WO2016151891A1 - 二次電池用正極活物質及びその製造方法 - Google Patents

二次電池用正極活物質及びその製造方法 Download PDF

Info

Publication number
WO2016151891A1
WO2016151891A1 PCT/JP2015/076386 JP2015076386W WO2016151891A1 WO 2016151891 A1 WO2016151891 A1 WO 2016151891A1 JP 2015076386 W JP2015076386 W JP 2015076386W WO 2016151891 A1 WO2016151891 A1 WO 2016151891A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
electrode active
positive electrode
active material
secondary battery
Prior art date
Application number
PCT/JP2015/076386
Other languages
English (en)
French (fr)
Inventor
弘樹 山下
智紀 初森
充志 中村
大神 剛章
Original Assignee
太平洋セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015178163A external-priority patent/JP6042515B2/ja
Priority claimed from JP2015178162A external-priority patent/JP6042514B2/ja
Application filed by 太平洋セメント株式会社 filed Critical 太平洋セメント株式会社
Priority to CN201580078105.1A priority Critical patent/CN107408694B/zh
Priority to EP15886443.9A priority patent/EP3276712B1/en
Priority to US15/561,349 priority patent/US10964950B2/en
Priority to KR1020177025727A priority patent/KR102385969B1/ko
Publication of WO2016151891A1 publication Critical patent/WO2016151891A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a secondary battery in which one or two kinds selected from carbon obtained by carbonizing an oxide with a water-insoluble conductive carbon material and a water-soluble carbon material, and a metal fluoride are supported together. Concerning substances.
  • lithium ion secondary batteries are widely known as the most excellent secondary batteries that operate near room temperature.
  • lithium-containing olivine-type phosphate metal salts such as Li (Fe, Mn) PO 4 and Li 2 (Fe, Mn) SiO 4 are more resource-constrained than lithium transition metal oxides such as LiCoO 2. Therefore, it is possible to exhibit high safety, and therefore, it is an optimum positive electrode material for obtaining a high-output and large-capacity lithium ion secondary battery.
  • these compounds have the property that it is difficult to sufficiently increase the conductivity due to the crystal structure, and there is room for improvement in the diffusibility of lithium ions. Has been made.
  • Patent Document 2 discloses that after the firing treatment of the raw material mixture containing the carbonaceous material precursor, the water content is reduced to a certain value or less by performing pulverization treatment and classification treatment in a dry atmosphere.
  • Technology is disclosed.
  • a predetermined lithium phosphate compound, lithium silicate compound, and the like and a conductive carbon material are mixed by a wet ball mill, and then a mechanochemical treatment is performed so that the conductive carbon material is uniformly applied to the surface.
  • a technique for obtaining a composite oxide deposited is disclosed.
  • Patent Document 4 discloses a sodium ion secondary battery active material using marisite-type NaMnPO 4
  • Patent Document 5 discloses a positive electrode containing sodium phosphate transition metal having an olivine structure. An active material is disclosed, and any literature indicates that a high-performance sodium ion secondary battery can be obtained.
  • the surface of the lithium phosphate compound or the like is not sufficiently covered with the carbon source, and a part of the surface is exposed. It has been found that it is difficult to obtain a positive electrode active material for a secondary battery in which the moisture content is increased and the battery properties such as cycle characteristics are sufficiently high.
  • an object of the present invention is to provide a positive electrode active material for a secondary battery that can effectively suppress moisture adsorption and a method for manufacturing the same, in order to obtain a high-performance lithium ion secondary battery or a sodium ion secondary battery. It is to provide.
  • specific oxides include one or more selected from carbon obtained by carbonizing a water-insoluble conductive carbon material and a water-soluble carbon material, and a specific amount of metal.
  • carbon obtained by carbonizing a water-insoluble conductive carbon material and / or a water-soluble carbon material, and a metal fluoride both have an oxide surface. Since it is possible to effectively coat and effectively suppress moisture adsorption, lithium ion or sodium ion has been found to be extremely useful as a positive electrode active material for a secondary battery that can effectively carry electric conduction, and the present invention. It came to complete.
  • the present invention includes at least the following formula (A), (B) or (C) containing iron or manganese: LiFe a Mn b M c PO 4 (A) (In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd.
  • Li 2 Fe d Mn e N f SiO 4 (B) (In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr.
  • D, e, and f are 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 1, and 0 ⁇ f ⁇ 1, 2d + 2e +.
  • the present invention also provides an oxide X by subjecting a slurry water a containing a lithium compound or sodium compound, a phosphoric acid compound or a silicic acid compound, and a metal salt containing at least an iron compound or a manganese compound to a hydrothermal reaction.
  • Step (I-1) A step (II-1) of obtaining a composite A by adding a water-insoluble conductive carbon material to the obtained oxide X and dry-mixing, and the obtained composite A to 100 parts by mass of the composite
  • a step of adding 0.1 to 40 parts by mass of a metal fluoride precursor, wet mixing and firing III-1)
  • the manufacturing method of the said positive electrode active material for secondary batteries provided with these is provided.
  • the present invention provides a hydrothermal reaction of slurry water b containing a lithium compound or sodium compound, a phosphoric acid compound or silicic acid compound, and a metal salt containing at least an iron compound or a manganese compound and containing a water-soluble carbon material.
  • Step (I-2) for obtaining composite D by attaching to 0.1 to 40 parts by weight of metal fluoride metal fluoride precursor to 100 parts by weight of composite in the obtained composite D Adding, wet-mixing and firing (II-2)
  • the manufacturing method of the positive electrode active material for secondary batteries provided with these is provided.
  • the carbon obtained by carbonizing the water-insoluble conductive carbon material and / or the water-soluble carbon material and the specific amount of metal fluoride are effectively supported on the predetermined oxide while complementing each other.
  • lithium ions or sodium ions effectively carry electric conduction, and various Excellent battery characteristics such as cycle characteristics can be stably exhibited even in a different use environment.
  • the oxide used in the present invention contains at least iron or manganese and has the following formula (A), (B) or (C): LiFe a Mn b M c PO 4 (A) (In the formula (A), M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd.
  • Li 2 Fe d Mn e N f SiO 4 (B) (In the formula (B), N represents Ni, Co, Al, Zn, V, or Zr.
  • D, e, and f are 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 1, 0 ⁇ f ⁇ 1, and 2d + 2e +.
  • oxides all have an olivine structure and contain at least iron or manganese.
  • oxide represented by the above formula (A) or (B) a positive electrode active material for a lithium ion battery is obtained, and when the oxide represented by the above formula (C) is used.
  • a positive electrode active material for a sodium ion battery is obtained.
  • the oxide represented by the above formula (A) is an olivine-type transition metal lithium compound containing at least iron (Fe) and manganese (Mn) as so-called transition metals.
  • M represents Mg, Ca, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd, and is preferably Mg, Zr, Mo, or Co.
  • a is 0 ⁇ a ⁇ 1, preferably 0.01 ⁇ a ⁇ 0.99, and more preferably 0.1 ⁇ a ⁇ 0.9.
  • b is 0 ⁇ b ⁇ 1, preferably 0.01 ⁇ b ⁇ 0.99, and more preferably 0.1 ⁇ b ⁇ 0.9.
  • olivine-type transition metal lithium compound represented by the above formula (A) include LiFe 0.2 Mn 0.8 PO 4 , LiFe 0.9 Mn 0.1 PO 4 , LiFe 0.15 Mn 0.75 Mg 0.1 PO 4 , LiFe Examples include 0.19 Mn 0.75 Zr 0.03 PO 4 , and among them, LiFe 0.2 Mn 0.8 PO 4 is preferable.
  • the oxide represented by the above formula (B) is a so-called olivine-type transition metal lithium compound containing at least iron (Fe) and manganese (Mn) as transition metals.
  • N represents Ni, Co, Al, Zn, V, or Zr, and is preferably Co, Al, Zn, V, or Zr.
  • d is 0 ⁇ d ⁇ 1, preferably 0 ⁇ d ⁇ 1, and more preferably 0.1 ⁇ d ⁇ 0.6.
  • e is 0 ⁇ d ⁇ 1, preferably 0 ⁇ e ⁇ 1, and more preferably 0.1 ⁇ e ⁇ 0.6.
  • f is 0 ⁇ f ⁇ 1, preferably 0 ⁇ f ⁇ 1, and more preferably 0.05 ⁇ f ⁇ 0.4.
  • olivine-type transition metal lithium compound represented by the above formula (B) include, for example, Li 2 Fe 0.45 Mn 0.45 Co 0.1 SiO 4 , Li 2 Fe 0.36 Mn 0.54 Al 0.066 SiO 4 , Li 2 Fe 0.45 Mn 0.45 Zn 0.1 SiO 4 , Li 2 Fe 0.36 Mn 0.54 V 0.066 SiO 4 , Li 2 Fe 0.282 Mn 0.658 Zr 0.02 SiO 4 and the like can be mentioned, among which Li 2 Fe 0.282 Mn 0.658 Zr 0.02 SiO 4 is preferable.
  • the oxide represented by the formula (C) is an olivine-type transition metal sodium phosphate compound containing iron (Fe) and manganese (Mn) as at least transition metals.
  • Q represents Mg, Ca, Co, Sr, Y, Zr, Mo, Ba, Pb, Bi, La, Ce, Nd, or Gd, and is preferably Mg, Zr, Mo, or Co.
  • g is 0 ⁇ g ⁇ 1, and preferably 0 ⁇ g ⁇ 1.
  • h is 0 ⁇ h ⁇ 1, and preferably 0.5 ⁇ h ⁇ 1.
  • i is 0 ⁇ i ⁇ 1, preferably 0 ⁇ i ⁇ 0.5, and more preferably 0 ⁇ i ⁇ 0.3.
  • olivine-type transition metal sodium phosphate compound represented by the above formula (C) include, for example, NaFe 0.2 Mn 0.8 PO 4 , NaFe 0.9 Mn 0.1 PO 4 , NaFe 0.15 Mn 0.7 Mg 0.15 PO 4 , NaFe Examples include 0.19 Mn 0.75 Zr 0.03 PO 4 , NaFe 0.19 Mn 0.75 Mo 0.03 PO 4 , NaFe 0.15 Mn 0.7 Co 0.15 PO 4 , and NaFe 0.2 Mn 0.8 PO 4 is preferred.
  • the positive electrode active material for a secondary battery according to the present invention is carbon obtained by carbonizing an oxide represented by the above formula (A), (B) or (C) with a water-insoluble conductive carbon material and a water-soluble carbon material.
  • a water-insoluble conductive carbon material and a water-soluble carbon material.
  • One or two selected from (carbon derived from a water-soluble carbon material) and 0.1 to 5% by mass of a metal fluoride are supported.
  • the oxide is made to carry one or two kinds selected from carbon obtained by carbonizing a water-insoluble conductive carbon material and a water-soluble carbon material and a specific amount of metal fluoride, One or two selected from the water-insoluble conductive carbon material and the carbon obtained by carbonizing the water-soluble carbon material, or one of the metal fluorides is coated on the oxide surface, and the oxidation is performed without the presence of one of them.
  • One or two kinds selected from carbon obtained by carbonizing a water-insoluble conductive carbon material and a water-soluble carbon material, or the other of metal fluorides, is effectively supported on a portion where the object surface is exposed.
  • the positive electrode active material for a secondary battery of the present invention specifically, for example, a water-insoluble conductive carbon material and 0.1 to 5% by mass of a metal fluoride are supported on the oxide.
  • the secondary battery positive electrode active material (P-1) and the above oxide are loaded with carbon obtained by carbonizing a water-soluble carbon material and 0.1 to 5% by mass of a metal fluoride.
  • the secondary battery positive electrode active material (P-1) may be formed by further supporting carbon obtained by carbonizing a water-soluble carbon material on the oxide as necessary.
  • the water-insoluble conductive carbon material supported on the oxide represented by the above formula (A), (B) or (C) means that the amount dissolved in 100 g of water at 25 ° C. is carbon of the water-insoluble conductive carbon material.
  • the water-insoluble conductive carbon material include one or more selected from graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. Among these, ketjen black or graphite is preferable from the viewpoint of reducing the amount of adsorbed moisture.
  • the graphite may be any of artificial graphite (scale-like, lump-like, earthy, graphene) or natural graphite.
  • the BET specific surface area of the water-insoluble conductive carbon material that can be used is preferably 1 to 750 m 2 / g, more preferably 3 to 500 m 2 / g, from the viewpoint of effectively reducing the amount of adsorbed water. Further, from the same viewpoint, the average particle size of the water-insoluble conductive carbon material is preferably 0.5 to 20 ⁇ m, more preferably 1.0 to 15 ⁇ m.
  • the water-insoluble conductive carbon material is present in the positive electrode active material for a secondary battery of the present invention as carbon supported on the oxide.
  • the carbon atom equivalent amount of the water-insoluble conductive carbon material is preferably 0.5 to 7% by mass, more preferably 0.7 to 6% by mass in the positive electrode active material for a secondary battery of the present invention. More preferably 0.85 to 5.5% by mass.
  • the amount in terms of carbon atoms of the water-insoluble conductive carbon material present in the positive electrode active material for secondary batteries can be confirmed by the amount of carbon measured using a carbon / sulfur analyzer.
  • the carbon atom equivalent amount of the water-insoluble conductive carbon material present in the positive electrode active material for the secondary battery is determined from the carbon amount measured using a carbon / sulfur analyzer. This can be confirmed by subtracting the amount of water-soluble carbon material added in terms of carbon atoms.
  • the water-soluble carbon material supported as carbon carbonized by the oxide represented by the above formula (A), (B) or (C) is equivalent to carbon atom of the water-soluble carbon material in 100 g of water at 25 ° C.
  • the water-soluble carbon material include one or more selected from saccharides, polyols, polyethers, and organic acids.
  • monosaccharides such as glucose, fructose, galactose and mannose
  • disaccharides such as maltose, sucrose and cellobiose
  • polysaccharides such as starch and dextrin
  • polyols and polyethers such as diol, propanediol, polyvinyl alcohol, and glycerin
  • organic acids such as citric acid, tartaric acid, and ascorbic acid.
  • glucose, fructose, sucrose, and dextrin are preferable, and glucose is more preferable from the viewpoint of improving the solubility and dispersibility in a solvent and effectively functioning as a carbon material.
  • the carbon atom equivalent of the water-soluble carbon material is present in the positive electrode active material for the secondary battery of the present invention as carbon supported by the oxide by carbonization of the water-soluble carbon material.
  • the carbon atom equivalent amount of the water-soluble carbon material is preferably 0.1 to 4% by mass, more preferably 0.2 to 3.5% by mass in the positive electrode active material for a secondary battery of the present invention. More preferably, it is 0.3 to 3% by mass.
  • the amount in terms of carbon atoms of the water-soluble carbon material present in the positive electrode active material for secondary battery can be confirmed by the amount of carbon measured using a carbon / sulfur analyzer.
  • the carbon atom equivalent amount of the water-soluble carbon material present in the positive electrode active material for secondary batteries is calculated from the carbon amount measured using a carbon / sulfur analyzer. This can be confirmed by subtracting the added amount of the water-insoluble conductive carbon material.
  • Examples of the metal fluoride metal supported on the oxide include lithium (Li), sodium (Na), magnesium (Mg), calcium (Ca), aluminum (Al), titanium (Ti), vanadium (V), Chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), zirconium (Zr), niobium (Nb), molybdenum (Mo), Examples include tantalum (Ta), tin (Sn), tungsten (W), potassium (K), barium (Ba), and strontium (Sr).
  • it is a metal chosen from lithium, sodium, magnesium, calcium, and aluminum from a viewpoint of improving the hydrophobicity of metal fluoride, and improving ion conductivity, and is chosen from lithium and magnesium. More preferably, it is a metal.
  • the amount of the metal fluoride supported is determined from the viewpoint of effectively supporting the metal fluoride on the surface of the oxide in which carbon obtained by carbonization of the water-insoluble conductive carbon material and the water-soluble carbon material does not exist.
  • the positive electrode active material for a battery it is 0.1 to 5% by mass, preferably 0.2 to 4.5% by mass, more preferably 0.3 to 4% by mass. If the supported amount of the metal fluoride is less than 0.1% by mass, the amount of adsorbed water cannot be sufficiently suppressed, and if the supported amount of the metal fluoride exceeds 5% by mass, details are unknown, Even if the amount of adsorbed moisture is suppressed, the cycle characteristics of the secondary battery may be deteriorated.
  • the amount of fluorine present in the positive electrode active material for secondary batteries can be confirmed by an ion analyzer using a solution obtained by acid-dissolving the positive electrode active material for secondary batteries.
  • the positive electrode active material for a secondary battery according to the present invention is the above-described efficient while supplementing one or two kinds selected from carbon obtained by carbonizing a water-insoluble conductive carbon material and a water-soluble carbon material with a metal fluoride.
  • a metal fluoride represented by (A), (B) or (C)
  • an oxide, a water-insoluble conductive carbon material, and a water-soluble carbon material are used.
  • 0.1 to 5% by mass of a metal fluoride is supported on a composite containing one or two selected from carbon obtained by carbonizing carbon. Further, from the viewpoint of effectively supporting the metal fluoride on the exposed portion of the oxide surface without the presence of carbon obtained by carbonizing the water-insoluble conductive carbon material and the water-soluble carbon material in the composite, It is preferable that 0.1 to 40 parts by mass of a metal fluoride precursor is added to the composite with respect to 100 parts by mass of the composite and wet mixed to be carried on the composite.
  • the positive electrode active material for a secondary battery of the present invention comprises a composite containing an oxide, one or two selected from carbon obtained by carbonizing a water-insoluble conductive carbon material and a water-soluble carbon material, and a composite
  • a fired product of a wet mixture of 0.1 to 40 parts by weight of a metal fluoride precursor with respect to 100 parts by weight of the body is preferable.
  • the precursor of the metal fluoride is then fired and supported as a metal fluoride, and is present in the positive electrode active material for a secondary battery of the present invention.
  • the positive electrode active material for a secondary battery according to the present invention is a positive electrode active material for a secondary battery in which a water-insoluble conductive carbon material and 0.1 to 5% by mass of a metal fluoride are supported on the above oxide (In the case of P-1), specifically, the water-insoluble conductive carbon material is dry-mixed with an oxide obtained by a hydrothermal reaction and then supported on the oxide. More preferably, after being premixed with the oxide, it is mixed while applying a compressive force and a shearing force, and is supported on the oxide.
  • the composite containing the oxide and the water-insoluble conductive carbon material includes a lithium compound or a sodium compound, a phosphate compound or a silicate compound, and at least iron.
  • a dry mixture of an oxide which is a hydrothermal reaction product of slurry water containing a compound or a manganese compound and a water-insoluble conductive carbon material is preferable.
  • supported by the oxide by baking a water-insoluble conductive carbon material is obtained as a composite_body
  • a water-soluble carbon material may be added to the composite containing the oxide and the water-insoluble conductive carbon material.
  • a water-soluble carbon material may be added to the oxide to obtain a complex with the oxide and then dry-mixed, or a water-soluble carbon material may be added during the dry-mixing.
  • the composite obtained at this time contains a water-soluble carbon material together with an oxide and a water-insoluble conductive carbon material.
  • the water-soluble carbon material to be supported as carbonized carbon on the composite containing the oxide and the water-insoluble conductive carbon material is such that the water-insoluble conductive carbon material exists in the composite.
  • the oxide is supported on the oxide as carbon that is carbonized by being wet-mixed with the composite and then calcined.
  • the water-soluble carbon material By firing for carbonizing the water-soluble carbon material, the crystallinity of both the oxide and the water-insoluble conductive carbon material, which have been reduced by dry mixing, can be more effectively recovered. Sexually can be enhanced effectively.
  • the water-soluble carbon material the same water-soluble carbon material as that used in the positive electrode active material for secondary battery (P-2) can be used.
  • the positive electrode active material (P-1) for a secondary battery of the present invention contains a lithium compound or a sodium compound, a phosphoric acid compound or a silicic acid compound, and a metal salt containing at least an iron compound or a manganese compound.
  • a step of adding 0.1 to 40 parts by mass of a metal fluoride precursor, wet mixing and firing (III-1) It is preferable that it is obtained by a manufacturing method provided with.
  • a slurry water a containing a lithium compound or sodium compound, a phosphoric acid compound or a silicic acid compound, and a metal salt containing at least an iron compound or a manganese compound is subjected to a hydrothermal reaction to form an oxide X It is the process of obtaining.
