream end 30 a of the reagent 30 in the flow path 20 is defined as the boundary B, it is orthogonal to the chip thickness direction of the flow path 20. The width in the direction is preferably such that the downstream side is smaller than the upstream side across the boundary B. Here, “the width of the flow path 20 in the direction perpendicular to the chip thickness direction is smaller on the downstream side than the upstream side across the boundary B”, for example, The width W1 in the direction orthogonal to the chip thickness direction of the path 20 (20a) is larger than the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B. Means that.
In this specification, “the width in the direction perpendicular to the chip thickness direction” means “to the chip thickness direction (see FIGS. 2 and 3)” and the flow channel longitudinal direction (see FIGS. 1 to 4). For example, the width W1 and the width W2 in FIGS. 1 and 4 are applicable.
 境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1としては、特に制限はなく、目的に応じて適宜選択することができるが、1mm~2mmが好ましい。
 ここで、境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1は、大きい方が、検体を流路部分20bに素早く流入させることが可能となる点で有利となり、小さい方が、検体量を少なくできる点で有利となる。よって、検体の流路部分20bへの流入と、検体量とのバランスを考慮して、幅W1の上限と下限が決定される。
The width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is not particularly limited and may be appropriately selected depending on the intended purpose. Is preferred.
Here, the larger the width W1 in the direction orthogonal to the chip thickness direction of the channel 20 (20a) on the upstream side with respect to the boundary B, the faster the sample can flow into the channel portion 20b. The smaller one is advantageous, and the smaller one is advantageous in that the sample amount can be reduced. Therefore, the upper limit and the lower limit of the width W1 are determined in consideration of the balance between the flow of the sample into the flow channel portion 20b and the sample amount.
 境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5mm~2mmが好ましい。
 ここで、境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2は、大きい方が、照射スポットの面積を幅方向に大きく取れるため、精度良く測定ができる点で有利となり、小さい方が、検体量を少なくできる点で有利となる。よって、照射スポットの面積と検体量とのバランスを考慮して、幅W2の上限と下限が決定される。
The width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is not particularly limited and may be appropriately selected depending on the intended purpose. ~ 2 mm is preferred.
Here, the larger the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B, the larger the area of the irradiation spot can be taken in the width direction. It is advantageous in that the measurement can be performed, and the smaller one is advantageous in that the amount of the sample can be reduced. Therefore, the upper limit and the lower limit of the width W2 are determined in consideration of the balance between the area of the irradiation spot and the sample amount.
 境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL1としては、特に制限はなく、目的に応じて適宜選択することができるが、5mm~10mmが好ましい。
 ここで、境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL1は、長い方が、成分測定装置への装着(挿入)が容易となる点、および光学測定部への外乱光の進入が減少するという点で有利であるが、短い方が、検体量を少なくできる点で有利となる。よって、成分測定装置への装着(挿入)のしやすさ、外乱光の影響、及び検体量のバランスを考慮して、長さL1の上限と下限が決定される。
The length L1 in the direction (flow channel longitudinal direction) orthogonal to the chip thickness direction of the flow channel 20 (20a) on the upstream side with respect to the boundary B is not particularly limited and may be appropriately selected depending on the purpose. However, 5 mm to 10 mm is preferable.
Here, the longer length L1 in the direction (flow channel longitudinal direction) perpendicular to the chip thickness direction of the flow channel 20 (20a) on the upstream side with respect to the boundary B is attached to the component measuring device ( This is advantageous in that it is easy to insert) and the entry of ambient light into the optical measurement unit is reduced. However, the shorter one is advantageous in that the amount of specimen can be reduced. Therefore, the upper limit and the lower limit of the length L1 are determined in consideration of the ease of mounting (insertion) on the component measuring apparatus, the influence of ambient light, and the balance of the sample amount.
 境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2としては、特に制限はなく、目的に応じて適宜選択することができるが、1mm~4mmが好ましく、1mm~2mmがより好ましい。
 ここで、境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2は、長い方が、照射スポットの面積を長さ方向に大きく取れるため、精度良く測定ができる点で有利であるが、短い方が、検体量を少なくできる点で有利となる。よって、測定精度と検体量とのバランスを考慮して、長さL2の上限と下限が決定される。
The length L2 in the direction (flow channel longitudinal direction) orthogonal to the chip thickness direction of the flow channel 20 (20b) on the downstream side with respect to the boundary B is not particularly limited and may be appropriately selected depending on the purpose. However, 1 mm to 4 mm is preferable, and 1 mm to 2 mm is more preferable.
Here, the longer one of the length L2 in the direction (flow channel longitudinal direction) perpendicular to the chip thickness direction of the flow channel 20 (20b) on the downstream side with respect to the boundary B is the length of the irradiation spot area. Since it can be greatly taken in the direction, it is advantageous in that the measurement can be performed with high accuracy, but the shorter one is advantageous in that the amount of the sample can be reduced. Therefore, the upper limit and the lower limit of the length L2 are determined in consideration of the balance between the measurement accuracy and the sample amount.
(成分測定装置セット)
 次に、本発明の一実施形態としての成分測定装置セットについて説明する。
 本発明の一実施形態としての成分測定装置セットは、上述した本発明の体液測定チップと、体液中の所定成分を測定する成分測定装置とを備える。
 以下、体液と試薬との反応物を透過した光を測定する透過型の成分測定装置を備える成分測定装置セットについて説明するが、本発明は、これに限定されるものでなく、例えば、前記反応物から反射した光を測定する反射型の成分測定装置を備える成分測定装置セットであってもよい。
(Component measuring device set)
Next, the component measuring device set as one embodiment of the present invention will be described.
A component measuring device set as an embodiment of the present invention includes the above-described body fluid measuring chip of the present invention and a component measuring device that measures a predetermined component in the body fluid.
Hereinafter, although a component measurement device set including a transmission-type component measurement device that measures light transmitted through a reaction product of a body fluid and a reagent will be described, the present invention is not limited to this, for example, the reaction It may be a component measuring device set including a reflection type component measuring device that measures light reflected from an object.
 図5は本発明の一実施形態に係る成分測定装置セットとしての血糖計セット500を示す。血糖計セット500は、血糖計110と体液測定チップ100としての血糖測定チップ100aと、を備えている。当該血糖測定チップ100aは血糖計110の先端部に装着される。血糖計110は、測定結果や操作内容などを表示するディスプレー111と、血糖計110の起動と終了を指示する電源ボタン112と、操作ボタン113と、血糖測定チップ100aを取り外す取外レバー114と、を備えている。ディスプレー111は、液晶またはLED等で構成される。 FIG. 5 shows a blood glucose meter set 500 as a component measuring device set according to an embodiment of the present invention. The blood glucose meter set 500 includes a blood glucose meter 110 and a blood glucose measurement chip 100a as the body fluid measurement chip 100. The blood glucose measurement chip 100a is attached to the tip of the blood glucose meter 110. The blood glucose meter 110 includes a display 111 for displaying measurement results and operation details, a power button 112 for instructing activation and termination of the blood glucose meter 110, an operation button 113, a removal lever 114 for removing the blood glucose measurement chip 100a, It has. The display 111 is composed of a liquid crystal or LED.
