WO2016148601A1 - Способ определения вида двигательной активности человека и устройство для его осуществления - Google Patents

Способ определения вида двигательной активности человека и устройство для его осуществления Download PDF

Info

Publication number
WO2016148601A1
WO2016148601A1 PCT/RU2016/000098 RU2016000098W WO2016148601A1 WO 2016148601 A1 WO2016148601 A1 WO 2016148601A1 RU 2016000098 W RU2016000098 W RU 2016000098W WO 2016148601 A1 WO2016148601 A1 WO 2016148601A1
Authority
WO
WIPO (PCT)
Prior art keywords
extrema
acceleration vector
motor
module
values
Prior art date
Application number
PCT/RU2016/000098
Other languages
English (en)
French (fr)
Inventor
Михаил Семенович РУБИН
Сергей Сергеевич СЫСОЕВ
Original Assignee
Общество С Ограниченной Ответственностью "Хилби"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Хилби" filed Critical Общество С Ограниченной Ответственностью "Хилби"
Priority to KR1020177029424A priority Critical patent/KR102151301B1/ko
Priority to EP16765332.8A priority patent/EP3269303A4/en
Priority to CN201680027818.XA priority patent/CN107530030B/zh
Publication of WO2016148601A1 publication Critical patent/WO2016148601A1/ru
Priority to US15/702,860 priority patent/US20180014756A1/en
Priority to HK18108506.0A priority patent/HK1248507A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1123Discriminating type of movement, e.g. walking or running
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1124Determining motor skills
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches

Definitions

  • the invention relates to the field of measurements for the study or analysis of the movement of the human body or its parts for diagnostic purposes, in particular determining the type of motor activity of a person.
  • Determining the type of a person’s motor activity that is, determining (or recognizing, identifying) whether a person is standing, walking, running, swimming or otherwise moving at a given time, is an important means of obtaining diagnostic information, in particular for assessing a person’s physical condition, experiencing physical exertion, the energy spent by the body.
  • Closest to the present invention is a method for determining the type of motor activity of a person described in JP 2012065749 (publ. 04/20172012; IPC, A61B5 / 103, A43B5 / 22).
  • the method includes registering the signals of a three-component accelerometer mounted on the human body, and calculating on their basis the module of the acceleration vector. Then, the difference between the extrema of the module of the acceleration vector is calculated and these values are used to make a decision on the type of motor activity of a person.
  • this method does not provide a reliable determination of the type of motor activity, since it does not take into account the peculiarities of movements of a particular person, which are quite individual even with the same type of movement.
  • the technical problem to which the present invention is directed is to create a more reliable method and device for determining the type of motor activity, which is ensured by the formation of reference values of the amplitude and time parameters of the acceleration module for a particular person with various types of motor activity, the so-called standards, and their use in the implementation of the method.
  • Human motor activity a set of motor acts, human movements; the main function of the human muscular system.
  • the type of a person’s physical activity is walking, running, squatting, swinging his arms, legs, swimming and other types of movement performed by a person.
  • a three-component accelerometer is a technical tool that, when installed on a moving object, is capable of generating three electrical signals corresponding to the projections of the acceleration vector of a moving object along three orthogonal axes of three-dimensional space.
  • the acceleration vector module is the absolute value of the acceleration recorded by a three-component accelerometer in the form of three signals corresponding to the projections of the acceleration of a moving object along three orthogonal axes of three-dimensional space.
  • Time limits or duration of a motor act - a period of time from the beginning to the end of a separate motor act, a period of time between the same phases of periodically repeated motor acts.
  • the extremum of the acceleration vector module is the local extremum of the acceleration vector module in the time array of its values.
  • the number of extrema of the acceleration vector module is the number of local extrema within the time limits or duration of an individual motor act.
  • Standard - a set of parameters characterizing a certain type of motor activity of a person as a set of motor acts of a certain type, includes:
  • the reference value of the number of extremes per motor act for example, a step while walking, a step while running, a wave of the hand, etc.
  • the reference value of the duration of the motor act represented by the minimum and maximum values
  • a subset of standards is a set of standards related to one type of motor activity and differing in the reference value of the number of extrema per one motor act.
  • One object of the invention is a method for determining the type of motor activity of a person, characterized in that:
  • the signals of a three-component accelerometer mounted on the human body are recorded with the possibility of generating signals caused by human motor activity
  • the module of the acceleration vector is calculated, a temporary array of values of the module of the acceleration vector is formed and its extrema are extracted,
  • the decision to commit a motor act of a certain type of motor activity is made provided that the aforementioned certain values of the duration of the motor act and the difference of adjacent extrema of the module of the acceleration vector fit into the specified ranges of the mentioned reference values of the duration of the motor act and the difference of neighboring extrema of the module of the acceleration vector, at least , one reference.
  • the module of the acceleration vector is calculated, a temporary array of values of the module of the acceleration vector is formed, and its extrema are extracted.
  • the duration of the proposed motor act within which the difference values of neighboring extrema are also determined.
  • a similar procedure is carried out sequentially from extremum to extremum of the module of the acceleration vector, repeating it for each standard. In this case, each time, the values of the duration of the motor act and the difference of the neighboring extrema of the acceleration vector module are compared with the reference values of the duration of the motor act and the difference of the neighboring extrema of the acceleration vector module of the corresponding standard.
  • the described procedure allows us to analyze sequentially all fragments of the array of values of the module of the acceleration vector, comparing its parameters with the reference ones, while the length of the analyzed fragment is determined each time by the reference value of the number of extrema of the corresponding standard.
  • the decision to commit a motor act of a certain type of motor activity is made, provided that the specified the values of the duration of the motor act and the difference of the neighboring extrema of the acceleration vector module, which characterize the analyzed fragment of the array of values of the acceleration vector module, fit into the specified ranges of the mentioned reference values of the duration of the motor act and the difference of the neighboring extrema of the acceleration vector module of the corresponding standard.
  • the reliability of the decision to commit a motor act of a certain type of motor activity can be improved if, when making this decision, the dispersion of the difference between adjacent extrema of the acceleration vector module relative to the corresponding reference values is taken into account.
  • the accelerometer can be mounted on the human hand, in particular on the wrist, which makes it possible to determine the largest number of different types of motor activity of a person.
  • wearing such technical equipment on the wrist is familiar and convenient for humans.
  • three acceleration sensors that are structurally interconnected with the formation of three orthogonal acceleration measurement axes can be used as a three-component accelerometer.
  • the recorded signals of the three-component accelerometer or the calculated module of the acceleration vector can be subjected to a smoothing procedure. This further increases the reliability of determining the type of motor activity and reduces the amount of computational operations performed during the implementation of the method.
  • the process of forming the standard can be carried out as follows.
  • the signals of a three-component accelerometer mounted on the human body are recorded with the possibility of generating signals caused by the motor activity of the person, while these signals are recorded during the person's commission of a series of motor acts of a certain type, for which a standard is formed.
  • the acceleration vector module is calculated, a temporary array of values of the acceleration vector module is formed, and its extrema are extracted.
  • the duration of the motor act and the difference of neighboring extrema are determined.
  • the repeating number of extrema, the minimum and maximum values of the duration of motor acts with this number of extrema, and the minimum and maximum values of the difference between adjacent extrema of motor acts with this number of extrema are taken as reference values of at least one reference.
  • the resulting standards form a subset of the standards of one type of motor activity.
  • the recorded signals of the three-component accelerometer or the calculated module of the acceleration vector are subjected to a smoothing procedure.
  • the formation of standards may not be associated with a specific person, the type of motor activity which is determined during the implementation of the method.
  • the ternary the accelerometer in the formation of standards should be fixed on the body of the same person and in the same way as it will subsequently be fixed on the human body during the implementation of the method.
  • standards can be formed that reflect the individual characteristics of a person that appear during movement.
  • the number of motor acts committed by a person in the formation of the standard ranges from 50 to 300.
  • Another object of the invention is a device for determining the type of motor activity, including a three-component accelerometer that can be mounted on the human body and capable of generating signals corresponding to the projections of the acceleration vector that the accelerometer experiences along three orthogonal axes in space, and a computing device connected to the outputs accelerometer.
  • the computing device is configured to perform all of the above computing procedures used in the implementation of the method. Namely:
  • the boundaries of motor acts are determined sequentially from extremum to extremum of the acceleration vector module from the number of extrema equal to the reference value of the number of extrema, at least one standard, formed previously for a certain type of motor activity and characterized by a reference value of the number of extreme MOV of the acceleration vector module, the reference value of the duration of the motor act and the reference value of the difference between adjacent extrema of the module of the acceleration vector, comparing the mentioned specific values of the duration of the motor act and the difference of the neighboring extrema of the module of the acceleration vector with the reference values of the duration of the motor act and the difference of the neighboring extrema of the module of the acceleration vector of the corresponding standard, and
  • the computing device can be made with the possibility of making a decision on the fulfillment of a motor act of a certain type of motor activity, additionally taking into account the variance of the difference between adjacent extrema of the acceleration vector module relative to the corresponding reference values.
  • Mentioned accelerometer can be made with the possibility of fixing on the wrist.
  • three acceleration sensors can be used structurally interconnected to form three orthogonal axes for measuring acceleration.
  • the computing device can be connected to the outputs of the accelerometer through cyclic buffers.
  • the device for determining the type of motor activity of a person can be equipped with a transceiver that provides wireless transmission to an external device of data on the current type of motor activity of a person.
  • the invention is illustrated by the following graphic materials.
  • FIG. 1 is a flowchart of an exemplary device for implementing a method for determining the type of motor activity of a person in accordance with the present invention.
  • FIG. 2 shows an example of the placement of a device for determining the type of motor activity of a person, including a three-component accelerometer, on a person’s wrist.
  • FIG. 3 is a flowchart of an exemplary algorithm for implementing the method in accordance with the present invention, wherein the algorithm is presented in general form to illustrate the basic operations of the method.
  • FIG. 4 presents a block diagram of an exemplary algorithm for the formation of standards for various types of motor activity of a person.
  • FIG. Figure 5 shows an example of a graphical representation of the time variation of the module of the acceleration vector recorded by a three-component accelerometer.
  • the example illustrates the determination of local extrema of the module of the acceleration vector, characterizing the motor activity of various kinds.
  • fragment “c” of FIG. 5 is a graph of the acceleration vector module, illustrating the change in the acceleration vector module within one motor act and the determination of the difference of adjacent extrema of the acceleration vector module.
  • FIG. 7 shows exemplary graphs illustrating the dispersion of the signals of a three-component accelerometer recorded during the implementation of the method in accordance with the present invention.
  • FIG. 8a and FIG. 8b (as a continuation), a block diagram of an exemplary algorithm for determining the type of motor activity of a person is disclosed, revealing in more detail a method whose block diagram of the algorithm is generally presented in FIG. 3.
  • FIG. 9 is a flowchart of an exemplary algorithm for adjusting standards corresponding to a particular type of human motor activity and used in implementing the method in accordance with the present invention.
  • the method in accordance with the present invention can be implemented, for example, using device 1, the block diagram of which is shown in FIG. 1.
  • the device 1 includes a three-component accelerometer 2, having three acceleration sensors 3, 4, 5, generating signals corresponding to the projections (components) of the acceleration vector that the accelerometer 2 is testing, along three orthogonal axes in space X, Y and Z.
  • the outputs of the acceleration sensors 3, 4 and 5 through the corresponding cyclic buffers 6, 7 and 8, accumulating over a certain period of time the values of the signals from the acceleration sensors 3, 4 and 5, are connected to the inputs of the computing device 9.
  • the device 1 can be placed on the human body with so that due to its motor activity stable signals of acceleration sensors 3, 4, 5 are formed.
  • the most convenient place to install the device 1, at least that part of it, which includes the accelerometer 2, is on the wrist, as shown in FIG. 2, which makes it possible to determine the largest number of diverse types of motor activity of a person, otherwise - types of movement.
  • the three-component accelerometer 2 continuously generates signals X, y ⁇ and ⁇ ⁇ ⁇ (where r is the reference number of the reference) continuously in time, corresponding to the projections along the three orthogonal axes X, ⁇ and ⁇ of the acceleration vector experienced by accelerometer 2
  • These signals through the appropriate cyclic buffers 6, 7 and 8 are received in the computing device 9 for subsequent processing.
  • a cyclic (or ring) buffer is a type of FIFO buffer, First Input First Output (usually used to coordinate data flows between asynchronous processes, in this case, between continuously incoming signals Xj, yj, Zj and their processing device 9.
  • cyclic buffers 6, 7, 8 are stored sequential values of the signals x r -, y ⁇ , Zj, the number of which is determined by the capacity of the cyclic buffers 6, 7, 8 and which are continuously updated with each next sample.
  • Computing device 9 performs operations to determine a particular type of motor activity based on algorithms whose block diagrams are presented: in general form, in FIG. 4, and in more detail in FIG. 8a, 8b.
  • the capacity of cyclic buffers 6, 7, 8 is determined in aggregate by such factors as the speed of computing device 9, the complexity of the computational procedures that are performed, and the required accuracy of calculations.
  • the device 1 can be supplemented with a transceiver 10, which provides wireless data transmission of the current form of a person’s physical activity in an external autonomous device, for example, a personal computer or smartphone 11, where this data can be accumulated.
  • a transceiver 10 which provides wireless data transmission of the current form of a person’s physical activity in an external autonomous device, for example, a personal computer or smartphone 11, where this data can be accumulated.
  • FIG. 3 The block diagram of the algorithm for implementing the method in the volume of basic operations is presented in FIG. 3.
  • the three-component accelerometer 2 (indicated by 101), which is part of the device 1, mounted on the wrist, with the given sampling rate, signals Xj, êt r -, ⁇ , - are simultaneously generated, where i - serial number of reference.
  • These signals correspond to the projections of the acceleration vector along three orthogonal axes in the space X, ⁇ , Z.
  • step 102 based on the signals Xj, yf, ⁇ , the module of the acceleration vector is calculated as:
  • this sequence can be subjected to a smoothing procedure (step 103), for example, using the method of exponential weighted moving average.
  • a new array of A t values is formed, free of the high-frequency component.