  • the lithium compound or sodium compound that can be used include hydroxides (for example, LiOH.H 2 O, NaOH), carbonates, sulfates, and acetates. Of these, hydroxide is preferable.
  • the content of the lithium compound or silicic acid compound in the slurry water a is preferably 5 to 50 parts by mass, more preferably 7 to 45 parts by mass with respect to 100 parts by mass of water.
  • the content of the lithium compound or sodium compound in the slurry water a is preferably 5 to 50 parts by mass with respect to 100 parts by mass of water. More preferably, it is 10 to 45 parts by mass.
  • the content of the silicate compound in the slurry water a is preferably 5 to 40 parts by mass, more preferably 7 to 35 parts by mass with respect to 100 parts by mass of water.
  • Step (I-1) a lithium compound or a sodium compound is added from the viewpoint of improving the physical properties of the battery by increasing the dispersibility of each component contained in the slurry water a while miniaturizing the obtained positive electrode active material particles.
  • the slurry water a obtained in this manner is preferably subjected to a hydrothermal reaction to obtain the oxide X (Ib-1).
  • step (I-1) or (Ia-1) it is preferable to stir the mixture A in advance before mixing the phosphoric acid compound or the silicic acid compound with the mixture A.
  • the stirring time of the mixture A is preferably 1 to 15 minutes, more preferably 3 to 10 minutes.
  • the temperature of the mixture A is preferably 20 to 90 ° C, more preferably 20 to 70 ° C.
  • Examples of the phosphoric acid compound used in the step (I-1) or (Ia-1) include orthophosphoric acid (H 3 PO 4 , phosphoric acid), metaphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, ammonium phosphate, Examples include ammonium hydrogen phosphate. Of these, phosphoric acid is preferably used, and an aqueous solution having a concentration of 70 to 90% by mass is preferably used. In the step (I-1) or (Ia-1), when mixing the phosphoric acid into the mixture A, it is preferable to add the phosphoric acid dropwise while stirring the mixture A.
  • the dropping rate of phosphoric acid into the mixture A is preferably 15 to 50 mL / min, more preferably 20 to 45 mL / min, and further preferably 28 to 40 mL / min.
  • the stirring time of the mixture A while dropping phosphoric acid is preferably 0.5 to 24 hours, and more preferably 3 to 12 hours.
  • the stirring speed of the mixture A while dropping phosphoric acid is preferably 200 to 700 rpm, more preferably 250 to 600 rpm, and further preferably 300 to 500 rpm.
  • the silicic acid compound used in the step (I-1) or (Ia-1) is not particularly limited as long as it is a reactive silica compound, and amorphous silica, Na 4 SiO 4 (for example, Na 4 SiO 4. H 2 O) and the like.
  • the mixture B after mixing the phosphoric acid compound or silicic acid compound preferably contains 2.0 to 4.0 moles of lithium or sodium with respect to 1 mole of phosphoric acid or silicic acid. It is more preferable to contain 1 mol, and the lithium compound or sodium compound and the phosphoric acid compound or silicic acid compound may be used so as to obtain such an amount. More specifically, when a phosphoric acid compound is used in the step (I-1) or (Ia-1), the mixture B after mixing the phosphoric acid compound contains lithium or sodium with respect to 1 mol of phosphoric acid.
  • the content is preferably 2.7 to 3.3 mol, more preferably 2.8 to 3.1 mol, and when the silicate compound is used in step (I-1) or (Ia-1),
  • the mixture B after mixing the silicic acid compound preferably contains 2.0 to 4.0 moles of lithium, more preferably 2.0 to 3.0 moles per mole of silicic acid. What is necessary is just to use the said lithium compound or sodium compound, and a phosphoric acid compound or a silicic acid compound so that it may become such quantity.
  • the reaction in the mixture B is completed, and the oxides represented by the above (A) to (C) A precursor of X is produced in mixture B.
  • the precursor of the oxide X represented by the above (A) to (C) exists as fine dispersed particles.
  • the precursor of the oxide X is obtained as trilithium phosphate (Li 3 PO 4 ).
  • the pressure for purging nitrogen is preferably 0.1 to 0.2 MPa, more preferably 0.1 to 0.15 MPa.
  • the temperature of the mixture B after mixing the phosphoric acid compound or silicic acid compound is preferably 20 to 80 ° C., more preferably 20 to 60 ° C.
  • the reaction time is preferably 5 to 60 minutes, more preferably 15 to 45 minutes.
  • the stirring speed at this time is preferably 200 to 700 rpm, more preferably 250 to 600 rpm.
  • the concentration is preferably 0.5 mg / L or less, and more preferably 0.2 mg / L or less.
  • a slurry water a containing a precursor of the obtained oxide X and a metal salt containing at least an iron compound or a manganese compound is subjected to a hydrothermal reaction, Oxide X is obtained.
  • a metal salt containing at least an iron compound or a manganese compound is added thereto, and a water-soluble carbon material is added if necessary, and the slurry water a and It is preferable to do this. Accordingly, the oxide X represented by the above (A) to (C) can be obtained while simplifying the process, and it is possible to obtain extremely fine particles, which is a very useful secondary battery.
  • a positive electrode active material can be obtained.
  • iron compounds examples include iron acetate, iron nitrate, and iron sulfate. These may be used alone or in combination of two or more. Among these, iron sulfate is preferable from the viewpoint of improving battery characteristics.
  • manganese compounds examples include manganese acetate, manganese nitrate, and manganese sulfate. These may be used alone or in combination of two or more. Among these, manganese sulfate is preferable from the viewpoint of improving battery characteristics.
  • the use molar ratio of these manganese compound and iron compound is preferably 99: 1 to 1:99, more preferably 90. : 10 to 10:90.
  • the total addition amount of these iron compound and manganese compound is preferably 0.99 to 1.01 mol, more preferably 0.995 with respect to 1 mol of Li 3 PO 4 contained in the slurry water a. ⁇ 1.005 mol.
  • metal (M, N, or Q) salts other than an iron compound and a manganese compound as a metal salt as needed.
  • M, N, and Q in the metal (M, N, or Q) salt have the same meanings as M, N, and Q in the above formulas (A) to (C), and as the metal salt, sulfate, halogen compound, organic Acid salts and hydrates thereof can be used. These may be used alone or in combination of two or more. Among them, it is more preferable to use a sulfate from the viewpoint of improving battery physical properties.
  • the total amount of iron compound, manganese compound, and metal (M, N, or Q) salt is added to the mixture B obtained in the above step (I-1).
  • the amount is preferably 0.99 to 1.01 mol, more preferably 0.995 to 1.005 mol, per mol of phosphoric acid or silicic acid.
  • the amount of water used for the hydrothermal reaction is phosphoric acid or silicate ions contained in the slurry water a from the viewpoints of solubility of the metal salt used, ease of stirring, synthesis efficiency, and the like.
  • the amount is preferably 10 to 50 mol, more preferably 12.5 to 45 mol, relative to 1 mol. More specifically, when the ions contained in the slurry water a are phosphate ions, the amount of water used for the hydrothermal reaction is preferably 10 to 30 mol, more preferably 12 .5 to 25 moles.
  • the amount of water used for the hydrothermal reaction is preferably 10 to 50 mol, more preferably 12.5 to 45. Is a mole.
  • the order of adding the iron compound, manganese compound and metal (M, N or Q) salt is not particularly limited. Moreover, while adding these metal salts, you may add antioxidant as needed. As such an antioxidant, sodium sulfite (Na 2 SO 3 ), hydrosulfite sodium (Na 2 S 2 O 4 ), aqueous ammonia and the like can be used. From the viewpoint of preventing the formation of the oxide X represented by the above formulas (A) to (C) from being excessively added, the antioxidant is added in an iron compound, a manganese compound. In addition, it is preferably 0.01 to 1 mol, more preferably 0.03 to 0.5 mol, relative to a total of 1 mol of the metal (M, N or Q) salt used as necessary.
  • the content of the precursor of the oxide X in the slurry water a obtained by adding an iron compound, a manganese compound, and a metal (M, N or Q) salt or an antioxidant used as necessary is preferably 10. -50% by mass, more preferably 15-45% by mass, and still more preferably 20-40% by mass.
  • the hydrothermal reaction in the step (I-1) or (Ib-1) may be 100 ° C. or higher, and preferably 130 to 180 ° C.
  • the hydrothermal reaction is preferably carried out in a pressure-resistant vessel.
  • the pressure at this time is preferably 0.3 to 0.9 MPa, and the reaction is carried out at 140 to 160 ° C.
  • the pressure is preferably 0.3 to 0.6 MPa.
  • the hydrothermal reaction time is preferably 0.1 to 48 hours, more preferably 0.2 to 24 hours.
  • the obtained oxide X is an oxide represented by the above formulas (A) to (C), which can be isolated by filtration, washing with water, and drying. As the drying means, freeze drying or vacuum drying is used.
  • the BET specific surface area of the obtained oxide X is preferably 5 to 40 m 2 / g from the viewpoint of efficiently supporting the water-insoluble conductive carbon material and the metal fluoride and effectively reducing the amount of adsorbed water. More preferably, it is 5 to 20 m 2 / g.
  • the BET specific surface area of the oxide X is less than 5 m 2 / g, the primary particles of the positive electrode active material for the secondary battery become too large, and the battery characteristics may be deteriorated.
  • the BET specific surface area exceeds 40 m 2 / g, the amount of adsorbed moisture of the positive electrode active material for the secondary battery may increase and affect the battery characteristics.
  • Step (II-1) is a step of obtaining the composite A by adding a water-insoluble conductive carbon material to the oxide X obtained in the step (I-1) and dry-mixing.
  • a water-insoluble conductive carbon material may be set to the carbon atom equivalent amount of the water-insoluble conductive carbon material in the positive electrode active material for the secondary battery of the present invention.
  • the amount is 0.3 to 6.5 parts by mass, more preferably 0.5 to 5.5 parts by mass, and still more preferably 0.6 to 5 parts by mass.
  • a water-soluble carbon material may be added and dry-mixed.
  • the dry mixing in the step (II-1) is preferably mixing with a normal ball mill, and more preferably, the composite A is obtained by mixing with a planetary ball mill capable of revolving. Further, a water-insoluble conductive carbon material and a water-soluble carbon material used in combination as needed are densely and uniformly dispersed on the surface of the oxide X represented by the above formulas (A) to (C). From the viewpoint of effective loading, it is more preferable to mix the composite A while applying a compressive force and a shearing force to obtain the composite B.
  • the process of mixing while applying a compressive force and a shearing force is preferably performed in a closed container equipped with an impeller.
  • the peripheral speed of the impeller is preferably 25 to 40 m / s, more preferably 27 from the viewpoint of increasing the tap density of the obtained positive electrode active material and reducing the BET specific surface area to effectively reduce the amount of adsorbed water. ⁇ 40 m / s.
  • the mixing time is preferably 5 to 90 minutes, more preferably 10 to 80 minutes.
  • the peripheral speed of the impeller means the speed of the outermost end of the rotary stirring blade (impeller), which can be expressed by the following formula (1), and is mixed while applying compressive force and shearing force.
  • the processing time and / or the impeller peripheral speed when performing the mixing process while applying the compressive force and the shearing force are appropriately adjusted according to the amount of the composite A charged into the container.
  • the container By operating the container, it is possible to perform a process of mixing the mixture while applying a compressive force and a shearing force between the impeller and the inner wall of the container, and the above formulas (A) to (C )
  • the water-insoluble conductive carbon material and the water-soluble carbon material used together as necessary are finely and uniformly dispersed on the surface of the oxide X represented by It is possible to obtain a positive electrode active material for a secondary battery that can be reduced significantly.
  • a container corresponding to a part capable of accommodating the complex A is preferably 0.1 to 0.7 g, more preferably 0.15 to 0.4 g per 1 cm 3 .
  • the apparatus equipped with a closed container that can easily perform mixing while applying compressive force and shear force examples include a high-speed shear mill, a blade-type kneader, and the like. Fine particle composite apparatus Nobilta (manufactured by Hosokawa Micron Corporation) can be suitably used.
  • the treatment temperature is preferably 5 to 80 ° C., more preferably 10 to 50 ° C.
  • the treatment atmosphere is not particularly limited, but is preferably an inert gas atmosphere or a reducing gas atmosphere.
  • step (III-1) 100 parts by mass of the complex is added to the complex A obtained in the step (I-1) (or the complex B when the complex B is obtained in the step (II-1)).
  • step (0.1 to 40 parts by mass of a metal fluoride precursor is added and wet-mixed to obtain the composite C, followed by firing.
  • the amount of the metal fluoride precursor added is from the viewpoint of effectively supporting the metal fluoride in an amount of 0.1 to 5% by mass on the surface of the oxide X where no water-insoluble conductive carbon material is present.
  • the total amount is 0.1 to 40 parts by weight, preferably 0.2 to 36 parts by weight, and more preferably 0.3 to 32 parts by weight with respect to 100 parts by weight.
  • water it is preferable to add water together with the metal fluoride precursor.
  • the amount of water added is preferably 30 to 300 parts by weight, more preferably 50 to 250 parts by weight, and even more preferably 75 to 200 parts by weight with respect to 100 parts by weight of the complex A (or complex B). It is.
  • the metal fluoride precursor may be any compound that can be subsequently fired to form a metal fluoride to be supported on an oxide.
  • the metal fluoride precursor is a metal fluoride precursor.
  • a fluorine compound and a metal compound which are compounds other than the metal fluoride in combination examples include hydrofluoric acid, ammonium fluoride, and hypofluoric acid. Among them, ammonium fluoride is preferably used.
  • metal compound which is a compound other than the metal fluoride examples include metal acetate, metal nitrate, metal lactate, metal oxalate, metal hydroxide, metal ethoxide, metal isopropoxide, metal butoxide and the like. Of these, metal hydroxides are preferred.
  • the metal of a metal compound is synonymous with the metal of the said metal fluoride.
  • the wet mixing means in step (III-1) is not particularly limited, and can be performed by a conventional method.
  • the mixing temperature is preferably 5 to 80 ° C., more preferably 10 to 60 ° C.
  • the obtained composite C is preferably dried before firing. Examples of the drying means include spray drying, vacuum drying, freeze drying and the like.
  • step (III-1) the composite C obtained by the wet mixing is fired. Firing is preferably performed in a reducing atmosphere or an inert atmosphere.
  • the firing temperature is preferably 500 to 800 ° C., more preferably 600 to 770 ° C., from the viewpoint of improving the conductivity by improving the crystallinity of the oxide X and the water-insoluble conductive carbon material that have been lowered by dry mixing or the like. More preferably, it is 650 to 750 ° C.
  • the firing time is preferably 10 minutes to 3 hours, more preferably 30 minutes to 1.5 hours.
  • the positive electrode active material for a secondary battery according to the present invention is for a secondary battery in which carbon obtained by carbonizing a water-soluble carbon material and 0.1 to 5% by mass of a metal fluoride is supported on the oxide.
  • the composite D containing the oxide and the water-soluble carbon material specifically includes a lithium compound or a sodium compound, a phosphate compound or a silicate compound, and at least iron. It is preferably obtained by subjecting slurry water containing a compound or a manganese compound and water-soluble carbon material to a hydrothermal reaction.
  • the composite D containing the oxide and the water-soluble carbon material includes a lithium compound or a sodium compound, a phosphoric acid compound or a silicate compound, and at least an iron compound. Or it is preferable that it is a hydrothermal reaction material of the slurry water containing a manganese compound and containing a water-soluble carbon material.
  • the positive electrode active material (P-2) for the secondary battery of the present invention contains a lithium compound or a sodium compound, a phosphoric acid compound or a silicic acid compound, and a metal salt containing at least an iron compound or a manganese compound. And subjecting the slurry water b containing the water-soluble carbon material to a hydrothermal reaction to obtain the composite D (I-2), and the obtained composite D to 100 parts by mass of the composite A step of adding 0.1 to 40 parts by mass of a metal fluoride precursor, wet-mixing and firing (II-2) It is preferable that it is obtained by a manufacturing method provided with.
  • step (I-2) slurry water b containing a lithium compound or sodium compound, a phosphoric acid compound or a silicic acid compound, and a metal salt containing at least an iron compound or a manganese compound and containing a water-soluble carbon material is treated with water.
  • the composite D is obtained by a thermal reaction.
  • the lithium compound and sodium compound that can be used, and the content of these in the slurry water b are the same as in step (I-1) in the method for producing the positive electrode active material for secondary battery (P-1).
  • the content of the water-soluble carbon material in the slurry water b may be an amount such that the supported amount of the water-soluble carbon material as carbon obtained by carbonization falls within the above range in terms of carbon atoms, as described above.
  • the supported amount of the water-soluble carbon material as carbon obtained by carbonization falls within the above range in terms of carbon atoms, as described above.
  • the viewpoint of effectively supporting carbon formed by carbonizing a water-soluble carbon material on the surface of the oxide in an amount of 0.1 to 4% by mass, preferably 0.03 with respect to 100 parts by mass of water in the slurry water. To 3.5 parts by mass, more preferably 0.03 to 2.5 parts by mass.
  • Step (I-2) from the viewpoint of improving the physical properties of the battery by improving the dispersibility of each component contained in the slurry water b and reducing the particles of the obtained positive electrode active material to improve the battery properties, Step (Ia-2) for obtaining mixture B by mixing phosphoric acid compound or silicic acid compound with mixture A containing, and metal salt and water-soluble carbon material containing at least iron compound or manganese compound in obtained mixture B It is preferable to include the step (Ib-2) of adding the slurry and subjecting the resulting slurry water b to a hydrothermal reaction to obtain the composite D.
  • the water-soluble carbon material only needs to be contained in the slurry water b finally subjected to the hydrothermal reaction, and before mixing the phosphate compound or the silicate compound in the step (Ia-2).
  • it may be added at the time of mixing, or may be added to the slurry water b by adding it together with a metal salt containing at least an iron compound or a manganese compound in the step (Ib-2).
  • a water-soluble carbon material is added together with a metal salt containing an iron compound or a manganese compound in the step (Ib-2). Is preferred.
  • step (I-2) or (Ia-2) it is preferable to stir the mixture A in advance before mixing the phosphoric acid compound or the silicic acid compound with the mixture A.
  • the stirring time of the mixture A is preferably 1 to 15 minutes, more preferably 3 to 10 minutes.
  • the temperature of the mixture A is preferably 20 to 90 ° C, more preferably 20 to 70 ° C.
  • the phosphoric acid compound and the silicic acid compound that can be used are the same as those in the step (I-1) or (Ia-1) in the method for producing the positive electrode active material for secondary battery (P-1).
  • the mixing method with the mixture A when using phosphoric acid is also the same as in the above step (I-1) or (Ia-1).
  • the content of lithium or sodium in the mixture B after mixing the phosphoric acid compound or silicic acid compound is determined by the step (I-1) in the method for producing the positive electrode active material for secondary battery (P-1). Alternatively, it is the same as the mixture B in (Ia-1), and the lithium compound or sodium compound and the phosphoric acid compound or silicic acid compound may be used so as to obtain such an amount.
  • the reaction in the mixture B is completed, and the oxides represented by the above (A) to (C) A precursor of X is produced in mixture B.
  • nitrogen is purged, the reaction can proceed in a state where the dissolved oxygen concentration in the mixture B is reduced, and the dissolved oxygen concentration in the mixture B containing the precursor of the resulting oxide X is also effective. Therefore, oxidation of iron compounds, manganese compounds, etc. added in the next step can be suppressed.
  • the precursor of the oxide X represented by the above (A) to (C) exists as fine dispersed particles.
  • the precursor of the oxide X is obtained as trilithium phosphate (Li 3 PO 4 ).
