WO2016150096A1 - 流间干扰计算方法、装置、通信系统及计算机存储介质 - Google Patents

流间干扰计算方法、装置、通信系统及计算机存储介质 Download PDF

Info

Publication number
WO2016150096A1
WO2016150096A1 PCT/CN2015/088124 CN2015088124W WO2016150096A1 WO 2016150096 A1 WO2016150096 A1 WO 2016150096A1 CN 2015088124 W CN2015088124 W CN 2015088124W WO 2016150096 A1 WO2016150096 A1 WO 2016150096A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
stream
inter
channel
correlation
Prior art date
Application number
PCT/CN2015/088124
Other languages
English (en)
French (fr)
Inventor
吴昊
李军
徐万夫
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016150096A1 publication Critical patent/WO2016150096A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, an apparatus, a communication system, and a computer storage medium for calculating inter-stream interference in a large-scale MIMO system in an orthogonal frequency division multiplexing system.
  • Massive MIMO is one of the recognized key technologies for Long Term Evolution (LTE) and fifth-generation mobile communication technology (5G, 5-Generation), which can provide frequency efficiency. Significantly improve the capacity of the wireless network.
  • LTE Long Term Evolution
  • 5G fifth-generation mobile communication technology
  • the large-scale MIMO system can increase the peak rate and the cell capacity by multiplexing the gain by transmitting multiple data streams in parallel on multiple antennas. In order to transmit multiple data streams in parallel, quantitative knowledge is needed. The performance caused by inter-stream interference is degraded.
  • the prior art method for determining inter-stream interference is to generate a data stream with different correlation coefficients through a wireless channel, and then obtain an inter-stream interference quantitatively according to a calculation formula of a signal to interference plus noise ratio (SINR).
  • SINR signal to interference plus noise ratio
  • embodiments of the present invention are expected to provide a method, a device, and a method for calculating inter-stream interference.
  • the letter system and computer storage medium can solve the problem of low precision of the existing inter-stream interference calculation technology.
  • An embodiment of the present invention provides a method for calculating inter-stream interference.
  • the method includes: receiving a sounding signal; constructing a correlation matrix of the data stream according to the sounding signal; and calculating inter-stream interference according to the correlation matrix.
  • the constructing the correlation matrix of the data stream according to the sounding signal comprises: performing channel estimation on the sounding signal to obtain a channel response, calculating a correlation coefficient according to the channel response, and constructing a correlation matrix according to the correlation coefficient.
  • the constructing the correlation matrix of the data stream according to the detection signal includes:
  • the calculating the inter-stream interference according to the correlation matrix comprises: calculating a channel matrix according to the correlation matrix, acquiring a shaping matrix through the channel matrix, and calculating inter-stream interference according to the channel matrix and the shaping matrix.
  • the calculating the inter-stream interference according to the channel matrix and the shaping matrix comprises:
  • the embodiment of the present invention also provides an inter-stream interference computing device.
  • the method includes: a receiving module configured to receive a sounding signal; a building module configured to construct a correlation matrix of the data stream according to the sounding signal; and a processing module , configured to calculate inter-stream interference based on the correlation matrix.
  • the constructing module is further configured to perform channel estimation on the sounding signal to obtain a channel response, calculate a correlation coefficient according to the channel response, and construct a correlation matrix according to the correlation coefficient.
  • the building module is specifically configured as:
  • the processing module is configured to: calculate a channel matrix according to the correlation matrix, acquire a shaping matrix through the channel matrix, and calculate inter-stream interference according to the channel matrix and the shaping matrix.
  • the matrix R is multiplied by the matrix U to obtain a channel matrix H;
  • the processing module further includes: a third processing submodule configured to:
  • the embodiment of the invention also provides a communication system, wherein the large-scale MIMO system in the communication system comprises a base station, and the base station sets the inter-stream interference calculation device described above.
  • the embodiment of the invention provides a computer storage medium, wherein the computer storage medium stores a computer program, and the computer program is used to execute the inter-stream interference calculation method described above.
  • the inter-stream interference calculation method, device, communication system and computer storage medium provided by the embodiments of the present invention construct a correlation matrix of the data stream according to the detection signal sent by the terminal, and then calculate inter-stream interference according to the correlation matrix, and calculate according to the detection signal.
  • the correlation coefficient in the correlation matrix is not affected by external factors, and the correlation coefficient is more accurate.
  • the inter-stream interference is calculated according to the correlation matrix, compared with the existing method of obtaining inter-stream interference based on the SINR calculation formula. Small and simple.
  • FIG. 1 is a schematic diagram of an inter-stream interference calculation apparatus according to a first embodiment of the present invention
  • FIG. 2 is a flowchart of a method for calculating inter-stream interference according to a second embodiment of the present invention
  • FIG. 3 is a flowchart of a method for calculating inter-stream interference according to a third embodiment of the present invention.
  • an inter-stream interference calculation apparatus 1 for a large-scale multiple input multiple output system provided by the present invention.
  • an inter-stream interference calculation apparatus 1 for a large-scale multiple input multiple output system provided by the present invention.
  • the receiving module 11 is configured to receive the detection signal
  • the building module 12 is configured to construct a correlation matrix of the data stream according to the detection signal
  • the processing module 13 is configured to calculate inter-stream interference according to the correlation matrix.
  • the building block 12 in the above embodiment is configured to perform channel estimation on the sounding signal to obtain a channel response, calculate a correlation coefficient according to the channel response, and construct a correlation matrix according to the correlation coefficient.
