WO2016150249A1 - 一种多信道系统的误码测试方法、装置和系统 - Google Patents

一种多信道系统的误码测试方法、装置和系统 Download PDF

Info

Publication number
WO2016150249A1
WO2016150249A1 PCT/CN2016/072581 CN2016072581W WO2016150249A1 WO 2016150249 A1 WO2016150249 A1 WO 2016150249A1 CN 2016072581 W CN2016072581 W CN 2016072581W WO 2016150249 A1 WO2016150249 A1 WO 2016150249A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
single channel
test signal
tested
receiver
Prior art date
Application number
PCT/CN2016/072581
Other languages
English (en)
French (fr)
Inventor
沈百林
武成宾
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016150249A1 publication Critical patent/WO2016150249A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal

Definitions

  • the present invention relates to optical communication technologies, and in particular, to a method, device and system for error detection of a multi-channel system.
  • the rate of Ethernet interface rate evolution is currently 1 Gb/s->10 Gb/s->40 Gb/s->100 Gb/s- >40 0Gb/s, and then it may be 800Gb/s, 1Tb/s, 1.6Tb/s and so on.
  • the high-rate interface is generally implemented in a multi-lane manner, for example, an optical interface of 40 Gb/s is 4 ⁇ 10 Gb/s, and a 100 Gb/s is 4 ⁇ 25 Gb/s or 10 ⁇ 10 Gb/s.
  • the multi-channel system can adopt a parallel multi-mode or single-mode fiber scheme, or a wavelength division multiplexing scheme.
  • Parameters such as receiver sensitivity are important test items of the optical module.
  • the test block diagram of the receiver sensitivity of the 100G customer side optical module The optical signal is split into four 25G signals by a light wave splitting multiplexer, and then combined by an optical wavelength division multiplexer, and an optical variable attenuator is arranged on the channel to be tested, and other channels are directly connected; by adjusting the optical variable of the channel to be tested The attenuator, the monitoring system error rate reaches the design reference value, and the receiver sensitivity of the channel to be tested can be obtained. Repeating this step can obtain the receiver sensitivity of other channels.
  • the existing test methods using the multiplexer and splitter have the disadvantages of complicated configuration and high cost. Due to the introduction of additional insertion loss by the wavelength division multiplexer, coupled with the optical variable attenuator, it is possible to cause the test system power budget. Limited, and inevitably introduced test errors, it is more difficult to achieve automated testing.
  • the embodiment of the present invention mainly provides a method, device and system for error detection of a multi-channel system.
  • an embodiment of the present invention provides a method for testing a bit error of a multi-channel system, where the method includes:
  • the transmitter enables the channel to be tested and prohibits other channels
  • the transmitter transmits a single channel test signal on the channel to be tested.
  • the transmitting, by the transmitter, the single channel test signal on the channel to be tested includes: the transmitter shields the framing signal, generates a single channel test signal based on the pseudo random sequence, and transmits the channel in the channel to be tested.
  • a single channel test signal is described.
  • an embodiment of the present invention provides a method for testing a bit error of a multi-channel system, where the method includes:
  • the receiver receives a single channel test signal on the channel to be tested
  • the receiver performs error detection on the single channel test signal.
  • the receiver performing error detection on the single channel test signal includes: the receiver performs error detection on the single channel test signal on the channel to be tested based on the test sequence.
  • an embodiment of the present invention provides a method for testing a bit error of a multi-channel system, where the method includes:
  • the transmitter enables the channel to be tested and prohibits other channels
  • the transmitter transmits a single channel test signal on the channel to be tested
  • the receiver receives a single channel test signal on the channel to be tested
  • the receiver performs error detection on the single channel test signal.
  • the transmitter sends a single channel test signal on the channel to be tested, including: the transmitter shields the framing signal, generates a single channel test signal based on the pseudo random sequence, and sends the single channel on the channel to be tested.
  • Channel test signal including: the transmitter shields the framing signal, generates a single channel test signal based on the pseudo random sequence, and sends the single channel on the channel to be tested.
  • the receiver performing error detection on the single channel test signal includes: the receiver performs error detection on the single channel test signal on the channel to be tested based on the test sequence.
  • the method further includes:
  • the receiver After performing error detection on the single channel test signal, the receiver sends the current error rate to the management device;
  • the management device controls the optical variable attenuator to perform power adjustment, so that the current error rate reaches a reference error rate
  • the optical power meter measures the input optical power of the current receiver, and records the input optical power as the receiver sensitivity of the channel to be tested.
  • an embodiment of the present invention provides a transmitter, where the transmitter includes: a single channel transmission optical device group, a single channel test signal generator, and a wavelength division multiplexer;
  • a single channel test signal generator configured to generate a single channel test signal
  • a wavelength division multiplexer configured to transmit a single channel test signal on the channel to be tested.
  • the single channel test signal generator is specifically configured to mask a framing signal, and generate a single channel test signal based on a pseudo random sequence.
  • an embodiment of the present invention provides a receiver, where the receiver includes: a wave decomposition multiplexer, a single channel receiving optical device group, and a single channel error detector; wherein
  • a wave decomposition multiplexer configured to receive a single channel test signal on a channel to be tested
  • a single channel receiving optical device group configured to enable a channel to be tested and to prohibit other channels
  • the single channel error detector is configured to perform error detection on the single channel test signal on the channel to be tested based on the test sequence.
  • an embodiment of the present invention provides a bit error testing system for a multi-channel system, where the system includes: a transmitter and a receiver;