  • the pressure at the time of purging nitrogen, the temperature of the mixture B, the reaction time, the stirring speed of the mixture B, and the dissolved oxygen concentration are the same as those in the method for producing the positive electrode active material (P-1) for secondary battery (I- In 1) or (Ia-1), the same applies as the pressure at the time of purging nitrogen, the temperature of the mixture B, the reaction time, the stirring speed of the mixture B, and the dissolved oxygen concentration.
  • the obtained mixture B and slurry water b containing a metal salt containing at least an iron compound or a manganese compound and containing a water-soluble carbon material are subjected to a hydrothermal reaction.
  • complex D The obtained mixture B was used as a precursor of the oxide X represented by the above (A) to (C), and a metal salt containing at least an iron compound or a manganese compound and a water-soluble carbon material were added thereto.
  • the slurry water b is preferably used.
  • the use molar ratio of these manganese compound and iron compound is preferably 99: 1 to 1:99, more preferably 90:10 to 10:90.
  • the total addition amount of these iron compound and manganese compound is preferably 0.99 to 1.01 mol, more preferably 0.995 with respect to 1 mol of Li 3 PO 4 contained in the slurry water b. ⁇ 1.005 mol.
  • the total amount of iron compound, manganese compound and metal (M, N or Q) salt is obtained in the above step (I-2).
  • the amount is preferably 0.99 to 1.01 mol, more preferably 0.995 to 1.005 mol, based on 1 mol of phosphoric acid or silicic acid in the resulting mixture.
  • the water-soluble carbon material in the slurry water b is preferably 0.03 to 3.4% by mass, and more preferably 0.03 to 2.4% by mass.
  • the amount of water used in the hydrothermal reaction, the antioxidant that may be added if necessary, and the amount added are the same as those in the method for producing the positive electrode active material for secondary batteries (P-1). This is similar to the case of obtaining the oxide X in the step (I-1) or (Ib-1).
  • the order of addition of the iron compound, manganese compound, metal (M, N or Q) salt, and water-soluble carbon material is not particularly limited.
  • the content of the mixture B in the slurry b obtained by adding an iron compound, a manganese compound and a metal (M, N or Q) salt used as required, and a water-soluble carbon material or an antioxidant is preferably It is 10 to 50% by mass, more preferably 15 to 45% by mass, and further preferably 20 to 40% by mass.
  • the temperature, pressure, and hydrothermal reaction time of the hydrothermal reaction in the step (I-2) or (Ib-2) are the same as those in the step (I-1) in the method for producing the positive electrode active material for secondary battery (P-1).
  • Or (Ib-1) is the same as in the case of obtaining the oxide X.
  • the obtained composite D is a composite containing the oxide X represented by the above formulas (A) to (C) and a water-soluble carbon material. After filtration, the composite D is washed with water and dried. It can be isolated as a composite particle. As the drying means, freeze drying or vacuum drying is used.
  • the BET specific surface area of the composite D obtained is also the same as that of the oxide X obtained in the step (I-1) or (Ib-1) in the method for producing the positive electrode active material for secondary battery (P-1). It is.
  • Step (II-2) is a step in which a metal fluoride precursor is added to the composite D obtained in step (I-2), wet-mixed, and fired.
  • a metal fluoride precursor is added to the composite D obtained in step (I-2), wet-mixed, and fired.
  • the addition amount of the metal fluoride precursor and the addition amount of water with respect to 100 parts by mass of the composite D are the composite A in the step (III-1) in the method for producing the positive electrode active material for secondary battery (P-1).
  • (Or Composite B) The same as the addition amount of the metal fluoride precursor and the addition amount of water with respect to 100 parts by mass.
  • the wet mixing means in the step (II-2) and the firing conditions of the mixture obtained by the wet mixing are also described in the step (III-) in the method for producing the positive electrode active material for secondary battery (P-1).
  • the wet mixing means in 1) and the firing conditions of the mixture obtained by such wet mixing are the same.
  • the positive electrode active material for a secondary battery of the present invention one or two kinds selected from carbon obtained by carbonizing the water-insoluble conductive carbon material and the water-soluble carbon material and the metal fluoride are both converted into the oxide. It is supported and acts synergistically, and the amount of adsorbed moisture in the positive electrode active material for the secondary battery can be effectively reduced. Specifically, the amount of adsorbed moisture of the positive electrode active material for secondary battery of the present invention is the same for the secondary battery in the case of the positive electrode active material for secondary battery in which the oxide is represented by the above formula (A) or (C).
  • the positive electrode active material preferably it is 1200 ppm or less, more preferably 1000 ppm or less, and in the positive electrode active material for a secondary battery in which the oxide is represented by the above formula (B), preferably 2500 ppm or less, and more Preferably it is 2000 ppm or less.
  • the amount of adsorbed moisture is such that moisture is adsorbed until equilibrium is reached at a temperature of 20 ° C. and a relative humidity of 50%, the temperature is raised to 150 ° C. and held for 20 minutes, and further raised to a temperature of 250 ° C. Measured as the amount of water volatilized from the start point to the end point, starting from when the temperature rise is resumed from 150 ° C.
  • the amount of adsorbed moisture of the positive electrode active material for a secondary battery and the amount of moisture volatilized from the start point to the end point are the same, and the measured value of the volatilized moisture amount is This is the amount of moisture adsorbed on the positive electrode active material for the secondary battery.
  • the positive electrode active material for a secondary battery of the present invention hardly adsorbs moisture, the amount of adsorbed moisture can be effectively reduced without requiring strong drying conditions as a production environment, and the resulting lithium In both the ion secondary battery and the sodium ion secondary battery, it is possible to stably exhibit excellent battery characteristics even under various usage environments.
  • the tap density of the positive electrode active material for a secondary battery of the present invention is preferably 0.5 to 1.6 g / cm 3 , more preferably 0.8 from the viewpoint of effectively reducing the amount of adsorbed moisture. ⁇ 1.6 g / cm 3 .
  • the BET specific surface area of the positive electrode active material for a secondary battery of the present invention is preferably 5 to 21 m 2 / g, more preferably 7 to 20 m 2 / g, from the viewpoint of effectively reducing the amount of adsorbed moisture. It is.
  • the secondary battery to which the positive electrode for the secondary battery including the positive electrode active material for the secondary battery of the present invention can be applied is not particularly limited as long as the positive electrode, the negative electrode, the electrolytic solution, and the separator are essential components.
  • the material configuration is not particularly limited, and those having a known material configuration can be used.
  • a carbon material such as lithium metal, sodium metal, graphite, or amorphous carbon. It is preferable to use an electrode formed of an intercalating material capable of electrochemically inserting and extracting lithium ions or sodium ions, particularly a carbon material.
  • the electrolytic solution is obtained by dissolving a supporting salt in an organic solvent.
  • the organic solvent is not particularly limited as long as it is an organic solvent that is usually used for an electrolyte solution of a lithium ion secondary battery or a sodium ion secondary battery.
  • carbonates, halogenated hydrocarbons, ethers, ketones Nitriles, lactones, oxolane compounds and the like can be used.
  • the type of the supporting salt is not particularly limited, but in the case of a lithium ion secondary battery, an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , an organic material selected from LiC (SO 3 CF 3 ) 2 , LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ) It is preferably at least one of a salt and a derivative of the organic salt.
  • an inorganic salt selected from NaPF 6 , NaBF 4 , NaClO 4 and NaAsF 6 a derivative of the inorganic salt, NaSO 3 CF 3 , NaC (SO 3 CF 3 ) 2 and NaN (SO 3 CF 3 ) 2 , NaN (SO 2 C 2 F 5 ) 2, and an organic salt selected from NaN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and at least one derivative of the organic salt It is preferable.
  • the separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution.
  • a porous synthetic resin film particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.
  • Example 1-1 4.9 kg of LiOH.H 2 O and 11.7 L of ultrapure water were mixed to obtain slurry water. Then, with stirring for 30 minutes at speed 400rpm while maintaining the resulting slurry water temperature of 25 ° C., a 70% aqueous solution of phosphoric acid 5.09kg was added dropwise at 35 mL / min, to obtain a mixture A 11 .
  • the pH of the mixed slurry was 10.0 and contained 0.33 mol of phosphoric acid with respect to 1 mol of lithium.
  • the obtained mixture A 11 was purged with nitrogen while stirring at a speed of 400 pm for 30 minutes to complete the reaction with the mixture A 11 (dissolved oxygen concentration 0.5 mg / L).
  • 1.63 kg of FeSO 4 .7H 2 O and 5.60 kg of MnSO 4 .H 2 O were added to 21.7 kg of the mixture A 11, and 46.8 g of Na 2 SO 3 was further added to the mixture at a speed of 400 rpm. stirring and mixing to at obtain a slurry water a 11.
  • the added FeSO 4 ⁇ 7H 2 O and MnSO 4 ⁇ H 2 O molar ratio of (FeSO 4 ⁇ 7H 2 O: MnSO 4 ⁇ H 2 O) is 20: was 80.
  • the slurry water a 11 poured into the synthesis vessel installed in a steam-heated autoclave.
  • the mixture was heated with stirring at 170 ° C. for 1 hour using saturated steam obtained by heating water (dissolved oxygen concentration less than 0.5 mg / L) with a membrane separator.
  • the pressure in the autoclave was 0.8 MPa.
  • the produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal.
  • the washed crystal was vacuum-dried under the conditions of 60 ° C. and 1 Torr, oxide (powder, chemical composition represented by the formula (A): LiFe 0.2 Mn 0.8 PO 4 , BET specific surface area 21 m 2 / g, average particle size 60 nm. )
  • Example 1-2 0.59 g of ammonium fluoride to be added to the composite B 11 (corresponding to 1.0% by mass in terms of LiF in the positive electrode active material for a lithium ion secondary battery), and LiOH.H for adjusting the solution B
  • Example 1-3 1.47 g of ammonium fluoride added to the composite B 11 (corresponding to 2.5% by mass in terms of LiF in the positive electrode active material for a lithium ion secondary battery), and LiOH.H for adjusting the solution B
  • Example 1-4 0.59 g of ammonium fluoride to be added to the composite B 11 (corresponding to 0.5% by mass in terms of MgF 2 in the positive electrode active material for a lithium ion secondary battery), and LiOH • for adjusting the solution B
  • a positive electrode active material for a lithium ion secondary battery LiFe 0.2 Mn 0.8 PO 4 , carbonic acid
  • 0.69 g of magnesium acetate tetrahydrate was used instead of H 2 O.
  • Amount 1.6% by mass
  • MgF 2 amount 0.5% by mass).
  • Example 1-5 1.18 g of ammonium fluoride to be added to the composite B 11 (corresponding to 1.0% by mass in terms of MgF 2 in the positive electrode active material for a lithium ion secondary battery), and LiOH for adjusting the solution B
  • a positive electrode active material for a lithium ion secondary battery LiFe 0.2 Mn 0.8 PO 4 , carbonic acid
  • Amount 1.6% by mass
  • amount of MgF 2 1.0% by mass).
  • Example 1-1 A lithium ion secondary was prepared in the same manner as in Example 1-1 except that 50 mL of water was added to the obtained composite B 11 and solution B was prepared without using ammonium fluoride and LiOH ⁇ H 2 O.
  • Example 2-1 3.75 L of ultrapure water was mixed with 0.428 kg of LiOH.H 2 O and 1.40 kg of Na 4 SiO 4 .nH 2 O to obtain slurry water. Next, 0.39 kg of FeSO 4 .7H 2 O, 0.79 kg of MnSO 4 .5H 2 O and 53 g of Zr (SO 4 ) 2 .4H 2 O were added to the obtained slurry water, and the temperature was adjusted to 25 ° C. It was stirred for 30 minutes at speed 400rpm while maintaining, to obtain a slurry water a 21.
  • the molar ratio of FeSO 4 .7H 2 O, MnSO 4 .5H 2 O and Zr (SO 4 ) 2 .4H 2 O added was 28: 66: 3.
  • the obtained slurry water a 21 was charged into a synthesis container installed in a steam heating autoclave. After the addition, the mixture was heated with stirring at 150 ° C. for 12 hours using saturated steam obtained by heating water (dissolved oxygen concentration less than 0.5 mg / L) with a membrane separator. The pressure in the autoclave was 0.4 MPa.
  • the produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal.
  • the washed crystals were freeze-dried at ⁇ 50 ° C. for 12 hours to obtain oxides (powder, chemical composition represented by the formula (B): Li 2 Fe 0.28 Mn 0.66 Zr 0.03 SiO 4 , BET specific surface area 35 m 2 / g, average A particle size of 50 nm) was obtained.
  • Example 2-3 0.132 g of LiOH and 0.118 g of ammonium fluoride to be added to the composite B 21 (corresponding to 2.0% by mass in terms of the amount of LiF supported in 100% by mass of the positive electrode active material for a lithium ion secondary battery)
  • the amount of AlF 3 2.0 mass%).
  • Example 2-5 Instead of LiOH added to the composite B 21 , 0.277 g of Mg (CH 3 COO) 2 .4H 2 O and 0.236 g of ammonium fluoride (in terms of the amount of MgF 2 supported in the positive electrode active material for a lithium ion secondary battery)
  • Example 3-1 A solution was obtained by mixing 0.60 kg of NaOH and 9.0 L of water. Next, the obtained solution is stirred for 5 minutes while maintaining the temperature at 25 ° C., and 0.577 kg of 85% phosphoric acid aqueous solution is dropped at 35 mL / min, followed by stirring at a speed of 400 rpm for 12 hours. gave a slurry containing a mixture B 31. Such a slurry contained 3.00 moles of sodium per mole of phosphorus. The obtained slurry was purged with nitrogen gas to adjust the dissolved oxygen concentration to 0.5 mg / L, then 0.139 kg of FeSO 4 .7H 2 O, 0.964 kg of MnSO 4 .5H 2 O, MgSO 4.
  • oxide X 31 (powder, chemical composition represented by the formula (C): NaFe 0.1 Mn 0.8 Mg 0.1 PO 4 , BET specific surface area 15 m 2 / g, average A particle size of 100 nm) was obtained.
  • Example 3-4 Instead of LiOH to be added to the composite B 31 , 0.078 g of Al (OH) 3 and 0.353 g of ammonium fluoride (2.0 mass in terms of the amount of AlF 3 supported in the positive electrode active material for sodium ion secondary battery)
  • Example 3-5 Instead of LiOH added to the composite B 31 , 0.277 g of Mg (CH 3 COO) 2 .4H 2 O and 0.236 g of ammonium fluoride (in terms of supported amount of MgF 3 in the positive electrode active material for sodium ion secondary battery)
  • the amount of MgF 3 2.0 mass%).
  • Example 4-1 12.72 g of LiOH.H 2 O and 90 mL of water were mixed to obtain a mixture A 41 (slurry water). Next, 11.53 g of 85% aqueous phosphoric acid solution was added dropwise at 35 mL / min while stirring the resulting mixture A 41 at a temperature of 25 ° C. for 5 minutes, followed by 12 hours at 400 rpm under a nitrogen gas purge. To obtain a mixture B 41 (slurry water, dissolved oxygen concentration 0.5 mg / L). Such mixtures B 41, compared per mole of phosphorus and contained lithium 2.97 mol.
  • the resulting slurry water b 41 were placed in a synthetic vessel installed in a steam-heated autoclave. After the addition, the mixture was heated with stirring at 170 ° C. for 1 hour using saturated steam obtained by heating water (dissolved oxygen concentration less than 0.5 mg / L) with a membrane separator. The pressure in the autoclave was 0.8 MPa. The produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal. The washed crystals were freeze-dried at ⁇ 50 ° C.
  • Example 4-4 Instead of LiOH added to the composite D 41 , 0.078 g of Al (OH) 3 and 0.353 g of ammonium fluoride (2.0 in terms of the amount of AlF 3 supported in the positive electrode active material for a lithium ion secondary battery)
  • Example 5-1 LiOH ⁇ H 2 O 4.28g, was obtained Na 4 SiO 4 ⁇ nH 2 O 13.97g in a mixture of ultra-pure water 37.5mL mixture B 51 (slurry water, dissolved oxygen concentration 0.5 mg / L) of .
  • B 51 slurry water, dissolved oxygen concentration 0.5 mg / L
  • To this mixture B 51 3.92 g of FeSO 4 .7H 2 O, 7.93 g of MnSO 4 .5H 2 O, and 0.53 g of Zr (SO 4 ) 2 .4H 2 O are added and maintained at a temperature of 25 ° C. It was stirred for 30 minutes at speed 400rpm while to obtain a slurry water b 51.
  • the molar ratio of FeSO 4 .7H 2 O, MnSO 4 .5H 2 O and Zr (SO 4 ) 2 .4H 2 O added was 28: 66: 3.
  • the resulting slurry water b 51 were placed in a synthetic vessel installed in a steam-heated autoclave. After the addition, the mixture was heated with stirring at 150 ° C. for 12 hours using saturated steam obtained by heating water (dissolved oxygen concentration less than 0.5 mg / L) with a membrane separator. The pressure in the autoclave was 0.4 MPa.
  • the produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal.
  • the washed crystals were freeze-dried at ⁇ 50 ° C. for 12 hours to give a composite D 51 (powder, chemical composition of the oxide represented by the formula (B): Li 2 Fe 0.28 Mn 0.66 Zr 0.03 SiO 4 , BET specific surface area of 35 m. 2 / g, average particle size 50 nm).
  • Li 2 Fe 0.28 Mn 0.66 Zr 0.03 SiO 4 positive electrode active material for a lithium ion secondary battery
  • Example 6-1 A solution was obtained by mixing 6.00 g of NaOH and 90 mL of water. The resulting solution is then stirred for 5 minutes while maintaining the temperature at 25 ° C., and 5.77 g of 85% aqueous phosphoric acid solution is added dropwise at 35 mL / min, followed by stirring at a speed of 400 rpm for 12 hours. As a result, a mixture B 61 (slurry water) was obtained. Such mixtures B 61, compared per mole of phosphorus and contained sodium 3.00 mol.
  • the obtained mixture B 61 was purged with nitrogen gas to adjust the dissolved oxygen concentration to 0.5 mg / L, then 1.39 g of FeSO 4 .7H 2 O, 9.64 g of MnSO 4 .5H 2 O, MgSO 4 ⁇ 7H 2 O 1.24g, and glucose 0.59 g (corresponding to 1.4 wt% in terms of carbon atoms content in the sodium ion secondary battery positive electrode active material in) was added to obtain a slurry water b 61 .
  • the molar ratio of added FeSO 4 .7H 2 O, MnSO 4 .5H 2 O and MgSO 4 .7H 2 O is 10:80:10.
  • the obtained slurry water b 61 was put into a synthesis vessel purged with nitrogen gas installed in a steam heating autoclave. After the addition, the mixture was heated with stirring at 200 ° C. for 3 hours using saturated steam obtained by heating water (dissolved oxygen concentration less than 0.5 mg / L) with a membrane separator. The pressure in the autoclave was 1.4 MPa.
  • the produced crystal was filtered, and then washed with 12 parts by mass of water with respect to 1 part by mass of the crystal.
  • the washed crystal was freeze-dried at ⁇ 50 ° C. for 12 hours to give a composite D 61 (chemical composition of an oxide represented by the formula (C): NaFe 0.1 Mn 0.8 Mg 0.1 PO 4 , BET specific surface area 15 m 2 / g, An average particle size of 100 nm) was obtained.
  • Example 6-4 Instead of LiOH added to the composite D 61 , 0.078 g of Al (OH) 3 and 0.353 g of ammonium fluoride (2.0 in terms of the amount of AlF 3 supported in the positive electrode active material for a sodium ion secondary battery)
  • the amount of adsorbed moisture of each positive electrode active material obtained in Examples 1-1 to 6-5 and Comparative Examples 1-1 to 6-2 was measured according to the following method.
  • About the positive electrode active material (composite particle) after allowing it to stand for 1 day in an environment of a temperature of 20 ° C. and a relative humidity of 50% and adsorbing moisture until reaching equilibrium, raising the temperature to 150 ° C. and holding for 20 minutes, Furthermore, when the temperature is raised to 250 ° C. and held for 20 minutes, the start point is when the temperature rise is resumed from 150 ° C., and the end point is when the constant temperature state at 250 ° C. is finished.
  • the amount of water that volatilized was measured with a Karl Fischer moisture meter (MKC-610, manufactured by Kyoto Electronics Industry Co., Ltd.) and determined as the amount of water adsorbed on the positive electrode active material. The results are shown in Tables 1 and 2.
  • LiPF 6 in the case of a lithium ion secondary battery
  • NaPF 6 in the case of a sodium ion secondary battery
  • a known one such as a polymer porous film such as polypropylene was used.
  • These battery components were assembled and housed in a conventional manner in an atmosphere having a dew point of ⁇ 50 ° C. or lower to produce a coin-type secondary battery (CR-2032).
  • a charge / discharge test was performed using the manufactured coin-type secondary battery.
  • the charging condition is a constant current and constant voltage charge with a current of 1 CA (330 mA / g) and a voltage of 4.5 V
  • the discharge condition is 1 CA (330 mA / g)
  • a constant current discharge with a final voltage of 1.5 V As a result, the discharge capacity at 1 CA was obtained.
  • the charging conditions are a constant current and constant voltage charging with a current of 1 CA (154 mA / g) and a voltage of 4.5 V
  • the discharging conditions are a constant current discharge of 1 CA (154 mA / g) and a final voltage of 2.0 V.
  • the discharge capacity at 1 CA was obtained.
  • the positive electrode active material of the example can surely reduce the amount of adsorbed moisture as compared with the positive electrode active material of the comparative example, and can also exhibit excellent performance in the obtained battery.