  • smoothing methods are known to those skilled in the art that can be used taking into account the frequency spectrum of the signals ⁇ ⁇ ⁇ , y ⁇ , Zj of accelerometer 2.
  • the sequence of smoothing and calculating the acceleration vector module can be different: first, the signals x ⁇ , y i , z i are smoothed, and then the acceleration vector module is calculated.
  • step 104 From the obtained values of A j form a temporary array of the module of the acceleration vector (step 104) for its subsequent analysis.
  • the temporary array of the acceleration vector module is stored in the RAM of the computing device 9.
  • the values of the modulus of the acceleration vector A j are shown in FIG. 5 in the form of a graph reflecting the change in the value of A j over time.
  • the presented curve has a characteristic gear shape.
  • the amplitude and time relationships for A t in region “a” are characteristic of the case when a person at least does not walk and does not run, and in region “b” - when a person walks, that is, when walking.
  • step 105 determine the local extrema of the module of the acceleration vector A; which in the graph of FIG. 5 are marked with dots. Then in step 105 (see Fig. 3) determine the local extrema of the module of the acceleration vector A; which in the graph of FIG. 5 are marked with dots. Then in step 105 (see Fig. 3) determine the local extrema of the module of the acceleration vector A; which in the graph of FIG. 5 are marked with dots. Then in step 105 (see Fig. 3) determine the local extrema of the module of the acceleration vector A; which in the graph of FIG. 5 are marked with dots. Then in step 105 (see Fig. 3) determine the local extrema of the module of the acceleration vector A; which in the graph of FIG. 5 are marked with dots. Then in step 105 (see Fig. 3) determine the local extrema of the module of the acceleration vector A; which in the graph of FIG. 5 are marked with dots. Then in step 105 (see Fig. 3) determine the local extrema of the module of the acceleration
  • 106 according to the identified local extremes determine the time boundaries of individual motor acts. This determination is made by comparing the sequence of local extrema of the acceleration vector module A ⁇ with reference values of the number of extrema of the acceleration vector module for one motor act in various types of motor activity of a person. Reference values are indicated in FIG. 3 by 107.
  • the standard is a set of parameters - reference values that characterize a certain type of motor activity of a person.
  • many standards related to a certain type of motor activity can be used, each of which in turn can be represented by a subset of the standards of this type of motor activity.
  • S standards will include:
  • each of the subsets, S R or S j may include several standards.
  • a subset of walking standards S w including w standards (w is a natural number), can be represented as:
  • the number of local extremes per one motor act of this type of motor activity can be used.
  • each reference includes a set of the following reference values:
  • E is the number of extremes per motor act (for example, a step when walking, a step while running, a jump, a wave of the hand, etc.);
  • step 106 The determination in step 106 (see Fig. 3) of the time boundaries of the individual motor acts is carried out sequentially from the first detected local extremum of the acceleration vector module for all available standards. First, from the first local extremum, taking it conditionally as the beginning of the motor act, count the number of extrema equal to the number of extrema E of the first standard, thereby determining the duration T of this conditional motor act. If the duration T determined in this way does not fall within the range Tm - max specified by the first standard, the same procedure is carried out for the next standard.
  • the number of standards is determined by the complexity of the task of recognizing various types of motor activity of a person, although, generally speaking, the standard can be the only one if the simple task of recognizing a specific type of motor activity is set, which is characterized by certain reference values.
  • the differences of neighboring extrema are determined (step 108), for example, from to 4 with the number of extrema equal to five, as shown in the example of FIG. 6 which then compare (step 109) with the corresponding reference values of the difference of adjacent extrema: i) max '- - -' 4) min > ⁇ The results of the comparison are remembered.
  • the device 1 is fixed on the human body in the same way as it will be subsequently used to determine the type of motor activity, for example, on the wrist, as shown in FIG. 2.
  • the device 1, the user switches to the setting mode 1 and performs the specified type of movement, for example, walking or running.
  • the block diagram of an exemplary algorithm for the formation of standards for various types of human motor activity is presented in FIG. 4.
  • the number of cyclic movements of walking or running — motor acts required to obtain reference values, is from 50 to 300. If necessary, the configuration process of device 1 can be repeated, for which there is an update or adjustment mode of reference values, which will be described below with reference in FIG. 9.
  • the average duration of the motor act of this type is determined (step 207).
  • the dots indicate the extrema of the acceleration vector module
  • the vertical dashed lines indicate the time boundaries of one motor act, which account for the local minimums of the acceleration vector module periodically repeating at approximately equal intervals. The position of these local minima is taken as the beginning of the next motor act. How can see, the duration of one motor act, in this case one step when walking, is about 0.4 s to 0.6 s.
  • next local minimum is detected, a return to the beginning of the cycle follows and the described determination of the number of extrema per this motor act, the duration of this motor act, and also the difference values of the neighboring extrema within this motor act is performed.
  • the beginning of the cycle corresponds to the position of the last local minimum related to the previous motor act.
  • Results are saved as next reference values. And so on, until at step 212 the local minima of the temporary array of values of the acceleration vector module are detected.
  • step 210 the parameters are sorted into groups with the same number of extrema; the number of such groups determines the number of standards in a subset.
  • E determine the minimum and maximum values of the duration of the motor act m and m max respectively, as well as the minimum and maximum values
  • FIG. 8a and 8b are a flowchart of an algorithm for determining the type of human motor activity, revealing in more detail a method whose flowchart in general has been described with reference to FIG. 3. At the same time, to increase reliability
  • the algorithm additionally provides for taking into account the variance of the recorded signals of a three-component accelerometer, for example, by calculating the module of the deviation from the average value.
  • the acceleration vector module is calculated (step 302), which is subjected to a smoothing procedure 20 (step 303), after which a temporary array of acceleration vector module values is generated (step 304) and local extrema of the acceleration vector module are determined (step 305).
  • Directly determining the type of motor activity is a cyclic operation of comparing a temporary array of vector values
  • This process proceeds as described with reference to FIG. 3. It begins by identifying the first local extremum of the module of the acceleration vector (step 306). Then, at step 307, it is checked whether there are still standards with which a temporary array of values of the acceleration vector module has not been compared. If there are such standards (these standards are indicated by
  • step 308 for comparison we take the next standard (step 309) and the number of extrema E of this standard count the same number of extrema in the array of values of the acceleration vector module (step 310). Then, at step 311, the duration T and the difference values of the neighboring extrema, h E _, are determined, after which, by comparison with reference values T t [n and T max , as well as i ) min , h (]) max , , MAKE a preliminary decision (step 312) on the compliance of the motor act with this standard.
  • This solution is preliminary, because if there are several standards, the case is not excluded when the analyzed fragment from the array of values of the module of the acceleration vector will correspond to two or more standards.
  • a kind of “candidate” standards is determined to make a final decision on which type of motor act was committed. Further, for this fragment, the deviation from the average values of the standard is determined (step 313), for which the current signals of the accelerometer are used. This information is remembered and the procedure for selecting the next standard is returned, if any, and the procedures provided for in steps 309-312 are repeated and, if necessary, 313. If there is no correspondence, then this standard is not included in the list of “candidates” and the procedure for selecting the next the standard, if any, and the repetition of the procedures provided for in steps 309-312 and, if necessary, 313.
  • FIG. 7 An example of determining the dispersion of the accelerometer signals x g -, y t , ⁇ , ⁇ is shown in FIG. 7 for the walking case illustrated in FIG. 5.
  • a dispersion as a parameter characterizing the degree of deviation, in this example, the average of the module of the deviation of the values of the accelerometer signals relative to their average value is taken. So, in this example, the dispersion value D x of the signal x g - is in the range from 2.5 to 9, the average dispersion value D x is approximately 5.
  • step 314 the number of “candidate” standards identified at step 312, to which the analyzed motor act corresponds, is estimated. If there are more than one type of such standards, then for a given motor act, a decision is made on its correspondence to that type of motor activity, with respect to the standard of which the value of D is minimal (step 315), after which, accordingly, the counter of this type of motor acts increases by one (step 316). If at step 314 it was found that only one candidate reference was identified, then immediately proceeds to step 316, at which the counter of the motor acts of this type is increased. Step 317 marks the end of the cycle.
  • step 318 it is checked whether there are still extrema in the array of the acceleration module, and if there are none, the process of determining the type of motor activity of a person is completed, while information on how many motor acts of a particular type has been identified is stored in the respective counters, and these data as a whole make it possible to determine the type of motor activity of a person for a given period of time.
  • step 314 If at step 314 it was found that at step 312 no “candidate” standard was identified, then the transition to the position of the next extremum of the acceleration module is performed (step 320). In this case, it is again determined whether there are still extrema of the acceleration module (step 318). If they are not there, the process of determining the type of motor activity of a person is completed, and if there are still extrema in the array of the acceleration module, then the reference counter is reset (step 321) and then return to step 307 (see Fig. 8a).
  • the user can start the mode of updating standards.
  • This may be required, for example, if the device 1 is fixed on the other hand of the user, or in another place on the body, or when changing the user. Also updating of standards may be required if there is a need to distinguish between types of physical activity with special user behavior.
  • FIG. 9 The block diagram of the algorithm of operation of the device 1 in the update mode of the standards is presented in FIG. 9.
  • the user turns on the device 1 update mode standards and performs a series of motor acts of the corresponding type (walking in our example), the number of which, as in the formation of the standards, is also from 50 to 300.
  • an array of values of the module of the acceleration vector is formed, as it was described above with reference to FIG. 3, 4, 8a, 8b.
  • the procedure for updating the standards of the subset is described by the example of processing a fragment of an array of values of the module of the acceleration vector per individual motor act (position 401).
  • the number of extrema in this fragment of the array of values of the acceleration vector module is determined (step 402). Then (step 403), it is checked whether among the previously created standards of the given subset there is a standard with the same number of extrema. If not, a new standard is created (step 404) for the given subset of the standards.
  • the following values are taken as reference values: for the reference number of extrema - the new number of extrema, for the reference values of the minimum and maximum duration of the motor act at the same time - the duration of this fragment, and for the minimum and maximum values of the difference of neighboring extrema - the corresponding values of the difference of neighboring extrema of this fragment of the array values of the module of the acceleration vector.
  • the formation of a new standard is completed, and its reference values will subsequently be specified in terms of the range of values of the duration of the motor act and the ranges of the difference values of neighboring extrema.
  • step 403 If at step 403 it was found that among the previously created standards of this subset there is a standard with the same number of extrema E as the analyzed fragment of the array of values of the acceleration vector module, the process of updating its reference values begins.
  • the duration of this fragment that is, the duration of the motor act (step 405)
  • the difference values of the neighboring extrema of the acceleration vector module are calculated.
  • they check step 407) whether the obtained values of the duration of the motor act and the difference of neighboring extrema fit into the ranges of reference values: ⁇ min. ⁇ max> a also l) min> h (l) max> ⁇ ⁇ ⁇ » ⁇ £ -l) min» ⁇ £ -1) check - If * a > T0 Ha the next step 408 updates the standard statistics:
  • step 409 expand this range of values by changing the corresponding value from m
  • the method for determining the type of motor activity of a person in accordance with the present invention allows us to identify not only the walking or running described in the examples, but also other types of movement, for example, when a person is jumping or is at rest (without movement).
  • the determination of the type of motor activity of the type “waves hand vertically” or “waves hand horizontally” can be used, including to determine the type of physical exercise, or to determine the actions performed by a human operator.
  • This method can be used in a variety of applications. The most promising is its use in monitoring the state of the user's body, for example, when monitoring its motor activity.
  • the described device intended for the implementation of the method can be made in the form of a wrist device that determines the types of movement, counting the number of motor acts and monitoring the state of the human body.
  • the method can be implemented as a separate device, or as a system, including a human-worn device with acceleration sensors and a signal processing circuit of acceleration sensors, a mobile communication tool and a remote database.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Geometry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Группа изобретений относится к области измерений для исследования или анализа движения тела человека или его частей для диагностических целей, в частности определения вида двигательной активности человека. При осуществлении способа регистрируют сигналы трехкомпонентного акселерометра, закрепленного на теле человека, на их основе вычисляют модуль вектора ускорения, формируют временной массив значений модуля вектора ускорения и выделяют его экстремумы. Далее последовательно от экстремума к экстремуму, отсчитывая число экстремумов, равное эталонному значению числа экстремумов, по меньшей мере, одного эталона, сформированного предварительно для определенного вида двигательной активности, определяют длительности отдельных двигательных актов, и в пределах каждого отдельного двигательного акта определяют значения разности соседних экстремумов модуля вектора ускорения, которые затем сравнивают с эталонными значениями длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения соответствующего эталона. По результатам сравнения принимают решение о совершении двигательного акта определенного вида двигательной активности. Техническим результатом является повышение надежности определения вида двигательной активности человека.

Description

СПОСОБ ОПРЕДЕЛЕНИЯ ВИДА ДВИГАТЕЛЬНОЙ
АКТИВНОСТИ ЧЕЛОВЕКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к области измерений для исследования или анализа движения тела человека или его частей для диагностических целей, в частности определения вида двигательной активности человека. УРОВЕНЬ ТЕХНИКИ
Определение вида двигательной активности человека, то есть определение (или распознавание, идентификация) того, стоит, идет, бежит, плывет или как то иначе двигается человек в данный момент времени, является важным средством получения диагностической информации, в частности для оценки физического состояния человека, испытываемой им физической нагрузки, расходуемой организмом энергии.
Известны различные способы определения вида двигательной активности человека, осуществляемые с использованием датчиков ускорения, расположенных на теле человека.
Так, в заявке JP 2013143996 (публ. 25.07.2013; МПК А61В5/103, А61В5/55) описан способ определения вида двигательной активности человека, основанный на регистрации сигналов трехкомпонентного акселерометра, размещенного на запястье, выявлении в зарегистрированных сигналах ускорения пиков, связанных с касанием ног и движением руки пользователя, определению амплитуды этих пиков. Вид двигательной активности, такой как бег или ходьба, определяют путем решения соответствующих уравнений и последующего сравнения результатов вычислений с заданным пороговым значение. Данный способ не обеспечивает надежного определения вида двигательной активности, ввиду того, что не учитывает особенностей движений конкретного человека, которые достаточно индивидуальны.
В заявке US 20130245470 (публ. 19.09.2013; МПК А61В5/11) описан способ определения вида двигательной активности человека с использованием трехкомпонентного акселерометра, закрепленного на груди человека. Определение вида двигательной активности основано на том факте, что в некоторые промежутки времени, когда человек бежит и его обе ноги оторваны от земли, вектор ускорения, регистрируемого акселерометром, имеет направление, противоположное направлению силы тяжести. В эти промежутки времени значение производной модуля вектора ускорения имеет другой знак, чем в случае, когда хотя бы одна из ног касается земли. В итоге вид движения определяется по производной модуля вектора ускорения. Данный способ также не обеспечивает надежного определения вида двигательной активности, так как не учитывает особенностей движений конкретного человека, и кроме того его возможности по определению различных видов двигательной активности ограничены только возможностью отличать бег от ходьбы.
Наиболее близким к настоящему изобретению является способ определения вида двигательной активности человека, описанный в заявке JP 2012065749 (публ. 05.04.2012; МПК, А61В5/103, А43В5/22). Способ включает регистрацию сигналов трехкомпонентного акселерометра, установленного на теле человека, и вычисление на их основе модуля вектора ускорения. Далее вычисляют разность экстремумов модуля вектора ускорения и по этим значениям выносят решение о виде двигательной активности человека. Однако данный способ, как и вышеописанные, не обеспечивает надежного определения вида двигательной активности, поскольку не учитывает особенностей движений конкретного человека, которые достаточно индивидуальны даже при одном и том же виде движения.
Технической задачей, на решение которой направлено настоящее изобретение, является создание более надежного способа и устройства для определения вида двигательной активности, что обеспечивается за счет формирования эталонных значений амплитудных и временных параметров модуля ускорения для конкретного человека при различных видах двигательной активности, так называемых эталонов, и использования их при осуществлении способа. РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
В настоящем описании изобретения использованы следующие термины.
Двигательная активность человека - совокупность двигательных актов, движений человека; основная функция мышечной системы человека.
Вид двигательной активности человека - ходьба, бег, приседание, махи руками, ногами, плавание и другие совершаемые человеком виды движения.
Двигательный акт - как правило, повторяемые движения, типа отдельного шага при ходьбе или беге, отдельного приседания, взмаха рукой и т. п. Трехкомпонентный акселерометр - техническое средство, которое будучи установленным на движущемся объекте способно формировать три электрических сигнала, соответствующих проекциям вектора ускорения движущегося объекта по трем ортогональным осям трехмерного пространства.
Модуль вектора ускорения - абсолютное значение ускорения, регистрируемого трехкомпонентным акселерометром в виде трех сигналов, соответствующих проекциям ускорения движущегося объекта по трем ортогональным осям трехмерного пространства.
Временной массив значений модуля вектора ускорения - массив значений модуля вектора ускорения за определенный (заданный) промежуток времени.
Временные границы или длительность двигательного акта - промежуток времени от начала до окончания отдельного двигательного акта, промежуток времени между одними и теми же фазами периодически повторяемых двигательных актов.
Экстремум модуля вектора ускорения - локальный экстремум модуля вектора ускорения во временном массиве его значений.
Число экстремумов модуля вектора ускорения - число локальных экстремумов в пределах временных границ или длительности отдельного двигательного акта.
Эталон - набор параметров, характеризующих определенный вид двигательной активности человека как совокупности двигательных актов определенного вида, включает:
эталонное значение числа экстремумов, приходящихся на один двигательный акт (например, шаг при ходьбе, шаг во время бега, взмах рукой и т. п.);
эталонное значение длительности двигательного акта, представленное минимальным и максимальным значениями;
эталонное значение разности соседних экстремумов, представленное минимальным и максимальным значениями для каждого экстремума относительно последующего экстремума, приходящихся на один двигательный акт.
Подмножество эталонов - множество эталонов, относящихся к одному виду двигательной активности и отличающихся эталонным значением числа экстремумов, приходящихся на один двигательный акт.
Указанные наборы параметров (эталоны) получают предварительно на этапе настройки для различных видов двигательной активности, которые могут быть определены (идентифицированы) путем осуществления способа в соответствии с настоящим изобретением. Одним объектом изобретения является способ определения вида двигательной активности человека, характеризующийся тем, что:
регистрируют сигналы трехкомпонентного акселерометра, закрепленного на теле человека с возможностью формирования сигналов, вызванных двигательной активностью человека,
на основе упомянутых сигналов трехкомпонентного акселерометра вычисляют модуль вектора ускорения, формируют временной массив значений модуля вектора ускорения и выделяют его экстремумы,
последовательно от экстремума к экстремуму модуля вектора ускорения, отсчитывая число экстремумов, равное эталонному значению числа экстремумов, по меньшей мере, одного эталона, сформированного предварительно для определенного вида двигательной активности и характеризуемого эталонным значением числа экстремумов модуля вектора ускорения, эталонным значением длительности двигательного акта и эталонными значениями разности соседних экстремумов модуля вектора ускорения, определяют длительности отдельных двигательных актов, и в пределах каждого отдельного двигательного акта определяют значения разности соседних экстремумов модуля вектора ускорения,
упомянутые определенные значения длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения сравнивают с эталонными значениями длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения соответствующего эталона,
при этом решение о совершении двигательного акта определенного вида двигательной активности принимают при условии, что упомянутые определенные значения длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения укладываются в заданные диапазоны упомянутых эталонных значений длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения, по меньшей мере, одного эталона.
Как экспериментально установили изобретатели, исследуя последовательность сигналов, регистрируемых трехкомпонентным акселерометром, закрепленным на теле человека, отдельные двигательные акты при различных видах двигательной активности характеризуются такими информативными параметрами как:
число экстремумов модуля вектора ускорения,
длительность двигательного акта и значения разности соседних экстремумов модуля вектора ускорения.
Соответственно, предложено сформировать ряд эталонов, характеризуемых эталонными значениями числа экстремумов модуля вектора ускорения, длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения, с которыми будут сравниваться соответствующие параметры модуля вектора ускорения, регистрируемого при осуществлении способа в соответствии с настоящим изобретением. При этом, учитывая естественную девиацию таких параметров как длительность двигательного акта и разность соседних экстремумов модуля вектора ускорения, соответствующие эталонные значения представлены в виде диапазонов значений - минимального и максимального. Следует отметить, что в зависимости от задач эталонов может быть несколько, как на разные виды двигательной активности, так и на один вид двигательной активности, и в частности может быть использован один эталон, например, когда стоит задача распознавания только конкретного вида двигательной активности человека.
В процессе осуществления способа на основе упомянутых сигналов трехкомпонентного акселерометра вычисляют модуль вектора ускорения, формируют временной массив значений модуля вектора ускорения и выделяют его экстремумы.
Затем, начиная с первого экстремума модуля вектора ускорения, отсчитывают число экстремумов, равное эталонному значению числа экстремумов первого эталона, определяют длительность предполагаемого двигательного акта, в пределах которого также определяют значения разности соседних экстремумов. Подобную процедуру выполняют последовательно от экстремума к экстремуму модуля вектора ускорения, повторяя ее для каждого эталона. При этом всякий раз производят сравнение определенных описанным образом значений длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения с эталонными значениями длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения соответствующего эталона.
Описанная процедура позволяет проанализировать последовательно все фрагменты массива значений модуля вектора ускорения, сравнивая его параметры с эталонными, при этом длина анализируемого фрагмента каждый раз определяется эталонным значением числа экстремумов соответствующего эталона.
В итоге решение о совершении двигательного акта определенного вида двигательной активности принимают при условии, что упомянутые определенные значения длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения, которые характеризуют анализируемый фрагмент массива значений модуля вектора ускорения, укладываются в заданные диапазоны упомянутых эталонных значений длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения соответствующего эталона.
Использование предложенной изобретателями модели двигательного акта, характеризуемого числом экстремумов модуля вектора ускорения, длительностью двигательного акта, измеряемой в пределах этого числа экстремумов, и разностью соседних экстремумов, вместе с описанной последовательностью выделения фрагментов зарегистрированного временного массива значений модуля вектора ускорения и сравнения параметров этих фрагментов с соответствующими эталонными параметрами (значениями) обеспечивает возможность надежного определения, к какому виду двигательной активности относится совершенный двигательный акт, и соответственно - определения вида двигательной активности в целом. Под надежностью понимается вероятность ошибок первого и второго рода, то есть вероятность как ложного определения вида совершенного двигательного акта, так и неопределения, к какому именно виду он относится.
Также надежность принимаемого решения о совершении двигательного акта определенного вида двигательной активности может быть повышена, если при принятии данного решения учитывать дисперсию разности соседних экстремумов модуля вектора ускорения относительно соответствующих эталонных значений.
Учитывая, что руки человека участвуют в большинстве видов движения, акселерометр может быть закреплен на руке человека, в частности на запястье, что обеспечивает возможность определения наибольшего числа разнообразных видов двигательной активности человека. Кроме того, ношение подобных технических средств на запястье привычно и удобно для человека.
В частном случае в качестве трехкомпонентного акселерометра могут быть использованы три датчика ускорения, конструктивно соединенные между собой с образованием трех ортогональных осей измерения ускорения.
Для устранения высокочастотных скачкообразных изменений сигналов акселерометра, характерных для такого использования, до формирования временного массива значений модуля вектора ускорения, регистрируемые сигналы трехкомпонентного акселерометра или вычисляемый модуль вектора ускорения может быть подвергнут процедуре сглаживания. Это дополнительно повышает надежность определения вида двигательной активности и уменьшает объем вычислительных операций, производимых при осуществлении способа.
Процесс формирования эталона, например, может быть осуществлен следующим образом. Регистрируют сигналы трехкомпонентного акселерометра, закрепленного на теле человека с возможностью формирования сигналов, вызванных двигательной активностью человека, при этом упомянутые сигналы регистрируют во время совершения человеком серии двигательных актов определенного вида, для которого формируют эталон. Далее на основе упомянутых сигналов трехкомпонентного акселерометра вычисляют модуль вектора ускорения, формируют временной массив значений модуля вектора ускорения и выделяют его экстремумы. Затем в пределах выбранного числа двигательных актов определяют для каждого из них число экстремумов модуля вектора ускорения, длительность двигательного акта и разность соседних экстремумов. Наконец в качестве эталонных значений, по меньшей мере, одного эталона принимают повторяющееся число экстремумов, минимальное и максимальное значения длительности двигательных актов с этим числом экстремумов и минимальные и максимальные значения разности соседних экстремумов двигательных актов с этим числом экстремумов.
Дополнительно в случае обнаружения двигательных актов с иным повторяющимся числом экстремумов, формируют, по меньшей мере, один дополнительный эталон, при этом в качестве эталонных значений дополнительного эталона также принимают повторяющееся число экстремумов, минимальное и максимальное значения длительности двигательных актов с этим числом экстремумов и минимальные и максимальные значения разности соседних экстремумов двигательных актов с этим числом экстремумов. При этом сформированные в итоге эталоны образуют подмножество эталонов одного вида двигательной активности.
Дополнительно для устранения высокочастотных скачкообразных изменений сигналов акселерометра, до формирования временного массива значений модуля вектора ускорения, регистрируемые сигналы трехкомпонентного акселерометра или вычисляемый модуль вектора ускорения подвергают процедуре сглаживания.
