WO2016150145A1 - 一种信号发送方法和设备 - Google Patents
一种信号发送方法和设备 Download PDFInfo
- Publication number
- WO2016150145A1 WO2016150145A1 PCT/CN2015/091761 CN2015091761W WO2016150145A1 WO 2016150145 A1 WO2016150145 A1 WO 2016150145A1 CN 2015091761 W CN2015091761 W CN 2015091761W WO 2016150145 A1 WO2016150145 A1 WO 2016150145A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- parameter
- secret
- artificial noise
- direction vector
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04K—SECRET COMMUNICATION; JAMMING OF COMMUNICATION
- H04K3/00—Jamming of communication; Counter-measures
- H04K3/80—Jamming or countermeasure characterized by its function
- H04K3/82—Jamming or countermeasure characterized by its function related to preventing surveillance, interception or detection
- H04K3/825—Jamming or countermeasure characterized by its function related to preventing surveillance, interception or detection by jamming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04K—SECRET COMMUNICATION; JAMMING OF COMMUNICATION
- H04K3/00—Jamming of communication; Counter-measures
- H04K3/20—Countermeasures against jamming
- H04K3/28—Countermeasures against jamming with jamming and anti-jamming mechanisms both included in a same device or system, e.g. wherein anti-jamming includes prevention of undesired self-jamming resulting from jamming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/001—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using chaotic signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03343—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1441—Countermeasures against malicious traffic
- H04L63/1475—Passive attacks, e.g. eavesdropping or listening without modification of the traffic monitored
Definitions
- the present invention relates to the field of communications, and in particular, to a signal transmitting method and device.
- the traditional way to ensure the security of data transmission in a wireless communication network may be to enhance the security of data transmission at a high level (for example, a wireless link layer or an application layer) of a wireless communication network system, for example, a data encryption method based on cryptography theory, each Kind of security agreement, etc.
- a high level for example, a wireless link layer or an application layer
- a data encryption method based on cryptography theory for example, each kind of security agreement, etc.
- the security of physical layer transmission becomes the key to the security of the entire wireless communication network system. How to ensure the security of physical layer data transmission has become an important research topic.
- Artificial noise (English: artificial noise) technology is a method for improving the security of physical layer data transmission applied to multi-antenna systems. Specifically, a useful channel is transmitted on the primary channel of the data transmission to ensure that the legitimate receiver normally receives the useful signal, and simultaneously transmits an artificially set unwanted signal in a direction orthogonal to the primary channel, and interferes as much as possible in other directions. Illegal receiver to improve the security of physical layer data transmission.
- the present invention has been made in view of the above, and an embodiment of the present invention provides a signal sending method and device, which are used for Solve the problem that the current artificial noise technology produces signal interference to signals received by other non-target legal receivers.
- a signal transmission method including:
- the base station Receiving, by the base station, the uplink pilot signal sent by the legal user equipment, and determining, according to the uplink pilot signal, a direction vector parameter of the legal user equipment to receive the secret signal and a first channel fading parameter of the channel for transmitting the secret signal;
- a first signal beamformer parameter that transmits the secret signal according to the direction vector parameter and the first channel fading parameter, wherein the first signal beamformer parameter enables the base station to transmit
- the energy leakage of the secret signal is less than a first threshold, and the signal drying ratio of the secret signal received by the legal user equipment is greater than a second threshold;
- the formatter parameter enables the interference of the artificial noise signal transmitted by the base station to the legal user equipment to be less than a preset threshold, and the artificial noise signal received by the illegal user equipment in the transmission area
- the letter drying ratio is less than a third threshold, and the sum of the transmission power of the artificial noise signal and the transmission power of the secret signal is less than a preset transmission power
- the base station processes the signal to be transmitted by using the first signal beamformer parameter and the second signal beamformer parameter, and transmits the processed signal.
- the base station calculate a first one that sends the secret signal Signal beamformer parameters, including:
- the base station When the energy leakage of the secret signal transmitted by using the first signal beamformer parameter is less than the first threshold, the base station obtains the following formula according to the direction vector parameter and the first channel fading parameter:
- the vector parameter and the first channel fading parameter are obtained as follows:
- the base station according to with Obtaining a first signal beamformer parameter that transmits the secret signal:
- ⁇ 1 is the first signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is ⁇
- ⁇ is the side lobe region of the secret signal beam
- a( ⁇ 1 ) is the legal user equipment.
- Receiving a direction vector parameter of the secret signal ⁇ 1 is a direction angle at which the legal user equipment receives the secret signal
- ⁇ B is a second threshold
- ⁇ is a first channel fading parameter of a channel for transmitting the secret signal
- P ⁇ ⁇ a( ⁇ )a H ( ⁇ )d ⁇ , Is the first threshold.
- the base station calculates, according to the direction vector parameter, a second signal beamformer parameter that transmits the artificial noise signal, including :
- the base station obtains the following formula according to the direction vector parameter:
- the base station When determining that the signal dry ratio of the artificial noise signal received by the illegal user equipment in the transmitting area is less than a third threshold, the base station obtains the following formula according to the direction vector parameter:
- the base station obtains the following formula:
- the base station according to with Obtaining a second signal beamformer parameter that transmits the artificial noise signal
- ⁇ 0 is a second signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is ⁇ AN
- ⁇ AN is the emission area of the determined artificial noise signal
- a( ⁇ 1 ) is the direction vector.
- Parameter ⁇ is the third threshold
- ⁇ is the set threshold.
- ⁇ 1 is the first signal beamformer parameter
- For the transmit power of the secret signal P t is the set transmit power
- ⁇ 1 is the direction angle at which the legitimate user equipment receives the secret signal.
- an emission area of the artificial noise signal according to the direction vector parameter including:
- ⁇ 1 is the first signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is the energy leakage area
- a( ⁇ 1 ) is the direction vector parameter
- ⁇ 1 is the legitimate user equipment receiving the secret signal.
- Direction angle, ⁇ sl is the set value
- An emission region of the artificial noise signal is obtained based on the energy leakage region of the secret signal and the main lobe region of the signal beamformer that transmits the secret signal.
- the determining, by the base station, the transmit area of the artificial noise signal according to the direction vector parameter including:
- the base station determines, according to the direction vector parameter, an emission area of at least two artificial noise signals to be transmitted;
- Decoding by the base station, the determined transmission area according to the number of artificial noise signals to be sent;
- the base station determines, according to the division result, an emission area for each artificial noise signal to be transmitted, where the transmission areas corresponding to each artificial noise signal do not overlap.
- the base station uses the first signal beamformer parameter and the second signal beamforming
- the parameters of the signal to be transmitted are processed, including:
- the base station processes the signal to be transmitted by using the first signal beamformer parameter and the second signal beamformer parameter to obtain a processed signal:
- ⁇ 1 is the first signal beamformer parameter
- ⁇ 0 is the second signal beamformer parameter
- a signal transmitting device including:
- a receiving unit configured to receive an uplink pilot signal sent by the legal user equipment, and determine, according to the uplink pilot signal, a direction vector parameter of the legal user equipment to receive the secret signal and a first channel for transmitting the secret signal Channel fading parameter;
- a calculating unit configured to calculate, according to the direction vector parameter and the first channel fading parameter, a first signal beamformer parameter that transmits the secret signal, wherein the first signal beamformer parameter enables the The energy leakage of the secret signal transmitted by the base station is less than a first threshold, and the signal drying ratio of the secret signal received by the legal user equipment is greater than a second threshold;
- a determining unit configured to determine an emission area of the artificial noise signal according to the direction vector parameter
- the calculating unit is configured to calculate, according to the direction vector parameter, a second signal beamformer parameter that transmits the artificial noise signal, where the second signal beamformer parameter enables the base station to transmit the
- the interference of the artificial noise signal to the legal user equipment is less than a preset threshold, and the signal dry ratio of the artificial noise signal received by the illegal user equipment in the transmission area is less than a third threshold, and The sum of the transmit power of the artificial noise signal and the transmit power of the secret signal is less than a preset transmit power;
- a sending unit configured to process the signal to be transmitted by using the first signal beamformer parameter and the second signal beamformer parameter, and transmit the processed signal.
- the calculating unit is specifically configured to: when the energy of the secret signal is transmitted by using the first signal beamformer parameter When the leakage is less than the first threshold, the following formula is obtained according to the direction vector parameter and the first channel fading parameter:
- the first channel fading parameter is obtained as follows:
- ⁇ 1 is the first signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is ⁇
- ⁇ is the side lobe region of the secret signal beam
- a( ⁇ 1 ) is the legal user equipment.
- Receiving a direction vector parameter of the secret signal ⁇ 1 is a direction angle at which the legal user equipment receives the secret signal
- ⁇ B is a second threshold
- ⁇ is a first channel fading parameter of a channel for transmitting the secret signal
- P ⁇ ⁇ a( ⁇ )a H ( ⁇ )d ⁇ , Is the first threshold.
- the calculating unit is specifically configured to: when the artificial noise signal pair is transmitted by using the second signal beamformer parameter When the interference of the legal user equipment is less than the set threshold, the following formula is obtained according to the direction vector parameter:
- ⁇ 0 is a second signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is ⁇ AN
- ⁇ AN is the emission area of the determined artificial noise signal
- a( ⁇ 1 ) is the direction vector.
- Parameter ⁇ is the third threshold
- ⁇ is the set threshold.
- ⁇ 1 is the first signal beamformer parameter
- For the transmit power of the secret signal P t is the set transmit power
- ⁇ 1 is the direction angle at which the legitimate user equipment receives the secret signal.
- the determining unit is specifically configured to determine, according to the direction vector parameter, an energy leakage area of the secret signal by:
- ⁇ 1 is the first signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is the energy leakage area
- a( ⁇ 1 ) is the direction vector parameter
- ⁇ 1 is the legitimate user equipment receiving the secret signal.
- Direction angle, ⁇ sl is the set value
- An emission region of the artificial noise signal is obtained based on the energy leakage region of the secret signal and the main lobe region of the signal beamformer that transmits the secret signal.
- the determining unit is configured to determine, according to the direction vector parameter, at least one to be sent, if the number of the artificial noise signals sent is at least two.
- an emission area is determined for each artificial noise signal to be transmitted, wherein the emission areas corresponding to each artificial noise signal do not overlap.
- the sending unit is configured to use the first signal beamformer parameter and the The second signal beamformer parameter processes the signal to be transmitted to obtain a processed signal:
- ⁇ 1 is the first signal beamformer parameter
- ⁇ 0 is the second signal beamformer parameter
- a signal transmitting device including:
- a signal receiver configured to receive an uplink pilot signal sent by a legal user equipment, and determine, according to the uplink pilot signal, a direction vector parameter of the legal user equipment to receive the secret signal and a channel for transmitting the secret signal One channel fading parameter;
- a processor configured to calculate a first signal beamformer parameter that transmits the secret signal according to the direction vector parameter and the first channel fading parameter, wherein the first signal beamformer parameter enables the The energy leakage of the secret signal transmitted by the base station is less than a first threshold, and the signal drying ratio of the secret signal received by the legal user equipment is greater than a second threshold;
- a signal transmitter for processing the signal to be transmitted by using the first signal beamformer parameter and the second signal beamformer parameter, and transmitting the processed signal.