 図6は血糖計セット500の血糖計110の先端部と血糖測定チップ100aを別々に示す縦断面図である。血糖計110に血糖測定チップ100aを装着するため、血糖計110の先端に開口部21が形成された装着部22を設け、血糖計110の内部に血糖測定チップ100aを装着する装着孔23を区画する。また、血糖計110の内部には、血糖測定チップ100aに採取した体液(本実施形態では主に血液を例に説明する)の所定成分(本実施形態では主に血糖値を例に説明する)を測定するための光学測定部24を設ける。また、血糖計110は、測定光から得られる信号を処理し血糖値を算出する処理部25と、取外レバー114と連動し血糖測定チップ100aを取り外すイジェクトピン26と、を備えている。以下、各構成について説明する。 FIG. 6 is a longitudinal sectional view showing separately the tip of the blood glucose meter 110 of the blood glucose meter set 500 and the blood glucose measurement chip 100a. In order to mount the blood glucose measuring chip 100a on the blood glucose meter 110, a mounting portion 22 having an opening 21 formed at the tip of the blood glucose meter 110 is provided, and a mounting hole 23 for mounting the blood glucose measuring chip 100a is defined inside the blood glucose meter 110. To do. Further, inside the blood glucose meter 110, a predetermined component of a body fluid collected in the blood glucose measurement chip 100a (this embodiment will be described mainly using blood as an example) (this embodiment will be described mainly using a blood glucose level as an example). An optical measurement unit 24 is provided for measuring. In addition, the blood glucose meter 110 includes a processing unit 25 that processes a signal obtained from the measurement light and calculates a blood glucose level, and an eject pin 26 that removes the blood glucose measurement chip 100a in conjunction with the removal lever 114. Each configuration will be described below.
 測定の際は血糖測定チップ100aが装着孔23に装着される。装着作業はユーザーにより手作業で行われる。図示はしないが、手作業より生ずる装着位置のバラツキを最小限にするために、好ましくは、血糖測定チップ100aを装着孔23内の所定位置に固定するための適当なロック機構等を設置する。 When measuring, the blood glucose measuring chip 100a is mounted in the mounting hole 23. The mounting operation is performed manually by the user. Although not shown, in order to minimize the variation in the mounting position caused by manual work, an appropriate lock mechanism or the like for fixing the blood glucose measurement chip 100a to a predetermined position in the mounting hole 23 is preferably installed.
 光学測定部24は、試薬と血液との反応物に光を照射する照射部31と、反応物を透過した光を測定光として受光する受光部32と、を備えている。本実施形態では、照射部31には、発光ダイオード(LED)を用いるが、ハロゲンランプ、レーザー等であってもよい。受光部32には、例えば、フォトダイオード(PD)を用いる。受光部32は受光した光を所定の信号に変換できるものであればよく、CCD、CMOS等であってもよい。 The optical measurement unit 24 includes an irradiation unit 31 that irradiates light to a reaction product of a reagent and blood, and a light receiving unit 32 that receives light transmitted through the reaction product as measurement light. In the present embodiment, a light emitting diode (LED) is used for the irradiation unit 31, but a halogen lamp, a laser, or the like may be used. For the light receiving unit 32, for example, a photodiode (PD) is used. The light receiving unit 32 may be any device that can convert received light into a predetermined signal, and may be a CCD, a CMOS, or the like.
 本実施形態では、照射部31は、第1の波長を有する光を発する第1の発光素子51と、第1の波長と異なる第2の波長を有する光を発する第2の発光素子52とを含んでもよい。ここで、第1の波長は、血糖量に応じた発色度合を検出するための波長であり、例えば600~900nmの波長帯にある。第2の波長は、血液中の赤血球濃度を検出するための波長であり、例えば510~590nmの波長帯にある。 In the present embodiment, the irradiation unit 31 includes a first light emitting element 51 that emits light having a first wavelength, and a second light emitting element 52 that emits light having a second wavelength different from the first wavelength. May be included. Here, the first wavelength is a wavelength for detecting the degree of color development according to the blood glucose level, and is in the wavelength band of 600 to 900 nm, for example. The second wavelength is a wavelength for detecting the concentration of red blood cells in blood, and is in the wavelength band of 510 to 590 nm, for example.
 照射部31と受光部32の配置および両者の位置関係を説明する。血糖計110の内部には、第1の空間41と第2の空間42とが形成されている。照射部31は当該第1の空間41に、受光部32は当該第2の空間42に、それぞれ配置されている。血糖測定チップ100aが血糖計110に装着されていない状態では、当該第1の空間41と、当該第2の空間42とは、装着孔23を挟んで対向する(図6参照)。血糖測定チップ100aが血糖計110に装着された状態では、当該第1の空間41と、当該第2の空間42とは、当該血糖測定チップ100a上の試薬30が保持されている位置を挟んで対向する。なお、照射光33のエネルギーロスを少なくするために、照射部31は、照射光33が血糖測定チップ100aの底面に垂直に照射できる位置に配置されるのが好ましい。 The arrangement of the irradiation unit 31 and the light receiving unit 32 and the positional relationship between them will be described. Inside the blood glucose meter 110, a first space 41 and a second space 42 are formed. The irradiation unit 31 is disposed in the first space 41, and the light receiving unit 32 is disposed in the second space 42. In a state where the blood glucose measurement chip 100a is not attached to the blood glucose meter 110, the first space 41 and the second space 42 face each other with the attachment hole 23 therebetween (see FIG. 6). In a state where the blood glucose measurement chip 100a is attached to the blood glucose meter 110, the first space 41 and the second space 42 sandwich the position where the reagent 30 on the blood glucose measurement chip 100a is held. opposite. In addition, in order to reduce the energy loss of the irradiation light 33, it is preferable that the irradiation part 31 is arrange | positioned in the position which can irradiate the irradiation light 33 perpendicularly to the bottom face of the blood glucose measurement chip | tip 100a.
 図示はしないが、照射部31に白色を照射するハロゲンランプを用いる場合は、特定の波長のみを照射光33として抽出するために分光フィルタを設ける方法であってもよい。また、低エネルギーの照射で有効に実施するために、集光レンズを備える方法も好適である。 Although not shown, when a halogen lamp that emits white light is used for the irradiation unit 31, a spectral filter may be provided to extract only a specific wavelength as the irradiation light 33. A method including a condensing lens is also suitable for effective implementation with low-energy irradiation.
 処理部25は、測定光から得られる信号に基づいて血糖値を算出する算出部25Aと、測定光から得られる信号に基づいて血糖値が含まれる所定の範囲を予測する予測部25Bと、を含む。 The processing unit 25 includes a calculation unit 25A that calculates a blood glucose level based on a signal obtained from the measurement light, and a prediction unit 25B that predicts a predetermined range including the blood glucose level based on a signal obtained from the measurement light. Including.