Abstract

 本発明は、高性能なリチウムイオン二次電池又はナトリウムイオン二次電池を得るべく、水分の吸着を効果的に抑制することのできる二次電池用正極活物質及びその製造方法を提供する。すなわち、少なくとも鉄又はマンガンを含む式(A):LiFeaMnbcPO4、式(B):Li2FedMnefSiO4、又は式(C):NaFegMnhiPO4で表される酸化物に、水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素から選ばれる1種又は2種と、0.1~5質量%の金属フッ化物とが担持してなる二次電池用正極活物質。

Description

二次電池用正極活物質及びその製造方法
 本発明は、酸化物に水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素から選ばれる1種又は2種と金属フッ化物とが、ともに担持されてなる二次電池用正極活物質に関する。
 携帯電子機器、ハイブリッド自動車、電気自動車等に用いられる二次電池の開発が行われており、特にリチウムイオン二次電池は、室温付近で動作する最も優れた二次電池として広く知られている。こうしたなか、Li(Fe,Mn)PO4やLi2(Fe,Mn)SiO4等のリチウム含有オリビン型リン酸金属塩は、LiCoO2等のリチウム遷移金属酸化物に比べて、資源的な制約に大きく左右されることがなく、しかも高い安全性を発揮することができるため、高出力で大容量のリチウムイオン二次電池を得るのには最適な正極材料となる。しかしながら、これらの化合物は、結晶構造に由来して導電性を十分に高めるのが困難な性質を有しており、またリチウムイオンの拡散性にも改善の余地があるため、従来より種々の開発がなされている。
 さらに、普及が進んでいるリチウムイオン二次電池では、充電後長時間放置すると内部抵抗が徐々に上昇し、電池性能の劣化が生じる現象が知られている。これは、製造時に電池材料が含有していた水分が、電池の充放電が繰り返される中で材料から脱離し、かかる水分と電池に充満している非水電解液LiPF6との化学反応によって、フッ化水素が発生するためである。こうした電池性能の劣化を有効に抑制するには、二次電池に用いる正極活物質の水分含有量を低減することが有効であることも知られている(特許文献1参照)。
 こうしたなか、例えば、特許文献2には、炭素質物質前駆体を含む原料混合物の焼成処理後、粉砕処理や分級処理を乾燥雰囲気下で行うことにより、かかる水分含有量を一定値以下に低減する技術が開示されている。また、特許文献3には、所定のリン酸リチウム化合物やケイ酸リチウム化合物等と導電性炭素材料を湿式ボールミルにより混合した後、メカノケミカル処理を行うことにより、表面に均一に導電性炭素材料が沈着されてなる複合酸化物を得る技術が開示されている。
 一方、リチウムは希少有価物質であることから、リチウムイオン二次電池に代えてナトリウムを用いたナトリウムイオン二次電池等も種々検討されはじめている。
 例えば、特許文献4には、マリサイト型NaMnPO4を用いたナトリウムイオン二次電池用活物質が開示されており、また特許文献5には、オリビン型構造を有するリン酸遷移金属ナトリウムを含む正極活物質が開示されており、いずれの文献においても高性能なナトリウムイオン二次電池が得られることを示している。
特開2013-152911号公報 特開2003-292309号公報 米国特許出願公開第2004/0140458号明細書 特開2008-260666号公報 特開2011-34963号公報
 しかしながら、上記いずれの文献に記載の技術においても、リン酸リチウム化合物等の表面が、炭素源によって充分に被覆されずに一部の表面が露出しているため、水分の吸着を抑制できずに水分含有量が高まり、サイクル特性等の電池物性が充分に高い二次電池用正極活物質を得るのは困難であることが判明した。
 したがって、本発明の課題は、高性能なリチウムイオン二次電池又はナトリウムイオン二次電池を得るべく、水分の吸着を効果的に抑制することのできる二次電池用正極活物質及びその製造方法を提供することにある。
 そこで本発明者らは、種々検討したところ、特定の酸化物に、水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素から選ばれる1種又は2種以上と、特定量の金属フッ化物とが担持してなる二次電池用正極活物質であれば、水不溶性導電性炭素材料及び/又は水溶性炭素材料が炭化されてなる炭素と、金属フッ化物とが共に酸化物表面を効率的に被覆して水分の吸着を有効に抑制できるため、リチウムイオン又はナトリウムイオンが有効に電気伝導を担うことのできる二次電池用正極活物質として、極めて有用であることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、少なくとも鉄又はマンガンを含む下記式(A)、(B)又は(C):
       LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
       Li2FedMnefSiO4・・・(B)
(式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、及び0≦f<1、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
       NaFegMnhiPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
で表される酸化物に、水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素から選ばれる1種又は2種と、0.1~5質量%の金属フッ化物とが担持されてなる二次電池用正極活物質を提供するものである。
 また、本発明は、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水aを水熱反応に付して酸化物Xを得る工程(I-1)、
 得られた酸化物Xに水不溶性導電性炭素材料を添加して乾式混合し、複合体Aを得る工程(II-1)、並びに
 得られた複合体Aに、複合体100質量部に対して0.1~40質量部の金属フッ化物の前駆体を添加して湿式混合し、焼成する工程(III-1)
を備える、上記二次電池用正極活物質の製造方法を提供するものである。
 さらに、本発明は、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有し、かつ水溶性炭素材料を含有するスラリー水bを水熱反応に付して複合体Dを得る工程(I-2)、並びに
 得られた複合体Dに、複合体100質量部に対して0.1~40質量部の金属フッ化物金属フッ化物の前駆体を添加して湿式混合し、焼成する工程(II-2)
を備える、二次電池用正極活物質の製造方法を提供するものである。
 本発明によれば、所定の酸化物に、水不溶性導電性炭素材料及び/又は水溶性炭素材料が炭化されてなる炭素と特定量の金属フッ化物とが補い合いながら有効に担持されてなることにより、酸化物表面の一部において、水不溶性導電性炭素材料、水溶性炭素材料が炭化されてなる炭素、及び金属フッ化物のいずれも存在することなく酸化物が露出してしまうのを有効に抑制するので、酸化物表面における露出部が効果的に低減された二次電池用正極活物質を得ることができる。そのため、かかる正極活物質は水分の吸着を効果的に抑制できるため、これを用いたリチウムイオン二次電池又はナトリウムイオン二次電池において、リチウムイオン又はナトリウムイオンが有効に電気伝導を担いつつ、様々な使用環境下でもサイクル特性等の優れた電池特性を安定して発現することができる。
 以下、本発明について詳細に説明する。
 本発明で用いる酸化物は、少なくとも鉄又はマンガンを含み、かつ下記式(A)、(B)又は(C):
       LiFeaMnbcPO4・・・(A)
(式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
       Li2FedMnefSiO4・・・(B)
(式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、0≦f<1、及び2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
       NaFegMnhiPO4・・・(C)
(式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
のいずれかの式で表される。
 これらの酸化物は、いずれもオリビン型構造を有しており、少なくとも鉄又はマンガンを含む。上記式(A)又は式(B)で表される酸化物を用いた場合には、リチウムイオン電池用正極活物質が得られ、上記式(C)で表される酸化物を用いた場合には、ナトリウムイオン電池用正極活物質が得られる。
 上記式(A)で表される酸化物は、いわゆる少なくとも遷移金属として鉄(Fe)及びマンガン(Mn)を含むオリビン型リン酸遷移金属リチウム化合物である。式(A)中、Mは、Mg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示し、好ましくはMg、Zr、Mo又はCoである。aは、0≦a≦1であって、好ましくは0.01≦a≦0.99であり、より好ましくは0.1≦a≦0.9である。bは、0≦b≦1であって、好ましくは0.01≦b≦0.99であり、より好ましくは0.1≦b≦0.9である。cは、0≦c≦0.2をであって、好ましくは0≦c≦0.1である。そして、これらa、b及びcは、2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数である。上記式(A)で表されるオリビン型リン酸遷移金属リチウム化合物としては、具体的には、例えばLiFe0.2Mn0.8PO4、LiFe0.9Mn0.1PO4、LiFe0.15Mn0.75Mg0.1PO4、LiFe0.19Mn0.75Zr0.03PO4等が挙げられ、なかでもLiFe0.2Mn0.8PO4が好ましい。
 上記式(B)で表される酸化物は、いわゆる少なくとも遷移金属として鉄(Fe)及びマンガン(Mn)を含むオリビン型ケイ酸遷移金属リチウム化合物である。式(B)中、Nは、Ni、Co、Al、Zn、V又はZrを示し、好ましくはCo、Al、Zn、V又はZrである。dは、0≦d≦1であって、好ましくは0≦d<1であり、より好ましくは0.1≦d≦0.6である。eは、0≦d≦1であって、好ましくは0≦e<1であり、より好ましくは0.1≦e≦0.6である。fは、0≦f<1であって、好ましくは0<f<1であり、より好ましくは0.05≦f≦0.4である。そして、これらd、e及びfは、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数である。上記式(B)で表されるオリビン型ケイ酸遷移金属リチウム化合物としては、具体的には、例えばLi2Fe0.45Mn0.45Co0.1SiO4、Li2Fe0.36Mn0.54Al0.066SiO4、Li2Fe0.45Mn0.45Zn0.1SiO4、Li2Fe0.36Mn0.540.066SiO4、Li2Fe0.282Mn0.658Zr0.02SiO4等が挙げられ、なかでもLi2Fe0.282Mn0.658Zr0.02SiO4が好ましい。
 上記式(C)で表される酸化物は、いわゆる少なくとも遷移金属として鉄(Fe)及びマンガン(Mn)を含むオリビン型リン酸遷移金属ナトリウム化合物である。式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示し、好ましくはMg、Zr、Mo又はCoである。gは、0≦g≦1であって、好ましくは0<g≦1である。hは、0≦h≦1であって、好ましくは0.5≦h<1である。iは、0≦i<1であって、好ましくは0≦i≦0.5であり、より好ましくは0≦i≦0.3である。そして、これらg、h及びiは、0≦g≦1、0≦h≦1、及び0≦i<1、2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数である。上記式(C)で表されるオリビン型リン酸遷移金属ナトリウム化合物としては、具体的には、例えばNaFe0.2Mn0.8PO4、NaFe0.9Mn0.1PO4、NaFe0.15Mn0.7Mg0.15PO4、NaFe0.19Mn0.75Zr0.03PO4、NaFe0.19Mn0.75Mo0.03PO4、NaFe0.15Mn0.7Co0.15PO4等が挙げられ、なかでもNaFe0.2Mn0.8PO4が好ましい。
 本発明の二次電池用正極活物質は、上記式(A)、(B)又は(C)で表される酸化物に、水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素(水溶性炭素材料由来の炭素)から選ばれる1種又は2種と0.1~5質量%の金属フッ化物が担持されてなるものである。すなわち、上記酸化物に、水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素から選ばれる1種又は2種と特定量の金属フッ化物とを担持させてなるものであって、酸化物表面を水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素から選ばれる1種又は2種、或いは金属フッ化物の一方が被覆しつつも、その一方が存在することなく酸化物表面が露出した部位に、水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素から選ばれる1種又は2種、或いは金属フッ化物の他方が有効に担持されてなる。したがって、これらが相まって上記酸化物表面の露出を効果的に抑制しながら、酸化物の全表面にわたり堅固に担持されてなるため、本発明の二次電池用正極活物質における水分吸着を有効に防止することができる。
 すなわち、本発明の二次電池用正極活物質としては、具体的には、例えば、上記酸化物に、水不溶性導電性炭素材料と、0.1~5質量%の金属フッ化物とが担持されてなる二次電池用正極活物質(P-1)、及び上記酸化物に、水溶性炭素材料が炭化されてなる炭素と、0.1~5質量%の金属フッ化物とが担持されてなる二次電池用正極活物質(P-2)が挙げられる。なお、上記二次電池用正極活物質(P-1)は、必要に応じて、さらに上記酸化物に水溶性炭素材料が炭化されてなる炭素が担持されてなるものであってもよい。
 上記式(A)、(B)又は(C)で表される酸化物に担持される水不溶性導電性炭素材料とは、25℃の水100gに対する溶解量が、水不溶性導電性炭素材料の炭素原子換算量で0.4g未満である水不溶性の炭素材料であって、焼成等せずともそのもの自体が導電性を有する炭素源である。かかる水不溶性導電性炭素材料としては、グラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、及びサーマルブラックから選ばれる1種又は2種以上が挙げられる。なかでも、吸着水分量低減の観点から、ケッチェンブラック、又はグラファイトが好ましい。なお、グラファイトとしては、人造グラファイト(鱗片状、塊状、土状、グラフェン)、天然グラファイトのいずれであってもよい。
 用い得る水不溶性導電性炭素材料のBET比表面積は、吸着水分量を効果的に低減する観点から、好ましくは1~750m2/gであり、より好ましくは3~500m2/gである。また、かかる水不溶性導電性炭素材料の平均粒子径は、同様の観点から、好ましくは0.5~20μmであり、より好ましくは1.0~15μmである。
 上記水不溶性導電性炭素材料は、上記酸化物に担持された炭素として本発明の二次電池用正極活物質中に存在することとなる。かかる水不溶性導電性炭素材料の炭素原子換算量は、本発明の二次電池用正極活物質中に、好ましくは0.5~7質量%であり、より好ましくは0.7~6質量%であり、さらに好ましくは0.85~5.5質量%である。二次電池用正極活物質中に存在する水不溶性導電性炭素材料の炭素原子換算量は、炭素・硫黄分析装置を用いて測定した炭素量により、確認することができる。また、さらに水溶性炭素材料を併用した場合は、二次電池用正極活物質中に存在する水不溶性導電性炭素材料の炭素原子換算量は、炭素・硫黄分析装置を用いて測定した炭素量から水溶性炭素材料の添加量の炭素原子換算量を差し引くことにより、確認することができる。
 上記式(A)、(B)又は(C)で表される酸化物に炭化された炭素として担持される水溶性炭素材料とは、25℃の水100gに、水溶性炭素材料の炭素原子換算量で0.4g以上、好ましくは1.0g以上溶解する炭素材料を意味し、上記式(A)~(C)で表される酸化物表面を被覆する炭素源として機能する。かかる水溶性炭素材料としては、例えば、糖類、ポリオール、ポリエーテル、及び有機酸から選ばれる1種又は2種以上が挙げられる。より具体的には、例えば、グルコース、フルクトース、ガラクトース、マンノース等の単糖類;マルトース、スクロース、セロビオース等の二糖類;デンプン、デキストリン等の多糖類;エチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、ブタンジオール、プロパンジオール、ポリビニルアルコール、グリセリン等のポリオールやポリエーテル;クエン酸、酒石酸、アスコルビン酸等の有機酸が挙げられる。なかでも、溶媒への溶解性及び分散性を高めて炭素材料として効果的に機能させる観点から、グルコース、フルクトース、スクロース、デキストリンが好ましく、グルコースがより好ましい。
 水溶性炭素材料の炭素原子換算分は、水溶性炭素材料が炭化されることにより、上記酸化物に担持された炭素として本発明の二次電池用正極活物質中に存在することとなる。かかる水溶性炭素材料の炭素原子換算量は、本発明の二次電池用正極活物質中に、好ましくは0.1~4質量%であり、より好ましくは0.2~3.5質量%であり、さらに好ましくは0.3~3質量%である。二次電池用正極活物質中に存在する水溶性炭素材料の炭素原子換算量は、炭素・硫黄分析装置を用いて測定した炭素量により、確認することができる。また、さらに水不溶性導電性炭素材料を併用した場合は、二次電池用正極活物質中に存在する水溶性炭素材料の炭素原子換算量は、炭素・硫黄分析装置を用いて測定した炭素量から水不溶性導電性炭素材料の添加量を差し引くことにより、確認することができる。
 上記酸化物に担持させる上記金属フッ化物の金属としては、リチウム(Li)、ナトリウム(Na)、マグネシウム(Mg)、カルシウム(Ca)、アルミニウム(Al)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、タンタル(Ta)、錫(Sn)、タングステン(W)、カリウム(K)、バリウム(Ba)、ストロンチウム(Sr)が挙げられる。なかでも、金属フッ化物の疎水性を向上させ、且つイオン伝導性を向上させる観点から、リチウム、ナトリウム、マグネシウム、カルシウム、及びアルミニウムから選ばれる金属であることが好ましく、リチウム、及びマグネシウムから選ばれる金属であることがより好ましい。
 上記金属フッ化物の担持量は、水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素が存在しない酸化物の表面に金属フッ化物を有効に担持させる観点から、本発明の二次電池用正極活物質中に、0.1~5質量%であり、好ましくは0.2~4.5質量%であり、より好ましくは0.3~4質量%である。上記金属フッ化物の担持量が0.1質量%未満であると、吸着水分量を充分に抑制できず、上記金属フッ化物の担持量が5質量%を超えると、詳細は不明であるが、吸着水分量が抑制されていても二次電池のサイクル特性が低下してしまうおそれがある。二次電池用正極活物質中に存在するフッ素量は、二次電池用正極活物質を酸溶解させた溶解液を用いてイオン分析計により、確認することができる。
 本発明の二次電池用正極活物質は、水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素から選ばれる1種又は2種と金属フッ化物とを互いに補い合いながら効率的に上記(A)、(B)又は(C)で表される酸化物に担持させる観点から、かかる酸化物に水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素から選ばれる1種又は2種を担持させたのち、0.1~5質量%の金属フッ化物を担持させてなるものであるのが好ましく、具体的には、酸化物と水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素から選ばれる1種又は2種とを含む複合体に、0.1~5質量%の金属フッ化物が担持されてなるものであるのが好ましい。
 また、金属フッ化物は、上記複合体において、水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素が存在することなく酸化物表面が露出した部位に有効に担持させる観点から、上記複合体に、複合体100質量部に対して0.1~40質量部の金属フッ化物の前駆体を添加して湿式混合されて複合体に担持されてなるのが好ましい。すなわち、本発明の二次電池用正極活物質は、酸化物と水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素から選ばれる1種又は2種とを含む複合体と、複合体100質量部に対して0.1~40質量部の金属フッ化物の前駆体との湿式混合物の焼成物であるのが好ましい。具体的には、かかる金属フッ化物の前駆体は、その後焼成されて、金属フッ化物として担持され、本発明の二次電池用正極活物質に存在することとなる。