В общем случае формирование эталонов может быть не связано с конкретным человеком, вид двигательной активности которого определяется при осуществлении способа. Однако для достижения наилучшего результата трехкомпонентный акселерометр при формировании эталонов следует закреплять на теле того же человека и так же, как он будет в последующем закреплен на теле человека при осуществлении способа. В этом случае могут быть сформированы эталоны, отражающие индивидуальные особенности человека, проявляющиеся во время движения.
В частности число двигательных актов, совершаемых человеком при формировании эталона, составляет от 50 до 300.
Другим объектом изобретения является устройство для определения вида двигательной активности, включающее трехкомпонентный акселерометр, вьшолненный с возможностью закрепления на теле человека и способный формировать сигналы, соответствующие проекциям вектора ускорения, которое испытывает акселерометр, по трем ортогональным осям в пространстве, и вычислительное устройство, подсоединенное к выходам акселерометра.
При этом вычислительное устройство выполнено с возможностью выполнения всех описанных выше вычислительных процедур, используемых при осуществлении способа. А именно:
вычисления на основе упомянутых сигналов акселерометра модуля вектора ускорения, формирования временного массива значений модуля вектора ускорения и выделения его экстремумов,
определения длительности отдельных двигательных актов, и в пределах каждого отдельного двигательного акта определения значения разности соседних экстремумов модуля вектора ускорения, при этом границы двигательных актов определяются последовательно от экстремума к экстремуму модуля вектора ускорения по числу экстремумов, равному эталонному значению числа экстремумов, по меньшей мере, одного эталона, сформированного предварительно для определенного вида двигательной активности и характеризуемого эталонным значением числа экстремумов модуля вектора ускорения, эталонным значением длительности двигательного акта и эталонными значениями разности соседних экстремумов модуля вектора ускорения, сравнения упомянутых определенных значений длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения с эталонными значениями длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения соответствующего эталона, и
принятия решения о совершении двигательного акта определенного вида двигательной активности при условии, что упомянутые определенные значения длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения укладываются в заданные диапазоны упомянутых эталонных значений длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения, по меньшей мере, одного эталона.
В частном случае вычислительное устройство может быть выполнено с возможностью принятия решения о совершении двигательного акта определенного вида двигательной активности дополнительно с учетом дисперсии разности соседних экстремумов модуля вектора ускорения относительно соответствующих эталонных значений.
Упомянутый акселерометр может быть выполнен с возможностью закрепления на запястье.
В качестве упомянутого акселерометра могут быть использованы три датчика ускорения, конструктивно соединенные между собой с образованием трех ортогональных осей измерения ускорения.
В частном случае для временного согласования потока сигналов, поступающих с выходов акселерометра, и их последующей обработки вычислительное устройство может быть подсоединено к выходам акселерометра через циклические буферы.
Дополнительно устройство для определения вида двигательной активности человека может быть снабжено приемопередатчиком, обеспечивающим беспроводную передачу во внешнее устройство данных о текущем виде двигательной активности человека.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Изобретение поясняется следующими графическими материалами.
На Фиг. 1 представлена блок-схема примерного устройства, предназначенного для осуществления способа определения вида двигательной активности человека в соответствии с настоящим изобретением.
На Фиг. 2 показан пример размещения устройства для определения вида двигательной активности человека, включающего трехкомпонентный акселерометр, на запястье человека.
На Фиг. 3 представлена блок-схема примерного алгоритма осуществления способа в соответствии с настоящим изобретением, при этом алгоритм представлен в общем виде для иллюстрации основных операций способа. На Фиг. 4 представлена блок-схема примерного алгоритма формирования эталонов для различных видов двигательной активности человека.
На Фиг. 5 приведен пример графического представления изменения во времени модуля вектора ускорения, регистрируемого трехкомпонентным акселерометром. Пример иллюстрирует определение локальных экстремумов модуля вектора ускорения, характеризующих двигательную активность различного вида.
На Фиг. 6 показан в увеличенном масштабе фрагмент «с» представленного на Фиг. 5 графика модуля вектора ускорения, иллюстрирующий изменение модуля вектора ускорения в пределах одного двигательного акта и определение разности соседних экстремумов модуля вектора ускорения.
На Фиг. 7 приведены примерные графики, иллюстрирующие дисперсию сигналов трехкомпонентного акселерометра, регистрируемых при осуществлении способа в соответствии с настоящим изобретением.
На Фиг. 8а и Фиг. 8Ь (как продолжение) представлена блок-схема примерного алгоритма определения вида двигательной активности человека, раскрывающая более детально способ, блок-схема алгоритма которого в общем виде представлена на Фиг. 3.
На Фиг. 9 представлена блок-схема примерного алгоритма корректировки эталонов, соответствующих определенному виду двигательной активности человека и используемых при осуществлении способа в соответствии с настоящим изобретением. ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Способ в соответствии с настоящим изобретением может быть осуществлен, например, с помощью устройства 1, блок-схема которого представлена на Фиг. 1. Устройство 1 включает трехкомпонентный акселерометр 2, имеющий три датчика ускорения 3, 4, 5, формирующих сигналы, соответствующие проекциям (составляющим) вектора ускорения, которое испытывает акселерометр 2, по трем ортогональным осям в пространстве X , Y и Z . Выходы датчиков ускорения 3, 4 и 5 через соответствующие циклические буферы 6, 7 и 8, накапливающие за определенный период времени значения сигналов с датчиков ускорения 3, 4 и 5, подключены к входам вычислительного устройства 9. Устройство 1 может быть размещено на теле человека с таким расчетом, чтобы вследствие его двигательной активности формировались устойчивые сигналы датчиков ускорения 3, 4, 5. Наиболее удобное место установки устройства 1, по меньшей мере, той его части, которая включает акселерометр 2, - на запястье, как это показано на Фиг. 2, что обеспечивает возможность определения наибольшего числа разнообразных видов двигательной активности человека, иначе - видов движения.
Трехкомпонентный акселерометр 2 (см. Фиг. 1) непрерывно во времени формирует сигналы X , у{ и ζζ· (где г - порядковый номер отсчета), соответствующие проекциям по трем ортогональным осям X , Υ и Ζ вектора ускорения, которое испытывает акселерометр 2. Указанные сигналы через соответствующие циклические буферы 6, 7 и 8 поступают в вычислительное устройство 9 для последующей обработки. Циклический (или кольцевой) буфер является разновидностью буфера FIFO, First Input First Output (первый вошел - первый вышел), используемого обычно для согласования потоков данных между асинхронными процессами, в данном случае - между непрерывно поступающими сигналами Xj , yj , Zj и их обработкой вычислительным устройством 9. Таким образом, в циклических буферах 6, 7, 8 хранятся последовательные значения сигналов хг- , y^ , Zj , число которых определяется емкостью циклических буферов 6, 7, 8 и которые непрерывно обновляются с каждым очередным отсчетом. Вычислительное устройство 9 осуществляет операции по определению того или иного вида двигательной активности на основе алгоритмов, блок-схемы которых представлены: в общем виде - на Фиг. 4, и более детально - на Фиг. 8а, 8Ь. Емкость циклических буферов 6, 7, 8 определяется в совокупности такими факторами как быстродействие вычислительного устройства 9, сложность выполняемых вычислительных процедур, требуемая точность вычислений.
Устройство 1 может быть дополнено приемопередатчиком 10, обеспечивающим беспроводную передачу данных о текущем виде двигательной активности человека во внешнее автономное устройство, например персональный компьютер или смартфон 11, где эти данные могут накапливаться. Также могут быть реализованы схемы, при которых данные со смартфона 11 посредством сетевых технологий, например сети Интернет, передаются во внешнее хранилище, где может быть организовано их накопление, последующая обработка и анализ с учетом упомянутых выше задач оценки физического состояния человека, испытываемой им физической нагрузки, расходуемой организмом энергии и пр.
Блок-схема алгоритма осуществления способа в объеме основных операций представлена на Фиг. 3. На выходах трехкомпонентного акселерометра 2 (обозначены позицией 101), входящего в состав устройства 1, закрепленного на запястье, с заданной частотой дискретизации одновременно формируются сигналы Xj , _уг- , ζ,- , где i - порядковый номер отсчета. Эти сигналы, как было указано, соответствуют проекциям вектора ускорения по трем ортогональным осям в пространстве X , Υ , Z .
Вначале (шаг 102) на основе сигналов Xj , yf , Ζι вычисляют модуль вектора ускорения как:
Figure imgf000014_0001
формируя тем самым последовательность значений .
Для устранения высокочастотных скачкообразных изменений вычисленных значений А{ эта последовательность может быть подвергнута процедуре сглаживания (шаг 103), например, с использованием метода экспоненциального взвешенного скользящего среднего. При этом формируется новый массив значений At , свободный от высокочастотной составляющей. Специалистам в данной области техники известны различные методы сглаживания, которые могут быть использованы с учетом частотного спектра сигналов χζ· , у{ , Zj акселерометра 2.
Как вариант, последовательность выполнения процедур сглаживания и вычисления модуля вектора ускорения может быть иная: вначале выполняют сглаживание сигналов х{ , yi , zi , а затем вычисляют модуль вектора ускорения.
Из полученных значений Aj формируют временной массив модуля вектора ускорения (шаг 104) для его последующего анализа. Временной массив модуля вектора ускорения хранится в оперативной памяти вычислительного устройства 9.
Значения модуля вектора ускорения Aj представлены на Фиг. 5 в виде графика, отражающего изменение значения Aj во времени. Представленная кривая имеет характерную зубчатую форму. В данном примере амплитудные и временные соотношения для At в области «а» характерны для случая, когда человек, по крайней мере, не идет и не бежит, а в области «Ь» - когда человек идет, то есть при ходьбе.
На следующем шаге 105 (см. Фиг. 3) определяют локальные экстремумы модуля вектора ускорения А; , которые на графике Фиг. 5 отмечены точками. Затем на шаге
106 по выделенным локальным экстремумам определяют временные границы отдельных двигательных актов. Это определение проводят на основе сравнения последовательности локальных экстремумов модуля вектора ускорения А{ с эталонными значениями числа экстремумов модуля вектора ускорения для одного двигательного акта при различных видах двигательной активности человека. Данные эталонных значений обозначены на Фиг. 3 позицией 107.
Эталон, как было сказано выше, представляет собой набор параметров - эталонных значений, характеризующих определенный вид двигательной активности человека. При этом может быть использовано множество эталонов, относящихся к определенному виду двигательной активности, каждый из которых в свою очередь может быть представлен подмножеством эталонов данного вида двигательной активности. Например, для распознавания ходьбы, бега и прыжков множество эталонов S будет включать:
S = {Sw ,SR,Sj],
где: Sfy - подмножество эталонов для ходьбы;
SR - подмножество эталонов для бега;
Sj - подмножество эталонов для прыжков.
При этом каждое из подмножеств , SR или S j может включать несколько эталонов. Например, подмножество эталонов для ходьбы Sw , включающее w эталонов (w - натуральное число), может быть представлено как:
с _ {с0) с(2) (w) l где: - 1-й эталон для ходьбы;
Sffi - 2-й эталон для ходьбы;
- w-й эталон для ходьбы.
В качестве критерия для различения эталонов, относящихся к одному подмножеству, может быть использовано число локальных экстремумов, приходящихся на один двигательный акт данного вида двигательной активности.
Наконец, каждый эталон включает набор следующих эталонных значений:
S = {^5 ^mm ' ^ax ' ^(l)min ' ^(l)max ^(£-l)min »^(£-l)max } >
где: Е - число экстремумов, приходящихся на один двигательный акт (например, шаг при ходьбе, шаг во время бега, прыжок, взмах рукой и т. п.);
Гтш - минимальное значение длительности двигательного акта;
тяу - максимальное значение длительности двигательного акта; l)min _ минимальное значение разности первого и второго экстремумов;
~ максимальное значение разности первого и второго экстремумов; h(E-\)mm ~ минимальное значение разности предпоследнего и последнего экстремумов;
~
Figure imgf000016_0001
максимальное значение разности предпоследнего и последнего экстремумов.
Эти эталоны получают предварительно на этапе настройки или «обучения» устройства 1, что будет описано ниже, и в виде указанных эталонных значений хранятся в памяти, в данном случае упомянутого вычислительного устройства 9.
Определение на шаге 106 (см. Фиг. 3) временных границ отдельных двигательных актов производят последовательно от первого обнаруженного локального экстремума модуля вектора ускорения для всех имеющихся эталонов. Вначале от первого локального экстремума, принимая его условно за начало двигательного акта, отсчитывают число экстремумов, равное числу экстремумов Е первого эталона, определяя тем самым длительность Т данного условного двигательного акта. Если определенная таким образом длительность Т не попадает в заданный первым эталоном диапазон Гтт - тах , ту же процедуру проводят для следующего эталона. Если относительно упомянутого первого локального экстремума модуля вектора ускорения не было выявлено ни одного эталона с диапазоном длительности тт - тах , в который укладывается длительность Т , подобную процедуру проводят относительно следующего локального экстремума модуля вектора ускорения. И так - до нахождения в массиве модуля вектора ускорения локального минимума, относительно которого есть подходящий эталон, то есть когда длительность Т , приходящаяся на число экстремумов Е этого эталона, укладывается в заданный этим эталоном диапазон значений тт - Гтах . Число эталонов, как было упомянуто выше, определяется сложностью задачи распознавания различных видов двигательной активности человека, хотя, вообще говоря, эталон может быть единственным, если ставится простая задача распознавания конкретного вида двигательной активности, которая характеризуется определенными эталонными значениями.
Далее в пределах определенных на шаге 106 временных границ двигательного акта определяют (шаг 108) разности соседних экстремумов, например, от до г4 при числе экстремумов равном пяти, как это показано на примере Фиг. 6, которые затем сравнивают (шаг 109) с соответствующими эталонными значениями разности соседних экстремумов: i)max '- - -' 4)min > · Результаты сравнения запоминают.
И так для всех эталонов. Если по результатам сравнения все разности соседних экстремумов модуля вектора ускорения укладываются в заданный диапазон эталонных значений для определенного вида двигательной активности, выносят решение о совершении двигательного акта, соответствующего данному эталону или виду двигательной активности.