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(比較例1)
<体液測定チップの準備>
 図1の平面図及び図8の断面図で示される構成の体液測定チップを準備した。各部材の材質及び寸法などは、以下の通りとした。
−各部材の材質及び寸法−
(1)第1基材1:ポリエチレンテレフターレート(PET)フィルム(製造会社名:東レ株式会社、商品名:ルミラーT60、厚み:188μm)
(2)第2基材2:親水処理ポリエステルフィルム(製造会社名:3M社、商品名:親水処理ポリエステルフィルム9901P、厚み:100μm)
(3)接着部3,4:両面テープ(製造会社名:3M社、商品名:ポリエステルフィルム基材 両面粘着テープ9965、厚み:80μm)
(4)試薬30:WST−4(製造会社名:同仁化学研究所)と、m−PMS(製造会社名:同仁化学研究所)と、グルコースデヒドロゲナーゼとの混合物
(5)境界Bに対して上流側における流路20(20a)の断面積A1
(6)境界Bに対して下流側における流路20(20b)の断面積A2
(7)境界Bに対して上流側における流路20(20a)のチップ厚み方向の距離D1:80μm
(8)境界Bに対して下流側における流路20(20b)のチップ厚み方向の距離D2:80μm
(9)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL1:6mm
(10)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2:2mm
(11)第1基材1上に形成された試薬30の厚みT:30μm
(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1:1mm
(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2:1mm
<検体の調製>
 ヒトから採取した血液を用い、血漿を追加、または取り除くことで、ヘマトクリット(Ht)値が70の血液検体を調製した。
<血液流入実験>
 調製した血液検体6mmを、準備した体液測定チップの供給口に供給し、試薬30が設けられた流路部分20bの血液流入後(血液が流入してから3秒後)の状態を観察し、下記の評価基準で評価した。評価結果を表1に示す。
−評価基準−
○:血液が完全に流路部分20bに流入された(例えば、図7B)。
△:血液がほぼ流路部分20bに流入された。
×:血液が流路部分20bに流入されなかった(例えば、図9B)。
(Comparative Example 1)
<Preparation of body fluid measurement chip>
A bodily fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 8 was prepared. The material and dimensions of each member were as follows.
-Material and dimensions of each member-
(1) First base material 1: Polyethylene terephthalate (PET) film (manufacturing company name: Toray Industries, Inc., trade name: Lumirror T60, thickness: 188 μm)
(2) Second base material 2: hydrophilic treatment polyester film (manufacturer name: 3M company, trade name: hydrophilic treatment polyester film 9901P, thickness: 100 μm)
(3) Adhesion part 3, 4: Double-sided tape (manufacturer name: 3M company, product name: polyester film substrate, double-sided adhesive tape 9965, thickness: 80 μm)
(4) Reagent 30: Mixture of WST-4 (manufacturer name: Dojindo Laboratories), m-PMS (manufacturer name: Dojindo Laboratories) and glucose dehydrogenase (5) Upstream from boundary B Cross-sectional area A1 of the flow path 20 (20a) on the side
(6) Cross-sectional area A2 of the flow path 20 (20b) on the downstream side with respect to the boundary B
(7) Distance D1: 80 μm in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B
(8) Distance D2 in the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B: 80 μm
(9) Length L1: 6 mm in a direction (flow channel longitudinal direction) orthogonal to the chip thickness direction of the flow channel 20 (20a) on the upstream side with respect to the boundary B
(10) Length L2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B (flow path longitudinal direction): 2 mm
(11) Thickness T of the reagent 30 formed on the first substrate 1: 30 μm
(12) Width W1: 1 mm in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B
(13) Width W2: 1 mm in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B
<Sample preparation>
A blood sample having a hematocrit (Ht) value of 70 was prepared by using blood collected from humans and adding or removing plasma.
<Blood inflow experiment>
The prepared blood sample 6 mm 3 is supplied to the supply port of the prepared body fluid measurement chip, and the state after blood inflow (3 seconds after blood inflow) in the flow path portion 20b provided with the reagent 30 is observed. Evaluation was performed according to the following evaluation criteria. The evaluation results are shown in Table 1.
-Evaluation criteria-
○: Blood completely flowed into the flow path portion 20b (for example, FIG. 7B).
(Triangle | delta): The blood flowed into the flow-path part 20b substantially.
X: Blood did not flow into the flow path portion 20b (for example, FIG. 9B).
(比較例2)
 比較例1において、(1)第1基材1:ポリエチレンテレフターレート(PET)フィルムの長さを8mmとし、(2)第2基材2:親水処理ポリエステルフィルムの長さ:8mmとし、(3)接着部3,4:両面テープの長さを8mmとし、(9)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL1を6mmとする代わりに、(1)第1基材1:ポリエチレンテレフターレート(PET)フィルムの長さを11mmとし、(2)第2基材2:親水処理ポリエステルフィルの長さ:11mmとし、(3)接着部3,4:両面テープの長さを11mmとし、(9)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL1を9mmとしたこと以外は、比較例1と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Comparative Example 2)
In Comparative Example 1, (1) the first base material 1: the length of the polyethylene terephthalate (PET) film is 8 mm, (2) the second base material 2: the length of the hydrophilic polyester film is 8 mm, ( 3) Adhering portions 3 and 4: The length of the double-sided tape is 8 mm, and (9) the direction perpendicular to the chip thickness direction of the flow channel 20 (20a) on the upstream side with respect to the boundary B (flow channel longitudinal direction) (1) First base material 1: Polyethylene terephthalate (PET) film length is 11 mm, and (2) Second base material 2: length of hydrophilic treated polyester fill Length: 11 mm, (3) Adhesive part 3, 4: Double-sided tape length is 11 mm, and (9) Direction perpendicular to the chip thickness direction of the flow path 20 (20a) upstream from the boundary B (Flow channel longitudinal direction) Except that the L1 and 9mm is, in the same manner as in Comparative Example 1, preparation of the body fluid measuring chip, the preparation of the specimen, and subjected to blood inflow experiment. The evaluation results are shown in Table 1.
(実施例1)
 比較例1において、図1の平面図及び図8の断面図で示される構成の体液測定チップを準備し、境界Bに対して上流側における流路20(20a)のチップ厚み方向の距離D1を80μmとする代わりに、図1の平面図及び図2の断面図で示される構成の体液測定チップを準備し、境界Bに対して上流側における流路20(20a)のチップ厚み方向の距離D1を130μmとしたこと以外は、比較例1と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 1)
In Comparative Example 1, a bodily fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 8 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set. Instead of 80 μm, a bodily fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. In the same manner as in Comparative Example 1, except that the thickness was set to 130 μm, the preparation of the body fluid measurement chip, the preparation of the specimen, and the blood inflow experiment were performed. The evaluation results are shown in Table 1.
(実施例2)
 比較例2において、図1の平面図及び図8の断面図で示される構成の体液測定チップを準備し、境界Bに対して上流側における流路20(20a)のチップ厚み方向の距離D1を80μmとする代わりに、図1の平面図及び図2の断面図で示される構成の体液測定チップを準備し、境界Bに対して上流側における流路20(20a)のチップ厚み方向の距離D1を130μmとしたこと以外は、比較例2と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 2)
In Comparative Example 2, a body fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 8 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set. Instead of 80 μm, a body fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 2 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Was prepared in the same manner as in Comparative Example 2 except that the body fluid measurement chip was prepared, the sample was prepared, and the blood inflow experiment was performed. The evaluation results are shown in Table 1.
(実施例3)
 比較例1において、図1の平面図及び図8の断面図で示される構成の体液測定チップを準備し、境界Bに対して上流側における流路20(20a)のチップ厚み方向の距離D1を80μmとする代わりに、図1の平面図及び図2の断面図で示される構成の体液測定チップを準備し、境界Bに対して上流側における流路20(20a)のチップ厚み方向の距離D1を160μmとしたこと以外は、比較例1と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 3)
In Comparative Example 1, a bodily fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 8 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set. Instead of 80 μm, a bodily fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. The sample was prepared for the body fluid measurement chip, the sample was prepared, and the blood inflow experiment was conducted in the same manner as in Comparative Example 1 except that the thickness was set to 160 μm. The evaluation results are shown in Table 1.