  • the transmitter is configured to enable the channel to be tested, disable other channels, and send a single channel test on the channel to be tested. Test signal
  • the receiver is configured to receive a single channel test signal on the channel to be tested, and perform error detection on the single channel test signal.
  • the receiver is specifically configured to perform error detection on the single channel test signal on the channel to be tested based on a test sequence.
  • the system further includes: a management device configured to configure the transmitter and the receiver to enter a test mode, wherein the transmitter is configured to mask the frame signal, generate a single channel test signal, and configure the receiver Error detection based on the set test sequence.
  • a management device configured to configure the transmitter and the receiver to enter a test mode, wherein the transmitter is configured to mask the frame signal, generate a single channel test signal, and configure the receiver Error detection based on the set test sequence.
  • the system further includes: an optical variable attenuator, an optical power meter; wherein
  • the receiver is further configured to: after performing error detection on the single channel test signal, send the current error rate to the management device;
  • the management device is further configured to receive a current error rate sent by the receiver, and send a control signal to the optical variable attenuator;
  • the optical power meter is configured to measure the input optical power of the current receiver, and record the input optical power as the receiver sensitivity of the channel to be tested.
  • Embodiments of the present invention provide a method, apparatus, and system for error detection of a multi-channel system.
  • the transmitter enables a channel to be tested, prohibits other channels, and transmits a single channel test signal on the channel to be tested, and the receiver pairs the single channel.
  • the test signal is error-detected; thus, the test configuration is greatly simplified, and the effect of the externally-connected splitter is eliminated, and all channels are tested in one connection during the test, without converting the optical interface, reducing the test cost and improving the test. Test efficiency.
  • FIG. 1 is a schematic diagram of a test system for receiver sensitivity of a 100G customer side optical module
  • FIG. 2 is a schematic flowchart of a method for testing a bit error of a multi-channel system according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a method for testing a bit error of a multi-channel system according to Embodiment 2 of the present invention
  • FIG. 4 is a schematic flowchart of a method for testing a bit error of a multi-channel system according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic flowchart of testing receiver sensitivity of a channel to be tested according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic structural diagram of a transmitter according to Embodiment 4 of the present invention.
  • FIG. 8 is a schematic structural diagram of a bit error testing system for implementing a multi-channel system according to Embodiment 6 of the present invention.
  • the transmitter enables the channel to be tested, prohibits other channels, and transmits a single channel test signal on the channel to be tested, and the receiver performs error detection on the single channel test signal.
  • the embodiment of the invention implements a bit error test method for a multi-channel system. As shown in FIG. 2, the method includes the following steps:
  • Step 201 The transmitter enables the channel to be tested, and prohibits other channels
  • the single channel transmitting optical device in the transmitter has a one-to-one correspondence with the channel.
  • the channel is used as the channel to be tested, and the single channel transmitting optical device corresponding to the channel to be tested is turned on, and the other device is turned off.
  • Step 202 The transmitter sends a single channel test signal on the channel to be tested.
  • the transmitter shields the framing signal sent by the board, generates a single channel test signal, and sends the single channel test signal on the channel to be tested;
  • the single channel test signal may be generated by a multiplexing demultiplexing chip in the transmitter, and the generating may be generated based on a pseudo random sequence.
  • the single channel refers to an optical single channel, for example, a 100G signal transmission is multiplexed by four 25G optical signals, and a single channel is 25G; if it is a 400G signal, a single channel refers to 50G or 100G.
  • the embodiment of the invention implements a bit error testing method for a multi-channel system. As shown in FIG. 3, the method includes the following steps:
  • Step 301 The receiver receives a single channel test signal on the channel to be tested.
  • the single channel receiving optical device in the receiver has a one-to-one correspondence with the channel, and according to the tested channel to be tested, the single channel receiving optical device corresponding to the channel to be tested is turned on, and the single channel receiving optical device corresponding to the other channel is turned off, waiting for The measurement channel receives a single channel test signal.
  • Step 302 The receiver performs error detection on the single channel test signal.
  • the receiver performs error detection on the single channel test signal on the channel to be tested based on the set test sequence.
  • the embodiment of the invention implements a bit error testing method for a multi-channel system. As shown in FIG. 4, the method includes the following steps:
  • Step 401 The transmitter enables the channel to be tested, and prohibits other channels
  • the single channel transmitting optical device in the transmitter has a one-to-one correspondence with the channel.
  • the channel is used as the channel to be tested, and the single channel transmitting optical device corresponding to the channel to be tested is turned on, and the other device is turned off.
  • Step 402 The transmitter sends a single channel test signal on the channel to be tested.
  • the transmitter shields the framing signal sent by the board, generates a single channel test signal, and sends the single channel test signal on the channel to be tested;
  • the single channel test signal may be generated by a multiplexing demultiplexing chip in the transmitter, and the generating may be generated based on a pseudo random sequence.
  • the single channel refers to an optical single channel, for example, a 100G signal transmission is multiplexed by four 25G optical signals, and a single channel is 25G; if it is a 400G signal, a single channel refers to 50G or 100G.