Для формирования эталонов устройство 1 закрепляется на теле человека так же, как оно будет в последующем использоваться для определения вида двигательной активности, например, на запястье, как показано на Фиг. 2. Устройство 1 пользователь переводит в 1 режим настройки и выполняет заданный вид движения, например, идет или бежит. Блок-схема примерного алгоритма формирования эталонов для различных видов двигательной активности человека представлена на Фиг. 4. Число циклических движений ходьбы или бега - двигательных актов, требуемых для получения эталонных значений, составляет от 50 до 300. При необходимости процесс настройки устройства 1 может быть повторен, для чего предусмотрен режим обновления или корректировки эталонных значений, который будет описан ниже со ссылкой на Фиг. 9.
В режиме формирования эталонов (см. Фиг. 4), так же как и в режиме определения вида двигательной активности, используют сигналы Xj , yi f zt акселерометра 2 (обозначены позицией 201), по которым вычисляют модуль вектора ускорения (шаг 202), значения которого затем последовательно подвергаются описанным выше процедурам сглаживания (шаг 203), формирования временного массива значений модуля вектора ускорения (шаг 204) и определения локальных экстремумов модуля вектора ускорения (шаг 205).
Затем с учетом числа совершенных двигательных актов одного вида (обозначено позицией 206) определяют среднюю длительность двигательного акта данного вида (шаг 207). В частности, на графике Фиг. 5, полученном в процессе формирования эталонов для ходьбы, точками отмечены экстремумы модуля вектора ускорения, а вертикальными пунктирными линиями - временные границы одного двигательного акта, на которые приходятся периодически повторяющиеся примерно через одинаковые промежутки времени локальные минимумы модуля вектора ускорения. Позиция этих локальных минимумов принята за начало очередного двигательного акта. Как можно видеть, длительность одного двигательного акта, в данном случае одного шага при ходьбе, составляет примерно от 0,4 с до 0,6 с.
Затем определяют число экстремумов, приходящихся на один двигательный акт. Как видно на Фиг. 5, в данном примере на один двигательный акт может приходиться от трех до пяти экстремумов, при этом принимают, что последний экстремум текущего двигательного акта совпадает с первым экстремумов следующего двигательного акта. После этого определяют разности соседних экстремумов. Определение разности соседних экстремумов проиллюстрировано Фиг. 6, где в увеличенном масштабе показан фрагмент «с» представленного на Фиг. 5 графика модуля вектора ускорения. В данном случае число экстремумов, приходящихся на двигательный акт длительностью Т , равняется пяти, а разности соседних экстремумов обозначены как , h2 , 23 , 24 соответственно.
Данные операции проводят циклически: START - начало цикла, соответствует позиции первого локального минимума (шаг 208), END - позиция следующего локального минимума, отстоящего от первого локального минимума (позиции START) примерно на длительность двигательного акта (шаг 209). На следующем шаге 210 определяется число экстремумов, приходящихся на данный двигательный акт, длительность данного двигательного акта, а также значения разности соседних экстремумов в пределах этого двигательного акта. Данные параметры запоминают в качестве начальных эталонных значений для первого эталона подмножества эталонов для ходьбы. Далее следует проверка (шаг 212) - есть ли еще минимумы модуля вектора ускорения в пределах примерной длительности двигательного акта данного вида. Если очередной локальный минимум обнаружен, следует возврат к началу цикла и выполняется описанное определение числа экстремумов, приходящихся на данный двигательный акт, длительности данного двигательного акта, а также значений разности соседних экстремумов в пределах этого двигательного акта. При этом начало цикла (START) соответствует позиции последнего локального минимума, относящегося к предыдущему двигательному акту.
Результаты сохраняются как очередные эталонные значения. И так далее, пока на шаге 212 больше не будет обнаружено локальных минимумов временного массива значений модуля вектора ускорения.
Окончательное формирование подмножества эталонов для данного вида двигательной активности проводят следующим образом. Сохраненные на шаге 210 параметры сортируют на группы с одинаковым числом экстремумов, число таких групп определяет число эталонов в подмножестве. Для каждой группы с числом экстремумов Е определяют минимальные и максимальные значения длительности двигательного акта тщ и Гтах соответственно, а также минимальные и максимальные значения
5 разности соседних экстремумов: i)min , i)max > · · ·> ^£-i)min » ^CJE-l max · Данные параметры принимают в качестве эталонных. Например, для случая, проиллюстрированного на Фиг. 5, было сформировано три эталона по числу экстремумов: 3, 4 и 5, выявленных в массиве модуля ускорения для отдельных двигательных актов.
10 Более подробно возможность осуществления способа в соответствии с настоящим изобретением проиллюстрирована на Фиг. 7 и Фиг. 8а, 8Ь. Так, на Фиг. 8а и 8Ь представлена блок-схема алгоритма определения вида двигательной активности человека, раскрывающая более детально способ, блок-схема алгоритма которого в общем виде была описана со ссылкой на Фиг. 3. При этом для повышения надежности
15 определения вида двигательной активности алгоритм дополнительно предусматривает учет дисперсии регистрируемых сигналов трехкомпонентного акселерометра, например, через вычисление модуля отклонения от среднего значения.
Как было описано выше, вначале по сигналам акселерометра xj } yi f Zj
(позиция 301) вычисляют модуль вектора ускорения (шаг 302), который подвергают 20 процедуре сглаживания (шаг 303), после чего формируют временной массив значений модуля вектора ускорения (шаг 304) и определяют локальные экстремумы модуля вектора ускорения (шаг 305).
Непосредственно определение вида двигательной активности представляет собой циклическую операцию сравнения временного массива значений вектора
25 ускорения с эталонами. Этот процесс происходит так же, как это было описано со ссылкой на Фиг. 3. Он начинается с выявления первого локального экстремума модуля вектора ускорения (шаг 306). Затем на шаге 307 проверяют, есть ли еще эталоны, с которыми не было произведено сравнение временного массива значений модуля вектора ускорения. Если такие эталоны есть (данные эталонов обозначены позицией
30 308), то для сравнения берут очередной эталон (шаг 309) и по числу экстремумов Е данного эталона отсчитывают такое же число экстремумов в массиве значений модуля вектора ускорения (шаг 310). Затем на шаге 311 определяют длительность Т и значения разности соседних экстремумов , hE_ , после чего путем сравнения с эталонными значениями Тт[п и Ттах , а также i)min , h(])max ,
Figure imgf000020_0001
,
Figure imgf000020_0002
ВЫНОСЯТ предварительное решение (шаг 312) о соответствии двигательного акта данному эталону. Данное решение является предварительным, поскольку при наличии нескольких эталонов не исключается случай, когда анализируемый фрагмент из массива значений модуля вектора ускорения будет соответствовать двум и более эталонам. Фактически на этом шаге определяют своего рода эталоны-«кандидаты» на вынесение окончательного решения о том, двигательный акт какого вида был совершен. Далее для этого фрагмента определяют отклонение от среднестатистических значений эталона (шаг 313), для чего используют текущие сигналы акселерометра. Данная информация запоминается и происходит возврат процедуры выбора очередного эталона, если он есть, и повторение процедур, предусмотренных шагами 309-312 и при необходимости - 313. Если соответствия нет, то данный эталон не включается в число «кандидатов» и происходит возврат процедуры выбора очередного эталона, если он есть, и повторение процедур, предусмотренных шагами 309-312 и при необходимости - 313.
В итоге после перебора всех эталонов среди отобранных эталонов может быть один, два и более или вообще ни одного, после чего начинается процедура окончательного выбора эталона среди «кандидатов» или определения, какому виду двигательной активности соответствует данный двигательный акт, в том числе с учетом отклонения значений разности соседних экстремумов от среднестатистических значений эталона.
Дополнительная оценка отклонения указанных параметров от статистических значений эталона производится для того, чтобы повысить надежность определения вида двигательной активности. Пример определения дисперсий сигналов акселерометра хг- , yt , ζ,· приведен на Фиг. 7 для случая ходьбы, проиллюстрированного Фиг. 5. В качестве дисперсии как параметра, характеризующего степень отклонения, в данном примере принято среднее модуля отклонения значения сигналов акселерометра относительно их среднего значения. Так, в данном примере значение дисперсии Dx сигнала хг- находится в диапазоне от 2,5 до 9, среднее значение дисперсии Dx составляет примерно 5. Для сигналов yt и ζ,· значение дисперсии DY и Dz не превышает 2, среднее - составляет примерно 1. Так, если в качестве эталонных значений указаны средние значения сигналов (хг ), М(у{ ) , M(Zj ) соответственно 6; 1,5; 1, то отклонение от эталона будет равно:
£> = (6 - 5)2 + (l,5 - l)2 + (l - l)2 = 1,25 .
Чем меньше значение D , тем в большей степени совершённый двигательный акт соответствует данному эталону.
Заключительные шаги определения вида двигательной активности проиллюстрированы Фиг. 8Ь. Вначале (шаг 314) оценивают число выявленных на шаге 312 эталонов-«кандидатов», которым соответствует анализируемый двигательный акт. Если таких эталонов больше одного вида, то для данного двигательного акта принимается решение о его соответствии тому виду двигательной активности, относительно эталона которого значение D минимально (шаг 315), после чего соответственно счетчик данного вида двигательных актов увеличивается на единицу (шаг 316). Если на шаге 314 было установлено, что выявлен только один эталон- кандидат», то сразу осуществляется переход к шагу 316, на котором увеличивается показание счетчика двигательных актов данного вида. Шаг 317 обозначает конец цикла.
Далее на шаге 318 проверяется, есть ли еще экстремумы в массиве модуля ускорения, и если их нет, процесс определения вида двигательной активности человека завершается, при этом в соответствующих счетчиках сохраняется информация о том, какое число двигательных актов того или иного вида было идентифицировано, и эти данные в целом позволяют определить вид двигательной активности человека за тот или иной промежуток времени.
Если на шаге 314 было установлено, что на шаге 312 не было выявлено ни одного эталона-«кандидата», то осуществляется переход на позицию следующего экстремума модуля ускорения (шаг 320). При этом снова определяется, есть ли еще экстремумы модуля ускорения (шаг 318). Если их нет, процесс определения вида двигательной активности человека завершается, а если экстремумы в массиве модуля ускорения еще есть, то происходит обнуление счетчика эталонов (шаг 321) и далее возврат к шагу 307 (см. Фиг. 8а).
При необходимости пользователь может запустить режим обновления эталонов.
Это может потребоваться, например, если устройство 1 будет закреплено на другой руке пользователя, или в другом месте тела, либо при смене пользователя. Также обновление эталонов может потребоваться, если возникнет потребность различать виды двигательной активности при особом поведении пользователя.
Блок-схема алгоритма работы устройства 1 в режиме обновления эталонов представлена на Фиг. 9. Вначале необходимо указать, какой эталон, а точнее подмножество эталонов, обновляется. Например, предполагается обновить подмножество эталонов для ходьбы. Пользователь включает в устройстве 1 режим обновления эталонов и выполняет серию двигательных актов соответствующего вида (ходьба в нашем примере), число которых, как и при формировании эталонов, составляет также от 50 до 300. При этом формируется массив значений модуля вектора ускорения, как это было описано выше со ссылками на Фиг. 3, 4, 8а, 8Ь. Далее процедура обновления эталонов подмножества описывается на примере обработки фрагмента массива значений модуля вектора ускорения, приходящегося на отдельный двигательный акт (позиция 401).
Вначале процедуры определяется число экстремумов в этом фрагменте массива значений модуля вектора ускорения (шаг 402). Затем (шаг 403) проверяют, есть ли среди ранее созданных эталонов данного подмножества эталон с таким же числом экстремумов. Если нет, то создается новый эталон (шаг 404) для данного подмножества эталонов. При этом в качестве эталонных значений принимается: для эталонного числа экстремумов - новое число экстремумов, для эталонных значений минимальной и максимальной длительности двигательного акта одновременно - длительность этого фрагмента, а для минимальных и максимальных значений разности соседних экстремумов - соответствующие значения разности соседних экстремумов данного фрагмента массива значений модуля вектора ускорения. На этом формирование нового эталона завершается, и его эталонные значения впоследствии будут уточняться в части диапазона значений длительности двигательного акта и диапазонов значений разности соседних экстремумов.
Если на шаге 403 было установлено, что среди ранее созданных эталонов данного подмножества существует эталон с таким же числом экстремумов Е , как у анализируемого фрагмента массива значений модуля вектора ускорения, начинается процесс обновлений его эталонных значений. Вначале определяют длительность этого фрагмента, то есть длительность двигательного акта (шаг 405), и на следующем шаге 406 вычисляют значения разности соседних экстремумов модуля вектора ускорения. Далее проверяют (шаг 407), укладываются ли полученные значения длительности двигательного акта и разности соседних экстремумов в диапазоны эталонных значений: ^min . Гтах > a также l)min > h(l)max > · · ·» ^£-l)min » ^£-1)шах - Если *a> T0 Ha следующем шаге 408 производится обновление статистических данных эталона:
(х,), M{yt) , Μ(Ζ} ) . Если хотя бы одно из полученных значений длительности двигательного акта и разности соседних экстремумов не укладывается в диапазон соответствующего эталонного значения, то вначале (шаг 409) расширяют этот диапазон значений, изменяя соответствующее значение из т|п , тах , или h^min , i)max , ···,
^£-1)πώΐ ' ^(£-1)тах ' а затем также производят обновление статистических данных эталона: M(Xj ) , (j>2) , M zi) Для обновления статистических данных эталона используют сигналы акселерометра (позиция 410). На этом обновление эталонов заканчивается.
Способ определения вида двигательной активности человека в соответствии с настоящим изобретением позволяет идентифицировать не только описанные в примерах ходьбу или бег, но и другие виды движения, например, когда человек прыгает или находится в состоянии покоя (без движения). Определение вида двигательной активности типа «машет рукой вертикально» или «машет рукой горизонтально» можно использовать, в том числе для определения вида физических упражнений, или для определения действий, совершаемых человеком-оператором. Данный способ может быть использован в самых различных приложениях. Наиболее перспективным представляется его использование при осуществлении наблюдения за состоянием организма пользователя, например, при контроле его двигательной активности.
Описанное устройство, предназначенное для осуществления способа, может быть выполнено в виде наручного прибора, определяющего виды движения, ведущего подсчет числа двигательных актов и осуществляющего контроль состояния организма человека. При этом способ может быть реализован как отдельным прибором, так и системой, включающей носимое человеком устройство с датчиками ускорения и схемой обработки сигналов датчиков ускорения, средство мобильной связи и удаленную базу данных.