- the processor calculates, according to the direction vector parameter and the first channel fading parameter, a first part of transmitting the secret signal
- a signal beamformer parameter specifically includes:
- the first channel fading parameter is obtained as follows:
- ⁇ 1 is the first signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is ⁇
- ⁇ is the side lobe region of the secret signal beam
- a( ⁇ 1 ) is the legal user equipment.
- Receiving a direction vector parameter of the secret signal ⁇ 1 is a direction angle at which the legal user equipment receives the secret signal
- ⁇ B is a second threshold
- ⁇ is a first channel fading parameter of a channel for transmitting the secret signal
- P ⁇ ⁇ a( ⁇ )a H ( ⁇ )d ⁇ , Is the first threshold.
- the processor calculates, according to the direction vector parameter, a second signal beamformer parameter that transmits the artificial noise signal, Specifically include:
- ⁇ 0 is a second signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is ⁇ AN
- ⁇ AN is the emission area of the determined artificial noise signal
- a( ⁇ 1 ) is the direction vector.
- Parameter ⁇ is the third threshold
- ⁇ is the set threshold.
- ⁇ 1 is the first signal beamformer parameter
- For the transmit power of the secret signal P t is the set transmit power
- ⁇ 1 is the direction angle at which the legitimate user equipment receives the secret signal.
- the processor determines, according to the direction vector parameter, an emission area of the artificial noise signal, specifically:
- ⁇ 1 is the first signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is the energy leakage area
- a( ⁇ 1 ) is the direction vector parameter
- ⁇ 1 is the legitimate user equipment receiving the secret signal.
- Direction angle, ⁇ sl is the set value
- An emission region of the artificial noise signal is obtained based on the energy leakage region of the secret signal and the main lobe region of the signal beamformer that transmits the secret signal.
- the processor determines, according to the direction vector parameter, an emission area of the artificial noise signal, including:
- the number of the artificial noise signals transmitted is at least two, determining, according to the direction vector parameter, an emission area of at least two artificial noise signals to be transmitted;
- an emission area is determined for each artificial noise signal to be transmitted, wherein the emission areas corresponding to each artificial noise signal do not overlap.
- the signal transmitter utilizes the first signal beamformer parameter and the second signal
- the beamformer parameters process the signals to be transmitted, including:
- ⁇ 1 is the first signal beamformer parameter
- ⁇ 0 is the second signal beamformer parameter
- the base station receives the uplink pilot signal sent by the legal user equipment, and determines, according to the uplink pilot signal, a direction vector parameter of the legal user equipment to receive the secret signal and a first channel for transmitting the secret signal.
- Channel fading parameter calculating, according to the direction vector parameter and the first channel fading parameter, a first signal beamformer parameter that transmits the secret signal, determining an emission area of the artificial noise signal according to the direction vector parameter, and Calculating, according to the direction vector parameter, a second signal beamformer parameter that transmits the artificial noise signal, and processing, by using the first signal beamformer parameter and the second signal beamformer parameter, a signal to be transmitted, And emit the processed signal.
- the secret signal transmitted by the base station to the legal user equipment is less energy leakage in the non-target direction, and the base station transmits the artificial noise signal to the illegal user equipment in the transmission area of the determined artificial noise signal, so that the artificial noise signal is concentrated on the secret.
- the risk of signal leakage is high, to reduce interference with signals received by legitimate user equipment in other directions.
- FIG. 1 is a schematic flowchart of a signal sending method according to an embodiment of the present invention
- FIG. 2 is a schematic diagram of an application scenario according to an embodiment of the present invention.
- Figure 3 (a) and Figure 3 (b) are beam diagrams of the secret signal and the artificial noise signal
- FIG. 4 is a diagram showing a change in the signal drying ratio of a legitimate user equipment and an illegal user equipment receiving signals
- FIG. 5 is a schematic diagram of a convergence speed of an algorithm according to an embodiment of the present invention.
- FIG. 6 is a schematic structural diagram of a signal sending device according to an embodiment of the present disclosure.
- FIG. 7 is a schematic structural diagram of a signal sending device according to an embodiment of the present invention.
- an embodiment of the present invention provides a method and a device for transmitting a signal, where a base station receives an uplink pilot signal sent by a legal user equipment, and determines, according to the uplink pilot signal, that the legal user equipment receives the secret.
- a direction vector parameter of the signal and a first channel fading parameter of the channel for transmitting the secret signal calculating a first signal beamformer transmitting the secret signal according to the direction vector parameter and the first channel fading parameter And determining, according to the direction vector parameter, a transmission area of the artificial noise signal, and calculating, according to the direction vector parameter, a second signal beamformer parameter for transmitting the artificial noise signal, using the first signal beamformer
- the parameter and the second signal beamformer parameter process the signal to be transmitted and transmit the processed signal.
- the secret signal transmitted by the base station to the legal user equipment is less energy leakage in the non-target direction, and the base station transmits the artificial noise signal to the illegal user equipment in the transmission area of the determined artificial noise signal, so that the artificial noise signal is concentrated on the secret.
- the risk of signal leakage is high, to reduce interference with signals received by legitimate user equipment in other directions.
- FIG. 1 is a schematic flowchart diagram of a signal sending method according to an embodiment of the present invention. The method can be as follows.
- Step 101 The base station receives an uplink pilot signal sent by a legal user equipment, and according to the uplink.
- the pilot signal determines a direction vector parameter for the legitimate user equipment to receive the secret signal and a first channel fading parameter for the channel for transmitting the secret signal.
- the base station estimates the direction vector parameter of the legal user equipment to receive the secret signal and the first channel fading parameter of the channel for transmitting the secret signal by receiving the uplink pilot signal sent by the legal user equipment.
- the uplink pilot signal is only sent by the legitimate user equipment.
- Step 102 The base station calculates, according to the direction vector parameter and the first channel fading parameter, a first signal beamformer parameter that transmits the secret signal.
- the first signal beamformer parameter enables the energy leakage of the secret signal transmitted by the base station to be less than a first threshold, and the signal dryness ratio of the secret signal received by the legal user equipment is greater than Two thresholds.
- the setting of the first threshold is related to the signal transmission power, and may be the minimum value of the energy leakage.
- the size value or the form of the first threshold and the size or the form of the second threshold are not limited.
- step 102 in order to ensure that the energy leakage of the secret signal in the non-target direction is less than the first threshold, and the signal dry ratio of the secret signal received by the legal user equipment is greater than the second threshold, the signal beamforming is minimized.
- the method of sidelobe power of the device calculates a first signal beamformer parameter for transmitting the secret signal according to the direction vector parameter and the first channel fading parameter.
- the base station obtains the following according to the direction vector parameter and the first channel fading parameter: formula;
- the first threshold may be
- the energy of the secret signal transmitted using the first signal beamformer parameter can be converted into the following formula:
- the minimum value of the energy leakage of the secret signal transmitted using the first signal beamformer parameter is equal to the first threshold.
- the vector parameter and the first channel fading parameter are obtained as follows;
- ⁇ 1 is the first signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is ⁇
- ⁇ is the side lobe region of the secret signal beam
- a( ⁇ 1 ) is the legitimate user equipment receiving confidentiality.
- the direction vector parameter of the signal ⁇ 1 is the direction angle of the legitimate user equipment receiving the secret signal
- ⁇ B is the second threshold
- ⁇ is the first channel fading parameter of the channel for transmitting the secret signal
- P ⁇ ⁇ a( ⁇ )a H ( ⁇ )d ⁇ , Is the first threshold.
- the base station calculates, according to the direction vector parameter and the first channel fading parameter, a first signal beamformer parameter that transmits the secret signal, and may also be calculated by:
- ⁇ 1 is the first signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is ⁇
- ⁇ is the sidelobe region of the secret signal beam
- a( ⁇ 1 ) is the direction vector parameter
- ⁇ 1 is the direction angle at which the legitimate user equipment receives the secret signal.
- each legal user equipment receives a secret signal.
- the first signal beamformer parameters for transmitting each of the secret signals may be determined according to the above manner, so that each of the secret signals transmitted by using the first signal beamformer parameters can satisfy the secret signal. The energy leakage is minimized and the signal drying ratio of the secret signal received by the legitimate user equipment is greater than a second threshold.
- the first signal beamformer parameter corresponding to the i-th secret signal can be calculated by the following expression: Where M is the number of secret signals.
- the first signal beamformer parameter ⁇ i corresponding to the i-th secret signal is calculated.
- Step 103 The base station determines an emission area of the artificial noise signal according to the direction vector parameter.
- step 103 in order to minimize the interference caused by the artificial noise signal to other legitimate user equipment while interfering with the potentially illegal user equipment, it is necessary to determine the transmission area of the artificial noise signal.
- the transmission area of the artificial noise signal should be the area where the signal strength of the side beam of the secret signal beamformer is large.
- the base station determines, according to the direction vector parameter, an energy leakage area of the secret signal by:
- ⁇ 1 is the first signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is the energy leakage area
- a( ⁇ 1 ) is the direction vector parameter
- ⁇ 1 is the legitimate user equipment receiving the secret signal.
- Direction angle, ⁇ sl is the set value
- the base station determines, according to the direction vector parameter, an emission area of the artificial noise signal, including:
- the base station determines, according to the direction vector parameter, an emission area of at least two artificial noise signals to be transmitted;
- the base station divides the determined transmission area according to the number of the artificial noise signals transmitted
- the base station determines an emission area for each artificial noise signal according to the division result, wherein the transmission areas corresponding to each artificial noise signal do not overlap.
- the division of the determined transmission area may be an average division, or may be divided according to requirements, which is not limited herein.
- Step 104 The base station calculates, according to the direction vector parameter, a second signal beamformer parameter that transmits the artificial noise signal.
- the second signal beamformer parameter can enable the interference of the artificial noise signal transmitted by the base station to the legal user equipment to be less than a preset threshold, and enable an illegal user equipment in the transmission area.
- the received signal-to-dry ratio of the artificial noise signal is less than a third threshold, and the sum of the transmit power of the artificial noise signal and the transmit power of the secret signal is less than a preset transmit power.
- step 104 when the interference of the artificial noise signal transmitted by the second signal beamformer parameter to the legal user equipment is less than a set threshold, the base station obtains the following according to the direction vector parameter. formula;
- ⁇ preferably takes a value of zero.
- the base station determines that the signal dry ratio of the artificial noise signal received by the illegal user equipment in the transmitting area is less than a third threshold, the base station obtains the following formula according to the direction vector parameter:
- the base station obtains the following formula:
- the base station with A second signal beamformer parameter that transmits the artificial noise signal is obtained.
- ⁇ 0 is a second signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is ⁇ AN
- ⁇ AN is the emission area of the determined artificial noise signal
- a( ⁇ 1 ) is the direction vector.