(実施例4)
 比較例2において、図1の平面図及び図8の断面図で示される構成の体液測定チップを準備し、境界Bに対して上流側における流路20(20a)のチップ厚み方向の距離D1を80μmとする代わりに、図1の平面図及び図2の断面図で示される構成の体液測定チップを準備し、境界Bに対して上流側における流路20(20a)のチップ厚み方向の距離D1を160μmとしたこと以外は、比較例2と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
Example 4
In Comparative Example 2, a body fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 8 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set. Instead of 80 μm, a body fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 2 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B In the same manner as in Comparative Example 2 except that the thickness was set to 160 μm, the preparation of the body fluid measurement chip, the preparation of the specimen, and the blood inflow experiment were performed. The evaluation results are shown in Table 1.
(実施例5)
 比較例1において、図1の平面図及び図8の断面図で示される構成の体液測定チップを準備し、境界Bに対して上流側における流路20(20a)のチップ厚み方向の距離D1を80μmとする代わりに、図1の平面図及び図2の断面図で示される構成の体液測定チップを準備し、境界Bに対して上流側における流路20(20a)のチップ厚み方向の距離D1を210μmとしたこと以外は、比較例1と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 5)
In Comparative Example 1, a bodily fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 8 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set. Instead of 80 μm, a body fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 2 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B The preparation of the body fluid measurement chip, the preparation of the sample, and the blood inflow experiment were performed in the same manner as in Comparative Example 1 except that the thickness was 210 μm. The evaluation results are shown in Table 1.
(実施例6)
 比較例2において、図1の平面図及び図8の断面図で示される構成の体液測定チップを準備し、境界Bに対して上流側における流路20(20a)のチップ厚み方向の距離D1を80μmとする代わりに、図1の平面図及び図2の断面図で示される構成の体液測定チップを準備し、境界Bに対して上流側における流路20(20a)のチップ厚み方向の距離D1を210μmとしたこと以外は、比較例2と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 6)
In Comparative Example 2, a body fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 8 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set. Instead of 80 μm, a body fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 2 is prepared, and the distance D1 in the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B The preparation of the body fluid measurement chip, the preparation of the sample, and the blood inflow experiment were performed in the same manner as in Comparative Example 2 except that the thickness was 210 μm. The evaluation results are shown in Table 1.
(比較例3)
 比較例1において、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を1mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を1mmとする代わりに、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を2mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を2mmとしたこと以外は、比較例1と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Comparative Example 3)
In Comparative Example 1, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Comparative example except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in Example 1, preparation of a body fluid measurement chip, preparation of a specimen, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
(比較例4)
 比較例2において、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を1mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を1mmとする代わりに、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を2mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を2mmとしたこと以外は、比較例2と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Comparative Example 4)
In Comparative Example 2, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Comparative example except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in Example 2, preparation of a body fluid measurement chip, preparation of a sample, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
(実施例7)
 実施例1において、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を1mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を1mmとする代わりに、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を2mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を2mmとしたこと以外は、実施例1と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 7)
In Example 1, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Example 13 except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in Example 1, preparation of a body fluid measurement chip, preparation of a specimen, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
(実施例8)
 実施例2において、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を1mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を1mmとする代わりに、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を2mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を2mmとしたこと以外は、実施例2と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 8)
In Example 2, the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to (12) the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Example 13 except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in Example 2, preparation of a body fluid measurement chip, preparation of a sample, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
(実施例9)
 実施例3において、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を1mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を1mmとする代わりに、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を2mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を2mmとしたこと以外は、実施例3と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
Example 9
In Example 3, the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to (12) the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Example 13 except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in 3, preparation of a body fluid measurement chip, preparation of a specimen, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
(実施例10)
 実施例4において、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を1mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を1mmとする代わりに、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を2mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を2mmとしたこと以外は、実施例4と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 10)
In Example 4, the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to (12) the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Example 13 except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in Example 4, preparation of a body fluid measurement chip, preparation of a specimen, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
(実施例11)
 実施例5において、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を1mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を1mmとする代わりに、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を2mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を2mmとしたこと以外は、実施例5と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 11)
In Example 5, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Example 13 except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in Example 5, preparation of a body fluid measurement chip, preparation of a specimen, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
(実施例12)
 実施例6において、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を1mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を1mmとする代わりに、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を2mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を2mmとしたこと以外は、実施例6と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
Example 12
In Example 6, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Example 13 except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in Example 6, preparation of a body fluid measurement chip, preparation of a sample, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
(比較例5)
 比較例1において、(1)第1基材1:ポリエチレンテレフターレート(PET)フィルムの長さを8mmとし、(2)第2基材2:親水処理ポリエステルフィルの長さ:8mmとし、(3)接着部3,4:両面テープの長さを8mmとし、(10)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2を2mmとする代わりに、(1)第1基材1:ポリエチレンテレフターレート(PET)フィルムの長さを9mmとし、(2)第2基材2:親水処理ポリエステルフィルの長さ:9mmとし、(3)接着部3,4:両面テープの長さを9mmとし、(10)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2を3mmとしたこと以外は、比較例1と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Comparative Example 5)
In Comparative Example 1, (1) first base material 1: polyethylene terephthalate (PET) film length was 8 mm, (2) second base material 2: hydrophilic treated polyester fill length: 8 mm, 3) Adhering portions 3 and 4: The length of the double-sided tape is 8 mm, and (10) the direction perpendicular to the chip thickness direction of the flow channel 20 (20b) on the downstream side with respect to the boundary B (flow channel longitudinal direction) (1) First base material 1: Polyethylene terephthalate (PET) film length is 9 mm, and (2) Second base material 2: length of hydrophilic treated polyester fill Length: 9 mm, (3) Adhesive part 3, 4: Double-sided tape length is 9 mm, (10) Direction perpendicular to chip thickness direction of flow path 20 (20b) on the downstream side with respect to boundary B Length of (flow channel longitudinal direction) Except that 2 was a 3 mm, in the same manner as in Comparative Example 1, preparation of the body fluid measuring chip, the preparation of the sample, and the blood inlet experiments were performed. The evaluation results are shown in Table 1.
(比較例6)
 比較例2において、(1)第1基材1:ポリエチレンテレフターレート(PET)フィルムの長さを11mmとし、(2)第2基材2:親水処理ポリエステルフィルの長さ:11mmとし、(3)接着部3,4:両面テープの長さを11mmとし、(10)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2を2mmとする代わりに、(1)第1基材1:ポリエチレンテレフターレート(PET)フィルムの長さを12mmとし、(2)第2基材2:親水処理ポリエステルフィルの長さ:12mmとし、(3)接着部3,4:両面テープの長さを12mmとし、(10)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2を3mmとしたこと以外は、比較例2と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Comparative Example 6)
In Comparative Example 2, (1) the first base material 1: the length of the polyethylene terephthalate (PET) film was 11 mm, (2) the second base material 2: the length of the hydrophilic treated polyester film: 11 mm, 3) Adhering portions 3 and 4: The length of the double-sided tape is 11 mm, and (10) the direction perpendicular to the chip thickness direction of the flow channel 20 (20b) on the downstream side with respect to the boundary B (flow channel longitudinal direction) (1) First base material 1: Polyethylene terephthalate (PET) film length is 12 mm, and (2) Second base material 2: length of hydrophilic treated polyester fill Length: 12 mm, (3) Adhesive part 3, 4: Double-sided tape length is 12 mm, (10) Direction orthogonal to chip thickness direction of flow path 20 (20b) on the downstream side with respect to boundary B (Flow path length Except that the length L2 of the direction) was set to 3 mm, in the same manner as in Comparative Example 2, preparation of the body fluid measurement chip, the preparation of the sample, and the blood inlet experiments were performed. The evaluation results are shown in Table 1.
