WO2016149990A1 - 螺旋升降式生物标志物检测用光谱位置调节装置 - Google Patents

螺旋升降式生物标志物检测用光谱位置调节装置 Download PDF

Info

Publication number
WO2016149990A1
WO2016149990A1 PCT/CN2015/078020 CN2015078020W WO2016149990A1 WO 2016149990 A1 WO2016149990 A1 WO 2016149990A1 CN 2015078020 W CN2015078020 W CN 2015078020W WO 2016149990 A1 WO2016149990 A1 WO 2016149990A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
coil
fixed
threaded rod
spectral position
Prior art date
Application number
PCT/CN2015/078020
Other languages
English (en)
French (fr)
Inventor
张贯京
陈兴明
葛新科
张少鹏
方静芳
克里斯基捏普拉纽克
古列莎艾琳娜
波达别特伊万
高伟明
梁昊原
梁艳妮
周荣
徐之艳
周亮
肖应芬
郑慧华
Original Assignee
深圳市贝沃德克生物技术研究院有限公司
深圳市易特科信息技术有限公司
深圳市前海安测信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市贝沃德克生物技术研究院有限公司, 深圳市易特科信息技术有限公司, 深圳市前海安测信息技术有限公司 filed Critical 深圳市贝沃德克生物技术研究院有限公司
Publication of WO2016149990A1 publication Critical patent/WO2016149990A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection

Definitions

  • the present invention relates to the field of biomarker detection, and more particularly to a spectral dark zone position adjustment device for biomarker detection.
  • Biomarker refers to a biochemical indicator that can label changes or possible changes in the structure, function, organization, cell and subcellular structure or function of a system, and has a very wide range of uses. Biomarkers can be used for disease diagnosis, for judging disease staging, or for assessing the safety and efficacy of new drugs or new therapies in the target population.
  • Surface plasmon resonance technology SPR (Surface) is commonly used when detecting biomarkers Plasmon Resonance), which uses a physical optical phenomenon caused by total reflection connection of metal film/liquid surface interface to analyze biomolecular interactions, and measures the concentration of biomarkers by infrared light combined with SPR technology. For details, refer to the paper “Surface Plasma”.
  • the present invention provides a spectral position adjusting device for detecting a spiral lifting biomarker capable of acquiring reflected light of a biomarker and adjusting a spectral position of the reflected light of the biomarker.
  • a spectral position adjusting device for detecting a spiral lifting biomarker comprising a mirror, a strip, a threaded rod, a base, a coil and a magnet, the mirror being arranged at one end to be hinged a fixed slat, the slat is provided with a threaded hole, one end of the threaded rod is rotatably fixed on the base, and the other end is screwed in the threaded hole, and the coil is fixed In the threaded rod, the magnet is close to the coil, so that after being energized in the coil, it can rotate under the action of the magnet.
  • the strip includes an inclined section and a horizontal section, and the mirror is fixed at the inclined On the segment, the threaded hole is opened on a horizontal section of the strip.
  • the coil extends out of the threaded rod body.
  • the strip includes an inclined section and a horizontal section, and the mirror is fixed on the inclined section.
  • the threaded holes are formed on the horizontal section of the strip.
  • a balance device is further disposed on the threaded rod, and the balance device and the coil are distributed in the The two sides of the threaded rod.
  • the strip includes an inclined section and a horizontal section, and the mirror is fixed at the inclined On the segment, the threaded hole is opened on a horizontal section of the strip.
  • the balancing device is a closed loop coil.
  • the strip includes an inclined section and a horizontal section, and the mirror is fixed on the inclined section.
  • the threaded holes are formed on the horizontal section of the strip.
  • the mirror is disposed on the inclined section of the strip and distributed along the extending direction of the inclined section.
  • the spectral position adjusting device for detecting the spiral lifting biomarker further includes, as a further arrangement, a spring, the spring is fixed at one end, and the other end is fixedly connected to the strip, the strip The plate is supported by the spring.
  • the spring is fixed at one end and the other end is connected to a horizontal section of the strip.
  • the spring is fixed at one end and the other end is connected to the hinged fixed end of the strip.
  • the magnet is a neodymium magnet
  • the neodymium magnet may have various shapes such as a strip shape or a U shape. The corresponding selection can be made according to actual needs.
  • a bearing can be fixed on the base, and the outer ring of the bearing can be fixed on the base, and then the threaded rod can be fixed on the inner ring of the bearing, so that the threaded rod can rotate around its own central axis with low resistance.
  • other methods existing can be adopted for this problem, and will not be enumerated here.
  • the screwing combination of the threaded rod and the threaded hole on the strip plate can also be replaced by a similar meshing method, for example, the threaded rod is replaced by a worm wheel, and the coil is fixed on the worm wheel, and the strip is fixed on the strip.
  • the threaded hole structure is replaced by a worm or worm structure, which relies on the meshing transmission of the worm and the worm to realize the adjustment of the strip, complete the adjustment of the strip and the mirror thereon; the threaded rod can also be replaced with a gear, and the coil is fixed accordingly.
  • the threaded hole structure on the strip is replaced by a rack or a rack-like structure, so that the coil is rotated by the magnet under the action of the magnet, thereby driving the rack and the strip to move, thereby adjusting the strip and its The position or / and angle of the mirror above.
  • the spectral position adjusting device for detecting the spiral lifting biomarker of the present invention adopts the above technical solution, and brings the technical effect: since the present invention adopts a slab fixed with a mirror, and one end of the slat is hingedly fixed and passed through a spring Supporting, a threaded hole is arranged on the strip, and a fixed threaded rod which is rotatable at one end is screwed in the threaded hole, and a magnet is arranged near the coil fixed on the threaded rod, and an electric current is supplied to the coil ( Or changing the magnitude and direction of the current flowing into the coil), due to the principle of electromagnetic induction, the coil generates a magnetic field that interacts with the magnetic field generated by the magnet.
  • the coil drives the threaded rod to start rotating, and the thread on the strip
  • the angle of the mirror on the strip changes with the movement of the strip, thereby changing the incident/exit angle of the infrared light to the mirror, and controlling the relevant infrared light in the spectrum receiving device.
  • the position of the dark area formed on the surface, the information about the biomarker in the detection is obtained, and the adjustment process is very simple and reliable, and Very easy to operate, high sensitivity, can easily and quickly change the spectral position information of the infrared-irradiated reflected light of biomarkers in the detection of biomarker surface plasmon resonance technology, so as to obtain effective information of biomarkers in the detection. .
  • FIG. 1 is a schematic view showing the overall structure of a spectral position adjusting device for detecting a spiral lifting biomarker according to the present invention
  • FIG. 2 is a schematic plan view showing the overall structure of a spectral position adjusting device for detecting a helical lifting biomarker according to the present invention
  • FIG. 3 is a schematic structural view showing another embodiment of a position where a spring is disposed in a spectral position adjusting device for detecting a helical lift biomarker according to the present invention
  • Fig. 4 is a view showing the state of use of the spectral position adjusting device for detecting a helical lift biomarker of the present invention.
  • a spectral position adjusting device for detecting a spiral lifting biomarker comprising a strip 2, a spring 4, a threaded rod 7, a base 8, a coil 9 and a magnet 10,
  • a strip 2 is fixed in an articulated manner, and the other end is provided with a threaded hole 6 through which a threaded rod 7 is bored.
  • the threaded rod 7 is screwed into the threaded hole 6, and the threaded rod 7 is rotatably fixed at On the base 8, for convenience of use, the strip 2 can be arranged as two parts of a fixed connection, one part is an inclined section 21, and the other part is a horizontal section 22, one end of the inclined section 21 is fixed by an articulated manner, and the other end is horizontally
  • the segment 22 is fixedly connected, and the inclined segment 21 is at a certain angle with the horizontal direction (generally at an acute angle), and the mirror 3 is fixedly disposed on the inclined segment 21 for reflecting the infrared light when detecting the biomarker.
  • a threaded hole 6 is formed in the horizontal section.
  • a nut can be additionally fixed on the horizontal section 22.
  • a threaded hole 6 is formed in the horizontal section 22, that is, an integrated structure is manufactured and installed. And make When it will be more convenient.
  • the threaded hole 6 on the strip 2 is screwed together with the threaded rod 7, that is, the strip 2 is screwed on the threaded rod 7 with the threaded hole 6, and the threaded rod 7 is in a vertical state.
  • the threaded rod 7 is rotated by the external force, the strip 2 moves up and down along the threaded rod 7 along the threaded hole 6 on the upper side thereof. Since one end of the strip 2 is hingedly fixed, the belt rod 7 is used for the action of the threaded rod 7. Next, the strip 2 will be circularly moved around its fixed end (support point 1 in the figure).
  • a closed coil 9 is attached to the threaded rod 7, which coil 9 extends beyond the body of the threaded rod 7, And extending outward a distance, a fixed magnet 10 is arranged at the bottom of the coil 9, and a part of the coil 9 overlaps with the projection of the magnet 10 in the same direction, so that when a current is applied to the coil 9, it is closed.
  • the coil 9 forms a closed loop.
  • Changing the magnitude/direction of the current flowing into the coil 9 can change the strength of the magnetic field generated by the coil 9 as well as the direction of the magnetic field. Since the magnitude and direction of the magnetic field generated by the magnet 10 are fixed, when changing the magnitude of the current in the coil 9, / or direction, under the action of the magnetic field of the magnet 10, the coil 9 rotates, and since the coil 9 is fixed to the threaded rod 7, when the coil 9 starts to rotate, the screw The rod 7 rotates with the rotation of the coil 9, and the threaded rod 7 is screwed into the threaded hole 6 in the strip 2, so that the strip 2 also moves with the rotation of the threaded rod 7 (vertical direction in the figure) Up and down motion), the final strip 2 will also move with the change of current in the coil 9.
  • any existing method for fixing the threaded rod 7 to the base can be selected, for example, by fixing a bearing on the base 8,
  • the threaded rod 7 is fixed on the inner ring of the bearing, so that the threaded rod 7 can rotate with the inner ring of the bearing under the action of an external force; a combination of the positioning groove and the card slot can also be adopted, as disclosed in the patent CN99246418.8
  • the threaded rod 7 is fixed in a manner of a rotating fixed structure.
  • Other implementable settings are not listed here.
  • a spring 4 is attached to the strip 2, and the other end of the spring 4 is fixed to set an initial position so that the spring 4 In this initial position, the entire device is at a zero point, and when it is necessary to adjust the horizontal angle of the mirror 3, the spring force of the spring 4 can be utilized to make the mirror 3 easier to return to the initial position.
  • the above specific process is as follows: when a current is supplied to the coil 9, a magnetic field is generated in the coil. Under the action of the magnet 10, the force of the coil 9 interacting with the magnetic field drives the threaded rod 7 to rotate together, and the threaded rod 7 starts to rotate, and the strip is rotated.