  • the building block 12 in the above embodiment is specifically configured to:
  • the processing module 13 in the foregoing embodiment is configured to calculate a channel matrix according to the correlation matrix, acquire a shaping matrix through the channel matrix, and calculate inter-stream interference according to the channel matrix and the shaping matrix.
  • the -1 H * calculation obtains the shape matrix B.
  • the processing module 13 in the foregoing embodiment further includes: a third processing submodule configured to:
  • the receiving module 11, the building module 12, and the processing module 13 can be implemented by a processor, and can also be implemented by a specific logic circuit.
  • the processor can be a processor on a base station. In practical applications, the processor It can be a Central Processing Unit (CPU), a Micro Processor Unit (MPU), a Digital Signal Processor (DSP), or a Field Programmable Gate Array (FPGA). Wait.
  • CPU Central Processing Unit
  • MPU Micro Processor Unit
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the embodiment of the present invention also provides a communication system.
  • the large-scale multi-input and multi-out system in the communication system includes a base station, and the base station is provided with the inter-stream interference calculation device provided in this embodiment.
  • the inter-stream interference calculation method for the multiple input multiple output system includes The following steps:
  • S203 Calculate inter-stream interference according to the correlation matrix.
  • constructing the correlation matrix of the data stream according to the sounding signal in the foregoing embodiment includes: performing channel estimation on the sounding signal to obtain a channel response, calculating a correlation coefficient according to the channel response, and constructing a correlation matrix according to the correlation coefficient.
  • channel estimation is performed on the sounding signal in the above embodiment to obtain a channel response.
  • the correlation coefficient of stream k1 and stream k2 Construct a correlation matrix C of dimension N ⁇ N, and the k 1 k 2 element of the correlation matrix C is Value; where k is the stream number index, m is the antenna index, p is the carrier index, N is the number of streams, M is the total number of antennas, P is the total number of carriers, * is the conjugate transpose, and
  • is the modulus value.
  • calculating inter-stream interference according to the correlation matrix in the foregoing embodiment includes: calculating a channel matrix according to the correlation matrix, acquiring a shaping matrix through the channel matrix, and calculating inter-stream interference according to the channel matrix and the shaping matrix.
  • calculating inter-stream interference according to the channel matrix and the shaping matrix in the above embodiment includes:
  • N 1 is increased to the inter-flow interference caused by N 2 ;
  • P k is the power of the k-th stream
  • P j is the power of the j-th stream
  • B k is the k- th column vector of the shaping matrix B
  • H k is Channel matrix H k- th column vector
  • B j is the j-th column vector of the shaping matrix B
  • H j is the j-th column vector of the channel matrix H, 0 ⁇ j, k ⁇ N
  • N is the number of streams
  • N 0 is the receiving end noise.
  • FIG. 3 is a flowchart of a method for calculating inter-stream interference according to a third embodiment of the present invention. As shown in FIG. 3, in the embodiment, the inter-stream interference calculation method includes the following steps:
  • the base station obtains a correlation matrix C of the data stream according to the uplink sounding signal.
  • This step includes:
  • the base station obtains the sounding signal sent by the terminal, performs channel estimation on the sounding signal, and obtains a channel response.
  • k represents the stream number index
  • m represents the antenna index
  • p represents the carrier index
  • the total number of streams is N, the total number of antennas is M, and the total number of carriers is P;
  • Random data with a mean of 0 variance of 1 can be obtained by the randn function, and a dimension is constructed as a P ⁇ N random matrix R as follows:
  • the channel matrix H is obtained by multiplying the random matrix R by the matrix U.
  • the signal is:
  • x k is the transmission data of the kth stream
  • H k is the kth column vector of the channel matrix H
  • B k is the kth column vector of the shaping matrix B
  • the signal-to-noise ratio SINR N can be calculated according to the following formula:
  • P k is the power of the kth stream
  • P j is the power of the jth stream
  • B k is the kth column vector of the shaping matrix B
  • H k is the kth column vector of the channel matrix H
  • B j is the assignment Shape matrix B jth column vector
  • H j is the channel matrix H jth column vector, 0 ⁇ j, k ⁇ N
  • N is the number of streams
  • N 0 is the receiving end noise
  • S305 Schedule the terminal according to inter-stream interference.
  • the base station reports the inter-stream interference result to the upper layer for use by the high-level scheduling terminal.
  • the embodiment of the present invention further describes a computer storage medium, wherein the computer storage medium stores a computer program for performing the inter-stream interference calculation method shown in FIG. 2 or FIG. 3 in the embodiment of the present invention.
  • the correlation matrix of the data stream is constructed, and then the inter-stream interference is calculated according to the correlation matrix.
  • the correlation coefficient in the correlation matrix calculated according to the detection signal is not affected by external factors, and the correlation coefficient is more accurate; and according to the correlation matrix
  • the calculation of the inter-stream interference is smaller and the process is simpler than the existing method of obtaining the inter-stream interference according to the SINR calculation formula.
  • the inter-stream interference calculation apparatus may be disposed in a base station, which reduces implementation cost.
  • the correlation matrix of the data stream is constructed according to the detection signal sent by the terminal, and the inter-stream interference is calculated according to the correlation matrix, and the correlation coefficient in the correlation matrix calculated according to the detection signal is not affected by external factors, and the correlation coefficient is more accurate.
  • the inter-flow interference is calculated according to the correlation matrix, and the calculation amount is small and the process is simple compared with the existing method of obtaining the inter-stream interference according to the SINR calculation formula.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种流间干扰计算方法、装置、通信系统及计算机存储介质。其中,所述方法包括:接收探测信号;根据探测信号构建数据流的相关矩阵;根据相关矩阵计算流间干扰。