- Parameter ⁇ is the third threshold
- ⁇ is the set threshold.
- ⁇ 1 is the first signal beamformer parameter
- For the transmit power of the secret signal P t is the set transmit power
- ⁇ 1 is the direction angle at which the legitimate user equipment receives the secret signal.
- the signal to interference and noise ratio of the artificial noise signal received by the illegal user equipment in the transmission area may be expressed as
- the second signal beamformer parameters of the artificial noise signal can be optimized to:
- ⁇ i is the angle obtained by sampling
- L is the number of sampling points.
- the convex approximation function can be obtained by using the first-order condition f(y) ⁇ f(x)+( ⁇ f(x)) T (yx) of the convex function:
- ⁇ 0,l-1 is the optimal solution of the iteration of step 1-1.
- selecting any point ⁇ 0,0 as the initial point can be based on:
- ⁇ 0,l-1 is replaced with the optimal solution ⁇ 0,l of the lth iteration. Repeat the above calculation until the result converges or reaches the maximum number of allowed iterations to get the required ⁇ 0 .
- the second signal beamformer parameters of each artificial noise signal are calculated according to the foregoing manner.
- the obtained expression of the second signal beamformer parameter for calculating the i-th personal noise signal is:
- M is the number of artificial noise signals.
- the second signal beamformer parameter of the i-th personal noise signal is calculated.
- Step 105 The base station processes the signal to be transmitted by using the first signal beamformer parameter and the second signal beamformer parameter, and transmits the processed signal.
- step 105 the base station utilizes the first signal beamformer parameter and the second The signal beamformer parameters process the signal to be transmitted to obtain the processed signal:
- ⁇ 1 is the first signal beamformer parameter
- ⁇ 0 is the second signal beamformer parameter
- the signal received by the legitimate user equipment is:
- the illegal user receives the signal as:
- y B is the signal received by the legal user equipment
- y E is the signal received by the illegal user
- ⁇ is the first channel fading parameter of the corresponding channel of the legal user equipment receiving signal
- ⁇ is the second channel corresponding to the channel of the illegal user equipment receiving signal.
- n a is an artificial noise signal
- n B is a noise signal generated by the legal user equipment itself
- n E is a noise signal generated by the illegal user equipment itself
- ⁇ 1 is a first signal beamformer parameter
- ⁇ 0 is the second signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is the energy leakage area
- a( ⁇ 1 ) is the direction vector parameter
- ⁇ 1 is the legitimate user equipment receiving the secret signal.
- the base station receives the uplink pilot signal sent by the legal user equipment, and determines, according to the uplink pilot signal, a direction vector parameter of the legal user equipment to receive the secret signal, and a method for transmitting the secret signal.
- a first channel fading parameter of the channel calculating, according to the direction vector parameter and the first channel fading parameter, a first signal beamformer parameter that transmits the secret signal, and determining an artificial noise signal according to the direction vector parameter Transmitting a region, and calculating, according to the direction vector parameter, a second signal beamformer parameter that transmits the artificial noise signal, to be transmitted by using the first signal beamformer parameter and the second signal beamformer parameter
- the signal is processed and the processed signal is transmitted.
- the secret signal transmitted by the base station to the legitimate user equipment has less energy leakage in the non-target direction, and the base station determines the artificial noise signal.
- the artificial noise signal transmitted to the illegal user equipment in the shooting area is such that the artificial noise signal is concentrated in the area where the risk of the secret signal leakage is high, so as to reduce interference with the received signal of the legitimate user equipment in other directions.
- FIG. 2 An application scenario of the embodiment of the present invention is as shown in FIG. 2: a base station equipped with N antennas, within a signal coverage range of the base station, an angle of a legitimate user equipment is ⁇ 1 , where ⁇ 1 ⁇ [ ⁇ l , ⁇ h ].
- the beamformer transmitting the secret signal to the legitimate user equipment minimizes the leakage of the secret signal energy in the non-target direction, and the transmitted artificial noise signal for intercepting the illegal user equipment to receive the secret signal.
- the transmit area of the beamformer is concentrated as much as possible in the direction of high risk of leakage of the secret signal to reduce signal interference to legitimate user equipment in other directions.
- Figures 3(a) and 3(b) are beam diagrams of the secret signal and the artificial noise signal.
- the main lobe is 10° and the target angle is 100°.
- Fig. 3(a) is a beam diagram in polar coordinates
- Fig. 3(b) is a beam diagram in Cartesian coordinates.
- FIG. 4 is a diagram showing a change in the signal drying ratio of a legitimate user equipment and an illegal user equipment receiving signals.
- FIG. 5 is a schematic diagram of convergence speed of an algorithm according to an embodiment of the present invention.
- the secret signal transmitted by the base station to the legal user equipment has the smallest energy leakage in the non-target direction, and the artificial noise signal transmitted to the illegal user equipment in the transmission area of the determined artificial noise, so that the artificial noise signal is concentrated on the secret signal.
- the secret signal transmitted by the base station to the legal user equipment has the smallest energy leakage in the non-target direction, and the artificial noise signal transmitted to the illegal user equipment in the transmission area of the determined artificial noise, so that the artificial noise signal is concentrated on the secret signal.
- areas with high risk of leakage to reduce interference with signals received by legitimate user equipment in other directions.
- FIG. 6 is a schematic structural diagram of a signal sending device according to an embodiment of the present invention.
- the signal transmitting device includes: a receiving unit 61, a calculating unit 62, a determining unit 63, and a transmitting unit 64, in:
- the receiving unit 61 is configured to receive an uplink pilot signal sent by the legal user equipment, and determine, according to the uplink pilot signal, a direction vector parameter that the legal user equipment receives the secret signal, and a channel that is used to transmit the secret signal.
- the calculating unit 62 is configured to calculate, according to the direction vector parameter and the first channel fading parameter, a first signal beamformer parameter that transmits the secret signal, where the first signal beamformer parameter can enable The energy leakage of the secret signal transmitted by the base station is less than a first threshold, and the signal drying ratio of the secret signal received by the legal user equipment is greater than a second threshold;
- a determining unit 63 configured to determine an emission area of the artificial noise signal according to the direction vector parameter
- the calculating unit 62 is configured to calculate, according to the direction vector parameter, a second signal beamformer parameter that transmits the artificial noise signal, where the second signal beamformer parameter enables the base station to transmit
- the interference of the artificial noise signal to the legal user equipment is less than a preset threshold, and the signal dry ratio of the artificial noise signal received by the illegal user equipment in the transmission area is less than a third threshold, and The sum of the transmit power of the artificial noise signal and the transmit power of the secret signal is less than a preset transmit power;
- the transmitting unit 64 is configured to process the signal to be transmitted by using the first signal beamformer parameter and the second signal beamformer parameter, and transmit the processed signal.
- the calculating unit 62 is configured to: when the energy leakage of the secret signal transmitted by using the first signal beamformer parameter is less than the first threshold, according to the direction vector parameter and the The first channel fading parameter is obtained as follows:
- ⁇ 1 is the first signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is ⁇
- ⁇ is the side lobe region of the secret signal beam
- a( ⁇ 1 ) is the legal user equipment.
- Receiving a direction vector parameter of the secret signal ⁇ 1 is a direction angle at which the legal user equipment receives the secret signal
- ⁇ B is a second threshold
- ⁇ is a first channel fading parameter of a channel for transmitting the secret signal
- P ⁇ ⁇ a( ⁇ )a H ( ⁇ )d ⁇ , Is the first threshold.
- the calculating unit 62 is configured to: when the interference of the artificial noise signal transmitted by using the second signal beamformer parameter to the legal user equipment is less than a set threshold, according to the The direction vector parameters get the following formula:
- ⁇ 0 is a second signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is ⁇ AN
- ⁇ AN is the emission area of the determined artificial noise signal
- a( ⁇ 1 ) is the direction vector.
- Parameter ⁇ is the third threshold
- ⁇ is the set threshold.
- ⁇ 1 is the first signal beamformer parameter
- For the transmit power of the secret signal P t is the set transmit power
- ⁇ 1 is the direction angle at which the legitimate user equipment receives the secret signal.
- the determining unit 63 is specifically configured to determine, according to the direction vector parameter, an energy leakage area of the secret signal by:
- ⁇ 1 is the first signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is the energy leakage area
- a( ⁇ 1 ) is the direction vector parameter
- ⁇ 1 is the legitimate user equipment receiving the secret signal.
- Direction angle, ⁇ sl is the set value
- An emission region of the artificial noise signal is obtained based on the energy leakage region of the secret signal and the main lobe region of the signal beamformer that transmits the secret signal.
- the determining unit 63 is configured to: if the number of the artificial noise signals sent is at least two, determine, according to the direction vector parameter, an emission area of at least two artificial noise signals to be sent;
- an emission area is determined for each artificial noise signal to be transmitted, wherein the emission areas corresponding to each artificial noise signal do not overlap.
- the sending unit 64 is configured to process, by using the first signal beamformer parameter and the second signal beamformer parameter, a signal to be transmitted, to obtain a processed signal. number:
- ⁇ 1 is the first signal beamformer parameter
- ⁇ 0 is the second signal beamformer parameter
- the signal sending device in the embodiment of the present invention may be implemented in a software manner or in a hardware manner, which is not limited herein.
- FIG. 7 is a schematic structural diagram of a signal sending device according to an embodiment of the present invention.
- the signal transmitting device can adopt a general purpose computer structure.
- the signal transmitting device includes a signal receiver 71, a processor 72, and a signal transmitter 73. among them:
- the signal receiver 71 is configured to receive an uplink pilot signal sent by the legal user equipment, and determine, according to the uplink pilot signal, a direction vector parameter of the legal user equipment to receive the secret signal and a channel for transmitting the secret signal.
- the processor 72 is configured to calculate, according to the direction vector parameter and the first channel fading parameter, a first signal beamformer parameter that transmits the secret signal, where the first signal beamformer parameter can enable The energy leakage of the secret signal transmitted by the base station is less than a first threshold, and the signal drying ratio of the secret signal received by the legal user equipment is greater than a second threshold;
- the interference of the artificial noise signal transmitted by the base station to the legal user equipment is less than a preset threshold, and the signal of the artificial noise signal received by the illegal user equipment in the transmission area is dried.
- the ratio is less than the third threshold, and the sum of the transmit power of the artificial noise signal and the transmit power of the secret signal is less than the preset transmit power;
- the signal transmitter 73 is configured to process the signal to be transmitted by using the first signal beamformer parameter and the second signal beamformer parameter, and transmit the processed signal.
- the processor 72 calculates a first signal beamformer parameter for transmitting the secret signal according to the direction vector parameter and the first channel fading parameter, and specifically includes:
- the first channel fading parameter is obtained as follows:
- ⁇ 1 is the first signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is ⁇
- ⁇ is the side lobe region of the secret signal beam
- a( ⁇ 1 ) is the legal user equipment.
