WO2016152172A1 - 構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管 - Google Patents

構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管 Download PDF

Info

Publication number
WO2016152172A1
WO2016152172A1 PCT/JP2016/001765 JP2016001765W WO2016152172A1 WO 2016152172 A1 WO2016152172 A1 WO 2016152172A1 JP 2016001765 W JP2016001765 W JP 2016001765W WO 2016152172 A1 WO2016152172 A1 WO 2016152172A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
cooling
steel plate
steel sheet
temperature
Prior art date
Application number
PCT/JP2016/001765
Other languages
English (en)
French (fr)
Inventor
純二 嶋村
石川 信行
遠藤 茂
周作 太田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2017507512A priority Critical patent/JP6256654B2/ja
Priority to KR1020177030020A priority patent/KR102032105B1/ko
Priority to CA2980424A priority patent/CA2980424C/en
Priority to CN201680018221.9A priority patent/CN107406948B/zh
Priority to US15/560,613 priority patent/US10767250B2/en
Priority to EP16768075.0A priority patent/EP3276026B1/en
Publication of WO2016152172A1 publication Critical patent/WO2016152172A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • B23K31/027Making tubes with soldering or welding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/56Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Definitions

  • the present invention relates to a thick steel plate for structural pipes, and in particular, the present invention has strength of API X80 grade or higher, excellent Charpy characteristics at the center of the plate thickness even at a plate thickness of 38 mm or more, and higher material uniformity.
  • the present invention relates to a thick steel plate for structural pipes having both properties.
  • this invention relates to the manufacturing method of the said thick steel plate for structural pipes, and the structural pipe manufactured using the said thick steel plate for structural pipes.
  • Structuring pipes such as conductor casing steel pipes and riser steel pipes are used for oil and gas drilling by submarine resource drills.
  • API American Petroleum Institute
  • ⁇ ⁇ X80 grade or higher from the viewpoint of improving operational efficiency due to pressure increase and reducing material costs.
  • the above-described structural tube is often used by circumferential welding of a forged product (for example, a connector) having a very large amount of alloying elements.
  • a forged product for example, a connector
  • PWHT Post Weld Heat Treatment, heat treatment after welding
  • structural pipes are required to maintain high strength in the longitudinal direction of the pipe, that is, in the rolling direction, in order to prevent breakage due to the external mechanical pressure at the seabed during excavation, even after PWHT. Is done.
  • Patent Document 2 proposes a welded steel pipe in which the base metal portion and the weld metal have a specific composition within a specific range, and the yield strength of both is 551 MPa or more. Patent Document 2 describes that the welded steel pipe is excellent in toughness before and after SR in a welded portion.
  • Patent Document 2 focuses on improving the characteristics of the seam weld metal, and no special consideration is given to the base material, and a decrease in the base material strength due to PWHT is inevitable. In order to ensure the strength of the base material, it is necessary to increase the strength before PWHT by controlled rolling or accelerated cooling.
  • Patent Document 3 discloses a method of reducing the hardness variation in the plate thickness direction and the plate width direction, but the plate thickness in Examples is up to 38 mm.
  • the technique of Patent Document 3 in which only examples up to a plate thickness of 38 mm are shown can be applied to the production of thicker steel plates.
  • the technique described in Patent Document 3 is characterized by excellent HIC resistance in addition to mechanical characteristics, but there is no mention of the strength after PWHT required for the structural pipe application targeted by the present invention. It is also unclear whether the technique described in Patent Document 3 can be applied in the field of structural tubes.
  • the present invention has been developed in view of the above circumstances, and is a high-strength steel plate having an API X80 grade or higher and a plate thickness of 38 mm or more, and the strength in the rolling direction and the central portion of the plate thickness without the addition of a large amount of alloying elements.
  • An object of the present invention is to provide a thick steel plate for structural pipes which has excellent Charpy characteristics and has high material uniformity.
  • this invention aims at providing the manufacturing method of the said thick steel plate for structural pipes, and the structural pipe manufactured using the said thick steel plate for structural pipes.
  • the present inventors have conducted a detailed study on the influence of rolling conditions on the microstructure of the steel plate. went.
  • the chemical composition of steel plates for welded steel pipes and steel plates for welded structures is severely limited from the viewpoint of weldability. Therefore, high-strength steel sheets of X65 grade or higher are manufactured by accelerated cooling after hot rolling. Therefore, the microstructure of the steel sheet is mainly bainite or a structure containing martensite-Austenite constituent (abbreviated as MA for short) in the bainite.
  • MA martensite-Austenite constituent
  • the gist configuration of the present invention is as follows. 1. A thick steel plate for structural pipes, % By mass C: 0.030 to 0.100%, Si: 0.01 to 0.50%, Mn: 1.50-2.50%, Al: 0.080% or less, Mo: 0.05 to 0.50%, Ti: 0.005 to 0.025%, Nb: 0.005 to 0.080%, N: 0.001 to 0.010%, O: 0.005% or less, P: 0.010% or less, and S: 0.0010% or less, It has a component composition consisting of the remaining Fe and inevitable impurities, and having a carbon equivalent C eq defined by the following formula (1) of 0.42 or more, It has a bainite-based microstructure, Tensile strength is 620 MPa or more, Charpy absorbed energy vE at ⁇ 20 ° C.
  • the component composition is in mass%, 2.
  • the thick steel plate for structural pipes according to 1 or 2 above which contains one or more selected from the group consisting of REM: 0.0005 to 0.0100% and B: 0.0020% or less.
  • the thickness for a structural tube according to 4 further comprising a reheating step in which reheating is performed to 400 to 700 ° C. immediately after the second cooling step at a temperature rising rate of 0.5 ° C./s to 10 ° C./s. Manufacturing method of meat steel plate.
  • a structural pipe comprising the thick steel plate for a structural pipe according to any one of claims 1 to 3.
  • the present invention is a high-strength steel plate of API X80 grade or higher, which has high strength in the rolling direction without adding a large amount of alloying elements, and has excellent Charpy characteristics at the center of the plate thickness, and even higher material uniformity It is possible to provide a thick steel plate for a structural pipe having both properties and a structural pipe using the thick steel plate for a structural pipe.
  • “thick” means that the plate thickness is 38 mm or more. The present invention can be suitably applied even when the plate thickness is 42 mm or more, and even 50 mm or more.
  • C 0.030 to 0.100%
  • C is an element that increases the strength of steel.
  • the C content needs to be 0.030% or more.
  • the C content exceeds 0.100%, the weldability deteriorates, weld cracks are likely to occur, and the base metal toughness and HAZ toughness are reduced. Therefore, the C content is 0.100% or less.
  • the C content is preferably 0.050 to 0.080%.
  • Si 0.01 to 0.50% Si is an element that acts as a deoxidizing material and further increases the strength of the steel material by solid solution strengthening. In order to acquire the said effect, Si content shall be 0.01% or more. On the other hand, if the Si content exceeds 0.50%, the HAZ toughness is significantly deteriorated. Therefore, the Si content is 0.50% or less. The Si content is preferably 0.05 to 0.20%.
  • Mn 1.50-2.50%
  • Mn is an element that has the effect of improving the hardenability of steel and improving the strength and toughness. In order to acquire the said effect, Mn content shall be 1.50% or more. On the other hand, if the Mn content exceeds 2.50%, the weldability may be deteriorated. Therefore, the Mn content is 2.50% or less.
  • the Mn content is preferably 1.80% to 2.00%.
  • Al 0.080% or less Al is an element added as a deoxidizer during steelmaking. If the Al content exceeds 0.080%, the toughness is reduced, so the Al content is 0.080% or more.
  • the Al content is preferably 0.010 to 0.050%.
  • Mo 0.05 to 0.50%
  • Mo is a particularly important element in the present invention, and functions to greatly increase the strength of the steel sheet by forming fine composite carbides with Ti, Nb, and V while suppressing pearlite transformation during cooling after hot rolling. have.
  • Mo content shall be 0.05% or more.
  • HEAT-Affected Zone, HAZ weld heat affected zone
  • Ti 0.005 to 0.025%
  • Ti is an especially important element in the present invention, and forms a composite precipitate with Mo and greatly contributes to improving the strength of steel.
  • Ti content shall be 0.005% or more.
  • addition exceeding 0.025% leads to deterioration of HAZ toughness and base metal toughness. Therefore, the Ti content is 0.025% or less.
  • Nb 0.005 to 0.080%
  • Nb is an element having an effect of improving toughness by refining the structure. Moreover, a composite precipitate is formed with Mo and contributes to strength improvement. In order to acquire the said effect, Nb content shall be 0.005% or more. On the other hand, if the Nb content exceeds 0.080%, the HAZ toughness deteriorates. Therefore, the Nb content is 0.080% or less.
  • N 0.001 to 0.010%
  • N is usually present in steel as an inevitable impurity, and Ti is formed when Ti is present.
  • the N content is set to 0.001% or more.
  • TiN decomposes in a welded portion, particularly in a region heated to 1450 ° C. or more in the vicinity of the weld bond, and generates solid solution N. Therefore, when N content is too high, the fall of toughness resulting from the production
  • the N content is more preferably 0.002 to 0.005%.
  • O 0.005% or less
  • P 0.010% or less
  • S 0.0010% or less
  • O, P, and S are inevitable impurities, and the upper limit of the content of these elements is as follows. It prescribes as follows. O is coarse and forms oxygen-based inclusions that adversely affect toughness. In order to suppress the influence of the inclusion, the O content is set to 0.005% or less. Further, since P has a property of segregating at the center and reducing the toughness of the base material, if the P content is high, a decrease in the base material toughness becomes a problem. Therefore, the P content is 0.010% or less.
  • the S content is 0.0010% or less.
  • the O content is preferably 0.003% or less
  • the P content is preferably 0.008% or less
  • the S content is preferably 0.0008% or less.
  • the lower limit of the contents of O, P, and S is not limited, but industrially it exceeds 0%. Further, if the content is excessively reduced, the refining time is increased and the cost is increased, so the O content is 0.0005% or more, the P content is 0.001% or more, and the S content is 0.0001%. The above is preferable.
  • the thick steel plate for structural pipe of the present invention may further contain V: 0.005 to 0.100% in addition to the above elements.
  • V 0.005 to 0.100%
  • V forms a composite precipitate with Mo and contributes to an increase in strength.
  • V content shall be 0.005% or more.
  • the V content exceeds 0.100%, the HAZ toughness decreases. Therefore, when V is added, the V content is set to 0.100% or less.
  • the thick steel plate for structural pipes of the present invention includes Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, Ca: 0.0005-0.
  • One or more selected from the group consisting of 0035%, REM: 0.0005 to 0.0100%, and B: 0.0020% or less may be further contained.
  • Cu 0.50% or less
  • Cu is an element effective in improving toughness and strength, but if the amount added is too large, weldability is lowered. Therefore, when adding Cu, the Cu content is 0.50% or less.
  • the minimum of Cu content is not specifically limited, When adding Cu, it is preferable to make Cu content 0.05% or more.
  • Ni 0.50% or less
  • Ni is an element effective for improving toughness and strength. However, if the addition amount is too large, the PWHT resistance is lowered. Therefore, when Ni is added, the Ni content is 0.50% or less.
  • the minimum of Ni content is not specifically limited, When adding Ni, it is preferable to make Ni content 0.05% or more.
  • Cr 0.50% or less Cr is an effective element for obtaining sufficient strength even at low C, as with Mn. However, excessive addition reduces weldability. Therefore, when adding Cr, Cr content shall be 0.50% or less. In addition, although the minimum of Cr content is not specifically limited, When adding Cr, it is preferable to make Cr content 0.05% or more.
  • Ca 0.0005 to 0.0035%
  • Ca content shall be 0.0005% or more.
  • the effect is saturated. Rather, the toughness is lowered due to a decrease in the cleanliness of the steel. Therefore, when adding Ca, the Ca content is set to 0.0035% or less.
  • B 0.0020% or less B segregates at austenite grain boundaries and suppresses ferrite transformation, thereby contributing particularly to prevention of reduction in the strength of HAZ. However, even if added over 0.0020%, the effect is saturated. Therefore, when B is added, the B content is made 0.0020% or less. In addition, although the minimum of B content is not specifically limited, When adding B, it is preferable that B content shall be 0.0002% or more.
  • the thick steel plate for structural pipes of the present invention comprises the above components, the remaining Fe and inevitable impurities.
  • “consisting of remaining Fe and inevitable impurities” means that the elements containing other trace elements including inevitable impurities are included in the scope of the present invention as long as the effects and effects of the present invention are not impaired. To do.
  • C eq C + Mn / 6 + (Cu + Ni) / 15 + (Cr + Mo + V) / 5 (1)
  • the element symbol in the formula (1) represents a value expressed by mass% of the content of each element in the steel sheet, and is 0 when the element is not contained in the steel sheet
  • C eq represents the effect of an element added to steel in terms of carbon content, and is generally used as an index of strength because it has a correlation with the base metal strength.
  • C eq is set to 0.42 or more in order to obtain high strength of API X80 grade or more.
  • C eq is preferably 0.43 or more.
  • the upper limit of C eq is not particularly limited, but is preferably 0.50 or less.
  • the reason for limiting the microstructure of the steel in the present invention will be described.
  • the steel sheet has a microstructure mainly composed of bainite.