 本発明の二次電池用正極活物質が、上記酸化物に、水不溶性導電性炭素材料と、0.1~5質量%の金属フッ化物とが担持されてなる二次電池用正極活物質(P-1)である場合、上記水不溶性導電性炭素材料は、具体的には、水熱反応により得られた酸化物と乾式混合された後、酸化物に担持されてなるものであるのが好ましく、酸化物と予備混合された後、圧縮力及びせん断力を付加しながら混合されて、酸化物に担持されてなるものであるのがより好ましい。すなわち、二次電池用正極活物質(P-1)において、上記酸化物と水不溶性導電性炭素材料とを含む複合体は、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含むスラリー水の水熱反応物である酸化物と、水不溶性導電性炭素材料との乾式混合物であるのが好ましい。なお、水不溶性導電性炭素材料が焼成されることにより酸化物に担持されてなるものは、酸化物と水不溶性導電性炭素材料とを含む複合体として得られる。この焼成により、乾式混合等により低下した酸化物及び水不溶性導電性炭素材料双方の結晶性を回復させることができるため、得られる正極活物質における導電性を有効に高めることができる。
 ここで、必要に応じて、上記酸化物と水不溶性導電性炭素材料とを含む複合体に、水溶性炭素材料を添加してもよい。この場合、上記酸化物に水溶性炭素材料を添加して酸化物との複合体を得た後に乾式混合してもよく、或いは上記乾式混合の際に水溶性炭素材料を添加してもよい。このときに得られる複合体は、酸化物と水不溶性導電性炭素材料と共に水溶性炭素材料を含むこととなる。
 上記酸化物と水不溶性導電性炭素材料とを含む複合体に、炭化された炭素として担持されてなることとなる水溶性炭素材料は、かかる複合体において、水不溶性導電性炭素材料が存在することなく酸化物表面が露出した部位に、さらに炭素を有効に担持させる観点から、上記複合体と湿式混合された後、焼成されることにより炭化されてなる炭素として酸化物に担持されてなるものであるのが好ましい。この水溶性炭素材料を炭化するための焼成により、乾式混合等により低下した酸化物及び水不溶性導電性炭素材料双方の結晶性をさらに有効に回復させることができるため、得られる正極活物質における導電性を有効に高めることができる。
 なお、ここで水溶性炭素材料としては、二次電池用正極活物質(P-2)において用い得る上記水溶性炭素材料と同様のものを用いることができる。
 本発明の二次電池用正極活物質(P-1)は、より具体的には、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水aを水熱反応に付して酸化物Xを得る工程(I-1)、
得られた酸化物Xに水不溶性導電性炭素材料を添加して乾式混合し、複合体Aを得る工程(II-1)、並びに
得られた複合体Aに、複合体100質量部に対して0.1~40質量部の金属フッ化物の前駆体を添加して湿式混合し、焼成する工程(III-1)
を備える製造方法により得られるものであるのが好ましい。
 工程(I-1)は、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水aを水熱反応に付して酸化物Xを得る工程である。
 用い得るリチウム化合物又はナトリウム化合物としては、水酸化物(例えばLiOH・H2O、NaOH)、炭酸化物、硫酸化物、酢酸化物が挙げられる。なかでも、水酸化物が好ましい。
 スラリー水aにおけるリチウム化合物又はケイ酸化合物の含有量は、水100質量部に対し、好ましくは5~50質量部であり、より好ましくは7~45質量部である。より具体的には、工程(I-1)においてリン酸化合物を用いた場合、スラリー水aにおけるリチウム化合物又はナトリウム化合物の含有量は、水100質量部に対し、好ましくは5~50質量部であり、より好ましくは10~45質量部である。また、ケイ酸化合物を用いた場合、スラリー水aにおけるケイ酸化合物の含有量は、水100質量部に対し、好ましくは5~40質量部であり、より好ましくは7~35質量部である。
 工程(I-1)は、スラリー水aに含有される各成分の分散性を高めつつ、得られる正極活物質の粒子を微細化し、電池物性の向上を図る観点から、リチウム化合物又はナトリウム化合物を含む混合物Aに、リン酸化合物又はケイ酸化合物を混合して混合物Bを得る工程(Ia-1)、並びに得られた混合物Bに、少なくとも鉄化合物又はマンガン化合物を含む金属塩を添加し、混合して得られるスラリー水aを水熱反応に付して酸化物Xを得る工程(Ib-1)を備えるのが好ましい。
 工程(I-1)又は(Ia-1)において、混合物Aにリン酸化合物又はケイ酸化合物を混合する前に、予め混合物Aを撹拌しておくのが好ましい。かかる混合物Aの撹拌時間は、好ましくは1~15分であり、より好ましくは3~10分である。また、混合物Aの温度は、好ましくは20~90℃であり、より好ましくは20~70℃である。
 工程(I-1)又は(Ia-1)で用いるリン酸化合物としては、オルトリン酸(H3PO4、リン酸)、メタリン酸、ピロリン酸、三リン酸、四リン酸、リン酸アンモニウム、リン酸水素アンモニウム等が挙げられる。なかでもリン酸を用いるのが好ましく、70~90質量%濃度の水溶液として用いるのが好ましい。かかる工程(I-1)又は(Ia-1)では、混合物Aにリン酸を混合するにあたり、混合物Aを撹拌しながらリン酸を滴下するのが好ましい。混合物Aにリン酸を滴下して少量ずつ加えることで、混合物A中において良好に反応が進行して、上記(A)~(C)で表される酸化物Xの前駆体がスラリー中で均一に分散しつつ生成され、かかる酸化物Xの前駆体が不要に凝集するのをも効果的に抑制することができる。
 リン酸の上記混合物Aへの滴下速度は、好ましくは15~50mL/分であり、より好ましくは20~45mL/分であり、さらに好ましくは28~40mL/分である。また、リン酸を滴下しながらの混合物Aの撹拌時間は、好ましくは0.5~24時間であり、より好ましくは3~12時間である。さらに、リン酸を滴下しながらの混合物Aの撹拌速度は、好ましくは200~700rpmであり、より好ましくは250~600rpmであり、さらに好ましくは300~500rpmである。
 なお、混合物Aを撹拌する際、さらに混合物Aの沸点温度以下に冷却するのが好ましい。具体的には、80℃以下に冷却するのが好ましく、20~60℃に冷却するのがより好ましい。
 工程(I-1)又は(Ia-1)で用いるケイ酸化合物としては、反応性のあるシリカ化合物であれば特に限定されず、非晶質シリカ、Na4SiO4(例えばNa4SiO4・H2O)等が挙げられる。
 リン酸化合物又はケイ酸化合物を混合した後の混合物Bは、リン酸又はケイ酸1モルに対し、リチウム又はナトリウムを2.0~4.0モル含有するのが好ましく、2.0~3.1モル含有するのがより好ましく、このような量となるよう、上記リチウム化合物又はナトリウム化合物と、リン酸化合物又はケイ酸化合物を用いればよい。より具体的には、工程(I-1)又は(Ia-1)においてリン酸化合物を用いた場合、リン酸化合物を混合した後の混合物Bは、リン酸1モルに対し、リチウム又はナトリウムを2.7~3.3モル含有するのが好ましく、2.8~3.1モル含有するのがより好ましく、工程(I-1)又は(Ia-1)においてケイ酸化合物を用いた場合、ケイ酸化合物を混合した後の混合物Bは、ケイ酸1モルに対し、リチウムを2.0~4.0モル含有するのが好ましく、2.0~3.0含有するのがより好ましい。
 このような量となるよう、上記リチウム化合物又はナトリウム化合物と、リン酸化合物又はケイ酸化合物を用いればよい。
 リン酸化合物又はケイ酸化合物を混合した後の混合物Bに対して窒素をパージすることにより、かかる混合物B中での反応を完了させて、上記(A)~(C)で表される酸化物Xの前駆体を混合物Bに生成させる。窒素がパージされると、混合物B中の溶存酸素濃度が低減された状態で反応を進行させることができ、また得られる酸化物Xの前駆体を含有する混合物B中の溶存酸素濃度も効果的に低減されるため、次の工程で添加する鉄化合物やマンガン化合物等の酸化を抑制することができる。かかる混合物B中において、上記(A)~(C)で表される酸化物Xの前駆体は、微細な分散粒子として存在する。かかる酸化物Xの前駆体は、例えば上記式(A)で表される酸化物の場合、リン酸三リチウム(Li3PO4)として得られる。
 窒素をパージする際における圧力は、好ましくは0.1~0.2MPaであり、より好ましくは0.1~0.15MPaである。また、リン酸化合物又はケイ酸化合物を混合した後の混合物Bの温度は、好ましくは20~80℃であり、より好ましくは20~60℃である。例えば上記式(A)で表される酸化物の場合、反応時間は、好ましくは5~60分であり、より好ましくは15~45分である。
 また、窒素をパージする際、反応を良好に進行させる観点から、リン酸化合物又はケイ酸化合物を混合した後の混合物Bを撹拌するのが好ましい。このときの撹拌速度は、好ましくは200~700rpmであり、より好ましくは250~600rpmである。
 また、より効果的に酸化物Xの前駆体の分散粒子表面における酸化を抑制し、分散粒子の微細化を図る観点から、リン酸化合物又はケイ酸化合物を混合した後の混合物B中における溶存酸素濃度を0.5mg/L以下とするのが好ましく、0.2mg/L以下とするのがより好ましい。
 工程(I-1)又は(Ib-1)では、得られた酸化物Xの前駆体と、少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水aを水熱反応に付して、酸化物Xを得る。
 得られた酸化物Xの前駆体を混合物のまま用い、これに少なくとも鉄化合物又はマンガン化合物を含む金属塩を添加して、また必要に応じて水溶性炭素材料を添加して、スラリー水aとするのが好ましい。これにより、工程を簡略化させつつ、上記(A)~(C)で表される酸化物Xを得ることができるとともに、極めて微細な粒子とすることが可能となり、非常に有用な二次電池用正極活物質を得ることができる。
 用い得る鉄化合物としては、酢酸鉄、硝酸鉄、硫酸鉄等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、電池特性を高める観点から、硫酸鉄が好ましい。
 用い得るマンガン化合物としては、酢酸マンガン、硝酸マンガン、硫酸マンガン等が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、電池特性を高める観点から、硫酸マンガンが好ましい。
 金属塩として、鉄化合物とマンガン化合物の双方を用いる場合、これらマンガン化合物及び鉄化合物の使用モル比(マンガン化合物:鉄化合物)は、好ましくは99:1~1:99であり、より好ましくは90:10~10:90である。また、これら鉄化合物及びマンガン化合物の合計添加量は、スラリー水a中に含有されるLi3PO4 1モルに対し、好ましくは0.99~1.01モルであり、より好ましくは0.995~1.005モルである。
 さらに、必要に応じて、金属塩として、鉄化合物及びマンガン化合物以外の金属(M、N又はQ)塩を用いてもよい。金属(M、N又はQ)塩におけるM、N及びQは、上記式(A)~(C)中のM、N及びQと同義であり、かかる金属塩として、硫酸塩、ハロゲン化合物、有機酸塩、及びこれらの水和物等を用いることができる。これらは1種単独で用いてもよく、2種以上用いてもよい。なかでも、電池物性を高める観点から、硫酸塩を用いるのがより好ましい。
 これら金属(M、N又はQ)塩を用いる場合、鉄化合物、マンガン化合物、及び金属(M、N又はQ)塩の合計添加量は、上記工程(I-1)において得られた混合物B中のリン酸又はケイ酸1モルに対し、好ましくは0.99~1.01モルであり、より好ましくは0.995~1.005モルである。
 水熱反応に付する際に用いる水の使用量は、用いる金属塩の溶解性、撹拌の容易性、及び合成の効率等の観点から、スラリー水a中に含有されるリン酸又はケイ酸イオン1モルに対し、好ましくは10~50モルであり、より好ましくは12.5~45モルである。より具体的には、スラリー水a中に含有されるイオンがリン酸イオンの場合、水熱反応に付する際に用いる水の使用量は、好ましくは10~30モルであり、より好ましくは12.5~25モルである。また、スラリー水a中に含有されるイオンがケイ酸イオンの場合、水熱反応に付する際に用いる水の使用量は、好ましくは10~50モルであり、より好ましくは12.5~45モルである。
 工程(I-1)又は(Ib-1)において、鉄化合物、マンガン化合物及び金属(M、N又はQ)塩の添加順序は特に制限されない。また、これらの金属塩を添加するとともに、必要に応じて酸化防止剤を添加してもよい。かかる酸化防止剤としては、亜硫酸ナトリウム(Na2SO3)、ハイドロサルファイトナトリウム(Na224)、アンモニア水等を使用することができる。酸化防止剤の添加量は、過剰に添加されることで、上記式(A)~(C)で表される酸化物Xの生成が抑制されるのを防止する観点から、鉄化合物、マンガン化合物及び必要に応じて用いる金属(M、N又はQ)塩の合計1モルに対し、好ましくは0.01~1モルであり、より好ましくは0.03~0.5モルである。
 鉄化合物、マンガン化合物及び必要に応じて用いる金属(M、N又はQ)塩や酸化防止剤を添加することにより得られるスラリー水a中における酸化物Xの前駆体の含有量は、好ましくは10~50質量%であり、より好ましくは15~45質量%であり、さらに好ましくは20~40質量%である。
 工程(I-1)又は(Ib-1)における水熱反応は、100℃以上であればよく、130~180℃が好ましい。水熱反応は耐圧容器中で行うのが好ましく、130~180℃で反応を行う場合、この時の圧力は0.3~0.9MPaであるのが好ましく、140~160℃で反応を行う場合の圧力は0.3~0.6MPaであるのが好ましい。水熱反応時間は0.1~48時間が好ましく、さらに0.2~24時間が好ましい。
 得られた酸化物Xは、上記式(A)~(C)で表される酸化物であり、ろ過後、水で洗浄し、乾燥することによりこれを単離できる。なお、乾燥手段は、凍結乾燥、真空乾燥が用いられる。
 得られる酸化物XのBET比表面積は、水不溶性導電性炭素材料及び金属フッ化物を効率よく担持して吸着水分量を効果的に低減する観点から、好ましくは5~40m2/gであり、より好ましくは5~20m2/gである。酸化物XのBET比表面積が5m2/g未満であると、二次電池用正極活物質の一次粒子が大きくなりすぎ、電池特性が低下してしまうおそれがある。また、BET比表面積が40m2/gを超えると、二次電池用正極活物質の吸着水分量が増大して電池特性に影響を与えるおそれがある。
 工程(II-1)は、工程(I-1)で得られた酸化物Xに水不溶性導電性炭素材料を添加して乾式混合し、複合体Aを得る工程である。水不溶性導電性炭素材料を2種以上用いる場合、又は必要に応じてさらに水溶性炭素材料を添加する場合、これらの添加順序は特に制限されない。水不溶性導電性炭素材料の添加量は、本発明の二次電池用正極活物質中における水不溶性導電性炭素材料の炭素原子換算量になるようにすればよく、例えば酸化物X100質量部に対し、好ましくは0.3~6.5質量部であり、より好ましくは0.5~5.5質量部であり、さらに好ましくは0.6~5質量部である。また、ここで必要に応じて水溶性炭素材料を添加して、乾式混合してもよい。
 工程(II-1)における乾式混合としては、通常のボールミルによる混合であるのが好ましく、自公転可能な遊星ボールミルによる混合で複合体Aを得るのがより好ましい。さらに、上記式(A)~(C)で表される酸化物Xの表面上で水不溶性導電性炭素材料、及び必要に応じて併用する水溶性炭素材料を緻密かつ均一に分散させ、これを有効に担持させる観点から、圧縮力及びせん断力を付加しながら複合体Aを混合して複合体Bとするのがさらに好ましい。圧縮力及びせん断力を付加しながら混合する処理は、インペラを備える密閉容器で行うのが好ましい。かかるインペラの周速度は、得られる正極活物質のタップ密度を高め、またBET比表面積を減じて吸着水分量を有効に低減する観点から、好ましくは25~40m/sであり、より好ましくは27~40m/sである。また、混合時間は、好ましくは5~90分であり、より好ましくは10~80分である。
 なお、インペラの周速度とは、回転式攪拌翼(インペラ)の最外端部の速度を意味し、下記式(1)により表すことができ、また圧縮力及びせん断力を付加しながら混合する処理を行う時間は、インペラの周速度が遅いほど長くなるように、インペラの周速度によっても変動し得る。
  インペラの周速度(m/s)=
  インペラの半径(m)×2×π×回転数(rpm)÷60・・・(1)
 工程(II-1)において、上記圧縮力及びせん断力を付加しながら混合する処理を行う際の処理時間及び/又はインペラの周速度は、容器に投入する複合体Aの量に応じて適宜調整する必要がある。そして、容器を稼動させることにより、インペラと容器内壁との間でこれら混合物に圧縮力及びせん断力が付加されつつ、これを混合する処理を行うことが可能となり、上記式(A)~(C)で表される酸化物Xの表面上で水不溶性導電性炭素材料、及び必要に応じて併用する水溶性炭素材料を緻密かつ均一に分散させ、後述する金属フッ化物とも相まって吸着水分量を有効に低減できる二次電池用正極活物質を得ることができる。
 例えば、上記混合する処理を、周速度25~40m/sで回転するインペラを備える密閉容器内で6~90分間行う場合、容器に投入する複合体Aの量は、有効容器(インペラを備える密閉容器のうち、複合体Aを収容可能な部位に相当する容器)1cm3当たり、好ましくは0.1~0.7gであり、より好ましくは0.15~0.4gである。
 このような圧縮力及びせん断力を付加しながら混合する処理を容易に行うことができる密閉容器を備える装置としては、高速せん断ミル、ブレード型混練機等が挙げられ、具体的には、例えば、微粒子複合化装置 ノビルタ(ホソカワミクロン社製)を好適に用いることができる。
 上記混合の処理条件としては、処理温度が、好ましくは5~80℃、より好ましくは10~50℃である。処理雰囲気としては、特に限定されないが、不活性ガス雰囲気下、又は還元ガス雰囲気下が好ましい。
 工程(III-1)では、工程(I-1)で得られた複合体A(又は工程(II-1)において複合体Bを得た場合は、複合体B)に、複合体100質量部に対して0.1~40質量部の金属フッ化物の前駆体を添加して湿式混合し複合体Cを得た後、焼成する工程である。これにより、上記(A)~(C)で表される酸化物Xの表面が露出するのを有効に抑制しつつ、かかる酸化物に水溶性炭素材料と金属フッ化物を、共に堅固に担持させることができる。
 金属フッ化物の前駆体の添加量は、水不溶性導電性炭素材料が存在しない酸化物Xの表面に金属フッ化物を0.1~5質量%の量で有効に担持させる観点から、複合体A(又は複合体B)100質量部に対し、合計で0.1~40質量部であり、好ましくは0.2~36質量部であり、より好ましくは0.3~32質量部である。また、金属フッ化物を有効に担持させる観点から、金属フッ化物の前駆体とともに、水を添加するのが好ましい。水の添加量は、複合体A(又は複合体B)100質量部に対し、好ましくは30~300質量部であり、より好ましくは50~250質量部であり、さらに好ましくは75~200質量部である。
 金属フッ化物の前駆体とは、のちに焼成されることにより、酸化物に担持させるための金属フッ化物を形成することのできる化合物であればよく、具体的には、金属フッ化物の前駆体として、金属フッ化物以外の化合物である、フッ素化合物及び金属化合物を併用するのが好ましい。かかる金属フッ化物以外の化合物であるフッ素化合物としては、フッ化水素酸、フッ化アンモニウム、次亜フッ素酸等が挙げられ、なかでもフッ化アンモニウムを用いるのが好ましい。かかる金属フッ化物以外の化合物である金属化合物としては、酢酸金属塩、硝酸金属塩、乳酸金属塩、シュウ酸金属塩、金属水酸化物、金属エトキシド、金属イソプロポキシド、金属ブトキシド等が挙げられ、なかでも金属水酸化物が好ましい。なお、金属化合物の金属とは、上記金属フッ化物の金属と同義である。
 工程(III-1)における湿式混合手段としては、特に制限されず、常法により行うことができる。複合体A(又は複合体B)に上記量で金属フッ化物の前駆体を添加した後、混合する際の温度は、好ましくは5~80℃であり、より好ましくは10~60℃である。得られる複合体Cは、焼成するまでの間に乾燥するのが好ましい。乾燥手段としては、噴霧乾燥、真空乾燥、凍結乾燥等が挙げられる。
 工程(III-1)において、上記湿式混合により得られた複合体Cを焼成する。焼成は、還元雰囲気又は不活性雰囲気中で行うのが好ましい。焼成温度は、乾式混合等により低下した酸化物X及び水不溶性導電性炭素材料の結晶性を高めて導電性を向上させる観点から、好ましくは500~800℃であり、より好ましくは600~770℃であり、さらに好ましくは650~750℃である。また、焼成時間は、好ましくは10分~3時間、より好ましくは30分~1.5時間とするのがよい。
 本発明の二次電池用正極活物質が、上記酸化物に、水溶性炭素材料が炭化されてなる炭素と、0.1~5質量%の金属フッ化物とが担持されてなる二次電池用正極活物質(P-2)である場合、上記酸化物と水溶性炭素材料とを含む複合体Dは、具体的には、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含み、かつ水溶性炭素材料を含むスラリー水を水熱反応に付すことにより得られるものであるのが好ましい。すなわち、二次電池用正極活物質(P-2)において、上記酸化物と水溶性炭素材料とを含む複合体Dは、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含み、かつ水溶性炭素材料を含むスラリー水の、水熱反応物であるのが好ましい。
 本発明の二次電池用正極活物質(P-2)は、より具体的には、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有し、かつ水溶性炭素材料を含有するスラリー水bを水熱反応に付して複合体Dを得る工程(I-2)、並びに
 得られた複合体Dに、複合体100質量部に対して0.1~40質量部の金属フッ化物の前駆体を添加して湿式混合し、焼成する工程(II-2)
を備える製造方法により得られるものであるのが好ましい。
 工程(I-2)は、リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有し、かつ水溶性炭素材料を含有するスラリー水bを水熱反応に付して複合体Dを得る工程である。