(実施例13)
 実施例1において、(1)第1基材1:ポリエチレンテレフターレート(PET)フィルムの長さを8mmとし、(2)第2基材2:親水処理ポリエステルフィルの長さ:8mmとし、(3)接着部3,4:両面テープの長さを8mmとし、(10)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2を2mmとする代わりに、(1)第1基材1:ポリエチレンテレフターレート(PET)フィルムの長さを9mmとし、(2)第2基材2:親水処理ポリエステルフィルの長さ:9mmとし、(3)接着部3,4:両面テープの長さを9mmとし、(10)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2を3mmとしたこと以外は、実施例1と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 13)
In Example 1, (1) the first base material 1: the length of the polyethylene terephthalate (PET) film is 8 mm, (2) the second base material 2: the length of the hydrophilic treated polyester film: 8 mm, ( 3) Adhering portions 3 and 4: The length of the double-sided tape is 8 mm, and (10) the direction perpendicular to the chip thickness direction of the flow channel 20 (20b) on the downstream side with respect to the boundary B (flow channel longitudinal direction) (1) First base material 1: Polyethylene terephthalate (PET) film length is 9 mm, and (2) Second base material 2: length of hydrophilic treated polyester fill Length: 9 mm, (3) Adhesive part 3, 4: Double-sided tape length is 9 mm, (10) Direction perpendicular to chip thickness direction of flow path 20 (20b) on the downstream side with respect to boundary B Length of (flow channel longitudinal direction) Except that 2 was a 3 mm, in the same manner as in Example 1, preparation of the body fluid measuring chip, the preparation of the sample, and the blood inlet experiments were performed. The evaluation results are shown in Table 1.
(実施例14)
 実施例2において、(1)第1基材1:ポリエチレンテレフターレート(PET)フィルムの長さを11mmとし、(2)第2基材2:親水処理ポリエステルフィルの長さ:11mmとし、(3)接着部3,4:両面テープの長さを11mmとし、(10)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2を2mmとする代わりに、(1)第1基材1:ポリエチレンテレフターレート(PET)フィルムの長さを12mmとし、(2)第2基材2:親水処理ポリエステルフィルの長さ:12mmとし、(3)接着部3,4:両面テープの長さを12mmとし、(10)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2を3mmとしたこと以外は、実施例2と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 14)
In Example 2, (1) 1st base material 1: The length of a polyethylene terephthalate (PET) film shall be 11 mm, (2) 2nd base material 2: The length of a hydrophilic treatment polyester fill: 11 mm, ( 3) Adhering portions 3 and 4: The length of the double-sided tape is 11 mm, and (10) the direction perpendicular to the chip thickness direction of the flow channel 20 (20b) on the downstream side with respect to the boundary B (flow channel longitudinal direction) (1) First base material 1: Polyethylene terephthalate (PET) film length is 12 mm, and (2) Second base material 2: length of hydrophilic treated polyester fill Length: 12 mm, (3) Adhesive part 3, 4: Double-sided tape length is 12 mm, (10) Direction orthogonal to chip thickness direction of flow path 20 (20b) on the downstream side with respect to boundary B (Flow path length Except that the length L2 of the direction) was set to 3 mm, in the same manner as in Example 2, preparation of the body fluid measurement chip, the preparation of the sample, and the blood inlet experiments were performed. The evaluation results are shown in Table 1.
(実施例15)
 実施例3において、(1)第1基材1:ポリエチレンテレフターレート(PET)フィルムの長さを8mmとし、(2)第2基材2:親水処理ポリエステルフィルの長さ:8mmとし、(3)接着部3,4:両面テープの長さを8mmとし、(10)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2を2mmとする代わりに、(1)第1基材1:ポリエチレンテレフターレート(PET)フィルムの長さを9mmとし、(2)第2基材2:親水処理ポリエステルフィルの長さ:9mmとし、(3)接着部3,4:両面テープの長さを9mmとし、(10)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2を3mmとしたこと以外は、実施例3と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 15)
In Example 3, (1) the first base material 1: the length of the polyethylene terephthalate (PET) film is 8 mm, (2) the second base material 2: the length of the hydrophilic treated polyester film: 8 mm, ( 3) Adhering portions 3 and 4: The length of the double-sided tape is 8 mm, and (10) the direction perpendicular to the chip thickness direction of the flow channel 20 (20b) on the downstream side with respect to the boundary B (flow channel longitudinal direction) (1) First base material 1: Polyethylene terephthalate (PET) film length is 9 mm, and (2) Second base material 2: length of hydrophilic treated polyester fill Length: 9 mm, (3) Adhesive part 3, 4: Double-sided tape length is 9 mm, (10) Direction perpendicular to chip thickness direction of flow path 20 (20b) on the downstream side with respect to boundary B Length of (flow channel longitudinal direction) Except that 2 was a 3 mm, in the same manner as in Example 3, preparation of the body fluid measuring chip, the preparation of the sample, and the blood inlet experiments were performed. The evaluation results are shown in Table 1.
(実施例16)
 実施例4において、(1)第1基材1:ポリエチレンテレフターレート(PET)フィルムの長さを11mmとし、(2)第2基材2:親水処理ポリエステルフィルの長さ:11mmとし、(3)接着部3,4:両面テープの長さを11mmとし、(10)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2を2mmとする代わりに、(1)第1基材1:ポリエチレンテレフターレート(PET)フィルムの長さを12mmとし、(2)第2基材2:親水処理ポリエステルフィルの長さ:12mmとし、(3)接着部3,4:両面テープの長さを12mmとし、(10)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2を3mmとしたこと以外は、実施例4と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 16)
In Example 4, (1) 1st base material 1: The length of a polyethylene terephthalate (PET) film shall be 11 mm, (2) 2nd base material 2: The length of a hydrophilic treatment polyester fill: 11 mm, ( 3) Adhering portions 3 and 4: The length of the double-sided tape is 11 mm, and (10) the direction perpendicular to the chip thickness direction of the flow channel 20 (20b) on the downstream side with respect to the boundary B (flow channel longitudinal direction) (1) First base material 1: Polyethylene terephthalate (PET) film length is 12 mm, and (2) Second base material 2: length of hydrophilic treated polyester fill Length: 12 mm, (3) Adhesive part 3, 4: Double-sided tape length is 12 mm, (10) Direction orthogonal to chip thickness direction of flow path 20 (20b) on the downstream side with respect to boundary B (Flow path length Except that the length L2 of the direction) was set to 3 mm, in the same manner as in Example 4, preparation of the body fluid measuring chip, the preparation of the sample, and the blood inlet experiments were performed. The evaluation results are shown in Table 1.