- Receiving a direction vector parameter of the secret signal ⁇ 1 is a direction angle at which the legal user equipment receives the secret signal
- ⁇ B is a second threshold
- ⁇ is a first channel fading parameter of a channel for transmitting the secret signal
- P ⁇ ⁇ a( ⁇ )a H ( ⁇ )d ⁇ , Is the first threshold.
- the processor 72 calculates, according to the direction vector parameter, a second signal beamformer parameter that transmits the artificial noise signal, specifically:
- the artificial noise signal transmitted by the second signal beamformer parameter When the interference of the user equipment is less than the set threshold, the following formula is obtained according to the direction vector parameter:
- ⁇ 0 is a second signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is ⁇ AN
- ⁇ AN is the emission area of the determined artificial noise signal
- a( ⁇ 1 ) is the direction vector.
- Parameter ⁇ is the third threshold
- ⁇ is the set threshold.
- ⁇ 1 is the first signal beamformer parameter
- For the transmit power of the secret signal P t is the set transmit power
- ⁇ 1 is the direction angle at which the legitimate user equipment receives the secret signal.
- the processor 72 determines an emission area of the artificial noise signal according to the direction vector parameter, and specifically includes:
- ⁇ 1 is the first signal beamformer parameter
- a( ⁇ ) is the direction vector function
- ⁇ is the direction angle
- the value range is the energy leakage area
- a( ⁇ 1 ) is the direction vector parameter
- ⁇ 1 is the legitimate user equipment receiving the secret signal.
- Direction angle, ⁇ sl is the set value
- An emission region of the artificial noise signal is obtained based on the energy leakage region of the secret signal and the main lobe region of the signal beamformer that transmits the secret signal.
- the processor 72 determines an emission area of the artificial noise signal according to the direction vector parameter, and includes:
- the number of the artificial noise signals transmitted is at least two, determining, according to the direction vector parameter, an emission area of at least two artificial noise signals to be transmitted;
- an emission area is determined for each artificial noise signal to be transmitted, wherein the emission areas corresponding to each artificial noise signal do not overlap.
- the signal transmitter 73 processes the signal to be transmitted by using the first signal beamformer parameter and the second signal beamformer parameter, including:
- ⁇ 1 is the first signal beamformer parameter
- ⁇ 0 is the second signal beamformer parameter
- embodiments of the present invention can be provided as a method, apparatus (device), or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
- a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Security & Cryptography (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
本发明公开了一种信号发送方法和设备,包括:基站接收合法用户设备发送的上行导频信号,并确定合法用户设备接收保密信号的方向矢量参数和用于传输保密信号的信道的第一信道衰落参数;根据方向矢量参数和第一信道衰落参数,计算发射保密信号的第一信号波束形成器参数,根据方向矢量参数,确定人工噪声信号的发射区域,并计算发射人工噪声信号的第二信号波束形成器参数,利用第一信号波束形成器参数和第二信号波束形成器参数对待发射的信号进行处理,发射处理后的信号,基站发送给合法用户设备的保密信号在非目标方向上能量泄露最小,且发射的人工噪声信号集中于保密信号泄露风险较高的区域内,降低对其他方向上的合法用户设备接收信号的干扰。
Description
本发明涉及通信领域,具体涉及一种信号发送方法和设备。
随着无线通信网络的发展,由于无线物理层媒质的开放和电磁信号采用广播方式传输,使得在无线通信网络中传输的数据比在有线网络中传输的数据更容易被第三方窃取,因此,如何提升无线通信网络中数据传输的可靠性和安全性成为亟需解决的技术问题。
传统的保证无线通信网络中数据传输安全性的方式可以是加强无线通信网络系统高层(例如:无线链路层或者应用层)数据传输的安全性,例如:基于密码学理论的数据加密方法、各种安全协议等。但是,物理层传输的安全性成为制约整个无线通信网络系统安全性的关键,如何保证物理层数据传输的安全性成为一个重要的研究课题。
人工噪声(英文:artificial noise)技术是应用于多天线系统的一种提升物理层数据传输安全性的方法。具体地,在数据传输的主信道上发射有用信道,保证合法接收机正常接收该有用信号,并且同时在与主信道正交的方向上发射人为设置的无用信号,尽可能地干扰其他方向上存在的非法接收机,以此提升物理层数据传输的安全性。
然而,目前人工噪声技术的研究大多集中在单小区场景下。当将人工噪声技术应用与蜂窝无线通信网络的多个小区场景时,发射的人工噪声不仅在干扰非法接收机,而且也会对与合法接收机频率相同的其他合法接收机产生干扰,这样将会影响到其他用户,使得蜂窝无线通信网络的性能下降。
发明内容
本发明有鉴于此,本发明实施例提供了一种信号发送方法和设备,用于
解决目前的人工噪声技术对其他非目标的合法接收机接收到的信号产生信号干扰的问题。
第一方面,提供了一种信号发送方法,包括:
基站接收合法用户设备发送的上行导频信号,并根据所述上行导频信号确定所述合法用户设备接收保密信号的方向矢量参数和用于传输所述保密信号的信道的第一信道衰落参数;
所述基站根据所述方向矢量参数和所述第一信道衰落参数,计算发射所述保密信号的第一信号波束形成器参数,其中,所述第一信号波束形成器参数能够使得所述基站发射的所述保密信号的能量泄露小于第一阈值,并且使得所述合法用户设备接收到的所述保密信号的信干燥比大于第二阈值;
所述基站根据所述方向矢量参数,确定人工噪声信号的发射区域,并根据所述方向矢量参数,计算发射所述人工噪声信号的第二信号波束形成器参数,其中,所述第二信号波束形成器参数能够使得所述基站发射的所述人工噪声信号对所述合法用户设备的干扰小于预设门限值,且使得在所述发射区域内的非法用户设备接收到的所述人工噪声信号的信干燥比小于第三阈值,且使得所述人工噪声信号的发射功率与所述保密信号的发射功率之和小于预设发射功率;
所述基站利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,并发射处理后的信号。
结合第一方面可能的实施方式,在第一方面的第一种可能的实施方式中,所述基站根据所述方向矢量参数和所述第一信道衰落参数,计算发射所述保密信号的第一信号波束形成器参数,包括:
当利用所述第一信号波束形成器参数发射的所述保密信号的能量泄露小于所述第一阈值时,所述基站根据所述方向矢量参数和所述第一信道衰落参数得到如下公式:
当确定利用所述第一信号波束形成器参数发射的所述保密信号使得所述合法用户设备接收到的所述保密信号的信干燥比大于设定第二阈值时,所述基站根据所述方向矢量参数和所述第一信道衰落参数得到如下公式:
其中,ω1为第一信号波束形成器参数,为ω1的共轭转置,a(θ)为方向矢量函数,θ为方向角,取值范围为Ω,Ω为保密信号波束的旁瓣区域,a(θ1)为所述合法用户设备接收保密信号的方向矢量参数,θ1为所述合法用户设备接收保密信号的方向角,γB为第二阈值,α为用于传输所述保密信号的信道的第一信道衰落参数,P=∫Ωa(θ)aH(θ)dθ,为第一阈值。
结合第一方面可能的实施方式,在第一方面的第二种可能的实施方式中,所述基站根据所述方向矢量参数,计算发射所述人工噪声信号的第二信号波束形成器参数,包括:
当利用所述第二信号波束形成器参数发射的所述人工噪声信号对所述合法用户设备的干扰小于设定门限值时,所述基站根据所述方向矢量参数得到如下公式:
在确定在所述发射区域内的非法用户设备接收到的所述人工噪声信号的信干燥比小于第三阈值时,所述基站根据所述方向矢量参数得到如下公式:
所述基站在所述人工噪声信号的发射功率与所述保密信号的发射功率之和小于设定发射功率时,得到如下公式:
其中,ω0为第二信号波束形成器参数,为ω0的共轭转置,a(θ)为方向矢量函数,θ为方向角,取值范围为ΩAN,ΩAN为确定的人工噪声信号的发射区域,a(θ1)为方向矢量参数,λ为第三阈值,η为设定门限值,为所述人工噪声信号的发射功率,ω1为第一信号波束形成器参数,为ω1的共轭转置,为所述保密信号的发射功率,Pt为设定发射功率,θ1为合法用户设备接收保密信号的方向角。
结合第一方面可能的实施方式,或者结合第一方面的第一种可能的实施方式,或者结合第一方面的第二种可能的实施方式,在第一方面的第三种可能的实施方式中,所述基站根据所述方向矢量参数,确定人工噪声信号的发射区域,包括:
所述基站根据所述方向矢量参数,通过以下方式确定所述保密信号的能量泄露区域:
其中,ω1为第一信号波束形成器参数,为ω1的共轭转置,a(θ)为方向矢量函数,θ为方向角,取值范围为能量泄露区域,a(θ1)为方向矢量参数,θ1
为合法用户设备接收保密信号的方向角,γsl为设定数值;