Description

流间干扰计算方法、装置、通信系统及计算机存储介质 技术领域
本发明涉及通信技术领域,尤其涉及一种用于正交频分复用系统中大规模多入多出系统中的流间干扰计算方法、装置、通信系统及计算机存储介质。
背景技术
大规模多入多出(Massive MIMO)是长期演进(LTE,Long Term Evolution)和第五代移动通信技术(5G,5-Generation)公认的关键技术之一,该技术可以大幅度提供频率效率,显著改善无线网络的容量。大规模多入多出相对当前多入多出的数百倍规模的天线部署,配合波束赋形,能够更加精细的控制天线波瓣。大规模多入多出系统通过在多个天线上并行发送多个数据流,可以通过复用增益来提高峰值速率和小区容量,为了能够较好的并行的发送多个数据流,需要定量的获知流间干扰带来的性能下降。
现有技术确定流间干扰的方法是通过无线信道产生不同相关系数的数据流,然后在终端根据信号与干扰加噪声比(SINR,Signal to Interference plus Noise Ratio)计算公式定量的获得流间干扰,这种方法存在数据流的相关系数不能精确确定、计算量大和复杂度高等问题。
因此,如何提供一种具备高精确度的流间干扰计算方法,是本领域技术人员亟待解决的技术问题。
发明内容
有鉴于此,本发明实施例期望提供一种流间干扰计算方法、装置、通 信系统及计算机存储介质,能解决现有流间干扰计算技术精度低的问题。
本发明实施例的技术方案是这样实现的:
本发明实施例提供了一种流间干扰计算方法,在一个实施例中,该方法包括:接收探测信号;根据探测信号构建数据流的相关矩阵;根据相关矩阵计算流间干扰。
上述方案中,所述根据探测信号构建数据流的相关矩阵包括:对探测信号进行信道估计得到信道响应,根据信道响应计算相关系数,根据相关系数构建相关矩阵。
上述方案中,所述根据探测信号构建数据流的相关矩阵包括,包括:
对探测信号进行信道估计得到信道响应
Figure PCTCN2015088124-appb-000001
根据
Figure PCTCN2015088124-appb-000002
计算流k1和流k2的相关系数
Figure PCTCN2015088124-appb-000003
构造维度为N×N的相关矩阵C,相关矩阵C的k1k2元素为
Figure PCTCN2015088124-appb-000004
值;其中,k为流数索引,m为天线索引,p为载波索引,N为流数,M为天线总数,P为载波总数,*表示共轭转置,||表示模值。
上述方案中,所述根据相关矩阵计算流间干扰包括:根据相关矩阵计算信道矩阵,通过信道矩阵获取赋形矩阵,根据信道矩阵和赋形矩阵计算流间干扰。
上述方案中,所述根据相关矩阵计算信道矩阵包括:对相关矩阵C进行Cholesky分解得到矩阵U=chol(C),构造维度P×N的随机矩阵R,根据H=RU将随机矩阵R与矩阵U相乘计算得到信道矩阵H;通过信道矩阵获取赋形矩阵包括:对信道矩阵H进行共轭转置,获得矩阵H*,根据B=(H*H)-1H*计算获得赋形矩阵B。
上述方案中,所述根据信道矩阵和赋形矩阵计算流间干扰包括:
根据
Figure PCTCN2015088124-appb-000005
计算信噪比;
根据计算流数N1增加到N2导致的流间干扰
Figure PCTCN2015088124-appb-000007
其中,Pk是第k流的功率,Pj是第j流的功率,Bk为赋形矩阵B第k列向量,Hk为信道矩阵H第k列向量,Bj为赋形矩阵B第j列向量,Hj为信道矩阵H第j列向量,0<j,k≤N,N为流数,N0为接收端底噪。
本发明实施例也提供了一种流间干扰计算装置,在一个实施例中,其包括:接收模块,配置为接收探测信号;构建模块,配置为根据探测信号构建数据流的相关矩阵;处理模块,配置为根据相关矩阵计算流间干扰。
上述方案中,所述构建模块,还配置为对探测信号进行信道估计得到信道响应,根据信道响应计算相关系数,根据相关系数构建相关矩阵。
上述方案中,所述构建模块,具体配置为:
对探测信号进行信道估计得到信道响应
Figure PCTCN2015088124-appb-000008
根据
Figure PCTCN2015088124-appb-000009
计算流k1和流k2的相关系数
Figure PCTCN2015088124-appb-000010
构造维度为N×N的相关矩阵C,相关矩阵C的k1k2元素为
Figure PCTCN2015088124-appb-000011
值;其中,k为流数索引,m为天线索引,p为载波索引,N为流数,M为天线总数,P为载波总数,*表示共轭转置,||表示模值。
上述方案中,所述处理模块配置为:根据相关矩阵计算信道矩阵,通过信道矩阵获取赋形矩阵,根据信道矩阵和赋形矩阵计算流间干扰。
上述方案中,所述处理模块包括:第一处理子模块,配置为对相关矩阵C进行Cholesky分解得到矩阵U=chol(C),构造维度P×N的随机矩阵R;根据H=RU将随机矩阵R与矩阵U相乘计算得到信道矩阵H;第二处理子模块,配置为对信道矩阵H进行共轭转置,获得矩阵H*,根据B=(H*H)-1H* 计算获得赋形矩阵B。
上述方案中,所述处理模块还包括:第三处理子模块,配置为:
根据
Figure PCTCN2015088124-appb-000012
计算信噪比;
根据
Figure PCTCN2015088124-appb-000013
计算流数N1增加到N2导致的流间干扰
Figure PCTCN2015088124-appb-000014
其中,Pk是第k流的功率,Pj是第j流的功率,Bk为赋形矩阵B第k列向量,Hk为信道矩阵H第k列向量,Bj为赋形矩阵B第j列向量,Hj为信道矩阵H第j列向量,0<j,k≤N,N为流数,N0为接收端底噪。
本发明实施例也提供了一种通信系统,该通信系统中的大规模多入多出系统包括基站,基站设置上文所述的流间干扰计算装置。
本发明实施例提供了一种计算机存储介质,所述计算机存储介质中存储有计算机程序,所述计算机程序用于执行以上所述的流间干扰计算方法。
本发明实施例所提供的流间干扰计算方法、装置、通信系统及计算机存储介质,根据终端发送的探测信号构建数据流的相关矩阵,进而根据相关矩阵计算流间干扰,根据探测信号计算得到的相关矩阵中相关系数不受外界因素的影响,相关系数精度更高;同时根据相关矩阵计算流间干扰,与现有需要在终端根据SINR计算公式定量的获得流间干扰的方式相比,计算量小且过程简单。
附图说明
图1为本发明第一实施例提供的流间干扰计算装置的示意图;
图2为本发明第二实施例提供的流间干扰计算方法的流程图;
图3为本发明第三实施例提供的流间干扰计算方法的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图及具体实施例对本发明进行详细描述。
第一实施例:
图1为本发明第一实施例提供的流间干扰计算装置的示意图,由图1可知,在本实施例中,本发明提供的用于大规模多入多出系统的流间干扰计算装置1包括:
接收模块11,配置为接收探测信号;
构建模块12,配置为根据探测信号构建数据流的相关矩阵;
处理模块13,配置为根据相关矩阵计算流间干扰。
在一些实施例中,上述实施例中的构建模块12配置为对探测信号进行信道估计得到信道响应,根据信道响应计算相关系数,根据相关系数构建相关矩阵。
在一些实施例中,上述实施例中的构建模块12具体配置为:
对探测信号进行信道估计得到信道响应
Figure PCTCN2015088124-appb-000015
根据
Figure PCTCN2015088124-appb-000016
计算流k1和流k2的相关系数
Figure PCTCN2015088124-appb-000017
构造维度为N×N的相关矩阵C,相关矩阵C的k1k2元素为值;其中,k为流数索引,m为天线索引,p为载波索引,N为流数,M为天线总数,P为载波总数,*表示共轭转置,||表示模值。
在一些实施例中,上述实施例中的处理模块13,配置为根据相关矩阵计算信道矩阵,通过信道矩阵获取赋形矩阵,根据信道矩阵和赋形矩阵计算流间干扰。
在一些实施例中,上述实施例中的处理模块13包括:第一处理子模块,配置为对相关矩阵C进行Cholesky分解得到矩阵U=chol(C),构造维度P×N 的随机矩阵R,根据H=RU将随机矩阵R与矩阵U相乘计算得到信道矩阵H;第二处理子模块,配置为对信道矩阵H进行共轭转置,获得矩阵H*,根据B=(H*H)-1H*计算获得赋形矩阵B。