  • the strip 2 As the threaded hole 6 above it rises/falls under the rotation of the threaded rod 7, that is, the strip 2 exhibits an overall ascending/descending tendency, and the strip 2 begins to rotate with its hinged fixed point as the axis, in the strip 2
  • the rotary motion When the rotary motion is started, it also starts to stretch/compress the spring 4, and when the strip 2 and the mirror 3 above it are required to return to the initial position or the desired set position, when the corresponding change is made into the coil 9
  • the magnitude or/and direction of the current when the strip 2 is correspondingly moved with the threaded rod 7, the spring 4 can correspondingly provide a contraction or tensile force, so that the strip 2 can be assisted by the force of the spring 4. More responsive and quick return to the initial position or desired position.
  • FIG. 2 is a schematic plan view showing the overall structure of the spectral position adjusting device for detecting a helical lifting biomarker of the present invention.
  • the mirror 3 extends along the longitudinal direction of the inclined section 21 of the strip 2 in a plan view.
  • the threaded hole 6 is located on the horizontal section 22 of the strip 2, and the strip 2 is screwed onto the threaded rod 7 with the threaded hole 6, the central axis of the coil 9 is the same as the extending direction of the threaded rod 7, and the magnet 10 is located at the coil 9.
  • the coil 9 is placed in the magnetic field of the magnet 10 such that the current is applied to the coil 9 or the magnitude of the current flowing therein is changed, and the magnetic field generated by the coil 9 itself and the magnetic field generated by the magnet 10 are mutually Under the action, it is moved by the force of the magnet 10. From the orientation of the figure, the coil 9 rotates with the threaded rod 7 as a central axis under the action of the magnet 10, and drives the threaded rod 7 to rotate together.
  • FIG. 1 and FIG. 2 For the position of the position of the spring 4, an embodiment thereof can refer to FIG. 1 and FIG. 2, one end of which is fixed on the horizontal section 22 of the strip 2, and the other end is fixed in a corresponding position (for example, a platform or a rack, etc.)
  • the spring 4 and the support point 1 tend to support from both ends of the strip 2, in this case, both ends of the strip 2 are supported, relatively speaking, the strip
  • the position of 2 is relatively stable, but due to the support of the spring 4, the strip 2 as a whole is in a more sensitive and adjustable state, that is, when a force is applied to the end of the strip that is not hingedly fixed, the strip 2 will be applied. Under the action of the force, the circular motion is centered on the support point 1, and under the support of the spring 4, by the elasticity of the spring 4, the movement of the strip 2 is more sensitive and easier to control and adjust.
  • FIG 3 is a schematic structural view showing another embodiment of a position where a spring is disposed in a spectral position adjusting device for detecting a helical lifting biomarker according to the present invention, as shown in the drawing, the spring 4 Located at the end of the slat 2 hingedly fixed, in this case, the spring 4 and the support point 1 tend to support and fix it at one end of the slat 2, so that the slat 2 is integrally supported at the point 1 and the spring 4 Under the joint action of the two, a structure similar to a lever is formed. At this time, only a small force is applied to the end of the strip 2 away from the support point 1 to change the initial position of the strip 2 by the lever effect.
  • the coil 9 rotates under the action of the magnet 10, and drives the threaded rod 7 to rotate, since the threaded hole 6 on the strip 2 is screwed on the threaded rod 7, Therefore, one end of the strip 2 provided with the threaded hole will rise or fall with the rotation of the threaded rod 7, so that the strip 2 as a whole will rotate with the support point 1 as an axis (in the vertical direction shown in the figure)
  • the mirror 3 fixed to the strip 2 also moves in conjunction with the common rotation, thereby adjusting the angle between the mirror 3 and the horizontal plane.
  • one end of the strip 2 is hingedly fixed, and various hinge devices including hinges, hinged balls, and the like can be used here, and the hinge fixing manner can be adopted, that is, only the strip 2 can be ensured to be supported around the support point. 1 Rotate with low friction.
  • the shape of the magnet 10 is exemplified in the figure, and the magnet 10 is disposed in a horizontal direction (this direction is an intuitive direction in the drawing, and the specific orientation of the physical object is not limited thereto), and the specific reference is made to the figure. 2, the position of the magnet 10, and its N pole and its S pole are reasonably distributed, so that the coil 9 can move between the N pole and the S pole of the magnet 10 within the range of the magnetic field of the magnet 10, for the magnet 10, It is capable of generating a sufficiently strong magnetic field, preferably using a neodymium magnet, to obtain a strong magnetic field, which can strongly promote the movement of the coil 9 after energization; the shape is not limited to the long strip as shown in the figure. It can also be a common U-shaped magnet, a strip magnet, and a flat-plate magnet, or a magnet that is not common but can perform the same function.
  • a balancing device 5 is fixed on the threaded rod 7, the balancing device 5 is mounted on the threaded rod 7, and its position is corresponding to the coil 9, that is, the balance device 5 and the coil 9 are respectively located on both sides of the gear, and the two are at the same level, which play a certain balance between each other.
  • the balancing device 5 can be arranged in a coil shape, which can be partially extended out of the threaded rod 7, so that the weight of the balancing device 5 can be reduced, and at the same time, the balancing device 5 can also be leveraged by its own gravity.
  • the position height of the coil 9 is well balanced, that is, when the coil 9 is subjected to the magnetic force of the magnet 10 (in FIG. 1 , the fixed point of the threaded rod 7 is used as a fulcrum to rotate in the horizontal direction, and in FIG. 2, the threaded rod is used.
  • the fixed point of 7 is the rotational movement of the fulcrum in the vertical plane. In FIG. 3, it is the same as that in FIG. 1.
  • the above orientations only refer to the orientation in the figure, and the actual direction is not limited to this.
  • the coil 9 just need to overcome A small force can move out of the stationary state.
  • the coil 9 needs to be adjusted to the initial position, it is only necessary to overcome the small resistance, that is, it is not necessary to greatly change the current flowing into the coil 9.
  • the position adjustment of the coil 9 is achieved.
  • a common base that can be assembled with other components can be used, and the upper and lower layered structure can be used, and the upper layer can be rotated on the lower layer, and the threaded rod 7 can be directly used. It can be fixed on the upper structure of the base 8.
  • the base 8 can also be set to be height-adjustable in order to determine the initial position of the adjustment device.
  • FIG. 4 is a schematic view showing the use state of the spectral position adjusting device for detecting a spiral lifting biomarker according to the present invention.
  • the detection liquid containing no biomarker can be used first, and the infrared light pair is used.
  • the detecting device performs irradiation, and causes the reflected light to be irradiated onto the mirror 3 in the direction shown in FIG. 2, reflected by the mirror 3, and then enters the spectrum receiving device 12, and the infrared receiving light reflected by the mirror 3 is received by the spectrum receiving device 12. Light, and determining the position of the dark region of the spectrum.
  • the spectral position adjusting device for detecting the helical lifting biomarker of the present invention is set to the initial position, and correspondingly, the band formed at the spectral receiving device 12 in this state
  • the dark region in the light region and the strip light region also correspondingly serve as an initial position.
  • the antibody in the detecting device absorbs the antigen due to the presence/concentration of the biomarker in the detection, Detecting that the reflected light of the irradiated infrared light changes, that is, the infrared light that is irradiated onto the mirror 3 of the present invention changes, and after that, the spectrum receiving device
  • the received infrared light transmission changes, the spectrum formed on the spectral receiving device 12 is also changed, and the position of the dark region formed is also offset from the initial position.
  • the incident light is the infrared reflected light of the detected object
  • the emitted light is the light actually received by the spectrum receiving device 12, and the dark region of the spectrum formed on the spectrum receiving device 12 is required.
  • the magnitude or/and direction of the current flowing into the coil 9 is changed, and the intensity or/and direction of the magnetic field generated by the closed coil 9 also changes with the transmission.
  • the coil 9 drives the threaded rod 7 to rotate (the coil 9 is relatively easy to move under the magnetic force of the magnet 10 under the balanced braking action of the balancing device 5), and the threaded rod 7 passes through the strip 2
  • the upper threaded hole 6 drives the strip 2 to move, that is, the strip 2 also starts to move, and the angle of the mirror 3 with the horizontal direction changes with the movement of the strip 2, and thus the incident angle of the incident light irradiated onto the mirror 3
  • the change occurs, and accordingly, the exit angle also changes, and the angle at which the emitted light is irradiated onto the spectrum receiving device 12 also changes, so that the infrared rays reflected by the detecting object are in the spectrum receiving device 1
  • the position of the dark region formed on 2 is also changed, that is, the position of the dark region formed on the spectral receiving device 12 is controlled correspondingly according to the magnitude or/and direction of the current flowing into the coil 9, through which the dark region is located.
  • the implementation of the present invention is not limited to the above-described embodiments.
  • the threaded rod 7 in which the movement of the strip 2 is realized and the strip 2 screwed thereon may also be meshed by the turbines that mesh with each other.
  • the worm or the socket-mounted nut and screw can be replaced as a whole, and the required changed parts can be modified as needed, and can be modified by those skilled in the art and other fields in common with the existing mechanical field.
  • the above changes are easily made; moreover, in the present invention, the position of the spring 4 is not limited to the position shown in the drawing, and it can be moved to other suitable positions, whichever is convenient.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种螺旋升降式生物标志物检测用光谱位置调节装置,包括条板(2)、镜子(3)、螺纹杆(7)、底座(8)、线圈(9)以及磁铁(10),镜子(3)设置在一端铰接固定着的条板(2)上,条板(2)上开设有螺纹孔(6),螺纹杆(7)一端可旋转的固定在底座(8)上,另一端旋拧在螺纹孔(6)中,线圈(9)固定在螺纹杆(7)上,磁铁(10)靠近所述线圈(9),使得向线圈(9)中通电后其能够在磁铁(10)的作用下旋转运动。该装置能够方便、快捷的改变生物标志物表面等离子共振技术检查过程中检测物中生物标志物的红外照射反射光线的光谱位置,从而获取检测物中生物标志物的有效信息。