根据所述保密信号的能量泄露区域和发射所述保密信号的信号波束形成器的主瓣区域,得到人工噪声信号的发射区域。
结合第一方面可能的实施方式,或者结合第一方面的第一种可能的实施方式,或者结合第一方面的第二种可能的实施方式,或者结合第一方面的第三种可能的实施方式,在第一方面的第四种可能的实施方式中,所述基站根据所述方向矢量参数,确定人工噪声信号的发射区域,包括:
若发送的人工噪声信号的个数为至少两个时,所述基站根据所述方向矢量参数,确定待发送的至少两个人工噪声信号的发射区域;
所述基站根据待发送的人工噪声信号的个数,将确定的所述发射区域进行划分;
所述基站根据划分结果,为每一个待发送的人工噪声信号确定发射区域,其中,每一个人工噪声信号对应的发射区域不重叠。
结合第一方面可能的实施方式,或者结合第一方面的第一种可能的实施方式,或者结合第一方面的第二种可能的实施方式,或者结合第一方面的第三种可能的实施方式,或者结合第一方面的第四种可能的实施方式,在第一方面的第五种可能的实施方式中,所述基站利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,包括:
所述基站利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,得到处理后的信号:
第二方面,提供了一种信号发送设备,包括:
接收单元,用于接收合法用户设备发送的上行导频信号,并根据所述上行导频信号确定所述合法用户设备接收保密信号的方向矢量参数和用于传输所述保密信号的信道的第一信道衰落参数;
计算单元,用于根据所述方向矢量参数和所述第一信道衰落参数,计算发射所述保密信号的第一信号波束形成器参数,其中,所述第一信号波束形成器参数能够使得所述基站发射的所述保密信号的能量泄露小于第一阈值,并且使得所述合法用户设备接收到的所述保密信号的信干燥比大于第二阈值;
确定单元,用于根据所述方向矢量参数,确定人工噪声信号的发射区域;
所述计算单元,用于根据所述方向矢量参数,计算发射所述人工噪声信号的第二信号波束形成器参数,其中,所述第二信号波束形成器参数能够使得所述基站发射的所述人工噪声信号对所述合法用户设备的干扰小于预设门限值,且使得在所述发射区域内的非法用户设备接收到的所述人工噪声信号的信干燥比小于第三阈值,且使得所述人工噪声信号的发射功率与所述保密信号的发射功率之和小于预设发射功率;
发送单元,用于利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,并发射处理后的信号。
结合第二方面可能的实施方式,在第二方面的第一种可能的实施方式中,所述计算单元,具体用于当利用所述第一信号波束形成器参数发射的所述保密信号的能量泄露小于所述第一阈值时,根据所述方向矢量参数和所述第一信道衰落参数得到如下公式:
当确定利用所述第一信号波束形成器参数发射的所述保密信号使得所述合法用户设备接收到的所述保密信号的信干燥比大于设定第二阈值时,根据所述方向矢量参数和所述第一信道衰落参数得到如下公式:
其中,ω1为第一信号波束形成器参数,为ω1的共轭转置,a(θ)为方向矢量函数,θ为方向角,取值范围为Ω,Ω为保密信号波束的旁瓣区域,a(θ1)为所述合法用户设备接收保密信号的方向矢量参数,θ1为所述合法用户设备接收保密信号的方向角,γB为第二阈值,α为用于传输所述保密信号的信道的第一信道衰落参数,P=∫Ωa(θ)aH(θ)dθ,为第一阈值。
结合第二方面可能的实施方式,在第二方面的第二种可能的实施方式中,所述计算单元,具体用于当利用所述第二信号波束形成器参数发射的所述人工噪声信号对所述合法用户设备的干扰小于设定门限值时,根据所述方向矢量参数得到如下公式:
在确定在所述发射区域内的非法用户设备接收到的所述人工噪声信号的信干燥比小于第三阈值时,根据所述方向矢量参数得到如下公式:
在所述人工噪声信号的发射功率与所述保密信号的发射功率之和小于设定发射功率时,得到如下公式:
其中,ω0为第二信号波束形成器参数,为ω0的共轭转置,a(θ)为方向矢量函数,θ为方向角,取值范围为ΩAN,ΩAN为确定的人工噪声信号的发射区域,a(θ1)为方向矢量参数,λ为第三阈值,η为设定门限值,为所述人工噪声信号的发射功率,ω1为第一信号波束形成器参数,为ω1的共轭转置,为所述保密信号的发射功率,Pt为设定发射功率,θ1为合法用户设备接收保密信号的方向角。
结合第二方面可能的实施方式,或者结合第二方面的第一种可能的实施方式,或者结合第二方面的第二种可能的实施方式,在第二方面的第三种可能的实施方式中,所述确定单元,具体用于根据所述方向矢量参数,通过以下方式确定所述保密信号的能量泄露区域:
根据所述保密信号的能量泄露区域和发射所述保密信号的信号波束形成器的主瓣区域,得到人工噪声信号的发射区域。
结合第二方面可能的实施方式,或者结合第二方面的第一种可能的实施方式,或者结合第二方面的第二种可能的实施方式,或者结合第二方面的第三种可能的实施方式,在第二方面的第四种可能的实施方式中,所述确定单元,具体用于若发送的人工噪声信号的个数为至少两个时,根据所述方向矢量参数,确定待发送的至少两个人工噪声信号的发射区域;
根据待发送的人工噪声信号的个数,将确定的所述发射区域进行划分;
根据划分结果,为每一个待发送的人工噪声信号确定发射区域,其中,每一个人工噪声信号对应的发射区域不重叠。
结合第二方面可能的实施方式,或者结合第二方面的第一种可能的实施方式,或者结合第二方面的第二种可能的实施方式,或者结合第二方面的第三种可能的实施方式,或者结合第二方面的第四种可能的实施方式,在第二方面的第五种可能的实施方式中,所述发送单元,具体用于利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,得到处理后的信号:
第三方面,提供了一种信号发送设备,包括:
信号接收器,用于接收合法用户设备发送的上行导频信号,并根据所述上行导频信号确定所述合法用户设备接收保密信号的方向矢量参数和用于传输所述保密信号的信道的第一信道衰落参数;
处理器,用于根据所述方向矢量参数和所述第一信道衰落参数,计算发射所述保密信号的第一信号波束形成器参数,其中,所述第一信号波束形成器参数能够使得所述基站发射的所述保密信号的能量泄露小于第一阈值,并且使得所述合法用户设备接收到的所述保密信号的信干燥比大于第二阈值;
根据所述方向矢量参数,确定人工噪声信号的发射区域,并根据所述方向矢量参数,计算发射所述人工噪声信号的第二信号波束形成器参数,其中,所述第二信号波束形成器参数能够使得所述基站发射的所述人工噪声信号对所述合法用户设备的干扰小于预设门限值,且使得在所述发射区域内的非法用户设备接收到的所述人工噪声信号的信干燥比小于第三阈值,且使得所述
人工噪声信号的发射功率与所述保密信号的发射功率之和小于预设发射功率;
信号发射器,用于利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,并发射处理后的信号。
结合第三方面可能的实施方式,在第三方面的第一种可能的实施方式中,所述处理器根据所述方向矢量参数和所述第一信道衰落参数,计算发射所述保密信号的第一信号波束形成器参数,具体包括:
当利用所述第一信号波束形成器参数发射的所述保密信号的能量泄露小于所述第一阈值时,根据所述方向矢量参数和所述第一信道衰落参数得到如下公式:
当确定利用所述第一信号波束形成器参数发射的所述保密信号使得所述合法用户设备接收到的所述保密信号的信干燥比大于设定第二阈值时,根据所述方向矢量参数和所述第一信道衰落参数得到如下公式:
其中,ω1为第一信号波束形成器参数,为ω1的共轭转置,a(θ)为方向矢量函数,θ为方向角,取值范围为Ω,Ω为保密信号波束的旁瓣区域,a(θ1)为所述合法用户设备接收保密信号的方向矢量参数,θ1为所述合法用户设备接收保密信号的方向角,γB为第二阈值,α为用于传输所述保密信号的信道的第一信道衰落参数,P=∫Ωa(θ)aH(θ)dθ,为第一阈值。
结合第三方面可能的实施方式,在第三方面的第二种可能的实施方式中,所述处理器根据所述方向矢量参数,计算发射所述人工噪声信号的第二信号波束形成器参数,具体包括:
当利用所述第二信号波束形成器参数发射的所述人工噪声信号对所述合法用户设备的干扰小于设定门限值时,根据所述方向矢量参数得到如下公式:
在确定在所述发射区域内的非法用户设备接收到的所述人工噪声信号的信干燥比小于第三阈值时,根据所述方向矢量参数得到如下公式:
在所述人工噪声信号的发射功率与所述保密信号的发射功率之和小于设定发射功率时,得到如下公式:
其中,ω0为第二信号波束形成器参数,为ω0的共轭转置,a(θ)为方向矢量函数,θ为方向角,取值范围为ΩAN,ΩAN为确定的人工噪声信号的发射区域,a(θ1)为方向矢量参数,λ为第三阈值,η为设定门限值,为所述人工噪声信号的发射功率,ω1为第一信号波束形成器参数,为ω1的共轭转置,为所述保密信号的发射功率,Pt为设定发射功率,θ1为合法用户设备接收保密信号的方向角。
结合第三方面可能的实施方式,或者结合第三方面的第一种可能的实施方式,或者结合第三方面的第二种可能的实施方式,在第三方面的第三种可
能的实施方式中,所述处理器根据所述方向矢量参数,确定人工噪声信号的发射区域,具体包括:
所述根据所述方向矢量参数,通过以下方式确定所述保密信号的能量泄露区域:
根据所述保密信号的能量泄露区域和发射所述保密信号的信号波束形成器的主瓣区域,得到人工噪声信号的发射区域。
结合第三方面可能的实施方式,或者结合第三方面的第一种可能的实施方式,或者结合第三方面的第二种可能的实施方式,或者结合第三方面的第三种可能的实施方式,在第三方面的第四种可能的实施方式中,所述处理器根据所述方向矢量参数,确定人工噪声信号的发射区域,包括:
若发送的人工噪声信号的个数为至少两个时,根据所述方向矢量参数,确定待发送的至少两个人工噪声信号的发射区域;
根据待发送的人工噪声信号的个数,将确定的所述发射区域进行划分;
根据划分结果,为每一个待发送的人工噪声信号确定发射区域,其中,每一个人工噪声信号对应的发射区域不重叠。
结合第三方面可能的实施方式,或者结合第三方面的第一种可能的实施方式,或者结合第三方面的第二种可能的实施方式,或者结合第三方面的第三种可能的实施方式,或者结合第三方面的第四种可能的实施方式,在第三方面的第五种可能的实施方式中,所述信号发射器利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,包括:
利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,得到处理后的信号:
本发明有益效果如下:
本发明实施例基站接收合法用户设备发送的上行导频信号,并根据所述上行导频信号确定所述合法用户设备接收保密信号的方向矢量参数和用于传输所述保密信号的信道的第一信道衰落参数;根据所述方向矢量参数和所述第一信道衰落参数,计算发射所述保密信号的第一信号波束形成器参数,根据所述方向矢量参数,确定人工噪声信号的发射区域,并根据所述方向矢量参数,计算发射所述人工噪声信号的第二信号波束形成器参数,利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,并发射处理后的信号。这样,基站发射给合法用户设备的保密信号在非目标方向上能量泄露较小,且基站在确定的人工噪声信号的发射区域内发射给非法用户设备的人工噪声信号,使得人工噪声信号集中于保密信号泄露风险较高的区域内,以降低对其他方向上的合法用户设备接收信号的干扰。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种信号发送方法的流程示意图;
图2为本发明实施例的应用场景示意图;
图3(a)和图3(b)为保密信号和人工噪声信号的波束图;
图4为合法用户设备和非法用户设备接收信号的信干燥比变化图;
图5为本发明实施例中算法的收敛速度示意图;
图6为本发明实施例提供的一种信号发送设备的结构示意图;
图7为本发明实施例提供的一种信号发送设备的结构示意图。
为了实现本发明的目的,本发明实施例提供了一种信号发送的方法和设备,基站接收合法用户设备发送的上行导频信号,并根据所述上行导频信号确定所述合法用户设备接收保密信号的方向矢量参数和用于传输所述保密信号的信道的第一信道衰落参数;根据所述方向矢量参数和所述第一信道衰落参数,计算发射所述保密信号的第一信号波束形成器参数,根据所述方向矢量参数,确定人工噪声信号的发射区域,并根据所述方向矢量参数,计算发射所述人工噪声信号的第二信号波束形成器参数,利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,并发射处理后的信号。这样,基站发射给合法用户设备的保密信号在非目标方向上能量泄露较小,且基站在确定的人工噪声信号的发射区域内发射给非法用户设备的人工噪声信号,使得人工噪声信号集中于保密信号泄露风险较高的区域内,以降低对其他方向上的合法用户设备接收信号的干扰。