在一些实施例中,上述实施例中的处理模块13还包括:第三处理子模块,配置为:
根据
Figure PCTCN2015088124-appb-000019
计算信噪比;
根据
Figure PCTCN2015088124-appb-000020
计算流数N1增加到N2导致的流间干扰
Figure PCTCN2015088124-appb-000021
其中,Pk是第k流的功率,Pj是第j流的功率,Bk为赋形矩阵B第k列向量,Hk为信道矩阵H第k列向量,Bj为赋形矩阵B第j列向量,Hj为信道矩阵H第j列向量,0<j,k≤N,N为流数,N0为接收端底噪。
上述接收模块11、构建模块12、处理模块13都可以通过处理器来实现,当然也可通过具体的逻辑电路实现;其中所述处理器可以是基站上的处理器,在实际应用中,处理器可以为中央处理器(CPU,Central Processing Unit)、微处理器(MPU,Micro Processor Unit)、数字信号处理器(DSP,Digital Signal Processor)、或现场可编程门阵列(FPGA,Field Programmable Gate Array)等。
对应地,本发明实施例也提供了一种通信系统,该通信系统中的大规模多入多出系统包括基站,基站设置有本实施例提供的流间干扰计算装置。
第二实施例:
图2为本发明第二实施例提供的流间干扰计算方法的流程图,由图2可知,在本实施例中,本实施例提供的用于多入多出系统的流间干扰计算方法包括以下步骤:
S201:接收探测信号;
S202:根据探测信号构建数据流的相关矩阵;
S203:根据相关矩阵计算流间干扰。
在一些实施例中,上述实施例中的根据探测信号构建数据流的相关矩阵包括:对探测信号进行信道估计得到信道响应,根据信道响应计算相关系数,根据相关系数构建相关矩阵。
在一些实施例中,上述实施例中的对探测信号进行信道估计得到信道响应
Figure PCTCN2015088124-appb-000022
根据
Figure PCTCN2015088124-appb-000023
计算流k1和流k2的相关系数
Figure PCTCN2015088124-appb-000024
构造维度为N×N的相关矩阵C,相关矩阵C的k1k2元素为
Figure PCTCN2015088124-appb-000025
值;其中,k为流数索引,m为天线索引,p为载波索引,N为流数,M为天线总数,P为载波总数,*表示共轭转置,||表示模值。
在一些实施例中,上述实施例中的根据相关矩阵计算流间干扰包括:根据相关矩阵计算信道矩阵,通过信道矩阵获取赋形矩阵,根据信道矩阵和赋形矩阵计算流间干扰。
在一些实施例中,上述实施例中的根据相关矩阵计算信道矩阵包括:对相关矩阵C进行Cholesky分解得到矩阵U=chol(C),构造维度P×N的随机矩阵R,根据H=RU将随机矩阵R与矩阵U相乘计算得到信道矩阵;通过信道矩阵获取赋形矩阵包括:对信道矩阵H进行共轭转置,获得矩阵H*,根据B=(H*H)-1H*计算获得赋形矩阵B。
在一些实施例中,上述实施例中的根据信道矩阵和赋形矩阵计算流间干扰包括:
根据
Figure PCTCN2015088124-appb-000026
计算信噪比;
根据
Figure PCTCN2015088124-appb-000027
计算流数N1增加到N2导致的流间干 扰;其中,Pk是第k流的功率,Pj是第j流的功率,Bk为赋形矩阵B第k列向量,Hk为信道矩阵H第k列向量,Bj为赋形矩阵B第j列向量,Hj为信道矩阵H第j列向量,0<j,k≤N,N为流数,N0为接收端底噪。
第三实施例:
图3为本发明第三实施例提供的流间干扰计算方法的流程图,由图3可知,在本实施例中,所述流间干扰计算方法包括以下步骤:
S301:基站根据上行探测信号获得数据流的相关矩阵C。
该步骤包括:
基站获得终端发送的探测信号,对探测信号进行信道估计得到信道响应
Figure PCTCN2015088124-appb-000028
其中k表示流数索引,m表示天线索引,p表示载波索引;
通过下式计算流k1和流k2的相关系数:
Figure PCTCN2015088124-appb-000029
其中,流数总数为N,天线总数为M,载波总数为P;
根据
Figure PCTCN2015088124-appb-000030
构造如下的维度为N×N相关矩阵为C:
Figure PCTCN2015088124-appb-000031
S302:通过相关矩阵C的Cholesky分解得到信道矩阵H。
该步骤包括:对步骤S301得到的相关矩阵C进行Cholesky分解得到矩阵U=chol(C),矩阵U的维度为P×N
均值为0方差为1的随机数据可以通过randn函数获得,如下构造一个维度为P×N随机矩阵R:
Figure PCTCN2015088124-appb-000032
将随机矩阵R与矩阵U相乘计算得到信道矩阵H。
S303:通过信道矩阵H的解相关得到赋形矩阵B。
赋形矩阵B通过信道矩阵H经过如下变换得到B=(H*H)-1H*,其中*表示矩阵共轭转置。
S304:根据信道矩阵H和赋形矩阵B计算流间干扰
Figure PCTCN2015088124-appb-000033
信道模型可以表示为Yk=HkX+Wk,其中Yk是第k流的接收信号,Hk是第k流的信道响应,X是发射信号,Wk是接收端噪声;
假设第k流的赋形向量为Bk,那么发送信号为:
Figure PCTCN2015088124-appb-000034
其中xk为第k流的发送数据,Hk为信道矩阵H第k列向量,Bk为赋形矩阵B第k列向量;
将上式带入信道模型,可以得到第k流接收表达式如下:
Figure PCTCN2015088124-appb-000035
那么针对流数为N的信号,其信噪比SINRN可以根据以下公式计算:
Figure PCTCN2015088124-appb-000036
在本公式中,Pk是第k流的功率,Pj是第j流的功率,Bk为赋形矩阵B第k列向量,Hk为信道矩阵H第k列向量,Bj为 赋形矩阵B第j列向量,Hj为信道矩阵H第j列向量,0<j,k≤N,N为流数,N0为接收端底噪;
进而可以根据
Figure PCTCN2015088124-appb-000037
计算流数N1增加到N2导致的流间干扰
Figure PCTCN2015088124-appb-000038
具体的,
Figure PCTCN2015088124-appb-000039
中的N值替换为N1及N2可以得到:
Figure PCTCN2015088124-appb-000040
Figure PCTCN2015088124-appb-000041
那么,
Figure PCTCN2015088124-appb-000042
S305:根据流间干扰对终端进行调度。
基站将流间干扰结果上报高层,供高层调度终端使用。
本发明实施例还记载一种计算机存储介质,所述计算机存储介质中存储有计算机程序,所述计算机程序用于执行本发明实施例中图2或图3所示的流间干扰计算方法。
综上可知,通过本发明实施所述技术方案,至少存在以下有益效果:
根据终端发送的探测信号构建数据流的相关矩阵,进而根据相关矩阵计算流间干扰,根据探测信号计算得到的相关矩阵中相关系数不受外界因素的影响,相关系数精度更高;同时根据相关矩阵计算流间干扰,与现有需要在终端根据SINR计算公式定量的获得流间干扰的方式相比,计算量小且过程简单。
本发明实施例所述流间干扰计算装置可以设置在基站中,降低了实现成本。
以上仅是本发明的具体实施方式而已,并非对本发明做任何形式上的限制,凡是依据本发明的技术实质对以上实施方式所做的任意简单修改、等同变化、结合或修饰,均仍属于本发明技术方案的保护范围。
工业实用性
本发明实施例中,根据终端发送的探测信号构建数据流的相关矩阵,进而根据相关矩阵计算流间干扰,根据探测信号计算得到的相关矩阵中相关系数不受外界因素的影响,相关系数精度更高;同时根据相关矩阵计算流间干扰,与现有需要在终端根据SINR计算公式定量的获得流间干扰的方式相比,计算量小且过程简单。

Claims (14)

  1. 一种流间干扰计算方法,所述方法包括:
    接收探测信号;
    根据所述探测信号构建数据流的相关矩阵;
    根据所述相关矩阵计算流间干扰。
  2. 如权利要求1所述的流间干扰计算方法,其中,根据所述探测信号构建数据流的相关矩阵包括:
    对所述探测信号进行信道估计得到信道响应,根据所述信道响应计算相关系数,根据所述相关系数构建相关矩阵。
  3. 如权利要求2所述的流间干扰计算方法,其中,
    对探测信号进行信道估计得到信道响应
    Figure PCTCN2015088124-appb-100001
    根据
    Figure PCTCN2015088124-appb-100002
    计算流k1和流k2的相关系数
    Figure PCTCN2015088124-appb-100003
    构造维度为N×N的相关矩阵C,相关矩阵C的k1k2元素为
    Figure PCTCN2015088124-appb-100004
    值;其中,k为流数索引,m为天线索引,p为载波索引,N为流数,M为天线总数,P为载波总数,*表示共轭转置,||表示模值。
  4. 如权利要求1至3任一项所述的流间干扰计算方法,其中,所述根据所述相关矩阵计算流间干扰包括:根据所述相关矩阵计算信道矩阵,通过所述信道矩阵获取赋形矩阵,根据所述信道矩阵和所述赋形矩阵计算流间干扰。
  5. 如权利要求4所述的流间干扰计算方法,其中,所述根据所述相关矩阵计算信道矩阵包括:
    对相关矩阵C进行Cholesky分解得到矩阵U=chol(C),构造维度P×N的随机矩阵R,根据H=RU将随机矩阵R与矩阵U相乘计算得到信道矩阵H; 通过信道矩阵获取赋形矩阵包括:对信道矩阵H进行共轭转置,获得矩阵H*,根据B=(H*H)-1H*计算获得赋形矩阵B。
  6. 如权利要求4所述的流间干扰计算方法,其中,所述根据所述信道矩阵和所述赋形矩阵计算流间干扰包括:
    根据
    Figure PCTCN2015088124-appb-100005
    计算信噪比;
    根据
    Figure PCTCN2015088124-appb-100006
    计算流数N1增加到N2导致的流间干扰
    Figure PCTCN2015088124-appb-100007
    其中,Pk是第k流的功率,Pj是第j流的功率,Bk为赋形矩阵B第k列向量,Hk为信道矩阵H第k列向量,Bj为赋形矩阵B第j列向量,Hj为信道矩阵H第j列向量,0<j,k≤N,N为流数,N0为接收端底噪。
  7. 一种流间干扰计算装置,其中,所述装置包括:
    接收模块,配置为接收探测信号;
    构建模块,配置为根据所述探测信号构建数据流的相关矩阵;
    处理模块,配置为根据所述相关矩阵计算流间干扰。
  8. 如权利要求7所述的流间干扰计算装置,其中,所述构建模块,配置为对所述探测信号进行信道估计得到信道响应,根据所述信道响应计算相关系数,根据所述相关系数构建相关矩阵。
  9. 如权利要求8所述的流间干扰计算装置,其中,所述构建模块,具体配置为:
    对探测信号进行信道估计得到信道响应
    Figure PCTCN2015088124-appb-100008
    根据
    Figure PCTCN2015088124-appb-100009
    计算流k1和流k2的相关系数
    Figure PCTCN2015088124-appb-100010
    构造维度为N×N的相关矩阵C,相关矩阵C的k1k2元素为
    Figure PCTCN2015088124-appb-100011
    值;其中,k为流数索引,m为天线索引,p为载波索引,N为流数,M为 天线总数,P为载波总数,*表示共轭转置,||表示模值。
  10. 如权利要求7至9任一项所述的流间干扰计算装置,其中,所述处理模块,配置为根据所述相关矩阵计算信道矩阵,通过所述信道矩阵获取赋形矩阵,根据所述信道矩阵和所述赋形矩阵计算流间干扰。
  11. 如权利要求10所述的流间干扰计算装置,其中,所述处理模块包括:
    第一处理子模块,配置为对相关矩阵C进行Cholesky分解得到矩阵U=chol(C),构造维度P×N的随机矩阵R;根据H=RU将随机矩阵R与矩阵U相乘计算得到信道矩阵H;
    第二处理子模块,配置为对信道矩阵H进行共轭转置,获得矩阵H*,根据B=(H*H)-1H*计算获得赋形矩阵B。
  12. 如权利要求10所述的流间干扰计算装置,其中,所述处理模块还包括:第三处理子模块,配置为:
    根据
    Figure PCTCN2015088124-appb-100012
    计算信噪比;
    根据
    Figure PCTCN2015088124-appb-100013
    计算流数N1增加到N2导致的流间干扰
    Figure PCTCN2015088124-appb-100014
    其中,Pk是第k流的功率,Pj是第j流的功率,Bk为赋形矩阵B第k列向量,Hk为信道矩阵H第k列向量,Bj为赋形矩阵B第j列向量,Hj为信道矩阵H第j列向量,0<j,k≤N,N为流数,N0为接收端底噪。
  13. 一种通信系统,所述通信系统包括基站,所述基站设置有如权利要求7至12任一项所述的流间干扰计算装置。
  14. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至6任一项所述的方法。
PCT/CN2015/088124 2015-03-23 2015-08-26 流间干扰计算方法、装置、通信系统及计算机存储介质 WO2016150096A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510130529.XA CN106161290B (zh) 2015-03-23 2015-03-23 一种流间干扰计算方法、装置及通信系统
CN201510130529.X 2015-03-23

Publications (1)

Publication Number Publication Date
WO2016150096A1 true WO2016150096A1 (zh) 2016-09-29

Family

ID=56977496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088124 WO2016150096A1 (zh) 2015-03-23 2015-08-26 流间干扰计算方法、装置、通信系统及计算机存储介质

Country Status (2)

Country Link
CN (1) CN106161290B (zh)
WO (1) WO2016150096A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112242856A (zh) * 2019-07-16 2021-01-19 中兴通讯股份有限公司 一种消除多径干扰方法、装置及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070207837A1 (en) * 2006-03-02 2007-09-06 Fujitsu Limited Multiple input multiple output communication apparatus
CN101174863A (zh) * 2006-10-31 2008-05-07 华为技术有限公司 在多天线数字通信系统中检测信号的方法
CN101741446A (zh) * 2008-11-14 2010-06-16 中兴通讯股份有限公司 多输入多输出方法和装置
CN104301261A (zh) * 2013-07-15 2015-01-21 联芯科技有限公司 Mimo检测方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420745B (zh) * 2007-10-23 2011-01-19 中兴通讯股份有限公司 一种空分多址模式转换的信道质量指示调整方法
US8588316B2 (en) * 2008-12-24 2013-11-19 Samsung Electronics Co., Ltd. QR decomposition detection device and method supporting interference whitening
CN102437976B (zh) * 2010-09-29 2014-09-10 中兴通讯股份有限公司 信道估计方法及基站
CN103986506B (zh) * 2013-02-07 2017-11-17 电信科学技术研究院 一种单双流波束赋形切换方法和设备
CN103220024B (zh) * 2013-04-18 2018-06-08 电子科技大学 一种多用户配对虚拟mimo系统的波束赋形方法
CN106411378B (zh) * 2013-09-02 2019-11-29 华为技术有限公司 通信设备、基带单元和通信方法
CN103475401B (zh) * 2013-09-18 2017-02-01 北京北方烽火科技有限公司 一种下行波束赋形方法与装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070207837A1 (en) * 2006-03-02 2007-09-06 Fujitsu Limited Multiple input multiple output communication apparatus
CN101174863A (zh) * 2006-10-31 2008-05-07 华为技术有限公司 在多天线数字通信系统中检测信号的方法
CN101741446A (zh) * 2008-11-14 2010-06-16 中兴通讯股份有限公司 多输入多输出方法和装置
CN104301261A (zh) * 2013-07-15 2015-01-21 联芯科技有限公司 Mimo检测方法和装置

Also Published As

Publication number Publication date
CN106161290B (zh) 2020-07-07
CN106161290A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
US20110176633A1 (en) Method and system for orthogonalized beamforming in multiple user multiple input multiple output (mu-mimo) communication systems
CN108886826A (zh) 用于无线多天线和频分双工系统的混合波束成形方法
CN111010249A (zh) 一种角度时延域信道预测方法、预测系统及应用
CN109691045A (zh) 基于压缩感测的高效稀疏信道估计
CN105246086B (zh) 一种确定天线角度的方法和设备
EP3026823B1 (en) Method and device for acquiring channel information
US10277428B2 (en) Methods for reducing complexity of pre-coding matrix computation and grouping of user equipments in massive MIMO systems
CN110710123B (zh) 大规模mimo中的主动用户选择
US20210234574A1 (en) Frequency time domain channel hardening and overhead reduction
US9762307B2 (en) Communication system and communication control method using interference channel matrix
CN115053465B (zh) 一种信息传输方法及装置
CN108199794A (zh) 一种新型Massive MIMO信道模型的统计性建模方法
Sarker et al. A fast channel estimation and the reduction of pilot contamination problem for massive MIMO based on a diagonal Jacket matrix
US8724610B2 (en) Interference reduction for wireless networks
JP2018514994A (ja) ビーム情報取得方法、装置及び通信システム
WO2015196725A1 (zh) 一种信道仿真装置及方法、计算机存储介质
WO2017121175A1 (zh) 一种数据处理方法和装置
CN102710390A (zh) 一种多用户mimo系统中预编码的方法和装置
WO2016150096A1 (zh) 流间干扰计算方法、装置、通信系统及计算机存储介质
Han et al. FDD massive MIMO without CSI feedback
US11563277B1 (en) FPGA hardware implementation of a novel and computationally efficient DOA estimation method for coherent signals
Xue et al. On achievable rate of massive MIMO multiple access channels via virtual representation
CN109842580B (zh) 一种信道估计方法以及相关设备
Hosseini et al. A low-complexity DNN-based DoA estimation method for EHF and THF cell-free massive MIMO
KR101599189B1 (ko) 대규모 mimo 시스템에서의 채널 추정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886025

Country of ref document: EP

Kind code of ref document: A1