  • the microstructure needs to be satisfied regardless of the position in the thickness direction of the steel sheet, but in the present invention, by taking a cooling process to reduce the variation of the structure as described later, If the microstructure in the part satisfies the following condition, it can be said that the same condition is satisfied over the entire plate thickness.
  • mainly bainite means that the area fraction of bainite in the microstructure of the steel sheet is 90% or more.
  • the area fraction of bainite is preferably 95% or more.
  • the upper limit is not particularly limited and may be 100%.
  • one or more of the structures other than bainite is 10 in total area ratio. % Or less is allowed. These structures other than bainite are preferably 5% or less in terms of the total area ratio. Examples of the remaining structure include ferrite, pearlite, cementite, martensite, and island martensite.
  • the thick steel plate for structural pipes of the present invention has mechanical properties such that the tensile strength is 620 MPa or more and the Charpy absorbed energy vE- 20 ° C. at ⁇ 20 ° C. at the center of the plate thickness is 100 J or more.
  • variations in tensile strength, Charpy absorbed energy, and Vickers hardness can be measured by the methods described in the examples.
  • the upper limit of the tensile strength is not particularly limited, but is usually 825 MPa or less for the X80 grade and 990 MPa or less for the X100 grade, for example.
  • the upper limit of vE- 20 ° C. is not particularly limited, but is usually 500 J or less.
  • the Vickers hardness variation ⁇ HV 10, t in the plate thickness direction of the thick steel plate for structural pipes is 50 or less
  • the Vickers hardness variation ⁇ HV 10, c in the plate width direction is 50 or less. is important. If the variation in hardness in the plate thickness direction and plate width direction is large, the strength and elongation of the steel plate, formability, HIC resistance, SSCC resistance, etc. are adversely affected. For example, if the hardness of the steel sheet surface layer is excessively high compared to the inside of the steel sheet, spring back is less likely to occur after the steel sheet is formed, and cracking susceptibility to hydrogen sulfide is increased.
  • both ⁇ HV 10, t and ⁇ HV 10, c are set to 50 or less.
  • ⁇ HV 10, t and ⁇ HV 10, c are each preferably 40 or less, and more preferably 30 or less.
  • the lower limit is not particularly limited and may be 0 or more.
  • ⁇ HV 10, t and ⁇ HV 10, c can be measured by the method described in the examples.
  • the temperature is the average temperature in the thickness direction of the steel sheet.
  • the average temperature in the plate thickness direction of the steel plate is determined by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions, and the like.
  • the average temperature in the plate thickness direction of the steel sheet is obtained by calculating the temperature distribution in the plate thickness direction using the difference method.
  • the thick steel plate for structural pipes of the present invention can be produced by sequentially treating the steel material having the above composition in the following steps (1) to (4). Further, the step (5) can also be performed arbitrarily.
  • a heating step for heating the steel material to a heating temperature of 1100 to 1300 ° C. (2) A hot rolling step in which the steel material heated in the heating step is hot-rolled into a steel plate by hot rolling under a condition of a cumulative reduction ratio of 850 ° C.
  • the steel sheet after the first cooling step is cooled at an average temperature of the steel sheet at a cooling end temperature Te , 2 : 500 ° C. or less, and at the surface temperature of the steel plate, an average cooling rate V 2 is 5 ° C./s or more.
  • reheating is performed to 400 to 700 ° C. at a temperature rising rate of 0.5 ° C./s or more and 10 ° C./s or less. Reheating process.
  • Each of the above steps can be specifically performed as described below.
  • the steel material can be melted in accordance with a conventional method.
  • the manufacturing method of a steel raw material is not specifically limited, It is preferable to manufacture by a continuous casting method.
  • the steel material is heated prior to rolling.
  • the heating temperature at that time is 1100 to 1300 ° C.
  • the heating temperature is preferably 1120 ° C. or higher.
  • the heating temperature is set to 1300 ° C. or less.
  • the heating temperature is preferably 1250 ° C. or lower.
  • the steel material heated in the heating step is rolled.
  • the cumulative rolling reduction at 850 ° C. or less is set to 70% or higher.
  • the upper limit of the cumulative rolling reduction at 850 ° C. or lower is not particularly limited, but is preferably 90% or lower.
  • to start the cooling in the first cooling step from Ar 3 point or more temperature range it is preferable to terminate the rolling at Ar 3 point or more.
  • the steel sheet obtained in the hot rolling process is accelerated and cooled.
  • the accelerated cooling is divided into two stages of a first cooling process and a second cooling process, and cooling in each cooling process is performed under specific conditions. That is, in the first cooling step, the microstructure of the steel sheet surface layer is built while increasing the strength of the entire steel sheet, and in the second cooling step, the steel sheet is exclusively strengthened and toughened. Strive to A specific cooling method in both cooling steps will be described below.
  • First cooling step In the first cooling step, the hot-rolled steel sheet is cooled under specific conditions described below. In addition, the temperature in the description regarding the following 1st cooling processes represents the surface temperature of a steel plate unless otherwise indicated.
  • Cooling start temperature T s, 1 In the first cooling step or Ar 3 point, the rolled steel sheet between said heat and cool from a temperature range of not lower than 3 points Ar. When cooling is started from a temperature range lower than the Ar 3 point, ferrite increases, so that the strength of the steel sheet cannot be made sufficient.
  • the Ar 3 point is calculated by the following equation.
  • Ar 3 (° C.) 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo
  • the element symbol indicates the content (% by mass) of each element, and is 0 when the element is not contained in the steel.
  • the upper limit of T s , 1 is not particularly limited. Note that T s and 1 are preferably Ar 3 points or more and within 100 ° C. from the rolling end temperature.
  • Average cooling rate V 1 20 ° C./s or more and 100 ° C./s or less
  • the cooling rate should be controlled. is important. If the cooling rate of the steel sheet surface is less than 20 ° C./s, sufficient strength cannot be obtained in the whole steel sheet. On the other hand, if it exceeds 100 ° C./s, a hard phase such as martensite or island martensite (MA) is formed on the surface layer of the steel sheet. Is generated, and the hardness of the surface layer is remarkably increased, resulting in a large variation in hardness. Therefore, the average cooling rate in the first cooling step is set to a range of 20 ° C./s to 100 ° C./s.
  • Cooling end temperature Te, 1 500 ° C. or less Cooling is performed under the above conditions to generate a bainite phase on the steel sheet surface layer portion. However, if the cooling stop temperature exceeds 500 ° C., bainite is not sufficiently generated. If the second stage of cooling is started in this state, martensite and island martensite (MA) are generated in the surface layer. Therefore, the cooling end temperature of the first stage is set to 500 ° C. or less at the surface temperature of the steel plate. On the other hand, the lower limit of the cooling end temperature is not particularly limited, but if the cooling end temperature becomes excessively low, the start of the subsequent second cooling step is delayed and the cooling effect becomes insufficient, and high strength and toughness cannot be obtained. Therefore, the cooling end temperature is preferably set to 300 ° C. or higher.
  • the first cooling step it is important to perform accelerated cooling under conditions that satisfy the following expression (2).
  • 3 ⁇ (700 ⁇ T e, 1 ) / V 1 (2) (Here, the unit of Te, 1 in the formula (2) is ° C., and the unit of V 1 is ° C./s)
  • the right side of the above equation (2) represents the approximate cooling time in the first cooling step. Therefore, the above equation (2) indicates that the cooling in the first cooling step needs to be continued for 3 seconds or more. This is because it takes 3 seconds or more for the bainite phase to be sufficiently generated so that the surface layer structure does not become hard.
  • martensite and island-like martensite are generated in the steel sheet surface layer portion, and the hardness of the surface layer portion is significantly increased.
  • the variation in hardness in the thickness direction is large. Become. For this reason, the first cooling step needs to be performed under conditions that satisfy the expression (2).
  • the upper limit of the value on the right side in the formula (2) is not particularly limited, but is preferably 30 or less in order to ensure sufficient strength in the entire steel sheet.
  • Average cooling rate V 2 5 ° C./s or more
  • the average cooling rate V 2 in the second cooling step is (“steel plate average temperature at the start of the second cooling step” ⁇ “steel plate surface after completion of the second cooling step” Steel plate average temperature when reheated ”) / (" Time when the second cooling step is completed and the steel plate surface is reheated "-" Second cooling step start time ").
  • the temperature of the steel sheet surface is lower than that in the central part in the thickness direction of the steel sheet. rises and the surface temperature takes a local maximum.
  • recuperation In the reheated state, that is, in the state where the surface temperature reaches the maximum value, the temperature difference in the plate thickness direction of the steel sheet becomes small.
  • the temperature difference obtained by subtracting the steel plate average temperature in the plate thickness direction when the steel plate surface is reheated from the average steel plate temperature in the plate thickness direction at the start of the second cooling process is divided by the required time from the start of cooling to the completion of reheating. Thereby, the average cooling rate in a 2nd cooling process can be calculated
  • the average cooling rate in the second cooling step is 5 ° C./s or more.
  • the average cooling rate in the second cooling step is 5 ° C./s or more.
  • the cooling rate in the second cooling step is determined not based on the steel plate surface temperature but on the average steel plate temperature in the plate thickness direction as described above, so that the cooling rate specified in the present invention can be ensured.
  • the cooling rate necessary for obtaining the desired steel sheet can be secured for the region inside the steel sheet.
  • the average temperature and cooling rate of the steel sheet in the plate thickness direction cannot be directly measured physically, but can be obtained in real time by simulation calculation based on the temperature change of the surface.
  • a steel pipe can be manufactured using the steel plate obtained as described above as a material.
  • the steel pipe can be, for example, a structural pipe in which the thick steel plate for a structural pipe is formed in a cylindrical shape in the longitudinal direction and a butt portion is welded.
  • the method for manufacturing the steel pipe is not particularly limited, and any method can be used.
  • the steel plate can be made into a UOE steel pipe by seam welding the butt portion after making the steel plate into a tubular shape in the longitudinal direction of the steel plate using a U press and an O press according to a conventional method. It is preferable that the seam welding is performed by submerged arc welding on both the inner surface and the outer surface after the tack welding.
  • the flux used for submerged arc welding is not particularly limited, and may be a melt type flux or a fired type flux.
  • pipe expansion is performed to remove residual welding stress and improve roundness of the steel pipe.
  • the pipe expansion ratio ratio of the outer diameter change amount before and after the pipe expansion to the outer diameter of the pipe before the pipe expansion
  • the tube expansion rate is preferably in the range of 0.5% to 1.2%.
  • the Vickers hardness variation was determined as follows. For a cross section perpendicular to the rolling direction of the steel sheet, measuring the Vickers hardness HV 10 at a plurality of points under a load of 10kgf in conformity with JIS Z 2244, the difference between the maximum value and the minimum value of the measured values of the Vickers hardness It was a variation ⁇ HV 10. At that time, the variation ⁇ HV 10, t in the plate thickness direction was determined from the Vickers hardness measured over the entire plate thickness at a pitch of 1 mm in the plate thickness direction from the position 1 mm below the surface layer of the steel plate in the central portion of the plate width.
  • the variation ⁇ HV 10, c in the plate width direction was determined from the Vickers hardness measured over the entire plate width at a pitch of 20 mm in the plate width direction at a position 1 mm below the surface layer of the steel plate. Note that the hardness in the plate width direction was measured at the t / 4 position (plate thickness 1/4 position) and the t / 2 position (plate thickness center portion). Since the variation in thickness showed the maximum, as described above, the variation in hardness at the 1 mm position below the surface was regarded as the variation in Vickers hardness of the steel sheet.
  • each steel plate was subjected to PWHT treatment using a gas atmosphere furnace.
  • the heat treatment conditions at this time were 600 ° C. for 2 hours, and then the steel plate was taken out of the furnace and cooled to room temperature by air cooling.
  • 0.5% YS, TS, and vE- 20 degreeC were measured by the method similar to the measurement before the above-mentioned PWHT.
  • the present invention is a high strength steel plate having API X80 grade or higher and a plate thickness of 38 mm or more, and has excellent Charpy characteristics at the center of the plate thickness while having high strength in the rolling direction without adding a large amount of alloying elements. Further, it is possible to provide a thick steel plate for a structural pipe having higher material uniformity and a structural pipe using the thick steel plate for a structural pipe.
  • the structural tube is excellent in material uniformity and maintains excellent mechanical properties even after PWHT, and thus is extremely useful as a structural tube such as a conductor casing steel tube or a riser steel tube.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

API X80グレード以上、板厚38mm以上の高強度鋼板であって、多量の合金元素の添加なしで、圧延方向における強度と板厚中心部のシャルピー特性に優れ、さらに高い材質均一性を兼ね備えた構造管用厚肉鋼板を提供する。 特定の成分組成を有し、ベイナイト主体のミクロ組織を有し、引張強さが620MPa以上、板厚中心部の-20℃におけるシャルピー吸収エネルギーvE-20℃が100J以上、板厚方向におけるビッカース硬さのばらつきΔHV10,tが50以下、かつ板幅方向におけるビッカース硬さのばらつきΔHV10,cが50以下である、構造管用厚肉鋼板。

Description

構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管
 本発明は、構造管用厚肉鋼板に関するものであり、特に、本発明は、API X80グレード以上の強度を有するとともに、板厚38mm以上においても板厚中心部のシャルピー特性に優れ、さらに高い材質均一性を兼ね備えた構造管用厚肉鋼板に関するものである。
 また、本発明は、上記構造管用厚肉鋼板の製造方法、および上記構造管用厚肉鋼板を用いて製造される構造管に関するものである。
 海底資源掘削船等による石油やガスの掘削においては、コンダクターケーシング鋼管やライザー鋼管等の構造管が使用される。これらの用途では、近年、圧力上昇による操業効率向上や素材コスト削減の観点から、API(アメリカ石油協会) X80グレード以上の高強度厚肉鋼管に対する要求が高まっている。
 また、上述のような構造管は、合金元素量が非常に多い鍛造品(例えばコネクタ等)を円周溶接して用いられることが多い。溶接を行った場合には、溶接に起因する鍛造品の残留応力除去を目的としてPWHT(Post Weld Heat Treatment、溶接後熱処理)が施されるが、熱処理によって強度等の機械的特性の低下が懸念される。そのため、構造管には、PWHT後においても優れた機械的特性、特に掘削時の海底での外圧による破壊防止のため、管の長手方向、すなわち圧延方向に高い強度を維持していることが要求される。
 そこで、例えば特許文献1では、0.30~1.00%のCr、0.005~0.0030%のTi、および0.060%以下のNbを添加した鋼を熱間圧延した後、加速冷却することによって、PWHTの一種である応力除去(Stress Relief、SR)焼鈍を600℃以上の高温で行った後においても優れた強度を維持することができる高強度ライザー鋼管用鋼板を製造することが提案されている。
 また、特許文献2では、溶接鋼管において、母材部と溶接金属の成分組成をそれぞれ特定の範囲とするとともに、両者の降伏強度を551MPa以上としたものが提案されている。特許文献2には、前記溶接鋼管が、溶接部におけるSR前後の靭性に優れることが記載されている。
 特許文献3では、特定範囲の化学成分を有する鋼を熱間圧延した後、加速冷却を2段階で実施することにより、鋼板内の材質均一性に優れ、かつ、耐HIC特性や伸び特性に優れる、ラインパイプ用鋼板及びその製造方法が開示されている。
特開平11-50188号公報 特開2001-158939号公報 特開2013-139628号公報
 しかし、特許文献1に記載の鋼板では、PWHT時にCr炭化物を析出させることによってPWHTによる強度低下を補っているため、多量のCrを添加する必要がある。そのため、素材コストが高いことに加えて、溶接性や靭性の低下が懸念される。
 また、特許文献2に記載の鋼管は、シーム溶接金属の特性改善を主眼においており、母材に対しては特段の配慮がなされておらず、PWHTによる母材強度の低下が避けられない。母材強度を確保するには、制御圧延や加速冷却によってPWHT前の強度を高めておく必要がある。
 しかし、強度を向上させるために高い冷却速度で加速冷却を行った場合、鋼板全体を均一に冷却することが困難であるため、結果的に鋼板の材質均一性が低下するという問題がある。すなわち、加速冷却の際に鋼板表層部が急冷されるため、鋼板内部に比べて表層部の硬さが高くなり、板厚方向における硬さのばらつきが大きくなる。この板厚方向における硬さのばらつきは、特に板厚が大きい場合に顕著となる。また、冷却時の冷却温度ムラなどのため、板幅方向においても硬さのばらつきが生じる場合がある。板厚方向や板幅方向における硬さのばらつきが大きいと、鋼板の強度や伸び、成形性等の各種特性に悪影響があるため、厚肉鋼板において、強度の高さと硬さのばらつきの小ささ(材質均一性)を両立させることのできる技術が求められている。
 特許文献3には、板厚方向および板幅方向の硬さバラつきを小さくする方法が開示されているが、実施例における板厚は、高々38mmまでである。ところで、鋼板を冷却する場合には、通常、板厚が大きくなると板厚中心部の冷却速度が熱伝導で律速される値に近づくため、鋼板が厚いほど板厚中心部の冷却速度を十分に大きくすることが困難になり、強度や靭性に悪影響を及ぼすおそれがある。したがって、板厚38mmまでの実施例しか示されていない特許文献3の技術を、さらに厚肉の鋼板製造にも適用できるかどうかは不明である。さらに、特許文献3の記載の技術は、機械特性のほかに耐HIC特性に優れることを特徴とするが、本発明が対象とする構造管用途で要求されるPWHT後の強度については言及がなく、構造管の分野で特許文献3に記載の技術が適用できるかどうかも不明である。
 本発明は、上記の実情に鑑み開発されたもので、API X80グレード以上、板厚38mm以上の高強度鋼板であって、多量の合金元素の添加なしで、圧延方向における強度と板厚中心部のシャルピー特性に優れ、さらに高い材質均一性を兼ね備えた構造管用厚肉鋼板を提供することを目的とする。
 また、本発明は、上記構造管用厚肉鋼板の製造方法、および上記構造管用厚肉鋼板を用いて製造された構造管を提供することを目的とする。
 本発明者らは、板厚38mm以上の厚肉鋼板において、引張強さや靭性といった機械的特性と材質均一性とを両立させるために、圧延条件が鋼板のミクロ組織に及ぼす影響について詳細な検討を行った。一般に溶接鋼管用の鋼板や溶接構造用の鋼板は溶接性の観点から化学成分が厳しく制限されるため、X65グレード以上の高強度鋼板は熱間圧延後に加速冷却して製造されている。そのため、鋼板のミクロ組織はベイナイト主体か、ベイナイト中に島状マルテンサイト(Martensite-Austenite constituent、略してMAとも称す)を含んだ組織となるが、板厚が増加するほど、板厚中心部のシャルピー特性の低下は避けられない。そこで、本発明者らは、優れた耐PWHT性と、強度、および材質均一性が得られるミクロ組織に関して鋭意研究を行った結果、次の(a)、(b)および(c)の知見を得た。
(a)板厚中心部のシャルピー特性向上には、鋼のミクロ組織の微細化が有効であり、そのためには未再結晶域での累積圧下率を高くする必要がある。
(b)一方、冷却開始温度が低くなりすぎてしまうと、フェライト面積分率が増加して強度および靭性が低下する。そのため、冷却開始温度は高くする必要がある。
(c)材質均一性を確保しつつ板厚中心における強度を確保するためには、表層組織をベイナイトとしたうえで後続の冷却により中心部の冷却速度を確保する必要がある。
 以上の知見に基づき、鋼の成分組成とミクロ組織および製造条件について詳細な検討を行い、本発明を完成するに至った。
 すなわち、本発明の要旨構成は、次のとおりである。
1.構造管用厚肉鋼板であって、
 質量%で、
  C :0.030~0.100%、
  Si:0.01~0.50%、
  Mn:1.50~2.50%、
  Al:0.080%以下、
  Mo:0.05~0.50%、
  Ti:0.005~0.025%、
  Nb:0.005~0.080%、
  N :0.001~0.010%、
  O :0.005%以下、
  P :0.010%以下、および
  S :0.0010%以下、を含有し、
 残部Feおよび不可避不純物からなり、かつ
 下記(1)式で定義される炭素当量Ceqが0.42以上である成分組成を有し、
 ベイナイト主体のミクロ組織を有し、
 引張強さが620MPa以上、板厚中心部の-20℃におけるシャルピー吸収エネルギーvE-20℃が100J以上、板厚方向におけるビッカース硬さのばらつきΔHV10,tが50以下、かつ板幅方向におけるビッカース硬さのばらつきΔHV10,cが50以下である、構造管用厚肉鋼板。
                    記
 Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5・・・(1)
(ここで、(1)式中の元素記号は、前記鋼板中における各元素の含有量を質量%で表した値を表し、該鋼板中に当該元素が含有されない場合には0とする)
2.さらに、前記成分組成が、質量%で、
  V :0.005~0.100%、を含有する、前記1に記載の構造管用厚肉鋼板。
3.さらに、前記成分組成が、質量%で、
  Cu:0.50%以下、
  Ni:0.50%以下、
  Cr:0.50%以下、
  Ca:0.0005~0.0035%、
  REM:0.0005~0.0100%、および
  B :0.0020%以下からなる群より選択される1種または2種以上を含有する、前記1または2に記載の構造管用厚肉鋼板。
4.前記1~3のいずれか一つに記載の成分組成を有する鋼素材を、加熱温度:1100~1300℃まで加熱する加熱工程と、
 前記加熱工程において加熱された鋼素材を、850℃以下での累積圧下率:70%以上の条件で熱間圧延して鋼板とする熱間圧延工程と、
 前記熱間圧延された鋼板を、該鋼板の表面温度で、冷却開始温度Ts、1:Ar3点以上、冷却終了温度Te,1:500℃以下、平均冷却速度V1:20℃/s以上100℃/s以下、かつ下記(2)式を満足する条件で加速冷却する第1冷却工程と、
 前記第1冷却工程後の鋼板を、該鋼板の平均温度で、冷却終了温度Te,2:500℃以下、平均冷却速度V2:5℃/s以上の条件で加速冷却する第2冷却工程とを、少なくとも有する、構造管用厚肉鋼板の製造方法。
                    記
 3≦(700-Te,1)/V1 ・・・(2)
(ここで、(2)式中のTe,1の単位は℃、V1の単位は℃/sとする)