下面结合说明书附图对本发明各个实施例作进一步地详细描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
图1为本发明实施例提供的一种信号发送方法的流程示意图。所述方法可以如下所述。
步骤101:基站接收合法用户设备发送的上行导频信号,并根据所述上行
导频信号确定所述合法用户设备接收保密信号的方向矢量参数和用于传输所述保密信号的信道的第一信道衰落参数。
在步骤101中,基站通过接收合法用户设备发送的上行导频信号估计得到合法用户设备接收保密信号的方向矢量参数和用于传输所述保密信号的信道的第一信道衰落参数。
这里需要说明的是,上行导频信号只有合法用户设备才会发送。
步骤102:所述基站根据所述方向矢量参数和所述第一信道衰落参数,计算发射所述保密信号的第一信号波束形成器参数。
其中,所述第一信号波束形成器参数能够使得所述基站发射的所述保密信号的能量泄露小于第一阈值,并且使得所述合法用户设备接收到的所述保密信号的信干燥比大于第二阈值。
需要说明的是,这里第一阈值的设定与信号发射功率有关联,可以是能量泄露的最小值,本发明实施例对于第一阈值的大小值或者形式和第二阈值的大小值或者形式不限定。
在步骤102中,为了保证保密信号在非目标方向上能量泄露小于第一阈值,且使所述合法用户设备接收到的所述保密信号的信干燥比大于第二阈值,通过最小化信号波束形成器的旁瓣功率的方法,根据所述方向矢量参数和所述第一信道衰落参数,计算得到发射所述保密信号的第一信号波束形成器参数。
具体地,当利用所述第一信号波束形成器参数发射的所述保密信号的能量泄露小于所述第一阈值时,所述基站根据所述方向矢量参数和所述第一信道衰落参数得到如下公式;
可选地,利用所述第一信号波束形成器参数发射的所述保密信号的能量
泄露小于所述第一阈值可以转化为如下公式:
即利用所述第一信号波束形成器参数发射的所述保密信号的能量泄露的最小值等于第一阈值。
当确定利用所述第一信号波束形成器参数发射的所述保密信号使得所述合法用户设备接收到的所述保密信号的信干燥比大于设定第二阈值时,所述基站根据所述方向矢量参数和所述第一信道衰落参数得到如下公式;
其中,ω1为第一信号波束形成器参数,为ω1的共轭转置,a(θ)为方向矢量函数,θ为方向角,取值范围为Ω,Ω为保密信号波束的旁瓣区域,a(θ1)为合法用户设备接收保密信号的方向矢量参数,θ1为合法用户设备接收保密信号的方向角,γB为第二阈值,α为用于传输所述保密信号的信道的第一信道衰落参数,P=∫Ωa(θ)aH(θ)dθ,为第一阈值。
通过变形得到其对应的拉格朗日函数是:
由上面两个式子可以得到:
可选地,所述基站根据所述方向矢量参数和所述第一信道衰落参数,计算得到发射所述保密信号的第一信号波束形成器参数,还可以通过以下方式计算得到:
即采用最小化最大保密信号泄漏功率设计准则,即得到和其中,ω1为第一信号波束形成器参数,为ω1的共轭转置,a(θ)为方向矢量函数,θ为方向角,取值范围为Ω,Ω为保密信号波束的旁瓣区域,a(θ1)为方向矢量参数,θ1为合法用户设备接收保密信号的方向角。
可选地,当接收保密信号的合法用户设备的个数为多个时,每一个合法用户设备接收一个保密信号。针对每一个待发送的保密信号,都可以按照上述的方式确定发送每一个保密信号的第一信号波束形成器参数,使得利用第一信号波束形成器参数发送的每一个保密信号都能满足保密信号的能量泄露最小化且使得所述合法用户设备接收到的该所述保密信号的信干燥比大于第二阈值。
步骤103:所述基站根据所述方向矢量参数,确定人工噪声信号的发射区域。
在步骤103中,为了在干扰潜在非法用户设备的同时尽可能降低人工噪声信号对其他合法用户设备造成的干扰,需要确定人工噪声信号的发射区域。
也就是说,人工噪声信号的发射区域应该为保密信号波束形成器旁瓣中信号强度较大的区域。
具体地,所述基站根据所述方向矢量参数,通过以下方式确定所述保密信号的能量泄露区域:
根据确定的所述保密信号的能量泄露区域和发射所述保密信号的信号波束形成器的主瓣区域,得到人工噪声信号的发射区域。
可选的,所述基站根据所述方向矢量参数,确定人工噪声信号的发射区域,包括:
若发送的人工噪声信号的个数为至少两个时,所述基站根据所述方向矢量参数,确定待发送的至少两个人工噪声信号的发射区域;
所述基站根据发射人工噪声信号的个数,将确定的所述发射区域进行划分;
所述基站根据划分结果,为每一个人工噪声信号确定发射区域,其中,每一个人工噪声信号对应的发射区域不重叠。
需要说明的是,将确定的所述发射区域进行划分可以是平均划分,也可以是根据需要进行划分,这里不做限定。
步骤104:所述基站根据所述方向矢量参数,计算发射所述人工噪声信号的第二信号波束形成器参数。
其中,所述第二信号波束形成器参数能够使得所述基站发射的所述人工噪声信号对所述合法用户设备的干扰小于预设门限值,且使得在所述发射区域内的非法用户设备接收到的所述人工噪声信号的信干燥比小于第三阈值,且使得所述人工噪声信号的发射功率与所述保密信号的发射功率之和小于预设发射功率。
在步骤104中,当利用所述第二信号波束形成器参数发射的所述人工噪声信号对所述合法用户设备的干扰小于设定门限值时,所述基站根据所述方向矢量参数得到如下公式;
需要说明的是,η优选取值为0。
所述基站在确定在所述发射区域内的非法用户设备接收到的所述人工噪声信号的信干燥比小于设定第三阈值时,所述基站根据所述方向矢量参数得到如下公式:
所述基站在所述人工噪声信号的发射功率与所述保密信号的发射功率之和小于设定发射功率时,得到如下公式:
其中,ω0为第二信号波束形成器参数,为ω0的共轭转置,a(θ)为方向矢量函数,θ为方向角,取值范围为ΩAN,ΩAN为确定的人工噪声信号的发射区域,a(θ1)为方向矢量参数,λ为第三阈值,η为设定门限值,为所述人工噪声信号的发射功率,ω1为第一信号波束形成器参数,为ω1的共轭转置,为所述保密信号的发射功率,Pt为设定发射功率,θ1为合法用户设备接收保密信号的方向角。
引入松弛变量m,得到:
在ΩAN采样计算,得到:
由于需要近似的都是凸函数,其凸近似函数可以通过利用凸函数的一阶条件f(y)≥f(x)+(▽f(x))T(y-x),得到:
进一步地,得到:
可选地,选取任意一点ω0,0作为初始点,可以根据:
进一步地,在第l+1次迭代中,用第l次迭代的最优解ω0,l来替换ω0,l-1。重复上述计算,直至结果收敛或达到最大允许迭代次数,得到需要的ω0。
可选的,若发送的人工噪声信号的个数为至少两个时,在确定每一个人工噪声信号的发射区域之后,根据上述方式计算得到每一个人工噪声信号的第二信号波束形成器参数。
具体地,得到的用于计算第i个人工噪声信号的第二信号波束形成器参数的表达式为:
从而计算得到第i个人工噪声信号的第二信号波束形成器参数。
步骤105:所述基站利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,并发射处理后的信号。
在步骤105中,所述基站利用所述第一信号波束形成器参数与所述第二
信号波束形成器参数对待发射的信号进行处理,得到处理后的信号:
其中,yB为合法用户设备接收到的信号,yE为非法用户接收到信号,α为合法用户设备接收信号对应信道的第一信道衰落参数,β为非法用户设备接收信号对应信道的第二信道衰落参数,na为人工噪声信号,nB为所述合法用户设备自身产生的噪声信号,nE为所述非法用户设备自身产生的噪声信号,ω1为第一信号波束形成器参数,为ω1的共轭转置,ω0为第二信号波束形成器参数,为ω0的共轭转置,a(θ)为方向矢量函数,θ为方向角,取值范围为能量泄露区域,a(θ1)为方向矢量参数,θ1为合法用户设备接收保密信号的方向角。
通过本发明实施例的方案,基站接收合法用户设备发送的上行导频信号,并根据所述上行导频信号确定所述合法用户设备接收保密信号的方向矢量参数和用于传输所述保密信号的信道的第一信道衰落参数;根据所述方向矢量参数和所述第一信道衰落参数,计算发射所述保密信号的第一信号波束形成器参数,根据所述方向矢量参数,确定人工噪声信号的发射区域,并根据所述方向矢量参数,计算发射所述人工噪声信号的第二信号波束形成器参数,利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,并发射处理后的信号。这样,基站发射给合法用户设备的保密信号在非目标方向上能量泄露较小,且基站在确定的人工噪声信号的发
射区域内发射给非法用户设备的人工噪声信号,使得人工噪声信号集中于保密信号泄露风险较高的区域内,以降低对其他方向上的合法用户设备接收信号的干扰。
基于上述实施例中记载的内容,本发明实施例提供的一种信号发送方法的流程示意图。本发明实施例的应用场景如图2所示:一个配有N根天线的基站,在该基站的信号覆盖范围之内,一个合法用户设备所处方向的角度为θ1,其中,θ1∈[θl,θh]。该合法用户设备对应的非法用户设备可能所处的方向角度为θ∈Ω=[-π/2,θl]∪[θh,π/2]。
利用上述实施例中记载的方法,发射给合法用户设备的保密信号的波束形成器尽可能减少保密信号能量在非目标方向上的泄漏,发射的用于干扰非法用户设备接收保密信号的人工噪声信号的波束形成器的发射区域尽可能集中在保密信号泄露风险较高的方向上,以降低对其他方向上的合法用户设备的信号干扰。
利用上述实施例中记载的方法进行仿真,得到以下仿真结果:
图3(a)和图3(b)为保密信号和人工噪声信号的波束图。
其中,主瓣为10°,目标角度为100°。
图3(a)为极坐标表示的波束图,图3(b)为直角坐标表示的波束图。
图4为合法用户设备和非法用户设备接收信号的信干燥比变化图。
图5为本发明实施例中算法的收敛速度示意图。
也就是说,基站发送给合法用户设备的保密信号在非目标方向上能量泄露最小,且在确定的人工噪声的发射区域内发射给非法用户设备的人工噪声信号,使得人工噪声信号集中于保密信号泄露风险较高的区域内,以降低对其他方向上的合法用户设备接收信号的干扰。
图6为本发明实施例提供的一种信号发送设备的结构示意图。所述信号发送设备包括:接收单元61、计算单元62、确定单元63和发送单元64,其
中:
接收单元61,用于接收合法用户设备发送的上行导频信号,并根据所述上行导频信号确定所述合法用户设备接收保密信号的方向矢量参数和用于传输所述保密信号的信道的第一信道衰落参数;
计算单元62,用于根据所述方向矢量参数和所述第一信道衰落参数,计算发射所述保密信号的第一信号波束形成器参数,其中,所述第一信号波束形成器参数能够使得所述基站发射的所述保密信号的能量泄露小于第一阈值,并且使得所述合法用户设备接收到的所述保密信号的信干燥比大于第二阈值;
确定单元63,用于根据所述方向矢量参数,确定人工噪声信号的发射区域;
所述计算单元62,用于根据所述方向矢量参数,计算发射所述人工噪声信号的第二信号波束形成器参数,其中,所述第二信号波束形成器参数能够使得所述基站发射的所述人工噪声信号对所述合法用户设备的干扰小于预设门限值,且使得在所述发射区域内的非法用户设备接收到的所述人工噪声信号的信干燥比小于第三阈值,且使得所述人工噪声信号的发射功率与所述保密信号的发射功率之和小于预设发射功率;
发送单元64,用于利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,并发射处理后的信号。
可选地,所述计算单元62,具体用于当利用所述第一信号波束形成器参数发射的所述保密信号的能量泄露小于所述第一阈值时,根据所述方向矢量参数和所述第一信道衰落参数得到如下公式:
当确定利用所述第一信号波束形成器参数发射的所述保密信号使得所述合法用户设备接收到的所述保密信号的信干燥比大于设定第二阈值时,根据
所述方向矢量参数和所述第一信道衰落参数得到如下公式:
其中,ω1为第一信号波束形成器参数,为ω1的共轭转置,a(θ)为方向矢量函数,θ为方向角,取值范围为Ω,Ω为保密信号波束的旁瓣区域,a(θ1)为所述合法用户设备接收保密信号的方向矢量参数,θ1为所述合法用户设备接收保密信号的方向角,γB为第二阈值,α为用于传输所述保密信号的信道的第一信道衰落参数,P=∫Ωa(θ)aH(θ)dθ,为第一阈值。
可选地,所述计算单元62,具体用于当利用所述第二信号波束形成器参数发射的所述人工噪声信号对所述合法用户设备的干扰小于设定门限值时,根据所述方向矢量参数得到如下公式:
在确定在所述发射区域内的非法用户设备接收到的所述人工噪声信号的信干燥比小于第三阈值时,根据所述方向矢量参数得到如下公式:
在所述人工噪声信号的发射功率与所述保密信号的发射功率之和小于设定发射功率时,得到如下公式:
其中,ω0为第二信号波束形成器参数,为ω0的共轭转置,a(θ)为方向矢量函数,θ为方向角,取值范围为ΩAN,ΩAN为确定的人工噪声信号的发射区域,a(θ1)为方向矢量参数,λ为第三阈值,η为设定门限值,为所述人工噪声信号的发射功率,ω1为第一信号波束形成器参数,为ω1的共轭转置,为所述保密信号的发射功率,Pt为设定发射功率,θ1为合法用户设备接收保密信号的方向角。