Description

螺旋升降式生物标志物检测用光谱位置调节装置
技术领域
本发明涉及生物标志物检测领域,更具体的说涉及生物标志物检测用光谱暗区位置调节装置。
背景技术
生物标志物(Biomarker)是指可以标记系统、器官、组织、细胞及亚细胞结构或功能的改变或可能发生的改变的生化指标,具有非常广泛的用途。生物标志物可用于疾病诊断、判断疾病分期或者用来评价新药或新疗法在目标人群中的安全性及有效性。在检测生物标志物时,常用到表面等离子共振技术SPR(Surface Plasmon Resonance),即利用金属膜/液面界面光的全反射连接引起的一种物理光学现象来分析生物分子相互作用,并通过红外光结合SPR技术测量生物标志物浓度,具体可参照论文“表面等离子共振技术在生物医学中的应用”,以及论文“表面等离子体共振免疫传感器在蛋白质检测中的应用及其研究进展”—《分析化学》2010年第七期1052-1059,然而,在测量过程中,怎样能够更加准确的获取检测生物标志物的红外光的特征光谱位置信息,从而获取待测物中生物标志物的相关信息,是摆在众多生物医学领域学家面前的一道难题。
发明内容
为了解决上述技术问题,本发明提供一种能够获取生物标志物的反射光线,并调整生物标志物反射光光谱位置的螺旋升降式生物标志物检测用光谱位置调节装置。
本发明为解决上述技术问题所采用的技术方案为:螺旋升降式生物标志物检测用光谱位置调节装置,包括镜子、条板、螺纹杆、底座、线圈以及磁铁,所述的镜子设置在一端铰接固定着的条板上,所述的条板上开设有螺纹孔,所述的螺纹杆一端可旋转的固定在所述的底座上,另一端旋拧在螺纹孔中,所述的线圈固定在所述的螺纹杆上,所述的磁铁靠近所述线圈,使得向所述线圈中通电后其能够在所述磁铁的作用下旋转运动。
对于本发明中上述的螺旋升降式生物标志物检测用光谱位置调节装置,作为针对条板的进一步的设置,所述的条板包括倾斜段和水平段,所述的镜子固定在所述的倾斜段上,所述的螺纹孔开设在所述条板的水平段上。
对于本发明中上述的螺旋升降式生物标志物检测用光谱位置调节装置,作为进一步的设置,所述的线圈延伸出所述的螺纹杆本体。
对于本发明中上述的螺旋升降式生物标志物检测用光谱位置调节装置,作为进一步的设置,所述的条板包括倾斜段和水平段,所述的镜子固定在所述的倾斜段上,所述的螺纹孔开设在所述条板的水平段上。
对于本发明中上述的螺旋升降式生物标志物检测用光谱位置调节装置,作为进一步的设置,在所述的螺纹杆上还设有平衡装置,所述的平衡装置与所述的线圈分布在所述螺纹杆的两侧。
对于本发明中上述的螺旋升降式生物标志物检测用光谱位置调节装置,作为针对条板的进一步的设置,所述的条板包括倾斜段和水平段,所述的镜子固定在所述的倾斜段上,所述的螺纹孔开设在所述条板的水平段上。
对于本发明中上述的螺旋升降式生物标志物检测用光谱位置调节装置,作为进一步的设置,所述的平衡装置为闭合的环状线圈。
对于本发明中上述的螺旋升降式生物标志物检测用光谱位置调节装置,作为进一步的设置,所述的条板包括倾斜段和水平段,所述的镜子固定在所述的倾斜段上,所述的螺纹孔开设在所述条板的水平段上。
对于本发明中上述的螺旋升降式生物标志物检测用光谱位置调节装置,作为进一步的设置,所述的镜子设置在所述条板的倾斜段上,并沿所述倾斜段的延伸方向分布。
对于本发明中上述的螺旋升降式生物标志物检测用光谱位置调节装置,作为进一步的设置,还包括弹簧,所述的弹簧一端固定,另一端与所述的条板固定连接,所述的条板由所述弹簧支撑。
对于本发明中上述的螺旋升降式生物标志物检测用光谱位置调节装置,作为进一步的设置,所述的弹簧一端固定,另一端与所述条板的水平段连接。
对于本发明中上述的螺旋升降式生物标志物检测用光谱位置调节装置,作为进一步的设置,所述的弹簧一端固定,另一端与所述条板的铰接固定端连接。
对于本发明中上述的螺旋升降式生物标志物检测用光谱位置调节装置,作为进一步的设置,所述的磁铁为钕磁铁,而且,钕磁铁的形状可以是多种的,例如条形或U形,可根据实际需要进行对应的选择。
本发明中,可在底座上固定一个轴承,并使轴承的外圈固定在底座上,然后将螺纹杆固定在轴承的内圈上,使得螺纹杆可在低阻力绕其自身中心轴旋转运动。同时,针对该问题,还可采用现有的其它方式,在此不再一一列举。
本发明中,对于螺纹杆和条板上螺纹孔的旋拧结合方式,还可以选用类似的啮合方式进行替换,例如:将螺纹杆换为蜗轮,将线圈固定在蜗轮上,将条板上的螺纹孔结构替换为蜗杆或蜗杆结构,依靠蜗轮蜗杆的啮合传递,实现对条板的调节,完成对条板及其上面的镜子的调节;还可将螺纹杆替换为齿轮,相应的将线圈固定在齿轮上,将条板上的螺纹孔结构换成齿条或类似齿条结构,使得线圈在磁铁的作用下通过带动齿轮旋转,进而带动齿条及条板进行运动,从而调整条板及其上面的镜子的位置或/和角度。
本发明螺旋升降式生物标志物检测用光谱位置调节装置采用上述技术方案,带来的技术效果为:由于本发明采用了固定有镜子的条板,并将条板一端进行铰接固定,并通过弹簧支撑,在条板上设置了螺纹孔,并使一端可旋转的固定着的螺纹杆旋拧在螺纹孔中,在螺纹杆上固定着的线圈附近设有磁铁,在向线圈中通入电流(或改变通入线圈中电流的大小和方向)时,由于电磁感应原理,线圈产生磁场,该磁场与磁铁产生的磁场相互作用,在此作用下线圈带动螺纹杆开始旋转运动,条板上的螺纹孔随着螺纹杆的旋转,使得条板随着共同运动,条板上镜子的角度也会随之而改变,从而改变红外线照射到镜子上的入射/出射角度,控制相关红外光线在光谱接收装置上所形成的暗区的位置,获取检测物中的生物标志物的相关信息,该调节过程十分简洁可靠,且非常容易操作,灵敏度高,能够方便、快捷的改变生物标志物表面等离子共振技术检查过程中检测物中生物标志物的红外照射反射光线的光谱位置信息,从而获取检测物中生物标志物的有效信息。
附图说明
图1为本发明螺旋升降式生物标志物检测用光谱位置调节装置的整体结构示意图;
图2为本发明螺旋升降式生物标志物检测用光谱位置调节装置的整体结构俯视状态示意图;
图3为本发明螺旋升降式生物标志物检测用光谱位置调节装置的关于弹簧设置位置的另一种实施例的结构示意图;
图4为本发明螺旋升降式生物标志物检测用光谱位置调节装置的使用状态示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明的整体结构示意图,如图所示,螺旋升降式生物标志物检测用光谱位置调节装置,包括条板2、弹簧4、螺纹杆7、底座8、线圈9和磁铁10,条板2的一端以铰接的方式固定,另一端设有螺纹孔6,在螺纹孔6中穿设有一个螺纹杆7,螺纹杆7旋拧在螺纹孔6中,螺纹杆7可转动的固定在底座8上,为了使用方便,可将条板2设置为固定连接的两部分,一部分为倾斜段21,另一部分为水平段22,倾斜段21的一端采用铰接的方式固定,其另一端与水平段22固定连接,并使得倾斜段21与水平方向呈一定的夹角(一般情况下以锐角居多),在倾斜段21上固定设置有镜子3,用于反射检测生物标志物时的红外光线,水平段上开设有螺纹孔6,当然,也可以在该水平段22上另外固定一个螺母,相比较而言,在水平段22上开设螺纹孔6,即做成一体式的结构在制作、安装以及使用时会更加方便。
在图1中,条板2上的螺纹孔6与螺纹杆7处于旋拧在一起的状态,即条板2以螺纹孔6旋拧在螺纹杆7上,螺纹杆7呈竖直状态,当螺纹杆7在外力的作用下转动时,条板2随着其上面的螺纹孔6共同沿着螺纹杆7上下运动,由于条板2一端是铰接固定着的,因此在螺纹杆7的带动作用下,条板2会相应的以其固定端(图中为支撑点1)为中心做圆周运动。为了控制/调节螺纹杆7的转动,从而控制/调节条板2及其上面的镜子3的运动,在螺纹杆7上固定一个闭合的线圈9,该线圈9要延伸出螺纹杆7的本体,并向外延伸一段距离,在与线圈9底部设置一个固定着的磁铁10,线圈9的一部分与磁铁10在同一方位的投影重叠,这样以来,当向线圈9上通入电流时,处于闭合状态的线圈9形成一个闭合的回路,当这个闭合的回路中有电流通过时,其自身在电磁感应作用下产生磁场,线圈9产生的磁场与磁铁10的磁场相互之间发生作用力,此时,改变通入线圈9中的电流大小/方向可以改变线圈9所产生的磁场强度以及磁场方向,由于磁铁10所产生的磁场的大小和方向是固定的,因此,当改变线圈9中的电流大小和/或方向时,在磁铁10的磁场的作用下,线圈9发生转动,由于线圈9是固定在螺纹杆7上的,因此,在线圈9开始转动时,螺纹杆7会随着线圈9的转动而转动,螺纹杆7旋拧在条板2上螺纹孔6中,因此条板2也便会随着螺纹杆7的转动而运动(图中为竖直方向上下运动),最终条板2也会随着线圈9中电流的变化而运动,对于条板2,由于其倾斜段21是以铰接的方式固定着的,因此,在条板2随着线圈9中通入电流的变化而变化时,条板2的倾斜段21与水平方向的夹角也将随之而改变,进而,固定在条板2上的镜子3与水平方向的夹角也便随着改变,其上面的反射光线的角度也会随之而改变。
本发明中,对于螺纹杆7在底座8上的固定方式,可选用现有的任何可使螺纹杆7可旋转的固定在底座上的方法,例如,采用在底座8上固定设置一个轴承,将螺纹杆7固定在轴承的内圈上,使得螺纹杆7在外力作用下可随着轴承的内圈旋转运动;也可采用定位槽和卡槽相结合的方式,如专利CN99246418.8中公开的旋转式固定结构的方式对螺纹杆7进行固定。其它可实施的设置方式在此不再一一列举。
如图1所示,为了进一步提高条板2上的镜子3的水平夹角的调节灵敏度,在条板2上连接一个弹簧4,弹簧4的另一端固定,设定一个初始位置,使得弹簧4在该初始位置时整个装置处于一个零点,当需要调整镜子3的水平夹角时,可借助弹簧4的弹力,使得镜子3更加容易回复至初始位置。上述具体过程表现为:当向线圈9中通入电流,线圈中产生磁场,在磁铁10的作用下,线圈9在磁场交互的作用力带动螺纹杆7共同转动,螺纹杆7开始转动,条板2随着其上面的螺纹孔6在螺纹杆7的转动下上升/下降,即条板2出现整体上升/下降趋势,条板2开始以其铰接固定点为轴心旋转运动,在条板2开始旋转运动时,其同时也开始拉伸/压缩弹簧4,当需使条板2及其上面的镜子3回复至初始位置或所需设定的位置时,当相应的改变通入线圈9中的电流大小或/和方向,条板2在随着螺纹杆7而相应的运动时,弹簧4能够相应的提供收缩力或拉伸力,使得条板2能够在弹簧4的作用力的协助下更加灵敏、快速的回复至初始位置或所需位置。
图2为本发明螺旋升降式生物标志物检测用光谱位置调节装置的整体结构俯视状态示意图,如图2所示,在俯视状态下,镜子3沿条板2的倾斜段21的长度方向延伸分布,螺纹孔6位于条板2的水平段22上,条板2以螺纹孔6旋拧在螺纹杆7上,线圈9的中心轴与螺纹杆7的延伸方向相同,同时,磁铁10位于线圈9的下方,要注意,使得线圈9位于磁铁10的磁场之中,使得线圈9中通入电流或改变通入的电流的大小后,线圈9在其自身产生的磁场与磁铁10产生的磁场的相互作用下,受磁铁10的作用力而运动,从图中的方位看,线圈9在磁铁10的作用下,会以螺纹杆7为中心轴旋转,并且带动螺纹杆7共同转动。
对于弹簧4位置的设置位置,其一种实施例可参照图1和图2,将其一端固定在条板2的水平段22上,另一端固定在相应的位置(例如平台或机架上等),此种情况下,弹簧4和支撑点1趋向于从条板2的两个端部对其进行支撑,这种情况下,条板2的两端均有支撑,相对来讲,条板2的位置相对较为稳定,但由于弹簧4的支撑作用,条板2整体处于一种较为灵敏的可调节状态,即朝向条板未铰接固定的一端施加力时,条板2会在所施加的力的作用下,以支撑点1为中心做圆周运动,并且,在弹簧4的支撑作用下,借用弹簧4的弹性,条板2的运动会更加灵敏,更容易控制和调节。
图3为本发明螺旋升降式生物标志物检测用光谱位置调节装置的关于弹簧设置位置的另一种实施例的结构示意图,如图所示,弹簧4 位于条板2铰接固定着的一端,此种情况下,弹簧4和支撑点1趋向于在条板2的一端对其进行支撑和固定,这样以来,条板2整体在支撑点1和弹簧4二者的共同作用下,形成一个近似于杠杆的结构,这时,只需在条板2远离支撑点1的端部施加一个较小的作用力即可通过杠杆效应改变条板2的初始位置,即,当改变通入线圈9中的电流时,线圈9在磁铁10的作用下转动,并带动螺纹杆7旋转,由于条板2上的螺纹孔6是旋拧在螺纹杆7上的,因此条板2设有螺纹孔的一端会随着螺纹杆7的转动而上升或下降,使得条板2整体会以支撑点1为轴心旋转运动(以图中所示的竖直方向式的),固定在条板2上的镜子3也随着共同旋转运动,从而起到调节镜子3与水平面夹角的目的。
在本发明中,条板2的一端是铰接固定着的,此处可采用包括合页、铰接球等在内的多种铰接装置及铰接固定方式,即只需确保条板2能够绕支撑点1以较低的摩擦力旋转即可。
如图1-图3中所示,磁铁10的形状以图中为例,在水平方向(此方向为图中直观方向,具体实物的设置方位并不局限于此)设置磁铁10,具体参照图2中磁铁10的位置,并使其N极和其S极合理分布,使得线圈9能够在磁铁10磁场的作用范围内,在磁铁10的N极和S极之间运动,对于磁铁10,为了使其能够产生足够强的磁场,最好使用钕磁铁,可以获得较强的磁场,使其能够强力的促使通电后的线圈9的运动;其形状并不局限于图中所示的长条状,其还可以是常见的U形磁铁、条形磁铁以及平板形磁铁,或者不常见的但能够实现同样功能的磁铁。
进一步的,如图1-图3中所示,为了提高线圈9在螺纹杆7上的稳定性,并进一步提高线圈9的调节灵敏性,在螺纹杆7上固定一个平衡装置5,该平衡装置5安装在螺纹杆7上,其位置要与线圈9对应,即使得平衡装置5和线圈9分别位于齿轮的两侧,并使其二者位于同一水平高度,彼此之间起到一定的平衡作用,在此,可以将平衡装置5设置成线圈状,可以使其部分延伸出螺纹杆7,这样一来可以减轻平衡装置5的重量,同时,平衡装置5还可以借助自身重力,在杠杆作用下对线圈9的位置高度起到很好的平衡作用,即当线圈9受磁铁10的磁场力(图1中为以螺纹杆7的固定点为支点在水平方向转动,图2中为以螺纹杆7的固定点为支点在竖直平面内旋转运动,图3中与图1中相同,以上方位均仅指图中方位,实际方向不限于此)运动时,在平衡装置5的作用下,线圈9只需克服很小的力便可摆脱静止状态进行运动,同样的,当需将线圈9调整至初始位置时,只需克服较小的阻力即可实现,即无需大幅度变动通入线圈9中的电流即可实现对线圈9的位置调整。
对于图1-图3中的底座8,可使用普通的可装配其它部件的底座,可使用上下分层式的结构,并使其上层可在下层上转动,这时只需将螺纹杆7直接固定在底座8的上层结构上即可,另外,还可将底座8设置成高度可调式的,以便于确定调整整个装置的初始位置。
图4为本发明螺旋升降式生物标志物检测用光谱位置调节装置的使用状态示意图,如图中所示,本发明在使用时,可首先使用不含生物标志物的检测液,使用红外光对检测装置进行照射,并使其反射光按图2中所示的方向照射到镜子3上,经镜子3反射后,进入到光谱接收装置12,由光谱接收装置12接收经镜子3反射后的红外线光,并确定光谱暗区的位置,此种情况下,本发明螺旋升降式生物标志物检测用光谱位置调节装置设定为初始位置,相应的,该状态下的光谱接收装置12处所形成的带状光区及带状光区中的暗区也相应的作为初始位置,当改变所测量的检测物时,由于检测物中生物标志物的存在/浓度变化,检测装置中的抗体对抗原吸收,检测照射的红外光的反射光发生变化,即照射到本发明镜子3上的红外光线发生变化,进而经其反射后,光谱接收装置12所接收到的红外光发送变化,其在光谱接收装置12上形成的光谱也随之发送变化,其所形成的暗区的位置也便会相对初始位置发生偏移。
参照图4,以其中的入射光线为所检测的检测物的红外反射光线,以其出射光为光谱接收装置12实际所接收的光线,当需对光谱接收装置12上形成的光谱的暗区位置进行调整,以获取进一步关于生物标志物的详细信息时,改变通入线圈9中的电流大小或/和方向,闭合着的线圈9所产生的磁场的强度或/和方向也随着发送变化,这样以来,在磁铁10的作用下,线圈9带动螺纹杆7转动(在平衡装置5的平衡制动作用下线圈9比较容易在磁铁10的磁力作用下运动),进而螺纹杆7通过条板2上的螺纹孔6带动条板2运动,即条板2也开始运动,镜子3与水平方向的角度随着条板2的运动发生改变,如此以来,照射到镜子3上的入射光的入射角发生变化,相应的,出射角也发生变化,出射光照射到光谱接收装置12上的角度也发生变化,因此经过检测物反射的红外线在光谱接收装置12上形成的暗区的位置也会发生改变,即根据调整通入线圈9中电流的大小或/和方向,相应的控制光谱接收装置12上形成的暗区的位置,通过该暗区位置的改变以及通入线圈9中的电流的改变获得所需的测量信息。
需要特别说明的是,本发明的实施并不局限于上述的实施方式,例如,其中实现条板2运动的螺纹杆7以及旋拧在其上面的条板2,也可以由相互啮合的涡轮、蜗杆或者可套接安装的螺母、螺杆进行整体替换,并相应的按需要将所需更改的部位进行修改即可,对于本领域技术人员以及结合现有的机械领域公知常识的其它领域人员均可十分容易的做出上述变动;而且,本发明中,弹簧4的位置也并不局限于图中所示的位置,还可将其移动其它合适位置,以使用方便为准。
上面结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (15)

  1. 螺旋升降式生物标志物检测用光谱位置调节装置,其特征在于:包括条板(2)、镜子(3)、螺纹杆(7)、底座(8)、线圈(9)以及磁铁(10),所述的镜子(3)设置在一端铰接固定着的条板(2)上,所述的条板(2)上开设有螺纹孔(6),所述的螺纹杆(7)一端可旋转的固定在所述的底座(8)上,另一端旋拧在螺纹孔(6)中,所述的线圈(9)固定在所述的螺纹杆(7)上,所述的磁铁(10)靠近所述线圈(9),使得向所述线圈(9)中通电后其能够在所述磁铁(10)的作用下旋转运动。
  2. 根据权利要求1所述的螺旋升降式生物标志物检测用光谱位置调节装置,其特征在于:所述的条板(2)包括倾斜段(21)和水平段(22),所述的镜子(3)固定在所述的倾斜段(21)上,所述的螺纹孔(6)开设在所述条板(2)的水平段(22)上。
  3. 根据权利要求1所述的螺旋升降式生物标志物检测用光谱位置调节装置,其特征在于:所述的线圈(9)延伸出所述的螺纹杆(7)本体。
  4. 根据权利要求3所述的螺旋升降式生物标志物检测用光谱位置调节装置,其特征在于:所述的条板(2)包括倾斜段(21)和水平段(22),所述的镜子(3)固定在所述的倾斜段(21)上,所述的螺纹孔(6)开设在所述条板(2)的水平段(22)上。
  5. 根据权利要求3所述的螺旋升降式生物标志物检测用光谱位置调节装置,其特征在于:在所述的螺纹杆(7)上还设有平衡装置(5),所述的平衡装置(5)与所述的线圈(9)分布在所述螺纹杆(7)的两侧。
  6. 根据权利要求5所述的螺旋升降式生物标志物检测用光谱位置调节装置,其特征在于:所述的条板(2)包括倾斜段(21)和水平段(22),所述的镜子(3)固定在所述的倾斜段(21)上,所述的螺纹孔(6)开设在所述条板(2)的水平段(22)上。
  7. 根据权利要求5所述的螺旋升降式生物标志物检测用光谱位置调节装置,其特征在于:所述的平衡装置(5)为闭合的环状线圈。
  8. 根据权利要求2所述的螺旋升降式生物标志物检测用光谱位置调节装置,其特征在于:所述的条板(2)包括倾斜段(21)和水平段(22),所述的镜子(3)固定在所述的倾斜段(21)上,所述的螺纹孔(6)开设在所述条板(2)的水平段(22)上。
  9. 根据权利要求8所述的螺旋升降式生物标志物检测用光谱位置调节装置,其特征在于:所述的镜子(3)设置在所述条板(2)的倾斜段(21)上,并沿所述倾斜段(21)的延伸方向分布。
  10. 根据权利要求9所述的螺旋升降式生物标志物检测用光谱位置调节装置,其特征在于:还包括弹簧(4),所述的弹簧(4)一端固定,另一端与所述的条板(2)固定连接,所述的条板(2)由所述弹簧(4)支撑。
  11. 根据权利要求10所述的螺旋升降式生物标志物检测用光谱位置调节装置,其特征在于:所述的弹簧(4)一端固定,另一端与所述条板(2)的水平段(22)连接。
  12. 根据权利要求10所述的螺旋升降式生物标志物检测用光谱位置调节装置,其特征在于:所述的弹簧(4)一端固定,另一端与所述条板(2)的铰接固定端连接。
  13. 根据权利要求1所述的螺旋升降式生物标志物检测用光谱位置调节装置,其特征在于:所述的磁铁(10)为钕磁铁。
  14. 根据权利要求13所述的螺旋升降式生物标志物检测用光谱位置调节装置,其特征在于:所述的磁铁(10)为条形或U形。
  15. 根据权利要求1所述的螺旋升降式生物标志物检测用光谱位置调节装置,其特征在于:所述的磁铁(10)为条形或U形。
PCT/CN2015/078020 2015-03-25 2015-04-30 螺旋升降式生物标志物检测用光谱位置调节装置 WO2016149990A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510132895.9 2015-03-25
CN201510132895.9A CN104792740B (zh) 2015-03-25 2015-03-25 螺旋升降式生物标志物检测用光谱位置调节装置

Publications (1)

Publication Number Publication Date
WO2016149990A1 true WO2016149990A1 (zh) 2016-09-29

Family

ID=53557727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078020 WO2016149990A1 (zh) 2015-03-25 2015-04-30 螺旋升降式生物标志物检测用光谱位置调节装置

Country Status (2)

Country Link
CN (1) CN104792740B (zh)
WO (1) WO2016149990A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919624B (zh) * 2017-11-10 2024-05-14 国网浙江省电力公司台州供电公司 10kV断路器底盘车检修的平台

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730241A2 (en) * 1990-05-08 1996-09-04 Symbol Technologies, Inc. Scanning arrangement
EP1081529A2 (en) * 1999-08-30 2001-03-07 PSC Scanning, Inc. Reflective dither spring
CN1844938A (zh) * 2006-05-12 2006-10-11 中国科学院上海微系统与信息技术研究所 一种基于微电子机械系统的光学电流传感器、制作及检测方法
CN201075777Y (zh) * 2007-08-31 2008-06-18 上海世科嘉车辆技术研发有限公司 后视镜单电机电动角度调节系统
CN201212871Y (zh) * 2008-04-30 2009-03-25 中国科学院金属研究所 薄膜材料动态弯曲疲劳性能测试系统
CN102967934A (zh) * 2012-12-04 2013-03-13 中国科学院苏州纳米技术与纳米仿生研究所 一种电磁驱动微镜
CN103528683A (zh) * 2013-10-25 2014-01-22 武汉大学 一种用于傅立叶变换红外光谱仪的动镜扫描装置
CN103984091A (zh) * 2013-11-21 2014-08-13 苏州浩创信息科技有限公司 一种扫描器摆镜装置
CN204479459U (zh) * 2015-03-25 2015-07-15 深圳市易特科信息技术有限公司 用于生物标志物检测的螺旋升降式光谱位置调节装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730241A2 (en) * 1990-05-08 1996-09-04 Symbol Technologies, Inc. Scanning arrangement
EP1081529A2 (en) * 1999-08-30 2001-03-07 PSC Scanning, Inc. Reflective dither spring
CN1844938A (zh) * 2006-05-12 2006-10-11 中国科学院上海微系统与信息技术研究所 一种基于微电子机械系统的光学电流传感器、制作及检测方法
CN201075777Y (zh) * 2007-08-31 2008-06-18 上海世科嘉车辆技术研发有限公司 后视镜单电机电动角度调节系统
CN201212871Y (zh) * 2008-04-30 2009-03-25 中国科学院金属研究所 薄膜材料动态弯曲疲劳性能测试系统
CN102967934A (zh) * 2012-12-04 2013-03-13 中国科学院苏州纳米技术与纳米仿生研究所 一种电磁驱动微镜
CN103528683A (zh) * 2013-10-25 2014-01-22 武汉大学 一种用于傅立叶变换红外光谱仪的动镜扫描装置
CN103984091A (zh) * 2013-11-21 2014-08-13 苏州浩创信息科技有限公司 一种扫描器摆镜装置
CN204479459U (zh) * 2015-03-25 2015-07-15 深圳市易特科信息技术有限公司 用于生物标志物检测的螺旋升降式光谱位置调节装置

Also Published As

Publication number Publication date
CN104792740A (zh) 2015-07-22
CN104792740B (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
Couture et al. Tuning the 3D plasmon field of nanohole arrays
CN204405185U (zh) 手持式分析器
US9651508B2 (en) Thermal contrast assay and reader
Tawa et al. Sensitive detection of a tumor marker, α-fetoprotein, with a sandwich assay on a plasmonic chip
CN103063301B (zh) 一种植物叶片三维光分布的检测装置及方法
US10816492B2 (en) Lateral flow assays with thermal contrast readers
CN104359860B (zh) 基于测量顶角和入射角的红外玻璃折射率光电检测方法
Unger et al. Analyzing the performance of plasmonic resonators for dielectric sensing
Foschum et al. Broadband absorption spectroscopy of turbid media using a dual step steady-state method
CN103674902A (zh) 基于手机平台的lspr便携式生化检测仪
CN107941740A (zh) 透反射式集成装置及光谱仪系统
CN102243175A (zh) 一种基于椭球反射镜光收集结构的表面等离子体共振光检测装置
WO2016149989A1 (zh) 生物标志物检测用光谱位置调节装置
WO2016149990A1 (zh) 螺旋升降式生物标志物检测用光谱位置调节装置
EP1870695A1 (en) Accelerated weathering device with optical slip ring
CN204479459U (zh) 用于生物标志物检测的螺旋升降式光谱位置调节装置
CN204536183U (zh) 用于生物标志物检测的光反射式光谱位置调整装置
US10725033B2 (en) Lateral flow assays with thermal contrast readers
WO2016149981A1 (zh) 基于光反射的生物标志物检测用光谱位置调整装置
CN204462017U (zh) 用于生物标志物检测的光谱暗区位置调节装置
CN204536918U (zh) 用于生物标志物检测的光谱位置调节装置
WO2016149979A1 (zh) 蜗轮蜗杆式生物标志物检测用光谱暗区位置调节装置
Tian et al. Highly sensitive detection of rabbit IgG by electron spin resonance using CuS nanoparticles as probe
CN206235560U (zh) 反射透射双模光学量测仪
CN104359856B (zh) 近红外水果无损检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885928

Country of ref document: EP

Kind code of ref document: A1