  • Step 403 The receiver receives a single channel test signal on the channel to be tested.
  • the single channel receiving optical device in the receiver has a one-to-one correspondence with the channel, and according to the tested channel to be tested, the single channel receiving optical device corresponding to the channel to be tested is turned on, and the single channel receiving optical device corresponding to the other channel is turned off, waiting for The measurement channel receives a single channel test signal.
  • Step 404 The receiver performs error detection on the single channel test signal.
  • the receiver performs error detection on the single channel test signal on the channel to be tested based on the set test sequence.
  • the above steps 401 to 404 give error detection for a single channel to be tested. By repeating the above steps, error detection for all channels to be tested can be completed.
  • the method further includes:
  • Step 405 After performing error detection on the single channel test signal, the receiver sends the current error rate to the management device.
  • Step 406 The management device controls the optical variable attenuator to perform power adjustment, so that the current error rate reaches the reference error rate.
  • the management device may determine a value of the optical variable attenuator performing power adjustment according to the current error rate, and send the value to the optical variable attenuator through the control signal.
  • the reference bit error rate is based on system specifications, such as a 100G system specification error rate of 1E-12; if the system has forward error correction coding, the bit error rate is allowed to be higher, such as 5E-5.
  • Step 407 The optical power meter measures the input optical power of the current receiver, and records the input optical power as the receiver sensitivity of the channel to be tested.
  • the receiver sensitivity and corresponding parameters can be calculated.
  • the optical modulation amplitude per channel can be calculated by the receiver sensitivity and the extinction ratio.
  • the single channel transmitting optical device group 61 comprising N single channel transmitting optical devices, configured to enable the channel to be tested, prohibit other channels, and transmit the single channel test signal to the wavelength division multiplexer 63;
  • the single channel test signal generator 62 can be implemented by a multiplexing demultiplexing chip configured to generate a single channel test signal;
  • a wavelength division multiplexer 63 configured to transmit a single channel test signal on the channel to be tested
  • the single channel transmitting optical device in the single channel transmitting optical device group 61 has a one-to-one correspondence with the channel.
  • the channel is used as the channel to be tested, and the single channel transmitting optical device corresponding to the channel to be tested is turned on. Turn off the single channel transmitting optical device corresponding to other channels.
  • the single channel test signal generator 62 masks the framing signal and may generate a single channel test signal based on the pseudo random sequence.
  • the present invention further provides a receiver, as shown in FIG. 7, the receiver includes: a wave decomposition multiplexer 71, a single channel receiving optical device group 72, and a single channel error detector 73;
  • the wave decomposition multiplexer 71 is configured to receive a single channel test signal on the channel to be tested;
  • the single channel receiving optical device group 72 includes N single channel receiving optical devices configured to enable the channel to be tested and disable other channels;
  • the single channel error detector 73 is specifically configured to perform error detection on the single channel test signal on the channel to be tested based on the set test sequence.
  • the embodiment of the present invention implements a bit error test system for a multi-channel system. As shown in FIG. 8, the system includes: a transmitter 81 and a receiver 82;
  • the transmitter 81 is configured to enable the channel to be tested, disable other channels, and send a single channel on the channel to be tested. Test signal
  • the receiver 82 is configured to receive a single channel test signal on the channel to be tested, and perform error detection on the single channel test signal;
  • the transmitter 81 is configured to block a framing signal sent by the board, and generate a single channel test signal based on the pseudo random sequence.
  • the system also includes a management device 83 configured to configure the transmitter 81 and the receiver 82 to enter a test mode, respectively, wherein the configuration transmitter 81 masks the framed signal, generates a single channel test signal, and configures the receiver 82 to be based on the set test. The sequence is error detected.
  • the configuration transmitter 81 and the receiver 82 respectively enter the test mode, and may transmit the identification information corresponding to the test mode to the transmitter 81 and the receiver 82.
  • the system when testing the receiver sensitivity of the channel to be tested, the system further includes: an optical variable attenuator 84, an optical power meter 85;
  • the receiver 82 is further configured to perform error detection on the single channel test signal, and send the current error rate to the management device 83;
  • the optical variable attenuator 84 is configured to receive the control signal, perform power adjustment, and enable the current error rate to reach a reference error rate;
  • the optical power meter 85 is configured to measure the input optical power of the current receiver, and record the input optical power as the receiver sensitivity of the channel to be tested.
  • the management device 83 can transmit a measurement start signal to the optical power meter 85 to notify the optical power meter 85 to measure the input optical power of the current receiver.
  • the transmitter enables the channel to be tested, prohibits other channels, transmits a single channel test signal on the channel to be tested, and the receiver performs error detection on the single channel test signal; thus, the test is greatly simplified.
  • the configuration achieves the effect of eliminating the need for an external multiplexer and splitter. During the test, all channels are tested at one connection, no need to convert the optical interface, which reduces the test cost and improves the test efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例公开了一种多信道系统的误码测试方法,发射机使能待测信道,禁止其他信道,在待测信道发送单信道测试信号,接收机对所述单信道测试信号进行误码检测;本发明实施例同时还公开了一种多信道系统的误码测试装置和系统。