可选地,所述确定单元63,具体用于根据所述方向矢量参数,通过以下方式确定所述保密信号的能量泄露区域:
根据所述保密信号的能量泄露区域和发射所述保密信号的信号波束形成器的主瓣区域,得到人工噪声信号的发射区域。
可选地,所述确定单元63,具体用于若发送的人工噪声信号的个数为至少两个时,根据所述方向矢量参数,确定待发送的至少两个人工噪声信号的发射区域;
根据待发送的人工噪声信号的个数,将确定的所述发射区域进行划分;
根据划分结果,为每一个待发送的人工噪声信号确定发射区域,其中,每一个人工噪声信号对应的发射区域不重叠。
可选地,所述发送单元64,具体用于利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,得到处理后的信
号:
需要说明的是,本发明实施例中所述的信号发送设备可以通过软件方式实现,也可以通过硬件方式实现,这里不做限定。
图7为本发明实施例提供的一种信号发送设备的结构示意图。所述信号发送设备可以采用通用计算机结构。所述信号发送设备包括:信号接收器71、处理器72和信号发射器73。其中:
信号接收器71,用于接收合法用户设备发送的上行导频信号,并根据所述上行导频信号确定所述合法用户设备接收保密信号的方向矢量参数和用于传输所述保密信号的信道的第一信道衰落参数;
处理器72,用于根据所述方向矢量参数和所述第一信道衰落参数,计算发射所述保密信号的第一信号波束形成器参数,其中,所述第一信号波束形成器参数能够使得所述基站发射的所述保密信号的能量泄露小于第一阈值,并且使得所述合法用户设备接收到的所述保密信号的信干燥比大于第二阈值;
根据所述方向矢量参数,确定人工噪声信号的发射区域,并根据所述方向矢量参数,计算发射所述人工噪声信号的第二信号波束形成器参数,其中,所述第二信号波束形成器参数能够使得所述基站发射的所述人工噪声信号对所述合法用户设备的干扰小于预设门限值,且使得在所述发射区域内的非法用户设备接收到的所述人工噪声信号的信干燥比小于第三阈值,且使得所述人工噪声信号的发射功率与所述保密信号的发射功率之和小于预设发射功率;
信号发射器73,用于利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,并发射处理后的信号。
具体地,所述处理器72根据所述方向矢量参数和所述第一信道衰落参数,计算发射所述保密信号的第一信号波束形成器参数,具体包括:
当利用所述第一信号波束形成器参数发射的所述保密信号的能量泄露小于所述第一阈值时,根据所述方向矢量参数和所述第一信道衰落参数得到如下公式:
当确定利用所述第一信号波束形成器参数发射的所述保密信号使得所述合法用户设备接收到的所述保密信号的信干燥比大于设定第二阈值时,根据所述方向矢量参数和所述第一信道衰落参数得到如下公式:
其中,ω1为第一信号波束形成器参数,为ω1的共轭转置,a(θ)为方向矢量函数,θ为方向角,取值范围为Ω,Ω为保密信号波束的旁瓣区域,a(θ1)为所述合法用户设备接收保密信号的方向矢量参数,θ1为所述合法用户设备接收保密信号的方向角,γB为第二阈值,α为用于传输所述保密信号的信道的第一信道衰落参数,P=∫Ωa(θ)aH(θ)dθ,为第一阈值。
具体地,所述处理器72根据所述方向矢量参数,计算发射所述人工噪声信号的第二信号波束形成器参数,具体包括:
当利用所述第二信号波束形成器参数发射的所述人工噪声信号对所述合
法用户设备的干扰小于设定门限值时,根据所述方向矢量参数得到如下公式:
在确定在所述发射区域内的非法用户设备接收到的所述人工噪声信号的信干燥比小于第三阈值时,根据所述方向矢量参数得到如下公式:
在所述人工噪声信号的发射功率与所述保密信号的发射功率之和小于设定发射功率时,得到如下公式:
其中,ω0为第二信号波束形成器参数,为ω0的共轭转置,a(θ)为方向矢量函数,θ为方向角,取值范围为ΩAN,ΩAN为确定的人工噪声信号的发射区域,a(θ1)为方向矢量参数,λ为第三阈值,η为设定门限值,为所述人工噪声信号的发射功率,ω1为第一信号波束形成器参数,为ω1的共轭转置,为所述保密信号的发射功率,Pt为设定发射功率,θ1为合法用户设备接收保密信号的方向角。
具体地,所述处理器72根据所述方向矢量参数,确定人工噪声信号的发射区域,具体包括:
所述根据所述方向矢量参数,通过以下方式确定所述保密信号的能量泄露区域:
根据所述保密信号的能量泄露区域和发射所述保密信号的信号波束形成器的主瓣区域,得到人工噪声信号的发射区域。
具体地,所述处理器72根据所述方向矢量参数,确定人工噪声信号的发射区域,包括:
若发送的人工噪声信号的个数为至少两个时,根据所述方向矢量参数,确定待发送的至少两个人工噪声信号的发射区域;
根据待发送的人工噪声信号的个数,将确定的所述发射区域进行划分;
根据划分结果,为每一个待发送的人工噪声信号确定发射区域,其中,每一个人工噪声信号对应的发射区域不重叠。
具体地,所述信号发射器73利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,包括:
利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,得到处理后的信号:
本领域的技术人员应明白,本发明的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
Claims (12)
- 一种信号发送方法,其特征在于,包括:基站接收合法用户设备发送的上行导频信号,并根据所述上行导频信号确定所述合法用户设备接收保密信号的方向矢量参数和用于传输所述保密信号的信道的第一信道衰落参数;所述基站根据所述方向矢量参数和所述第一信道衰落参数,计算发射所述保密信号的第一信号波束形成器参数,其中,所述第一信号波束形成器参数能够使得所述基站发射的所述保密信号的能量泄露小于第一阈值,并且使得所述合法用户设备接收到的所述保密信号的信干燥比大于第二阈值;所述基站根据所述方向矢量参数,确定人工噪声信号的发射区域,并根据所述方向矢量参数,计算发射所述人工噪声信号的第二信号波束形成器参数,其中,所述第二信号波束形成器参数能够使得所述基站发射的所述人工噪声信号对所述合法用户设备的干扰小于预设门限值,且使得在所述发射区域内的非法用户设备接收到的所述人工噪声信号的信干燥比小于第三阈值,且使得所述人工噪声信号的发射功率与所述保密信号的发射功率之和小于预设发射功率;所述基站利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,并发射处理后的信号。
- 如权利要求1所述的信号发送方法,其特征在于,所述基站根据所述方向矢量参数和所述第一信道衰落参数,计算发射所述保密信号的第一信号波束形成器参数,包括:当利用所述第一信号波束形成器参数发射的所述保密信号的能量泄露小于所述第一阈值时,所述基站根据所述方向矢量参数和所述第一信道衰落参数得到如下公式:当确定利用所述第一信号波束形成器参数发射的所述保密信号使得所述合法用户设备接收到的所述保密信号的信干燥比大于设定第二阈值时,所述基站根据所述方向矢量参数和所述第一信道衰落参数得到如下公式:
- 如权利要求1所述的信号发送方法,其特征在于,所述基站根据所述方向矢量参数,计算发射所述人工噪声信号的第二信号波束形成器参数,包括:当利用所述第二信号波束形成器参数发射的所述人工噪声信号对所述合法用户设备的干扰小于设定门限值时,所述基站根据所述方向矢量参数得到如下公式:在确定在所述发射区域内的非法用户设备接收到的所述人工噪声信号的信干燥比小于第三阈值时,所述基站根据所述方向矢量参数得到如下公式:所述基站在所述人工噪声信号的发射功率与所述保密信号的发射功率之和小于设定发射功率时,得到如下公式:
- 如权利要求1至4任一项所述的信号发送方法,其特征在于,所述基站根据所述方向矢量参数,确定人工噪声信号的发射区域,包括:若发送的人工噪声信号的个数为至少两个时,所述基站根据所述方向矢量参数,确定待发送的至少两个人工噪声信号的发射区域;所述基站根据待发送的人工噪声信号的个数,将确定的所述发射区域进行划分;所述基站根据划分结果,为每一个待发送的人工噪声信号确定发射区域,其中,每一个人工噪声信号对应的发射区域不重叠。
- 一种信号发送设备,其特征在于,包括:接收单元,用于接收合法用户设备发送的上行导频信号,并根据所述上行导频信号确定所述合法用户设备接收保密信号的方向矢量参数和用于传输所述保密信号的信道的第一信道衰落参数;计算单元,用于根据所述方向矢量参数和所述第一信道衰落参数,计算发射所述保密信号的第一信号波束形成器参数,其中,所述第一信号波束形成器参数能够使得所述基站发射的所述保密信号的能量泄露小于第一阈值, 并且使得所述合法用户设备接收到的所述保密信号的信干燥比大于第二阈值;确定单元,用于根据所述方向矢量参数,确定人工噪声信号的发射区域;所述计算单元,用于根据所述方向矢量参数,计算发射所述人工噪声信号的第二信号波束形成器参数,其中,所述第二信号波束形成器参数能够使得所述基站发射的所述人工噪声信号对所述合法用户设备的干扰小于预设门限值,且使得在所述发射区域内的非法用户设备接收到的所述人工噪声信号的信干燥比小于第三阈值,且使得所述人工噪声信号的发射功率与所述保密信号的发射功率之和小于预设发射功率;发送单元,用于利用所述第一信号波束形成器参数和所述第二信号波束形成器参数对待发射的信号进行处理,并发射处理后的信号。
- 如权利要求7所述的信号发送设备,其特征在于,所述计算单元,具体用于当利用所述第一信号波束形成器参数发射的所述保密信号的能量泄露小于所述第一阈值时,根据所述方向矢量参数和所述第一信道衰落参数得到如下公式:当确定利用所述第一信号波束形成器参数发射的所述保密信号使得所述合法用户设备接收到的所述保密信号的信干燥比大于设定第二阈值时,根据所述方向矢量参数和所述第一信道衰落参数得到如下公式:
- 如权利要求7所述的信号发送设备,其特征在于,所述计算单元,具体用于当利用所述第二信号波束形成器参数发射的所述人工噪声信号对所述合法用户设备的干扰小于设定门限值时,根据所述方向矢量参数得到如下公式:在确定在所述发射区域内的非法用户设备接收到的所述人工噪声信号的信干燥比小于第三阈值时,根据所述方向矢量参数得到如下公式:在所述人工噪声信号的发射功率与所述保密信号的发射功率之和小于设定发射功率时,得到如下公式:
- 如权利要求7至10任一项所述的信号发送设备,其特征在于,所述确定单元,具体用于若发送的人工噪声信号的个数为至少两个时,根据所述方向矢量参数,确定待发送的至少两个人工噪声信号的发射区域;根据待发送的人工噪声信号的个数,将确定的所述发射区域进行划分;根据划分结果,为每一个待发送的人工噪声信号确定发射区域,其中,每一个人工噪声信号对应的发射区域不重叠。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15886067.6A EP3267617B1 (en) | 2015-03-23 | 2015-10-12 | Signal sending method and device |
US15/712,581 US9960880B2 (en) | 2015-03-23 | 2017-09-22 | Signal sending method and device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510127516.7A CN106160819B (zh) | 2015-03-23 | 2015-03-23 | 一种信号发送方法和设备 |
CN201510127516.7 | 2015-03-23 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/712,581 Continuation US9960880B2 (en) | 2015-03-23 | 2017-09-22 | Signal sending method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016150145A1 true WO2016150145A1 (zh) | 2016-09-29 |
Family
ID=56976960
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/091761 WO2016150145A1 (zh) | 2015-03-23 | 2015-10-12 | 一种信号发送方法和设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9960880B2 (zh) |
EP (1) | EP3267617B1 (zh) |
CN (1) | CN106160819B (zh) |