5.前記第2冷却工程の後、ただちに0.5℃/s以上10℃/s以下の昇温速度で400~700℃まで再加熱を行う再加熱工程をさらに有する、前記4に記載の構造管用厚肉鋼板の製造方法。
6.前記1~3のいずれか一項に記載の構造管用厚肉鋼板からなる構造管。
7.前記1~3のいずれか一つに記載の鋼板を長手方向に筒状に成形した後、突合せ部を内外面からいずれも少なくとも1層ずつ長手方向に溶接して得た構造管。
 本発明によれば、API X80グレード以上の高強度鋼板であって、多量の合金元素の添加なしに、圧延方向の高強度を有しながら板厚中心部のシャルピー特性に優れ、さらに高い材質均一性を兼ね備えた構造管用厚肉鋼板および前記構造管用厚肉鋼板を用いた構造管を提供することができる。なお、本発明において「厚肉」とは、板厚が38mm以上であることを意味する。本発明は、板厚が42mm以上、さらには50mm以上の場合にも、好適に適用することができる。
[成分組成]
 次に、本発明における各構成要件の限定理由について述べる。
 本発明においては、構造管用厚肉鋼板が所定の成分組成を有することが重要である。そこで、まず、本発明において鋼の成分組成を上記のように限定する理由を説明する。なお、成分に関する「%」表示は、特に断らない限り「質量%」を意味するものとする。
C:0.030~0.100%
 Cは、鋼の強度を増加する元素であり、所望の組織を得て、所望の強度、靭性とするためには、C含有量を0.030%以上とする必要がある。一方、C含有量が0.100%を超えると溶接性が劣化し、溶接割れが生じやすくなるとともに、母材靭性およびHAZ靭性が低下する。そのため、C含有量は0.100%以下とする。なお、C含有量は、0.050~0.080%とすることが好ましい。
Si:0.01~0.50%
 Siは、脱酸材として作用し、さらに固溶強化により鋼材の強度を増加させる元素である。前記効果を得るために、Si含有量を0.01%以上とする。一方、Si含有量が0.50%を超えると、HAZ靭性が著しく劣化する。そのため、Si含有量は0.50%以下とする。なお、Si含有量は0.05~0.20%とすることが好ましい。
Mn:1.50~2.50%
 Mnは、鋼の焼入れ性を高めるとともに、強度と靭性を向上させる作用を有する元素である。前記効果を得るために、Mn含有量を1.50%以上とする。一方、Mn含有量が2.50%を超えると溶接性が劣化するおそれがある。そのため、Mn含有量は2.50%以下とする。なお、Mn含有量は1.80%~2.00%とすることが好ましい。
Al:0.080%以下
 Alは、製鋼時の脱酸剤として添加される元素である。Al含有量が0.080%を超えると靭性の低下を招くため、Al含有量は0.080%以上とする。なお、Al含有量は0.010~0.050%とすることが好ましい。
Mo:0.05~0.50%
 Moは、本発明において特に重要な元素であり、熱間圧延後の冷却時におけるパーライト変態を抑制しつつ、Ti、Nb、Vと微細な複合炭化物を形成して鋼板の強度を大きく上昇させる機能を有している。前記効果を得るために、Mo含有量を0.05%以上とする。一方、Mo含有量が0.50%を超えると溶接熱影響部(Heat-Affected Zone、HAZ)靭性の低下を招くため、Mo含有量は0.50%以下とする。
Ti:0.005~0.025%
 Tiは、Moと同様に本発明において特に重要な元素であり、Moと複合析出物を形成して鋼の強度向上に大きく寄与する。前記効果を得るために、Ti含有量を0.005%以上とする。一方、0.025%を超える添加はHAZ靭性および母材靭性の劣化を招く。そのため、Ti含有量は0.025%以下とする。
Nb:0.005~0.080%
 Nbは、組織の微細粒化により靭性を向上させる作用を有する元素である。また、Moと共に複合析出物を形成し、強度向上に寄与する。前記効果を得るために、Nb含有量を0.005%以上とする。一方、Nb含有量が0.080%を超えるとHAZ靭性が劣化する。そのため、Nb含有量は0.080%以下とする。
N:0.001~0.010%
 Nは、通常、不可避不純物として鋼中に存在し、Tiが存在しているとTiNを形成する。TiNによるピンニング効果によってオーステナイト粒の粗大化を抑制するために、N含有量は0.001%以上とする。しかし、TiNは、溶接部、特に溶接ボンド近傍で1450℃以上に加熱された領域において分解し、固溶Nを生成する。そのため、N含有量が高すぎると、前記固溶Nの生成に起因する靭性の低下が著しくなる。そのため、N含有量は0.010%以下とする。なお、N含有量は0.002~0.005%とすることがより好ましい。
O:0.005%以下、P:0.010%以下、S:0.0010%以下
 本発明において、O、P、およびSは不可避不純物であり、これらの元素の含有量の上限を次の通り規定する。Oは、粗大で靭性に悪影響を及ぼす酸素系介在物を形成する。前記介在物の影響を抑制するため、O含有量は0.005%以下とする。また、Pは、中心偏析して母材の靭性を低下させる性質を持つため、P含有量が高いと母材靭性の低下が問題となる。そのため、P含有量は0.010%以下とする。また、SはMnS系介在物を形成して母材の靭性を低下させる性質を有しているため、S含有量が高いと母材靭性の低下が問題となる。そのため、S含有量は0.0010%以下とする。なお、O含有量は0.003%以下とすることが好ましく、P含有量は0.008%以下とすることが好ましく、S含有量は0.0008%以下とすることが好ましい。一方、O、P、S含有量の下限については限定されないが、工業的には0%超である。また、過度に含有量を低下させると精錬時間の増加やコストの上昇を招くため、O含有量は0.0005%以上、P含有量は0.001%以上、S含有量は0.0001%以上とすることが好ましい。
 また、本発明の構造管用厚肉鋼板は、上記元素に加えて、V:0.005~0.100%、を、さらに含有することもできる。
V:0.005~0.100%
 Vは、Nbと同様にMoと共に複合析出物を形成し、強度上昇に寄与する。Vを添加する場合、前記効果を得るためにV含有量を0.005%以上とする。一方、V含有量が0.100%を超えるとHAZ靭性が低下するため、Vを添加する場合、V含有量を0.100%以下とする。
 また、本発明の構造管用厚肉鋼板は、上記元素に加えて、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、Ca:0.0005~0.0035%、REM:0.0005~0.0100%、およびB:0.0020%以下からなる群より選択される1種または2種以上を、さらに含有することもできる。
Cu:0.50%以下
 Cuは、靭性の改善と強度の向上に有効な元素であるが、添加量が多すぎると溶接性が低下する。そのため、Cuを添加する場合、Cu含有量は0.50%以下とする。なお、Cu含有量の下限は特に限定されないが、Cuを添加する場合はCu含有量を0.05%以上とすることが好ましい。
Ni:0.50%以下
 Niは、靭性の改善と強度の向上に有効な元素であるが、添加量が多すぎると耐PWHT特性が低下する。そのため、Niを添加する場合、Ni含有量は0.50%以下とする。なお、Ni含有量の下限は特に限定されないが、Niを添加する場合はNi含有量を0.05%以上とすることが好ましい。
Cr:0.50%以下
 Crは、Mnと同様に低Cでも十分な強度を得るために有効な元素であるが、過剰の添加は溶接性を低下させる。そのため、Crを添加する場合、Cr含有量を0.50%以下とする。なお、Cr含有量の下限は特に限定されないが、Crを添加する場合はCr含有量を0.05%以上とすることが好ましい。
Ca:0.0005~0.0035%
 Caは、硫化物系介在物の形態制御による靭性向上に有効な元素である。前記効果を得るために、Caを添加する場合、Ca含有量を0.0005%以上とする。一方、0.0035%を超えてCaを添加しても効果が飽和し、むしろ、鋼の清浄度の低下により靭性が低下する。そのため、Caを添加する場合、Ca含有量を0.0035%以下とする。
REM:0.0005~0.0100%
 REM(希土類金属)は、Caと同様に鋼中の硫化物系介在物の形態制御による靱性向上に有効な元素である。前記効果を得るために、REMを添加する場合、REM含有量を0.0005%以上とする。一方、0.0100%を超えて添加しても効果が飽和し、むしろ、鋼の清浄度の低下により靭性を低下させるので、REMを添加する場合、REM含有量を0.0100%とする。
B:0.0020%以下
 Bは、オーステナイト粒界に偏析し、フェライト変態を抑制することで、特にHAZの強度低下防止に寄与する。しかし、0.0020%を超えて添加してもその効果は飽和するため、Bを添加する場合、B含有量は0.0020%以下とする。なお、B含有量の下限は特に限定されないが、Bを添加する場合はB含有量を0.0002%以上とすることが好ましい。
 本発明の構造管用厚肉鋼板は、以上の成分と、残部Feおよび不可避不純物とからなる。なお、「残部Feおよび不可避不純物からなる」とは、本発明の作用・効果を損なわない限りにおいて、不可避不純物をはじめ、他の微量元素を含有するものが本発明の範囲に含まれることを意味する。
 本発明においては、鋼に含まれる元素がそれぞれ上記条件を満たすことに加えて、下記(1)式で定義される炭素当量Ceqを0.42以上とすることが重要である。
 Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5・・・(1)
(ここで、(1)式中の元素記号は、前記鋼板中における各元素の含有量を質量%で表した値を表し、該鋼板中に当該元素が含有されない場合には0とする)
 上記Ceqは、鋼に添加される元素の影響を炭素量に換算して表したものであり、母材強度と相関があるため、強度の指標として一般的に用いられる。本発明では、API X80グレード以上の高い強度を得るために、Ceqを0.42以上とする。なお、Ceqは、0.43以上とすることが好ましい。一方、Ceqの上限については特に限定されないが、0.50以下とすることが好ましい。
[ミクロ組織]