Description

一种多信道系统的误码测试方法、装置和系统 技术领域
本发明涉及光通信技术,尤其涉及一种多信道系统的误码测试方法、装置和系统。
背景技术
随着带宽需求的不断增长和技术的进步,光通信的速率越来越高,例如目前已知以太网接口速率演进是1Gb/s->10Gb/s->40Gb/s->100Gb/s->40 0Gb/s,再往后可能是800Gb/s,1Tb/s,1.6Tb/s等等。高速率接口一般采用多信道(multi lane)方式实现,例如40Gb/s的光接口为4×10Gb/s,100Gb/s为4×25Gb/s或10×10Gb/s。多信道系统可以采用并行多模或单模光纤方案,也可以采用波分复用技术方案。
接收机灵敏度等参数是光模块的重要测试项目,测试波分复用技术多信道系统此类参数时,往往需要利用合分波器将每个信道分离出来。以中国通信行业标准《40Gbps/100Gbps强度调制可插拔光收发合一模块第2部分:4×25Gbps》进行说明,如附图1所示,为100G客户侧光模块接收机灵敏度的测试框图,利用光波分解复用器将光信号分成4路25G信号,再用光波分复用器合束,在待测信道配置光可变衰减器,其他信道直连;通过调节待测信道的光可变衰减器,监测系统误码率达到设计参考值,即可获得待测信道的接收机灵敏度,重复此步骤可获得其他信道的接收机灵敏度。
但是利用合分波器的现有测试方法的缺点是:配置复杂、成本高,由于波分复用器引入了额外的插入损耗,再加上光可变衰减器,有可能导致测试系统功率预算受限,并且不可避免的引入了测试误差,实现自动化测试的难度也较大。
发明内容
为解决现有存在的技术问题的问题之一,本发明实施例主要提供一种多信道系统的误码测试方法、装置和系统。
本发明实施例的技术方案是这样实现的:
第一方面,本发明实施例提供一种多信道系统的误码测试方法,该方法包括:
发射机使能待测信道,禁止其他信道;
发射机在所述待测信道发送单信道测试信号。
在本发明的一种实施例中,所述发射机在所述待测信道发送单信道测试信号包括:发射机屏蔽成帧信号,基于伪随机序列产生单信道测试信号,在待测信道发送所述单信道测试信号。
第二方面,本发明实施例提供一种多信道系统的误码测试方法,该方法包括:
接收机在待测信道接收单信道测试信号;
接收机对所述单信道测试信号进行误码检测。
在本发明的一种实施例中,所述接收机对所述单信道测试信号进行误码检测包括:接收机对所述待测信道上单信道测试信号基于测试序列进行误码检测。
第三方面,本发明实施例提供一种多信道系统的误码测试方法,该方法包括:
发射机使能待测信道,禁止其他信道;
发射机在待测信道发送单信道测试信号;
接收机在待测信道接收单信道测试信号;
接收机对所述单信道测试信号进行误码检测。
在本发明的一种实施例中,所述发射机在待测信道发送单信道测试信号包括:发射机屏蔽成帧信号,基于伪随机序列产生单信道测试信号,在待测信道发送所述单信道测试信号。
在本发明的一种实施例中,所述接收机对所述单信道测试信号进行误码检测包括:接收机对所述待测信道上单信道测试信号基于测试序列进行误码检测。
在本发明的一种实施例中,该方法还包括:
接收机对所述单信道测试信号进行误码检测后,将当前误码率发送给管理设备;
所述管理设备控制光可变衰减器进行功率调整,使当前误码率达到参考误码率;
光功率计测量当前接收机的输入光功率,将所述输入光功率记录为待测信道的接收机灵敏度。
第四方面,本发明实施例提供一种发射机,该发射机包括:单信道发送光器件组、单信道测试信号产生器、波分复用器;其中,
单信道发送光器件组,配置为使能待测信道,禁止其他信道,将单信道测试信号传输到波分复用器;
单信道测试信号产生器,配置为产生单信道测试信号;
波分复用器,配置为在待测信道发送单信道测试信号。
在本发明的一种实施例中,所述单信道测试信号产生器,具体配置为屏蔽成帧信号,基于伪随机序列产生单信道测试信号。
第五方面,本发明实施例提供一种接收机,该接收机包括:波分解复用器、单信道接收光器件组、单信道误码检测器;其中,
波分解复用器,配置为在待测信道接收单信道测试信号;
单信道接收光器件组,配置为使能待测信道,禁止其他信道;
单信道误码检测器,配置为对所述单信道测试信号进行误码检测。
在本发明的一种实施例中,所述单信道误码检测器,具体配置为对所述待测信道上单信道测试信号基于测试序列进行误码检测。
第六方面,本发明实施例提供一种多信道系统的误码测试系统,该系统包括:发射机、接收机;其中,
发射机,配置为使能待测信道,禁止其他信道,在待测信道发送单信道测 试信号;
接收机,配置为在待测信道接收单信道测试信号,对所述单信道测试信号进行误码检测。
在本发明的一种实施例中,所述发射机,具体配置为屏蔽成帧信号,基于伪随机序列产生单信道测试信号。
