WO2016149989A1 - 生物标志物检测用光谱位置调节装置 - Google Patents

生物标志物检测用光谱位置调节装置 Download PDF

Info

Publication number
WO2016149989A1
WO2016149989A1 PCT/CN2015/078014 CN2015078014W WO2016149989A1 WO 2016149989 A1 WO2016149989 A1 WO 2016149989A1 CN 2015078014 W CN2015078014 W CN 2015078014W WO 2016149989 A1 WO2016149989 A1 WO 2016149989A1
Authority
WO
WIPO (PCT)
Prior art keywords
position adjusting
coil
adjusting device
fixed
magnet
Prior art date
Application number
PCT/CN2015/078014
Other languages
English (en)
French (fr)
Inventor
张贯京
陈兴明
葛新科
张少鹏
方静芳
克里斯基捏普拉纽克
古列莎艾琳娜
波达别特伊万
高伟明
梁昊原
梁艳妮
周荣
徐之艳
周亮
肖应芬
郑慧华
Original Assignee
深圳市贝沃德克生物技术研究院有限公司
深圳市易特科信息技术有限公司
深圳市前海安测信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市贝沃德克生物技术研究院有限公司, 深圳市易特科信息技术有限公司, 深圳市前海安测信息技术有限公司 filed Critical 深圳市贝沃德克生物技术研究院有限公司
Publication of WO2016149989A1 publication Critical patent/WO2016149989A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Definitions

  • the present invention relates to the field of biomarker detection, and more particularly to a spectroscopic position adjustment device for biomarker detection.
  • Biomarker refers to a biochemical indicator that can label changes or possible changes in the structure, function, organization, cell and subcellular structure or function of a system, and has a very wide range of uses. Biomarkers can be used for disease diagnosis, for judging disease staging, or for assessing the safety and efficacy of new drugs or new therapies in the target population.
  • Surface plasmon resonance technology SPR (Surface) is commonly used when detecting biomarkers Plasmon Resonance), which uses a physical optical phenomenon caused by total reflection connection of metal film/liquid surface interface to analyze biomolecular interactions, and measures the concentration of biomarkers by infrared light combined with SPR technology. For details, refer to the paper “Surface Plasma”.
  • the present invention provides a spectral position adjusting device for detecting a biomarker capable of acquiring reflected light of a biomarker and adjusting a spectral position of the reflected light of the biomarker.
  • a spectral position adjusting device for detecting biomarkers comprising a light receiving module, a transmission mechanism, a coil, a magnet and a base, wherein the transmission mechanism is fixed at one place Another light receiving module is fixed on the base, the coil is fixed on the transmission mechanism, and the magnet is close to the coil, so that it can be energized in the coil
  • the movement of the strip is carried by the transmission mechanism under the action of the magnet.
  • a spectral position adjusting device for detecting a biomarker further includes a spring, and the light receiving module is supported by the spring.
  • the transmission mechanism includes racks and gears that mesh with each other, and the rack is fixed to the light receiving module.
  • the gear is rotatably fixed to the base.
  • the above-mentioned spectral position adjusting device for detecting biomarkers in the present invention further includes a shaft, the gear sleeve is sleeved on the shaft, and the shaft is rotatably fixed to the base. .
  • a balancing device is further disposed on the transmission mechanism, and the balancing device and the coil are distributed in the Both sides of the transmission mechanism.
  • the transmission mechanism includes a worm wheel and a worm meshing with each other, and the worm is fixed on the light receiving module.
  • the worm wheel is rotatably fixed to the base.
  • a balancing device is further disposed on the transmission mechanism, and the balancing device and the coil are distributed in the Both sides of the transmission mechanism.
  • a strip is further provided, and the light receiving module is disposed on the strip.
  • the strip includes a straight section and a bent section, and the light receiving module is fixed on the straight section
  • the bending section includes a horizontal section and a vertical section, and the rack structure is disposed on a vertical section of the bending section.
  • the spring is fixed at one end and the other end is connected to a horizontal section of the bent portion of the strip.
  • the magnet is a neodymium magnet and may have a strip shape or a U shape.
  • the gear can be fixedly mounted on the outer ring of the bearing, and then the bearing is fixed on the shaft, so that the gear can rotate around the shaft under low resistance; however, the bearing gear can also be directly used when selecting the gear. Simply fix it on the shaft. At the same time, other methods existing can be adopted for this problem, and will not be enumerated here.
  • the meshing manner of the gear and the rack can also be replaced by a similar meshing method, for example, changing the gear to a worm wheel, fixing the coil to the worm wheel, and replacing the rack structure on the strip with a worm or
  • the worm structure relies on the meshing transmission of the worm gear to complete the adjustment of the strip and the light receiving module above it;
  • the gear can also be replaced by a nut, and the coil is fixed on the nut, and the rack structure on the strip is changed.
  • the threaded rod or the like is configured such that the coil rotates by the nut under the action of the magnet, thereby driving the threaded rod and the strip to move, thereby adjusting the position or/and the angle of the strip and the light receiving module thereon.
  • the spectral position adjusting device for detecting biomarkers according to the present invention adopts the above technical solution, and the technical effect is: since the light receiving module is combined with the coil through the transmission mechanism in the present invention, and a magnet is arranged beside the coil, When the current is supplied into the coil, the coil generates a magnetic field. Under the action of the magnetic field of the magnet, the coil drives the light receiving module to move through the transmission mechanism. When the concentration of the biomarker is measured based on the surface plasmon resonance technology, the device can be used to receive the light. The module receives the beam emitted by the sensor chip and forms a spectrum. First, the zero position is set.
  • the position of the spectrum on the light receiving module of the object to be tested is controlled to move to the zero position, and the coil is calculated.
  • the correspondence between the medium current and the electrical signal emitted by the light receiving module can conveniently and quickly acquire the detection information of the biomarker in the object to be tested.
  • FIG. 1 is a working principle diagram of a surface plasmon resonance technique according to the present invention.
  • FIG. 2 is a schematic view showing the overall structure of a spectral position adjusting device for detecting a biomarker according to the present invention
  • Fig. 3 is a schematic view showing the use state of a spectral position adjusting device for detecting biomarkers according to the present invention.
  • FIG. 1 is a working principle diagram of a surface plasmon resonance technique according to the present invention, which is a prior art, as shown in the figure, a process of detecting a concentration of a biomarker by using a surface plasmon resonance technique, first, setting a flow channel 300 and transmitting
  • the sensing chip 400 is provided with a gold film on the sensing chip 400, and a side portion of the sensing chip 400 with the gold film is located in the flow channel 300, so that the object to be detected flowing into the flow channel 300 can be contacted with
  • the gold film sensor chip 400 when measuring, passes the object to be detected with the biomarker into the flow channel 300, so that the object to be detected is in contact with the sensor chip, and a layer of antibody molecules is modified in advance at the reaction interface.
  • a light beam is emitted from a light source 600, which is irradiated onto the sensor chip 400, and is reflected by the optical detecting unit 700 (the light receiving module is used as an optical detecting unit in the present invention), and is sensed by the optical detecting unit 700.
  • the change of the received beam information obtains the correspondence between the change information and the concentration of the biomarker to be detected, and finally obtains the biomarker concentration value in the object to be detected from the change information.
  • a monochromatic light source such as an infrared beam source can be used, which is effective.
  • a spectral position adjusting device for detecting biomarkers comprising a strip 2, a light receiving module 3, a spring 4, a gear 7, a coil 9 and a magnet 10,
  • One end of the plate 2 is fixed in an articulated manner, and the other end is fixedly connected to the rack 6.
  • a gear 7 is disposed beside the rack 6, the gear 7 is engaged with the rack 6, and the gear 7 is rotatably fixed to the shaft 8.
  • Upper, the shaft 8 is fixed on the base 11.
  • the strip 2 can be arranged as two parts of a fixed connection, one part is a straight section 21, and the other part is a bending section 22, a straight line
  • One end of the segment 21 is fixed in an articulated manner, and the other end of the segment 21 is fixedly connected with the bending segment 22, and the straight segment 21 is at an angle with the horizontal direction (generally, an acute angle is mostly), and the straight segment 21 is fixed.
  • the light receiving module 3 is configured to reflect the infrared light when detecting the biomarker, and the bending section 22 is bent at a 90 degree, the horizontal part is fixedly connected with the straight line section, and the vertical part is fixed to the rack 6.
  • the rack and the bending section 22 are integrally formed.
  • the rack structure is provided on the vertical portion of the bending section 22, that is, the integrated structure is more complicated in production, installation and use. Convenience.
  • the rack structure on the strip 2 or the fixed rack 6 is in meshing state with the gear 7.
  • the gear 7 When the gear 7 is rotated by an external force, the rack structure or the rack 6 on the strip 2 follows the gear 7 Rotate and rotate to drive the strip 2 to move.
  • a closed coil 9 is attached to the gear 7, which extends 9 out of the body of the gear 7 and extends outwardly a distance, with a fixed magnet 10 placed next to the coil 9. A part of the coil 9 overlaps with the magnet 10, so that when a current is applied to the coil 9, the coil 9 in the closed state forms a closed loop, and when there is current in the closed loop, it is itself charged.
  • the magnetic field generates a magnetic field, and the magnetic field generated by the coil 9 and the magnetic field of the magnet 10 interact with each other. At this time, changing the magnitude/direction of the current flowing into the coil 9 can change the strength of the magnetic field generated by the coil 9 and the direction of the magnetic field. Since the magnitude and direction of the magnetic field generated by the magnet 10 are fixed, when the magnitude and/or direction of the current in the coil 9 is changed, the coil 9 is rotated by the magnetic field of the magnet 10, since the coil 9 is fixed.
  • a spring 4 is attached to the strip 2, and the other end of the spring 4 is fixed to set an initial position, so that When the spring 4 is in the initial position, the entire device is at a zero point.
  • the horizontal angle of the light receiving module 3 needs to be adjusted, the light receiving module 3 can be more easily restored to the initial position by the elastic force of the spring 4.
  • the above specific process is as follows: when a current is supplied to the coil 9, a magnetic field is generated in the coil, and under the action of the magnet 10, the coil 9 rotates around the shaft 8 under the action of the magnetic field interaction, and the gear 7 also starts to rotate, the strip plate
  • the rack structure on the 2 or the fixedly mounted rack 6 rises/falls under the rotation of the gear 7, thereby driving the strip 2 as a whole to rise/fall, and when the strip 2 starts to rise/fall, it also starts to stretch/
  • the compression spring 4 when the strip 2 and the light receiving module 3 thereon are required to return to the initial position or the desired set position, when the corresponding magnitude or direction of the current flowing into the coil 9 is changed, the strip 2 is
  • the spring 4 can provide a contraction force or a tensile force correspondingly when the rack structure or the rack 6 thereon moves correspondingly, so that the strip 2 can be more sensitive and quickly recovered with the assistance of the force of the spring 4. To the initial position or desired position.
  • Fig. 2 one end of which is fixed on the bending section 22, and the other end is fixed at a corresponding position (for example, a platform or a frame, etc.).
  • one end of the strip 2 is hingedly fixed, and various hinge devices including hinges, hinge balls and the like can be used here, and the hinge fixing manner can be adopted, that is, only the strip 2 can be ensured to be supported around the support point. 1 Rotate with low friction.
  • the shape of the magnet 10 is exemplified in the figure, and the magnet 10 is disposed in the vertical direction (this direction is an intuitive direction in the drawing, and the specific orientation of the object is not limited thereto), and the N pole is set. And the S pole is reasonably distributed, so that the coil 9 can move between the N pole and the S pole of the magnet 10 within the magnetic field of the magnet 10, and it is preferable to use the magnet 10 in order to generate a sufficiently strong magnetic field.
  • the neodymium magnet can obtain a strong magnetic field, so that it can strongly promote the movement of the coil 9 after energization, and the shape thereof can be a strip shape, a U shape or the like.
  • a balancing device 5 is attached to the gear 7, and the balancing device 5 is mounted on the gear 7.
  • the position is corresponding to the coil 9, that is, the balance device 5 and the coil 9 are respectively located on both sides of the gear, and the two are at the same level, which play a certain balance between each other.
  • the balancing device 5 is arranged in a coil shape so as to partially extend out of the gear 7, so that the weight of the balancing device 5 can be reduced, and at the same time, the balancing device 5 can also raise the position of the coil 9 under the action of the lever by its own gravity.
  • the shaft 8 in Fig. 2 it can be fixed by the base 11, in the embodiment given in Fig. 1, the fixed end of the strip 2, the fixed end of the spring 4 and the fixing of the base 11 are Supporting platforms, such as bench-top work platforms or support platforms placed on racks, however, a rack or enclosure can be added to secure the entire unit to the rack or enclosure.
  • the rotatably fixed manner of the gear 7 on the shaft 8 can be solved by the prior art.
  • the gear 7 can be placed on the outer ring of the bearing so that it can rotate around the bearing and then The inner ring of the bearing is fixed on the shaft 8 to fix the shaft 8 on the base 11.
  • the gear 7 can also directly use the bearing gear to directly fix it on the shaft 8; other existing methods of rotating connection, such as articulation It is within the scope of the present invention that the gear 7 can be rotationally fixed.
  • the spectral position adjusting device for detecting biomarkers when used, the detection liquid containing no biomarker may be used first, and the detecting device may be performed using infrared light. Irradiating and illuminating the reflected light to the light receiving module 3 in the direction shown in FIG. 2 to determine the position of the dark region of the spectrum.
  • the spectral position adjusting device for detecting the biomarker of the present invention is set.
  • the strip-shaped light region formed on the light-receiving module 3 in this state and the dark region in the strip-shaped light region are also correspondingly used as initial positions, when the measured object is changed, due to detection
  • the antibody in the detecting device absorbs the antigen, and the reflected light of the detected infrared light changes, that is, the infrared light that is irradiated onto the light receiving module 3 of the present invention changes, and the light receiving module 3 receives
  • the infrared light transmission is changed, the spectrum formed on the light receiving module 3 is also changed, and the position of the dark region formed is also shifted from the initial position.
  • the incident light is the infrared reflected light of the detected object
  • the dark region position of the spectrum formed on the light receiving module 3 needs to be adjusted to obtain further detailed information about the biomarker
  • Changing the magnitude or/and direction of the current flowing into the coil 9 the strength or/and direction of the magnetic field generated by the closed coil 9 also varies with the transmission, so that the coil 9 drives the gear 7 under the action of the magnet 10.
  • Rotation the coil 9 is relatively easy to move under the action of the magnetic force of the magnet 10 under the balanced braking action of the balancing device 5
  • the gear 7 drives the rack structure or the rack 6 on the strip 2 to move, and the strip 2 also starts to move.
  • the angle of the light receiving module 3 with the horizontal direction changes with the movement of the strip 2, so that the position of the dark area formed on the light receiving module 3 also changes, that is, according to the magnitude of the current flowing into the coil 9. Or/and the direction, the position of the dark area formed on the light receiving module 3 is controlled accordingly, and the required measurement information is obtained by the change of the dark area position and the change of the current flowing into the coil 9.
  • the implementation of the present invention is not limited to the above-described embodiments, for example, the gear 7 in which the movement of the strip 2 is realized and the rack structure or the rack 6 on the strip 2 engaged therewith may be mutually
  • the meshed turbine, worm or socket-mounted nut and screw can be replaced as a whole, and the required changed parts can be modified as needed.
  • the worm or nut can be directly fixed to the strip or the light receiving module 3
  • the worm wheel or the screw can be fixed on the base, and the above changes can be easily made by those skilled in the art and those skilled in the art in combination with the common knowledge in the prior art; and, in the present invention, the spring 4
  • the position is also not limited to the position shown in the drawing, and it can also be moved to the vicinity of the support point 1, so that the effect of the spring 4 may be better.
  • the strip 2 of the present invention can be omitted in fact, and the light receiving module 3 can be directly used to be fixedly coupled to the rack 6 or the worm or nut in the corresponding embodiment.

Abstract

一种生物标志物检测用光谱位置调节装置,包括光接收模块(3)、传动机构、线圈(9)、磁铁(10)以及底座(11),所述的传动机构一处固定在所述的光接收模块(3)上,另一处固定在所述的底座(11)上,所述的线圈(9)固定在所述的传动机构上,所述的磁铁(10)靠近所述线圈(9),使得向所述线圈(9)中通电后其能够在所述磁铁(10)的作用下通过所述的传动机构带动所述的光接收模块(3)运动。该装置能够方便、快捷的改变生物标志物表面等离子共振技术检查过程中检测物中生物标志物的红外照射反射光线的光谱位置,从而获取检测物中生物标志物的有效信息。

Description

生物标志物检测用光谱位置调节装置
技术领域
本发明涉及生物标志物检测领域,更具体的说涉及生物标志物检测用光谱位置调节装置。
背景技术
生物标志物(Biomarker)是指可以标记系统、器官、组织、细胞及亚细胞结构或功能的改变或可能发生的改变的生化指标,具有非常广泛的用途。生物标志物可用于疾病诊断、判断疾病分期或者用来评价新药或新疗法在目标人群中的安全性及有效性。在检测生物标志物时,常用到表面等离子共振技术SPR(Surface Plasmon Resonance),即利用金属膜/液面界面光的全反射连接引起的一种物理光学现象来分析生物分子相互作用,并通过红外光结合SPR技术测量生物标志物浓度,具体可参照论文“表面等离子共振技术在生物医学中的应用”,以及论文“表面等离子体共振免疫传感器在蛋白质检测中的应用及其研究进展”—《分析化学》2010年第七期1052-1059,然而,在测量过程中,怎样能够更加准确的获取检测生物标志物的红外光的特征光谱位置信息,从而获取待测物中生物标志物的相关信息,是摆在众多生物医学领域学家面前的一道难题。
发明内容
为了解决上述技术问题,本发明提供一种能够获取生物标志物的反射光线,并调整生物标志物反射光光谱位置的一种生物标志物检测用光谱位置调节装置。
本发明为解决上述技术问题所采用的技术方案为:一种生物标志物检测用光谱位置调节装置,包括光接收模块、传动机构、线圈、磁铁以及底座,所述的传动机构一处固定在所述的光接收模块上,另一处固定在所述的底座上,所述的线圈固定在所述的传动机构上,所述的磁铁靠近所述线圈,使得向所述线圈中通电后其能够在所述磁铁的作用下通过所述的传动机构带动所述的条板运动。
对于本发明中上述的一种生物标志物检测用光谱位置调节装置,作为进一步的设置,还包括弹簧,所述的光接收模块由所述弹簧支撑。
对于本发明中上述的一种生物标志物检测用光谱位置调节装置,作为进一步的设置,所述的传动机构包括相互啮合的齿条和齿轮,所述的齿条固定在所述的光接收模块上,所述的齿轮可转动的固定在所述的底座上。
对于本发明中上述的一种生物标志物检测用光谱位置调节装置,作为进一步的设置,还包括轴,所述的齿轮套在所述的轴上,所述的轴可转动的固定在底座上。
对于本发明中上述的一种生物标志物检测用光谱位置调节装置,作为进一步的设置,在所述的传动机构上还设有平衡装置,所述的平衡装置与所述的线圈分布在所述传动机构的两侧。
对于本发明中上述的一种生物标志物检测用光谱位置调节装置,作为进一步的设置,所述的传动机构包括相互啮合的蜗轮和蜗杆,所述的蜗杆固定在所述的光接收模块上,所述的蜗轮可转动的固定在所述的底座上。
对于本发明中上述的一种生物标志物检测用光谱位置调节装置,作为进一步的设置,在所述的传动机构上还设有平衡装置,所述的平衡装置与所述的线圈分布在所述传动机构的两侧。
对于本发明中上述的一种生物标志物检测用光谱位置调节装置,作为进一步的设置,还设有条板,所述的光接收模块设置在条板上。
对于本发明中上述的一种生物标志物检测用光谱位置调节装置,作为进一步的设置,所述的条板包括直线段和弯折段,所述的光接收模块固定在所述的直线段上,所述的弯折段包括水平段和竖直段,所述的齿条结构设置在所述弯折段的竖直段上。
对于本发明中上述的一种生物标志物检测用光谱位置调节装置,作为进一步的设置,所述的弹簧一端固定,另一端与所述条板的弯折段的水平段连接。
对于本发明中上述的一种生物标志物检测用光谱位置调节装置,作为进一步的设置,所述的磁铁为钕磁铁,其形状可以为条形或U形。
本发明中,可将齿轮固定的套在轴承的外圈上,然后将轴承固定在轴上,使得齿轮可在低阻力下围绕轴旋转运动;但是,在应用选择齿轮时也可直接选用轴承齿轮,直接将其固定在轴上即可。同时,针对该问题,还可采用现有的其它方式,在此不再一一列举。
本发明中,对于齿轮和齿条的啮合方式,还可以选用类似的啮合方式进行替换,例如:将齿轮换为蜗轮,将线圈固定在蜗轮上,将条板上的齿条结构替换为蜗杆或蜗杆结构,依靠蜗轮蜗杆的啮合传递,完成对条板及其上面的光接收模块的调节;还可将齿轮替换为螺母,相应的将线圈固定在螺母上,将条板上的齿条结构换成螺纹杆或类似结构,使得线圈在磁铁的作用下通过带动螺母旋转,进而带动螺纹杆、条板进行运动,从而调整条板及其上面的光接收模块的位置或/和角度。
本发明一种生物标志物检测用光谱位置调节装置采用上述技术方案,带来的技术效果为:由于本发明中将光接收模块通过传动机构与线圈结合起来,并在线圈的旁边设置一个磁铁,使得当向线圈中通入电流,线圈产生磁场,在磁铁的磁场作用下,线圈通过传动机构带动光接收模块运动,基于表面等离子共振技术测量生物标志物浓度时,使用本装置,可使光接收模块接收传感芯片射出的光束并形成光谱,首先设定零点位置,通过调节通入线圈中的电流,控制有待测物时光接收模块上的光谱的位置使其移动至零点位置,通过计算线圈中电流与光接收模块发出的电信号之间的对应关系,即可方便快速的获取待测物中的生物标志物的检测信息。
附图说明
图1为本发明涉及到的表面等离子共振技术的工作原理图;
图2为本发明一种生物标志物检测用光谱位置调节装置的整体结构示意图;
图3为本发明一种生物标志物检测用光谱位置调节装置的使用状态示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明涉及到的表面等离子共振技术的工作原理图,其为现有技术,如图所示,利用表面等离子共振技术检测生物标志物浓度的过程,首先,设置一个流动通道300和传感芯片400,在传感芯片400上设置一层金膜,并使传感芯片400设有金膜的一面部分位于流动通道300中,使得流入流动通道300内的待检测物能够接触到带有金膜的传感芯片400,测量时,将带有生物标志物的待检测物通入流动通道300,使得待检测物与传感芯片接触,预先在反应界面上修饰一层抗体分子,当目标抗原与抗体识别后,金膜表面介质的折射率发生改变,SPR共振角会随着折射率的改变而改变,折射率的变化又与结合在金属表面的生物大分子质量的变化成正比,共振峰位移的大小将反映固定在金属表面生物分子量的变化,进而实现免疫分析。在图1中,由光源600发出光束,照射到传感芯片400上,经其反射后由光学检测单元700(本发明中将用光接收模块作为光学检测单元)接收,通过光学检测单元700感应其所接收到的光束信息的变化,得出该变化信息与待检测物生物标志物浓度的对应关系,最终从该变化信息中得出待检测物中生物标志物浓度值。对于光源600,可采用单色光源,例如红外线束光源,效果较好。
图2为本发明的整体结构示意图,如图所示,一种生物标志物检测用光谱位置调节装置,包括条板2、光接收模块3、弹簧4、齿轮7、线圈9和磁铁10,条板2的一端以铰接的方式固定,另一端与齿条6固定连接,在齿条6的旁边设置有一个齿轮7,齿轮7与齿条6处于啮合状态,齿轮7可转动的固定在轴8上,轴8固定在底座11上,为了方便在条板2上固定齿条6,可将条板2设置为固定连接的两部分,一部分为直线段21,另一部分为弯折段22,直线段21的一端采用铰接的方式固定,其另一端与弯折段22固定连接,并使得直线段21与水平方向呈一定的夹角(一般情况下以锐角居多),在直线段21上固定有光接收模块3,用于反射检测生物标志物时的红外光线,弯折段22呈90度折弯状,其水平部分与直线段固定连接,其竖直部分固定齿条6,当然,也可以在该竖直段上设置齿条结构,将齿条与弯折段22设置成一体结构,相比较而言,在弯折段22的竖直部分上设置齿条结构,即做成一体式的结构在制作、安装以及使用时会更加方便。
条板2上的齿条结构或固定着的齿条6与齿轮7处于啮合状态,当齿轮7在外力的作用下转动时,条板2上的齿条结构或齿条6随着齿轮7的转动而转动,从而带动条板2发生运动。为了控制/调节齿轮7的转动,在齿轮7上固定一个闭合的线圈9,该线圈9要延伸出齿轮7的本体,并向外延伸一段距离,在与线圈9旁边设置一个固定着的磁铁10,线圈9的一部分与磁铁10重叠,这样以来,当向线圈9上通入电流时,处于闭合状态的线圈9形成一个闭合的回路,当这个闭合的回路中有电流通过时,其自身在电磁感应作用下产生磁场,线圈9产生的磁场与磁铁10的磁场相互之间发生作用力,此时,改变通入线圈9中的电流大小/方向可以改变线圈9所产生的磁场强度以及磁场方向,由于磁铁10所产生的磁场的大小和方向是固定的,因此,当改变线圈9中的电流大小和/或方向时,在磁铁10的磁场的作用下,线圈9发生转动,由于线圈9是固定在齿轮7上的,因此,在线圈9开始转动时,齿轮7随着线圈9转动而转动,齿轮7与条板2上的齿条结构或齿条6啮合,因此条板2上的齿条结构或齿条6随着齿轮7的转动而运动(图中为竖直方向运动),最终条板2也会随着线圈9中电流的变化而运动,对于条板2,由于其直线段21是以铰接的方式固定着的,因此,在条板2随着线圈9中通入电流的变化而变化时,条板2的直线段21与水平方向的夹角也将随之而改变,进而,固定在条板2上的光接收模块3与水平方向的夹角也便随着改变,其上面的反射光线的角度也会随之而改变。
如图2所示,为了进一步提高条板2上的光接收模块3的水平夹角的调节灵敏度,在条板2上连接一个弹簧4,弹簧4的另一端固定,设定一个初始位置,使得弹簧4在该初始位置时整个装置处于一个零点,当需要调整光接收模块3的水平夹角时,可借助弹簧4的弹力,使得光接收模块3更加容易回复至初始位置。上述具体过程表现为:当向线圈9中通入电流,线圈中产生磁场,在磁铁10的作用下,线圈9在磁场交互的作用力下绕轴8转动,同时齿轮7也开始转动,条板2上的齿条结构或固定安装的齿条6在齿轮7的转动下上升/下降,进而带动条板2整体上升/下降,在条板2开始上升/下降时,其同时也开始拉伸/压缩弹簧4,当需使条板2及其上面的光接收模块3回复至初始位置或所需设定的位置时,当相应的改变通入线圈9中的电流大小或方向,条板2在随着其上面的齿条结构或齿条6相应的运动时,弹簧4能够相应的提供收缩力或拉伸力,使得条板2能够在弹簧4的作用力的协助下更加灵敏、快速的回复至初始位置或所需位置。
对于弹簧4位置的设置,可参照图2,将其一端固定在弯折段22上,另一端固定在相应的位置(例如平台或机架上等)。
在图2中,条板2的一端是铰接固定着的,此处可采用包括合页、铰接球等在内的多种铰接装置及铰接固定方式,即只需确保条板2能够绕支撑点1以较低的摩擦力旋转即可。
如图2中所示,磁铁10的形状以图中为例,在竖直方向(此方向为图中直观方向,具体实物的设置方位并不局限于此)设置磁铁10,并使其N极和其S极合理分布,使得线圈9能够在磁铁10磁场的作用范围内,在磁铁10的N极和S极之间运动,对于磁铁10,为了使其能够产生足够强的磁场,最好使用钕磁铁,可以获得较强的磁场,使其能够强力的促使通电后的线圈9的运动,其形状可以是条形,也可以是U形或其它形状。
进一步的,如图2中所示,为了提高线圈9在齿轮7上的稳定性,并进一步提高线圈9的调节灵敏性,在齿轮7上固定一个平衡装置5,该平衡装置5安装在齿轮7上,其位置要与线圈9对应,即使得平衡装置5和线圈9分别位于齿轮的两侧,并使其二者位于同一水平高度,彼此之间起到一定的平衡作用,在此,可以将平衡装置5设置成线圈状,可以使其部分延伸出齿轮7,这样一来可以减轻平衡装置5的重量,同时,平衡装置5还可以借助自身重力,在杠杆作用下对线圈9的位置高度起到很好的平衡作用,即当线圈9受磁铁10的磁场力向上/下(仅指图中方位,实际方向不限于此)运动时,在平衡装置5的作用下,线圈9只需克服很小的力便可摆脱静止状态进行运动,同样的,当需将线圈9调整至初始位置时,只需克服较小的阻力即可实现,即无需大幅度变动通入线圈9中的电流即可实现对线圈9的位置调整。
对于图2中的轴8,可将其通过底座11进行固定,本发明图1所给出的实施例中,条板2的固定端部、弹簧4的固定端以及底座11的固定处均为具有支撑作用的平台,例如:台式的工作平台或者设置在机架上的支撑平台等,然而,也可以增设一个机架或者外壳,将整套装置固定在机架或外壳上。
本发明中,对于齿轮7在轴8上的可转动的固定方式,可采用现有技术进行解决,例如,可采用将齿轮7套在轴承的外圈上,使其可围绕轴承转动,然后将轴承的内圈固定在轴8上,将轴8固定在底座11上;另外,齿轮7也可直接使用轴承齿轮,将其直接固定在轴8上;其它现有的转动连接的方式,如铰接、套接,等等能够实现齿轮7可转动固定的均在本发明的可实施范围之内。
图3为本发明一种生物标志物检测用光谱位置调节装置的使用状态示意图,如图中所示,在使用时,可首先使用不含生物标志物的检测液,使用红外光对检测装置进行照射,并使其反射光按图2中所示的方向照射到光接收模块3上,确定光谱暗区的位置,此种情况下,本发明一种生物标志物检测用光谱位置调节装置设定为初始位置,相应的,该状态下的光接收模块3上所形成的带状光区及带状光区中的暗区也相应的作为初始位置,当改变所测量的检测物时,由于检测物中生物标志物的存在,检测装置中的抗体对抗原吸收,检测照射的红外光的反射光发生变化,即照射到本发明光接收模块3上的红外光线发生变化,光接收模块3所接收到的红外光发送变化,其在光接收模块3上形成的光谱也随之发送变化,其所形成的暗区的位置也便会相对初始位置发生偏移。
参照图3,以其中的入射光线为所检测的检测物的红外反射光线,当需对光接收模块3上形成的光谱的暗区位置进行调整,以获取进一步关于生物标志物的详细信息时,改变通入线圈9中的电流大小或/和方向,闭合着的线圈9所产生的磁场的强度或/和方向也随着发送变化,这样以来,在磁铁10的作用下,线圈9带动齿轮7转动(在平衡装置5的平衡制动作用下线圈9比较容易在磁铁10的磁力作用下运动),进而齿轮7带动条板2上的齿条结构或齿条6运动,条板2也开始运动,光接收模块3与水平方向的角度随着条板2的运动发生改变,如此以来,光接收模块3上形成的暗区的位置也会发生改变,即根据调整通入线圈9中电流的大小或/和方向,相应的控制光接收模块3上形成的暗区的位置,通过该暗区位置的改变以及通入线圈9中的电流的改变获得所需的测量信息。
需要特别说明的是,本发明的实施并不局限于上述的实施方式,例如,其中实现条板2运动的齿轮7以及与其啮合的条板2上的齿条结构或齿条6,可以由相互啮合的涡轮、蜗杆或者可套接安装的螺母、螺杆进行整体替换,并相应的按需要将所需更改的部位进行修改即可,例如可将蜗杆或螺母直接固定在条板或光接收模块3上,将蜗轮或螺杆固定在底座上即可,对于本领域技术人员以及结合现有的机械领域公知常识的其它领域人员均可十分容易的做出上述变动;而且,本发明中,弹簧4的位置也并不局限于图中所示的位置,还可将其移动至支撑点1附近,这样弹簧4的作用效果可能会更好。
而且,本发明中的条板2其实是可以省略的,可直接使用光接收模块3使其与齿条6或者相应实施例中的蜗杆或螺母固定连接。
上面结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (14)

  1. 一种生物标志物检测用光谱位置调节装置,其特征在于:包括光接收模块(3)、传动机构、线圈(9)、磁铁(10)以及底座(11),所述的传动机构一处固定在所述的光接收模块(3)上,另一处固定在所述的底座(11)上,所述的线圈(9)固定在所述的传动机构上,所述的磁铁(10)靠近所述线圈(9),使得向所述线圈(9)中通电后其能够在所述磁铁(10)的作用下通过所述的传动机构带动所述的光接收模块(3)运动。
  2. 根据权利要求1所述的一种生物标志物检测用光谱位置调节装置,其特征在于:还包括弹簧(4),所述的光接收模块(3)由所述弹簧(4)支撑。
  3. 根据权利要求2所述的一种生物标志物检测用光谱位置调节装置,其特征在于:所述的传动机构包括相互啮合的齿条(6)和齿轮(7),所述的齿条(6)固定在所述的光接收模块(3)上,所述的齿轮(7)可转动的固定在所述的底座(11)上。
  4. 根据权利要求3所述的一种生物标志物检测用光谱位置调节装置,其特征在于:还包括轴(8),所述的齿轮(7)套在所述的轴(8)上,所述的轴(8)可转动的固定在底座(11)上。
  5. 根据权利要求4所述的一种生物标志物检测用光谱位置调节装置,其特征在于:在所述的传动机构上还设有平衡装置(5),所述的平衡装置(5)与所述的线圈(9)分布在所述传动机构的两侧。
  6. 根据权利要求2所述的一种生物标志物检测用光谱位置调节装置,其特征在于:所述的传动机构包括相互啮合的蜗轮和蜗杆,所述的蜗杆固定在所述的光接收模块(3)上,所述的蜗轮可转动的固定在所述的底座(11)上。
  7. 根据权利要求6所述的一种生物标志物检测用光谱位置调节装置,其特征在于:在所述的传动机构上还设有平衡装置(5),所述的平衡装置(5)与所述的线圈(9)分布在所述传动机构的两侧。
  8. 根据权利要求2所述的一种生物标志物检测用光谱位置调节装置,其特征在于:还设有条板(2),所述的光接收模块(3)设置在条板(2)上。
  9. 根据权利要求8所述的一种生物标志物检测用光谱位置调节装置,其特征在于:所述的条板(2)包括直线段(21)和弯折段(22),所述的光接收模块(3)固定在所述的直线段(21)上,所述的弯折段(22)包括水平段和竖直段,所述的齿条结构设置在所述弯折段(22)的竖直段上。
  10. 根据权利要求9所述的一种生物标志物检测用光谱位置调节装置,其特征在于:所述的弹簧(4)一端固定,另一端与所述条板(2)的弯折段(22)的水平段连接。
  11. 根据权利要求10所述的一种生物标志物检测用光谱位置调节装置,其特征在于:所述的磁铁(10)为钕磁铁。
  12. 根据权利要求11所述的一种生物标志物检测用光谱位置调节装置,其特征在于:所述的磁铁(10)的形状为条形或U形。
  13. 根据权利要求1所述的一种生物标志物检测用光谱位置调节装置,其特征在于:所述的磁铁(10)为钕磁铁。
  14. 根据权利要求13所述的一种生物标志物检测用光谱位置调节装置,其特征在于:所述的磁铁(10)的形状为条形或U形。
PCT/CN2015/078014 2015-03-25 2015-04-30 生物标志物检测用光谱位置调节装置 WO2016149989A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510131585.5A CN104777137B (zh) 2015-03-25 2015-03-25 生物标志物检测用光谱位置调节装置
CN201510131585.5 2015-03-25

Publications (1)

Publication Number Publication Date
WO2016149989A1 true WO2016149989A1 (zh) 2016-09-29

Family

ID=53618743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078014 WO2016149989A1 (zh) 2015-03-25 2015-04-30 生物标志物检测用光谱位置调节装置

Country Status (2)

Country Link
CN (1) CN104777137B (zh)
WO (1) WO2016149989A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11597768B2 (en) 2017-06-26 2023-03-07 Beigene, Ltd. Immunotherapy for hepatocellular carcinoma
US11701357B2 (en) 2016-08-19 2023-07-18 Beigene Switzerland Gmbh Treatment of B cell cancers using a combination comprising Btk inhibitors
US11786529B2 (en) 2017-11-29 2023-10-17 Beigene Switzerland Gmbh Treatment of indolent or aggressive B-cell lymphomas using a combination comprising BTK inhibitors

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730241A2 (en) * 1990-05-08 1996-09-04 Symbol Technologies, Inc. Scanning arrangement
EP1081529A2 (en) * 1999-08-30 2001-03-07 PSC Scanning, Inc. Reflective dither spring
CN1844938A (zh) * 2006-05-12 2006-10-11 中国科学院上海微系统与信息技术研究所 一种基于微电子机械系统的光学电流传感器、制作及检测方法
CN201075777Y (zh) * 2007-08-31 2008-06-18 上海世科嘉车辆技术研发有限公司 后视镜单电机电动角度调节系统
CN201212871Y (zh) * 2008-04-30 2009-03-25 中国科学院金属研究所 薄膜材料动态弯曲疲劳性能测试系统
CN102967934A (zh) * 2012-12-04 2013-03-13 中国科学院苏州纳米技术与纳米仿生研究所 一种电磁驱动微镜
CN103528683A (zh) * 2013-10-25 2014-01-22 武汉大学 一种用于傅立叶变换红外光谱仪的动镜扫描装置
CN103984091A (zh) * 2013-11-21 2014-08-13 苏州浩创信息科技有限公司 一种扫描器摆镜装置
CN204536918U (zh) * 2015-03-25 2015-08-05 深圳市易特科信息技术有限公司 用于生物标志物检测的光谱位置调节装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3811446A1 (de) * 1988-04-06 1989-10-19 Bodenseewerk Perkin Elmer Co Einrichtung zur erzeugung eines magnetfeldes in einem atomabsorptions-spektrometer
CN2248872Y (zh) * 1995-12-12 1997-03-05 太原中绿环保技术有限公司 双通道式光电探测探头
RU2148378C1 (ru) * 1998-03-06 2000-05-10 Геликонов Валентин Михайлович Устройство для оптической когерентной томографии, оптоволоконное сканирующее устройство и способ диагностики биоткани in vivo
JP2005331348A (ja) * 2004-05-19 2005-12-02 Nippon Sheet Glass Co Ltd 光検出装置
CN2775651Y (zh) * 2005-02-21 2006-04-26 厦门大学 傅立叶变换红外光谱干涉仪动镜的电磁悬浮和驱动装置
WO2009013706A2 (en) * 2007-07-26 2009-01-29 Koninklijke Philips Electronics N. V. Microelectronic sensor device for optical examinations with total internal reflection
CN203414410U (zh) * 2013-08-09 2014-01-29 中国长江三峡集团公司 用于水华预警的藻类复苏及垂向迁移监测装置
CN103575716A (zh) * 2013-11-15 2014-02-12 中国科学院长春应用化学研究所 磁场调控的超分辨荧光成像方法
CN104062261A (zh) * 2014-06-27 2014-09-24 东北大学 基于宽谱光源和谐波检测技术的气体浓度测量方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0730241A2 (en) * 1990-05-08 1996-09-04 Symbol Technologies, Inc. Scanning arrangement
EP1081529A2 (en) * 1999-08-30 2001-03-07 PSC Scanning, Inc. Reflective dither spring
CN1844938A (zh) * 2006-05-12 2006-10-11 中国科学院上海微系统与信息技术研究所 一种基于微电子机械系统的光学电流传感器、制作及检测方法
CN201075777Y (zh) * 2007-08-31 2008-06-18 上海世科嘉车辆技术研发有限公司 后视镜单电机电动角度调节系统
CN201212871Y (zh) * 2008-04-30 2009-03-25 中国科学院金属研究所 薄膜材料动态弯曲疲劳性能测试系统
CN102967934A (zh) * 2012-12-04 2013-03-13 中国科学院苏州纳米技术与纳米仿生研究所 一种电磁驱动微镜
CN103528683A (zh) * 2013-10-25 2014-01-22 武汉大学 一种用于傅立叶变换红外光谱仪的动镜扫描装置
CN103984091A (zh) * 2013-11-21 2014-08-13 苏州浩创信息科技有限公司 一种扫描器摆镜装置
CN204536918U (zh) * 2015-03-25 2015-08-05 深圳市易特科信息技术有限公司 用于生物标志物检测的光谱位置调节装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11701357B2 (en) 2016-08-19 2023-07-18 Beigene Switzerland Gmbh Treatment of B cell cancers using a combination comprising Btk inhibitors
US11597768B2 (en) 2017-06-26 2023-03-07 Beigene, Ltd. Immunotherapy for hepatocellular carcinoma
US11786529B2 (en) 2017-11-29 2023-10-17 Beigene Switzerland Gmbh Treatment of indolent or aggressive B-cell lymphomas using a combination comprising BTK inhibitors

Also Published As

Publication number Publication date
CN104777137A (zh) 2015-07-15
CN104777137B (zh) 2018-06-19

Similar Documents

Publication Publication Date Title
Hsieh et al. Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles
Wong et al. Mobile app-based quantitative scanometric analysis
Kriz et al. Detection of C-reactive protein utilizing magnetic permeability detection based immunoassays
WO2016149989A1 (zh) 生物标志物检测用光谱位置调节装置
Harpaz et al. Functionalized silicon dioxide self-referenced plasmonic chip as point-of-care biosensor for stroke biomarkers NT-proBNP and S100β
Bekmurzayeva et al. Label-free fiber-optic spherical tip biosensor to enable picomolar-level detection of CD44 protein
Wang et al. Transmissive nanohole arrays for massively-parallel optical biosensing
EP1870695A1 (en) Accelerated weathering device with optical slip ring
Caputo et al. On-chip diagnosis of celiac disease by an amorphous silicon chemiluminescence detector
Nie et al. Immunoassays using optical-fiber sensor with all-directional chemiluminescent collection
WO2016149990A1 (zh) 螺旋升降式生物标志物检测用光谱位置调节装置
WO2016149980A1 (zh) 变量干预式生物标志物浓度检测方法及装置
WO2016149981A1 (zh) 基于光反射的生物标志物检测用光谱位置调整装置
Zhang et al. Smartphone surface plasmon resonance imaging for the simultaneous and sensitive detection of acute kidney injury biomarkers with noninvasive urinalysis
CN204536183U (zh) 用于生物标志物检测的光反射式光谱位置调整装置
WO2016149982A1 (zh) 基于表面等离子共振技术的生物标志物检测方法与系统
CN204536918U (zh) 用于生物标志物检测的光谱位置调节装置
Hong et al. Real-time analysis and direct observations of different superoxide dismutase (SOD1) molecules bindings to aggregates in temporal evolution step
CN204462017U (zh) 用于生物标志物检测的光谱暗区位置调节装置
CN102331317B (zh) 球膜振动量微纳牛力检测系统与方法及应用
CN102023052A (zh) 一种反射光检测装置及其检测方法
Maphanga et al. Surface plasmon resonance (SPR) based biosensor for mycobacterium tuberculosis diagnosis
WO2016149979A1 (zh) 蜗轮蜗杆式生物标志物检测用光谱暗区位置调节装置
US20240012005A1 (en) Device and method for measuring the level of biomarkers and pathogens in substances
CN211206249U (zh) 一种便携式甲状腺功能快速检测仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885927

Country of ref document: EP

Kind code of ref document: A1