 次に、本発明における鋼のミクロ組織の限定理由について説明する。
 本発明においては、鋼板がベイナイト主体のミクロ組織を有することが重要である。ミクロ組織をこのように制御することにより、API X80グレードの高強度を達成することが可能である。なお、前記ミクロ組織は、鋼板の板厚方向位置にかかわりなく満足する必要があるが、本発明においては、後述するような組織のばらつきを小さくする冷却工程をとっていることにより、板厚中心部におけるミクロ組織が次項の条件を満たしていれば、板厚全域にわたって同条件を満たしているといえる。
 ここで、「ベイナイト主体」とは、鋼板のミクロ組織に占めるベイナイトの面積分率が90%以上であることを意味する。ベイナイトの面積分率は95%以上であることが好ましい。一方、ベイナイトの面積分率は高い方が望ましいため、上限は特に限定されず、100%であってよい。
 ベイナイト以外の組織は少ないほどよいが、ベイナイトの面積分率が十分に高ければ、残部の組織の影響はほぼ無視できるため、ベイナイト以外の組織の1種または2種以上を、合計面積率で10%以下含むことは許容される。これらのベイナイト以外の組織は、合計面積率で5%以下であることが好ましい。残部組織の例としては、フェライト、パーライト、セメンタイト、マルテンサイト、島状マルテンサイト等が挙げられる。
 なお、ベイナイトの面積分率は、板厚中心位置から採取した試料を鏡面研磨し、ナイタール腐食した面について、走査型電子顕微鏡(倍率1000倍)でランダムに5視野以上観察を行って同定すればよい。
[機械的特性]
 本発明の構造管用厚肉鋼板は、引張強さが620MPa以上、板厚中心部の-20℃におけるシャルピー吸収エネルギーvE-20℃が100J以上という機械的特性を有している。ここで、引張強さ、シャルピー吸収エネルギー、およびビッカース硬さのばらつきは、実施例に記載の方法で測定することができる。なお、引張強さの上限は特に限定されないが、通常はたとえば、X80グレードならば825MPa以下、X100グレードならば990MPa以下である。同様に、vE-20℃の上限も特に限定されないが、通常は500J以下である。
 さらに、本発明においては、構造管用厚肉鋼板の板厚方向におけるビッカース硬さのばらつきΔHV10,tが50以下、かつ板幅方向におけるビッカース硬さのばらつきΔHV10,cが50以下であることが重要である。板厚方向や板幅方向における硬さのばらつきが大きいと、鋼板の強度や伸び、成形性、耐HIC性、耐SSCC性能等に悪影響がある。例えば、鋼板表層部の硬さが鋼板内部に比べて過度に高いと、該鋼板を成形した後にスプリングバックが起こりやくなったり、硫化水素に対する割れ感受性が高まったりする。また、板幅方向における硬さのばらつきが大きいと、成形時に硬い部分と軟らかい部分とで変形の仕方に差が生じて所望の形状が得られないという問題や、小板に切断した場合にそれぞれの小板で強度や伸びが異なってしまうといった問題が生じる。そのため、本発明ではΔHV10,tとΔHV10,cの両者を50以下とする。なお、ΔHV10,tとΔHV10,cは、それぞれ40以下であることが好ましく、30以下であることがより好ましい。一方、ΔHV10,tおよびΔHV10,cは小さい方が好ましいため下限は特に限定されず、0以上であればよい。なお、ΔHV10,tおよびΔHV10,cは実施例に記載の方法で測定することができる。
[鋼板の製造方法]
 次に、本発明の鋼板の製造方法について説明する。なお、以下の説明において、特に断らない限り、温度は鋼板の板厚方向の平均温度とする。鋼板の板厚方向の平均温度は、板厚、表面温度および冷却条件等から、シミュレーション計算等により求められる。例えば、差分法を用い、板厚方向の温度分布を計算することにより、鋼板の板厚方向の平均温度が求められる。
 本発明の構造管用厚肉鋼板は、上記成分組成を有する鋼素材を、次の(1)~(4)の工程で順次処理することによって製造できる。また、さらに任意に(5)の工程を行うこともできる。
(1)上記鋼素材を加熱温度:1100~1300℃まで加熱する加熱工程、
(2)前記加熱工程において加熱された鋼素材を、850℃以下での累積圧下率:70%以上の条件で熱間圧延して鋼板とする熱間圧延工程、
(3)熱間圧延された鋼板を、該鋼板の表面温度で、冷却開始温度Ts、1:Ar3点以上、冷却終了温度Te,1:500℃以下、平均冷却速度V1:20℃/s以上100℃/s以下、かつ下記(2)式を満足する条件で加速冷却する第1冷却工程、
(4)前記第1冷却工程後の鋼板を、該鋼板の平均温度で、冷却終了温度Te,2:500℃以下、該鋼板の表面温度で、平均冷却速度V2:5℃/s以上の条件で加速冷却する第2冷却工程、および
(5)前記第2冷却工程の後、ただちに0.5℃/s以上10℃/s以下の昇温速度で400~700℃まで再加熱を行う再加熱工程。
 上記各工程は、具体的には以下に述べるように行うことができる。
[鋼素材]
 上記鋼素材は、常法にしたがって溶製することができる。鋼素材の製造方法は特に限定されないが、連続鋳造法によって製造することが好ましい。
[加熱工程]
 上記鋼素材は、圧延に先立って加熱される。その際の加熱温度は、1100~1300℃とする。加熱温度を1100℃以上とすることにより鋼素材中の炭化物を固溶して、目標とする強度を確保することができる。前記加熱温度は、1120℃以上とすることが好ましい。一方、加熱温度が1300℃を超えるとオーステナイト粒が粗大化し、最終的な鋼組織も粗大化して靭性が劣化するので、前記加熱温度は1300℃以下とする。前記加熱温度は、1250℃以下とすることが好ましい。
[熱間圧延工程]
 次に、上記加熱工程において加熱された鋼素材を圧延する。その際、850℃以下における累積圧下率が70%未満であると、圧延後の鋼板板厚中心部におけるシャルピー特性を確保できない。そのため、850℃以下での累積圧下率を70%以上とする。なお、850℃以下での累積圧下率の上限は特に限定されないが、90%以下とすることが好ましい。また、後述のように、Ar3点以上の温度域から第1冷却工程における冷却を開始するために、Ar3点以上で圧延を終了させることが好ましい。
 熱間圧延工程終了後、該熱間圧延工程で得られた鋼板を加速冷却する。本発明においては、前記加速冷却を第1冷却工程と第2冷却工程の2段階に分け、各冷却工程における冷却を特定の条件で行うことが重要である。すなわち、第1冷却工程においては鋼板全体の高強度化を図りつつ、鋼板表層部において硬化を抑制したミクロ組織を造り込み、第2冷却工程においては専ら鋼板を高強度化、高靭性化することに努める。両冷却工程における具体的な冷却方法を以下に説明する。
[第1冷却工程]
 第1冷却工程においては、前記熱間圧延された鋼板を、以下に述べる特定の条件で冷却する。なお、以下の第1冷却工程に関する説明における温度は、特に断らない限り鋼板の表面温度を表す。
冷却開始温度Ts、1:Ar3点以上
 第1冷却工程においては、前記熱間圧延された鋼板を、Ar3点以上の温度域から冷却する。Ar3点未満の温度域から冷却を開始するとフェライトが増加するため、鋼板の強度を十分なものとすることができない。なお、本発明においてAr3点は、次式に計算されるものとする。
 Ar3(℃)=910-310C-80Mn-20Cu-15Cr-55Ni-80Mo
上記式において、元素記号は各元素の含有量(質量%)を示し、鋼中に当該元素が含有されない場合は0とする。一方、Ts、1の上限は特に限定されない。なお、Ts、1は、Ar3点以上で、かつ、圧延終了温度から100℃以内とすることが好ましい。
平均冷却速度V1:20℃/s以上100℃/s以下
 高強度化を図りつつ、鋼板内の硬さのばらつきを低減し、材質均一性を向上させるためには、冷却速度を制御することが重要である。鋼板表面の冷却速度が20℃/s未満では鋼板全体で十分な強度が得られず、一方、100℃/sを超えると鋼板表層部でマルテンサイトや島状マルテンサイト(MA)等の硬質相が生成して、表層硬さが著しく上昇するため、硬さのばらつきが大きくなる。そのため、第1冷却工程における平均冷却速度は20℃/s以上100℃/s以下の範囲とする。
冷却終了温度Te,1:500℃以下
 上記の条件で冷却を行って鋼板表層部にベイナイト相を生成させるが、冷却停止温度が500℃を超えているとベイナイトの生成が十分ではなく、その状態で2段目の冷却を開始すると表層部にマルテンサイトや島状マルテンサイト(MA)が生成してしまう。したがって、1段目の冷却終了温度は、鋼板の表面温度で500℃以下とする。一方、冷却終了温度の下限は特に限定されないが、過度に冷却終了温度が低くなると、引き続く第2冷却工程の開始が遅れて冷却の効果が不十分となり、高強度高靭性化が得られなくなる。そのため、冷却終了温度は300℃以上とすることが好ましい。
 第1冷却工程においては、下記(2)式を満足する条件で加速冷却を行うことが重要である。
 3≦(700-Te,1)/V1 ・・・(2)
(ここで、(2)式中のTe,1の単位は℃、V1の単位は℃/sとする)
 上記(2)式の右辺は、第1冷却工程におけるおおよその冷却時間を表している。したがって、上記(2)式は、第1冷却工程における冷却が3秒以上継続する必要があることを示している。これは、表層の組織が硬質とならないように、ベイナイト相が十分に生成するためには、3秒以上の時間を要するためである。(2)式が満たされない場合には、鋼板表層部にマルテンサイトや島状マルテンサイトが生成して、表層部の硬さ上昇が著しくなり、その結果、板厚方向における硬さのばらつきが大きくなる。そのため、第1冷却工程は、(2)式を満足する条件で行われる必要がある。一方、(2)式における右辺の値の上限は特に限定されないが、鋼板全体において十分な強度を確保するため、30以下とすることが好ましい。
[第2冷却工程]
 次に、上記第1冷却工程において冷却された鋼板を、以下の条件でさらに冷却する。なお、以下の第2冷却工程に関する説明における温度は、特に断らない限り鋼板の平均温度を表す。
平均冷却速度V2:5℃/s以上