在本发明的一种实施例中,所述接收机,具体配置为对所述待测信道上单信道测试信号基于测试序列进行误码检测。
在本发明的一种实施例中,该系统还包括:管理设备,配置为配置发射机和接收机分别进入测试模式,其中,配置发射机屏蔽成帧信号,产生单信道测试信号,配置接收机基于设定的测试序列进行误码检测。
在本发明的一种实施例中,该系统还包括:光可变衰减器、光功率计;其中,
所述接收机,还配置为对所述单信道测试信号进行误码检测后,将当前误码率发送给管理设备;
所述管理设备,还配置为接收接收机发送的当前误码率,向光可变衰减器发送控制信号;
光可变衰减器,配置为接收所述控制信号,进行功率调整,使当前误码率达到参考误码率;
光功率计,配置为测量当前接收机的输入光功率,将所述输入光功率记录为待测信道的接收机灵敏度。
本发明实施例提供了一种多信道系统的误码测试方法、装置和系统,发射机使能待测信道,禁止其他信道,在待测信道发送单信道测试信号,接收机对所述单信道测试信号进行误码检测;如此,极大的简化了测试配置,达到无需外加合分波器的效果,测试过程中一次连接完成所有信道的测试,无需转换光接口,降低了测试成本,提高了测试效率。
附图说明
图1为一种100G客户侧光模块接收机灵敏度的测试系统示意图;
图2为本发明实施例一实现多信道系统的误码测试方法的流程示意图;
图3为本发明实施例二实现多信道系统的误码测试方法的流程示意图;
图4为本发明实施例三实现多信道系统的误码测试方法的流程示意图;
图5为本发明实施例三提供的测试待测信道的接收机灵敏度的流程示意图;
图6为本发明实施例四提供的发射机的结构示意图;
图7为本发明实施例五提供的接收机的结构示意图;
图8为本发明实施例六实现多信道系统的误码测试系统的结构示意图。
具体实施方式
本发明实施例中,发射机使能待测信道,禁止其他信道,在待测信道发送单信道测试信号,接收机对所述单信道测试信号进行误码检测。
下面通过附图及具体实施例对本发明做进一步的详细说明。
实施例一
本发明实施例实现一种多信道系统的误码测试方法,如图2所示,该方法包括以下几个步骤:
步骤201:发射机使能待测信道,禁止其他信道;
具体的,发射机中单信道发送光器件与信道一一对应,在需要测试其中的一个信道时,将所述信道作为待测信道,开启待测信道对应的单信道发送光器件,关断其他信道对应的单信道发送光器件。
步骤202:发射机在待测信道发送单信道测试信号;
具体的,发射机屏蔽单板发来的成帧信号,产生单信道测试信号,在待测信道发送所述单信道测试信号;
其中,所述单信道测试信号可以由发射机中的复用解复用芯片产生,所述产生可以基于伪随机序列产生。
这里,所述单信道是指光学单信道,例如100G信号传输由4路25G光信号复用而成,单信道即为25G;如果是400G信号,单信道是指50G或100G。
实施例二
本发明实施例实现一种多信道系统的误码测试方法,如图3所示,该方法包括以下几个步骤:
步骤301:接收机在待测信道接收单信道测试信号;
具体的,接收机中单信道接收光器件与信道一一对应,根据测试的待测信道,开启待测信道对应的单信道接收光器件,关断其他信道对应的单信道接收光器件,在待测信道接收单信道测试信号。
步骤302:接收机对所述单信道测试信号进行误码检测;
具体的,接收机对所述待测信道上单信道测试信号基于设定的测试序列进行误码检测。
实施例三
本发明实施例实现一种多信道系统的误码测试方法,如图4所示,该方法包括以下几个步骤:
步骤401:发射机使能待测信道,禁止其他信道;
具体的,发射机中单信道发送光器件与信道一一对应,在需要测试其中的一个信道时,将所述信道作为待测信道,开启待测信道对应的单信道发送光器件,关断其他信道对应的单信道发送光器件。
步骤402:发射机在待测信道发送单信道测试信号;
具体的,发射机屏蔽单板发来的成帧信号,产生单信道测试信号,在待测信道发送所述单信道测试信号;
其中,所述单信道测试信号可以由发射机中的复用解复用芯片产生,所述产生可以基于伪随机序列产生。
这里,所述单信道是指光学单信道,例如100G信号传输由4路25G光信号复用而成,单信道即为25G;如果是400G信号,单信道是指50G或100G。
步骤403:接收机在待测信道接收单信道测试信号;
具体的,接收机中单信道接收光器件与信道一一对应,根据测试的待测信道,开启待测信道对应的单信道接收光器件,关断其他信道对应的单信道接收光器件,在待测信道接收单信道测试信号。
步骤404:接收机对所述单信道测试信号进行误码检测;
具体的,接收机对所述待测信道上单信道测试信号基于设定的测试序列进行误码检测。
上述步骤401至步骤404给出针对单个待测信道的误码检测,通过重复上述步骤,即可完成对所有待测信道的误码检测。
在测试待测信道的接收机灵敏度时,如图5所示,该方法还包括:
步骤405:接收机对所述单信道测试信号进行误码检测后,将当前误码率发送给管理设备;
步骤406:管理设备控制光可变衰减器进行功率调整,使当前误码率达到参考误码率;
这里,所述管理设备可以根据当前误码率确定光可变衰减器进行功率调整的值,通过控制信号将所述值发送给光可变衰减器。
所述参考误码率是基于系统规范的,例如100G系统规范误码率为1E-12;如果系统有前向纠错编码,则误码率允许更高,例如5E-5。
步骤407:光功率计测量当前接收机的输入光功率,将所述输入光功率记录为待测信道的接收机灵敏度。
在需要测试待测信道的其他系列参数时,可通过接收机灵敏度和相应参数进行计算,例如每信道光调制幅度可以由接收机灵敏度和消光比联合计算得出。
本实施例中,接收机灵敏度等系列参数包括但不限于每信道接收机灵敏度、每信道光调制幅度(OMA)接收灵敏度、每信道OMA加压接收灵敏度测试、每信道发射机和色散传输代价。
实施例四
为了实现上述方法,本发明还提供一种发射机,如图6所示,该发射机包括:单信道发送光器件组61、单信道测试信号产生器62、波分复用器63;其 中,
单信道发送光器件组61,包括N个单信道发送光器件,配置为使能待测信道,禁止其他信道,将单信道测试信号传输到波分复用器63;
单信道测试信号产生器62,可以由复用解复用芯片实现,配置为产生单信道测试信号;
波分复用器63,配置为在待测信道发送单信道测试信号;
其中,单信道发送光器件组61中单信道发送光器件与信道一一对应,在需要测试其中的一个信道时,将所述信道作为待测信道,开启待测信道对应的单信道发送光器件,关断其他信道对应的单信道发送光器件。
所述单信道测试信号产生器62屏蔽成帧信号,可以基于伪随机序列产生单信道测试信号。
实施例五
为了实现上述方法,本发明还提供一种接收机,如图7所示,该接收机包括:波分解复用器71、单信道接收光器件组72、单信道误码检测器73;其中,
波分解复用器71,配置为在待测信道接收单信道测试信号;
单信道接收光器件组72,包括N个单信道接收光器件,配置为使能待测信道,禁止其他信道;
单信道误码检测器73,配置为对所述单信道测试信号进行误码检测;
其中,所述单信道接收光器件组72中单信道接收光器件与信道一一对应,根据测试的待测信道,开启待测信道对应的单信道接收光器件,关断其他信道对应的单信道接收光器件;
所述单信道误码检测器73,具体配置为对所述待测信道上单信道测试信号基于设定的测试序列进行误码检测。
实施例六
本发明实施例实现一种多信道系统的误码测试系统,如图8所示,该系统包括:发射机81、接收机82;其中,
发射机81,配置为使能待测信道,禁止其他信道,在待测信道发送单信道 测试信号;
接收机82,配置为在待测信道接收单信道测试信号,对所述单信道测试信号进行误码检测;
其中,所述发射机81,具体配置为屏蔽单板发来的成帧信号,基于伪随机序列产生单信道测试信号;
所述接收机82,具体配置为对所述待测信道上单信道测试信号基于设定的测试序列进行误码检测。
该系统还包括:管理设备83,配置为配置发射机81和接收机82分别进入测试模式,其中,配置发射机81屏蔽成帧信号,产生单信道测试信号,配置接收机82基于设定的测试序列进行误码检测。这里,所述配置发射机81和接收机82分别进入测试模式,可以是向发射机81和接收机82发送对应测试模式的标识信息。
另外,在测试待测信道的接收机灵敏度时,该系统还包括:光可变衰减器84、光功率计85;其中,
所述接收机82,还配置为对所述单信道测试信号进行误码检测后,将当前误码率发送给管理设备83;
所述管理设备83,还配置为接收接收机82发送的当前误码率,向光可变衰减器84发送控制信号;
光可变衰减器84,配置为接收所述控制信号,进行功率调整,使当前误码率达到参考误码率;
光功率计85,配置为测量当前接收机的输入光功率,将所述输入光功率记录为待测信道的接收机灵敏度。
这里,所述管理设备83可以向光功率计85发送测量开始信号,以通知光功率计85测量当前接收机的输入光功率。
综合本发明的各实施例,通过只使能待测信道,并在待测信道发送单信道测试信号进行误码检测,在测试系统中无需外加合分波器,极大的简化了测试配置,测试过程中一次连接能够完成所有信道的测试,无需转换光接口,降低 了测试成本,提高了测试效率。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
工业实用性
本发明实施例中,发射机使能待测信道,禁止其他信道,在待测信道发送单信道测试信号,接收机对所述单信道测试信号进行误码检测;如此,极大的简化了测试配置,达到无需外加合分波器的效果,测试过程中一次连接完成所有信道的测试,无需转换光接口,降低了测试成本,提高了测试效率。