 用い得るリチウム化合物及びナトリウム化合物、並びにこれらのスラリー水bにおける含有量は、上記二次電池用正極活物質(P-1)の製造方法での工程(I-1)と同様である。
 スラリー水bにおける水溶性炭素材料の含有量は、上記のとおり、炭化されてなる炭素としての水溶性炭素材料の担持量が炭素原子換算量で上記範囲内になるような量であればよく、例えば、酸化物の表面に水溶性炭素材料が炭化されてなる炭素を0.1~4質量%の量で有効に担持させる観点から、スラリー水中の水100質量部に対し、好ましくは0.03~3.5質量部であり、より好ましくは0.03~2.5質量部である。
 工程(I-2)は、スラリー水bに含有される各成分の分散性を高めつつ、得られる正極活物質の粒子を微細化し、電池物性の向上を図る観点から、リチウム化合物又はナトリウム化合物を含む混合物Aに、リン酸化合物又はケイ酸化合物を混合して混合物Bを得る工程(Ia-2)、並びに得られた混合物Bに、少なくとも鉄化合物又はマンガン化合物を含む金属塩と水溶性炭素材料を添加し、得られるスラリー水bを水熱反応に付して複合体Dを得る工程(Ib-2)を備えるのが好ましい。
 この際、水溶性炭素材料は、最終的に水熱反応に付されるスラリー水b中に含まれていればよく、工程(Ia-2)において、リン酸化合物又はケイ酸化合物を混合する前又は混合時に添加してもよく、或いは工程(Ib-2)において少なくとも鉄化合物又はマンガン化合物を含む金属塩とともに添加することによりスラリー水bとしてもよい。なかでも、上記酸化物に水溶性炭素材料が炭化されてなる炭素を効率的に担持させる観点から、工程(Ib-2)において鉄化合物又はマンガン化合物を含む金属塩とともに水溶性炭素材料を添加するのが好ましい。
 工程(I-2)又は(Ia-2)において、混合物Aにリン酸化合物又はケイ酸化合物を混合する前に、予め混合物Aを撹拌しておくのが好ましい。かかる混合物Aの撹拌時間は、好ましくは1~15分であり、より好ましくは3~10分である。また、混合物Aの温度は、好ましくは20~90℃であり、より好ましくは20~70℃である。
 用い得るリン酸化合物及びケイ酸化合物は、上記二次電池用正極活物質(P-1)の製造方法での工程(I-1)又は(Ia-1)と同様であり、リン酸化合物としてリン酸を用いる際の混合物Aとの混合方法についても、上記工程(I-1)又は(Ia-1)と同様である。
 また、リン酸化合物又はケイ酸化合物を混合した後の混合物B中におけるリチウム又はナトリウムの含有量は、上記二次電池用正極活物質(P-1)の製造方法での工程(I-1)又は(Ia-1)における混合物Bと同様であり、そのような量となるよう、上記リチウム化合物又はナトリウム化合物と、リン酸化合物又はケイ酸化合物を用いればよい。
 リン酸化合物又はケイ酸化合物を混合した後の混合物Bに対して窒素をパージすることにより、かかる混合物B中での反応を完了させて、上記(A)~(C)で表される酸化物Xの前駆体を混合物B中に生成させる。窒素がパージされると、混合物B中の溶存酸素濃度が低減された状態で反応を進行させることができ、また得られる酸化物Xの前駆体を含有する混合物B中の溶存酸素濃度も効果的に低減されるため、次の工程で添加する鉄化合物やマンガン化合物等の酸化を抑制することができる。かかる混合物B中において、上記(A)~(C)で表される酸化物Xの前駆体は、微細な分散粒子として存在する。かかる酸化物Xの前駆体は、例えば上記式(A)で表される酸化物の場合、リン酸三リチウム(Li3PO4)として得られる。
 窒素をパージする際における圧力、混合物Bの温度、反応時間、混合物Bの撹拌速度、及び溶存酸素濃度は、上記二次電池用正極活物質(P-1)の製造方法での工程(I-1)又は(Ia-1)における、窒素をパージする際における圧力、混合物Bの温度、反応時間、混合物Bの撹拌速度、及び溶存酸素濃度と同様である。
 工程(I-2)又は(Ib-2)では、得られた混合物Bと、少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有し、かつ水溶性炭素材料を含有するスラリー水bを水熱反応に付して、複合体Dを得る。
 得られた混合物Bを、上記(A)~(C)で表される酸化物Xの前駆体として用い、これに少なくとも鉄化合物又はマンガン化合物を含む金属塩、及び水溶性炭素材料を添加して、スラリー水bとして用いるのが好ましい。これにより、工程を簡略化させつつ、上記(A)~(C)で表される酸化物Xに効率的に水溶性炭素材料が炭化してなる炭素を担持させることができるとともに、極めて微細な粒子とすることが可能となり、非常に有用な二次電池用正極活物質を得ることができる。
 用い得る鉄化合物、マンガン化合物、並びに鉄化合物及びマンガン化合物以外の金属(M、N又はQ)塩は、上記二次電池用正極活物質(P-1)の製造方法での工程(I-1)又は(Ib-1)において酸化物Xを得る場合と同様である。
 工程(I-2)又は(Ib-2)において、金属塩として、鉄化合物とマンガン化合物の双方を用いる場合、これらマンガン化合物及び鉄化合物の使用モル比(マンガン化合物:鉄化合物)は、好ましくは99:1~1:99であり、より好ましくは90:10~10:90である。また、これら鉄化合物及びマンガン化合物の合計添加量は、スラリー水b中に含有されるLi3PO4 1モルに対し、好ましくは0.99~1.01モルであり、より好ましくは0.995~1.005モルである。
 また、必要に応じて金属(M、N又はQ)塩を用いる場合、鉄化合物、マンガン化合物、及び金属(M、N又はQ)塩の合計添加量は、上記工程(I-2)において得られた混合物中のリン酸又はケイ酸1モルに対し、好ましくは0.99~1.01モルであり、より好ましくは0.995~1.005モルである。
 スラリー水b中における水溶性炭素材料は、好ましくは0.03~3.4質量%であり、より好ましくは0.03~2.4質量%である。
 水熱反応に付する際に用いる水の使用量、必要に応じて添加してもよい酸化防止剤及びその添加量は、上記二次電池用正極活物質(P-1)の製造方法での工程(I-1)又は(Ib-1)において酸化物Xを得る場合と同様である。なお、工程(I-2)又は(Ib-2)においても、鉄化合物、マンガン化合物及び金属(M、N又はQ)塩、並びに水溶性炭素材料の添加順序は特に制限されない。
 鉄化合物、マンガン化合物及び必要に応じて用いる金属(M、N又はQ)塩、並びに水溶性炭素材料や酸化防止剤を添加することにより得られるスラリーb中における混合物Bの含有量は、好ましくは10~50質量%であり、より好ましくは15~45質量%であり、さらに好ましくは20~40質量%である。
 工程(I-2)又は(Ib-2)における水熱反応の温度、圧力、水熱反応時間は、上記二次電池用正極活物質(P-1)の製造方法での工程(I-1)又は(Ib-1)において酸化物Xを得る場合と同様である。得られた複合体Dは、上記式(A)~(C)で表される酸化物X及び水溶性炭素材料を含む複合体であり、ろ過後、水で洗浄し、乾燥することによりこれを複合体粒子として単離できる。なお、乾燥手段は、凍結乾燥、真空乾燥が用いられる。得られる複合体DのBET比表面積についても、上記二次電池用正極活物質(P-1)の製造方法での工程(I-1)又は(Ib-1)において得られる酸化物Xと同様である。
 工程(II-2)では、工程(I-2)で得られた複合体Dに、金属フッ化物の前駆体を添加して湿式混合し、焼成する工程である。これにより、上記(A)~(C)で表される酸化物Xの表面が露出するのを有効に抑制しつつ、かかる酸化物Xに水溶性炭素材料が炭化されてなる炭素と金属フッ化物とを、共に堅固に担持させることができる。
 複合体D100質量部に対する金属フッ化物の前駆体の添加量及び水の添加量は、上記二次電池用正極活物質(P-1)の製造方法での工程(III-1)における複合体A(又は複合体B)100質量部に対する金属フッ化物の前駆体の添加量及び水の添加量と同様である。また、工程(II-2)における湿式混合手段、及びかかる湿式混合により得られた混合物の焼成条件についても、上記二次電池用正極活物質(P-1)の製造方法での工程(III-1)における湿式混合手段、及びかかる湿式混合により得られた混合物の焼成条件と同様である。
 本発明の二次電池用正極活物質は、上記水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素から選ばれる1種又は2種と金属フッ化物とが、共に上記酸化物に担持されて相乗的に作用し、二次電池用正極活物質における吸着水分量を有効に低減することができる。具体的には、本発明の二次電池用正極活物質の吸着水分量は、酸化物が上記式(A)又は(C)で表される二次電池用正極活物質では、二次電池用正極活物質中に、好ましくは1200ppm以下であり、より好ましくは1000ppm以下であり、酸化物が上記式(B)で表される二次電池用正極活物質では、好ましくは2500ppm以下であり、より好ましくは2000ppm以下である。なお、かかる吸着水分量は、温度20℃及び相対湿度50%にて平衡に達するまで水分を吸着させ、温度150℃まで昇温して20分間保持した後、さらに温度250℃まで昇温して20分間保持したときの、150℃から昇温を再開するときを始点、及び250℃での恒温状態を終えたときを終点とする、始点から終点までの間に揮発した水分量として測定される値であって、二次電池用正極活物質の吸着水分量と、上記始点から終点までの間に揮発した水分量とが、同量であるとみなし、かかる揮発する水分量の測定値を二次電池用正極活物質の吸着水分量とするものである。
 このように、本発明の二次電池用正極活物質は、水分を吸着しにくいため、製造環境として強い乾燥条件を必要とすることなく吸着水分量を有効に低減することができ、得られるリチウムイオン二次電池及びナトリウムイオン二次電池の双方において、様々な使用環境下でも優れた電池特性を安定して発現することが可能となる。
 なお、温度20℃及び相対湿度50%にて平衡に達するまで水分を吸着させ、温度150℃まで昇温して20分間保持した後、さらに温度250℃まで昇温して20分間保持したときの、150℃から昇温を再開するときを始点、及び250℃での恒温状態を終えたときを終点とする、始点から終点までの間に揮発した水分量は、例えばカールフィッシャー水分計を用いて測定することができる。
 また、本発明の二次電池用正極活物質のタップ密度は、吸着水分量を効果的に低減する観点から、好ましくは0.5~1.6g/cm3であり、より好ましくは0.8~1.6g/cm3である。
 さらに、本発明の二次電池用正極活物質のBET比表面積は、吸着水分量を効果的に低減する観点から、好ましくは5~21m2/gであり、より好ましくは7~20m2/gである。
 本発明の二次電池用正極活物質を含む二次電池用正極を適用できる二次電池としては、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。
 ここで、負極については、リチウムイオン又はナトリウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、ナトリウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そしてリチウムイオン又はナトリウムイオンを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。
 電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウムイオン二次電池やナトリウムイオン二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。
 支持塩は、その種類が特に限定されるものではないが、リチウムイオン二次電池の場合、LiPF6、LiBF4、LiClO4、LiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32、LiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。また、ナトリウムイオン二次電池の場合、NaPF6、NaBF4、NaClO4及びNaAsF6から選ばれる無機塩、該無機塩の誘導体、NaSO3CF3、NaC(SO3CF32及びNaN(SO3CF32、NaN(SO2252及びNaN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。
 セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。
 以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 [実施例1-1]
 LiOH・H2O 4.9kg、及び超純水11.7Lを混合してスラリー水を得た。次いで、得られたスラリー水を25℃の温度に保持しながら速度400rpmにて30分間撹拌しつつ、70%のリン酸水溶液 5.09kgを35mL/minで滴下して、混合物A11を得た。かかる混合スラリー液のpHは10.0であり、リチウム1モルに対し、0.33モルのリン酸を含有していた。
 次に、得られた混合物A11に対し、速度400pmで30分間撹拌しながら窒素をパージして、混合物A11での反応を完了させた(溶存酸素濃度0.5mg/L)。続いて、混合物A11 21.7kgに対し、FeSO4・7H2O 1.63kg、MnSO4・H2O 5.60 kgを添加し、さらにNa2SO3 46.8gを添加して速度400rpmにて撹拌・混合してスラリー水a11を得た。このとき、添加したFeSO4・7H2OとMnSO4・H2Oのモル比(FeSO4・7H2O:MnSO4・H2O)は、20:80であった。
 次いで、スラリー水a11を蒸気加熱式オートクレーブ内に設置した合成容器に投入した。投入後、隔膜分離装置により水(溶存酸素濃度0.5mg/L未満)を加熱して得た飽和蒸気を用いて、170℃で1時間攪拌しながら加熱した。オートクレーブ内の圧力は、0.8MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を60℃、1Torrの条件で真空乾燥し、酸化物(粉末、式(A)で表される化学組成:LiFe0.2Mn0.8PO4、BET比表面積21m2/g、平均粒径60nm)を得た。
 得られた酸化物100gを分取し、これにグルコース1.6g(リチウムイオン二次電池用正極活物質中における炭素原子換算量で0.6質量%に相当)及びケッチェンブラック1.0g(リチウムイオン二次電池用正極活物質中における炭素原子換算量で1.0質量%に相当)をボールミルにより乾式で混合した後、還元雰囲気下で700℃で1時間焼成した。得られた複合体A11に対し、ノビルタ(ホソカワミクロン社製、NOB130)を用いて40m/s(6000rpm)で5分間、混合処理を行って複合体B11(粉末)を得た。
 得られた複合体B11を40.00g分取し、これにフッ化アンモニウム 0.29g(リチウムイオン二次電池用正極活物質中におけるLiF換算量で0.5質量%に相当)及び水 25mLを添加し、混合してスラリーAを調製した。一方、LiOH・H2O 0.33g及び水25mLを混合して溶液Bを調製した。次いで、溶液BをスラリーAに添加して、3時間の混合を行った後、80℃で12時間乾燥を行い、還元雰囲気下で700℃で11時間焼成して、リチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=1.6質量%、LiFの量=0.5質量%)を得た。
 [実施例1-2]
 複合体B11に添加するフッ化アンモニウムを0.59g(リチウムイオン二次電池用正極活物質中におけるLiF換算量で1.0質量%に相当)、及び溶液Bを調整するためのLiOH・H2Oを0.66gとした以外、実施例1-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=1.6質量%、LiFの量=1.0質量%)を得た。
 [実施例1-3]
 複合体B11に添加するフッ化アンモニウムを1.47g(リチウムイオン二次電池用正極活物質中におけるLiF換算量で2.5質量%に相当)、及び溶液Bを調整するためのLiOH・H2Oを1.65gとした以外、実施例1-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=1.6質量%、LiFの量=2.5質量%)を得た。
 [実施例1-4]
 複合体B11に添加するフッ化アンモニウムを0.59g(リチウムイオン二次電池用正極活物質中におけるMgF2換算量で0.5質量%に相当)、及び溶液Bを調整するためのLiOH・H2Oの代わりに、酢酸マグネシウム四水和物 0.69gを用いた以外、実施例1-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=1.6質量%、MgF2の量=0.5質量%)を得た。
 [実施例1-5]
 複合体B11に添加するフッ化アンモニウムを1.18g(リチウムイオン二次電池用正極活物質中におけるMgF2換算量で1.0質量%に相当)、及び溶液Bを調整するためのLiOH・H2Oの代わりに、酢酸マグネシウム四水和物 1.39gを用いた以外、実施例1-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=1.6質量%、MgF2の量=1.0質量%)を得た。
 [比較例1-1]
 得られた複合体B11に水50mLを添加して、フッ化アンモニウム及びLiOH・H2Oを用いることなく、溶液Bを調製した以外、実施例1-1と同様にして、リチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=1.6質量%、金属フッ化物担持なし)を得た。
 [実施例2-1]
 LiOH・H2O 0.428kg、Na4SiO4・nH2O 1.40kgに超純水3.75Lを混合してスラリー水を得た。次いで、得られたスラリー水に、FeSO4・7H2O 0.39kg、MnSO4・5H2O 0.79kg、及びZr(SO42・4H2O 53gを添加し、25℃の温度に保持しながら速度400rpmにて30分間撹拌して、スラリー水a21を得た。このとき、添加したFeSO4・7H2O、MnSO4・5H2O及びZr(SO42・4H2Oのモル比(FeSO4・7H2O:MnSO4・5H2O:Zr(SO42・4H2O)は、28:66:3であった。
 次いで、得られたスラリー水a21を蒸気加熱式オートクレーブ内に設置した合成容器に投入した。投入後、隔膜分離装置により水(溶存酸素濃度0.5mg/L未満)を加熱して得た飽和蒸気を用いて、150℃で12時間攪拌しながら加熱した。オートクレーブの圧力は0.4MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して酸化物(粉末、式(B)で表される化学組成:Li2Fe0.28Mn0.66Zr0.03SiO4、BET比表面積35m2/g、平均粒径50nm)を得た。
 得られた酸化物213.9gを分取し、ケッチェンブラック16.1g(リチウムイオン二次電池用正極活物質中における炭素原子換算量で7.0質量%に相当)とともにボールミルにより乾式で混合した。得られた複合体A21に対し、ノビルタ(ホソカワミクロン社製、NOB130)を用いて40m/s(6000rpm)で5分間、混合処理を行って複合体B21(粉末)を得た。
 得られた複合体B21を4.0g分取し、これにLiOH0.033g、及びフッ化アンモニウム 0.029g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で0.5質量%に相当)、及び水5mLを混合し、1時間撹拌した後、還元雰囲気下で650℃で1時間焼成して、リチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=7.0質量%、LiFの量=0.5質量%)を得た。
 [実施例2-2]
 複合体B21に添加するLiOHを0.066g、フッ化アンモニウムを0.059g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で1.0質量%に相当)とした以外、実施例2-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=7.0質量%、LiFの量=1.0質量%)を得た。
 [実施例2-3]
 複合体B21に添加するLiOHを0.132g、フッ化アンモニウムを0.118g(リチウムイオン二次電池用正極活物質100質量%中におけるLiFの担持量換算で2.0質量%に相当)とした以外、実施例2-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=7.0質量%、LiFの量=2.0質量%)を得た。
 [実施例2-4]
 複合体B21に添加するLiOHの代わりにAl(OH)30.078g、フッ化アンモニウムを0.353g(リチウムイオン二次電池用正極活物質100質量%中におけるAlF2の担持量換算で2.0質量%に相当)とした以外、実施例2-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=7.0質量%、AlF3の量=2.0質量%)を得た。
 [実施例2-5]
 複合体B21に添加するLiOHの代わりにMg(CH3COO)2・4H2O0.277g、フッ化アンモニウムを0.236g(リチウムイオン二次電池用正極活物質中におけるMgF2の担持量換算で2.0質量%に相当)とした以外、実施例2-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=7.0質量%、MgF2の量=2.0質量%)を得た。
 [比較例2-1]