 第2冷却工程における平均冷却速度V2とは、(「第2冷却工程開始時の鋼板平均温度」-「第2冷却工程が終了して鋼板表面が復熱したときの鋼板平均温度」)/(「第2冷却工程が終了して鋼板表面が復熱したときの時刻」-「第2冷却工程開始時刻」)である。第2冷却工程が終了した時点では、鋼板の板厚方向中央部に比べて鋼板表面の温度が低くなっているが、その後、温度の高い板厚中央部から表面に熱が伝わるので、表面温度は上昇し、表面温度は極大値を取る。この現象は復熱と称され、復熱した状態、すなわち、表面温度が極大値となった状態では、鋼板の板厚方向温度差は小さくなる。第2冷却工程開始時の板厚方向の鋼板平均温度から、鋼板表面が復熱したときの板厚方向の鋼板平均温度を差し引いた温度差を、冷却開始から復熱完了までの所要時間で割ることにより、第2冷却工程における平均冷却速度を求めることができる。
 平均冷却速度が5℃/sに満たないと、強度上昇効果を十分に得られないため、第2冷却工程における平均冷却速度は5℃/s以上とする。また、この冷却条件を厚肉鋼板で得ようとする場合には、鋼板表面温度が200℃以上の温度域において、鋼板表面の冷却速度として100℃/sを超える条件で冷却を行う必要がある。
 なお、鋼板の冷却は表面から行われるため、第1冷却工程が終了して第2冷却工程を開始する時点にいて、鋼板表面温度が板厚中央部の温度よりも低くなっている可能性がある。しかし、本発明においては、第2冷却工程における冷却速度を、上述のように鋼板表面温度ではなく板厚方向の鋼板平均温度に基づいて定めているため、本発明で規定する冷却速度を確保すれば、鋼板内部の領域についても所期の鋼板を得るために必要な冷却速度を確保することができる。なお、板厚方向の鋼板平均の温度および冷却速度については、物理的に直接測定することはできないが、表面の温度変化を基にしたシミュレーション計算によりリアルタイムで求めることができる。
冷却終了温度Te,2:500℃以下
 合金元素を削減し、低合金化した成分組成の鋼においては、第2冷却工程における冷却終了温度が高くなると粗大なMAが形成され靭性の劣化を招く。そのため、第2冷却工程における冷却終了温度を500℃以下とする。なお、ここで、第2冷却工程における冷却終了温度Te,2は、第2冷却工程における冷却が終了し、鋼板表面が復熱した時点における鋼板の板厚方向の平均温度とする。一方、前記冷却終了温度の下限は特に限定されないが、板厚方向の硬さばらつきを小さくする観点から200℃以上とすることが好ましい。
[再加熱工程]
 上記加速冷却終了後、再加熱を行ってもよい。再加熱を行う場合、加速冷却工程の後、ただちに0.5℃/s以上10℃/s以下の昇温速度で400~700℃まで再加熱を行う。ここで、「加速冷却後ただちに」とは、加速冷却終了後、120秒以内に0.5℃/s以上10℃/s以下の昇温速度での再加熱を開始することをいう。上記加速冷却工程における加速冷却終了温度が低く、マルテンサイトなど、ベイナイト以外の低温変態組織が多量に生成した場合でも、再加熱を実施して焼きもどし処理をすることにより、材質の均一化がはかれ、硬さのばらつきを低減することが可能である。
 以上の工程により、API X80グレード以上の高い強度を有し、板厚中心部のシャルピー特性に優れ、さらに高い材質均一性を兼ね備えた構造管用厚肉鋼板を製造することができる。なお、上述した通り本発明の構造管用厚肉鋼板は38mm以上の板厚を有するものとする。板厚の上限は特に限定されないが、板厚75mmを超えると、本発明に記載の製造条件を満足させることが難しくなる可能性があるので、本発明は板厚75mm以下の場合に適用することが好ましい。
[鋼管]
 上記のようにして得られた鋼板を素材として用いて、鋼管を製造することができる。前記鋼管は、例えば、上記構造管用厚肉鋼板が長手方向に筒状に成形され、突き合わせ部が溶接された構造管とすることができる。鋼管の製造方法としては、特に限定されることなく、任意の方法を用いることができる。例えば、鋼板を常法に従ってUプレスおよびOプレスで鋼板長手方向に筒状とした後、突き合わせ部をシーム溶接してUOE鋼管とすることができる。前記シーム溶接は、仮付溶接後、内面、外面をいずれも少なくとも1層ずつサブマージアーク溶接で行うことが好ましい。サブマージアーク溶接に用いられるフラックスは特に制限はなく、溶融型フラックスであっても焼成型フラックスであってもかまわない。シーム溶接を行った後、溶接残留応力の除去と鋼管真円度の向上のため、拡管を実施する。拡管工程において拡管率(拡管前の管の外径に対する拡管前後の外径変化量の比)は、通常、0.3%~1.5%の範囲で実施される。真円度改善効果と拡管装置に要求される能力とのバランスの観点から、拡管率は0.5%~1.2%の範囲であることが好ましい。上述のUOEプロセスの代わりに、鋼板に三点曲げを繰り返すことにより逐次成形するプレスペンド法により、ほぼ円形の断面形状を有する鋼管を製造した後に、上述のUOEプロセスと同様にシーム溶接を実施してもよい。プレスペンド法の場合も、UOEプロセスの場合と同様、シーム溶接を行った後、拡管を行ってもよい。拡管工程において拡管率(拡管前の管の外径に対する拡管前後の外径変化量の比)は、通常、0.3%~1.5%の範囲で実施される。真円度改善効果と拡管装置に要求される能力とのバランスの観点から、拡管率は0.5%~1.2%の範囲であることが好ましい。また、必要に応じ、溶接前の予熱や溶接後の熱処理を行うこともできる。
 表1に示す成分組成の鋼(鋼種A~K)を溶製し、連続鋳造法によりスラブとした。得られたスラブを加熱して熱間圧延し、その後、ただちに水冷型の加速冷却設備を用いて2段階冷却して板厚38~51mmの鋼板(No.1~18)を製造した。各鋼板の製造条件を表2に示す。得られた鋼板のそれぞれについて、以下に述べる方法により、ミクロ組織に占めるベイナイトの面積分率と機械的特性を評価した。評価結果を表3に示す。
 ベイナイトの面積分率は、板厚中心位置から採取した試料について、走査型電子顕微鏡(倍率1000倍)でランダムに5視野以上観察を行って評価した。
 機械的特性のうち、0.5%耐力(YS)と引張強さ(TS)は、得られた厚肉鋼板から圧延方向に対して垂直方向の全厚試験片を採取し、JIS Z 2241(1998)の規定に準拠して引張試験を実施して測定した。
 機械的特性のうち、シャルピー特性については、板厚中心部より、圧延方向を長手方向とする2mmVノッチシャルピー試験片を各3本ずつ採取し、各試験片について-20℃でシャルピー衝撃試験により吸収エネルギー(vE-20℃)を測定し、それらの平均値を求めた。
 機械的特性のうち、ビッカース硬さのばらつきは次のようにして求めた。鋼板の圧延方向に直角な断面について、JIS Z 2244に準拠して荷重10kgfの条件でビッカース硬さHV10を複数の点で測定し、測定値の最大値と最小値の差をビッカース硬さのばらつきΔHV10とした。その際、板厚方向におけるばらつきΔHV10,tは、板幅中央部において、鋼板表層下1mmの位置から、板厚方向に1mmピッチで板厚全体にわたって測定したビッカース硬さから決定した。また、板幅方向におけるばらつきΔHV10,cは、鋼板表層下1mmの位置において、板幅方向に20mmピッチで板幅全体にわたって測定したビッカース硬さから決定した。なお、板幅方向の硬さは、t/4位置(板厚1/4位置)およびt/2位置(板厚中心部)においても測定したが、いずれの鋼板においても表面下1mm位置において硬さのばらつきが最大を示したので、上述の通り、表面下1mm位置における硬さのばらつきを、鋼板のビッカース硬さのばらつきとした。
 また、溶接熱影響部(HAZ)靭性を評価するために、再現熱サイクル装置によって入熱40kJ/cm~100kJ/cmに相当する熱履歴を加えた試験片を作製し、得られた試験片を用いてシャルピー衝撃試験を行った。上述した-20℃におけるシャルピー吸収エネルギーの評価と同様の方法で測定を行い、得られた-20℃でのシャルピー吸収エネルギーが100J以上の物を良好(○)、100J未満のものを不良(×)とした。
 さらに、耐PWHT特性を評価するために、ガス雰囲気炉を用いて各鋼板のPWHT処理を行った。このときの熱処理条件は600℃で2時間とし、その後、鋼板を炉から取り出し、空冷によって室温まで冷却した。得られたPWHT処理後の鋼板それぞれについて、上述のPWHT前の測定と同様の方法で0.5%YS、TS、およびvE-20℃を測定した。
 表3に示したように、本発明の条件を満たす発明例(No.1~7)は、PWTH前において、材質均一性に優れる(ビッカース硬さのばらつきが小ささい)とともに、優れた強度、靭性、およびHAZ靭性を有し、さらに、600℃という高温でPWHTを行った後においても、十分な強度を維持していた。一方、本発明の条件を満たさない比較例(No.8~18)においては、材質均一性や、PWTH前と後の一方または両方における機械的特性が劣っていた。例えば、No.8~14は、鋼の成分組成が本発明の条件を満たしているが、母材の強度や材質均一性、シャルピー特性等が劣っている。そのうちNo.9は、850℃以下における累積圧下率が低いため、シャルピー特性が低下したものと考えられる。また、No.10は、鋼板ミクロ組織がベイナイト主体となっておらず、母材強度が劣っている。これは、第1冷却工程における冷却開始温度が低かったため、多量のフェライトが生成したためであると考えられる。No.11、12では、第1冷却工程における冷却速度が過大であったため、表層部の硬さが上昇し、その結果、ビッカース硬さのばらつきが大きくなったものと考えられる。No.15~18は鋼の化学成分が本発明の範囲外であるため、母材強度、シャルピー特性、HAZ靭性の少なくとも一つが劣っていた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明によれば、API X80グレード以上、板厚38mm以上の高強度鋼板であって、多量の合金元素の添加なしに、圧延方向の高強度を有しながら板厚中心部のシャルピー特性に優れ、さらに高い材質均一性を兼ね備えた構造管用厚肉鋼板および前記構造管用厚肉鋼板を用いた構造管を提供することができる。前記構造管は、材質均一性に優れるとともに、PWHT後においても優れた機械的特性を維持しているため、コンダクターケーシング鋼管やライザー鋼管等の構造管として極めて有用である。

Claims (7)

  1.  構造管用厚肉鋼板であって、
     質量%で、
      C :0.030~0.100%、
      Si:0.01~0.50%、
      Mn:1.50~2.50%、
      Al:0.080%以下、
      Mo:0.05~0.50%、
      Ti:0.005~0.025%、
      Nb:0.005~0.080%、
      N :0.001~0.010%、
      O :0.005%以下、
      P :0.010%以下、および
      S :0.0010%以下、を含有し、
     残部Feおよび不可避不純物からなり、かつ
     下記(1)式で定義される炭素当量Ceqが0.42以上である成分組成を有し、
     ベイナイト主体のミクロ組織を有し、
     引張強さが620MPa以上、板厚中心部の-20℃におけるシャルピー吸収エネルギーvE-20℃が100J以上、板厚方向におけるビッカース硬さのばらつきΔHV10,tが50以下、かつ板幅方向におけるビッカース硬さのばらつきΔHV10,cが50以下である、構造管用厚肉鋼板。
                        記
     Ceq=C+Mn/6+(Cu+Ni)/15+(Cr+Mo+V)/5・・・(1)
    (ここで、(1)式中の元素記号は、前記鋼板中における各元素の含有量を質量%で表した値を表し、該鋼板中に当該元素が含有されない場合には0とする)
  2.  さらに、前記成分組成が、質量%で、
      V :0.005~0.100%、を含有する、請求項1に記載の構造管用厚肉鋼板。
  3.  さらに、前記成分組成が、質量%で、
      Cu:0.50%以下、
      Ni:0.50%以下、
      Cr:0.50%以下、
      Ca:0.0005~0.0035%、
      REM:0.0005~0.0100%、および
      B :0.0020%以下からなる群より選択される1種または2種以上を含有する、請求項1または2に記載の構造管用厚肉鋼板。
  4.  請求項1~3のいずれか一項に記載の成分組成を有する鋼素材を、加熱温度:1100~1300℃まで加熱する加熱工程と、
     前記加熱工程において加熱された鋼素材を、850℃以下での累積圧下率:70%以上の条件で熱間圧延して鋼板とする熱間圧延工程と、
     前記熱間圧延された鋼板を、該鋼板の表面温度で、冷却開始温度Ts、1:Ar3点以上、冷却終了温度Te,1:500℃以下、平均冷却速度V1:20℃/s以上100℃/s以下、かつ下記(2)式を満足する条件で加速冷却する第1冷却工程と、
     前記第1冷却工程後の鋼板を、該鋼板の平均温度で、冷却終了温度Te,2:500℃以下、平均冷却速度V2:5℃/s以上の条件で加速冷却する第2冷却工程とを、少なくとも有する、構造管用厚肉鋼板の製造方法。
                        記
     3≦(700-Te,1)/V1 ・・・(2)
    (ここで、(2)式中のTe,1の単位は℃、V1の単位は℃/sとする)
  5.  前記第2冷却工程の後、ただちに0.5℃/s以上10℃/s以下の昇温速度で400~700℃まで再加熱を行う再加熱工程をさらに有する、請求項4に記載の構造管用厚肉鋼板の製造方法。
  6.  請求項1~3のいずれか一項に記載の構造管用厚肉鋼板からなる構造管。
  7.  請求項1~3のいずれか一項に記載の鋼板を長手方向に筒状に成形した後、突合せ部を内外面からいずれも少なくとも1層ずつ長手方向に溶接して得た構造管。
PCT/JP2016/001765 2015-03-26 2016-03-25 構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管 WO2016152172A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017507512A JP6256654B2 (ja) 2015-03-26 2016-03-25 構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管
KR1020177030020A KR102032105B1 (ko) 2015-03-26 2016-03-25 구조관용 후육 강판, 구조관용 후육 강판의 제조 방법, 및 구조관
CA2980424A CA2980424C (en) 2015-03-26 2016-03-25 Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
CN201680018221.9A CN107406948B (zh) 2015-03-26 2016-03-25 结构管用厚壁钢板、结构管用厚壁钢板的制造方法和结构管
US15/560,613 US10767250B2 (en) 2015-03-26 2016-03-25 Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
EP16768075.0A EP3276026B1 (en) 2015-03-26 2016-03-25 Thick steel sheet for structural pipe, method for manufacturing thick steel sheet for structural pipe, and structural pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015065167 2015-03-26
JP2015-065167 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016152172A1 true WO2016152172A1 (ja) 2016-09-29

Family

ID=56978861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001765 WO2016152172A1 (ja) 2015-03-26 2016-03-25 構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管

Country Status (7)

Country Link
US (1) US10767250B2 (ja)
EP (1) EP3276026B1 (ja)
JP (1) JP6256654B2 (ja)
KR (1) KR102032105B1 (ja)
CN (1) CN107406948B (ja)
CA (1) CA2980424C (ja)
WO (1) WO2016152172A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI639714B (zh) * 2017-02-20 2018-11-01 日商新日鐵住金股份有限公司 Steel plate
TWI659113B (zh) * 2017-02-20 2019-05-11 日商新日鐵住金股份有限公司 Hot stamping
JP2021508774A (ja) * 2017-12-24 2021-03-11 ポスコPosco 高強度鋼板及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10316385B2 (en) * 2014-03-31 2019-06-11 Jfe Steel Corporation High-tensile-strength steel plate and process for producing same
JP6256652B2 (ja) * 2015-03-26 2018-01-10 Jfeスチール株式会社 構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管
CN107406948B (zh) 2015-03-26 2019-03-08 杰富意钢铁株式会社 结构管用厚壁钢板、结构管用厚壁钢板的制造方法和结构管
KR102002717B1 (ko) 2015-03-27 2019-07-23 제이에프이 스틸 가부시키가이샤 고강도 강 및 그 제조 방법, 그리고 강관 및 그 제조 방법
CN112313357B (zh) * 2018-06-29 2021-12-31 日本制铁株式会社 钢管和钢板
JP6617858B1 (ja) * 2018-07-18 2019-12-11 Jfeスチール株式会社 フェライト系ステンレス鋼板およびその製造方法
RU2767261C1 (ru) * 2018-09-28 2022-03-17 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочная стальная пластина для кислотостойкого трубопровода и способ получения стальной пластины, высокопрочная стальная труба, в которой используется высокопрочная стальная пластина для кислотостойкого трубопровода
CN110964991B (zh) * 2019-12-07 2021-02-26 江阴兴澄特种钢铁有限公司 一种兼具抗hic和抗大变形的管线钢及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052928A1 (ja) * 2008-11-07 2010-05-14 新日本製鐵株式会社 超高強度ラインパイプ用鋼板および鋼管の製造方法
JP2010196164A (ja) * 2009-01-30 2010-09-09 Jfe Steel Corp 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法
JP2013194316A (ja) * 2012-03-23 2013-09-30 Jfe Steel Corp 鋼板内の材質均一性に優れた大入熱溶接用高強度鋼板及びその製造方法
JP2013227671A (ja) * 2012-03-29 2013-11-07 Jfe Steel Corp 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
JP2013227670A (ja) * 2012-03-29 2013-11-07 Jfe Steel Corp 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3558198B2 (ja) 1997-08-05 2004-08-25 住友金属工業株式会社 高温sr特性に優れた高強度ライザー鋼管
JP2001158939A (ja) 1999-12-03 2001-06-12 Nkk Corp 耐sr特性に優れた高強度高靭性鋼管
JP4696615B2 (ja) 2005-03-17 2011-06-08 住友金属工業株式会社 高張力鋼板、溶接鋼管及びそれらの製造方法
CA2627171A1 (en) * 2005-10-24 2007-05-03 Narasimha-Rao V. Bangaru High strength dual phase steel with low yield ratio, high toughness and superior weldability
CA2844718C (en) * 2009-01-30 2017-06-27 Jfe Steel Corporation Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
JP5782828B2 (ja) 2011-05-24 2015-09-24 Jfeスチール株式会社 高圧縮強度鋼管及びその製造方法
EP2725097A4 (en) * 2011-06-27 2015-02-18 Hitachi Ltd CELL CULTURE DEVICE AND CELL CULTURE METHOD
JP5991175B2 (ja) 2011-12-09 2016-09-14 Jfeスチール株式会社 鋼板内の材質均一性に優れたラインパイプ用高強度鋼板とその製造方法
JP5590253B2 (ja) 2011-12-28 2014-09-17 新日鐵住金株式会社 変形性能と低温靭性に優れた高強度鋼管、高強度鋼板、および前記鋼板の製造方法
CN105008574B (zh) 2013-03-12 2018-05-18 杰富意钢铁株式会社 多层焊接接头ctod特性优良的厚钢板及其制造方法
CN107406948B (zh) 2015-03-26 2019-03-08 杰富意钢铁株式会社 结构管用厚壁钢板、结构管用厚壁钢板的制造方法和结构管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052928A1 (ja) * 2008-11-07 2010-05-14 新日本製鐵株式会社 超高強度ラインパイプ用鋼板および鋼管の製造方法
JP2010196164A (ja) * 2009-01-30 2010-09-09 Jfe Steel Corp 低温靭性に優れた厚肉高張力熱延鋼板およびその製造方法
JP2013194316A (ja) * 2012-03-23 2013-09-30 Jfe Steel Corp 鋼板内の材質均一性に優れた大入熱溶接用高強度鋼板及びその製造方法
JP2013227671A (ja) * 2012-03-29 2013-11-07 Jfe Steel Corp 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
JP2013227670A (ja) * 2012-03-29 2013-11-07 Jfe Steel Corp 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI639714B (zh) * 2017-02-20 2018-11-01 日商新日鐵住金股份有限公司 Steel plate
TWI659113B (zh) * 2017-02-20 2019-05-11 日商新日鐵住金股份有限公司 Hot stamping
JP2021508774A (ja) * 2017-12-24 2021-03-11 ポスコPosco 高強度鋼板及びその製造方法
JP7096337B2 (ja) 2017-12-24 2022-07-05 ポスコ 高強度鋼板及びその製造方法

Also Published As

Publication number Publication date
CN107406948B (zh) 2019-03-08
US20180051363A1 (en) 2018-02-22
CA2980424C (en) 2020-03-10
KR20170128574A (ko) 2017-11-22
JP6256654B2 (ja) 2018-01-10
CN107406948A (zh) 2017-11-28
EP3276026B1 (en) 2019-08-28
US10767250B2 (en) 2020-09-08
EP3276026A1 (en) 2018-01-31
CA2980424A1 (en) 2016-09-29
JPWO2016152172A1 (ja) 2017-06-15
KR102032105B1 (ko) 2019-10-15
EP3276026A4 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
JP6256654B2 (ja) 構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管
JP6256652B2 (ja) 構造管用厚肉鋼板、構造管用厚肉鋼板の製造方法、および構造管
KR101668546B1 (ko) 내변형 시효 특성이 우수한 저항복비 고강도 강판 및 그 제조 방법 그리고 그것을 사용한 고강도 용접 강관
KR101668545B1 (ko) 내변형 시효 특성이 우수한 저항복비 고강도 강판 및 그 제조 방법 그리고 그것을 사용한 고강도 용접 강관
JP6256653B2 (ja) 構造管用鋼板、構造管用鋼板の製造方法、および構造管
KR102002241B1 (ko) 구조관용 강판, 구조관용 강판의 제조 방법, 및 구조관
JP2007023346A (ja) 歪時効特性に優れた高強度溶接鋼管の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507512

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2980424

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15560613

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177030020

Country of ref document: KR

Kind code of ref document: A