Claims

ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Способ определения вида двигательной активности человека, характеризующийся тем, что
регистрируют сигналы трехкомпонентного акселерометра, закрепленного на теле человека с возможностью формирования сигналов, вызванных двигательной активностью человека,
на основе упомянутых сигналов трехкомпонентного акселерометра вычисляют модуль вектора ускорения, формируют временной массив значений модуля вектора ускорения и выделяют его экстремумы,
последовательно от экстремума к экстремуму модуля вектора ускорения, отсчитывая число экстремумов, равное эталонному значению числа экстремумов, по меньшей мере, одного эталона, сформированного предварительно для определенного вида двигательной активности и характеризуемого эталонным значением числа экстремумов модуля вектора ускорения, эталонным значением длительности двигательного акта и эталонными значениями разности соседних экстремумов модуля вектора ускорения, определяют длительности отдельных двигательных актов, и в пределах каждого отдельного двигательного акта определяют значения разности соседних экстремумов модуля вектора ускорения,
упомянутые определенные значения длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения сравнивают с эталонными значениями длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения соответствующего эталона,
при этом решение о совершении двигательного акта определенного вида двигательной активности принимают при условии, что упомянутые определенные значения длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения укладываются в заданные диапазоны упомянутых эталонных значений длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения, по меньшей мере, одного эталона.
2. Способ по п. 1, характеризующийся тем, что дополнительно решение о совершении двигательного акта определенного вида двигательной активности принимают с учетом дисперсии разности соседних экстремумов модуля вектора ускорения относительно соответствующих эталонных значений.
3. Способ по п. 1, характеризующийся тем, что трехкомпонентный акселерометр закреплен на руке человека.
4. Способ по п. 3, характеризующийся тем, что трехкомпонентный акселерометр закреплен на запястье.
5. Способ по п. 1, характеризующийся тем, что в качестве трехкомпонентного акселерометра используют три датчика ускорения, конструктивно соединенные между собой с образованием трех ортогональных осей измерения ускорения.
6. Способ по п. 1, характеризующийся тем, что дополнительно, до формирования временного массива значений модуля вектора ускорения, регистрируемые сигналы трехкомпонентного акселерометра или вычисляемый модуль вектора ускорения подвергают процедуре сглаживания.
7. Способ по п. 1, характеризующийся тем, что для формирования, по меньшей мере, одного используемого при осуществлении способа эталона
регистрируют сигналы трехкомпонентного акселерометра, закрепленного на теле человека с возможностью формирования сигналов, вызванных двигательной активностью человека, при этом упомянутые сигналы регистрируют во время совершения человеком серии двигательных актов определенного вида, для которого формируют эталон,
вычисляют на основе упомянутых сигналов трехкомпонентного акселерометра модуль вектора ускорения, формируют временной массив значений модуля вектора ускорения и выделяют его экстремумы,
в пределах выбранного числа двигательных актов определяют для каждого из них число экстремумов модуля вектора ускорения, длительность двигательного акта и разность соседних экстремумов,
при этом в качестве эталонных значений, по меньшей мере, одного эталона принимают повторяющееся число экстремумов, минимальное и максимальное значения длительности двигательных актов с этим числом экстремумов и минимальные и максимальные значения разности соседних экстремумов двигательных актов с этим числом экстремумов.
8. Способ по п. 7, характеризующийся тем, что в случае обнаружения двигательных актов, по меньшей мере, с иным повторяющимся числом экстремумов, формируют, по меньшей мере, один дополнительный эталон, при этом в качестве эталонных значений дополнительного эталона принимают повторяющееся число экстремумов, минимальное и максимальное значения длительности двигательных актов с этим числом экстремумов и минимальные и максимальные значения разности соседних экстремумов двигательных актов с этим числом экстремумов, при этом сформированные эталоны образуют подмножество эталонов одного вида двигательной активности.
9. Способ по п. 7, характеризующийся тем, что дополнительно, до формирования временного массива значений модуля вектора ускорения, регистрируемые сигналы трехкомпонентного акселерометра или вычисляемый модуль вектора ускорения подвергают процедуре сглаживания.
10. Способ по п. 7, характеризующийся тем, что при формировании эталонов трехкомпонентный акселерометр закрепляют на теле того же человека и так же, как он будет в последующем закреплен на теле человека при осуществлении способа.
11. Способ по п. 7, характеризующийся тем, что число двигательных актов в серии двигательных актов определенного вида, совершаемых человеком при формировании, по меньшей мере, одного используемого при осуществлении способа эталона, составляет от 50 до 300.
12. Устройство для определения вида двигательной активности, включающее трехкомпонентный акселерометр, выполненный с возможностью закрепления на теле человека и способный формировать сигналы, соответствующие проекциям вектора ускорения, которое испытывает акселерометр, по трем ортогональным осям в пространстве, и вычислительное устройство, подсоединенное к выходам акселерометра, при этом вычислительное устройство выполнено с возможностью
вычисления на основе упомянутых сигналов акселерометра модуля вектора ускорения, формирования временного массива значений модуля вектора ускорения и выделения его экстремумов,
определения длительности отдельных двигательных актов, и в пределах каждого отдельного двигательного акта определения значения разности соседних экстремумов модуля вектора ускорения, при этом границы двигательных актов определяются последовательно от экстремума к экстремуму модуля вектора ускорения по числу экстремумов, равному эталонному значению числа экстремумов, по меньшей мере, одного эталона, сформированного предварительно для определенного вида двигательной активности и характеризуемого эталонным значением числа экстремумов модуля вектора ускорения, эталонным значением длительности двигательного акта и эталонными значениями разности соседних экстремумов модуля вектора ускорения, сравнения упомянутых определенных значений длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения с эталонными значениями длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения соответствующего эталона, и
принятия решения о совершении двигательного акта определенного вида двигательной активности при условии, что упомянутые определенные значения длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения укладываются в заданные диапазоны упомянутых эталонных значений длительности двигательного акта и разности соседних экстремумов модуля вектора ускорения, по меньшей мере, одного эталона.
13. Устройство по п. 12, характеризующееся тем, что вычислительное устройство вьшолнено с возможностью принятия решения о совершении двигательного акта определенного вида двигательной активности дополнительно с учетом дисперсии разности соседних экстремумов модуля вектора ускорения относительно соответствующих эталонных значений.
14. Устройство по п. 12, характеризующееся тем, что упомянутый акселерометр выполнен с возможностью закрепления на запястье.
15. Устройство по п. 12, характеризующееся тем, что в качестве упомянутого акселерометра используют три датчика ускорения, конструктивно соединенные между собой с образованием трех ортогональных осей измерения ускорения.
16. Устройство по п. 12, характеризующееся тем, что вычислительное устройство подсоединено к выходам акселерометра через циклические буферы.
17. Устройство по п. 12, характеризующееся тем, что дополнительно снабжено приемопередатчиком, обеспечивающим беспроводную передачу во внешнее устройство данных о текущем виде двигательной активности человека.
PCT/RU2016/000098 2015-03-13 2016-02-24 Способ определения вида двигательной активности человека и устройство для его осуществления WO2016148601A1 (ru)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177029424A KR102151301B1 (ko) 2015-03-13 2016-02-24 인간 운동 활동의 유형을 결정하기 위한 방법 및 이를 구현하기 위한 장치
EP16765332.8A EP3269303A4 (en) 2015-03-13 2016-02-24 Method for determining the type of motion activity of a person and device for implementing same
CN201680027818.XA CN107530030B (zh) 2015-03-13 2016-02-24 确定人类运动活动类型的方法及其实施装置
US15/702,860 US20180014756A1 (en) 2015-03-13 2017-09-13 Method for Determining Types of Human Motor Activity and Device for Implementing Thereof
HK18108506.0A HK1248507A1 (zh) 2015-03-13 2018-07-03 確定人類運動活動類型的方法及其實施裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2015108821/14A RU2593983C1 (ru) 2015-03-13 2015-03-13 Способ определения вида двигательной активности человека и устройство для его осуществления
RU2015108821 2015-03-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/702,860 Continuation US20180014756A1 (en) 2015-03-13 2017-09-13 Method for Determining Types of Human Motor Activity and Device for Implementing Thereof

Publications (1)

Publication Number Publication Date
WO2016148601A1 true WO2016148601A1 (ru) 2016-09-22

Family

ID=56613102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2016/000098 WO2016148601A1 (ru) 2015-03-13 2016-02-24 Способ определения вида двигательной активности человека и устройство для его осуществления

Country Status (7)

Country Link
US (1) US20180014756A1 (ru)
EP (1) EP3269303A4 (ru)
KR (1) KR102151301B1 (ru)
CN (1) CN107530030B (ru)
HK (1) HK1248507A1 (ru)
RU (1) RU2593983C1 (ru)
WO (1) WO2016148601A1 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108182004B (zh) * 2018-01-19 2019-07-23 百度在线网络技术(北京)有限公司 用于识别承载移动终端的载体的行为模式的方法和装置
CN109316190B (zh) * 2018-09-25 2022-03-01 快快利华(北京)网络科技有限公司 一种分析用户足底压力类型的系统和方法
CN110384505A (zh) * 2019-07-25 2019-10-29 四川云杉智途科技有限公司 一种自动检测人体运动类型的方法技术领域
CN113449945B (zh) * 2020-03-27 2024-05-10 庄龙飞 运动课程评分方法与系统
TWI766259B (zh) * 2020-03-27 2022-06-01 莊龍飛 運動課程評分方法與系統、電腦程式產品
CN113074724B (zh) * 2021-03-26 2023-05-02 歌尔股份有限公司 运动时间计算方法、装置、设备及计算机可读存储介质
CN114385012B (zh) * 2022-01-17 2023-06-30 维沃移动通信有限公司 运动的识别方法、装置、电子设备和可读存储介质
CN115192049B (zh) * 2022-09-14 2022-12-09 深圳市心流科技有限公司 一种智能假肢的肌电采样频率调节方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110098583A1 (en) * 2009-09-15 2011-04-28 Texas Instruments Incorporated Heart monitors and processes with accelerometer motion artifact cancellation, and other electronic systems
JP2012065749A (ja) * 2010-09-22 2012-04-05 Citizen Holdings Co Ltd 体動検出装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1302162A3 (en) * 1994-09-07 2004-05-26 Omron Healthcare Co., Ltd. Exercise amount measuring device capable of displaying the amount of exercise to be performed further
US5976083A (en) * 1997-07-30 1999-11-02 Living Systems, Inc. Portable aerobic fitness monitor for walking and running
JP4904861B2 (ja) * 2006-03-14 2012-03-28 ソニー株式会社 体動検出装置、体動検出方法および体動検出プログラム
US7539532B2 (en) * 2006-05-12 2009-05-26 Bao Tran Cuffless blood pressure monitoring appliance
JP5202933B2 (ja) * 2007-11-30 2013-06-05 株式会社タニタ 体動検出装置
JP5176622B2 (ja) * 2008-03-18 2013-04-03 オムロンヘルスケア株式会社 歩数計
CN101785675B (zh) * 2010-03-04 2014-01-15 重庆理工大学 一种运动监测装置及其监测方法
JP5617299B2 (ja) * 2010-03-25 2014-11-05 オムロンヘルスケア株式会社 活動量計、制御プログラムおよび活動種類特定方法
KR101125672B1 (ko) * 2010-05-20 2012-03-27 원광대학교산학협력단 운동패턴 분석방법 및 이를 이용한 운동량 산출장치
JP6071069B2 (ja) * 2010-12-17 2017-02-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 生体徴候を監視するためのジェスチャ制御
US9734304B2 (en) * 2011-12-02 2017-08-15 Lumiradx Uk Ltd Versatile sensors with data fusion functionality
RU132702U1 (ru) * 2012-01-24 2013-09-27 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Устройство для мониторинга физиологических параметров человека
RU2518134C2 (ru) * 2012-02-24 2014-06-10 Хилби Корпорейшн Способ определения концентрации глюкозы в крови человека
US9599632B2 (en) * 2012-06-22 2017-03-21 Fitbit, Inc. Fitness monitoring device with altimeter
KR101418333B1 (ko) * 2012-12-26 2014-08-13 전남대학교산학협력단 사용자 동작 인식 장치 및 그 방법
US9398867B2 (en) * 2013-01-07 2016-07-26 Archinoetics Llc Efficient activity classification from motion inputs
CN104297519B (zh) * 2013-07-19 2017-11-28 广州三星通信技术研究有限公司 人体运动姿态识别方法和移动终端
CN103712632B (zh) * 2013-12-31 2016-08-24 英华达(上海)科技有限公司 一种基于3轴加速计的计步方法和计步器
CN104200234B (zh) * 2014-07-11 2018-10-16 杭州微纳科技股份有限公司 人体动作建模和识别方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110098583A1 (en) * 2009-09-15 2011-04-28 Texas Instruments Incorporated Heart monitors and processes with accelerometer motion artifact cancellation, and other electronic systems
JP2012065749A (ja) * 2010-09-22 2012-04-05 Citizen Holdings Co Ltd 体動検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3269303A4 *

Also Published As

Publication number Publication date
KR20170127550A (ko) 2017-11-21
CN107530030A (zh) 2018-01-02
EP3269303A1 (en) 2018-01-17
HK1248507A1 (zh) 2018-10-19
US20180014756A1 (en) 2018-01-18
CN107530030B (zh) 2021-09-24
EP3269303A4 (en) 2018-11-14
KR102151301B1 (ko) 2020-09-03
RU2593983C1 (ru) 2016-08-10

Similar Documents

Publication Publication Date Title
WO2016148601A1 (ru) Способ определения вида двигательной активности человека и устройство для его осуществления
CN105184325B (zh) 一种移动智能终端
JP6403696B2 (ja) 身体的活動のモニタリングデバイス及びその方法
EP3090684A1 (en) Pedometer and method for analyzing motion data
CN111027487A (zh) 基于多卷积核残差网络的行为识别系统、方法、介质及设备
CN112470171A (zh) 选择用于有监督机器学习问题的神经网络架构
EP3090685A1 (en) Pedometer and method for analyzing motion data
KR20170009991A (ko) 글로벌 모델로부터의 로컬화된 학습
JP6083799B2 (ja) 携帯デバイスの携帯場所判定方法、携帯デバイス、携帯デバイスの携帯場所判定システム、プログラム及び情報記憶媒体
US11138266B2 (en) Leveraging query executions to improve index recommendations
CN105142745A (zh) 用体力活动监视设备来扩展游戏
WO2013128972A1 (ja) 動作判定装置、動作判定システムおよび動作判定方法
Pan et al. Using accelerometer for counting and identifying swimming strokes
CN108245869A (zh) 一种游泳信息检测方法、装置及电子设备
CN108969980A (zh) 一种跑步机及其步数统计的方法、装置及存储介质
KR20170073541A (ko) 사용자의 자세나 자세의 변화에 기초하여 배뇨 또는 사정을 모니터링하기 위한 장치 내지 시스템, 배뇨 또는 사정을 모니터링하는 방법, 그리고 상기 방법을 실행하기 위한 컴퓨터 프로그램을 기록하는 컴퓨터 판독 가능한 기록 매체
CN114341947A (zh) 用于使用可穿戴设备的锻炼类型辨识的系统和方法
Vandermeeren et al. Deep-learning-based step detection and step length estimation with a handheld IMU
CN109620241B (zh) 一种可穿戴设备及基于其的动作监测方法
CN105973266A (zh) 一种应用于移动终端的节能计步方法及装置
EP3220819B1 (en) A method and a feedback system for the assessment of motions of a versatile system
US20220151511A1 (en) System, apparatus and method for activity classification for a watch sensor
CN108815824B (zh) 一种无接触感知的徒手健身运动监测方法
JP7222385B2 (ja) 測定装置、測定方法及びプログラム
Jayakarthik et al. Fall Detection Scheme based on Deep Learning Model for High-Quality Life

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016765332

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177029424

Country of ref document: KR

Kind code of ref document: A