 複合体B21に添加するLiOHを0.396g、フッ化アンモニウムを0.353g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で6.0質量%に相当)とした以外、実施例2-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=7.0質量%、LiFの量=6.0質量%)を得た。
 [比較例2-2]
 金属フッ化物を添加しなかった以外、実施例2-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=7.0質量%、金属フッ化物担持なし)を得た。
 [実施例3-1]
 NaOH 0.60kgと水 9.0Lを混合して溶液を得た。次いで、得られた溶液を、25℃の温度に保持しながら5分間撹拌しつつ85%のリン酸水溶液0.577kgを35mL/分で滴下し、続いて12時間、400rpmの速度で撹拌することにより、混合物B31を含有するスラリーを得た。かかるスラリーは、リン1モルに対し、3.00モルのナトリウムを含有していた。得られたスラリーに対し、窒素ガスをパージして溶存酸素濃度を0.5mg/Lに調整した後、FeSO4・7H2O 0.139kg、MnSO4・5H2O 0.964kg、MgSO4・7H2O 0.124kgを添加した。このとき、添加したFeSO4・7H2O、MnSO4・5H2O及びMgSO4・7H2Oのモル比(FeSO4・7H2O:MnSO4・5H2O:MgSO4・7H2Oは、10:80:10であった。
 次いで、得られたスラリー水a31を窒素ガスでパージしたオートクレーブに投入し、200℃で3時間水熱反応を行った。オートクレーブ内の圧力は、1.4MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して酸化物X31(粉末、式(C)で表される化学組成:NaFe0.1Mn0.8Mg0.1PO4、BET比表面積15m2/g、平均粒径100nm)を得た。
 得られた酸化物X31 を153.6g分取し、ケッチェンブラック6.4g(ナトリウムイオン二次電池用正極活物質中における炭素原子換算量で4.0質量%に相当)とともにボールミルにより乾式で混合した。得られた複合体A31に対し、ノビルタ(ホソカワミクロン社製、NOB130)を用いて40m/s(6000rpm)で5分間、混合処理を行って複合体B31(粉末)を得た。得られた複合体B31を4.0g分取し、これにLiOH0.033g、及びフッ化アンモニウム0.029g(ナトリウムイオン二次電池用正極活物質中におけるLiFの担持量換算で0.5質量%に相当)、及び水5mLを混合し、1時間撹拌した後、還元雰囲気下で700℃で1時間焼成して、ナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=4.0質量%、LiFの量=0.5質量%)を得た。
 [実施例3-2]
 複合体B31に添加するLiOHを0.066g、フッ化アンモニウムを0.059g(ナトリウムイオン二次電池用正極活物質中におけるLiFの担持量換算で1.0質量%に相当)とした以外、実施例3-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=4.0質量%、LiFの量=1.0質量%)を得た。
 [実施例3-3]
 複合体B31に添加するLiOHを0.132g、フッ化アンモニウムを0.118g(ナトリウムイオン二次電池用正極活物質中におけるLiFの担持量換算で2.0質量%に相当)とした以外、実施例3-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=4.0質量%、LiFの量=2.0質量%)を得た。
 [実施例3-4]
 複合体B31に添加するLiOHの代わりにAl(OH)30.078g、フッ化アンモニウムを0.353g(ナトリウムイオン二次電池用正極活物質中におけるAlF3の担持量換算で2.0質量%に相当)とした以外、実施例3-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=4.0質量%、AlF3の量=2.0質量%)を得た。
 [実施例3-5]
 複合体B31に添加するLiOHの代わりにMg(CH3COO)2・4H2O0.277g、フッ化アンモニウムを0.236g(ナトリウムイオン二次電池用正極活物質中におけるMgF3の担持量換算で2.0質量%に相当)とした以外、実施例3-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=4.0質量%、MgF3の量=2.0質量%)を得た。
 [比較例3-1]
 複合体B31に添加するLiOHを0.396g、フッ化アンモニウムを0.353g(ナトリウムイオン二次電池用正極活物質中におけるLiFの担持量換算で6.0質量%に相当)とした以外、実施例3-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=4.0質量%、LiFの量=6.0質量%)を得た。
 [比較例3-2]
 金属フッ化物を添加しなかった以外、実施例3-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=4.0質量%、金属フッ化物担持なし)を得た。
 [実施例4-1]
 LiOH・H2O 12.72g、及び水 90mLを混合して混合物A41(スラリー水)を得た。次いで、得られた混合物A41を、25℃の温度に保持しながら5分間撹拌しつつ85%のリン酸水溶液 11.53gを35mL/分で滴下し、続いて窒素ガスパージ下で12時間、400rpmの速度で撹拌することにより、混合物B41(スラリー水、溶存酸素濃度0.5mg/L)を得た。かかる混合物B41は、リン1モルに対し、2.97モルのリチウムを含有していた。
 次に、得られた混合物B41 114.2gに対し、FeSO4・7H2O 5.56g、MnSO4・5H2O 19.29g及びグルコース1.18g(リチウムイオン二次電池用正極活物質中における炭素原子換算量で3.0質量%に相当)を添加し、25℃の温度に保持しながら速度400rpmにて30分間撹拌してスラリー水b41を得た。このとき、添加したFeSO4・7H2OとMnSO4・H2Oのモル比(FeSO4・7H2O:MnSO4・H2O)は、20:80であった。
 次いで、得られたスラリー水b41を蒸気加熱式オートクレーブ内に設置した合成容器に投入した。投入後、隔膜分離装置により水(溶存酸素濃度0.5mg/L未満)を加熱して得た飽和蒸気を用いて、170℃で1時間攪拌しながら加熱した。オートクレーブ内の圧力は、0.8MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して複合体D41(粉末、式(A)で表される酸化物の化学組成:LiFe0.2Mn0.8PO4、BET比表面積21m2/g、平均粒径60nm)を得た。
 得られた複合体D41を4.0g、LiOHを0.033g及びフッ化アンモニウムを0.029g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で0.5質量%に相当)を水5mLと混合し、1時間の撹拌によりLiFコートされた複合体C41を得た。次いで、還元雰囲気下で700℃で1時間焼成して、リチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=3.0質量%、LiFの量=0.5質量%)を得た。
 [実施例4-2]
 複合体D41に添加するLiOHを0.066g、フッ化アンモニウムを0.059g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で1.0質量%に相当)とした以外、実施例4-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=3.0質量%、LiFの量=1.0質量%)を得た。
 [実施例4-3]
 複合体D41に添加するLiOHを0.132g、フッ化アンモニウムを0.118g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で2.0質量%に相当)とした以外、実施例4-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=3.0質量%、LiFの量=2.0質量%)を得た。
 [実施例4-4]
 複合体D41に添加するLiOHの代わりにAl(OH)3を0.078g、フッ化アンモニウムを0.353g(リチウムイオン二次電池用正極活物質中におけるAlF3の担持量換算で2.0質量%に相当)とした以外、実施例4-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=3.0質量%、AlF3の量=2.0質量%)を得た。
 [実施例4-5]
 複合体D41に添加するLiOHの代わりにMg(CH3COO)2・4H2Oを0.277g、フッ化アンモニウムを0.236g(リチウムイオン二次電池用正極活物質中におけるMgF2の担持量換算で2.0質量%に相当)とした以外、実施例4-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=3.0質量%、MgF2の量=2.0質量%)を得た。
 [比較例4-1]
 複合体D41に添加するLiOHを0.396g、フッ化アンモニウムを0.353g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で5.7質量%に相当)とした以外、実施例4-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=3.0質量%、LiFの量=5.7質量%)を得た。
 [比較例4-2]
 金属フッ化物を添加しなかった以外、実施例4-1と同様の方法でリチウムイオン二次電池用正極活物質(LiFe0.2Mn0.8PO4、炭素の量=3.0質量%、金属フッ化物担持なし)を得た。
 [実施例5-1]
 LiOH・H2O 4.28g、Na4SiO4・nH2O 13.97gに超純水37.5mLを混合して混合物B51(スラリー水、溶存酸素濃度0.5mg/L)を得た。この混合物B51に、FeSO4・7H2O 3.92g、MnSO4・5H2O 7.93g、及びZr(SO42・4H2O 0.53gを添加し、25℃の温度に保持しながら速度400rpmにて30分間撹拌して、スラリー水b51を得た。このとき、添加したFeSO4・7H2O、MnSO4・5H2O及びZr(SO42・4H2Oのモル比(FeSO4・7H2O:MnSO4・5H2O:Zr(SO42・4H2O)は、28:66:3であった。
 次いで、得られたスラリー水b51を蒸気加熱式オートクレーブ内に設置した合成容器に投入した。投入後、隔膜分離装置により水(溶存酸素濃度0.5mg/L未満)を加熱して得た飽和蒸気を用いて、150℃で12時間攪拌しながら加熱した。オートクレーブの圧力は0.4MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して複合体D51(粉末、式(B)で表される酸化物の化学組成:Li2Fe0.28Mn0.66Zr0.03SiO4、BET比表面積35m2/g、平均粒径50nm)を得た。
 得られた複合体D51を4.0g分取し、これにグルコース1.0g(リチウムイオン二次電池用正極活物質中における炭素原子換算量で10.0質量%に相当)、LiOH 0.033g、及びフッ化アンモニウム0.029g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で0.5質量%に相当)、及び水5mlを混合し、1時間の撹拌によりグルコースとLiFをコートした後、還元雰囲気下で650℃で1時間焼成して、リチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=10.0質量%、LiFの量=0.5質量%)を得た。
 [実施例5-2]
 複合体D51に添加するLiOHを0.066g、フッ化アンモニウムを0.059g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で1.0質量%に相当)とした以外、実施例5-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=10.0質量%、LiFの量=1.0質量%)を得た。
 [実施例5-3]
 複合体D51に添加するLiOHを0.132g、フッ化アンモニウムを0.118g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で2.0質量%に相当)とした以外、実施例5-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=10.0質量%、LiFの量=2.0質量%)を得た。
 [実施例5-4]
 複合体D51に添加するLiOHの代わりにAl(OH)3を0.078g、フッ化アンモニウムを0.353g(リチウムイオン二次電池用正極活物質中におけるAlF2の担持量換算で2.0質量%に相当)とした以外、実施例5-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=10.0質量%、AlF2の量=2.0質量%)を得た。
 [実施例5-5]
 複合体D51に添加するLiOHの代わりにMg(CH3COO)2・4H2Oを0.277g、フッ化アンモニウムを0.236g(リチウムイオン二次電池用正極活物質中におけるMgF2の担持量換算で2.0質量%に相当)とした以外、実施例5-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=10.0質量%、MgF2の量=2.0質量%)を得た。
 [比較例5-1]
 複合体D51に添加するLiOHを0.396g、フッ化アンモニウムを0.353g(リチウムイオン二次電池用正極活物質中におけるLiFの担持量換算で6.0質量%に相当)とした以外、実施例5-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=10.0質量%、LiFの量=6.0質量%)を得た。
 [比較例5-2]
 金属フッ化物を添加しなかった以外、実施例5-1と同様の方法でリチウムイオン二次電池用正極活物質(Li2Fe0.28Mn0.66Zr0.03SiO4、炭素の量=10.0質量%、金属フッ化物担持なし)を得た。
 [実施例6-1]
 NaOH 6.00g、水 90mLを混合して溶液を得た。次いで、得られた溶液を、25℃の温度に保持しながら5分間撹拌しつつ85%のリン酸水溶液 5.77gを35mL/分で滴下し、続いて12時間、400rpmの速度で撹拌することにより、混合物B61(スラリー水)を得た。かかる混合物B61は、リン1モルに対し、3.00モルのナトリウムを含有していた。得られた混合物B61に対し、窒素ガスをパージして溶存酸素濃度を0.5mg/Lに調整した後、FeSO4・7H2O 1.39g、MnSO4・5H2O 9.64g、MgSO4・7H2O 1.24g、及びグルコース0.59g(ナトリウムイオン二次電池用正極活物質中における炭素原子換算量で1.4質量%に相当)を添加してスラリー水b61を得た。このとき、添加したFeSO4・7H2O、MnSO4・5H2O及びMgSO4・7H2Oのモル比(FeSO4・7H2O:MnSO4・5H2O:MgSO4・7H2Oは、10:80:10であった。
 次いで、得られたスラリー水b61を蒸気加熱式オートクレーブ内に設置した、窒素ガスでパージした合成容器に投入した。投入後、隔膜分離装置により水(溶存酸素濃度0.5mg/L未満)を加熱して得た飽和蒸気を用いて、200℃で3時間攪拌しながら加熱した。オートクレーブ内の圧力は、1.4MPaであった。生成した結晶をろ過し、次いで結晶1質量部に対し、12質量部の水により洗浄した。洗浄した結晶を-50℃で12時間凍結乾燥して複合体D61(式(C)で表される酸化物の化学組成:NaFe0.1Mn0.8Mg0.1PO4、BET比表面積15m2/g、平均粒径100nm)を得た。
 得られた複合体D61を4.0g分取し、これにLiOHを0.033g、及びフッ化アンモニウムを0.029g(ナトリウムイオン二次電池用正極活物質中におけるLiFの担持量換算で0.5質量%に相当)、及び水5mlを混合し、1時間の撹拌によりLiFコートした後、還元雰囲気下で700℃で1時間焼成して、ナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=1.4質量%、LiFの量=0.5質量%)を得た。
 [実施例6-2]
 複合体D61に添加するLiOHを0.066g、フッ化アンモニウムを0.059g(ナトリウムイオン二次電池用正極活物質中におけるLiFの担持量換算で1.0質量%に相当)とした以外、実施例6-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=1.4質量%、LiFの量=1.0質量%)を得た。
 [実施例6-3]
 複合体D61に添加するLiOHを0.132g、フッ化アンモニウムを0.118g(ナトリウムイオン二次電池用正極活物質中におけるLiFの担持量換算で2.0質量%に相当)とした以外、実施例6-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=1.4質量%、LiFの量=2.0質量%)を得た。
 [実施例6-4]
 複合体D61に添加するLiOHの代わりにAl(OH)3を0.078g、フッ化アンモニウムを0.353g(ナトリウムイオン二次電池用正極活物質中におけるAlF3の担持量換算で2.0質量%に相当)とした以外、実施例6-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=1.4質量%、AlF3の量=2.0質量%)を得た。
 [実施例6-5]
 複合体D61に添加するLiOHの代わりにMg(CH3COO)2・4H2Oを0.277g、フッ化アンモニウムを0.236g(ナトリウムイオン二次電池用正極活物質中におけるMgF3の担持量換算で2.0質量%に相当)とした以外、実施例6-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=1.4質量%、MgF3の量=2.0質量%)を得た。
 [比較例6-1]
 複合体D61に添加するLiOHを0.396g、フッ化アンモニウムを0.353g(ナトリウムイオン二次電池用正極活物質中におけるLiFの担持量換算で6.0質量%に相当)とした以外、実施例6-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=1.4質量%、LiFの量=6.0質量%)を得た。
 [比較例6-2]
 金属フッ化物を添加しなかった以外、実施例6-1と同様の方法でナトリウムイオン二次電池用正極活物質(NaFe0.1Mn0.8Mg0.1PO4、炭素の量=1.4質量%、金属フッ化物担持なし)を得た。
 《吸着水分量の測定》
 実施例1-1~6-5及び比較例1-1~6-2で得られた各正極活物質の吸着水分量は、下記方法にしたがって測定した。
 正極活物質(複合体粒子)について、温度20℃、相対湿度50%の環境に1日間静置して平衡に達するまで水分を吸着させ、温度150℃まで昇温して20分間保持した後、さらに温度250℃まで昇温して20分間保持したときの、150℃から昇温を再開するときを始点、及び250℃での恒温状態を終えたときを終点とし、始点から終点までの間に揮発した水分量を、カールフィッシャー水分計(MKC-610、京都電子工業(株)製)で測定し、正極活物質における吸着水分量として求めた。
 結果を表1及び表2に示す。
 《二次電池を用いた充放電特性の評価》
 実施例1-1~6-5及び比較例1-1~6-2で得られた正極活物質を用い、リチウムイオン二次電池又はナトリウムイオン二次電池の正極を作製した。具体的には、得られた正極活物質、ケッチェンブラック、ポリフッ化ビニリデンを質量比75:20:5の配合割合で混合し、これにN-メチル-2-ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。
 その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
 次いで、上記の正極を用いてコイン型二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LiPF6(リチウムイオン二次電池の場合)又はNaPF6(ナトリウムイオン二次電池の場合)を1mol/Lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が-50℃以下の雰囲気で常法により組み込み収容し、コイン型二次電池(CR-2032)を製造した。
 製造したコイン型二次電池を用い、充放電試験を行った。リチウムイオン電池の場合には、充電条件を電流1CA(330mA/g)、電圧4.5Vの定電流定電圧充電とし、放電条件を1CA(330mA/g)、終止電圧1.5Vの定電流放電として、1CAにおける放電容量を求めた。ナトリウムイオン電池の場合には、充電条件を電流1CA(154mA/g)、電圧4.5Vの定電流定電圧充電とし、放電条件を1CA(154mA/g)、終止電圧2.0Vの定電流放電として、1CAにおける放電容量を求めた。さらに、同様の充放電条件において、50サイクル繰り返し試験を行い、下記式(2)により容量保持率(%)を求めた。なお、充放電試験は全て30℃で行った。
 容量保持率(%)=(50サイクル後の放電容量)/(1サイクル後の放
 電容量)×100                   ・・・(2)
 結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記結果より、実施例の正極活物質は、比較例の正極活物質に比して、確実に吸着水分量を低減することができるとともに、得られる電池においても優れた性能を発揮できることがわかる。