(実施例17)
 実施例5において、(1)第1基材1:ポリエチレンテレフターレート(PET)フィルムの長さを8mmとし、(2)第2基材2:親水処理ポリエステルフィルの長さ:8mmとし、(3)接着部3,4:両面テープの長さを8mmとし、(10)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2を2mmとする代わりに、(1)第1基材1:ポリエチレンテレフターレート(PET)フィルムの長さを9mmとし、(2)第2基材2:親水処理ポリエステルフィルの長さ:9mmとし、(3)接着部3,4:両面テープの長さを9mmとし、(10)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2を3mmとしたこと以外は、実施例5と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 17)
In Example 5, (1) 1st base material 1: The length of a polyethylene terephthalate (PET) film shall be 8 mm, (2) 2nd base material 2: The length of a hydrophilic treatment polyester fill: 8 mm, ( 3) Adhering portions 3 and 4: The length of the double-sided tape is 8 mm, and (10) the direction perpendicular to the chip thickness direction of the flow channel 20 (20b) on the downstream side with respect to the boundary B (flow channel longitudinal direction) (1) First base material 1: Polyethylene terephthalate (PET) film length is 9 mm, and (2) Second base material 2: length of hydrophilic treated polyester fill Length: 9 mm, (3) Adhesive part 3, 4: Double-sided tape length is 9 mm, (10) Direction perpendicular to chip thickness direction of flow path 20 (20b) on the downstream side with respect to boundary B Length of (flow channel longitudinal direction) Except that 2 was a 3 mm, in the same manner as in Example 5, preparation of the body fluid measuring chip, the preparation of the sample, and the blood inlet experiments were performed. The evaluation results are shown in Table 1.
(実施例18)
 実施例6において、(1)第1基材1:ポリエチレンテレフターレート(PET)フィルムの長さを11mmとし、(2)第2基材2:親水処理ポリエステルフィルの長さ:11mmとし、(3)接着部3,4:両面テープの長さを11mmとし、(10)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2を2mmとする代わりに、(1)第1基材1:ポリエチレンテレフターレート(PET)フィルムの長さを12mmとし、(2)第2基材2:親水処理ポリエステルフィルの長さ:12mmとし、(3)接着部3,4:両面テープの長さを12mmとし、(10)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向(流路長手方向)の長さL2を3mmとしたこと以外は、実施例6と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 18)
In Example 6, (1) 1st base material 1: The length of a polyethylene terephthalate (PET) film shall be 11 mm, (2) 2nd base material 2: The length of a hydrophilic treatment polyester fill: 11 mm, ( 3) Adhering portions 3 and 4: The length of the double-sided tape is 11 mm, and (10) the direction perpendicular to the chip thickness direction of the flow channel 20 (20b) on the downstream side with respect to the boundary B (flow channel longitudinal direction) (1) First base material 1: Polyethylene terephthalate (PET) film length is 12 mm, and (2) Second base material 2: length of hydrophilic treated polyester fill Length: 12 mm, (3) Adhesive part 3, 4: Double-sided tape length is 12 mm, (10) Direction orthogonal to chip thickness direction of flow path 20 (20b) on the downstream side with respect to boundary B (Flow path length Except that the length L2 of the direction) was set to 3 mm, in the same manner as in Example 6, preparation of the body fluid measurement chip, the preparation of the sample, and the blood inlet experiments were performed. The evaluation results are shown in Table 1.
(比較例7)
 比較例5において、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を1mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を1mmとする代わりに、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を2mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を2mmとしたこと以外は、比較例5と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Comparative Example 7)
In Comparative Example 5, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Comparative example except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in Example 5, preparation of a body fluid measurement chip, preparation of a specimen, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
(比較例8)
 比較例6において、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を1mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を1mmとする代わりに、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を2mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を2mmとしたこと以外は、比較例6と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Comparative Example 8)
In Comparative Example 6, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Comparative example except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in Example 6, preparation of a body fluid measurement chip, preparation of a sample, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
(実施例19)
 実施例13において、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を1mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を1mmとする代わりに、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を2mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を2mmとしたこと以外は、実施例13と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 19)
In Example 13, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Example 13 except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in Example 13, preparation of a body fluid measurement chip, preparation of a sample, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
(実施例20)
 実施例14において、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を1mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を1mmとする代わりに、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を2mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を2mmとしたこと以外は、実施例14と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 20)
In Example 14, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Example 13 except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in Example 14, preparation of a body fluid measurement chip, preparation of a specimen, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
(実施例21)
 実施例15において、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を1mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を1mmとする代わりに、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を2mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を2mmとしたこと以外は、実施例15と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 21)
In Example 15, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Example 13 except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. 15, body fluid measurement chip preparation, sample preparation, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
(実施例22)
 実施例16において、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を1mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を1mmとする代わりに、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を2mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を2mmとしたこと以外は、実施例16と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 22)
In Example 16, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Example 13 except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in 16, preparation of a body fluid measurement chip, preparation of a specimen, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
(実施例23)
 実施例17において、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を1mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を1mmとする代わりに、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を2mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を2mmとしたこと以外は、実施例17と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 23)
In Example 17, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Example 13 except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in Example 17, preparation of a body fluid measurement chip, preparation of a sample, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
(実施例24)
 実施例18において、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を1mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を1mmとする代わりに、(12)境界Bに対して上流側における流路20(20a)のチップ厚み方向に対して直交する方向の幅W1を2mmとし、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を2mmとしたこと以外は、実施例18と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 24)
In Example 18, (12) the width W1 in the direction orthogonal to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B is set to 1 mm, and (13) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) to 1 mm, (12) with respect to the chip thickness direction of the flow path 20 (20a) on the upstream side with respect to the boundary B Example 13 except that the width W1 in the orthogonal direction is 2 mm and (13) the width W2 in the direction orthogonal to the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B is 2 mm. In the same manner as in Example 18, preparation of a body fluid measurement chip, preparation of a specimen, and blood inflow experiment were performed. The evaluation results are shown in Table 1.
(実施例25)
 比較例7において、図1の平面図及び図8の断面図で示される構成の体液測定チップを準備し、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を2mmとする代わりに、図4の平面図及び図8の断面図で示される構成の体液測定チップを準備し、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を1mmとしたこと以外は、比較例7と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 25)
In Comparative Example 7, a body fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 8 is prepared, and (13) in the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B. Instead of setting the width W2 in the direction orthogonal to 2 mm, a bodily fluid measurement chip having the configuration shown in the plan view of FIG. 4 and the cross-sectional view of FIG. 8 is prepared. (13) The preparation of the body fluid measurement chip, the preparation of the sample, and the blood inflow experiment were performed in the same manner as in Comparative Example 7, except that the width W2 in the direction orthogonal to the chip thickness direction of the channel 20 (20b) was set to 1 mm. It was. The evaluation results are shown in Table 1.
(実施例26)
 比較例8において、図1の平面図及び図8の断面図で示される構成の体液測定チップを準備し、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を2mmとする代わりに、図4の平面図及び図8の断面図で示される構成の体液測定チップを準備し、(13)境界Bに対して下流側における流路20(20b)のチップ厚み方向に対して直交する方向の幅W2を1mmとしたこと以外は、比較例8と同様にして、体液測定チップの準備、検体の調製、及び血液流入実験を行った。評価結果を表1に示す。
(Example 26)
In Comparative Example 8, a bodily fluid measurement chip having the configuration shown in the plan view of FIG. 1 and the cross-sectional view of FIG. 8 is prepared. (13) In the chip thickness direction of the flow path 20 (20b) on the downstream side with respect to the boundary B Instead of setting the width W2 in the direction orthogonal to 2 mm, a bodily fluid measurement chip having the configuration shown in the plan view of FIG. 4 and the cross-sectional view of FIG. 8 is prepared. (13) The preparation of the body fluid measurement chip, the preparation of the sample, and the blood inflow experiment were performed in the same manner as in Comparative Example 8 except that the width W2 in the direction orthogonal to the chip thickness direction of the channel 20 (20b) was set to 1 mm. It was. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、境界Bに対して上流側における流路20(20a)の断面積A1が、境界Bに対して下流側における流路20(20b)の断面積A2よりも大きい実施例1~26は、断面積A1が断面積A2以下である比較例1~8よりも、ヘマトクリット(Ht)値が70の血液検体を、試薬30が設けられた流路部分20bに素早く流入させることができることが分かった。 From Table 1, Examples 1-26 in which the cross-sectional area A1 of the flow path 20 (20a) on the upstream side with respect to the boundary B is larger than the cross-sectional area A2 of the flow path 20 (20b) on the downstream side with respect to the boundary B Compared with Comparative Examples 1 to 8 in which the cross-sectional area A1 is equal to or smaller than the cross-sectional area A2, a blood sample having a hematocrit (Ht) value of 70 can be quickly flowed into the flow path portion 20b provided with the reagent 30. I understood.
 本発明は、体液測定チップ及び成分測定装置セットに関し、特に、検体としての体液が高粘度である(特に、高ヘマトクリット値の全血である)場合であっても、この高粘度の体液を、試薬が設けられた流路部分に素早く流入させることが可能な体液測定チップ及び成分測定装置セットに関する。 The present invention relates to a body fluid measurement chip and a component measurement device set, and in particular, even when the body fluid as a specimen has a high viscosity (particularly, whole blood having a high hematocrit value), The present invention relates to a body fluid measurement chip and a component measurement device set that can quickly flow into a flow path portion provided with a reagent.
1:第1基材
2:第2基材
3:接着部
4:接着部
10:供給口
20:流路
20a:試薬が設けられていない流路部分
20b:試薬が設けられている流路部分
21:開口部
22:装着部
23:装着孔
24:光学測定部
25:処理部
25A:算出部
25B:予測部
26:イジェクトピン
30:試薬
30a:上流側端
31:照射部
32:受光部
33:照射光
41:第1の空間
42:第2の空間
51:第1の発光素子
52:第2の発光素子
100:体液測定チップ
100a:血糖測定チップ
110:血糖計
111:ディスプレー
112:電源ボタン
113:操作ボタン
114:取外レバー
500:血糖計セット(成分測定装置)
700:体液測定チップ
B:境界
D1:境界に対して上流側における流路のチップ厚み方向の距離
D2:境界に対して下流側における流路のチップ厚み方向の距離
L1:境界に対して上流側における流路のチップ厚み方向に対して直交する方向(流路長
手方向)の長さ
L2:境界に対して下流側における流路のチップ厚み方向に対して直交する方向(流路長
手方向)の長さ
T:第1基材上に形成された試薬の厚み
W1:境界に対して上流側における流路のチップ厚み方向に対して直交する方向の幅
W2:境界に対して下流側における流路のチップ厚み方向に対して直交する方向の幅
X:段差
Y:テーパー部
1: 1st base material 2: 2nd base material 3: Adhesion part 4: Adhesion part 10: Supply port 20: Channel 20a: Channel part 20b without a reagent: Channel part with a reagent 21: Opening part 22: Mounting part 23: Mounting hole 24: Optical measurement part 25: Processing part 25A: Calculation part 25B: Prediction part 26: Eject pin 30: Reagent 30a: Upstream end 31: Irradiation part 32: Light receiving part 33 : Irradiation light 41: First space 42: Second space 51: First light emitting element 52: Second light emitting element 100: Body fluid measurement chip 100a: Blood glucose measurement chip 110: Blood glucose meter 111: Display 112: Power button 113: Operation button 114: Detach lever 500: Blood glucose meter set (component measuring device)
700: Body fluid measurement chip B: Boundary D1: Distance in the chip thickness direction of the channel on the upstream side with respect to the boundary D2: Distance L1 in the chip thickness direction of the channel on the downstream side with respect to the boundary L1: Upstream with respect to the boundary Length L2 in the direction orthogonal to the chip thickness direction of the flow path (flow path longitudinal direction): in the direction orthogonal to the chip thickness direction of the flow path downstream from the boundary (flow path longitudinal direction) Length T: Thickness W1 of the reagent formed on the first substrate W1: Width W2 in the direction orthogonal to the chip thickness direction of the flow path on the upstream side with respect to the boundary W2: Flow path on the downstream side with respect to the boundary Width X in the direction perpendicular to the chip thickness direction: Step Y: Tapered portion

Claims (5)

  1.  体液中の所定成分を測定する成分測定装置に装着可能な体液測定チップであって、
     体液が供給される供給口と、
     該供給口が一端に形成された流路と、
     該流路内に設けられた試薬と、を備え、
     前記流路における試薬の上流側端の位置を境界とした場合に、前記流路の断面積は、前記境界を挟み、上流側より下流側が減少していることを特徴とする体液測定チップ。
    A body fluid measurement chip that can be attached to a component measuring device that measures a predetermined component in body fluid,
    A supply port through which body fluid is supplied;
    A flow path formed at one end of the supply port;
    A reagent provided in the flow path,
    The bodily fluid measurement chip according to claim 1, wherein when the position of the upstream end of the reagent in the flow path is used as a boundary, the cross-sectional area of the flow path is decreased on the downstream side from the upstream side with the boundary being sandwiched therebetween.
  2.  前記流路における試薬の上流側端の位置を境界とした場合に、前記流路のチップ厚み方向の距離は、前記境界を挟み、上流側より下流側が減少していることを特徴とする請求項1に記載の体液測定チップ。 The distance in the chip thickness direction of the flow path when the position of the upstream end of the reagent in the flow path is used as a boundary, and the downstream side of the flow path decreases from the upstream side with respect to the boundary. 2. The body fluid measurement chip according to 1.
  3.  前記流路における試薬の上流側端の位置を境界とした場合に、前記流路のチップ厚み方向に対して直交する方向の幅は、前記境界を挟み、上流側より下流側が減少していることを特徴とする請求項1又は2に記載の体液測定チップ。 When the position of the upstream end of the reagent in the flow path is used as a boundary, the width of the flow path in the direction orthogonal to the chip thickness direction is smaller on the downstream side than the upstream side across the boundary. The bodily fluid measurement chip according to claim 1 or 2.
  4.  前記境界に対して上流側における前記流路のチップ厚み方向の距離が、80μm以上であることを特徴とする請求項1乃至3のいずれか1項に記載の体液測定チップ。 The body fluid measurement chip according to any one of claims 1 to 3, wherein a distance in the chip thickness direction of the flow path on the upstream side with respect to the boundary is 80 µm or more.
  5.  請求項1乃至4のいずれか1項に記載の体液測定チップと、体液中の所定成分を測定する成分測定装置とを備える成分測定装置セットであって、
     前記成分測定装置が、
     前記体液と前記試薬との反応物に光を照射する照射部と、
     前記反応物を透過又は前記反応物から反射した測定光を受光する受光部と、
     前記測定光から得られる信号を処理する処理部と、
    を備えることを特徴とする成分測定装置セット。
    A component measurement device set comprising the body fluid measurement chip according to any one of claims 1 to 4 and a component measurement device that measures a predetermined component in the body fluid,
    The component measuring device is
    An irradiation unit for irradiating light to a reaction product of the body fluid and the reagent;
    A light receiving unit that receives measurement light transmitted through or reflected from the reactant;
    A processing unit for processing a signal obtained from the measurement light;
    A component measuring device set comprising:
PCT/JP2016/051761 2015-03-24 2016-01-15 Bodily fluid measurement chip and component measurement device set WO2016152225A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015060725 2015-03-24
JP2015-060725 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016152225A1 true WO2016152225A1 (en) 2016-09-29

Family

ID=56978234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051761 WO2016152225A1 (en) 2015-03-24 2016-01-15 Bodily fluid measurement chip and component measurement device set

Country Status (1)

Country Link
WO (1) WO2016152225A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019012865A1 (en) * 2017-07-14 2019-01-17 テルモ株式会社 Blood sugar level measurement chip and blood sugar level measurement device set
WO2019138681A1 (en) * 2018-01-15 2019-07-18 テルモ株式会社 Component measurement system, measurement device, and measurement tip
WO2020137532A1 (en) * 2018-12-28 2020-07-02 テルモ株式会社 Test strip and component measurement system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126403A1 (en) * 2007-04-05 2008-10-23 Panasonic Corporation Sample liquid analytical chip
WO2008136473A1 (en) * 2007-04-29 2008-11-13 Arkray, Inc. Analysis instrument
JP2009031102A (en) * 2007-07-26 2009-02-12 Panasonic Corp Sample analyzing chip
JP2011141302A (en) * 2003-12-04 2011-07-21 Panasonic Corp HEMATOCRIT (Hct) MEASURING METHOD, SENSOR USED FOR SAME, AND MEASURING INSTRUMENT
WO2014049704A1 (en) * 2012-09-26 2014-04-03 テルモ株式会社 Measuring tip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141302A (en) * 2003-12-04 2011-07-21 Panasonic Corp HEMATOCRIT (Hct) MEASURING METHOD, SENSOR USED FOR SAME, AND MEASURING INSTRUMENT
WO2008126403A1 (en) * 2007-04-05 2008-10-23 Panasonic Corporation Sample liquid analytical chip
WO2008136473A1 (en) * 2007-04-29 2008-11-13 Arkray, Inc. Analysis instrument
JP2009031102A (en) * 2007-07-26 2009-02-12 Panasonic Corp Sample analyzing chip
WO2014049704A1 (en) * 2012-09-26 2014-04-03 テルモ株式会社 Measuring tip

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110291185B (en) * 2017-07-14 2022-08-09 泰尔茂株式会社 Blood sugar level measurement chip and blood sugar level measurement device set
JP7184770B2 (en) 2017-07-14 2022-12-06 テルモ株式会社 Blood glucose level measuring chip and blood glucose level measuring device set
CN110291185A (en) * 2017-07-14 2019-09-27 泰尔茂株式会社 Blood-sugar level measuring chip and blood-sugar level measuring device set group
US20200124610A1 (en) * 2017-07-14 2020-04-23 Terumo Kabushiki Kaisha Blood glucose level measuring chip and blood glucose level measuring device set
JPWO2019012865A1 (en) * 2017-07-14 2020-05-07 テルモ株式会社 Blood glucose measuring chip and blood glucose measuring device set
US11719701B2 (en) 2017-07-14 2023-08-08 Terumo Kabushiki Kaisha Blood glucose level measuring chip and blood glucose level measuring device set
JP2022186748A (en) * 2017-07-14 2022-12-15 テルモ株式会社 Blood sugar level measurement chip and blood sugar level measurement device set
WO2019012865A1 (en) * 2017-07-14 2019-01-17 テルモ株式会社 Blood sugar level measurement chip and blood sugar level measurement device set
CN111630375A (en) * 2018-01-15 2020-09-04 泰尔茂株式会社 Component measurement system, measurement device, and measurement chip
JPWO2019138681A1 (en) * 2018-01-15 2021-01-14 テルモ株式会社 Component measurement system, measuring device and measuring chip
WO2019138681A1 (en) * 2018-01-15 2019-07-18 テルモ株式会社 Component measurement system, measurement device, and measurement tip
JP7241033B2 (en) 2018-01-15 2023-03-16 テルモ株式会社 Component measurement system and measurement device
JPWO2020137532A1 (en) * 2018-12-28 2021-11-11 テルモ株式会社 Test strip and component measurement system
WO2020137532A1 (en) * 2018-12-28 2020-07-02 テルモ株式会社 Test strip and component measurement system
JP7442461B2 (en) 2018-12-28 2024-03-04 テルモ株式会社 Component measurement system

Similar Documents

Publication Publication Date Title
WO2016152225A1 (en) Bodily fluid measurement chip and component measurement device set
JP6536413B2 (en) Surface plasmon resonance fluorescence analyzer and surface plasmon resonance fluorescence analysis method
WO2018173609A1 (en) Component measurement device and component measurement device set
WO2013073811A1 (en) Reflective absorbance measuring device, and integral apparatus including same for analyzing reflective absorbance and lateral flow
WO2016170967A1 (en) Method of manufacturing sensing chip and sensing chip
JP3934090B2 (en) Optical multiplexer / demultiplexer for fluorescence analysis, optical module for fluorescence analysis, fluorescence analyzer, and fluorescence / photothermal conversion spectrometer
JP7442461B2 (en) Component measurement system
EP3315970B1 (en) Measurement method, measurement chip used for same, and kit for measurement
EP3413056B1 (en) Liquid delivery method, and detection system using said method
JP2019194622A (en) Point-of-care coagulation assay method and system by optical detection
EP3477298B1 (en) Measurement method
WO2016147527A1 (en) Component measurement device set and body fluid measurement chip
JP7507715B2 (en) Test Strips
CN115406845A (en) Single-use clinical spectrophotometer
JP3877661B2 (en) Micro chemical analyzer
WO2021192952A1 (en) Test strip
JP2006084210A (en) Analyzer
EP3410125A1 (en) Liquid feeding method, and detection system and detection device for carrying out said method
EP3474020B1 (en) Reaction method, and reaction system and reaction device implementing same
US20230001414A1 (en) Clinical spectrophotometer for general chemistry, immuno-assay and nucleic acid detection
US7860354B2 (en) Optical sensor
WO2023171118A1 (en) Test strip
EP4286834A1 (en) Component measurement device, component measurement device set, and information processing method
WO2021166561A1 (en) Component measurement device, component measurement device set, and information processing method
JP2000162124A (en) Sensor chip for surface plasmon resonance angle detecting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768128

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16768128

Country of ref document: EP

Kind code of ref document: A1