Claims (17)

  1. 一种多信道系统的误码测试方法,其中,该方法包括:
    发射机使能待测信道,禁止其他信道;
    发射机在所述待测信道发送单信道测试信号。
  2. 根据权利要求1所述的误码测试方法,所述发射机在所述待测信道发送单信道测试信号包括:发射机屏蔽成帧信号,基于伪随机序列产生单信道测试信号,在待测信道发送所述单信道测试信号。
  3. 一种多信道系统的误码测试方法,其中,该方法包括:
    接收机在待测信道接收单信道测试信号;
    接收机对所述单信道测试信号进行误码检测。
  4. 根据权利要求3所述的误码测试方法,所述接收机对所述单信道测试信号进行误码检测包括:接收机对所述待测信道上单信道测试信号基于测试序列进行误码检测。
  5. 一种多信道系统的误码测试方法,其中,该方法包括:
    发射机使能待测信道,禁止其他信道;
    发射机在待测信道发送单信道测试信号;
    接收机在待测信道接收单信道测试信号;
    接收机对所述单信道测试信号进行误码检测。
  6. 根据权利要求5所述的误码测试方法,所述发射机在待测信道发送单信道测试信号包括:发射机屏蔽成帧信号,基于伪随机序列产生单信道测试信号,在待测信道发送所述单信道测试信号。
  7. 根据权利要求5所述的误码测试方法,所述接收机对所述单信道测试信号进行误码检测包括:接收机对所述待测信道上单信道测试信号基于测试序列进行误码检测。
  8. 根据权利要求5所述的误码测试方法,该方法还包括:
    接收机对所述单信道测试信号进行误码检测后,将当前误码率发送给管 理设备;
    所述管理设备控制光可变衰减器进行功率调整,使当前误码率达到参考误码率;
    光功率计测量当前接收机的输入光功率,将所述输入光功率记录为待测信道的接收机灵敏度。
  9. 一种发射机,该发射机包括:单信道发送光器件组、单信道测试信号产生器、波分复用器;其中,
    单信道发送光器件组,配置为使能待测信道,禁止其他信道,将单信道测试信号传输到波分复用器;
    单信道测试信号产生器,配置为产生单信道测试信号;
    波分复用器,配置为在待测信道发送单信道测试信号。
  10. 根据权利要求9所述的发射机,其中,所述单信道测试信号产生器,具体配置为屏蔽成帧信号,基于伪随机序列产生单信道测试信号。
  11. 一种接收机,该接收机包括:波分解复用器、单信道接收光器件组、单信道误码检测器;其中,
    波分解复用器,配置为在待测信道接收单信道测试信号;
    单信道接收光器件组,配置为使能待测信道,禁止其他信道;
    单信道误码检测器,配置为对所述单信道测试信号进行误码检测。
  12. 根据权利要求11所述的接收机,其中,所述单信道误码检测器,具体配置为对所述待测信道上单信道测试信号基于测试序列进行误码检测。
  13. 一种多信道系统的误码测试系统,该系统包括:发射机、接收机;其中,
    发射机,配置为使能待测信道,禁止其他信道,在待测信道发送单信道测试信号;
    接收机,配置为在待测信道接收单信道测试信号,对所述单信道测试信号进行误码检测。
  14. 根据权利要求13所述的误码测试系统,其中,所述发射机,具体配 置为屏蔽成帧信号,基于伪随机序列产生单信道测试信号。
  15. 根据权利要求13所述的误码测试系统,其中,所述接收机,具体配置为对所述待测信道上单信道测试信号基于测试序列进行误码检测。
  16. 根据权利要求13所述的误码测试系统,其中,该系统还包括:管理设备,配置为配置发射机和接收机分别进入测试模式,其中,配置发射机屏蔽成帧信号,产生单信道测试信号,配置接收机基于设定的测试序列进行误码检测。
  17. 根据权利要求16所述的误码测试系统,其中,该系统还包括:光可变衰减器、光功率计;其中,
    所述接收机,还配置为对所述单信道测试信号进行误码检测后,将当前误码率发送给管理设备;
    所述管理设备,还配置为接收接收机发送的当前误码率,向光可变衰减器发送控制信号;
    光可变衰减器,配置为接收所述控制信号,进行功率调整,使当前误码率达到参考误码率;
    光功率计,配置为测量当前接收机的输入光功率,将所述输入光功率记录为待测信道的接收机灵敏度。
PCT/CN2016/072581 2015-03-24 2016-01-28 一种多信道系统的误码测试方法、装置和系统 WO2016150249A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510130696.4 2015-03-24
CN201510130696.4A CN106160848B (zh) 2015-03-24 2015-03-24 一种多信道系统的误码测试方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2016150249A1 true WO2016150249A1 (zh) 2016-09-29

Family

ID=56978797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072581 WO2016150249A1 (zh) 2015-03-24 2016-01-28 一种多信道系统的误码测试方法、装置和系统

Country Status (2)