WO (1) | WO2016150145A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106656287A (zh) * | 2016-12-12 | 2017-05-10 | 西安交通大学 | 两种基于中断概率约束的miso窃听信道鲁棒波束成形方法 |
CN109511111A (zh) * | 2018-10-26 | 2019-03-22 | 西安理工大学 | 一种能量采集物联网系统数据安全传输的方法 |
CN111263363A (zh) * | 2020-01-16 | 2020-06-09 | 电子科技大学 | 一种高强度的安全传输方法 |
CN112350763A (zh) * | 2020-11-03 | 2021-02-09 | 电子科技大学 | 一种基于多频对数频控阵的调制方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107395260B (zh) * | 2017-07-05 | 2020-12-01 | 深圳大学 | 基于人造噪声的分布式安全波束成型方法及装置 |
CN110536227B (zh) * | 2018-05-23 | 2022-01-25 | 中国移动通信有限公司研究院 | 电子围栏的设定方法、装置及基站 |
CN109194378B (zh) * | 2018-08-06 | 2021-07-13 | 重庆邮电大学 | 基于线性神经网络的物理层安全波束赋形方法 |
CN113037346B (zh) * | 2021-03-12 | 2023-07-18 | 重庆邮电大学 | Irs与人工噪声辅助的mimo系统物理层安全设计方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102710363A (zh) * | 2012-06-13 | 2012-10-03 | 山东大学 | 一种改进的提高通信系统稳定性能的方法 |
CN104320777A (zh) * | 2014-10-30 | 2015-01-28 | 电子科技大学 | 一种基于波束成形的提高多天线系统通信安全的方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7054662B2 (en) * | 2001-01-24 | 2006-05-30 | Qualcomm, Inc. | Method and system for forward link beam forming in wireless communications |
US8929550B2 (en) * | 2013-02-01 | 2015-01-06 | Department 13, LLC | LPI/LPD communication systems |
KR101535643B1 (ko) | 2012-03-08 | 2015-07-09 | 경희대학교 산학협력단 | 무선 환경에서 보안 전송 방법 및 이를 구비한 송신장치 |
CN102710310B (zh) | 2012-06-07 | 2014-12-10 | 上海交通大学 | 基于slr的多用户安全通信的预编码方法 |
CN102724026B (zh) | 2012-06-07 | 2015-01-21 | 上海交通大学 | 全新的基于sdf的mume系统安全通信方法 |
CN104022841B (zh) * | 2014-06-18 | 2018-06-15 | 重庆邮电大学 | 一种基于加密传输和无线携能的通信方法和系统 |
-
2015
- 2015-03-23 CN CN201510127516.7A patent/CN106160819B/zh active Active
- 2015-10-12 EP EP15886067.6A patent/EP3267617B1/en active Active
- 2015-10-12 WO PCT/CN2015/091761 patent/WO2016150145A1/zh unknown
-
2017
- 2017-09-22 US US15/712,581 patent/US9960880B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102710363A (zh) * | 2012-06-13 | 2012-10-03 | 山东大学 | 一种改进的提高通信系统稳定性能的方法 |
CN104320777A (zh) * | 2014-10-30 | 2015-01-28 | 电子科技大学 | 一种基于波束成形的提高多天线系统通信安全的方法 |
Non-Patent Citations (2)
Title |
---|
WEI-CHENG LIAO ET AL.: "QoS-based Transmit Beamforming in the presence of Eavesdroppers: Artificial-Noise-Aided Approach", IEEE TRANSACTIONS ON SIGNAL PROCESSING, vol. 59, no. 3, 31 March 2011 (2011-03-31), pages 1202 - 1216, XP011348319 * |
WU, FEILONG WANG ET AL.: "A unified mathematical model for spatial scrambling based secure wireless communication and its wiretap method", SCIENCE CHINA : INFORMATION SCIENCE, vol. 42, no. issue 4, 31 December 2012 (2012-12-31), pages 1 - 5, XP032101062 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106656287A (zh) * | 2016-12-12 | 2017-05-10 | 西安交通大学 | 两种基于中断概率约束的miso窃听信道鲁棒波束成形方法 |
CN106656287B (zh) * | 2016-12-12 | 2021-01-19 | 西安交通大学 | 两种基于中断概率约束的miso窃听信道鲁棒波束成形方法 |
CN109511111A (zh) * | 2018-10-26 | 2019-03-22 | 西安理工大学 | 一种能量采集物联网系统数据安全传输的方法 |
CN111263363A (zh) * | 2020-01-16 | 2020-06-09 | 电子科技大学 | 一种高强度的安全传输方法 |
CN112350763A (zh) * | 2020-11-03 | 2021-02-09 | 电子科技大学 | 一种基于多频对数频控阵的调制方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3267617A1 (en) | 2018-01-10 |
US20180013515A1 (en) | 2018-01-11 |
CN106160819A (zh) | 2016-11-23 |
EP3267617A4 (en) | 2018-04-18 |
US9960880B2 (en) | 2018-05-01 |
EP3267617B1 (en) | 2019-04-24 |
CN106160819B (zh) | 2019-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016150145A1 (zh) | 一种信号发送方法和设备 | |
US10999000B2 (en) | Apparatus and method for secure communication using artificial noise scheme | |
Varade et al. | BER comparison of Rayleigh fading, Rician fading and AWGN channel using chaotic communication based MIMO-OFDM system | |
CN108366026B (zh) | 基于星座旋转的人工噪声的物理层安全传输方法 | |
Chu et al. | Joint secure transmit beamforming designs for integrated sensing and communication systems | |
CN109150257B (zh) | 一种大规模mimo波束域安全多播无线传输方法 | |
Wang et al. | A wireless secret key generation method based on Chinese remainder theorem in FDD systems | |
He et al. | The security of link signature: A view from channel models | |
CN114189309B (zh) | 一种基于涡旋电磁波的自适应安全通信装置及方法 | |
Kong et al. | Distributed beamforming in the presence of adversaries | |
CN113364554A (zh) | 一种感知辅助的上行安全通信方法 | |
CN110062384B (zh) | 一种基于信号旋转的无线监控方法 | |
KR102041041B1 (ko) | 인공 잡음 기법을 이용한 보안 통신 장치 및 그 방법 | |
US20170064547A1 (en) | Method for generating a digital key for secure wireless communication | |
Wang et al. | Pilot spoofing detection for massive MIMO mmWave communication systems with a cooperative relay | |
Zheng et al. | Covert federated learning via intelligent reflecting surfaces | |
Wu et al. | IRS-Assisted Covert Communication with Equal and Unequal Transmit Prior Probabilities | |
KR102041012B1 (ko) | 시분할 이중통신 다중 사용자 다중 안테나 환경에서 다중 안테나를 이용한 파일럿 오염 공격을 검출하는 방법 및 시스템 | |
CN109274486B (zh) | 基于多径分离的频分双工系统中互易信道增益构建方法 | |
Andrei et al. | Sensing-Assisted Receivers for Resilient-By-Design 6G MU-MIMO Uplink | |
Wang et al. | Optimal joint beamforming and jamming design for secure and covert URLLC | |
Lv et al. | RIS-Enhanced Secure Transmission in MTC Networks With Finite Blocklength | |
Liu et al. | Secure Beamforming for NOMA-ISAC With System Imperfections | |
Mahesh et al. | Design and Performance Analysis of Massive MIMO Modeling with Reflected Intelligent Surface to Enhance the Capacity of 6G Networks | |
Shu et al. | Secure directional modulation to enhance physical layer security in IoT networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15886067 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |