WO2016149947A1 - 一种多载波宽带信息能量同传发送系统及接收系统 - Google Patents

一种多载波宽带信息能量同传发送系统及接收系统 Download PDF

Info

Publication number
WO2016149947A1
WO2016149947A1 PCT/CN2015/075351 CN2015075351W WO2016149947A1 WO 2016149947 A1 WO2016149947 A1 WO 2016149947A1 CN 2015075351 W CN2015075351 W CN 2015075351W WO 2016149947 A1 WO2016149947 A1 WO 2016149947A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
signal
information
baseband signal
unit
Prior art date
Application number
PCT/CN2015/075351
Other languages
English (en)
French (fr)
Inventor
贡毅
韩子栋
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Priority to US15/169,314 priority Critical patent/US9641225B2/en
Publication of WO2016149947A1 publication Critical patent/WO2016149947A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems

Definitions

  • the present invention relates to the field of wireless communication technology and wireless charging technology, and in particular to a multi-carrier broadband information energy simultaneous transmission system and receiving system.
  • Simultaneous Wireless Information and Energy Transfer which realizes the simultaneous transmission of information and energy through wireless, is an emerging communication technology integrating wireless communication technology and wireless energy transmission technology.
  • the integration of energy technology and communication technology has become a trend, which can achieve high-speed and reliable communication, and can effectively alleviate the pressure of energy and spectrum scarcity. It has important application value in industrial, medical and infrastructure development.
  • Wireless signal transmission breaks through the traditional wireless communication means, considers energy attributes at the same time, integrates wireless communication technology and wireless energy transmission technology, realizes parallel transmission of information and energy simultaneously, has wide application value and innovative meaning: based on information and energy Simultaneous transmission characteristics, used in all kinds of wireless terminals or devices that rely on limited capacity batteries to provide power, by collecting energy from the signal to feed them, greatly extending standby time, reducing equipment size and cost, and greatly reducing the battery
  • the production volume greatly reduces the environmental pollution caused by the battery manufacturing and recycling process. Based on the characteristics of non-contact long-distance transmission, it can replace battery or cable power supply, greatly improving the convenience of power supply.
  • the application number is 201410396157.0, and the patent name "frequency power of the AMPSK wireless energy-carrying communication system. "Distributor”, because the frequency band is too narrow, the information rate will be greatly reduced, and power loss will occur in the process of power distribution, and the signal The power density may exceed the civil safety standards.
  • the present invention provides a multi-carrier broadband information energy simultaneous transmission system and a receiving system.
  • a multi-carrier broadband information energy simultaneous transmission system comprising:
  • a signal management control system configured to perform a pre-allocation of a carrier, a power, and a spectrum on an information signal data stream and an energy signal data stream in a baseband signal based on a channel quality parameter, and a pre-allocation parameter set;
  • a baseband signal generating unit configured to generate a corresponding information baseband signal and an energy baseband signal according to the pre-allocated parameter set
  • a coding unit configured to respectively encode the information baseband signal and the energy baseband signal to generate a corresponding information baseband coded signal and an energy baseband coded signal;
  • serial-parallel conversion unit for performing serial-to-parallel conversion of the information baseband encoded signal and the energy baseband encoded signal to generate a parallel data stream
  • mapping unit configured to classify parallel data streams, and perform corresponding modulation pre-allocation on the information baseband signal and the energy baseband signal in the parallel data stream according to the pre-allocated parameter set;
  • a modulating unit configured to modulate the information baseband signal and the energy baseband signal in the parallel data stream onto the pre-allocated subcarrier according to the modulation pre-distribution result
  • serial conversion unit for converting a parallel data stream into a serial data stream and feeding the antenna unit
  • An antenna unit for transmitting a serial data stream output by the parallel-to-serial conversion unit.
  • the present invention can also be improved as follows.
  • the signal management control system includes:
  • a channel parameter obtaining unit configured to acquire a channel quality parameter
  • An algorithm processing unit for energy baseband signals and information based on preset optimization goals and constraints The baseband signal is optimized; the preset optimization target relates to: the number of carriers of the energy signal, the power, and the information transmission rate of the information signal; the constraints include:
  • the power collected by the receiver is greater than or equal to the minimum power required by the receiver to operate in one unit time (symbol time);
  • the sum of the energy signal powers on the subcarriers is less than or equal to the total power of the energy signals
  • the average power spectral density on each subcarrier frequency band is less than or equal to a predetermined parameter value
  • the sum of the information signal powers on the subcarriers is less than or equal to the total power of the information signals
  • the beneficial effects of the above further technical solution are: wireless information transmission based on wireless energy transmission, which can ensure the minimum power required by the receiver to reach the corresponding working mode, ensure the normal operation of the receiver, and greatly enhance the stability of the system. And reliability. Since the power consumed by the receiver circuit for signal processing may be greater than the energy of the information signal itself, the power of the energy signal in this patent scheme may be greater than or even greater than the power of the information signal, so the above further technical solution can greatly improve the energy utilization rate. , reduce energy waste, and be more green. At the same time, through optimization, the power is further allocated reasonably, the communication rate is improved in the first step, and the performance of the system is further improved.
  • the pre-allocated parameter set includes an information baseband signal pre-allocation parameter set and an energy baseband signal pre-allocation parameter set;
  • the information baseband signal pre-allocation parameter set includes:
  • the energy baseband signal pre-allocation parameter set includes:
  • the baseband signal generating unit includes an information baseband signal generating unit and an energy baseband signal generating unit;
  • the energy baseband signal generating unit allocates energy of the energy baseband signal data stream according to the energy signal power distribution set of the energy baseband signal pre-distribution parameter set, and aggregates the power of the energy baseband signal data stream according to the energy signal subcarrier allocation set.
  • the allocation information is added to the header of the corresponding energy baseband signal data stream.
  • the coding unit includes an information baseband signal coding unit and an energy baseband signal coding unit;
  • the information baseband signal encoding unit convolutionally encodes the information baseband signal
  • the energy baseband signal encoding unit orthogonally encodes the energy baseband signal.
  • the beneficial effects of the above further technical solution are: useful data contained in the information baseband signal, the energy signal only needs to be identifiable and transmitable, and the information baseband signal adopts a more reliable coding mode, and the energy baseband signal can be relatively simple.
  • the coding method uses different coding modes for both, which can reduce coding complexity and optimize system performance when the requirements are met.
  • the modulation unit includes an information baseband signal modulation unit and an energy baseband signal modulation unit;
  • the energy baseband signal modulation unit spectrally spreads the energy baseband signal.
  • the power spectral density of the energy baseband signal is much higher than the information signal, which may exceed the safety standard, and the power density can be reduced by spectrally spreading the modulation of the energy baseband signal, combined with the optimal bandwidth of the allocation and
  • the power density amplitude allows the power spectral density of the energy baseband signal to meet safety standards.
  • the energy baseband signal modulation unit includes a pulse shaping filter module, a spread spectrum module, and a mixing module that are sequentially connected.
  • an insertion guard interval unit is provided between the modulation unit and the parallel/serial conversion unit.
  • the invention also discloses a multi-carrier broadband information energy simultaneous transmission receiving system, comprising:
  • An antenna unit for receiving a serial signal transmitted by the transmitting end
  • a synchronization unit for synchronizing the received serial signal with the transmitting end to maintain frequency and phase
  • a channel estimation unit configured to generate a channel quality parameter, and feed back the signal quality parameter to a multi-carrier broadband information energy co-transmission system
  • a serial to parallel conversion unit for converting the received serial signal into a parallel signal
  • a receiving end mapping unit configured to separate the information signal and the energy signal in the parallel signal
  • a demodulation unit for demodulating the information signal and the energy signal respectively to obtain an information baseband signal and an energy base With signal
  • serial conversion unit for respectively converting the parallel information baseband signal and the energy baseband signal into a serial signal
  • a decoding unit for decoding an information baseband signal in the serial signal
  • a rectifying unit configured to filter and rectify the energy baseband signal in the serial signal into a DC signal and store the same in the battery.
  • the present invention can also be improved as follows.
  • the modulation unit includes an information signal modulation unit and an energy signal modulation unit;
  • the parallel-to-serial conversion unit includes an information signal and serial conversion unit and an energy signal and serial conversion unit.
  • the invention has the beneficial effects that: by using the information energy simultaneous transmission system of the invention, an independent energy signal is transmitted while transmitting an information signal to the receiving end, which can provide sufficient energy for the receiver, and further, the information signal is optimized by an algorithm.
  • the energy signal is optimized to improve energy transmission efficiency and increase information transmission rate.
  • the information energy simultaneous transmission system of the present invention is particularly suitable for the following fields:
  • Modern or future medical devices implanted in the human body such as cardiac pacemakers, artificial hearts, cardiovascular robots, crystal eyes, electronic cochlea, electronic Achilles, electronic prostheses, etc., which can be informationd by the methods described in this patent.
  • Simultaneous transmission and reception of energy so that it can feed the medical device to ensure the normal operation of the medical device, ensure the normal life for those who need these medical devices, and can feedback the pathological and human body mechanism data in real time through the mobile network, through modeling Predict to prevent accidents from happening.
  • this large amount of data can be shared with medical science experts for data analysis, which greatly promotes the development of medical standards.
  • Wireless devices such as wireless low-power sensor networks
  • the information energy simultaneous transmission system of the invention can create a smart home environment, feed the mobile terminal such as a mobile phone anytime and anywhere, and ensure the normal conversation of the user; feed the sensor, and always know the temperature and humidity parameters inside and outside the house at any time.
  • the central control system can be used to intelligently control the home, which can save energy and be green.
  • the invention can greatly reduce the battery usage and the production amount of the wireless receiving device, greatly reduce the environmental pollution caused by the battery manufacturing, use and recycling process, and is a technology which is very beneficial to improving the national green economy.
  • FIG. 1 is a schematic structural diagram of a multi-carrier broadband information energy simultaneous transmission system
  • FIG. 2 is a schematic structural diagram of a specific embodiment of a multi-carrier broadband information energy simultaneous transmission system
  • FIG. 3 is a schematic structural diagram of a multi-carrier broadband information energy simultaneous transmission receiving system.
  • FIG. 1 is a schematic structural diagram of a multi-carrier broadband information energy simultaneous transmission system. As shown in FIG. 1 , the present invention provides a multi-carrier broadband information energy simultaneous transmission system, where the system includes:
  • a signal management control system configured to perform a pre-allocation of a carrier, a power, and a spectrum on an information signal data stream and an energy signal data stream in a baseband signal based on a channel quality parameter, and a pre-allocation parameter set;
  • a baseband signal generating unit configured to generate a corresponding information baseband signal and an energy baseband signal according to the pre-allocated parameter set
  • a coding unit configured to respectively encode the information baseband signal and the energy baseband signal to generate a corresponding information baseband coded signal and an energy baseband coded signal;
  • serial-parallel conversion unit for performing serial-to-parallel conversion of the information baseband encoded signal and the energy baseband encoded signal to generate a parallel data stream
  • mapping unit configured to classify parallel data streams, and perform corresponding modulation pre-allocation on the information baseband signal and the energy baseband signal in the parallel data stream according to the pre-allocated parameter set;
  • a modulating unit configured to modulate the information baseband signal and the energy baseband signal in the parallel data stream onto the pre-allocated subcarrier according to the modulation pre-distribution result
  • serial conversion unit it is used to convert a parallel data stream into a serial data stream and send it to an antenna unit;
  • An antenna unit for transmitting a serial data stream output by the parallel-to-serial conversion unit.
  • the signal management control system includes: a channel parameter acquisition unit, an optimization algorithm processing unit, and a pre- Allocating parameter units;
  • the signal management control system is based on the channel quality parameter, the matching optimization algorithm, dynamically pre-allocating the information signal data stream and the energy signal data stream in the baseband signal, and generating the pre-allocated parameter set as follows: :
  • the channel parameter acquisition unit of the signal management control system acquires channel quality parameters:
  • the optimization algorithm processing unit optimizes the energy signal and the information signal according to the preset optimization target and the constraint condition;
  • the preset optimization target relates to: the number of carriers of the energy signal, the power, and the information transmission rate of the information signal;
  • the sum of the power collected by the receiver is greater than or equal to the minimum power required by the operating mode of the receiver, and the sum of the energy of the energy signals on the subcarriers is less than or equal to the total power of the energy signal, and the average power spectral density per subcarrier frequency band is less than or equal to one.
  • the sum of the parameter values and the information signal power on the subcarriers is less than or equal to the total power of the information signal.
  • the specific optimization process of the optimization algorithm processing unit includes the following steps:
  • the total number of carriers is N
  • S I1 to S Im are the first to mth information symbols in the information baseband signal, respectively
  • S E1 to S Em are the first to mth energy symbols in the energy baseband signal, respectively, using E[S 2 I (n)] and E[S 2 E (n)] represent the energy of the information signal and the energy signal, respectively. Therefore, the power Q collected by the receiving end can be expressed by the following relationship:
  • the power P E of the energy signal can be expressed by the following relationship:
  • the power, carrier and spectrum of the information baseband signal and the energy baseband signal can be optimized according to the minimum energy and channel feedback information required for the receiver to operate.
  • the minimum power required for the operation of the receiving end should be understood as the minimum power required for the various working modes of the receiving end. For example, when the receiving end is in the non-charging mode, the minimum power required for the receiving end to operate may be the operating circuit of the receiving end. The minimum power is required; when the receiving end is in the charging mode, the minimum power required for the receiving end to operate may be the sum of the minimum power required for the operation of the receiving end circuit and the power required for charging.
  • the optimization algorithm processing unit includes a first optimization processing unit and a second optimization processing unit, and the first optimization processing unit is based on the first optimization parameter set according to the first optimization target and the first constraint condition set. Determining a first pre-allocated parameter set of the first baseband signal; the second optimization processing unit determining the second baseband according to the second optimization target and the second constraint set based on the first pre-allocated parameter set and the second optimized parameter set The second pre-allocated parameter set of the signal.
  • the first baseband signal is an energy baseband signal
  • the first optimization target relates to: when the first constraint condition set is established, the number of energy signal carriers N E is minimum and the total power P E of the energy signal is minimum;
  • the first constraint set relates to: 1.
  • the power Q collected by the receiving end is greater than or equal to the minimum power P min required for the working of the receiving end, that is, Q ⁇ P min ; 2.
  • the sum of the energy of the energy signals on the transmitting terminal carrier is less than or equal to The total power of the energy signal in the baseband signal; 3.
  • the average power spectral density on each subcarrier frequency band is less than or equal to a predetermined parameter value A, that is, E[S 2 E (n)] / B ⁇ A, where B Channel bandwidth on subcarriers.
  • the first optimized parameter set includes the following parameters: an energy signal subcarrier set Sc E , a minimum power required to operate at the receiving end P min , a channel bandwidth B on each subcarrier, an average power spectral density A on each subcarrier, and a channel Parameter vector h .
  • the first pre-allocated parameter set includes the following parameters: an energy signal subcarrier allocation set, an energy signal power allocation set, and an energy signal total power P E .
  • the second baseband signal is an information baseband signal
  • the second optimization target relates to: maximizing the information transmission rate R in the case where the second constraint condition set is established; the second constraint condition set relates to: the sum of the information signal powers on the subcarriers is smaller than Equal to the total power P E of the information signal.
  • the second pre-allocation parameter includes the following parameters: an information signal power allocation set and an information signal sub-carrier allocation set.
  • the first optimization processing unit may derive the first pre-allocated parameter set according to the following first optimization target and the first constraint set:
  • the second optimization processing unit may derive the second pre-allocated parameter set according to the following second optimization target and the second constraint condition set.
  • Sc E * is an optimal energy signal subcarrier allocation set
  • the first optimization processing unit solving step is as follows, including steps S1-S4:
  • step S4 If there is a solution in step S2, then Sc E * is determined, N E is determined, and P E is determined.
  • the second optimization processing unit solving step is as follows, and includes step S5:
  • the first pre-allocated parameter set and the second pre-allocated parameter set are obtained through the above optimization.
  • a pre-allocation parameter unit configured to generate a pre-allocated parameter set according to an optimization result of the optimization algorithm processing unit, where the pre-allocation parameter set includes an information baseband signal pre-allocation parameter set and an energy baseband signal pre-allocation parameter set; and an information baseband signal pre-allocation parameter set
  • the device includes: an information signal power allocation set and an information signal subcarrier allocation set; the energy baseband signal pre-allocation parameter set includes: an energy signal subcarrier allocation set; an energy signal power allocation set; and an energy signal total power.
  • the baseband signal generating unit includes an information baseband signal generating unit and an energy baseband signal generating unit, and the energy baseband signal generating unit pre-allocates the energy signal power distribution set and the energy signal total power to the energy baseband according to the energy baseband signal.
  • the power of the signal data stream is allocated, and the subcarrier allocation information is added to the frame header of the corresponding energy baseband signal data stream according to the energy signal subcarrier allocation set;
  • the information baseband signal generating unit is configured to generate the information baseband signal according to the specific transmission requirement, Allocating power of the information baseband signal data stream according to the information signal power allocation set, and adding the subcarrier allocation information to the frame header of the corresponding information baseband signal data stream according to the information signal subcarrier allocation set; generated by the baseband signal generating unit
  • the information baseband signal is a serial high rate information stream
  • the energy baseband signal is a serial high power energy stream.
  • the coding unit includes an information baseband signal coding unit and an energy baseband signal coding unit; the information baseband signal coding unit performs convolutional coding on the information baseband signal; and the energy baseband signal coding unit performs orthogonal coding on the energy baseband signal.
  • the two baseband signals need to be efficiently coded separately.
  • the information signal contains more useful data, so it needs to be encoded by some highly reliable coding methods.
  • the signal only needs to be identifiable and transmitable, so the encoding of the energy signal can be relatively simple.
  • the information baseband signal and the energy baseband signal encoded by the coding unit are sent to the serial-parallel conversion unit for serial-to-parallel conversion and output parallel data streams; in order to perform multi-carrier and wide-band modulation, the serial high-rate information stream must be converted into Parallel low-rate information streams that convert serial high-power energy streams into parallel low-power energy streams.
  • the mapping unit is based on the power allocation information and the subcarrier allocation information in the frame header of the energy baseband signal and the information baseband signal in the data stream, and the information baseband in the parallel data stream according to the pre-allocated parameter set.
  • the signal and energy baseband signals are subjected to corresponding carrier modulation pre-allocation.
  • the modulation unit includes an information baseband signal modulation unit and an energy baseband signal modulation unit.
  • the information baseband signal modulating unit modulates the information signal stream according to the result of the carrier modulation pre-allocation, modulates it into a signal form transmitted by a suitable passband, and moves to a preset frequency band. Since the average power spectral density (PSD) of the energy baseband signal may exceed the safety standard, in this embodiment, the energy baseband signal modulation unit first performs spectral spread modulation on the energy baseband signal to reduce the average power spectral density, and then reuse The preset subcarriers modulate the energy baseband signal.
  • PSD power spectral density
  • the energy baseband signal modulation unit includes a pulse shaping filter module, a spread spectrum module, and a mixing module that are sequentially connected.
  • the energy baseband signal is subjected to pulse shaping processing through the pulse shaping filter module, and the spread spectrum module spreads the energy baseband signal through the spreading code, and then sends it to the mixing module to perform up-conversion processing with the preset subcarrier.
  • the modulated information signal and the energy signal are serially converted by the parallel-serial conversion unit to obtain a serial data stream, which is sent to the antenna unit for transmission.
  • an insertion protection interval unit is further disposed between the modulation unit and the parallel serial conversion unit, and the insertion protection interval unit can prevent inter-symbol interference by adding a protection prefix, such as a cyclic prefix, to the information baseband signal and the energy baseband signal. .
  • the energy baseband signal is used as the first baseband signal
  • the information baseband signal is used as the second baseband signal.
  • the information baseband signal is optimized to ensure reception.
  • the minimum power required by the machine to achieve the corresponding working mode ensures the normal operation of the receiver, which greatly enhances the stability and reliability of the system.
  • the power is further allocated reasonably, and the communication rate is first. The step is improved and the performance of the system is further improved.
  • FIG. 3 is a schematic structural diagram of a multi-carrier broadband information energy simultaneous transmission receiving system. As shown in FIG. 3, the present invention also discloses a multi-carrier broadband information energy simultaneous transmission receiving system, including:
  • An antenna unit for receiving a serial signal transmitted by the transmitting end
  • a synchronization unit for synchronizing the received serial signal with the transmitting end to maintain frequency and phase
  • a channel estimation unit configured to generate a channel quality parameter, and feed back the signal quality parameter to a multi-carrier broadband information energy co-transmission system
  • a serial to parallel conversion unit for converting the received serial signal into a parallel signal
  • a receiving end mapping unit configured to separate the information signal and the energy signal in the parallel signal
  • a demodulation unit for demodulating the information signal and the energy signal respectively to obtain an information baseband signal and an energy baseband signal
  • serial conversion unit for respectively converting the parallel information baseband signal and the energy baseband signal into a serial signal
  • a decoding unit for decoding an information baseband signal in the serial signal
  • a rectifying unit configured to filter and rectify the energy baseband signal in the serial signal into a DC signal and store the same in the battery.
  • the modulation unit includes an information signal modulation unit and an energy signal modulation unit
  • the parallel conversion unit includes an information signal and serial conversion unit and an energy signal and serial conversion unit.

Abstract

本发明涉及多载波宽带信息能量同传发送系统及接收系统,该发送系统包括:信号管理控制系统、基带信号产生单元、编码单元、串并行转换单元、映射单元、调制单元、并串行转换单元;其中,信号管理控制系统用于基于信道质量参数,匹配最优化算法,动态对基带信号中的信息信号数据流和能量信号数据流进行载波、功率和频谱的预分配,并生成预分配参数集;基带信号产生单元用于根据预分配参数集产生相应的信息基带信号和能量基带信号;采用本发明所述信息能量同传发送系统,在向接收端发送信息数据的同时发送对立的能量数据,能够为接收机提供足够能量,另外,通过优化算法对信息信号和能量信号进行优化,既能提高能量传输效率又能提高信息传输速率。

Description

一种多载波宽带信息能量同传发送系统及接收系统 技术领域
本发明涉及无线通信技术和无线充电技术的交叉领域,特别涉及一种多载波宽带信息能量同传发送系统及接收系统。
背景技术
无线信能同传(Simultaneous Wireless Information and Energy Transfer),即通过无线方式实现信息和能量的同时传输,是集成无线通信技术和无线能量传输技术的新兴通信技术。随着科技的发展,整合能源技术和通信技术成为趋势,既能实现高速可靠的通信,又能有效缓解能源和频谱稀缺的压力,在工业、医疗、基础设施发展等方面有着重要的应用价值。无线信能同传突破传统的无线通信手段,将能量属性同时考虑,整合无线通信技术和无线能量传输技术,实现信息和能量的并行同时传输,具有广泛的应用价值和创新意义:基于信息与能量同时传输的特点,用于各类依靠有限容量电池提供电能的无线终端或器件,通过从信号中采集能量为其馈电,极大延长待机时间,减小设备体积和成本,并能够大幅减少电池的生产量,大大降低电池生产制造与回收过程中造成的环境污染。基于非接触式的远距离传输的特点,可取代电池或者线缆供电,极大的提升供电的便利性。基于稳定性和可持续性的特点,可替代传统能量采集器(Energy Harvester)以采集环境能量(如风能、太阳能、动能等)为主的方式。同时,无线信能同传在改善人民生活方面的应用也是广泛的,会产生极大的社会效益:在医疗领域,植入医疗装置如心脏起搏器、心血管机器人等均存在严重的电池能量短缺问题,无线信能同传技术的装配可避免对患者造成严重的二次痛苦。在技术上,东南大学的郑祖翔、吴乐南等提出了AMPSK超窄带调制技术,并基于此调制技术设计了频域功率分配器,申请号:201410396157.0,专利名称“AMPSK无线携能通信系统的频域功率分配器”,该技术由于频带超窄,信息速率会大打折扣,而且在功率分配的过程中会造成功率损耗,另外信号 在功率密度上可能会大大超出民用安全标准。
发明内容
为解决上述技术问题,本发明提供了一种多载波宽带信息能量同传发送系统及接收系统。
本发明解决上述技术问题的技术方案如下:一种多载波宽带信息能量同传发送系统,所述系统包括:
信号管理控制系统,其用于基于信道质量参数,匹配最优化算法,动态对基带信号中的信息信号数据流和能量信号数据流进行载波、功率和频谱的预分配,并生成预分配参数集;
基带信号产生单元,其用于根据预分配参数集产生相应的信息基带信号和能量基带信号;
编码单元,其用于分别对信息基带信号和能量基带信号进行编码生成相应的信息基带编码信号和能量基带编码信号;
串并行转换单元,其用于将信息基带编码信号和能量基带编码信号进行串并行转换生成并行的数据流;
映射单元,其用于对并行的数据流进行归类,根据预分配参数集,对并行的数据流中的信息基带信号和能量基带信号进行相应的调制预分配;
调制单元,其用于根据调制预分配结果将并行的数据流中的信息基带信号和能量基带信号调制到预分配的子载波上;
并串行转换单元,其用于将并行的数据流转换为串行的数据流,送入天线单元;
天线单元,其用于将并串行转换单元输出的串行的数据流进行发送。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,信号管理控制系统包括:
信道参数获取单元,其用于获取信道质量参数;
优化算法处理单元,其用于基于预设的优化目标和约束条件对能量基带信号和信息 基带信号进行优化;所述预设的优化目标涉及:能量信号的载波个数、功率,以及信息信号的信息传输速率;所述约束条件涉及:
-接收机所采集功率大于等于接收机在一个单位时间内(符号时间)工作所需的最低功率;
-子载波上的能量信号功率之和小于等于能量信号的总功率;
-每个子载波频段上的平均功率谱密度小于等于一个既定的参数值;
-子载波上的信息信号功率之和小于等于信息信号的总功率;
预分配参数单元,其用于根据优化算法处理单元的优化结果生成预分配参数集。
上述进一步技术方案的有益效果是:以无线能量传输为基础进行无线信息传输,能够保证接收机所采集功率达到相应工作模式所需的最低功率,保障接收机正常工作,大大增强了系统的稳定性和可靠性。由于接收机电路做信号处理消耗的功率可能会大于信息信号本身的能量,本专利方案中能量信号的功率可能会大于甚至远大于信息信号的功率,因此上述进一步技术方案可以大大提高能量的利用率,减少能量的浪费,更加绿色。同时,通过优化,使功率进一步得到合理分配,通信速率第一步提高,系统的性能进一步提升。
进一步,所述预分配参数集包括信息基带信号预分配参数集和能量基带信号预分配参数集;
所述信息基带信号预分配参数集包括:
-信息信号功率分配集;
-信息信号子载波分配集;
所述能量基带信号预分配参数集包括:
-能量信号子载波分配集;
-能量信号功率分配集;
-能量信号总功率。
进一步,所述基带信号产生单元包括信息基带信号产生单元和能量基带信号产生单元;
所述能量基带信号产生单元根据所述能量基带信号预分配参数集中的能量信号功率分配集、能量信号总功率对能量基带信号数据流的功率进行分配,并根据能量信号子载波分配集将子载波分配信息添加至对应的能量基带信号数据流的帧头。
进一步,所述编码单元包括信息基带信号编码单元和能量基带信号编码单元;
所述信息基带信号编码单元对信息基带信号进行卷积编码;
所述能量基带信号编码单元对能量基带信号进行正交编码。
上述进一步技术方案的有益效果是:信息基带信号中包含的有用的数据,能量信号只需可识别可发射即可,对信息基带信号采用可靠性更高的编码方式,能量基带信号可以采用相对简单的编码方式,对二者采用不同的编码方式,在满足需求的情况下,可以降低编码复杂度,优化系统性能。
进一步,所述调制单元包括信息基带信号调制单元和能量基带信号调制单元;
所述能量基带信号调制单元对能量基带信号进行频谱扩展调制。
上述进一步技术方案的有益效果是:能量基带信号的功率谱密度远高于信息信号,可能会超出安全标准,通过对能量基带信号进行频谱扩展调制可以降低功率密度,结合分配的最优化的带宽和功率密度幅度,使能量基带信号的功率谱密度符合安全标准。
进一步,所述能量基带信号调制单元包括依次连接的脉冲成形滤波模块、扩频模块和混频模块。
进一步,在调制单元与并串转换单元之间设置有插入保护间隔单元。
本发明还公开了一种多载波宽带信息能量同传接收系统,包括:
天线单元,其用于接收发送端发射的串行信号;
同步单元,其用于使接收到的串行信号与发送端保持频率和相位同步;
信道估计单元,其用于生成信道质量参数,并将所述信号质量参数反馈给多载波宽带信息能量同传发送系统;
串并行转换单元,其用于将接收到的串行信号转换为并行信号;
接收端映射单元,其用于将并行信号中的信息信号和能量信号进行分离;
解调单元,其用于分别对信息信号和能量信号进行解调得到信息基带信号和能量基 带信号;
并串行转换单元,其用于分别将并行的信息基带信号和能量基带信号转换为串行信号;
解码单元,其用于对串行信号中的信息基带信号进行解码;
整流单元,其用于将串行信号中的能量基带信号进行滤波整流转换为直流信号存储到蓄电池中。
在上述技术方案的基础上,本发明还可以做如下的改进。
进一步,所述调制单元包括信息信号调制单元和能量信号调制单元;
所述并串行转换单元包括信息信号并串行转换单元和能量信号并串行转换单元。
本发明的有益效果是:采用本发明所述信息能量同传发送系统,在向接收端发送信息信号的同时发送独立的能量信号,能够为接收机提供足够能量,另外,通过优化算法对信息信号和能量信号进行优化,既能提高能量传输效率又能提高信息传输速率。另外,本发明所述信息能量同传发送系统尤其适用于以下领域:
植入人体的现代或未来医疗器件,例如心脏起搏器、人工心脏、心血管机器人、晶体眼、电子耳蜗、电子跟腱、电子假肢等等,通过本专利所述方法,可以对其进行信息和能量的同时传输和接收,那么,既能为其馈电保障医疗器件的正常运转,为需要这些医疗器件的人们保障正常生活,而且可以通过移动网络实时反馈病理和人体机理数据,通过建模预测,防止意外的发生。同时,这些大量的数据可以分享给医疗科学的专家进行数据分析,大大促进医疗水平的发展。
无线设备,例如:无线低功耗的传感器网络,可以无需电池进行馈电,尤其对于布置在复杂环境中的无线传感器节点,例如森林、沙漠、海洋、核电站、石油化工厂等,利用无线的方式进行馈电和反馈数据。
利用本发明所述信息能量同传发送系统可以打造智能家居环境,随时随地为手机等移动终端馈电,保障用户的正常通话;为传感器馈电,随时随时了解屋内外的温度、湿度等参数,可以利用中央控制系统对家居进行智能调控,可以节省能源,绿色环保。
本发明可以大大降低无线接收设备的电池使用量和生产量,大大减少了电池制造、使用和回收过程中造成的环境污染,是一个非常有益于提升国家绿色经济的技术。
附图说明
图1为一种多载波宽带信息能量同传发送系统结构示意图;
图2为一种多载波宽带信息能量同传发送系统具体实施例结构示意图;
图3为一种多载波宽带信息能量同传接收系统结构示意图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
图1为一种多载波宽带信息能量同传发送系统结构示意图,如图1所示,本发明提供了一种多载波宽带信息能量同传发送系统,所述系统包括:
信号管理控制系统,其用于基于信道质量参数,匹配最优化算法,动态对基带信号中的信息信号数据流和能量信号数据流进行载波、功率和频谱的预分配,并生成预分配参数集;
基带信号产生单元,其用于根据预分配参数集产生相应的信息基带信号和能量基带信号;
编码单元,其用于分别对信息基带信号和能量基带信号进行编码生成相应的信息基带编码信号和能量基带编码信号;
串并行转换单元,其用于将信息基带编码信号和能量基带编码信号进行串并行转换生成并行的数据流;
映射单元,其用于对并行的数据流进行归类,根据预分配参数集,对并行的数据流中的信息基带信号和能量基带信号进行相应的调制预分配;
调制单元,其用于根据调制预分配结果将并行的数据流中的信息基带信号和能量基带信号调制到预分配的子载波上;
并串行转换单元:其用于将并行的数据流转换为串行的数据流,送入天线单元;
天线单元,其用于将并串行转换单元输出的串行的数据流进行发送。
图2为一种多载波宽带信息能量同传发送系统具体实施例结构示意;如图2所示,在本具体实施例中,信号管理控制系统包括:信道参数获取单元,优化算法处理单元,预分配参数单元;
信号管理控制系统基于信道质量参数,匹配最优化算法,动态对基带信号中的信息信号数据流和能量信号数据流进行载波、功率和频谱的预分配,并生成预分配参数集的具体实施过程如下:
信号管理控制系统的信道参数获取单元获取信道质量参数:
优化算法处理单元,根据预设的优化目标和约束条件对能量信号和信息信号进行优化;预设的优化目标涉及:能量信号的载波个数、功率,以及信息信号的信息传输速率;约束条件涉及:接收机所采集功率大于等于接收机所处工作模式所需的最低功率、子载波上的能量信号功率之和小于等于能量信号的总功率、每个子载波频段上的平均功率谱密度小于等于一个既定的参数值、子载波上的信息信号功率之和小于等于信息信号的总功率。
在本具体实施例中,优化算法处理单元的具体优化过程包括如下步骤:
假设发射端基带信号总功率为P,分配于信息基带信号的总功率和能量基带信号的总功率分别为PI和PE,则PI+PE=P;信号总载波集为Sc,Sc=ScE∪ScI,其中,ScE为能量信号子载波集,ScI为信息信号子载波集;接收端采集到的能量为Q,即有Q=βPE,β是能量效率系数;信道参数向量h,其中,h=[h1,h2……hN]T;总载波数为N,分配于信息信号的载波数和能量信号的载波数分别为NI和NE,则N=NI+NE。信息基带信号到信息符号和能量基带信号的能量符号分别为SI(n)和SE(n),n=1,2,...,m;m≤N;其中:
Figure PCTCN2015075351-appb-000001
SI1~SIm分别为信息基带信号中的第1至第m个的信息符号,SE1~SEm分别为能量基带信 号中的第1至第m个的能量符号,用E[S2 I(n)]和E[S2 E(n)]分别表示信息信号和能量信号的能量。因此,接收端采集到的功率Q可用下述关系式表示:
Q=<h,E[S2 E(n)]>,i=1…NE,即
Figure PCTCN2015075351-appb-000002
能量信号的功率PE可用下述关系式表示:
Figure PCTCN2015075351-appb-000003
可根据接收端工作所需的最少能量和信道反馈信息,对信息基带信号和能量基带信号的功率、载波和频谱进行分配优化。接收端工作所需的最低功率应当理解为所述接收端多种工作模式所需的最低功率,例如:当接收端处于非充电模式时,接收端工作所需最低功率可以是接收端电路运行所需最低功率;当接收端处于充电模式时,接收端工作所需最低功率可以是接收端电路运行所需最低功率和充电所需功率之和。
在本具体实施例中,优化算法处理单元包括第一优化处理单元和第二优化处理单元,所述第一优化处理单元基于第一优化参数集,根据第一优化目标和第一约束条件集来确定第一基带信号的第一预分配参数集;所述第二优化处理单元基于第一预分配参数集和第二优化参数集,根据第二优化目标和第二约束条件集来确定第二基带信号的第二预分配参数集。
在本实施例中,第一基带信号为能量基带信号,第一优化目标涉及:使第一约束条件集成立的情况下,能量信号载波个数NE最小和能量信号的总功率PE最小;
所述第一约束条件集涉及:1、接收端所采集功率Q大于等于接收端工作所需的最低功率Pmin,即Q≥Pmin;2、发射端子载波上的能量信号功率之和小于等于基带信号中能量信号的总功率;3、每个子载波频段上的平均功率谱密度小于等于一个既定的参数值A,即满足E[S2 E(n)]/B<A,其中,B每个子载波上的信道带宽。
所述第一优化参数集包括以下参数:能量信号子载波集ScE、接收端工作所需最低功率Pmin、每个子载波上的信道带宽B、每个子载波上的平均功率谱密度A和信道参数向量h
所述第一预分配参数集包括以下参数:能量信号子载波分配集、能量信号功率分配集和能量信号总功率PE
第二基带信号为信息基带信号,第二优化目标涉及:使第二约束条件集成立的情况下,信息传输速率R最大化;第二约束条件集涉及:子载波上的信息信号功率之和小于等于信息信号的总功率PE
第二优化参数集包括以下参数:信息信号子载波集、信息信号子载波数NI和信道参数向量h,其中,h=[h1,h2……hN]T
所述第二预分配参数包括以下参数:信息信号功率分配集和信息信号子载波分配集。
综上所述,对下列优化问题求解可得出系统预分配参数集。
第一优化处理单元根据下列第一优化目标和第一约束条件集即可得出第一预分配参数集:
min_{h,ScE,Pmin,B,A}PE,NE;其中,{}中的元素所表示为第一优化参数;
s.t.(下述为第一约束条件)
Q=<h,E[S2 E(n)]>,Q≥Pmin
Figure PCTCN2015075351-appb-000004
E[S2 E(n)]/B≤A,n=1,2,...,NE
第二优化处理单元根据下列第二优化目标和第二约束条件集即可得出第二预分配参数集。
max_{h,ScE *,ScI}R;其中,ScE *为最优能量信号子载波分配集;
s.t.(下述为第二约束条件)
Figure PCTCN2015075351-appb-000005
为进一步解释优化过程的工作原理,下面结合以具体求解方式进行说明。
第一优化处理单元求解步骤举例如下,包括步骤S1-S4:
S1.初始化NE=1,子载波集合ScE=Ф(Ф为空集);
S2.先找到一个能量信号子载波分配集ScE={Sci},i=1,2,…,NE,对应的能量信道参数向量为h E={hi},i=1,2,…,NE,并可通过优化算法(例如注水算法)使得在第一约束条件集成立的情况下,接收端所采集到的功率最大化。具体的,算法如下:
子步骤S21:
Find ScE={Sci},i=1…NE
s.t.
max Q,Q≥Pmin
Figure PCTCN2015075351-appb-000006
E[S2 E(n)]/B≤A,n=1,2,...,NE
子步骤S22:通过S21可以找到多个集合,选择最优能量信号子载波集ScE *=argmin PE,其中,argmin PE表示使PE取得最小值时的参数情况;同时确定最优能量信号功率分配集{E*[S2 E(n)]}和接收端最优采集功率Q*=<h,E *[S2 E(n)]>,n=1,2,…,NE
S3.若步骤S2没有解,则令NE=NE+1,并令ScE=Ф,重新循环步骤S2和S3。
S4.若步骤S2有解,则ScE *确定,NE确定,PE确定。
第二优化处理单元求解步骤举例如下,包括步骤S5:
S5.当最优能量信号子载波集ScE *确定,那么相应的信息信号子载波集ScI也得到了,ScI={Sci};信息信号子载波数NI=N-NE;对应信息信道参数向量h I={hi};其中,i=1,2,…,NI
优化系统信息传输速率问题,求解过程如下:
max_{h,ScE *,ScI}R
s.t.
Figure PCTCN2015075351-appb-000007
可求解确定最优信息信号功率分配集{E*[S2 I(n)]}和最优信息信号子载波集ScI *,最终得到最优信息传输速率R*=argmax R,其中,n=1,2,…,NI
其中,R*=argmax R具体表达式为:
Figure PCTCN2015075351-appb-000008
其中,n=1,2,…,NI,N0为噪声功率密度参数。
经上述优化得到第一预分配参数集和第二预分配参数集。
预分配参数单元,其用于根据优化算法处理单元的优化结果生成预分配参数集,预分配参数集包括信息基带信号预分配参数集和能量基带信号预分配参数集;信息基带信号预分配参数集包括:信息信号功率分配集、信息信号子载波分配集;能量基带信号预分配参数集包括:能量信号子载波分配集;能量信号功率分配集;能量信号总功率。
在本实施例中,基带信号产生单元包括信息基带信号产生单元和能量基带信号产生单元,能量基带信号产生单元根据能量基带信号预分配参数集中的能量信号功率分配集、能量信号总功率对能量基带信号数据流的功率进行分配,并根据能量信号子载波分配集将子载波分配信息添加至对应的能量基带信号数据流的帧头;信息基带信号产生单元用于根据具体传输需求生成信息基带信号,根据信息信号功率分配集对信息基带信号数据流的功率进行分配,并根据信息信号子载波分配集将子载波分配信息添加至对应的信息基带信号数据流的帧头;由基带信号产生单元产生的信息基带信号为串行的高速率信息流,能量基带信号为串行的高功率能量流。
在本实施例中,编码单元包括信息基带信号编码单元和能量基带信号编码单元;信息基带信号编码单元对信息基带信号进行卷积编码;能量基带信号编码单元对能量基带信号进行正交编码。为保护基带信号、提高系统误码性能,需对两路基带信号分别进行高效编码,其中,信息信号中包含的是更有用的数据,因此需要通过一些高可靠性的编码方式进行编码,而能量信号只需可识别可发射即可,所以能量信号的编码方式可以相对简单。
将经过编码单元编码后的信息基带信号和能量基带信号送入串并行转换单元进行串并转换输出并行的数据流;为了进行多载波和宽带方式的调制,必须将串行高速率信息流转换为并行的低速率信息流,将串行的高功率能量流转换为并行的低功率能量流。
在本具体实施例中,映射单元基于数据流中能量基带信号和信息基带信号的帧头中的功率分配信息、子载波分配信息,根据预分配参数集,对并行的数据流中的信息基带 信号和能量基带信号进行相应的载波调制预分配。
在本实施例中,调制单元包括信息基带信号调制单元和能量基带信号调制单元。信息基带信号调制单元根据载波调制预分配的结果,对信息信号流进行信息调制,调制到合适通带发送的信号形式,搬移到预设的频段。因能量基带信号的平均功率谱密度(PSD)有可能会超出安全标准,因此,在本实施例中,能量基带信号调制单元对能量基带信号先进行频谱扩展调制以降低平均功率谱密度,再用预设的子载波对能量基带信号进行调制。在本实施例中,能量基带信号调制单元包括依次连接的脉冲成形滤波模块、扩频模块和混频模块。能量基带信号先经过脉冲成形滤波模块进行脉冲成形处理,并由扩频模块通过扩频码对能量基带信号扩频,再送入混频模块用预设的子载波进行上变频处理。经调制处理后的信息信号和能量信号经过并串行转换单元的并串行转换得到串行的数据流,送入天线单元进行发送。
本实施例中,调制单元与并串行转换单元之间还设置有插入保护间隔单元,插入保护间隔单元通过在信息基带信号和能量基带信号中加入保护前缀,例如循环前缀,可以防止符间干扰。
本实施例中,优选的,将能量基带信号作为第一基带信号,将信息基带信号作为第二基带信号,在对能量基带信号进行优化的基础上,再对信息基带信号进行优化,能够保证接收机所采集功率达到相应工作模式所需的最低功率,保障接收机正常工作,大大增强了系统的稳定性和可靠性;通过对信息基带信号的优化,使功率进一步得到合理分配,通信速率第一步提高,系统的性能进一步提升。
图3为一种多载波宽带信息能量同传接收系统结构示意图,如图3所示,本发明还公开了一种多载波宽带信息能量同传接收系统,包括:
天线单元,其用于接收发送端发射的串行信号;
同步单元,其用于使接收到的串行信号与发送端保持频率和相位同步;
信道估计单元,其用于生成信道质量参数,并将所述信号质量参数反馈给多载波宽带信息能量同传发送系统;
串并行转换单元,其用于将接收到的串行信号转换为并行信号;
接收端映射单元,其用于将并行信号中的信息信号和能量信号进行分离;
解调单元,其用于分别对信息信号和能量信号进行解调得到信息基带信号和能量基带信号;
并串行转换单元,其用于分别将并行的信息基带信号和能量基带信号转换为串行信号;
解码单元,其用于对串行信号中的信息基带信号进行解码;
整流单元,其用于将串行信号中的能量基带信号进行滤波整流转换为直流信号存储到蓄电池中。
在本实施例中,调制单元包括信息信号调制单元和能量信号调制单元;并串行转换单元包括信息信号并串行转换单元和能量信号并串行转换单元。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种多载波宽带信息能量同传发送系统,所述系统包括:
    信号管理控制系统,其用于基于信道质量参数,匹配最优化算法,动态对基带信号中的信息信号数据流和能量信号数据流进行载波、功率和频谱的预分配,并生成预分配参数集;
    基带信号产生单元,其用于根据预分配参数集产生相应的信息基带信号和能量基带信号;
    编码单元,其用于分别对信息基带信号和能量基带信号进行编码生成相应的信息基带编码信号和能量基带编码信号;
    串并行转换单元,其用于将信息基带编码信号和能量基带编码信号进行串并行转换生成并行的数据流;
    映射单元,其用于对并行的数据流进行归类,根据预分配参数集,对并行的数据流中的信息基带信号和能量基带信号进行相应的调制预分配;
    调制单元,其用于根据调制预分配结果将并行的数据流中的信息基带信号和能量基带信号调制到预分配的子载波上;
    并串行转换单元,其用于将并行的数据流转换为串行的数据流,送入天线单元;
    天线单元,其用于将并串行转换单元输出的串行的数据流进行发送。
  2. 根据权利要求1所述一种多载波宽带信息能量同传发送系统,其特征在于:信号管理控制系统包括:
    信道参数获取单元,其用于获取信道质量参数;
    优化算法处理单元,其用于基于预设的优化目标和约束条件对能量信号和信息信号进行优化;所述预设的优化目标涉及:能量基带信号的载波个数、功率,以及信息基带信号的信息传输速率;所述约束条件涉及:
    -接收机所采集功率大于等于接收机在一个单位时间内工作所需的最低功率;
    -子载波上的能量信号功率之和小于等于能量信号的总功率;
    -每个子载波频段上的平均功率谱密度小于等于一个既定的参数值;
    -子载波上的信息信号功率之和小于等于信息信号的总功率;
    预分配参数单元,其用于根据优化算法处理单元的优化结果生成预分配参数集。
  3. 根据权利要求1或2所述一种多载波宽带信息能量同传发送系统,其特征在于:所述预分配参数集包括信息基带信号预分配参数集和能量基带信号预分配参数集;
    所述信息基带信号预分配参数集包括:
    -信息信号功率分配集;
    -信息信号子载波分配集;
    所述能量基带信号预分配参数集包括:
    -能量信号子载波分配集;
    -能量信号功率分配集;
    -能量信号总功率。
  4. 根据权利要求3所述一种多载波宽带信息能量同传发送系统,其特征在于:所述基带信号产生单元包括信息基带信号产生单元和能量基带信号产生单元;
    所述能量基带信号产生单元根据所述能量基带信号预分配参数集中的能量信号功率分配集、能量信号总功率对能量基带信号数据流的功率进行分配,并根据能量信号子载波分配集将子载波分配信息添加至对应的能量基带信号数据流的帧头。
  5. 根据权利要求1或2所述一种多载波宽带信息能量同传发送系统,其特征在于:所述编码单元包括信息基带信号编码单元和能量基带信号编码单元;
    所述信息基带信号编码单元对信息基带信号进行卷积编码;
    所述能量基带信号编码单元对能量基带信号进行正交编码。
  6. 根据权利要求1或2所述一种多载波宽带信息能量同传发送系统,其特征在于:所述调制单元包括信息基带信号调制单元和能量基带信号调制单元;
    所述能量基带信号调制单元对能量基带信号进行频谱扩展调制。
  7. 根据权利要求6所述一种多载波宽带信息能量同传发送系统,其特征在于:所述能量基带信号调制单元包括依次连接的脉冲成形滤波模块、扩频模块和混频模块。
  8. 根据权利要求1或2所述一种多载波宽带信息能量同传发送系统,其特征在于:在调制单元与并串转换单元之间设置有插入保护间隔单元。
  9. 一种多载波宽带信息能量同传接收系统,其特征在于,包括:
    天线单元,其用于接收发送端发射的串行信号;
    同步单元,其用于使接收到的串行信号与发送端保持频率和相位同步;
    信道估计单元,其用于生成信道质量参数,并将所述信号质量参数反馈给多载波宽带信息能量同传发送系统;
    串并行转换单元,其用于将接收到的串行信号转换为并行信号;
    接收端映射单元,其用于将并行信号中的信息信号和能量信号进行分离;
    解调单元,其用于分别对信息信号和能量信号进行解调得到信息基带信号和能量基带信号;
    并串行转换单元,其用于分别将并行的信息基带信号和能量基带信号转换为串行信号;
    解码单元,其用于对串行信号中的信息基带信号进行解码;
    整流单元,其用于将串行信号中的能量基带信号进行滤波整流转换为直流信号存储到蓄电池中。
  10. 根据权利要求9所述一种多载波宽带信息能量同传接收系统,其特征在于:
    所述调制单元包括信息信号调制单元和能量信号调制单元;
    所述并串行转换单元包括信息信号并串行转换单元和能量信号并串行转换单元。
PCT/CN2015/075351 2015-03-25 2015-03-30 一种多载波宽带信息能量同传发送系统及接收系统 WO2016149947A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/169,314 US9641225B2 (en) 2015-03-25 2016-05-31 Transmitting system and receiving system for multi-carrier broadband simultaneous information and energy transfer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510133784.X 2015-03-25
CN201510133784.XA CN104836765B (zh) 2015-03-25 2015-03-25 一种多载波宽带信息能量同传发送系统及接收系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/169,314 Continuation US9641225B2 (en) 2015-03-25 2016-05-31 Transmitting system and receiving system for multi-carrier broadband simultaneous information and energy transfer

Publications (1)

Publication Number Publication Date
WO2016149947A1 true WO2016149947A1 (zh) 2016-09-29

Family

ID=53814406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075351 WO2016149947A1 (zh) 2015-03-25 2015-03-30 一种多载波宽带信息能量同传发送系统及接收系统

Country Status (2)

Country Link
CN (1) CN104836765B (zh)
WO (1) WO2016149947A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10630117B2 (en) 2015-07-21 2020-04-21 South University of Science & Technology of China Energy management method and system for receiving terminal of simultaneous information and energy transfer system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105119865B (zh) 2015-07-21 2018-10-02 南方科技大学 数字信能同传接收方法及系统
CN105072066B (zh) 2015-07-21 2018-06-15 南方科技大学 一种带有保护间隔信号的无线信能同传方法及系统
CN105163379B (zh) 2015-07-21 2018-05-22 南方科技大学 一种应用于信能同传系统的资源分配优化方法
CN106470047A (zh) * 2015-08-14 2017-03-01 宜春市等比科技有限公司 一种针对基带信号进行扩频的方法
CN105634152B (zh) * 2016-03-29 2018-02-13 湖北理工学院 基于轨道式无接触供电的能量信号耦合传送系统及方法
CN107104688B (zh) * 2017-03-20 2019-04-30 西安空间无线电技术研究所 一种应用于携能通信系统的单频强干扰抑制系统
CN107276163B (zh) * 2017-06-30 2021-01-05 卓日克 一种无线施受电方法及系统、共享电能服务器
CN108924874B (zh) * 2018-06-20 2022-01-21 深圳市南科源创技术有限公司 一种信号功率分配装置、信能同传系统和方法
CN109286985B (zh) * 2018-09-26 2023-08-08 深圳市南科源创技术有限公司 一种多载波信能同传系统的信号优化方法和系统
CN109275153B (zh) * 2018-11-08 2021-08-20 国网新疆电力有限公司信息通信公司 多跳放大转发中继无线携能通信系统的协议混合方法
CN110312269B (zh) * 2019-05-29 2022-12-23 南京邮电大学 一种基于能量-信息权衡传输的无线携能通信系统及其方法
CN110518987B (zh) * 2019-08-28 2020-11-13 电子科技大学 数能一体化传输系统及信号分割方法
CN113965211B (zh) * 2021-09-24 2023-04-18 电子科技大学长三角研究院(湖州) 一种适用于无线信能同传系统的新型发射机装置及信号发射方法
CN115996166A (zh) * 2021-10-19 2023-04-21 华为技术有限公司 数能同传方法及装置
CN114070359B (zh) * 2021-11-15 2022-10-18 杭州电子科技大学温州研究院有限公司 一种植入式能量与数据同时无线传输系统及其设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064710A (zh) * 2006-04-25 2007-10-31 富士通株式会社 基于多载波调制系统的通信装置
US20120001593A1 (en) * 2010-06-30 2012-01-05 Stmicroelectronics S.R.L. Apparatus for power wireless transfer between two devices and simultaneous data transfer
CN104035454A (zh) * 2014-06-26 2014-09-10 济钢集团有限公司 液位控制装置
CN104320219A (zh) * 2014-10-30 2015-01-28 浙江理工大学 多用户信能同传系统低复杂度收发机设计方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203039714U (zh) * 2013-02-05 2013-07-03 广东工业大学 一种mimo-ofdm的无线通信系统
CN104135770B (zh) * 2014-07-02 2017-08-25 北京邮电大学 一种用于无线信息与能量同时传输系统中的能量分配方法
CN104135454B (zh) * 2014-08-12 2017-05-31 东南大学 Ampsk无线携能通信系统的频域功率分配器
CN104301977B (zh) * 2014-09-22 2017-12-15 西安交通大学 一种干扰信道下的swipt系统中的传输方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064710A (zh) * 2006-04-25 2007-10-31 富士通株式会社 基于多载波调制系统的通信装置
US20120001593A1 (en) * 2010-06-30 2012-01-05 Stmicroelectronics S.R.L. Apparatus for power wireless transfer between two devices and simultaneous data transfer
CN104035454A (zh) * 2014-06-26 2014-09-10 济钢集团有限公司 液位控制装置
CN104320219A (zh) * 2014-10-30 2015-01-28 浙江理工大学 多用户信能同传系统低复杂度收发机设计方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10630117B2 (en) 2015-07-21 2020-04-21 South University of Science & Technology of China Energy management method and system for receiving terminal of simultaneous information and energy transfer system

Also Published As

Publication number Publication date
CN104836765B (zh) 2018-10-02
CN104836765A (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2016149947A1 (zh) 一种多载波宽带信息能量同传发送系统及接收系统
US9641225B2 (en) Transmitting system and receiving system for multi-carrier broadband simultaneous information and energy transfer
CN108650689B (zh) 基于noma下行链路的无线携能通信系统能效优化方法
WO2016149948A1 (zh) 一种信息能量同传发送方法及接收方法
CN108770007A (zh) 基于noma的无线携能通信系统多目标优化方法
US9641224B2 (en) Transmitting method and receiving method for simultaneous information and energy transfer
CN109041196A (zh) Noma携能通信系统中基于能效最大化的资源联合分配方法
CN104812078B (zh) 一种多载波宽带信能同传优化方法
WO2017012148A1 (zh) 一种应用于信能同传系统的资源分配优化方法
CN107359927B (zh) 一种eh能量收集协作通信网络中继选择方法
CN107819738B (zh) 全双工中继系统中基于功率分配的物理层安全控制方法
CN110278576B (zh) 一种无线能量采集非正交多址接入系统资源分配方法
US10211957B2 (en) Method and system for simultaneous information and energy transfer with a guard interval signal
CN109769263B (zh) 一种安全高能效的认知d2d通信方法
CN110225494B (zh) 一种基于外部性和匹配算法的机器类通信资源分配方法
CN109275149B (zh) 一种认知无线供电网络中基于能量累积的资源分配方法
CN109286985B (zh) 一种多载波信能同传系统的信号优化方法和系统
CN113490277B (zh) H-cran中基于swipt的能量分配与时隙切换系数联合优化方法
CN207475403U (zh) 一种隔离电源芯片
CN109672997B (zh) 一种基于能量收集的工业物联网多维资源联合优化算法
CN108924874B (zh) 一种信号功率分配装置、信能同传系统和方法
CN210721825U (zh) 一种基于lora物联网无线数据传输信号转换设备
CN109413731A (zh) 一种无线供能的信息传输与接收方法
CN113473625B (zh) 一种数能一体化网络中的频分复用资源分配方法
CN111246577B (zh) 一种无线携能通信中继网络中最大化传输和速率方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885886

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.05.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15885886

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15885886

Country of ref document: EP

Kind code of ref document: A1