Country Link
CN (1) CN106160848B (zh)
WO (1) WO2016150249A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107493202A (zh) * 2017-09-29 2017-12-19 珠海思开达技术有限公司 可扩展的高速误码测试仪
CN109274422A (zh) * 2018-11-29 2019-01-25 四川光恒通信技术有限公司 一种光模块测试系统及方法
CN111510210A (zh) * 2020-04-16 2020-08-07 中航海信光电技术有限公司 一种并行光接收模块光功率测试系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108259084B (zh) * 2017-12-26 2020-06-30 武汉电信器件有限公司 一种高速光接收机测试的评估板结构及其测试系统
CN107919908A (zh) * 2017-12-29 2018-04-17 上海航天科工电器研究院有限公司 一种光模块接收端灵敏度测试系统及其测试方法
CN109194391B (zh) * 2018-08-24 2021-05-18 武汉恒泰通技术有限公司 一种误码检测系统及其检测方法
CN109194396B (zh) * 2018-10-25 2024-03-29 福建亿榕信息技术有限公司 光发送功率以及光接收灵敏度自动测试的系统及控制方法
CN114142917B (zh) * 2022-01-14 2024-03-19 中国人民解放军61096部队 卫星信道选择方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1863016A (zh) * 2005-05-10 2006-11-15 华为技术有限公司 同时测试多个信道的方法
CN101917226A (zh) * 2010-08-23 2010-12-15 中兴通讯股份有限公司 一种在无源光网络中进行光纤故障诊断的方法及光线路终端
CN103560828A (zh) * 2013-11-08 2014-02-05 武汉邮电科学研究院 波分复用系统的光ofdm多通道直接检测方法及装置
CN103731206A (zh) * 2013-12-26 2014-04-16 武汉电信器件有限公司 光模块通信误码率及灵敏度的测试装置
CN104333415A (zh) * 2014-09-26 2015-02-04 武汉光迅科技股份有限公司 一种用于测试光模块的多通道自动测试方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437715B2 (en) * 2010-01-25 2013-05-07 Apple Inc. Multi-carrier-based testing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1863016A (zh) * 2005-05-10 2006-11-15 华为技术有限公司 同时测试多个信道的方法
CN101917226A (zh) * 2010-08-23 2010-12-15 中兴通讯股份有限公司 一种在无源光网络中进行光纤故障诊断的方法及光线路终端
CN103560828A (zh) * 2013-11-08 2014-02-05 武汉邮电科学研究院 波分复用系统的光ofdm多通道直接检测方法及装置
CN103731206A (zh) * 2013-12-26 2014-04-16 武汉电信器件有限公司 光模块通信误码率及灵敏度的测试装置
CN104333415A (zh) * 2014-09-26 2015-02-04 武汉光迅科技股份有限公司 一种用于测试光模块的多通道自动测试方法及系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107493202A (zh) * 2017-09-29 2017-12-19 珠海思开达技术有限公司 可扩展的高速误码测试仪
CN107493202B (zh) * 2017-09-29 2024-03-22 珠海思开达技术有限公司 可扩展的高速误码测试仪
CN109274422A (zh) * 2018-11-29 2019-01-25 四川光恒通信技术有限公司 一种光模块测试系统及方法
CN109274422B (zh) * 2018-11-29 2023-05-26 四川光恒通信技术有限公司 一种光模块测试系统及方法
CN111510210A (zh) * 2020-04-16 2020-08-07 中航海信光电技术有限公司 一种并行光接收模块光功率测试系统

Also Published As

Publication number Publication date
CN106160848A (zh) 2016-11-23
CN106160848B (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
WO2016150249A1 (zh) 一种多信道系统的误码测试方法、装置和系统
US8315524B2 (en) Electro-optic conversion module, optic-electro conversion module and conversion methods thereof
US10560209B2 (en) Optical signal transmission method, apparatus, and system
US8050556B2 (en) In-band optical frequency division reflectometry
US20160315701A1 (en) Optical transmission device, method for verifying connection, and wavelength selective switch card
US20160248534A1 (en) Method for processing optical signal, optical module and optical line terminal
CN105451840A (zh) 一种光时域反射仪实现装置及系统
US20170170904A1 (en) Optical Transceiver Module Structure, Passive Optical Network System and Optical Transmission System
JP4994300B2 (ja) 光終端装置
Xia et al. Demonstration of world's first few-mode GPON
US8170414B2 (en) Burst mode digital diagnostic and control for passive optical network receiving
WO2016095715A1 (zh) 一种光收发模块及实现方法
RU2013150135A (ru) Центральный узел системы связи, беспроводная система связи, устройство оптического мультиплексора/демультиплексора и способ передачи данных одной или нескольким группам узлов
Birk et al. First 400GBASE-LR8 interoperability using CFP8 modules
CN203133335U (zh) 四端口olt光收发一体模块
JP6497439B2 (ja) 通信装置、通信方法、及び、通信システム
CN104205676A (zh) 光线路终端、光收发模块、系统以及光纤检测方法
CN102412893B (zh) 无源光网络中光纤故障的测试方法及光模块装置
JP2010166279A (ja) 光通信システムおよび光集線装置
CN103227681B (zh) 波分复用光传输系统通道动态光功率调整方法
CN209562553U (zh) 一种突发接收信号强度指示rssi校准装置
EP3754871B1 (en) Optical transmission assembly
CN102281100B (zh) 长距无源光网络中实现光程检测的方法及装置
JP6422799B2 (ja) 光伝送システム、光送信装置及びその制御方法
WO2017147844A1 (zh) 一种复用/解复用器及无源光网络系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16767626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16767626

Country of ref document: EP

Kind code of ref document: A1