Claims (10)

  1.  少なくとも鉄又はマンガンを含む下記式(A)、(B)又は(C):
           LiFeaMnbcPO4・・・(A)
    (式(A)中、MはMg、Ca、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。a、b及びcは、0≦a≦1、0≦b≦1、0≦c≦0.2、及び2a+2b+(Mの価数)×c=2を満たし、かつa+b≠0を満たす数を示す。)
           Li2FedMnefSiO4・・・(B)
    (式(B)中、NはNi、Co、Al、Zn、V又はZrを示す。d、e及びfは、0≦d≦1、0≦e≦1、及び0≦f<1、2d+2e+(Nの価数)×f=2を満たし、かつd+e≠0を満たす数を示す。)
           NaFegMnhiPO4・・・(C)
    (式(C)中、QはMg、Ca、Co、Sr、Y、Zr、Mo、Ba、Pb、Bi、La、Ce、Nd又はGdを示す。g、h及びiは、0≦g≦1、0≦h≦1、0≦i<1、及び2g+2h+(Qの価数)×i=2を満たし、かつg+h≠0を満たす数を示す。)
    で表される酸化物に、水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素から選ばれる1種又は2種と、0.1~5質量%の金属フッ化物とが担持されてなる二次電池用正極活物質。
  2.  酸化物と、水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素から選ばれる1種又は2種とを含む複合体に、金属フッ化物が担持されてなる請求項1に記載の二次電池用正極活物質。
  3.  水不溶性導電性炭素材料が、ケッチェンブラック、又はグラファイトである請求項1又は2に記載の二次電池用正極活物質。
  4.  水溶性炭素材料が、糖類、ポリオール、ポリエーテル、及び有機酸から選ばれる1種又は2種以上である請求項1~3のいずれか1項に記載の二次電池用正極活物質。
  5.  金属フッ化物の金属が、リチウム、ナトリウム、マグネシウム、カルシウム、及びアルミニウムから選ばれる請求項1~4のいずれか1項に記載の二次電池用正極活物質。
  6.  金属フッ化物が、酸化物と、水不溶性導電性炭素材料及び水溶性炭素材料が炭化されてなる炭素から選ばれる1種又は2種とを含む複合体、並びに金属フッ化物の前駆体が湿式混合され、焼成されて酸化物に担持されてなる請求項2~5のいずれか1項に記載の二次電池用正極活物質。
  7.  金属フッ化物の前駆体が、フッ化アンモニウム、フッ化水素酸、及び次亜フッ素酸から選ばれるフッ素化合物、並びに酢酸金属塩、硝酸金属塩、乳酸金属塩、シュウ酸金属塩、金属水酸化物、金属エトキシド、金属イソプロポキシド、及び金属ブトキシドから選ばれる金属化合物である請求項6に記載の二次電池用正極活物質。
  8.  リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有するスラリー水aを水熱反応に付して酸化物Xを得る工程(I-1)、
     得られた酸化物Xに水不溶性導電性炭素材料を添加して乾式混合し、複合体Aを得る工程(II-1)、並びに
     得られた複合体Aに、複合体100質量部に対して0.1~40質量部の金属フッ化物の前駆体を添加して湿式混合し、焼成する工程(III-1)
    を備える、請求項1~7のいずれか1項に記載の二次電池用正極活物質の製造方法。
  9.  工程(II-1)における乾式混合が、酸化物と水不溶性導電性炭素材料とを予備混合し、次いで圧縮力及びせん断力を付加しながら混合する混合である請求項8に記載の二次電池用正極活物質の製造方法。
  10.  リチウム化合物又はナトリウム化合物、リン酸化合物又はケイ酸化合物、並びに少なくとも鉄化合物又はマンガン化合物を含む金属塩を含有し、かつ水溶性炭素材料を含有するスラリー水bを水熱反応に付して複合体Dを得る工程(I-2)、並びに
     得られた複合体Dに、複合体100質量部に対して0.1~40質量部の金属フッ化物金属フッ化物の前駆体を添加して湿式混合し、焼成する工程(II-2)
    を備える、請求項1~7のいずれか1項に記載の二次電池用正極活物質の製造方法。
PCT/JP2015/076386 2015-03-26 2015-09-17 二次電池用正極活物質及びその製造方法 WO2016151891A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580078105.1A CN107408694B (zh) 2015-03-26 2015-09-17 二次电池用正极活性物质和其制造方法
EP15886443.9A EP3276712B1 (en) 2015-03-26 2015-09-17 Secondary battery positive-electrode active material and method for producing same
US15/561,349 US10964950B2 (en) 2015-03-26 2015-09-17 Secondary battery positive-electrode active material and method for producing same
KR1020177025727A KR102385969B1 (ko) 2015-03-26 2015-09-17 이차전지용 양극 활물질 및 그 제조방법

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2015-064613 2015-03-26
JP2015064613 2015-03-26
JP2015065940 2015-03-27
JP2015-065940 2015-03-27
JP2015178163A JP6042515B2 (ja) 2015-03-26 2015-09-10 二次電池用正極活物質及びその製造方法
JP2015-178163 2015-09-10
JP2015-178162 2015-09-10
JP2015178162A JP6042514B2 (ja) 2015-03-27 2015-09-10 二次電池用正極活物質及びその製造方法

Publications (1)

Publication Number Publication Date
WO2016151891A1 true WO2016151891A1 (ja) 2016-09-29

Family

ID=56977112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076386 WO2016151891A1 (ja) 2015-03-26 2015-09-17 二次電池用正極活物質及びその製造方法

Country Status (2)

Country Link
KR (1) KR102385969B1 (ja)
WO (1) WO2016151891A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6322730B1 (ja) * 2017-01-06 2018-05-09 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
JP6322729B1 (ja) * 2017-01-06 2018-05-09 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
CN109461932A (zh) * 2018-09-20 2019-03-12 浙江大学 一种高容量钠离子电池正极材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041327A1 (ja) * 2003-10-27 2005-05-06 Mitsui Engineering & Shipbuilding Co.,Ltd. 二次電池用正極材料、二次電池用正極材料の製造方法、および二次電池
JP2011210693A (ja) * 2010-03-12 2011-10-20 Equos Research Co Ltd 二次電池用正極
JP2013524440A (ja) * 2010-04-02 2013-06-17 エンビア・システムズ・インコーポレイテッド ドープされた正極活物質、およびそれより構成されるリチウムイオン二次電池
WO2013128936A1 (ja) * 2012-02-28 2013-09-06 株式会社豊田自動織機 活物質複合体及びその製造方法、非水電解質二次電池用正極活物質、並びに非水電解質二次電池
WO2014063244A1 (en) * 2012-10-22 2014-05-01 HYDRO-QUéBEC Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
JP2014143032A (ja) * 2013-01-23 2014-08-07 Hitachi Ltd リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2270771A1 (fr) 1999-04-30 2000-10-30 Hydro-Quebec Nouveaux materiaux d'electrode presentant une conductivite de surface elevee
JP4187524B2 (ja) 2002-01-31 2008-11-26 日本化学工業株式会社 リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
JP2008260666A (ja) 2007-04-13 2008-10-30 Kyushu Univ ナトリウム二次電池用活物質およびその製造方法
US20110008233A1 (en) 2009-07-10 2011-01-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material
CN108767206A (zh) * 2011-11-15 2018-11-06 电化株式会社 复合粒子及其制造方法、二次电池用电极材料及二次电池
JP6292739B2 (ja) 2012-01-26 2018-03-14 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP5478693B2 (ja) * 2012-03-23 2014-04-23 太平洋セメント株式会社 二次電池用正極活物質及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041327A1 (ja) * 2003-10-27 2005-05-06 Mitsui Engineering & Shipbuilding Co.,Ltd. 二次電池用正極材料、二次電池用正極材料の製造方法、および二次電池
JP2011210693A (ja) * 2010-03-12 2011-10-20 Equos Research Co Ltd 二次電池用正極
JP2013524440A (ja) * 2010-04-02 2013-06-17 エンビア・システムズ・インコーポレイテッド ドープされた正極活物質、およびそれより構成されるリチウムイオン二次電池
WO2013128936A1 (ja) * 2012-02-28 2013-09-06 株式会社豊田自動織機 活物質複合体及びその製造方法、非水電解質二次電池用正極活物質、並びに非水電解質二次電池
WO2014063244A1 (en) * 2012-10-22 2014-05-01 HYDRO-QUéBEC Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
JP2014143032A (ja) * 2013-01-23 2014-08-07 Hitachi Ltd リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6322730B1 (ja) * 2017-01-06 2018-05-09 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
JP6322729B1 (ja) * 2017-01-06 2018-05-09 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
JP2018113101A (ja) * 2017-01-06 2018-07-19 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
JP2018113102A (ja) * 2017-01-06 2018-07-19 太平洋セメント株式会社 リチウムイオン二次電池用正極活物質及びその製造方法
CN109461932A (zh) * 2018-09-20 2019-03-12 浙江大学 一种高容量钠离子电池正极材料及其制备方法

Also Published As

Publication number Publication date
KR102385969B1 (ko) 2022-04-14
KR20170131406A (ko) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6042515B2 (ja) 二次電池用正極活物質及びその製造方法
JP6357193B2 (ja) ポリアニオン系正極活物質及びその製造方法
KR102289992B1 (ko) 이차전지용 양극 활물질 및 그 제조방법
JP6023295B2 (ja) 二次電池用正極活物質及びその製造方法
JP6042511B2 (ja) 二次電池用正極活物質及びその製造方法
JP6042514B2 (ja) 二次電池用正極活物質及びその製造方法
TWI676592B (zh) 二次電池用正極活性物質及其製造方法
WO2016143171A1 (ja) 二次電池用正極活物質及びその製造方法
JP5807730B1 (ja) 蓄電デバイスの電極用チタン酸リチウム粉末および活物質材料、並びにそれを用いた電極シートおよび蓄電デバイス
KR102385969B1 (ko) 이차전지용 양극 활물질 및 그 제조방법
JP6042512B2 (ja) 二次電池用正極活物質及びその製造方法
JP7421372B2 (ja) リチウムイオン二次電池用正極活物質複合体の製造方法
JP2013077517A (ja) 二次電池用活物質及び二次電池用活物質用電極、並びに、それを用いた二次電池
JP6322730B1 (ja) リチウムイオン二次電池用正極活物質及びその製造方法
JP6042513B2 (ja) 二次電池用正極活物質及びその製造方法
KR102336781B1 (ko) 이차전지용 양극 활물질 및 그 제조방법
JP5688126B2 (ja) リン酸マンガンリチウム正極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177025727

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015886443

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15561349

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE