WO2016148546A1 - Electric shock protection device and portable electronic device equipped with same - Google Patents

Electric shock protection device and portable electronic device equipped with same Download PDF

Info

Publication number
WO2016148546A1
WO2016148546A1 PCT/KR2016/002790 KR2016002790W WO2016148546A1 WO 2016148546 A1 WO2016148546 A1 WO 2016148546A1 KR 2016002790 W KR2016002790 W KR 2016002790W WO 2016148546 A1 WO2016148546 A1 WO 2016148546A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric shock
shock protection
protection device
internal electrode
leakage current
Prior art date
Application number
PCT/KR2016/002790
Other languages
French (fr)
Korean (ko)
Inventor
강승진
이승철
Original Assignee
주식회사 아모텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모텍 filed Critical 주식회사 아모텍
Publication of WO2016148546A1 publication Critical patent/WO2016148546A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L31/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
    • C08L31/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C08L31/04Homopolymers or copolymers of vinyl acetate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/14Protection against electric or thermal overload
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0107Non-linear filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/0009Casings with provisions to reduce EMI leakage through the joining parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0067Devices for protecting against damage from electrostatic discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0079Electrostatic discharge protection, e.g. ESD treated surface for rapid dissipation of charges

Definitions

  • the present invention relates to an electric shock protection device, and more particularly, even if the size of the light and small, it is not easily broken by external static electricity, excellent mechanical strength and excellent durability, electric shock that does not attenuate data reception signal in the communication frequency range A protective device and a portable electronic device having the same.
  • the metal housing and the circuit part form a loop
  • a static electricity having a high voltage is momentarily introduced through a conductor such as a metal housing having a large external exposed area
  • the circuit part such as an IC may be damaged. Measures are required.
  • such a portable electronic device typically uses a charger to charge a battery.
  • a charger rectifies external AC power to DC power, and then converts it into a low DC power supply suitable for portable electronic devices through a transformer.
  • the DC power may not be sufficiently cut off by the Y-CAP, and furthermore, a leakage current may be generated by the AC power. This leakage current can propagate along the ground of the circuit.
  • the leakage current may be transmitted to a conductor that can be contacted by a human body, such as an external case of a portable electronic device, as a result, the user may be offended and, in severe cases, the user may be fatally wounded by an electric shock.
  • a protection device for preventing high voltage static electricity or leakage current has been developed, but when a smaller and slim implementation is implemented according to a light and small portable device, there is a problem of easy insulation breakdown by static electricity generated at a high voltage instantaneously. .
  • the smaller and slimmer the protection device is the less there is room for structural design change in the protection device to have sufficient capacitance to prevent leakage current and high voltage static electricity. Even if the design is changed minutely, the internalized structure is more easily destroyed by leakage current and high voltage static electricity, and there is a problem that only one-time protection is possible.
  • the capacitance of the protection device is reduced as it becomes smaller and slimmer. If the protection device is electrically connected to a communication-related component such as an antenna in a circuit, the data reception signal in the communication frequency range is attenuated, thereby significantly reducing communication efficiency. There is a problem that the same circuit is not suitable for use.
  • the present invention has been made in view of the above, and in accordance with the development trend of light and small portable electronic devices, even if implemented to be small and slim, can protect the user from the leakage current by the power supply, and can protect the internal circuit from the external static electricity
  • An object of the present invention is to provide an electric shock protection device having sufficient physical properties.
  • the present invention provides an electric shock protection device that has a sufficient capacitance to protect the leakage current and high voltage static electricity and at the same time does not easily break the insulation to prevent leakage current and protect the high voltage static electricity. There is a purpose.
  • Another object of the present invention is to provide an electric shock protection device that can guarantee excellent data communication efficiency by minimizing attenuation of a data reception signal of a communication frequency band even when the protection device is used in an antenna and a circuit electrically connected thereto.
  • Another object of the present invention is to provide an electric shock protection device having excellent mechanical strength and improved handling of the protection device.
  • another object of the present invention is to provide a portable electronic device that protects a user and an internal circuit of a device from static electricity and leakage current even though the external housing is a conductive material through the electric shock protection device according to the present invention.
  • the present invention has a volume of 0.025 ⁇ 0.060 mm, a body comprising a barium titanate-based component and a glass component; And an internal electrode disposed inside the body, wherein an electric shock protection function that protects against leakage current and static electricity flowing into the body and a signal transmission function that suppresses and passes the attenuation of the data signal flowing into the electric shock are combined.
  • an electric shock protection function that protects against leakage current and static electricity flowing into the body and a signal transmission function that suppresses and passes the attenuation of the data signal flowing into the electric shock are combined.
  • the electric shock protection device is electrically connected in parallel, the electric shock protection to protect against leakage current and static electricity flowing into the inside and the signal transmission to pass through the suppression of the attenuation of the data signal flowing into It may include wealth.
  • the internal electrodes provided in the electric shock protection device may include at least one pair of first internal electrodes, and the first internal electrodes may be spaced apart in a horizontal direction or a vertical direction.
  • a space between the spaced apart first inner electrodes may be further provided with a discharge material filling a part or all of the voids.
  • the volume of the voids may be 1 to 15% of the total volume of the electric shock protection device.
  • the internal electrodes provided in the electric shock protection device may include at least one pair of second internal electrodes, and the second internal electrodes may be disposed to overlap at least a part of each electrode surface in the vertical direction.
  • the electric shock protection part may include a first internal electrode, and the signal transmission part may include a second internal electrode, and a vertical separation distance between the first internal electrode and the second internal electrode disposed adjacent to each other may be 20 to 100 ⁇ m. Can be.
  • the body may have a dielectric constant of 900 to 1500 to block attenuation of the incoming data signal, to prevent the passage of static electricity that flows without the breakdown of insulation, and to prevent leakage of external power.
  • the body may include 50 to 80 parts by weight of the barium titanate-based component with respect to 100 parts by weight of the glass component.
  • the body may have a density of 4.5 to 5.8 g / mm 3.
  • the body may have a thickness of 0.2 to 0.4 mm based on the thickness direction of the internal electrode.
  • the body may be formed by stacking and sintering a plurality of sheets including a barium titanate-based component and a glassy component, and a sheet having the internal electrode formed on one surface of the plurality of sheets may have a minimum thickness of 20 ⁇ m or more. More preferably, it may be 28-70 micrometers.
  • the glassy component may include aluminum oxide and silicon oxide.
  • the glassy component may have a dielectric constant of 25 or more.
  • the electric shock protection device may have a capacitance of 4 ⁇ 100 kW.
  • the electric shock protection device may further include an external electrode formed on an outer surface of the body to be electrically connected to the internal electrode.
  • the present invention also provides a human body contactable conductor; It provides a portable electronic device having a circuit portion and an electric shock protection device according to the present invention disposed between the conductor and the circuit portion.
  • the conductor may include at least one of an antenna, a metal case, and conductive jewelry for communication between the electronic device and an external device.
  • the present invention has a volume of 0.7 to 1.0 kPa, a body comprising a barium titanate-based component and a glass component; And an internal electrode disposed inside the body, wherein an electric shock protection function that protects against leakage current and static electricity flowing into the body and a signal transmission function that suppresses and passes the attenuation of the data signal flowing into the electric shock are combined.
  • a protection device Provides a protection device.
  • the electric shock protection device is electrically connected in parallel, the electric shock protection to protect against leakage current and static electricity flowing into the inside and the signal transmission to pass through the suppression of the attenuation of the data signal flowing into It may include wealth.
  • the internal electrodes provided in the electric shock protection device may include at least one pair of first internal electrodes, and the first internal electrodes may be spaced apart in a horizontal direction or a vertical direction.
  • a space between the spaced apart first inner electrodes may be further provided with a discharge material filling a part or all of the voids.
  • the volume of the voids may be 1 to 15% of the total volume of the electric shock protection device.
  • the internal electrodes provided in the electric shock protection device may include at least one pair of second internal electrodes, and the second internal electrodes may be disposed to overlap at least a part of each electrode surface in the vertical direction.
  • the electric shock protection part may include a first internal electrode, and the signal transmission part may include a second internal electrode, and a vertical separation distance between the first internal electrode and the second internal electrode disposed adjacent to each other may be 20 to 100 ⁇ m. Can be.
  • the body may have a dielectric constant of 180 to 680 so as to block the attenuation of the incoming data signal, to prevent the passage of static electricity flowing in and without the breakdown of leakage current of the external power source.
  • the body may include 10 to 30 parts by weight of the barium titanate-based component with respect to 100 parts by weight of the glass component.
  • the body may have a density of 4.5 to 5.8 g / mm 3.
  • the body may have a thickness of 0.5 to 1.0 mm based on the thickness direction of the internal electrode.
  • the body may be formed by stacking and sintering a plurality of sheets including a barium titanate-based component and a glassy component, and a sheet having the internal electrode formed on one surface of the plurality of sheets may have a minimum thickness of 20 ⁇ m or more. More preferably, it may be 20-70 micrometers.
  • the glassy component may include aluminum oxide and silicon oxide.
  • the glassy component may have a dielectric constant of 25 or more.
  • the electric shock protection device may have a capacitance of 4 ⁇ 100 kW.
  • the electric shock protection device may further include an external electrode formed on an outer surface of the body to be electrically connected to the internal electrode.
  • the present invention also provides a human body contactable conductor; It provides a portable electronic device having a circuit portion and an electric shock protection device according to the present invention disposed between the conductor and the circuit portion.
  • the conductor may include at least one of an antenna, a metal case, and conductive jewelry for communication between the electronic device and an external device.
  • the present invention has a volume of 0.15 ⁇ 0.4 mm, a body containing a barium titanate-based component and a glass component; And an internal electrode disposed inside the body, wherein an electric shock protection function that protects against leakage current and static electricity flowing into the body and a signal transmission function that suppresses and passes the attenuation of the data signal flowing into the electric shock are combined.
  • an electric shock protection function that protects against leakage current and static electricity flowing into the body and a signal transmission function that suppresses and passes the attenuation of the data signal flowing into the electric shock are combined.
  • the electric shock protection device is electrically connected in parallel, the electric shock protection to protect against leakage current and static electricity flowing into the inside and the signal transmission to pass through the suppression of the attenuation of the data signal flowing into It may include wealth.
  • the internal electrodes provided in the electric shock protection device may include at least one pair of first internal electrodes, and the first internal electrodes may be spaced apart in a horizontal direction or a vertical direction.
  • a space between the spaced apart first inner electrodes may be further provided with a discharge material filling a part or all of the voids.
  • the volume of the voids may be 1 to 15% of the total volume of the electric shock protection device.
  • the internal electrodes provided in the electric shock protection device may include at least one pair of second internal electrodes, and the second internal electrodes may be disposed to overlap at least a part of each electrode surface in the vertical direction.
  • the electric shock protection part may include a first internal electrode, and the signal transmission part may include a second internal electrode, and a vertical separation distance between the first internal electrode and the second internal electrode disposed adjacent to each other may be 30 to 100 ⁇ m. Can be.
  • the body may have a dielectric constant of 650 to 950 so as to block the attenuation of the incoming data signal, to prevent the passage of static electricity that flows in and out of the leakage current of the incoming external power without breaking the insulation.
  • the body may include 30 to 50 parts by weight of the barium titanate-based component with respect to 100 parts by weight of the glass component.
  • the body may have a density of 4.5 to 5.8 g / mm 3.
  • the body may have a thickness of 0.5 to 0.85 mm based on the thickness direction of the internal electrode.
  • the body may be formed by stacking and sintering a plurality of sheets including a barium titanate-based component and a glassy component, and a sheet having the internal electrode formed on one surface of the plurality of sheets may have a minimum thickness of 20 ⁇ m or more. More preferably, it may be 28-70 micrometers.
  • the glassy component may include aluminum oxide and silicon oxide.
  • the glassy component may have a dielectric constant of 25 or more.
  • the electric shock protection device may have a capacitance of 4 ⁇ 100 kW.
  • the electric shock protection device may further include an external electrode formed on an outer surface of the body to be electrically connected to the internal electrode.
  • the present invention also provides a human body contactable conductor; It provides a portable electronic device having a circuit portion and an electric shock protection device according to the present invention disposed between the conductor and the circuit portion.
  • the conductor may include at least one of an antenna, a metal case, and conductive jewelry for communication between the electronic device and an external device.
  • the term “up and down direction” and “horizontal direction” is a relative positional relationship with respect to the thickness direction of the electrode provided in the body, and the “up and down direction” is parallel to the thickness direction of the electrode, and the “ Horizontal direction ”is perpendicular to the thickness direction of the electrode.
  • the parallel and the vertical are used to encompass all the ranges that appear parallel and vertical on the naked eye when considering the thickness direction of the electrode.
  • first body and second body are each functional unit, for example, an electric shock protection unit having an electric shock protection function, and a signal transmission unit having a function of passing a communication signal without attenuation.
  • the cross-section of the body is expressed as the first body and the second body after partitioning in consideration of the arrangement of the internal electrodes.
  • the first body and the second body are not separated from each other on the cross section of the manufactured electric shock protection device and exist as one body.
  • the body may be formed by stacking a plurality of sheets having one internal electrode on one sheet and then sintering the body. It will be apparent to those skilled in the art that the thickness and number of sheets forming the sheet may be indirectly inferred.
  • the electric shock protection device even if the electric shock protection device is implemented to be small and slim in accordance with the development trend of light and small portable devices, it is possible to protect the user from the leakage current by the power supply and to protect the internal circuit from external static electricity. In addition, it has sufficient capacitance to protect leakage current and high voltage static electricity and at the same time it is not easily broken, so that leakage current can be continuously blocked and high voltage static electricity can be protected. Furthermore, even when used in a communication-related circuit, it is possible to ensure excellent data communication efficiency by minimizing attenuation of a data reception signal of a communication frequency band, thereby being free from the circuit limitation of the protection device.
  • the mechanical strength of the device is excellent and the handleability is improved, productivity in manufacturing the electronic device may be improved. Accordingly, even if the external housing of the electronic device is a conductive material, the user and device internal circuits are protected from static electricity and leakage current through the electric shock protection device according to the present invention, and thus the portable electronic device is widely used as a portable electronic device free from external material selection and safe for the user and the human body. Can be applied.
  • FIG. 1 is a view of an electric shock protection device according to an embodiment of the present invention
  • Figure 1a is a perspective view showing the internal and external electrode arrangement of the electric shock protection device
  • Figure 1b is an exploded perspective view of Figure 1a
  • Figure 1c is a view of Figure 1a Cross-section
  • FIG. 2 is a cross-sectional view of an electric shock protection unit included in an electric shock protection device according to an embodiment of the present invention
  • FIG. 3 is a view of the electric shock protection device according to an embodiment of the present invention
  • Figure 3a is a perspective view showing the internal and external electrode arrangement of the electric shock protection device
  • Figure 3b is an exploded perspective view of Figure 3a
  • FIG. 4 is a cross-sectional view of an electric shock protection device according to an embodiment of the present invention.
  • 5a to 5e is a conceptual diagram showing an application example of the electric shock protection device according to an embodiment of the present invention.
  • 6a to 6c are schematic equivalent circuit diagrams for explaining operations of (a) leakage current and (b) electrostatic discharge (ESD), and (c) communication signals of an electric shock protection device according to an embodiment of the present invention
  • FIG. 7 is a cross-sectional SEM image of the electric shock protection device according to an embodiment of the present invention.
  • the electric shock protection device performs an electric shock protection function that protects against leakage current and static electricity flowing into the interior, and a signal transmission function that suppresses and passes the attenuation of the data signal flowing into the interior through one device.
  • the electric shock protection device may be preferably disposed between a conductor such as an antenna and an internal circuit unit.
  • the above-described electric shock protection function and signal transmission function can be achieved through an electric shock protection device as shown in FIG. 1A or an electric shock protection device as shown in FIG. 3A.
  • the electric shock protection device 100 shown in FIG. 1A is electrically connected in parallel to the electric shock protection unit that protects against leakage current and static electricity flowing in and to prevent attenuation of the data signal introduced into. It may be implemented with a signal transmission unit.
  • the electric shock protection device 100 may include an electric shock protection unit 110 and signal transmission units 120a and 120b disposed above and below the electric shock protection unit 110.
  • the present invention is not limited thereto, and the signal transmission unit may be disposed only on one side of the upper or lower part of the electric shock protection unit, and the electric shock protection is implemented if the signal transmission unit and the electric shock protection unit are electrically connected, for example, electrically connected in parallel.
  • the signal transmission unit may be disposed on the side of the unit.
  • the electric shock protection unit 110 may be implemented through the first internal electrodes 111a and 112a and the first bodies 111, 112 and 113 which are spaced apart from each other in the horizontal or vertical direction.
  • a space between the spaced apart first pair of internal electrodes 111a and 112a may be further provided with a discharge material filling a portion or all of the spaces. It may be a presser.
  • the positional relationship between the pair of first internal electrodes 111a and 112a and the pores 116 provided in the electric shock protection unit 110 will be described with reference to FIGS. 1B and 2, as shown in FIG. 1B.
  • the electrodes 111a and 112a are arranged to overlap at least a part of each electrode surface in the vertical direction in the cross section of the electric shock protection device, and the pore forming member 115 including the voids 116 therein is disposed in the overlapping spaces. Can be. Alternatively, as illustrated in FIG.
  • the electric shock protection unit 110 ′ of the electric shock protection device includes a pair of first internal electrodes 111 a ′ and 112 a ′ spaced apart in a horizontal direction and the first internal electrodes 111 ′ a, which are spaced apart from each other.
  • the pores formed between the 112'a) may be disposed, and the pores may be formed to have a height greater than the thickness of the first internal electrodes 111'a and 112'a.
  • the discharge material 117 may be provided.
  • the number / arrangement of the first internal electrodes 111a, 111a ', 112a, and 112a' and the structure / arrangement of the pores are not limited to FIGS. 1B and 2, and the first internal electrodes may be provided in pairs.
  • Two or more voids may also be provided.
  • the pore forming member 115 may remain in the body after being sintered or may be vaporized at a temperature below the sintering temperature of the body, and only the voids remain in the final body, and the pore forming member may be lost. .
  • the discharge material 117 may be filled in only a part of the pores, unlike in FIG.
  • the discharge material may include a case in which only a part of the gap is filled by coating an inner surface of the body surrounding the outside of the gap, and the present invention is not particularly limited to a specific shape in which the discharge material fills the gap. Do not. However, it is preferable to partially fill each of the first internal electrodes spaced apart so that the discharge material is directly connected to each other.
  • the discharge material 117 may be made of a non-conductive material including at least one kind of metal particles, and may be made of a semiconductor material including SiC or silicon-based components.
  • the discharge material is made by mixing at least one material selected from SiC, carbon, graphite, and ZnO with at least one material selected from Ag, Pd, Pt, Au, Cu, Ni, W, and Mo at a predetermined ratio. It may be.
  • the discharge material may include a SiC-ZnO-based component.
  • the silicon carbide (SiC) component has excellent thermal stability, excellent stability in an oxidizing atmosphere, constant conductivity and thermal conductivity, and low dielectric constant.
  • the ZnO component has excellent nonlinear resistance characteristics and discharge characteristics.
  • the SiC and ZnO are conductive when used separately, but when mixed with each other and baking is performed, ZnO is bonded to the surface of the SiC particles to form an insulating layer.
  • Such an insulating layer is because SiC completely reacts to form a SiC-ZnO reaction layer on the surface of the SiC particles. Accordingly, the insulating layer has an advantage of blocking the Ag pass to provide higher insulation to the discharged material and improving resistance to static electricity to more effectively eliminate the DC short phenomenon of the electric shock protection unit 110.
  • an example of the discharge material is described as including SiC-ZnO-based components, but the present invention is not limited thereto.
  • the discharge material is a material constituting the first internal electrodes 111a, 111a ', 112a, and 112a'. Non-conductive materials including semiconducting materials or metal particles can be used.
  • the interval between the first internal electrodes 111a, 111a ', 112a, and 112a' and the overlapping area or length of the first internal electrodes 111a, 111a ', 112a, and 112a' correspond to breakdown voltages (or trigger voltages) Vbr of the electric shock protection units 110 and 110 '.
  • the distance between the pair of first internal electrodes 111a / 112a and 111a '/ 112a' may be 10 to 100 ⁇ m.
  • an interval between the first internal electrodes 111a and 112a may be 25 ⁇ m.
  • the thickness of the first internal electrodes 111a, 111a ′, 112a, 112a ′ may be 2 ⁇ m to 10 ⁇ m. If the thickness of the first internal electrodes 111a, 111a ′, 112a, 112a ′ is less than 2 ⁇ m, it may be difficult to serve as an internal electrode. In addition, if the thickness of the first internal electrodes 111a, 111a ', 112a, and 112a' exceeds 10 ⁇ m, the distance between the internal electrodes is limited, and the volume of the electric shock protection device 100 increases, which adversely affects miniaturization. Can be crazy
  • the length of the first internal electrodes 111a, 111a ', 112a, and 112a' may be 70 to 85% of the length of the long side when the body has a rectangular cross section, and the width is 50 to 65% of the length of the long side.
  • the length of the first internal electrode may be 0.016 inch and the width of 0.006 inch.
  • first internal electrodes 111a, 111a ', 112a, and 112a' may include one or more components of Ag, Au, Pt, Pd, Ni, and Cu, and may be Ag / Pd. .
  • the discharge start voltage (operation voltage) of the electric shock protection unit 110, 110 'by static electricity may be 1 ⁇ 15 kW.
  • the discharge start voltage of the electric shock protection unit 110, 110 ' is 1 kV or less, it is difficult to secure resistance to static electricity.
  • the above-described electric shock protection unit (110,110 ') is a breakdown voltage (Vbr) of the electric shock protection unit in order to pass the leakage current and high-pressure static electricity than the rated voltage (Vin) of the external power source for driving the electronic device having the same Can be large.
  • the rated voltage may be any one of 240V, 110V, 220V, 120V, 110V, and 100V.
  • the first bodies 111, 112, and 113 are portions directly contacting the first internal electrodes 111 a and 112 a in the electric shock protection unit 110, and the first bodies 110 may include a plurality of sheet layers 111, 112, and 113. These may be sequentially stacked, and the first internal electrodes 111a and 112a provided on one surface thereof may be disposed to face each other, and may be integrally formed by sintering after pressing. Alternatively, the first body may be formed by sintering the first internal electrodes 111a and 112a so as to have an electrode structure of the electric shock protection unit 110 in one sheet.
  • the first body (111, 112, 113) of the electric shock protection unit is laminated with each of the second body (121, 122, 123, 124, 125, 126, 127, 128) of the signal transmission unit (120a, 120b) to be described later before sintering can be integrally sintered to form a body, but is not limited thereto. It is not. Description of the first body (111, 112, 113) will be described in detail with the second body after the description of the signal transmission unit to be described later.
  • the signal transmission units 120a and 120b may not cause RF signal interference as the signal transmission units 120a and 120b pass a communication signal without attenuation in a communication band introduced from a conductor such as an antenna.
  • the signal transmission units 120a and 120b allow the static electricity to pass through without being insulated and destroyed when static electricity flows from a conductor, and may block leakage current, especially DC components, of external power flowing from the ground of the circuit unit, and thus protect against electric shock.
  • the insulation breakdown voltage Vcp of the signal transmission units 120a and 120b may be greater than the rated voltage Vbr of the external power supply of the electronic device. have. At this time.
  • the dielectric breakdown voltage Vcp of the signal transmission units 120a and 120b is formed at both ends of the second internal electrodes 121a and 122a, 123a, 124a, 125a, 126a, 127a and 128a provided in the signal transmission unit.
  • the second internal electrodes may be provided in various shapes and patterns, and any one or more of the plurality of second internal electrodes may be provided in the same pattern or may have different patterns. That is, when the second internal electrode is disposed inside the body so as to realize a desired capacitance, there is no limitation on the pattern of each second internal electrode.
  • the second internal electrodes 121a, 122a, 123a, 124a, 125a, 126a, 127a, and 128a constituting the signal transmission units 120a and 120b may be disposed between a pair of second internal electrodes facing each other.
  • the separation interval between the adjacent inner facing electrodes (eg, 121a / 122a) among the second internal electrodes 121a, 122a, 123a, and 124a provided in the first signal transmission unit 120a is 15 to 100 ⁇ m. It may be provided to have a range of, preferably may be 20 ⁇ 100 ⁇ m.
  • the distance between the adjacent second internal electrodes is less than 15 ⁇ m, it is difficult to secure a sufficient capacitance to pass the communication signal of the wireless communication band without attenuation, and there is a problem that the dielectric breakdown may be caused by high voltage static electricity. .
  • the spacing between adjacent second internal electrodes exceeds 100 ⁇ m, it is difficult to realize high capacitance.
  • the thickness of each of the second internal electrodes constituting the signal transmission units 120a and 120b may be provided to have a size of 1/10 to 1/2 greater than an interval between the pair of second internal electrodes facing each other.
  • the thickness of the second internal electrodes 121a and 122a may be provided to have a range of 2 to 10 ⁇ m.
  • the thickness of the second internal electrode is 2 ⁇ m or less, the second internal electrode may not function as an electrode, and when the thickness of the second internal electrode exceeds 10 ⁇ m, the thickness of the second internal electrode may be thickened to form a signal transmission part at a predetermined size.
  • the distance between the two is limited, and the number of unit units that can be provided in the second body of the limited area is limited when a pair of second internal electrodes overlapped with each other is used as a unit unit. There is a difficult problem.
  • the outer end 132 adjacent to the free end of the second inner electrode 124a in FIG. 1C is the shortest distance between the free end and the outer electrode of the second inner electrode that is not connected to the external electrode, for example
  • the shortest distance between the liver is provided to have a distance of at least 15 ⁇ m, may be provided to have a distance in the range of 15 ⁇ 100 ⁇ m.
  • one second internal electrode 121a is not formed on one sheet layer 121 as shown in FIG. It may include a plurality of second internal electrodes (not shown) disposed in a line spaced apart from the sheet layer (not shown), a plurality of sheet layers containing a plurality of second internal electrodes on one surface, each sheet layer The plurality of second internal electrodes formed in the plurality may be disposed to face each other to have an overlapping area of a predetermined area or more.
  • the second internal electrode may be the same as or different from the material of the first internal electrode.
  • the distance between the electric shock protection unit 110 and the signal transmission units 120a and 120b may be greater than the distance between the pair of first internal electrodes 111a and 112a. That is, it is preferable to secure a sufficient distance from the first internal electrodes 111a and 112a so that static electricity or leakage current flowing along the pair of first internal electrodes 111a and 112a does not leak to the adjacent second internal electrodes. .
  • the distance between the signal transmission unit (120a, 120b) and the electric shock protection unit 110 is preferably greater than two times greater than the interval between the pair of first internal electrodes (111a, 112a). For example, when the interval between the pair of first internal electrodes 111a and 112a is 10 ⁇ m, the distance between the signal transmission units 120a and 120b and the electric shock protection unit 110 may be 20 ⁇ m or more. have.
  • the distance between the signal transmission unit and the electric shock protection unit is described with reference to FIG. 1C.
  • the distance between the signal transmission unit and the electric shock protection unit is located closest to the electric shock protection unit 110 among the plurality of second internal electrodes included in the signal transmission unit 120a.
  • the distance between the signal transmission parts 120a and 120b and the electric shock protection part 110 is provided to have a distance of at least 20 ⁇ m, more preferably 30 ⁇ m or more, even more preferably 40 to 100 ⁇ m. It may be provided to have a distance of the range. If the distance between the adjacent first internal electrode and the second internal electrode is less than 20 ⁇ m, instantaneous high voltage static electricity may flow into the signal transmission unit and be destroyed. In particular, when used in a circuit where frequent static electricity passes, the signal transmission may occur. Negative insulation breakdown has a problem that can be further increased.
  • the signal transmitting parts 120a and 120b are sequentially stacked with a plurality of sheet layers 121, 122, 123, 124, 125, 126, 127, and 128 having second internal electrodes 121a, 122a, 123a, 124a, 125a, 126a, 127a, and 128a on one surface thereof.
  • the plurality of electrodes provided on each surface may be disposed to face each other, and then may be integrally formed by forming a second body through a sintering or curing process.
  • a second body may be formed by sintering or hardening a second internal electrode spaced apart from each other so as to have the electrode structures of the signal transmitting parts 120a and 120b in one sheet.
  • the capacitance of the electric shock protection device depends on the volume of the body. That is, by reducing the size of both the body and the inside of the body while the same internal electrode arrangement provided in the body can be implemented an electric shock protection device reduced to the capacitance. This reduces the area of the electrode or the area where the electrode can be formed at the same time, even when the capacitance (the height) of the electric shock protection device is reduced and the capacitance between the internal electrodes can be narrowed and increased.
  • the electric shock protection device capacitance before miniaturization is maintained even after miniaturization, which cannot be solved by a design change of the electrode structure.
  • the decrease in the thickness (height) due to the miniaturization of the electric shock protection device reduces the volume of voids provided in the body, the vertical distance between the first internal electrodes of the electric shock protection part, and the vertical separation between the second internal electrodes of the signal transmission part.
  • the body is insulated because the breakdown voltage (Vbr) of the electric shock protection part and the breakdown voltage (Vcp) of the signal transmission part are not realized to withstand or pass the instantaneous high voltage static electricity flowing from the outside. It can be destroyed and permanently lose its ability to protect the circuit from further leakage current interruption / static.
  • This may be implemented by stacking and sintering a plurality of sheets having internal electrodes on one surface as shown in FIG. 1B.
  • shorter separation distances between internal electrodes in the vertical direction mean thinner sheets.
  • the thinner the sheet the higher the possibility of cracks, pores, and the like, which further lowers the mechanical strength of the body, and has a problem of making it difficult to withstand or pass when high-pressure static electricity is introduced.
  • the lower capacitance has a problem of significantly reducing the reception sensitivity of the communication signal flowing into the electric shock protection device, for example, the communication signal in the mobile wireless communication frequency band.
  • the electric shock protection device When the electric shock protection device is miniaturized to prevent this, if the thickness of the sheet on which the internal electrodes are formed is not changed, the number of sheets and the number of internal electrodes that can be stacked inside the body becomes smaller at the same time. Even if the defects caused by the voids are prevented, the electrostatic capacity of the electric shock protection device may be reduced as a result, and even in this case, it may not be possible to block the high voltage static electricity and leakage current flowing from the outside, and at the same time prevent the attenuation of the received signal of the communication signal. none. In view of the problem of miniaturizing such an electric shock protection device, it may be very undesirable to combine the signal transmission part and the electric shock protection part into a body having a single limited volume.
  • the inventors of the present invention continually researched to solve this problem.
  • the body is formed of a barium titanate-based component and a glassy component as compared with before and after the absolute size reduction of the electric shock protection device, the device has a small size. Excellent electric shock protection function and communication signal transmission function can be performed simultaneously.
  • the body provided in the electric shock protection device according to the present invention is implemented in a size that is easy to be mounted inside the portable device of the light and thin element while blocking the leakage current, and can pass the static electricity of a high voltage of 8 kV or more,
  • the volume is 0.025 ⁇ 0.060 ⁇ including barium titanate-based components and glassy components to allow incoming communication signals to pass through without attenuation.
  • the volume of the bodies (111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128) is less than 0.025mm3, the area of the body in which the electrodes can be printed is reduced to achieve a certain level of capacitance, thereby controlling the capacitance through the arrangement and structure of the electrodes provided therein.
  • the design change can be difficult, the number of internal electrodes provided, the volume of the pores can also be reduced, the breakdown of the body can easily occur.
  • the volume of the body exceeds 0.060mm3 it may be difficult to apply to light and thin mobile devices.
  • the electric shock protection device implemented beyond a certain size has a difficulty in changing the overall PCB design for mounting the electric shock protection device when mounted on a substrate, and pick-up errors according to the size or more in the mounting process on the board. up error) may cause problems in the manufacturing process of the product using the electric shock protection device.
  • the electric shock protection device may be, for example, a standardized device having a width of 0.02 inches, a length of 0.01 inches, and a height of 0.01 inches.
  • the body is implemented to include a barium titanate-based component and a glassy component.
  • the barium titanate-based component is a component in which the molar ratio of Ba and Ti may be 0.8 to 1.0, and may be barium titanate.
  • the glassy component may include oxides of one or more metals and nonmetals selected from the group consisting of Al, B, Si, Ca, and Mg, preferably may include oxides of Al and Si, in particular dielectric constant
  • the use of more than 25, more preferably more than 35 can increase the density of the body to further secure the mechanical strength of the body, the defect of the body is reduced and there is less risk of insulation breakdown.
  • the body (111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128) may include 50 to 80 parts by weight of the barium titanate-based component with respect to 100 parts by weight of the glass component in order to express the desired physical properties more remarkably.
  • the barium titanate-based component may be included in an amount of 50 to 70 parts by weight. If less than 50 parts by weight of the barium titanate-based component is contained with respect to 100 parts by weight of the glass component, the electric shock protection function and the suppression of the attenuation of the communication signal can be performed smoothly because it is insufficient to compensate for the reduced capacitance.
  • the barium titanate-based component when included in an amount of more than 80 parts by weight, the compensation of the capacitance reduced according to the miniaturization of the body may be sufficient, but the density of the body may be remarkably lowered, thereby reducing the mechanical strength, Therefore, since the pores may be included in the body, there is a problem that the resulting dielectric breakdown of the body may be accelerated.
  • the internal electrode having a relatively low sintering temperature and good conductivity may be difficult to use as a material, for example, a metal such as Ag as the internal electrode.
  • the body implemented through this may have a dielectric constant of 900 to 1500, the density may be 4.5 to 5.8 g / mm3.
  • the high dielectric constant of the body makes it suitable for miniaturized devices to pass instantaneous high-voltage static electricity or to block leakage currents, and to receive incoming communication signals, especially those in the mobile wireless communication frequency band (700 MHz to 2.6 GHz). It may be more suitable for passing without attenuation.
  • the dielectric constant of the body is less than 900 in consideration of the limited volume of the body implemented in 0.025 ⁇ 0.060 ⁇ it may be difficult to express the electric shock protection function and communication signal attenuation suppression function of the present invention at the same time, the insulation breakdown of the body There is a problem that the functions may be permanently lost.
  • the internal electrode should be designed such that the overlapping electrode area of the internal electrodes (first internal electrode and / or second internal electrode) which are spaced up and down in proportion to the volume is small.
  • the design of the internal electrode may reduce the corresponding area of the body having the insulation characteristics when the high-voltage static electricity flows in a moment, so that there is a problem that the electric field is concentrated on a specific portion and the possibility of insulation breakdown increases.
  • the body may contain pores, etc., the pores may cause cracks of the body, so that the breakdown more easily There is a problem that can cause.
  • the density of the body exceeds 5.8 g / ⁇ it must be sintered at a temperature higher than the sintering temperature for a long time, which may cause problems such as damage to the internal electrode and limiting the material selection of the internal electrode.
  • the damage problem of the internal electrode may be further exacerbated by increasing the sintering temperature and / or prolonging the sintering time in order to compensate for the lowering density due to the increased content of the barium titanate-based component in the body.
  • the bodies 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, and 128 may be formed by stacking and sintering a plurality of sheets including barium titanate-based components and glassy components, as shown in FIG. 1B.
  • the sheet formed on one surface may have a minimum thickness of 20 ⁇ m or more. As described above, when a sheet having a very thin thickness is provided, cracks may easily occur during the stacking process of the sheet, and when a defect such as pores is included therein, a defect in the sheet having a thin thickness is the same as that inside the sheet having a thicker thickness.
  • the sheet having the internal electrode formed on one surface satisfies a minimum thickness of 20 ⁇ m or more.
  • the thickness of one sheet provided on one surface of the internal electrode may be 20 ⁇ m or more, more preferably 28 ⁇ m or more, and more preferably 28 to 100 ⁇ m.
  • the body has a thickness of 0.2 to 0.4 mm. Accordingly, the sheet having at least one inner electrode is stacked in 4 to 16 sheets. It is preferable to form the body after sintering. If the thickness of the body is less than 0.2 mm, it is difficult to realize a desired level of capacitance due to a decrease in the number of sheets stacked therein and the number of internal electrodes that can be provided therein. Even if the capacitance is implemented to the desired level, there is a problem that the thickness of the sheet becomes thin and can be easily broken.
  • the formable area of the internal electrodes is increased, and the gap between the internal electrodes is also reduced, which may be suitable for realizing a fixed capacitance. There is a problem that the insulation is broken and the function of the electric shock protection device cannot be continuously expressed.
  • the electric shock protection device 200 illustrated in FIGS. 3A and 3B includes body 211, 212 and 213 and at least one pair of internal electrodes 211a and 212a provided in the body 211, 212 and 213.
  • the external electrodes 133 and 134 may be further included on the outer surfaces of the bodies 211, 212, and 213 to be electrically connected to the 212a.
  • the internal electrodes 211a and 212a may be arranged such that predetermined electrode areas overlap each other in the up and down directions.
  • a gap or a discharge material filling at least a portion of the gap may be further provided in the spaced apart space between the pair of overlapping internal electrodes 211a and 212a.
  • the overlapped electrode area, the number of internal electrodes provided, the distance between them, the number of voids, etc. may be appropriately selected to have a breakdown voltage (Vbr) larger than the rated voltage of the external power source.
  • Vbr breakdown voltage
  • the electric shock protection device 200 ′ may include three pairs of internal electrodes 214a / 215a, 216a / 217a, and 218a / 219a, and space in spaces between the pair of internal electrodes. 215 and has a breakdown voltage greater than the rated voltage of the external power source by changing the overlapping area, the separation distance, and the volume of the gap between the electrodes.
  • the body 211, 212, 213 may include a barium titanate-based component and a glassy component.
  • the body 211, 212, and 213 may include a barium titanate-based component and a glassy component.
  • the volume is 0.15 ⁇ 0.40mm3, a body comprising a barium titanate-based component and a glass component; And an internal electrode disposed inside the body, wherein an electric shock protection function that protects against leakage current and static electricity flowing into the body and a signal transmission function that suppresses and passes the attenuation of the data signal flowing into the electric shock are combined. It includes a protection element.
  • the length of the first internal electrodes 111a, 111a ', 112a, and 112a' that may be provided in the electric shock protection part may be 70 to 85% of the length of the long side when the body has a rectangular cross section, and the width of the first internal electrodes 111a, 111a ', 112a, 112a' may be provided. It can be 50-65% of the length.
  • the length of the first internal electrode may be 0.032 inch and the width of 0.012 inch.
  • the body is implemented in such a size that it is easy to be mounted inside a mobile device of a light and small size, and can block leakage current, pass instantaneous high voltage static electricity of 8 kV or more, and pass an incoming communication signal without attenuation.
  • the volume is 0.15 ⁇ 0.40 mm by including a barium titanate-based component and a glassy component. If the volume of the body is less than 0.15mm3, the design change to control the capacitance through the arrangement, structure, etc. of the electrode provided therein is reduced by reducing the area in the body in which the electrode can be printed to achieve a certain level of capacitance.
  • the electric shock protection device may be, for example, a standardized device having a width of 0.04 inches, a length of 0.02 inches, and a height of 0.02 inches.
  • the body may contain 30 to 50 parts by weight of the barium titanate-based component with respect to 100 parts by weight of the glass component in order to express the desired physical properties more remarkably.
  • the barium titanate-based component may be included in an amount of 30 to 43 parts by weight. If less than 30 parts by weight of the barium titanate-based component is contained with respect to 100 parts by weight of the glass component, the electric shock protection function and the suppression of the attenuation of the communication signal can be performed smoothly because it is insufficient to compensate for the reduced capacitance. There is a problem that can be lost or breakdown of this function.
  • the barium titanate-based component when included in an amount of more than 50 parts by weight, the compensation of the capacitance reduced according to the miniaturization of the body may be sufficient, but the density of the body may be remarkably lowered, thereby reducing the mechanical strength, Therefore, since the pores may be included in the body, there is a problem that the resulting dielectric breakdown of the body may be accelerated.
  • the internal electrode having a relatively low sintering temperature and good conductivity may be difficult to use as a material, for example, a metal such as Ag as the internal electrode.
  • the body implemented through this may have a dielectric constant of 650 ⁇ 950, the density may be 4.5 ⁇ 5.8 g / mm3.
  • the high dielectric constant of the body makes it suitable for miniaturized devices to pass instantaneous high-voltage static electricity or to block leakage currents, and to receive incoming communication signals, especially those in the mobile wireless communication frequency band (700 MHz to 2.6 GHz). It may be more suitable for passing without attenuation.
  • the dielectric constant of the body is less than 650 in consideration of the limited volume of the body implemented in 0.15 ⁇ 0.40 mm3 it may be difficult to express the electric shock protection function and communication signal attenuation suppression function of the present invention at the same time, the insulation breakdown of the body as described above There is a problem that the functions may be permanently lost.
  • the internal electrode should be designed such that the overlapping electrode area of the internal electrodes (the first internal electrode and / or the second internal electrode) spaced apart from each other in proportion to the volume is small.
  • the design of the internal electrode may reduce the corresponding area of the body having the insulation characteristics when the high-voltage static electricity flows in a moment, so that there is a problem that the electric field is concentrated on a specific portion and the possibility of insulation breakdown increases.
  • the density of the body is less than 4.5g / mm3 the mechanical strength of the body is very weak, the body may contain pores, etc., the pores may cause cracks of the body, so that the breakdown more easily There is a problem that can cause.
  • the density of the body exceeds 5.8 g / ⁇ it must be sintered at a temperature higher than the sintering temperature for a long time, which may cause problems such as damage to the internal electrode and limiting the material selection of the internal electrode.
  • the damage problem of the internal electrode may be further exacerbated by increasing the sintering temperature and / or prolonging the sintering time in order to compensate for the lowering density due to the increased content of the barium titanate-based component in the body.
  • the bodies 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, and 128 may be formed by stacking and sintering a plurality of sheets including barium titanate-based components and glassy components, as shown in FIG. 1B.
  • the sheet formed on one surface may have a minimum thickness of 20 ⁇ m or more. As described above, when a very thin sheet is provided, cracks may easily occur in the stacking process of the sheets.
  • the thinner sheet defects may be more easily insulated and destroyed in preparation for the same defects in the thicker sheets.
  • the sheet preferably has a minimum thickness of 20 ⁇ m or more.
  • the thickness of one sheet provided on one surface of the internal electrode may be 20 ⁇ m or more, more preferably 28 ⁇ m or more, and more preferably 28 to 100 ⁇ m.
  • the body has a thickness of 0.5 to 0.85 mm, and thus, the sheet having at least one inner electrode is stacked in 13 to 30 sheets. It is preferable to form the body after sintering.
  • the thickness exceeds 0.85 mm in consideration of the limited volume, there is a problem that the formable area of the internal electrode is reduced, so that the desired level of capacitance, electric shock protection and data signal attenuation suppression cannot be simultaneously achieved. have.
  • the thickness is less than 0.5 mm in consideration of the limited volume, the formable area of the internal electrodes is increased, and the gap between the internal electrodes is also reduced, which may be suitable for realizing a fixed capacitance. There is a problem that it is not easy to break the insulation and express the function of the electric shock protection device.
  • the electric shock protection device 200 illustrated in FIGS. 3A and 3B includes body 211, 212 and 213 and at least one pair of internal electrodes 211a and 212a provided in the body 211, 212 and 213.
  • the external electrodes 133 and 134 may be further included on the outer surfaces of the bodies 211, 212, and 213 to be electrically connected to the 212a.
  • the internal electrodes 211a and 212a may be arranged such that predetermined electrode areas overlap each other in the up and down directions.
  • a gap or a discharge material filling at least a portion of the gap may be further provided in the spaced apart space between the pair of overlapping internal electrodes 211a and 212a.
  • the overlapped electrode area, the number of internal electrodes provided, the distance between them, the number of voids, etc. may be appropriately selected to have a breakdown voltage (Vbr) larger than the rated voltage of the external power source.
  • Vbr breakdown voltage
  • the electric shock protection device 200 ′ may include three pairs of internal electrodes 214a / 215a, 216a / 217a, and 218a / 219a, and space in spaces between the pair of internal electrodes. 215 and has a breakdown voltage greater than the rated voltage of the external power source by changing the overlapping area, the separation distance, and the volume of the gap between the electrodes.
  • the body 211, 212, 213 may include a barium titanate-based component and a glassy component.
  • the body 211, 212, and 213 may include a barium titanate-based component and a glassy component.
  • a body having a volume of 0.7 to 1.0 mm 3 and containing a barium titanate-based component and a glassy component; And an internal electrode disposed inside the body, wherein an electric shock protection function that protects against leakage current and static electricity flowing into the body and a signal transmission function that suppresses and passes the attenuation of the data signal flowing into the electric shock are combined.
  • an electric shock protection function that protects against leakage current and static electricity flowing into the body and a signal transmission function that suppresses and passes the attenuation of the data signal flowing into the electric shock are combined.
  • the length of the first internal electrodes 111a, 111a ', 112a, and 112a' provided in the electric shock protection part may be 70 to 85% of the length of the long side when the cross section of the body is rectangular, and the width of the long side length It can be 50 to 65%.
  • the length of the first internal electrode may be 0.048 inch and the width of 0.018 inch.
  • the body is implemented in such a size that it is easy to be mounted inside a mobile device of a light and small size, to block leakage current, to pass the instantaneous high voltage static electricity of 8kV or more, and to pass the incoming communication signal without attenuation. It includes a barium titanate-based component and a glassy component, and has a volume of 0.7 to 1 mm 3. If the volume of the bodies (111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128) is less than 0.7 mm, the capacitance within the body to which the electrodes can be printed is reduced to achieve a certain level of capacitance, thereby controlling the capacitance through the arrangement and structure of the electrodes provided therein.
  • the electric shock protection device may be, for example, a standardized device having a width of 0.06 inches, a length of 0.03 inches, and a height of 0.03 inches.
  • the body may contain 10 to 30 parts by weight of the barium titanate-based component with respect to 100 parts by weight of the glass component to express the desired physical properties more remarkably.
  • the barium titanate-based component may be included in an amount of 15 to 25 parts by weight. If less than 10 parts by weight of the barium titanate-based component is contained with respect to 100 parts by weight of the glass component, the electric shock protection function and the suppression of the attenuation of the communication signal can be smoothly performed because it is insufficient to compensate for the reduced capacitance. There is a problem that can be lost or breakdown of this function.
  • the barium titanate-based component when included in an amount of more than 30 parts by weight, the compensation of the capacitance reduced according to the miniaturization of the body may be sufficient, but the density of the body may be remarkably lowered, thereby reducing the mechanical strength, Therefore, since the pores may be included in the body, there is a problem that the resulting dielectric breakdown of the body may be accelerated.
  • the internal electrode having a relatively low sintering temperature and good conductivity may be difficult to use as a material, for example, a metal such as Ag as the internal electrode.
  • the body implemented through this may have a dielectric constant of 180 to 680, the density may be 4.5 to 5.8 g / mm3.
  • the high dielectric constant of the body makes it suitable for miniaturized devices to pass instantaneous high-voltage static electricity or to block leakage currents, and to receive incoming communication signals, especially those in the mobile wireless communication frequency band (700 MHz to 2.6 GHz). It may be more suitable for passing without attenuation.
  • the dielectric constant of the body is less than 180 in consideration of the limited volume of the body implemented in 0.70 ⁇ 1.0 mm3 it may be difficult to express the electric shock protection function and the communication signal attenuation suppression function of the present invention at the same time, the insulation breakdown of the body as described above There is a problem that the functions may be permanently lost.
  • the internal electrode should be designed such that the overlapping electrode area of the internal electrodes (first internal electrode and / or second internal electrode) which are spaced apart up and down in proportion to volume is small.
  • the design of the internal electrode may reduce the corresponding area of the body having the insulation characteristics when the high-voltage static electricity flows in a moment, so that there is a problem that the electric field is concentrated on a specific portion and the possibility of insulation breakdown increases.
  • the body may contain pores, etc., the pores may cause cracks of the body, so that the breakdown more easily There is a problem that can cause.
  • the density of the body exceeds 5.8 g / ⁇ it must be sintered at a temperature higher than the sintering temperature for a long time, which may cause problems such as damage to the internal electrode and limiting the material selection of the internal electrode.
  • the damage problem of the internal electrode may be further exacerbated by increasing the sintering temperature and / or prolonging the sintering time in order to compensate for the lowering density due to the increased content of the barium titanate-based component in the body.
  • the bodies 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, and 128 may be formed by stacking and sintering a plurality of sheets including barium titanate-based components and glassy components, as shown in FIG. 1B.
  • the sheet formed on one surface may have a minimum thickness of 20 ⁇ m or more. As described above, when a sheet having a very thin thickness is provided, cracks may easily occur during the stacking process of the sheet, and when a defect such as pores is included therein, a defect in the sheet having a thin thickness is the same as that inside the sheet having a thicker thickness.
  • the sheet having the internal electrode formed on one surface satisfies a minimum thickness of 20 ⁇ m or more.
  • the thickness of one sheet provided on one surface of the internal electrode is preferably implemented to 20 ⁇ 70 ⁇ m.
  • the body has a thickness of 0.5 to 1 mm, more preferably 0.5 to 0.8 mm, even more preferably 0.5 to 0.6 mm, considering the volume and the active area of the internal electrode. Accordingly, the sheet having at least one inner electrode is stacked in two to forty in consideration of the capacitance to be implemented to form an integrated body after sintering. If the thickness exceeds 1 mm in consideration of the limited volume, there is a problem that the formable area of the internal electrode is reduced, so that the desired level of capacitance, electric shock protection and data signal attenuation suppression cannot be simultaneously achieved. have.
  • the formable area of the internal electrodes is increased, and the gap between the internal electrodes is also reduced, which may be suitable for realizing a fixed capacitance.
  • the electric shock protection device There is a problem that it is not easy to break the insulation and express the function of the electric shock protection device.
  • the electric shock protection device 200 illustrated in FIGS. 3A and 3B includes body 211, 212 and 213 and at least one pair of internal electrodes 211a and 212a provided in the body 211, 212 and 213.
  • the external electrodes 133 and 134 may be further included on the outer surfaces of the bodies 211, 212, and 213 to be electrically connected to the 212a.
  • the internal electrodes 211a and 212a may be arranged such that predetermined electrode areas overlap each other in the up and down directions.
  • a gap or a discharge material filling at least a portion of the gap may be further provided in the spaced apart space between the pair of overlapping internal electrodes 211a and 212a.
  • the overlapped electrode area, the number of internal electrodes provided, the distance between them, the number of voids, etc. may be appropriately selected to have a breakdown voltage (Vbr) larger than the rated voltage of the external power source.
  • Vbr breakdown voltage
  • the electric shock protection device 200 ′ may include three pairs of internal electrodes 214a / 215a, 216a / 217a, and 218a / 219a, and space in spaces between the pair of internal electrodes. 215 and has a breakdown voltage greater than the rated voltage of the external power source by changing the overlapping area, the separation distance, and the volume of the gap between the electrodes.
  • the body 211, 212, 213 may include a barium titanate-based component and a glassy component.
  • the body 211, 212, and 213 may include a barium titanate-based component and a glassy component.
  • the electric shock protection device may have a capacitance of 4 to 100 pF, through which the electric shock protection function and the attenuation suppression function of a communication signal passing through the present invention may be simultaneously expressed. At the same time it can be expressed with better performance. If the capacitance is within 4pF, it may not be possible to express the electric shock protection performance against static electricity and the suppression of communication signal attenuation.
  • the electric shock protection device 100, 100 ′, 200, 200 ′ may be disposed between the conductor 12, such as an external metal case, and the circuit unit 14 in the portable electronic device 10, as illustrated in FIG. 5A. .
  • the portable electronic device 10 may be in the form of a portable electronic device that is portable and easy to carry.
  • the portable electronic device may be a mobile terminal such as a smart phone or a cellular phone, and may be a smart watch, a digital camera, a DMB, an e-book, a netbook, a tablet PC, a portable computer, or the like.
  • Such electronics may have any suitable electronic components including antenna structures for communication with an external device.
  • the device may be a device using local area network communication such as Wi-Fi and Bluetooth.
  • Such a portable electronic device 10 is an outer housing made of conductive materials such as metal (aluminum, stainless steel, etc.), or carbon-fiber composite materials or other fiber-based composites, glass, ceramic, plastic, and combinations thereof. It may include.
  • the housing of the portable electronic device 10 may include a conductor 12 made of metal and exposed to the outside.
  • the conductor 12 may include at least one of an antenna, a metal case, and conductive ornaments for communication between the electronic device and an external device.
  • the metal case may be provided to partially or entirely surround the side of the housing of the portable electronic device 10.
  • the metal case may be provided to surround the camera provided to the outside of the front or rear of the housing of the electronic device.
  • the electric shock protection device 100 may be disposed between the human body contactable conductor 12 of the portable electronic device 10 and the circuit unit 14 to protect the internal circuit from leakage current and static electricity.
  • Such an electric shock prevention device 100 may be appropriately provided according to the number of metal cases provided in the housing of the portable electronic device 10. However, when a plurality of metal cases are provided, each of the metal cases 12a, 12b, 12c, and 12d may be embedded in a housing of the portable electronic device 10 so that the electric shock prevention devices 100 are individually connected. have.
  • the respective conductors 12a, 12b, 12c, and 12d are All of them are connected to the electric shock prevention devices 100, 100 ′, 200, and 200 ′ to protect circuits inside the portable electronic device 10 from leakage current and static electricity.
  • the electric shock prevention device 100 may be provided in various ways to meet the corresponding roles of the metal cases 12a, 12b, 12c, and 12d. have.
  • the electric shock prevention device (100,100) ', 200, 200' may be provided in the form of blocking leakage current and protecting the internal circuit from static electricity.
  • the electric shock prevention devices 100, 100 ′, 200 and 200 ′ are connected to the metal case 12 b to block leakage current and protect internal circuits from static electricity. It may be provided.
  • the electric shock protection devices 100, 100 ′, 200, and 200 ′ may be disposed between the metal case 12 ′ and the circuit board 14 ′.
  • the circuit board 14 ′ may include a separate protection device 16 for bypassing static electricity to ground.
  • the protection element 16 may be a suppressor or a varistor.
  • the electric shock protection devices 100, 100 ′, 200, and 200 ′ form a matching circuit (eg, R and L components) between the metal case 12 ′ and the front end module (FFM) 14a. Can be arranged through.
  • the metal case 12 ′ may be an antenna.
  • the electric shock protection device 100 is to pass a communication signal without attenuation and at the same time to pass the static electricity from the metal case 12 ', and to block the leakage current flowing from the ground through the matching circuit.
  • the electric shock protection devices 100, 100 ′, 200, and 200 ′ may be disposed between the metal case 12 ′ having the antenna and the IC 14c implementing the communication function through the corresponding antenna.
  • the communication function may be NFC communication.
  • an electric shock protection device 100 since the electric shock protection device 100 is for passing static electricity without damage to itself, an electric shock protection device 100 may include a separate protection device 16 for bypassing static electricity to the ground.
  • the protection element 16 may be a suppressor or a varistor.
  • the electric shock protection devices 100, 100 ′, 200, and 200 ′ may be disposed between the short pin 22 of the Planar Inverted F Antenna (PIFA) antenna 20 and the matching circuit.
  • the electric shock protection device 100 is to pass a communication signal without attenuation and at the same time to pass the static electricity from the metal case 12 ', and to block the leakage current flowing from the ground through the matching circuit.
  • PIFA Planar Inverted F Antenna
  • the electric shock protection devices 100, 100 ′, 200 and 200 ′ may have different functions according to leakage current by external power and static electricity flowing from the conductor 12.
  • the electric shock protection device 100 when the leakage current of the external power supply to the conductor 12 through the circuit board, for example, the ground of the circuit portion 14, the electric shock protection device 100 is the breakdown voltage Since Vbr is larger than the overvoltage caused by the leakage current, it can be kept open. That is, since the breakdown voltage Vbr is greater than the rated voltage of the external power source of the portable electronic device, the electric shock protection device 100, 100 ', 200, 200' is not electrically conductive and can be kept open so that it can be attached to a human body such as a metal case. The leakage current may be blocked from being transmitted to the conductor 12.
  • the signal transmission unit provided in the electric shock protection device (100, 100 ', 200, 200') can block the DC component included in the leakage current, and because the leakage current has a relatively low frequency compared to the wireless communication band, By acting with large impedance, leakage current can be cut off.
  • the electric shock protection devices 100, 100 ′, 200, and 200 ′ may protect the user from electric shock by blocking leakage current from external power flowing from the ground of the circuit unit 14.
  • the electric shock protection devices 100, 100 ′, 200, and 200 ′ function as an electrostatic protection device such as a suppressor. That is, since the operating voltage (discharge starting voltage) of the suppressor for electrostatic discharge is smaller than the instantaneous voltage of static electricity, the electric shock protection devices 100, 100 ', 200, and 200' can pass static electricity by instantaneous discharge. As a result, the electric shock protection devices 100, 100 ′, 200, and 200 ′ may have low electrical resistance when static electricity flows from the conductor 12, and thus may pass static electricity without breaking the insulation itself.
  • the static electricity is a signal transmission unit ( It does not flow into the 120a, 120b, it can pass only to the electric shock protection unit (110,110 ', 210).
  • the circuit unit 14 may include a separate protection device for bypassing static electricity to ground.
  • the electric shock protection devices 100, 100 ′, 200, and 200 ′ may pass the static electricity without being destroyed by the static electricity flowing from the conductor 12, thereby protecting the internal circuit of the rear stage.
  • the electric shock protection device 100, 100 ′, 200, 200 ′ has a function of passing the incoming communication signal without attenuation or without attenuation. Do this. That is, the electric shock protection devices 100, 100 ′, 200, and 200 ′ block the conductors 12 and the circuit part 14 by keeping the electric shock protection parts 110, 110 ′ and 210 in an open state, but internal signal transmission parts 120 a and 120 b. ) Can pass incoming communication signals. As such, the signal transmission units 120a and 120b of the electric shock protection device 100 may provide an inflow path of the communication signal.
  • a sheet forming composition was prepared, and specifically, a barium meta titanate component (MLC-302M, sinocera) and a glassy component (L40, FERRO) were prepared, respectively. 60 parts by weight of barium titanate was mixed with respect to 100 parts by weight of the glassy component. Then, the mixture was ball milled with water for 24 hours with a solvent to prepare a mixture of glass powder having an average particle diameter of 0.2 to 0.4 ⁇ m and barium titanate powder having an average particle diameter of 0.4 to 0.8 ⁇ m.
  • MLC-302M barium meta titanate component
  • L40 glassy component
  • a polyvinyl butyral binder (manufacturer, trade name) was dissolved in a toluene / alcohol (toluene / alcohol) organic solvent so as to be mixed with 100 parts by weight of the raw material powder. Thereafter, the sheet-forming composition was prepared by milling and mixing with a small ball mill for about 24 hours.
  • the sheet forming composition was prepared by a doctor blade method, and dried at 25 ° C. for 24 hours to prepare a sheet having a thickness of 30 ⁇ m. Thereafter, the prepared sheet was cut into a width of 0.55 mm and a length of 0.25 mm to make a plurality of sheets.
  • the internal electrode paste prepared in Preparation Example 1 below was coated on one surface of the sheet molding prepared to prepare the electric shock protection part so as to have a thickness of 3 ⁇ m, a length of 0.44 mm, and a width of 0.33 mm.
  • the inner electrode paste was applied so that two inner electrodes were formed on one sheet molded sheet, and the side portions of the sheet electrodes faced each other with respect to the length direction of each inner electrode.
  • the distance between the ends of the body was 110 ⁇ m and the separation distance between the electrodes was 40 ⁇ m.
  • the pore forming portion which is a conventional resin composition vaporized before reaching the sintering temperature of the sheet, was printed so that the volume of the voids was 5% of the body volume after sintering. Thereafter, another sheet molding which was not treated was laminated on the sheet molding to which the internal electrode paste was applied.
  • a total of 10 sheet moldings on which one surface of the internal electrode paste of Preparation Example was applied were prepared.
  • the inner electrode paste was applied to each sheet molding in the shape of the inner electrode 121a of FIG. 1B to have a thickness of 3 ⁇ m, a length of 0.44 mm, and a width of 0.33 mm after sintering.
  • the external electrode forming composition prepared in the following Preparation Example was applied to both ends of the inner electrodes protruding in parallel so as to be electrically connected in parallel, and then the electrode was baked at 700 ° C. for 120 minutes to obtain a final thickness of 20 ⁇ m.
  • an electric shock protection device as shown in Table 1 with an external electrode.
  • the internal electrode paste prepared an Ag / Pd paste containing 80% by weight of a metal powder obtained by mixing Ag powder and Pd powder in an ethyl cellulose binder resin and an organic solvent in a 7: 3 weight ratio.
  • an 80 wt% Ag paste prepared by mixing Ag powder with an ethyl cellulose binder resin and an organic solvent was prepared.
  • Example 1 Prepared and carried out in the same manner as in Example 1, to change the sintering temperature of the body to 1000 °C to prepare an electric shock protection device as shown in Table 1.
  • an evaluation board (evaluation board) similar to a mobile phone structure was made to evaluate the ESD protection performance.
  • the voltage is applied to the conductive line made of copper, which assumes the external metal case of the mobile phone as the source of ESD, and ESD is applied, while the other side is assumed to be the PCB ground IC, and the waveform is observed through the oscilloscope.
  • the outer housing is a metal material, and an evaluation mobile phone equipped with an electric shock protection device was manufactured.
  • the mobile phone was connected to the charger connected to the 220V outlet, the COM terminal probe of the digital multimeter was connected to the outlet ground terminal, and the remaining probe was contacted with the metal housing of the cellular phone to measure the leakage current.
  • the external housing is a metal material in the 3D anechoic chamber, and an evaluation mobile phone equipped with the electric shock protection device is placed in the frequency band where communication with an external device is made through an antenna.
  • the RF signal was measured and compared to evaluate the TIP and TIS values through RF receivers to determine whether they meet the specified threshold for each frequency band.
  • the measurement angle of DUT and antenna was changed by 0 ⁇ 360 degree, and when there is no abnormality in the data signal as a result of evaluation, it is indicated as ⁇ and ⁇ when signal attenuation occurred.
  • the cross section of the manufactured electric shock protection device was checked by SEM photographs to determine whether pores, cracks, etc. occurred, and if there are cracks or pores, ⁇ is indicated if no defects are found.
  • Comparative Example 1 prepared by stacking the same electrode structure and the same sheet molding, as the out of the volume range according to the present invention has a low density, it was impossible to measure the electrical properties due to the body strength problem, the termination was impossible.
  • the cross section can also be expected to break even if 83 defects are detected and used as an electric shock protection device.
  • Example 2 the leakage current evaluation was superior to Example 1 as the barium titanate content was outside the preferred range according to the present invention, but the protection performance against ESD was reduced by 50% compared to Example 1, and the data signal As it is also attenuated, it can be seen that the protection against ESD and data signal reduction suppression function are not properly expressed.
  • Example 5 As the content of the barium titanate is outside the preferred range according to the present invention, it can be confirmed that the leakage current evaluation result is not very good beyond the allowable value (5 mA) in comparison with Example 1, ESD protection It can be seen that the performance is also reduced by 66.7% compared to the first embodiment, and all three functions cannot be performed as the data signal is attenuated.
  • Example 3 it can be seen that, as the content of barium titanate is within the preferred range according to the present invention, both ESD protection, leakage current blocking, and data signal attenuation express excellent performance.
  • Example 4 the content of barium titanate was in the preferred range according to the present invention but outside the more preferred range, and thus the leakage current evaluation result was slightly exceeded, and the ESD protection performance was also reduced by 50% compared with Example 1. Can be.
  • the sheet forming composition was prepared by a doctor blade method (doctor blade) method, and dried for 24 hours at 25 °C to prepare a sheet having a thickness of 30 ⁇ m. Thereafter, the prepared sheet was cut to 2.317 mm in width and 1.158 mm in length to make a plurality of sheets.
  • the internal electrode paste prepared in Preparation Example 1 below was coated on one surface of the sheet molding prepared to prepare the electric shock protection part so as to have a thickness of 3 ⁇ m, a length of 1.85 mm, and a width of 1.39 mm.
  • the inner electrode paste was applied so that two inner electrodes were formed on one sheet molded sheet, and the side portions of the sheet electrodes faced each other with respect to the length direction of each inner electrode.
  • the distance between the ends of the body was 463 ⁇ m and the distance between the electrodes was 40 ⁇ m.
  • the pore forming portion which is a conventional resin composition vaporized before reaching the sintering temperature of the sheet, was printed in the space between the spaced inner electrodes so that the volume of the voids was 5% of the body volume. Thereafter, another sheet molding which was not treated was laminated on the sheet molding to which the internal electrode paste was applied.
  • a total of 32 sheet molded articles coated with one surface of the internal electrode paste of Preparation Example below were prepared.
  • the inner electrode paste was applied to each sheet molding in the shape of the inner electrode 121a of FIG. 1B to have a thickness of 3 ⁇ m, a length of 1.85 mm, and a width of 1.39 mm after sintering.
  • the external electrode forming composition prepared in the following Preparation Example was applied to both ends of the inner electrodes protruding in parallel so as to be electrically connected in parallel, and then the electrode was baked at 700 ° C. for 120 minutes to obtain a final thickness of 20 ⁇ m.
  • an electric shock protection device as shown in Table 2 provided with an external electrode.
  • an 80 wt% Ag paste prepared by mixing Ag powder with an ethyl cellulose binder resin and an organic solvent was prepared.
  • Example 7 Example 8 Example 9 Example 10 Example 11 Comparative Example 2 Before sintering Sheet composition Barium titanate (parts by weight) 100 100 100 100 100 100 100 100 100 Glassy component (parts by weight / dielectric constant) 20/40 8/40 12/40 28/40 33/40 20/40 Electric shock protection department Sheet molding thickness ( ⁇ m) 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 Stacked Number 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 After sintering corpuscle Volume 0.810 0.739 0.795 0.869 0.921 1.103 Thickness (mm) 0.76 0.70 0.74 0.74 0.81 0.82 Density (g / m2) 5.34 5.56 5.45 5.16 5.08 3.86 permittivity 398 122 201 558 726 64 Electric shock protection department Sheet after sintering (thickness ( ⁇ m) / shrinkage (%)) 21.2 / 29.3
  • Comparative Example 2 prepared by stacking the same electrode structure and the same sheet molding, as the out of the volume range according to the present invention has a low density, the termination was impossible due to the body strength problem, and thus electrical properties could not be measured.
  • the cross section can also be expected to break down even if 68 defects are detected and used as an electric shock protection device.
  • Example 8 As the content of barium titanate was outside the preferred range according to the present invention, leakage current evaluation was superior to Example 7, but the protection performance against ESD was reduced by 73% compared to Example 7, and the data signal As it is also attenuated, it can be seen that the protection against ESD and data signal reduction suppression function are not properly expressed.
  • Example 11 As the content of the barium titanate is out of the preferred range according to the present invention, it can be confirmed that the leakage current evaluation result is not very good beyond the allowable value (5 mA) in comparison with Example 7, ESD protection It can be seen that the performance is also reduced by 53.3% compared to the seventh embodiment, and it can be seen that all three functions cannot be performed as the data signal is attenuated.
  • Example 9 the content of barium titanate is within the preferred range according to the present invention, it can be seen that both ESD protection, leakage current blocking and data signal attenuation exhibit excellent performance.
  • the sheet forming composition was prepared by a doctor blade method (doctor blade) method, and dried for 24 hours at 25 °C to prepare a sheet having a thickness of 30 ⁇ m. Thereafter, the prepared sheet was cut into a width of 1.14 mm and a length of 0.57 mm to make a plurality of sheets.
  • the internal electrode paste prepared in Preparation Example 1 below was coated on one surface of the sheet molding manufactured to prepare the electric shock protection part, so as to have a thickness of 3 ⁇ m, a length of 0.91 mm, and a width of 0.68 mm.
  • the inner electrode paste was applied so that two inner electrodes were formed on one sheet molded sheet, and the side portions of the sheet electrodes faced each other with respect to the length direction of each inner electrode.
  • the distance between the ends of the body was 230 ⁇ m and the separation distance between the electrodes was 40 ⁇ m.
  • the pore forming portion which is a conventional resin composition vaporized before reaching the sintering temperature of the sheet, was printed so that the volume of the voids was 5% of the body volume after sintering. Thereafter, another sheet molding which was not treated was laminated on the sheet molding to which the internal electrode paste was applied.
  • the signal transmission unit a total of 20 sheet molded articles coated on one surface of the internal electrode paste of Preparation Example were prepared. Specifically, the inner electrode paste was applied to each sheet molding in the shape of the inner electrode 121a of FIG. Thereafter, the stacked sheet moldings prepared for the electric shock protection unit were sandwiched therebetween, and each of the sheet moldings prepared for the signal transmission unit was stacked up and down. At this time, the arrangement of the internal electrodes were laminated so that the electrode arrangement of the cross section of the electric shock protection device after sintering was of the type shown in FIG. 7. After sintering at 980 ° C.
  • a sintered body having a volume of 0.262 mm3 was prepared under atmospheric pressure and air atmosphere in a sintering furnace. Thereafter, the external electrode forming composition prepared in the following Preparation Example was applied to both ends of the inner electrodes protruding in parallel so as to be electrically connected in parallel, and then the electrode was baked at 700 ° C. for 120 minutes to obtain a final thickness of 20 ⁇ m. To prepare an electric shock protection device as shown in Table 1 with an external electrode.
  • an 80 wt% Ag paste prepared by mixing Ag powder with an ethyl cellulose binder resin and an organic solvent was prepared.
  • Example 13 Prepared in the same manner as in Example 13, except that the sintering temperature was changed to 850 °C to prepare an electric shock protection device as shown in Table 3.
  • Table 3 shows the above-described physical properties of the electric shock protection devices manufactured in Examples and Comparative Examples.
  • Example 13 Example 14 Example 15 Example 16 Example 17 Comparative Example 3 Before sintering Sheet composition Barium titanate (parts by weight) 100 100 100 100 100 100 100 100 100 Glassy component (parts by weight / dielectric constant) 40/40 28/40 32/40 48/40 52/40 40/40 Electric shock protection department Sheet molding thickness ( ⁇ m) 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 Signal Transmitter Sheet molding thickness ( ⁇ m) 30 30 30 30 30 30 30 30 30 Total stacks 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
  • Comparative Example 3 prepared by stacking the same electrode structure and the same sheet molding, as the out of the volume range according to the present invention has a low density, the cross-sectional defects were significantly due to the body strength problem. In addition, it can be seen that both the protection against ESD and the leakage current blocking performance are significantly worse than those of the embodiment.
  • Example 14 the leakage current evaluation was superior to Example 13 as the barium titanate content was outside the preferred range according to the present invention, but the protection performance against ESD was reduced by 53.3% compared to Example 13, and the data signal As it is also attenuated, it can be seen that the protection against ESD and data signal reduction suppression function are not properly expressed.
  • Example 17 As the content of barium titanate is out of the preferred range according to the present invention, it can be confirmed that the leakage current evaluation result is not good beyond 5 kV, which is acceptable compared to Example 13, and ESD protection performance is also good. As compared with Example 13, it can be seen that the decrease was 86.7%. As the data signal is attenuated, all three functions cannot be performed.
  • Example 15 the content of barium titanate is within the preferred range according to the present invention, it can be seen that both ESD protection, leakage current blocking and data signal attenuation exhibit excellent performance.

Abstract

Provided is an electric shock protection device. An electric shock protection device according to one embodiment of the present invention comprises: a body which has a volume of 0.025 to 0.060 mm3 and comprises a barium titanate-based component and a vitreous component; and an internal electrode disposed within the body, and is embodied such that an electric shock protection function of preventing leakage current or static from being introduced into the electric shock protection device is combined with a signal transfer function of letting incoming data signals through the electric shock protection device by inhibiting attenuation of the incoming data signals. As such, even though the electric shock protection device is embodied to be compact and slim, the electric shock protection device may protect a user from leakage current from a power source and protect an internal circuit from outside static. In addition, the electric shock protection device has excellent durability since the same has adequate capacitance to protect against leakage current and high voltage, and also does not easily succumb to dielectrical breakdown. Further, the electric shock protection device may ensure good data communication efficiency by minimizing attenuation of data reception signals in a communication frequency bandwidth, and has ease of handling as the mechanical strength of the device is good.

Description

감전보호소자 및 이를 구비하는 휴대용 전자장치Electric shock protection device and portable electronic device having same
본 발명은 감전보호소자에 관한 것이며, 더욱 상세하게는 경박단소의 크기임에도 외부 정전기에 의해 쉽게 절연파괴 되지 않으며, 기계적 강도가 우수해 내구성이 뛰어나고, 통신주파수 영역의 데이터수신신호를 감쇄시키지 않는 감전보호소자 및 이를 구비한 휴대용 전자장치에 관한 것이다.The present invention relates to an electric shock protection device, and more particularly, even if the size of the light and small, it is not easily broken by external static electricity, excellent mechanical strength and excellent durability, electric shock that does not attenuate data reception signal in the communication frequency range A protective device and a portable electronic device having the same.
최근 전자기기 기술 발달로 MP3, 휴대전화, 스마트 시계 등의 다양한 종류의 모바일 전자기기가 소형화되고 있다. 이러한 전자기기들은 특정장소에 거치하여 사용하던 전자기기와 대비하여 인체에 접촉할 여지가 매우 높기 때문에 누설전류, 정전기, 기타 과도한 펄스를 유발에 의한 전압으로부터 인체 및 전자기기의 장치를 보호하기 위한 기술이 요구된다. 특히, 최근 모바일 기기의 고급화와 맞물려 고급스런 느낌을 주는 메탈케이스 채택이 늘어나고 있는 추세이다. 그러나, 이러한 메탈 재질의 하우징은 재질의 특성상 전기전도도가 우수하기 때문에, 특정 소자를 통하여 또는 부위에 따라 외장 하우징과 내장 회로부 사이에 전기적 경로가 형성될 수 있다. 특히, 메탈 하우징과 회로부가 루프를 형성함에 따라, 외부의 노출면적이 큰 메탈 하우징과 같은 전도체를 통하여 순간적으로 높은 전압을 갖는 정전기가 유입되는 경우, IC 등의 회로부를 파손시킬 수 있기 때문에 이 대한 대책이 요구되고 있다. Recently, with the development of electronic device technology, various kinds of mobile electronic devices such as MP3, mobile phones, and smart watches have been miniaturized. Since these electronic devices have a very high level of contact with the human body compared to the electronic devices used in a specific place, a technology for protecting the human body and the devices of the electronic devices from voltages caused by leakage current, static electricity, and other excessive pulses Is required. In particular, the adoption of metal cases that give a sense of luxury in conjunction with the high-end of mobile devices is increasing. However, since the metal housing has excellent electrical conductivity due to the characteristics of the material, an electrical path may be formed between the external housing and the internal circuit part through a specific device or according to a portion thereof. In particular, as the metal housing and the circuit part form a loop, when a static electricity having a high voltage is momentarily introduced through a conductor such as a metal housing having a large external exposed area, the circuit part such as an IC may be damaged. Measures are required.
또한, 이와 같은 휴대용 전자장치는 통상적으로 충전기를 사용하여 배터리를 충전한다. 이와 같은 충전기는 외부의 AC 전원을 DC 전원으로 정류한 후, 다시 트랜스포머를 통하여 휴대용 전자장치에 적합한 낮은 DC 전원으로 변환한다. 그러나, 비정품 충전기 등과 같이 전기적 절연성을 위해 구비되는 Y-CAP이 정규 특성을 갖지 못하는 경우에는 Y-CAP에 의해 DC 전원이 충분히 차단되지 못할 수 있고, 더욱이, AC 전원에 의해 누설전류가 발생할 수 있으며, 이러한 누설전류는 회로의 접지부를 따라 전파될 수 있다. 상기 누설전류는 휴대용 전자장치의 외장 케이스와 같이 인체가 접촉가능한 전도체에도 전달될 수 있기 때문에, 결과적으로 사용자에게 불쾌감을 주며 심한 경우 사용자가 감전에 의한 치명상을 입을 수 있다.In addition, such a portable electronic device typically uses a charger to charge a battery. Such a charger rectifies external AC power to DC power, and then converts it into a low DC power supply suitable for portable electronic devices through a transformer. However, when the Y-CAP provided for electrical insulation such as a non-genuine charger does not have regular characteristics, the DC power may not be sufficiently cut off by the Y-CAP, and furthermore, a leakage current may be generated by the AC power. This leakage current can propagate along the ground of the circuit. Since the leakage current may be transmitted to a conductor that can be contacted by a human body, such as an external case of a portable electronic device, as a result, the user may be offended and, in severe cases, the user may be fatally wounded by an electric shock.
이에 따라 최근에는 높은 전압의 정전기나 누설전류를 방지하기 위한 보호소자가 개발되고 있으나 경박단소의 휴대용기기에 맞춰서 더욱 작고 슬림하게 구현할 경우 순간적으로 높은 전압으로 발생하는 정전기에 의해 쉽게 절연파괴 되는 문제가 있다. 또한, 보호소자를 더욱 작고 슬림하게 구현할수록, 누설전류 및 고전압의 정전기를 방호할 수 있을 만큼 충분한 정전용량을 가지도록 보호소자의 내부를 구조적으로 설계 변경할 여지가 매우 적어지며, 보호소자의 내부를 미세하게 설계변경 했다고 하더라도 미세화된 내부구조는 누설전류 및 고전압의 정전기에 더욱 쉽게 절연파괴 되며, 일회성의 방호만 가능한 문제가 있다. 나아가, 작고 슬림화됨에 따라 보호소자의 정전용량은 감소하는데, 만일 보호소자가 안테나 등의 통신 관련 부품에 회로상 전기적으로 연결될 경우 통신주파수 영역의 데이터수신 신호를 감쇄시켜 통신효율을 현저히 저하시킴에 따라서 이와 같은 회로에는 사용이 부적합한 문제가 있다.Accordingly, in recent years, a protection device for preventing high voltage static electricity or leakage current has been developed, but when a smaller and slim implementation is implemented according to a light and small portable device, there is a problem of easy insulation breakdown by static electricity generated at a high voltage instantaneously. . In addition, the smaller and slimmer the protection device is, the less there is room for structural design change in the protection device to have sufficient capacitance to prevent leakage current and high voltage static electricity. Even if the design is changed minutely, the internalized structure is more easily destroyed by leakage current and high voltage static electricity, and there is a problem that only one-time protection is possible. Furthermore, the capacitance of the protection device is reduced as it becomes smaller and slimmer. If the protection device is electrically connected to a communication-related component such as an antenna in a circuit, the data reception signal in the communication frequency range is attenuated, thereby significantly reducing communication efficiency. There is a problem that the same circuit is not suitable for use.
이에 따라서 작고 슬림하게 구현됨에도 불구하고, 누설전류 및 고전압의 정전기를 방호할 수 있을 만큼 충분한 정전용량을 구비하는 동시에 쉽게 절연파괴되지 않아서 내구성이 우수하며, 통신효율을 저하시키지 않는 등 보호소자의 사용 가능 영역에 제한이 적은 감전보호소자의 개발이 시급한 실정이다.Accordingly, despite the compact and slim implementation, it has sufficient capacitance to protect leakage current and high voltage static electricity, and is not easily broken, so it is durable and does not reduce communication efficiency. There is an urgent need to develop an electric shock protection device having a limited range of possible areas.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 경박단소의 휴대용 전자기기 개발 추세에 맞춰서 작고 슬림화되도록 구현됨에도 전원에 의한 누설전류로부터 사용자를 보호하고, 외부의 정전기로부터 내부회로를 보호할 수 있는 충분한 물성을 구비한 감전보호소자를 제공하는데 목적이 있다.The present invention has been made in view of the above, and in accordance with the development trend of light and small portable electronic devices, even if implemented to be small and slim, can protect the user from the leakage current by the power supply, and can protect the internal circuit from the external static electricity An object of the present invention is to provide an electric shock protection device having sufficient physical properties.
또한, 본 발명은 누설전류 및 고전압의 정전기를 방호할 수 있을 만큼 충분한 정전용량을 구비하는 동시에 쉽게 절연파괴 되지 않아 지속적으로 누설전류 차단 및 고전압의 정전기를 방호할 수 있는 감전보호소자를 제공하는데 다른 목적이 있다.In addition, the present invention provides an electric shock protection device that has a sufficient capacitance to protect the leakage current and high voltage static electricity and at the same time does not easily break the insulation to prevent leakage current and protect the high voltage static electricity. There is a purpose.
또한, 본 발명은 보호소자가 안테나 및 이와 전기적으로 연결된 회로 등에 사용되더라도 통신주파수 대역의 데이터 수신 신호의 감쇄를 최소화하여 우수한 데이터 통신효율을 담보할 수 있는 감전보호소자를 제공하는데 또 다른 목적이 있다.Another object of the present invention is to provide an electric shock protection device that can guarantee excellent data communication efficiency by minimizing attenuation of a data reception signal of a communication frequency band even when the protection device is used in an antenna and a circuit electrically connected thereto.
나아가, 본 발명은 기계적 강도가 우수해 보호소자의 취급성이 향상된 감전보호소자를 제공하는데 또 다른 목적이 있다.Furthermore, another object of the present invention is to provide an electric shock protection device having excellent mechanical strength and improved handling of the protection device.
더불어 본 발명은 본 발명에 따른 감전보호소자를 통해 외부 하우징이 전도성 소재일지라도 정전기, 누설전류로부터 사용자 및 기기 내부 회로가 보호되는 휴대용 전자장치를 제공하는데 다른 목적이 있다.In addition, another object of the present invention is to provide a portable electronic device that protects a user and an internal circuit of a device from static electricity and leakage current even though the external housing is a conductive material through the electric shock protection device according to the present invention.
상술한 과제를 해결하기 위하여 본 발명은 부피가 0.025 ~ 0.060 ㎣이며, 티탄산바륨계 성분 및 유리질 성분을 포함하는 소체; 및 상기 소체 내부에 배치된 내부전극;을 포함하고, 내부로 유입되는 누설전류 및 정전기에 대해 방호하는 감전보호기능 및 내부로 유입되는 데이터신호의 감쇄를 억제하여 통과시키는 신호전달기능이 복합화된 감전보호소자를 제공한다.In order to solve the above problems, the present invention has a volume of 0.025 ~ 0.060 mm, a body comprising a barium titanate-based component and a glass component; And an internal electrode disposed inside the body, wherein an electric shock protection function that protects against leakage current and static electricity flowing into the body and a signal transmission function that suppresses and passes the attenuation of the data signal flowing into the electric shock are combined. Provide a protection device.
본 발명의 실시예에 의하면, 상기 감전보호소자는 전기적으로 병렬로 접속된, 내부로 유입되는 누설전류 및 정전기에 대해 방호하는 감전보호부 및 내부로 유입되는 데이터신호의 감쇄를 억제하여 통과시키는 신호전달부를 포함할 수 있다.According to an embodiment of the present invention, the electric shock protection device is electrically connected in parallel, the electric shock protection to protect against leakage current and static electricity flowing into the inside and the signal transmission to pass through the suppression of the attenuation of the data signal flowing into It may include wealth.
또한, 상기 감전보호소자에 구비되는 내부전극은 적어도 한 쌍의 제1내부전극을 포함하고, 상기 제1내부전극은 수평방향 또는 수직방향으로 이격되어 배치될 수 있다. 이때, 이격된 상기 한 쌍의 제1내부전극 사이에는 공극, 또는 상기 공극의 일부 또는 전부를 충진하는 방전물질을 더 구비할 수 있다. 또한, 상기 공극의 체적은 상기 감전보호소자의 총 체적 대비 1~15%일 수 있다.In addition, the internal electrodes provided in the electric shock protection device may include at least one pair of first internal electrodes, and the first internal electrodes may be spaced apart in a horizontal direction or a vertical direction. In this case, a space between the spaced apart first inner electrodes may be further provided with a discharge material filling a part or all of the voids. In addition, the volume of the voids may be 1 to 15% of the total volume of the electric shock protection device.
또한, 상기 감전보호소자에 구비되는 내부전극은 적어도 한 쌍의 제2내부전극을 포함하고, 상기 제2내부전극은 수직방향으로 각각의 전극면 적어도 일부가 중첩되도록 배치될 수 있다.In addition, the internal electrodes provided in the electric shock protection device may include at least one pair of second internal electrodes, and the second internal electrodes may be disposed to overlap at least a part of each electrode surface in the vertical direction.
또한, 상기 감전보호부는 제1내부전극을 포함하고, 상기 신호전달부는 제2내부전극를 포함하며, 인접하여 배치되는 상기 제1내부전극과 상기 제2내부전극간 수직방향 이격거리는 20 ~ 100㎛일 수 있다.The electric shock protection part may include a first internal electrode, and the signal transmission part may include a second internal electrode, and a vertical separation distance between the first internal electrode and the second internal electrode disposed adjacent to each other may be 20 to 100 μm. Can be.
또한, 상기 소체는 유입되는 데이터 신호의 감쇄 억제, 절연파괴 없이 유입되는 정전기 통과 및 유입되는 외부전원의 누설전류를 차단하도록 유전율이 900 ~ 1500일 수 있다.In addition, the body may have a dielectric constant of 900 to 1500 to block attenuation of the incoming data signal, to prevent the passage of static electricity that flows without the breakdown of insulation, and to prevent leakage of external power.
또한, 상기 소체는 유리질 성분 100 중량부에 대하여 티탄산바륨계 성분을 50 ~ 80 중량부 포함할 수 있다.In addition, the body may include 50 to 80 parts by weight of the barium titanate-based component with respect to 100 parts by weight of the glass component.
또한, 소체는 밀도가 4.5 ~ 5.8 g/㎣일 수 있다.In addition, the body may have a density of 4.5 to 5.8 g / mm 3.
또한, 상기 내부전극의 두께방향을 기준으로 상기 소체는 두께가 0.2 ~ 0.4 ㎜ 일 수 있다.In addition, the body may have a thickness of 0.2 to 0.4 mm based on the thickness direction of the internal electrode.
또한, 상기 소체는 티탄산바륨계 성분 및 유리질 성분을 포함하는 복수개의 시트가 적층 및 소결되어 형성되고, 상기 복수개의 시트 중 상기 내부전극이 어느 일면에 형성된 시트는 최소두께가 20 ㎛ 이상일 수 있고, 보다 바람직하게는 28 ~ 70 ㎛일 수 있다. The body may be formed by stacking and sintering a plurality of sheets including a barium titanate-based component and a glassy component, and a sheet having the internal electrode formed on one surface of the plurality of sheets may have a minimum thickness of 20 μm or more. More preferably, it may be 28-70 micrometers.
또한, 상기 유리질 성분은 산화알루미늄 및 산화규소를 포함할 수 있다. 이때, 상기 유리질 성분은 유전율이 25 이상일 수 있다.In addition, the glassy component may include aluminum oxide and silicon oxide. In this case, the glassy component may have a dielectric constant of 25 or more.
또한, 상기 감전보호소자는 정전용량이 4 ~ 100 ㎊일 수 있다.In addition, the electric shock protection device may have a capacitance of 4 ~ 100 kW.
또한, 상기 감전보호소자는 상기 내부전극과 전기적으로 연결되도록 상기 소체의 외부면에 형성된 외부전극을 더 포함할 수 있다.The electric shock protection device may further include an external electrode formed on an outer surface of the body to be electrically connected to the internal electrode.
또한, 본 발명은 인체 접촉가능 전도체; 회로부 및 상기 전도체와 상기 회로부 사이에 배치되는 본 발명에 따른 감전보호소자;를 구비하는 휴대용 전자장치를 제공한다.The present invention also provides a human body contactable conductor; It provides a portable electronic device having a circuit portion and an electric shock protection device according to the present invention disposed between the conductor and the circuit portion.
또한, 상기 전도체는 상기 전자장치와 외부기기의 통신을 위한 안테나, 메탈 케이스, 및 도전성 장신구 중 적어도 하나를 포함할 수 있다.In addition, the conductor may include at least one of an antenna, a metal case, and conductive jewelry for communication between the electronic device and an external device.
또한, 상술한 과제를 해결하기 위하여 본 발명은 부피가 0.7 ~ 1.0 ㎣이며, 티탄산바륨계 성분 및 유리질 성분을 포함하는 소체; 및 상기 소체 내부에 배치된 내부전극;을 포함하고, 내부로 유입되는 누설전류 및 정전기에 대해 방호하는 감전보호기능 및 내부로 유입되는 데이터신호의 감쇄를 억제하여 통과시키는 신호전달기능이 복합화된 감전보호소자를 제공한다.In addition, in order to solve the above problems, the present invention has a volume of 0.7 to 1.0 kPa, a body comprising a barium titanate-based component and a glass component; And an internal electrode disposed inside the body, wherein an electric shock protection function that protects against leakage current and static electricity flowing into the body and a signal transmission function that suppresses and passes the attenuation of the data signal flowing into the electric shock are combined. Provide a protection device.
본 발명의 실시예에 의하면, 상기 감전보호소자는 전기적으로 병렬로 접속된, 내부로 유입되는 누설전류 및 정전기에 대해 방호하는 감전보호부 및 내부로 유입되는 데이터신호의 감쇄를 억제하여 통과시키는 신호전달부를 포함할 수 있다.According to an embodiment of the present invention, the electric shock protection device is electrically connected in parallel, the electric shock protection to protect against leakage current and static electricity flowing into the inside and the signal transmission to pass through the suppression of the attenuation of the data signal flowing into It may include wealth.
또한, 상기 감전보호소자에 구비되는 내부전극은 적어도 한 쌍의 제1내부전극을 포함하고, 상기 제1내부전극은 수평방향 또는 수직방향으로 이격되어 배치될 수 있다. 이때, 이격된 상기 한 쌍의 제1내부전극 사이에는 공극, 또는 상기 공극의 일부 또는 전부를 충진하는 방전물질을 더 구비할 수 있다. 또한, 상기 공극의 체적은 상기 감전보호소자의 총 체적 대비 1~15%일 수 있다.In addition, the internal electrodes provided in the electric shock protection device may include at least one pair of first internal electrodes, and the first internal electrodes may be spaced apart in a horizontal direction or a vertical direction. In this case, a space between the spaced apart first inner electrodes may be further provided with a discharge material filling a part or all of the voids. In addition, the volume of the voids may be 1 to 15% of the total volume of the electric shock protection device.
또한, 상기 감전보호소자에 구비되는 내부전극은 적어도 한 쌍의 제2내부전극을 포함하고, 상기 제2내부전극은 수직방향으로 각각의 전극면 적어도 일부가 중첩되도록 배치될 수 있다.In addition, the internal electrodes provided in the electric shock protection device may include at least one pair of second internal electrodes, and the second internal electrodes may be disposed to overlap at least a part of each electrode surface in the vertical direction.
또한, 상기 감전보호부는 제1내부전극을 포함하고, 상기 신호전달부는 제2내부전극를 포함하며, 인접하여 배치되는 상기 제1내부전극과 상기 제2내부전극간 수직방향 이격거리는 20 ~ 100㎛일 수 있다.The electric shock protection part may include a first internal electrode, and the signal transmission part may include a second internal electrode, and a vertical separation distance between the first internal electrode and the second internal electrode disposed adjacent to each other may be 20 to 100 μm. Can be.
또한, 상기 소체는 유입되는 데이터 신호의 감쇄 억제, 절연파괴 없이 유입되는 정전기 통과 및 유입되는 외부전원의 누설전류를 차단하도록 유전율이 180 ~ 680일 수 있다.In addition, the body may have a dielectric constant of 180 to 680 so as to block the attenuation of the incoming data signal, to prevent the passage of static electricity flowing in and without the breakdown of leakage current of the external power source.
또한, 상기 소체는 유리질 성분 100 중량부에 대하여 티탄산바륨계 성분을 10 ~ 30 중량부 포함할 수 있다.In addition, the body may include 10 to 30 parts by weight of the barium titanate-based component with respect to 100 parts by weight of the glass component.
또한, 소체는 밀도가 4.5 ~ 5.8 g/㎣일 수 있다.In addition, the body may have a density of 4.5 to 5.8 g / mm 3.
또한, 상기 내부전극의 두께방향을 기준으로 상기 소체는 두께가 0.5 ~ 1.0 ㎜ 일 수 있다.In addition, the body may have a thickness of 0.5 to 1.0 mm based on the thickness direction of the internal electrode.
또한, 상기 소체는 티탄산바륨계 성분 및 유리질 성분을 포함하는 복수개의 시트가 적층 및 소결되어 형성되고, 상기 복수개의 시트 중 상기 내부전극이 어느 일면에 형성된 시트는 최소두께가 20 ㎛ 이상일 수 있고, 보다 바람직하게는 20 ~ 70 ㎛일 수 있다. The body may be formed by stacking and sintering a plurality of sheets including a barium titanate-based component and a glassy component, and a sheet having the internal electrode formed on one surface of the plurality of sheets may have a minimum thickness of 20 μm or more. More preferably, it may be 20-70 micrometers.
또한, 상기 유리질 성분은 산화알루미늄 및 산화규소를 포함할 수 있다. 이때, 상기 유리질 성분은 유전율이 25 이상일 수 있다.In addition, the glassy component may include aluminum oxide and silicon oxide. In this case, the glassy component may have a dielectric constant of 25 or more.
또한, 상기 감전보호소자는 정전용량이 4 ~ 100 ㎊일 수 있다.In addition, the electric shock protection device may have a capacitance of 4 ~ 100 kW.
또한, 상기 감전보호소자는 상기 내부전극과 전기적으로 연결되도록 상기 소체의 외부면에 형성된 외부전극을 더 포함할 수 있다.The electric shock protection device may further include an external electrode formed on an outer surface of the body to be electrically connected to the internal electrode.
또한, 본 발명은 인체 접촉가능 전도체; 회로부 및 상기 전도체와 상기 회로부 사이에 배치되는 본 발명에 따른 감전보호소자;를 구비하는 휴대용 전자장치를 제공한다.The present invention also provides a human body contactable conductor; It provides a portable electronic device having a circuit portion and an electric shock protection device according to the present invention disposed between the conductor and the circuit portion.
또한, 상기 전도체는 상기 전자장치와 외부기기의 통신을 위한 안테나, 메탈 케이스, 및 도전성 장신구 중 적어도 하나를 포함할 수 있다.In addition, the conductor may include at least one of an antenna, a metal case, and conductive jewelry for communication between the electronic device and an external device.
또한, 상술한 과제를 해결하기 위하여 본 발명은 부피가 0.15 ~ 0.4 ㎣이며, 티탄산바륨계 성분 및 유리질 성분을 포함하는 소체; 및 상기 소체 내부에 배치된 내부전극;을 포함하고, 내부로 유입되는 누설전류 및 정전기에 대해 방호하는 감전보호기능 및 내부로 유입되는 데이터신호의 감쇄를 억제하여 통과시키는 신호전달기능이 복합화된 감전보호소자를 제공한다.In addition, in order to solve the above problems, the present invention has a volume of 0.15 ~ 0.4 mm, a body containing a barium titanate-based component and a glass component; And an internal electrode disposed inside the body, wherein an electric shock protection function that protects against leakage current and static electricity flowing into the body and a signal transmission function that suppresses and passes the attenuation of the data signal flowing into the electric shock are combined. Provide a protection device.
본 발명의 실시예에 의하면, 상기 감전보호소자는 전기적으로 병렬로 접속된, 내부로 유입되는 누설전류 및 정전기에 대해 방호하는 감전보호부 및 내부로 유입되는 데이터신호의 감쇄를 억제하여 통과시키는 신호전달부를 포함할 수 있다.According to an embodiment of the present invention, the electric shock protection device is electrically connected in parallel, the electric shock protection to protect against leakage current and static electricity flowing into the inside and the signal transmission to pass through the suppression of the attenuation of the data signal flowing into It may include wealth.
또한, 상기 감전보호소자에 구비되는 내부전극은 적어도 한 쌍의 제1내부전극을 포함하고, 상기 제1내부전극은 수평방향 또는 수직방향으로 이격되어 배치될 수 있다. 이때, 이격된 상기 한 쌍의 제1내부전극 사이에는 공극, 또는 상기 공극의 일부 또는 전부를 충진하는 방전물질을 더 구비할 수 있다. 또한, 상기 공극의 체적은 상기 감전보호소자의 총 체적 대비 1~15%일 수 있다.In addition, the internal electrodes provided in the electric shock protection device may include at least one pair of first internal electrodes, and the first internal electrodes may be spaced apart in a horizontal direction or a vertical direction. In this case, a space between the spaced apart first inner electrodes may be further provided with a discharge material filling a part or all of the voids. In addition, the volume of the voids may be 1 to 15% of the total volume of the electric shock protection device.
또한, 상기 감전보호소자에 구비되는 내부전극은 적어도 한 쌍의 제2내부전극을 포함하고, 상기 제2내부전극은 수직방향으로 각각의 전극면 적어도 일부가 중첩되도록 배치될 수 있다.In addition, the internal electrodes provided in the electric shock protection device may include at least one pair of second internal electrodes, and the second internal electrodes may be disposed to overlap at least a part of each electrode surface in the vertical direction.
또한, 상기 감전보호부는 제1내부전극을 포함하고, 상기 신호전달부는 제2내부전극를 포함하며, 인접하여 배치되는 상기 제1내부전극과 상기 제2내부전극간 수직방향 이격거리는 30 ~ 100㎛일 수 있다.The electric shock protection part may include a first internal electrode, and the signal transmission part may include a second internal electrode, and a vertical separation distance between the first internal electrode and the second internal electrode disposed adjacent to each other may be 30 to 100 μm. Can be.
또한, 상기 소체는 유입되는 데이터 신호의 감쇄 억제, 절연파괴 없이 유입되는 정전기 통과 및 유입되는 외부전원의 누설전류를 차단하도록 유전율이 650 ~ 950일 수 있다.In addition, the body may have a dielectric constant of 650 to 950 so as to block the attenuation of the incoming data signal, to prevent the passage of static electricity that flows in and out of the leakage current of the incoming external power without breaking the insulation.
또한, 상기 소체는 유리질 성분 100 중량부에 대하여 티탄산바륨계 성분을 30 ~ 50 중량부 포함할 수 있다.In addition, the body may include 30 to 50 parts by weight of the barium titanate-based component with respect to 100 parts by weight of the glass component.
또한, 소체는 밀도가 4.5 ~ 5.8 g/㎣일 수 있다.In addition, the body may have a density of 4.5 to 5.8 g / mm 3.
또한, 상기 내부전극의 두께방향을 기준으로 상기 소체는 두께가 0.5 ~ 0.85 ㎜ 일 수 있다.In addition, the body may have a thickness of 0.5 to 0.85 mm based on the thickness direction of the internal electrode.
또한, 상기 소체는 티탄산바륨계 성분 및 유리질 성분을 포함하는 복수개의 시트가 적층 및 소결되어 형성되고, 상기 복수개의 시트 중 상기 내부전극이 어느 일면에 형성된 시트는 최소두께가 20 ㎛ 이상일 수 있고, 보다 바람직하게는 28 ~ 70 ㎛일 수 있다. The body may be formed by stacking and sintering a plurality of sheets including a barium titanate-based component and a glassy component, and a sheet having the internal electrode formed on one surface of the plurality of sheets may have a minimum thickness of 20 μm or more. More preferably, it may be 28-70 micrometers.
또한, 상기 유리질 성분은 산화알루미늄 및 산화규소를 포함할 수 있다. 이때, 상기 유리질 성분은 유전율이 25 이상일 수 있다.In addition, the glassy component may include aluminum oxide and silicon oxide. In this case, the glassy component may have a dielectric constant of 25 or more.
또한, 상기 감전보호소자는 정전용량이 4 ~ 100 ㎊일 수 있다.In addition, the electric shock protection device may have a capacitance of 4 ~ 100 kW.
또한, 상기 감전보호소자는 상기 내부전극과 전기적으로 연결되도록 상기 소체의 외부면에 형성된 외부전극을 더 포함할 수 있다.The electric shock protection device may further include an external electrode formed on an outer surface of the body to be electrically connected to the internal electrode.
또한, 본 발명은 인체 접촉가능 전도체; 회로부 및 상기 전도체와 상기 회로부 사이에 배치되는 본 발명에 따른 감전보호소자;를 구비하는 휴대용 전자장치를 제공한다.The present invention also provides a human body contactable conductor; It provides a portable electronic device having a circuit portion and an electric shock protection device according to the present invention disposed between the conductor and the circuit portion.
또한, 상기 전도체는 상기 전자장치와 외부기기의 통신을 위한 안테나, 메탈 케이스, 및 도전성 장신구 중 적어도 하나를 포함할 수 있다.In addition, the conductor may include at least one of an antenna, a metal case, and conductive jewelry for communication between the electronic device and an external device.
이하, 본 발명에서 사용한 용어에 대해 설명한다. Hereinafter, the term used by this invention is demonstrated.
본 발명에서 사용한 용어로 "상하방향", "수평방향"은 소체 내부에 구비되는 전극의 두께방향을 기준으로 한 상대적인 위치관계로써, 상기 "상하방향"은 전극의 두께방향과 평행하고, 상기 "수평방향"은 전극의 두께방향과 수직하다. 이때, 상기 평행 및 수직은 전극의 두께방향을 고려했을 때 육안상 평행 및 수직하게 보이는 범위 내를 모두 포괄하는 의미로 사용한다.As used herein, the term "up and down direction" and "horizontal direction" is a relative positional relationship with respect to the thickness direction of the electrode provided in the body, and the "up and down direction" is parallel to the thickness direction of the electrode, and the " Horizontal direction ”is perpendicular to the thickness direction of the electrode. In this case, the parallel and the vertical are used to encompass all the ranges that appear parallel and vertical on the naked eye when considering the thickness direction of the electrode.
또한, 본 발명에서 사용한 용어로 "제1소체"및 "제2소체"는 각각의 기능부, 예를 들어 감전보호기능을 하는 감전보호부 및 통신신호를 감쇄없이 통과시키는 기능을 하는 신호전달부에 대한 설명을 용이하게 하기 위하여 내부전극의 배치를 고려해서 소체의 단면을 구획 후 제1소체 및 제2소체로 표현하였다. 그러나 도 7에서 확인할 수 있듯이, 제조된 감전보호소자의 단면상에는 제1소체와 제2소체가 분리되어 있지 않고, 하나의 소체로 존재하는 것을 확인할 수 있다. 다만, 소체의 일 제조공정을 고려했을 때 소체는 일 내부전극이 일 시트상에 구비된 다수개의 시트가 적층된 후 소결되어 형성될 수 있음에 따라서, 감전보호소자 단면에서의 전극구조를 통해 소체를 이루는 시트의 두께, 개수를 간접적으로 유추할 수 있음은 당업자에게 자명할 것이다.In addition, as used herein, the terms "first body" and "second body" are each functional unit, for example, an electric shock protection unit having an electric shock protection function, and a signal transmission unit having a function of passing a communication signal without attenuation. In order to facilitate the description, the cross-section of the body is expressed as the first body and the second body after partitioning in consideration of the arrangement of the internal electrodes. However, as can be seen in FIG. 7, it can be seen that the first body and the second body are not separated from each other on the cross section of the manufactured electric shock protection device and exist as one body. However, in consideration of one manufacturing process of the body, the body may be formed by stacking a plurality of sheets having one internal electrode on one sheet and then sintering the body. It will be apparent to those skilled in the art that the thickness and number of sheets forming the sheet may be indirectly inferred.
본 발명에 의하면, 감전보호소자가 경박단소의 휴대용기기 개발 추세에 맞춰서 작고 슬림화되도록 구현됨에도 전원에 의한 누설전류로부터 사용자를 보호하고, 외부의 정전기로부터 내부회로를 보호할 수 있다. 또한, 누설전류 및 고전압의 정전기를 방호할 수 있을 만큼 충분한 정전용량을 구비하는 동시에 쉽게 절연파괴 되지 않아 지속적으로 누설전류 차단 및 고전압의 정전기를 방호할 수 있다. 나아가, 통신관련 회로에 사용되더라도 통신주파수 대역의 데이터 수신 신호의 감쇄를 최소화하여 우수한 데이터 통신효율을 담보할 수 있어서 보호소자의 적용 회로 제한에서 자유롭다. 더불어 소자의 기계적 강도가 우수해 취급성이 향상됨에 따라서 전자기기의 제조시 생산성이 향상될 수 있다. 이에 따라서 전자기기의 외부 하우징이 전도성 소재일지라도 본 발명에 따른 감전보호소자를 통해 정전기, 누설전류로부터 사용자 및 기기 내부 회로가 보호됨에 따라서 외부 하우징 소재선택에서 자유롭고 사용자 및 인체에 안전한 휴대용 전자기기로 널리 응용될 수 있다.According to the present invention, even if the electric shock protection device is implemented to be small and slim in accordance with the development trend of light and small portable devices, it is possible to protect the user from the leakage current by the power supply and to protect the internal circuit from external static electricity. In addition, it has sufficient capacitance to protect leakage current and high voltage static electricity and at the same time it is not easily broken, so that leakage current can be continuously blocked and high voltage static electricity can be protected. Furthermore, even when used in a communication-related circuit, it is possible to ensure excellent data communication efficiency by minimizing attenuation of a data reception signal of a communication frequency band, thereby being free from the circuit limitation of the protection device. In addition, as the mechanical strength of the device is excellent and the handleability is improved, productivity in manufacturing the electronic device may be improved. Accordingly, even if the external housing of the electronic device is a conductive material, the user and device internal circuits are protected from static electricity and leakage current through the electric shock protection device according to the present invention, and thus the portable electronic device is widely used as a portable electronic device free from external material selection and safe for the user and the human body. Can be applied.
도 1은 본 발명의 일 실시예에 따른 감전보호소자에 대한 도면으로써, 도 1a는 감전보호소자의 내부 및 외부 전극배치를 나타낸 사시도, 도 1b는 도 1a의 분해사시도, 도 1c는 도 1a의 단면도,1 is a view of an electric shock protection device according to an embodiment of the present invention, Figure 1a is a perspective view showing the internal and external electrode arrangement of the electric shock protection device, Figure 1b is an exploded perspective view of Figure 1a, Figure 1c is a view of Figure 1a Cross-section,
도 2는 본 발명의 일 실시예에 따른 감전보호소자에 포함되는 감전보호부의 단면도,2 is a cross-sectional view of an electric shock protection unit included in an electric shock protection device according to an embodiment of the present invention;
도 3은 본 발명의 일 실시예에 따른 감전보호소자에 대한 도면으로써, 도 3a는 감전보호소자의 내부 및 외부 전극배치를 나타낸 사시도, 도 3b는 도 3a의 분해사시도, 3 is a view of the electric shock protection device according to an embodiment of the present invention, Figure 3a is a perspective view showing the internal and external electrode arrangement of the electric shock protection device, Figure 3b is an exploded perspective view of Figure 3a,
도 4는 본 발명의 일 실시예에 따른 감전보호소자에 대한 단면도,4 is a cross-sectional view of an electric shock protection device according to an embodiment of the present invention;
도 5a 내지 도 5e는 본 발명의 일 실시예에 따른 감전보호소자의 적용예를 나타낸 개념도, 5a to 5e is a conceptual diagram showing an application example of the electric shock protection device according to an embodiment of the present invention,
도 6a 내지 도 6c는 본 발명의 일 실시예에 따른 감전보호소자의 (a)누설전류 및 (b)정전기(ESD), 및 (c)통신 신호에 대한 동작을 설명하기 위한 개략적 등가회로도, 그리고 6a to 6c are schematic equivalent circuit diagrams for explaining operations of (a) leakage current and (b) electrostatic discharge (ESD), and (c) communication signals of an electric shock protection device according to an embodiment of the present invention;
도 7은 본 발명의 일실시예에 의한 감전보호소자의 단면SEM 사진이다.7 is a cross-sectional SEM image of the electric shock protection device according to an embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. The drawings and description are to be regarded as illustrative in nature and not restrictive. Like reference numerals designate like elements throughout the specification.
먼저, 본 발명의 일실시예에 따른 감전보호소자의 기능에 대해 설명한다. First, the function of the electric shock protection device according to an embodiment of the present invention will be described.
상기 감전보호소자는 내부로 유입되는 누설전류 및 정전기에 대해 방호하는 감전보호기능 및 내부로 유입되는 데이터신호의 감쇄를 억제하여 통과시키는 신호전달기능을 하나의 소자를 통해 수행한다. 이와 같은 복합기능을 고려하여 바람직하게는 상기 감전보호소자는 안테나 등의 전도체와 내장 회로부 사이에 배치될 수 있다. The electric shock protection device performs an electric shock protection function that protects against leakage current and static electricity flowing into the interior, and a signal transmission function that suppresses and passes the attenuation of the data signal flowing into the interior through one device. In consideration of such a complex function, the electric shock protection device may be preferably disposed between a conductor such as an antenna and an internal circuit unit.
또한, 상술한 감전보호기능 및 신호전달기능은 도 1a에 도시된 것과 같은 감전보호소자 또는 도 3a에 도시된 것과 같은 감전보호소자를 통해 달성할 수 있다. In addition, the above-described electric shock protection function and signal transmission function can be achieved through an electric shock protection device as shown in FIG. 1A or an electric shock protection device as shown in FIG. 3A.
먼저, 도 1a에 도시된 감전보호소자(100)는 전기적으로 병렬로 접속된, 내부로 유입되는 누설전류 및 정전기에 대해 방호하는 감전보호부 및 내부로 유입되는 데이터신호의 감쇄를 억제하여 통과시키는 신호전달부를 구비하여 구현될 될 수 있다. 구체적으로 도 1b 및 도 1c와 같이 상기 감전보호소자(100)는 감전보호부(110) 및 상기 감전보호부(110)의 상, 하로 배치되는 신호전달부(120a,120b)를 구비할 수 있다. 다만, 이에 제한되는 것은 아니며 상기 신호전달부는 감전보호부의 상부 또는 하부의 어느 일측에만 배치될 수 있고, 신호전달부와 감전보호부가 전기적으로 연결, 일예로 전기적으로 병렬로 접속되도록 구현된다면 상기 감전보호부의 측부에 상기 신호전달부가 배치될 수도 있다.First, the electric shock protection device 100 shown in FIG. 1A is electrically connected in parallel to the electric shock protection unit that protects against leakage current and static electricity flowing in and to prevent attenuation of the data signal introduced into. It may be implemented with a signal transmission unit. In detail, as illustrated in FIGS. 1B and 1C, the electric shock protection device 100 may include an electric shock protection unit 110 and signal transmission units 120a and 120b disposed above and below the electric shock protection unit 110. . However, the present invention is not limited thereto, and the signal transmission unit may be disposed only on one side of the upper or lower part of the electric shock protection unit, and the electric shock protection is implemented if the signal transmission unit and the electric shock protection unit are electrically connected, for example, electrically connected in parallel. The signal transmission unit may be disposed on the side of the unit.
먼저, 상기 감전보호부(110)는 수평방향 또는 수직방향으로 이격되어 배치되는 제1내부전극(111a,112a) 및 이를 둘러싸는 제1소체(111,112,113)를 통해 구현될 수 있다. 또한, 이격된 상기 한 쌍의 제1내부전극(111a,112a) 사이에는 공극, 또는 상기 공극의 일부 또는 전부를 충진하는 방전물질을 더 구비할 수 있고, 일예로 이와 같은 유형의 감전보호부는 써프레서일 수 있다.First, the electric shock protection unit 110 may be implemented through the first internal electrodes 111a and 112a and the first bodies 111, 112 and 113 which are spaced apart from each other in the horizontal or vertical direction. In addition, a space between the spaced apart first pair of internal electrodes 111a and 112a may be further provided with a discharge material filling a portion or all of the spaces. It may be a presser.
상기 감전보호부(110)에 구비되는 한 쌍의 제1내부전극(111a,112a)과 공극(116)의 위치관계에 대해 도 1b 및 도 2을 참조하여 설명하면, 도 1b와 같이 제1내부전극(111a,112a)이 감전보호소자의 단면에서 상하방향으로 각각의 전극면 적어도 일부가 중첩되도록 배치되고, 중첩된 이격공간에 공극(116)을 내부에 포함하는 공극형성부재(115)가 배치될 수 있다. 또는, 도 2과 같이 감전보호소자의 감전보호부(110')는 수평방향으로 이격된 한 쌍의 제1내부전극(111a',112a') 및 상기 이격된 제1내부전극(111'a,112'a) 사이에 형성된 공극이 배치될 수 있고, 이 때 상기 공극은 제1내부전극(111'a,112'a)의 두께보다 큰 높이를 갖도록 형성될 수 있으며, 상기 공극 전부를 충진하는 방전물질(117)이 구비될 수 있다. 상기 제1내부전극(111a,111a', 112a,112a')의 개수/배치 및 공극의 구조/배치는 도 1b와 도 2에 한정되지 않으며, 여러 쌍으로 제1내부전극이 구비될 수 있고, 공극 또한 2개 이상 구비될 수 있다. 또한, 도 1b와 같이 공극형성부재(115)는 소결된 후 소체에 잔존하거나 또는 소체의 소결온도 이하의 온도에서 기화되는 소재를 사용하여 최종 소체에는 공극만 남고, 공극형성부재는 소실될 수도 있다. The positional relationship between the pair of first internal electrodes 111a and 112a and the pores 116 provided in the electric shock protection unit 110 will be described with reference to FIGS. 1B and 2, as shown in FIG. 1B. The electrodes 111a and 112a are arranged to overlap at least a part of each electrode surface in the vertical direction in the cross section of the electric shock protection device, and the pore forming member 115 including the voids 116 therein is disposed in the overlapping spaces. Can be. Alternatively, as illustrated in FIG. 2, the electric shock protection unit 110 ′ of the electric shock protection device includes a pair of first internal electrodes 111 a ′ and 112 a ′ spaced apart in a horizontal direction and the first internal electrodes 111 ′ a, which are spaced apart from each other. The pores formed between the 112'a) may be disposed, and the pores may be formed to have a height greater than the thickness of the first internal electrodes 111'a and 112'a. The discharge material 117 may be provided. The number / arrangement of the first internal electrodes 111a, 111a ', 112a, and 112a' and the structure / arrangement of the pores are not limited to FIGS. 1B and 2, and the first internal electrodes may be provided in pairs. Two or more voids may also be provided. In addition, as shown in FIG. 1B, the pore forming member 115 may remain in the body after being sintered or may be vaporized at a temperature below the sintering temperature of the body, and only the voids remain in the final body, and the pore forming member may be lost. .
또한, 상기 방전물질(117)은 도 2과 다르게 공극의 일부에만 충진될 수 있다. 이때, 상기 방전물질은 공극의 외부를 둘러싸는 소체의 내부 표면을 코팅하여 공극의 일부에만 충진되는 경우를 포함할 수 있으며, 상기 방전물질이 공극을 충진하는 구체적 형상에 대하여 본 발명은 특별히 한정하지 않는다. 다만, 이격된 제1내부전극 각각에 상기 방전물질이 직접 연결되도록 일부 충진됨이 바람직하다. 상기 방전물질(117)은 적어도 한 종의 금속입자를 포함하는 비전도성물질로 이루어질 수 있으며, SiC 또는 실리콘 계열의 성분을 포함하는 반도체물질로 이루어질 수 있다. 더불어, 상기 방전물질은 SiC, 카본, 그라파이트 및 ZnO 중에서 선택된 1종 이상의 재료와, Ag, Pd, Pt, Au, Cu, Ni, W, Mo 중에서 선택된 1종 이상의 재료를 소정의 비율로 혼합하여 이루어질 수도 있다. 일례로, 상기 제1내부전극(111a,111a', 112a,112a')이 Ag 성분을 포함하는 경우, 상기 방전물질은 SiC-ZnO계의 성분을 포함할 수 있다. 상기 SiC(Silicon carbide) 성분은 열적 안정성이 우수하고, 산화 분위기에서 안정성이 우수하며, 일정한 도전성과 도열성을 가지고 있으며, 낮은 유전율을 갖는다. 또한, ZnO 성분은 우수한 비선형 저항특성 및 방전특성이 있다. 이때, 상기 SiC와 ZnO는 각각 별도로 사용시 전도성이 있으나, 서로 혼합 후 소성을 진행하면 SiC 입자 표면에 ZnO가 결합됨으로써 절연층을 형성하게 된다. 이와 같은 절연층은 SiC가 완전히 반응하여 SiC 입자 표면에 SiC-ZnO 반응층을 형성했기 때문이다. 이에 따라, 상기 절연층은 Ag 패스를 차단하여 방전물질에 한층 더 높은 절연성을 부여하고, 정전기에 대한 내성을 향상시켜 감전보호부(110)의 DC 쇼트 현상의 제거를 보다 유리하게 하는 이점이 있다. 여기서, 상기 방전물질의 일례로써 SiC-ZnO계의 성분을 포함하는 것으로 설명하였지만 이에 한정하는 것은 아니며, 상기 방전물질은 상기 제1내부전극(111a,111a',112a,112a')을 구성하는 재질에 맞는 반도체 물질 또는 금속입자를 포함하는 비전도성 물질이 사용될 수 있다In addition, the discharge material 117 may be filled in only a part of the pores, unlike in FIG. In this case, the discharge material may include a case in which only a part of the gap is filled by coating an inner surface of the body surrounding the outside of the gap, and the present invention is not particularly limited to a specific shape in which the discharge material fills the gap. Do not. However, it is preferable to partially fill each of the first internal electrodes spaced apart so that the discharge material is directly connected to each other. The discharge material 117 may be made of a non-conductive material including at least one kind of metal particles, and may be made of a semiconductor material including SiC or silicon-based components. In addition, the discharge material is made by mixing at least one material selected from SiC, carbon, graphite, and ZnO with at least one material selected from Ag, Pd, Pt, Au, Cu, Ni, W, and Mo at a predetermined ratio. It may be. For example, when the first internal electrodes 111a, 111a ', 112a, and 112a' include an Ag component, the discharge material may include a SiC-ZnO-based component. The silicon carbide (SiC) component has excellent thermal stability, excellent stability in an oxidizing atmosphere, constant conductivity and thermal conductivity, and low dielectric constant. In addition, the ZnO component has excellent nonlinear resistance characteristics and discharge characteristics. At this time, the SiC and ZnO are conductive when used separately, but when mixed with each other and baking is performed, ZnO is bonded to the surface of the SiC particles to form an insulating layer. Such an insulating layer is because SiC completely reacts to form a SiC-ZnO reaction layer on the surface of the SiC particles. Accordingly, the insulating layer has an advantage of blocking the Ag pass to provide higher insulation to the discharged material and improving resistance to static electricity to more effectively eliminate the DC short phenomenon of the electric shock protection unit 110. . Here, an example of the discharge material is described as including SiC-ZnO-based components, but the present invention is not limited thereto. The discharge material is a material constituting the first internal electrodes 111a, 111a ', 112a, and 112a'. Non-conductive materials including semiconducting materials or metal particles can be used.
한편, 상기 제1내부전극(111a,111a', 112a,112a') 사이의 간격 및 서로 대향하여 중첩된 면적 또는 길이는 감전보호부(110,110')의 항복전압(또는 트리거전압)(Vbr)을 만족하도록 구성될 수 있으며, 상기 한쌍의 제1내부전극(111a/112a,111a'/112a') 사이의 간격은 10~100㎛일 수 있다. 예를 들면, 상기 제1내부전극(111a,112a) 사이의 간격은 25㎛일 수 있다. 여기서, 한 쌍의 제1내부전극(111a/112a,111a'/112a') 사이 간격이 10㎛ 미만이면, 정전기에 대한 내성이 취약해질 수 있다. 또한, 한 쌍의 제1내부전극(111a/112a,111a'/112a') 사이의 간격이 100㎛를 초과하면, 방전 개시 전압(동작 전압)이 증가하여 정전기에 의한 원활한 방전이 이루어지지 않아 정전기에 대한 보호기능이 상실될 수 있다. Meanwhile, the interval between the first internal electrodes 111a, 111a ', 112a, and 112a' and the overlapping area or length of the first internal electrodes 111a, 111a ', 112a, and 112a' correspond to breakdown voltages (or trigger voltages) Vbr of the electric shock protection units 110 and 110 '. The distance between the pair of first internal electrodes 111a / 112a and 111a '/ 112a' may be 10 to 100 μm. For example, an interval between the first internal electrodes 111a and 112a may be 25 μm. Here, when the interval between the pair of first internal electrodes 111a / 112a and 111a '/ 112a' is less than 10 μm, resistance to static electricity may be weak. In addition, when the interval between the pair of first internal electrodes 111a / 112a and 111a '/ 112a' exceeds 100 µm, the discharge start voltage (operating voltage) increases, and thus smooth discharge is not performed due to static electricity. The protection against can be lost.
또한, 제1내부전극(111a,111a', 112a,112a')의 두께는 2 ~ 10㎛일 수 있다. 만일 제1내부전극(111a,111a', 112a,112a')의 두께가 2㎛ 미만이면 내부전극으로서의 역할을 수행하기 어려울 수 있다. 또한, 만일 제1내부전극(111a,111a', 112a,112a') 두께가 10㎛를 초과하면 내부전극 사이의 거리 확보가 제한되고, 감전보호소자(100)의 부피가 증가하여 소형화에 악영향을 미칠 수 있다. In addition, the thickness of the first internal electrodes 111a, 111a ′, 112a, 112a ′ may be 2 μm to 10 μm. If the thickness of the first internal electrodes 111a, 111a ′, 112a, 112a ′ is less than 2 μm, it may be difficult to serve as an internal electrode. In addition, if the thickness of the first internal electrodes 111a, 111a ', 112a, and 112a' exceeds 10 µm, the distance between the internal electrodes is limited, and the volume of the electric shock protection device 100 increases, which adversely affects miniaturization. Can be crazy
또한, 상기 제1내부전극(111a,111a', 112a,112a') 길이는 소체의 횡단면이 직사각형인 경우 긴 변의 길이의 70 ~ 85%일 수 있고, 폭은 상기 긴 변 길이의 50 ~ 65%일 수 있다. 일예로, 가로길이 0.02인치, 세로길이 0.01인치의 감전보호소자에서 상기 제1내부전극의 길이는 0.016인치, 폭은 0.006인치일 수 있다.In addition, the length of the first internal electrodes 111a, 111a ', 112a, and 112a' may be 70 to 85% of the length of the long side when the body has a rectangular cross section, and the width is 50 to 65% of the length of the long side. Can be. For example, in the electric shock protection device having a length of 0.02 inch and a length of 0.01 inch, the length of the first internal electrode may be 0.016 inch and the width of 0.006 inch.
또한, 상기 제1내부전극(111a,111a', 112a,112a')은 Ag, Au, Pt, Pd, Ni 및 Cu 중 어느 하나 이상의 성분을 포함할 수 있으며, 일예로, Ag/Pd일 수 있다. In addition, the first internal electrodes 111a, 111a ', 112a, and 112a' may include one or more components of Ag, Au, Pt, Pd, Ni, and Cu, and may be Ag / Pd. .
한편, 이와 같은 구성 및 배치에 의해 일예로, 상기 감전보호부(110,110')의 정전기에 의한 방전 개시 전압(동작 전압)은 1~15㎸일 수 있다. 여기서, 감전보호부(110,110')의 방전 개시 전압이 1㎸이하이면, 정전기에 대한 내성의 확보가 곤란하고, 15㎸이상이면, 정전기에 의해 손상될 수 있다.On the other hand, by such a configuration and arrangement, for example, the discharge start voltage (operation voltage) of the electric shock protection unit 110, 110 'by static electricity may be 1 ~ 15 kW. Here, when the discharge start voltage of the electric shock protection unit 110, 110 'is 1 kV or less, it is difficult to secure resistance to static electricity.
또한, 상술한 감전보호부(110,110')는 누설전류 차단 및 고압의 정전기를 통과시키기 위하여 감전보호부의 항복전압(Vbr)은 이를 구비하는 전자장치를 구동시키기 위한 외부전원의 정격전압(Vin)보다 클 수 있다. 이때, 상기 정격전압은 240V, 110V, 220V, 120V, 110V, 및 100V 중 어느 하나일 수 있다.In addition, the above-described electric shock protection unit (110,110 ') is a breakdown voltage (Vbr) of the electric shock protection unit in order to pass the leakage current and high-pressure static electricity than the rated voltage (Vin) of the external power source for driving the electronic device having the same Can be large. In this case, the rated voltage may be any one of 240V, 110V, 220V, 120V, 110V, and 100V.
상기 제1소체(111,112,113)는 감전보호부(110) 단면에서 상술한 제1내부전극(111a,112a)과 직접적으로 맞닿는 부분이며, 이때, 제1소체(110)는 복수개의 시트층(111,112,113)이 순차적으로 적층되고, 각각의 일면에 구비된 제1내부전극(111a,112a)이 서로 대향되도록 배치된 후 압착 후 소결을 통해 일체로 형성될 수 있다. 또는, 하나의 시트 내부에 감전보호부(110)의 전극구조를 가지도록 제1내부전극(111a,112a)을 이격배치 시킨 후 소결시켜 제1소체가 형성될 수도 있다. The first bodies 111, 112, and 113 are portions directly contacting the first internal electrodes 111 a and 112 a in the electric shock protection unit 110, and the first bodies 110 may include a plurality of sheet layers 111, 112, and 113. These may be sequentially stacked, and the first internal electrodes 111a and 112a provided on one surface thereof may be disposed to face each other, and may be integrally formed by sintering after pressing. Alternatively, the first body may be formed by sintering the first internal electrodes 111a and 112a so as to have an electrode structure of the electric shock protection unit 110 in one sheet.
한편, 감전보호부의 제1소체(111,112,113)는 후술하는 신호전달부(120a,120b)의 제2소체(121,122,123,124,125,126,127,128)와 각각이 소결 전 적층된 후 일체로 소결되어 소체를 형성할 수 있으나 이에 제한되는 것은 아니다. 상기 제1소체(111,112,113)에 대한 설명은 후술하는 신호전달부에 대한 설명 후에 제2소체와 함께 구체적으로 설명한다.On the other hand, the first body (111, 112, 113) of the electric shock protection unit is laminated with each of the second body (121, 122, 123, 124, 125, 126, 127, 128) of the signal transmission unit (120a, 120b) to be described later before sintering can be integrally sintered to form a body, but is not limited thereto. It is not. Description of the first body (111, 112, 113) will be described in detail with the second body after the description of the signal transmission unit to be described later.
상기 신호전달부(120a,120b)는 안테나와 같은 전도체로부터 유입되는 통신대역에 통신 신호를 감쇄없이 통과시키기는 기능을 수행함에 따라서 RF 신호 장애를 유발시키지 않을 수 있다. The signal transmission units 120a and 120b may not cause RF signal interference as the signal transmission units 120a and 120b pass a communication signal without attenuation in a communication band introduced from a conductor such as an antenna.
상기 신호전달부(120a,120b)는 전도체로부터 정전기 유입시 절연파괴 되지 않고 상기 정전기를 통과시키며, 상기 회로부의 접지로부터 유입되는 외부전원의 누설전류, 특히 DC 성분을 차단할 수 있고, 이와 같은 감전보호기능을 상술한 감전보호소자와 동시에 수행하여 더욱 우수한 감전보호기능을 발현할 수 있다. 신호전달부(120a,120b)가 감전보호기능을 동시에 수행하기 위하여 바람직하게는 상기 신호전달부(120a,120b)의 절연파괴전압(Vcp)이 전자장치 외부전원의 정격전압(Vbr)보다 클 수 있다. 이때. 상기 신호전달부(120a,120b)의 절연파괴전압(Vcp)은 신호전달부에 구비되는 제2내부전극(121a,122a,123a,124a,125a,126a,127a,128a)의 양단에서 형성된다.The signal transmission units 120a and 120b allow the static electricity to pass through without being insulated and destroyed when static electricity flows from a conductor, and may block leakage current, especially DC components, of external power flowing from the ground of the circuit unit, and thus protect against electric shock. By performing the function at the same time as the above-described electric shock protection device it is possible to express a more excellent electric shock protection function. In order for the signal transmission units 120a and 120b to simultaneously perform an electric shock protection function, the insulation breakdown voltage Vcp of the signal transmission units 120a and 120b may be greater than the rated voltage Vbr of the external power supply of the electronic device. have. At this time. The dielectric breakdown voltage Vcp of the signal transmission units 120a and 120b is formed at both ends of the second internal electrodes 121a and 122a, 123a, 124a, 125a, 126a, 127a and 128a provided in the signal transmission unit.
상기 제2내부전극은 다양한 형상 및 패턴으로 구비될 수 있으며, 복수개의 제2내부전극 중 어느 하나 이상의 전극이 동일한 패턴으로 구비되거나 서로 다른 패턴을 갖도록 구비될 수도 있다. 즉, 제2내부전극은 목적하는 정전용량을 구현할 수 있도록 소체 내부에 배치될 경우 각 제2내부전극의 패턴에는 제한이 없다.The second internal electrodes may be provided in various shapes and patterns, and any one or more of the plurality of second internal electrodes may be provided in the same pattern or may have different patterns. That is, when the second internal electrode is disposed inside the body so as to realize a desired capacitance, there is no limitation on the pattern of each second internal electrode.
또한, 상기 신호전달부(120a,120b)를 구성하는 제2내부전극 (121a,122a,123a,124a,125a,126a,127a,128a)은 서로 마주하는 한 쌍의 제2내부전극 사이, 예를 들어 제1신호전달부(120a)에 구비되는 제2내부전극(121a,122a,123a,124a) 중 인접해서 마주하는 전극(예,121a/122a) 사이의 이격 간격이 이격 간격이 15 ~ 100㎛의 범위를 갖도록 구비될 수 있으며, 바람직하게는 20 ~ 100㎛일 수 있다. 만일 인접하는 제2내부전극 사이의 간격이 15㎛ 미만이면, 무선 통신대역의 통신 신호를 감쇄없이 통과시키기에 충분한 정전용량을 확보하기 곤란하고, 고압의 정전기에 의해 절연파괴 될 수 있는 문제가 있다. 또한, 인접하는 제2내부전극 사이의 간격이 100㎛를 초과하면 고용량의 정전용량을 구현하는데 어려운 문제가 있다.In addition, the second internal electrodes 121a, 122a, 123a, 124a, 125a, 126a, 127a, and 128a constituting the signal transmission units 120a and 120b may be disposed between a pair of second internal electrodes facing each other. For example, the separation interval between the adjacent inner facing electrodes (eg, 121a / 122a) among the second internal electrodes 121a, 122a, 123a, and 124a provided in the first signal transmission unit 120a is 15 to 100 μm. It may be provided to have a range of, preferably may be 20 ~ 100㎛. If the distance between the adjacent second internal electrodes is less than 15 µm, it is difficult to secure a sufficient capacitance to pass the communication signal of the wireless communication band without attenuation, and there is a problem that the dielectric breakdown may be caused by high voltage static electricity. . In addition, when the spacing between adjacent second internal electrodes exceeds 100 μm, it is difficult to realize high capacitance.
이때, 상기 신호전달부(120a,120b)를 구성하는 각각의 제2내부전극들의 두께는 서로 마주하는 한 쌍의 제2내부전극 사이의 간격보다 1/10 ~ 1/2의 크기를 갖도록 구비될 수 있다. 예를 들면, 서로 마주하는 한 쌍의 제2내부전극(121a/122a) 간의 간격이 20㎛인 경우, 상기 제2내부전극(121a,122a)의 두께는 2 ~ 10㎛의 범위를 갖도록 구비될 수 있다. 여기서, 제2내부전극의 두께가 2㎛이하이면, 전극으로서의 역할을 수행할 수 없고, 10㎛를 초과하면 제2내부전극의 두께가 두꺼워져 정해진 크기에서 신호전달부를 구성하기 위한 제2내부전극 사이의 거리확보가 제한되며, 상하로 중첩된 한 쌍의 제2내부전극을 단위유닛으로 할 때 한정된 영역의 제2소체에 구비될 수 있는 단위유닛의 개수가 제한되므로 고용량의 정전용량을 구현하기 어려운 문제가 있다.In this case, the thickness of each of the second internal electrodes constituting the signal transmission units 120a and 120b may be provided to have a size of 1/10 to 1/2 greater than an interval between the pair of second internal electrodes facing each other. Can be. For example, when the interval between the pair of second internal electrodes 121a and 122a facing each other is 20 μm, the thickness of the second internal electrodes 121a and 122a may be provided to have a range of 2 to 10 μm. Can be. Here, when the thickness of the second internal electrode is 2 μm or less, the second internal electrode may not function as an electrode, and when the thickness of the second internal electrode exceeds 10 μm, the thickness of the second internal electrode may be thickened to form a signal transmission part at a predetermined size. The distance between the two is limited, and the number of unit units that can be provided in the second body of the limited area is limited when a pair of second internal electrodes overlapped with each other is used as a unit unit. There is a difficult problem.
한편, 상기 제2내부전극들의 양단부 중 외부전극과 연결되지 않는 자유단부와 상기 외부전극과의 최단거리, 일예로 도 1c에서 일 제2내부전극(124a)의 자유단부와 인접한 외부전극(132)간의 최단거리가 최단거리가 적어도 15㎛의 거리를 갖도록 구비되며, 15~100㎛의 범위의 거리를 갖도록 구비될 수 있다.On the other hand, the outer end 132 adjacent to the free end of the second inner electrode 124a in FIG. 1C is the shortest distance between the free end and the outer electrode of the second inner electrode that is not connected to the external electrode, for example The shortest distance between the liver is provided to have a distance of at least 15㎛, may be provided to have a distance in the range of 15 ~ 100㎛.
또한, 상기 신호전달부(120a, 120b)를 구성하는 제2내부전극은 도 1b에 도시된 것과 같이 하나의 시트층(121)에 하나의 제2내부전극(121a)이 형성되지 않고, 하나의 시트층(미도시)에 일렬로 이격하여 배치되는 복수개의 제2내부전극(미도시)을 포함할 수 있고, 복수개의 제2내부전극이 일면에 포함된 시트층을 복수개 적층시키되, 각 시트층에 형성된 복수개의 제2내부전극을 일정 면적 이상의 중첩면적을 가지도록 서로 대향 배치할 수도 있다. In addition, in the second internal electrodes constituting the signal transmission units 120a and 120b, one second internal electrode 121a is not formed on one sheet layer 121 as shown in FIG. It may include a plurality of second internal electrodes (not shown) disposed in a line spaced apart from the sheet layer (not shown), a plurality of sheet layers containing a plurality of second internal electrodes on one surface, each sheet layer The plurality of second internal electrodes formed in the plurality may be disposed to face each other to have an overlapping area of a predetermined area or more.
또한, 상기 제2내부전극은 상술한 제1내부전극의 재질과 동일하거나 상이할 수 있다.In addition, the second internal electrode may be the same as or different from the material of the first internal electrode.
한편, 감전보호부(110)와 신호전달부(120a,120b) 사이의 간격은 한 쌍의 제1내부전극(111a,112a) 사이의 간격보다 클 수 있다. 즉, 상기 한 쌍의 제1내부전극(111a,112a)을 따라 흐르는 정전기 또는 누설전류가 인접한 제2내부전극으로 누설되지 않도록 제1내부전극(111a,112a)과 충분한 간격을 확보하는 것이 바람직하다. 이때, 상기 신호전달부(120a,120b)와 상기 감전보호부(110) 사이의 거리는 상기 한 쌍의 제1내부전극(111a,112a) 사이의 간격보다 2배이상 큰 것이 바람직하다. 예를 들면, 상기 한 쌍의 제1내부전극(111a,112a) 사이의 간격이 10㎛인 경우, 상기 신호전달부(120a,120b)와 상기 감전보호부(110) 사이의 거리는 20㎛이상일 수 있다.Meanwhile, the distance between the electric shock protection unit 110 and the signal transmission units 120a and 120b may be greater than the distance between the pair of first internal electrodes 111a and 112a. That is, it is preferable to secure a sufficient distance from the first internal electrodes 111a and 112a so that static electricity or leakage current flowing along the pair of first internal electrodes 111a and 112a does not leak to the adjacent second internal electrodes. . At this time, the distance between the signal transmission unit (120a, 120b) and the electric shock protection unit 110 is preferably greater than two times greater than the interval between the pair of first internal electrodes (111a, 112a). For example, when the interval between the pair of first internal electrodes 111a and 112a is 10 μm, the distance between the signal transmission units 120a and 120b and the electric shock protection unit 110 may be 20 μm or more. have.
여기서, 상기 신호전달부와 감전보호부 사이의 거리란 도 1c를 참고로 설명하면, 일 신호전달부(120a)에 포함된 복수개의 제2내부전극 중 감전보호부(110)와 가장 인접하도록 위치하는 제2내부전극(121a)과 감전보호부(110)에 구비되는 제1내부전극 중 상기 제2내부전극(121a)에 가장 인접한 제1내부전극(111a)간의 거리를 의미한다.Here, the distance between the signal transmission unit and the electric shock protection unit is described with reference to FIG. 1C. The distance between the signal transmission unit and the electric shock protection unit is located closest to the electric shock protection unit 110 among the plurality of second internal electrodes included in the signal transmission unit 120a. The distance between the second internal electrode 121a and the first internal electrode 111a closest to the second internal electrode 121a among the first internal electrodes provided in the electric shock protection unit 110.
다만, 감전보호부(110)와 신호전달부(120a,120b)가 가까이 인접해서 배치되는 경우 외부에서 유입된 ESD가 감전보호부(110)를 통해서만 흘러나가는 것이 아니라 신호전달부(120a,120b)로 유입될 수 있어서 신호절달부(120a,120b)의 절연파괴를 유발할 수 있다. 이에 따라서 상기 신호전달부(120a,120b)와 상기 감전보호부(110) 사이의 거리는 적어도 20㎛의 거리를 갖도록 구비되며, 보다 바람직하게는 30㎛ 이상, 보다 더 바람직하게는 40~100㎛의 범위의 거리를 갖도록 구비될 수 있다. 만일 인접하여 배치되는 제1내부전극과 제2내부전극 간의 간격이 20㎛ 미만일 경우 순간적인 고압의 정전기가 신호전달부로 흘러들어가 절연파괴될 수 있으며, 특히 잦은 정전기가 통과하는 회로에 사용될 경우 신호전달부의 절연파괴는 더욱 증가할 수 있는 문제가 있다.However, when the electric shock protection unit 110 and the signal transmission units 120a and 120b are disposed adjacent to each other, the ESD introduced from the outside does not flow only through the electric shock protection unit 110 but the signal transmission units 120a and 120b. It may be introduced into the can cause the breakdown of the signal transmission unit (120a, 120b). Accordingly, the distance between the signal transmission parts 120a and 120b and the electric shock protection part 110 is provided to have a distance of at least 20 μm, more preferably 30 μm or more, even more preferably 40 to 100 μm. It may be provided to have a distance of the range. If the distance between the adjacent first internal electrode and the second internal electrode is less than 20 μm, instantaneous high voltage static electricity may flow into the signal transmission unit and be destroyed. In particular, when used in a circuit where frequent static electricity passes, the signal transmission may occur. Negative insulation breakdown has a problem that can be further increased.
한편, 상기 신호전달부(120a,120b)는 일면에 제2내부전극(121a,122a,123a,124a,125a,126a,127a,128a)이 구비된 복수의 시트층(121,122,123,124,125,126,127,128)이 순차적으로 적층되고, 각각의 일면에 구비된 복수의 전극들이 서로 대향되도록 배치된 후 소결 또는 경화 공정을 통해 제2소체를 형성하여 일체로 구현될 수 있다. 또는, 하나의 시트 내부에 신호전달부(120a, 120b)의 전극구조를 가지도록 제2내부전극을 이격배치 시킨 후 소결 또는 경화공정을 통해 제2소체가 형성되어 구현될 수 있다. Meanwhile, the signal transmitting parts 120a and 120b are sequentially stacked with a plurality of sheet layers 121, 122, 123, 124, 125, 126, 127, and 128 having second internal electrodes 121a, 122a, 123a, 124a, 125a, 126a, 127a, and 128a on one surface thereof. The plurality of electrodes provided on each surface may be disposed to face each other, and then may be integrally formed by forming a second body through a sintering or curing process. Alternatively, a second body may be formed by sintering or hardening a second internal electrode spaced apart from each other so as to have the electrode structures of the signal transmitting parts 120a and 120b in one sheet.
이하, 상술한 제1소체(111,112,113) 및 제2소체(121,122,123,124,125,126,127,128)를 포함하는 소체에 대해 설명한다. Hereinafter, a body including the first body 111, 112, 113 and the second body 121, 122, 123, 124, 125, 126, 127, 128 will be described.
감전보호소자가 경박단소의 휴대용 전자장치에 구비될 수 있기 위해서는 감전보호소자 자체의 소형화가 요구된다. 그러나 감전보호소자의 정전용량은 소체의 부피에 의존적이다. 즉, 소체 내부에 구비되는 내부전극배치를 동일하게 하면서도 소체 및 내부의 전극 크기를 모두 축소시키면 정전용량까지 작아진 감전보호소자가 구현될 수 있다. 이는, 감전보호소자의 두께(높이)가 감소하면서 내부 전극간의 거리가 좁아져 증가될 수 있는 정전용량을 고려하더라도 이와 동시에 작아지는 전극의 면적 또는 전극이 형성될 수 있는 면적이 동시에 감소한다. 이에 따라서 소형화되기 이전의 감전보호소자 정전용량을 소형화 후에도 유지시키는데 전극 구조의 설계변경 등으로 해결할 수 없는 절대적인 구조적 한계가 있다. 또한, 감전보호소자의 소형화에 따른 두께(높이)의 감소는 소체 내부에 구비되는 공극의 부피 감소, 감전보호부의 제1내부전극간 상하방향 이격거리 및 신호전달부의 제2내부전극간 상하방향 이격거리 감소를 초래함에 따라서 외부에서 유입되는 순간적인 고압의 정전기를 견디거나 통과시킬 수 있을 만큼의 감전보호부의 항복전압(Vbr) 및 신호전달부의 항복전압(Vcp)이 구현되지 못함에 따라서 소체가 절연파괴되고, 더 이상의 누설전류 차단/정전기로부터 회로를 보호할 수 있는 기능 자체가 영구히 상실될 수 있다. In order for the electric shock protection device to be provided in a light and small portable electronic device, it is required to miniaturize the electric shock protection device itself. However, the capacitance of the electric shock protection device depends on the volume of the body. That is, by reducing the size of both the body and the inside of the body while the same internal electrode arrangement provided in the body can be implemented an electric shock protection device reduced to the capacitance. This reduces the area of the electrode or the area where the electrode can be formed at the same time, even when the capacitance (the height) of the electric shock protection device is reduced and the capacitance between the internal electrodes can be narrowed and increased. Accordingly, there is an absolute structural limitation that the electric shock protection device capacitance before miniaturization is maintained even after miniaturization, which cannot be solved by a design change of the electrode structure. In addition, the decrease in the thickness (height) due to the miniaturization of the electric shock protection device reduces the volume of voids provided in the body, the vertical distance between the first internal electrodes of the electric shock protection part, and the vertical separation between the second internal electrodes of the signal transmission part. As the distance is reduced, the body is insulated because the breakdown voltage (Vbr) of the electric shock protection part and the breakdown voltage (Vcp) of the signal transmission part are not realized to withstand or pass the instantaneous high voltage static electricity flowing from the outside. It can be destroyed and permanently lose its ability to protect the circuit from further leakage current interruption / static.
이는 도 1b와 같이 소체는 내부전극이 일면에 구비된 다수개의 시트가 적층 및 소결되어 구현될 수 있는데, 이때 상하 방향의 내부전극간 이격거리가 짧아진다는 것은 시트의 두께가 얇아짐을 의미한다. 그러나 두께가 얇아진 시트는 크랙, 기공 등이 포함될 수 있는 여지가 높음에 따라서 소체의 기계적 강도를 더욱 저하시키며, 고압의 정전기가 유입되었을 때 이를 견디거나 통과시키기 어렵게 하는 문제가 있다. 또한, 낮아진 정전용량은 감전보호소자로 유입되는 통신신호, 예를 들어 모바일 무선통신 주파수 대역에서 통신신호의 수신감도를 현저히 감쇄시키는 문제점이 있다.This may be implemented by stacking and sintering a plurality of sheets having internal electrodes on one surface as shown in FIG. 1B. In this case, shorter separation distances between internal electrodes in the vertical direction mean thinner sheets. However, the thinner the sheet, the higher the possibility of cracks, pores, and the like, which further lowers the mechanical strength of the body, and has a problem of making it difficult to withstand or pass when high-pressure static electricity is introduced. In addition, the lower capacitance has a problem of significantly reducing the reception sensitivity of the communication signal flowing into the electric shock protection device, for example, the communication signal in the mobile wireless communication frequency band.
이를 방지하고자 감전보호소자를 소형화시킬 때, 내부전극이 형성된 시트의두께를 변경시키지 않을 경우 소체 내부에 적층될 수 있는 시트의 개수 및 내부전극의 개수가 동시에 적어짐에 따라서 얇은 시트두께로 인한 크랙, 공극으로 인한 결함이 방지되더라도 결과적으로 감전보호소자의 정전용량 저하를 초래하며, 이 경우에도 외부에서 유입되는 고압의 정전기, 누설전류를 차단할 수 없을 수 있고, 동시에 통신신호의 수신신호 감쇄를 막을 수 없다. 이와 같은 감전보호소자를 소형화시켰을 때의 문제점을 고려했을 때, 신호전달부와 감전보호부를 단일의 한정된 부피를 갖는 소체내에 복합화시키는 것이 매우 바람직하지 못할 수 있다. When the electric shock protection device is miniaturized to prevent this, if the thickness of the sheet on which the internal electrodes are formed is not changed, the number of sheets and the number of internal electrodes that can be stacked inside the body becomes smaller at the same time. Even if the defects caused by the voids are prevented, the electrostatic capacity of the electric shock protection device may be reduced as a result, and even in this case, it may not be possible to block the high voltage static electricity and leakage current flowing from the outside, and at the same time prevent the attenuation of the received signal of the communication signal. none. In view of the problem of miniaturizing such an electric shock protection device, it may be very undesirable to combine the signal transmission part and the electric shock protection part into a body having a single limited volume.
그러나 본 발명에 따른 발명자들은 이를 해결하기 위해 지속 연구한 결과, 감전보호소자의 절대적 크기의 축소 후에도 축소 전과 대비했을 때, 티탄산바륨계 성분 및 유리질 성분으로 소체를 형성시킬 경우 소자가 소형화된 크기임에도 뛰어난 감전보호 기능 및 통신신호 전달기능을 동시에 수행할 있다. However, the inventors of the present invention continually researched to solve this problem. However, when the body is formed of a barium titanate-based component and a glassy component as compared with before and after the absolute size reduction of the electric shock protection device, the device has a small size. Excellent electric shock protection function and communication signal transmission function can be performed simultaneously.
이에 본 발명에 따른 감전보호소자에 구비되는 소체는 경박단소의 휴대기기 내부에 장착되기 용이한 정도의 크기로 구현되면서 누설전류를 차단하고, 8 kV 이상의 순간적인 고압의 정전기를 통과시킬 수 있으며, 유입되는 통신신호를 감쇄없이 통과시킬 수 있도록 티탄산바륨계 성분 및 유리질 성분을 포함하여 부피가 0.025 ~ 0.060 ㎣로 구현된다.Thus, the body provided in the electric shock protection device according to the present invention is implemented in a size that is easy to be mounted inside the portable device of the light and thin element while blocking the leakage current, and can pass the static electricity of a high voltage of 8 kV or more, The volume is 0.025 ~ 0.060 감 including barium titanate-based components and glassy components to allow incoming communication signals to pass through without attenuation.
만일 소체(111,112,113,121,122,123,124,125,126,127,128)의 부피가 0.025㎣ 미만일 경우 일정 수준 이상의 정전용량을 구현하기 위하여 전극이 인쇄될 수 있는 소체 내 면적이 감소하여 내부에 구비되는 전극의 배치, 구조 등을 통하여 정전용량을 조절하는 설계변경이 어려울 수 있는 문제가 있고, 구비되는 내부전극의 개수, 공극의 부피도 축소될 수 있음에 따라서 소체의 절연파괴가 쉽게 발생할 수 있다. 또한, 만일 소체의 부피가 0.060㎣를 초과할 경우 경박단소의 휴대기기에 적용되기 어려울 수 있다. 나아가, 일정규격 크기를 벗어나 구현된 감전보호소자는 기판상에 실장 시 해당 감전보호소자의 실장을 위하여 전체 PCB 설계를 변경해야 하는 어려움이 있으며, 기판 상에 실장공정에서 크기 이상에 따른 픽업에러(pick up error) 등 감전보호소자를 이용한 제품의 제조공정상에 문제를 발생시킬 수 있다. 이에 따라서 감전보호소자는 일예로, 가로 0.02인치, 세로 0.01인치, 높이 0.01인치인 규격화된 소자일 수 있다.  If the volume of the bodies (111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128) is less than 0.025㎣, the area of the body in which the electrodes can be printed is reduced to achieve a certain level of capacitance, thereby controlling the capacitance through the arrangement and structure of the electrodes provided therein. There is a problem that the design change can be difficult, the number of internal electrodes provided, the volume of the pores can also be reduced, the breakdown of the body can easily occur. In addition, if the volume of the body exceeds 0.060㎣ it may be difficult to apply to light and thin mobile devices. In addition, the electric shock protection device implemented beyond a certain size has a difficulty in changing the overall PCB design for mounting the electric shock protection device when mounted on a substrate, and pick-up errors according to the size or more in the mounting process on the board. up error) may cause problems in the manufacturing process of the product using the electric shock protection device. Accordingly, the electric shock protection device may be, for example, a standardized device having a width of 0.02 inches, a length of 0.01 inches, and a height of 0.01 inches.
또한, 상기 소체는 티탄산바륨계 성분 및 유리질 성분을 포함하여 구현된다.In addition, the body is implemented to include a barium titanate-based component and a glassy component.
상기 티탄산바륨계 성분은 Ba 및 Ti의 몰비가 0.8 ~ 1.0일 수 있는 성분으로써, 메타티탄산바륨일 수 있다.The barium titanate-based component is a component in which the molar ratio of Ba and Ti may be 0.8 to 1.0, and may be barium titanate.
또한, 상기 유리질 성분은 Al, B, Si, Ca 및 Mg로 이루어진 군에서 선택된 1 종 이상의 금속, 비금속의 산화물을 포함할 수 있으며, 바람직하게는 Al 및 Si의 산화물들을 포함할 수 있고, 특히 유전율이 25 이상, 보다 더 바람직하게는 35 이상인 것을 사용함이 소체의 밀도를 증가시켜 소체의 기계적강도를 더욱 담보할 수 있으며, 소체의 결함이 감소되어 이로 인한 절연파괴의 우려가 적을 수 있다.In addition, the glassy component may include oxides of one or more metals and nonmetals selected from the group consisting of Al, B, Si, Ca, and Mg, preferably may include oxides of Al and Si, in particular dielectric constant The use of more than 25, more preferably more than 35 can increase the density of the body to further secure the mechanical strength of the body, the defect of the body is reduced and there is less risk of insulation breakdown.
또한, 본 발명의 일 실시예에 의한 소체(111,112,113,121,122,123,124,125,126,127,128)는 목적하는 물성을 보다 현저히 발현하기 위하여 유리질 성분 100 중량부에 대하여 티탄산바륨계 성분을 50 ~ 80 중량부 포함할 수 있다. 또한, 보다 바람직하게는 티탄산바륨계 성분을 50 ~ 70 중량부로 포함할 수 있다. 만일 유리질 성분 100 중량부에 대해 티탄산바륨계 성분을 50 중량부 미만으로 구비한 경우 소형화됨에 따라 감소되는 정전용량을 보상시키기에 부족함에 따라서 감전보호기능 및 통신신호의 감쇄 억제 기능을 원활히 수행할 수 없거나 절연파괴되어 이와 같은 기능을 상실할 수 있는 문제가 있다. 또한, 상기 티탄산바륨계 성분이 80중량부를 초과하여 포함되는 경우 소체의 소형화에 따라 감소되는 정전용량의 보상은 충분할 수 있으나 소체의 밀도가 현저히 저하되어 기계적 강도가 저하될 수 있고, 밀도의 저하에 따라서 소체에 기공이 포함될 수 있음에 따라서 이로 인한 소체의 절연파괴가 가속화될 수 있는 문제가 있다. 또한, 소체의 소결온도가 증가함에 따라서 비교적 소결온도가 낮고 전도성이 좋은 내부 전극이 소재, 일예로 Ag와 같은 금속을 내부전극으로 사용하기 어려울 수 있다. In addition, the body (111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128) according to an embodiment of the present invention may include 50 to 80 parts by weight of the barium titanate-based component with respect to 100 parts by weight of the glass component in order to express the desired physical properties more remarkably. In addition, more preferably, the barium titanate-based component may be included in an amount of 50 to 70 parts by weight. If less than 50 parts by weight of the barium titanate-based component is contained with respect to 100 parts by weight of the glass component, the electric shock protection function and the suppression of the attenuation of the communication signal can be performed smoothly because it is insufficient to compensate for the reduced capacitance. There is a problem that can be lost or breakdown of this function. In addition, when the barium titanate-based component is included in an amount of more than 80 parts by weight, the compensation of the capacitance reduced according to the miniaturization of the body may be sufficient, but the density of the body may be remarkably lowered, thereby reducing the mechanical strength, Therefore, since the pores may be included in the body, there is a problem that the resulting dielectric breakdown of the body may be accelerated. In addition, as the sintering temperature of the body increases, the internal electrode having a relatively low sintering temperature and good conductivity may be difficult to use as a material, for example, a metal such as Ag as the internal electrode.
또한, 이를 통해 구현된 소체는 유전율이 900 ~ 1500일 수 있고, 밀도가 4.5 ~ 5.8 g/㎣일 수 있다. 소체의 높은 유전율은 소형화된 크기의 소자가 순간적인 고압의 정전기를 통과시키거나 누설전류를 차단시키기에 적합하며, 유입되는 통신신호, 특히 모바일 무선 통신 주파수 대역(700㎒ 내지 2.6㎓)의 신호를 감쇄없이 통과시키기에 더욱 적합할 수 있다. 만일 소체의 유전율이 900 미만일 경우 0.025 ~ 0.060 ㎣로 구현되는 소체의 한정적 부피를 고려하여 본 발명이 목적하는 감전보호기능 및 통신신호 감쇄 억제 기능을 동시에 발현하기 어려울 수 있고, 소체의 절연파괴로 상기 기능들이 영구상실될 수 있는 문제가 있다. 또한, 상기 유전율이 1500을 초과할 경우 체적에 비례해 상/하부로 이격해서 배치되는 내부전극(제1내부전극 및/또는 제2내부전극)의 중첩 전극면적이 작아지도록 내부전극을 설계해야 하고, 이와 같은 내부전극의 설계는 순간적으로 고압의 정전기가 유입되었을 때 절연특성을 가지는 소체의 대응면적을 감소시켜 전계가 특정부위에 집중되어 절연파괴가 일어날 가능성이 높아지는 문제가 있을 수 있다.In addition, the body implemented through this may have a dielectric constant of 900 to 1500, the density may be 4.5 to 5.8 g / ㎣. The high dielectric constant of the body makes it suitable for miniaturized devices to pass instantaneous high-voltage static electricity or to block leakage currents, and to receive incoming communication signals, especially those in the mobile wireless communication frequency band (700 MHz to 2.6 GHz). It may be more suitable for passing without attenuation. If the dielectric constant of the body is less than 900 in consideration of the limited volume of the body implemented in 0.025 ~ 0.060 수 it may be difficult to express the electric shock protection function and communication signal attenuation suppression function of the present invention at the same time, the insulation breakdown of the body There is a problem that the functions may be permanently lost. In addition, when the dielectric constant exceeds 1500, the internal electrode should be designed such that the overlapping electrode area of the internal electrodes (first internal electrode and / or second internal electrode) which are spaced up and down in proportion to the volume is small. However, the design of the internal electrode may reduce the corresponding area of the body having the insulation characteristics when the high-voltage static electricity flows in a moment, so that there is a problem that the electric field is concentrated on a specific portion and the possibility of insulation breakdown increases.
또한, 상기 소체의 밀도가 4.5g/㎣ 미만일 경우 소체의 기계적 강도가 매우 약하고, 소체에 기공 등이 포함되어 있을 수 있으며, 상기 기공은 소체의 크랙 등을 유발시킬 수 있음에 따라서 더욱 쉽게 절연파괴를 유발시킬 수 있는 문제가 있다. 또한, 상기 소체의 밀도가 5.8 g/㎣ 를 초과할 경우 소결온도 보다 더 높은 온도에서 장시간 소결시켜야 되고, 이로 인해 내부전극에 손상과 내부전극의 재질 선택에 제한 등의 문제점이 있을 수 있다. 특히, 소체 내 티탄산바륨계 성분의 함량이 높아짐으로 인한 저하되는 밀도를 보상하기 위해서는 소결온도를 높이거나 및/또는 소결시간을 연장해야 됨에 따라서 내부전극의 손상문제는 더욱 심화될 수 있다. In addition, if the density of the body is less than 4.5g / ㎣ the mechanical strength of the body is very weak, the body may contain pores, etc., the pores may cause cracks of the body, so that the breakdown more easily There is a problem that can cause. In addition, when the density of the body exceeds 5.8 g / 시켜야 it must be sintered at a temperature higher than the sintering temperature for a long time, which may cause problems such as damage to the internal electrode and limiting the material selection of the internal electrode. In particular, the damage problem of the internal electrode may be further exacerbated by increasing the sintering temperature and / or prolonging the sintering time in order to compensate for the lowering density due to the increased content of the barium titanate-based component in the body.
한편, 상기 소체(111,112,113,121,122,123,124,125,126,127,128)는 도 1b에도시된 것과 같이, 티탄산바륨계 성분 및 유리질 성분을 포함하는 복수개의 시트가 적층 및 소결되어 형성될 수 있는데, 이때, 상기 복수개의 시트 중 내부전극이 어느 일면에 형성된 시트는 최소두께가 20 ㎛ 이상일 수 있다. 상술하였듯이, 두께가 매우 얇은 시트가 구비될 경우 시트의 적층과정에서 크랙이 쉽게 발생할 수 있고, 내부에 기공 등의 결함을 포함하고 있을 경우 얇은 두께의 시트 내부결함은 이보다 두꺼운 두께의 시트 내부의 동일한 결함에 대비했을 때 상대적으로 더욱 쉽게 절연파괴될 수 있음에 따라서 내부전극이 일면에 형성된 시트는 최소 두께가 20㎛ 이상을 만족하는 것이 바람직하다. 한편, 소체 부피가 0.025 ~ 0.060 ㎣임을 고려했을 때, 제한된 소체의 두께에서 적층될 수 있는 시트의 개수는 한정적임에 따라서 시트의 두께를 일정 수준 이상으로 증가시키는 것은 오히려 감전보호기능 및/또는 데이터신호 감쇄 억제기능을 저하시키는 결과를 초래할 수 있다. 이에 따라서 내부전극이 일면에 구비된 일시트의 두께는 최소두께가 20 ㎛이상일 수 있고, 보다 바람직하게는 28㎛ 이상일 수 있으며, 더 바람직하게는 28 ~ 100㎛일 수 있다. Meanwhile, the bodies 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, and 128 may be formed by stacking and sintering a plurality of sheets including barium titanate-based components and glassy components, as shown in FIG. 1B. The sheet formed on one surface may have a minimum thickness of 20 μm or more. As described above, when a sheet having a very thin thickness is provided, cracks may easily occur during the stacking process of the sheet, and when a defect such as pores is included therein, a defect in the sheet having a thin thickness is the same as that inside the sheet having a thicker thickness. As the insulation can be more easily destroyed in preparation for a defect, it is preferable that the sheet having the internal electrode formed on one surface satisfies a minimum thickness of 20 μm or more. On the other hand, considering that the body volume is 0.025 to 0.060 mm 3, the number of sheets that can be stacked at a limited thickness of the body is limited, so that increasing the thickness of the sheet to a certain level is more than an electric shock protection function and / or data. This may result in a decrease in signal attenuation suppression. Accordingly, the thickness of one sheet provided on one surface of the internal electrode may be 20 μm or more, more preferably 28 μm or more, and more preferably 28 to 100 μm.
또한, 상기 소체는 부피 및 내부전극의 형성가능 면적(active area)를 고려했을 때, 두께가 0.2 ~ 0.4㎜임이 바람직하며, 이에 따라서 내부전극이 적어도 일면에 구비된 시트는 4 ~ 16 개로 적층되어 소결 후 소체를 형성함이 바람직하다. 만일 소체 두께가 0.2㎜ 미만일 경우 내부에 구비될 수 있는 시트의 적층수 감소, 구비시킬 수 있는 내부전극의 개수 등이 감소하여 목적하는 수준의 정전용량을 구현하기 어렵고, 유전율이 높은 소체를 사용하여 목적하는 수준으로 정전용량을 구현하더라도 시트의 두께가 얇아져 쉽게 절연파괴될 수 있는 문제가 있다. 또한, 만일 두께가 0.4㎜를 초과할 경우 내부 전극의 형성가능 면적이 증가하고, 내부전극간의 간격도 줄어들어 고정전용량을 구현하기에 적합할 수 있으나, 얇아진 시트의 두께는 고압의 정전기에 의해 쉽게 절연파괴되어 감전보호소자의 기능을 지속 발현할 수 없는 문제가 있다. In addition, in consideration of the volume and the active area of the internal electrode, the body has a thickness of 0.2 to 0.4 mm. Accordingly, the sheet having at least one inner electrode is stacked in 4 to 16 sheets. It is preferable to form the body after sintering. If the thickness of the body is less than 0.2 mm, it is difficult to realize a desired level of capacitance due to a decrease in the number of sheets stacked therein and the number of internal electrodes that can be provided therein. Even if the capacitance is implemented to the desired level, there is a problem that the thickness of the sheet becomes thin and can be easily broken. In addition, if the thickness exceeds 0.4mm, the formable area of the internal electrodes is increased, and the gap between the internal electrodes is also reduced, which may be suitable for realizing a fixed capacitance. There is a problem that the insulation is broken and the function of the electric shock protection device cannot be continuously expressed.
한편, 본 발명의 일실시예에 의하면, 도 3a 및 도 3b와 같이 감전보호소자를 구현할 수 있다. 도 3a 및 도 3b에 도시된 감전보호소자(200)는 소체(211,212,213) 및 상기 소체(211,212,213) 내부에 구비되는 적어도 한 쌍의 내부전극(211a,212a)을 포함하고, 상기 내부전극(211a,212a)과 전기적으로 연결되도록 소체(211,212,213)의 외부면에 형성된 외부전극(133,134)을 더 포함할 수 있다. 이때, 상기 내부전극(211a,212a)은 바람직하게는 상,하 방향으로 일정 전극면적이 서로 중첩되도록 배치될 수 있다. 또한, 중첩된 한 쌍의 내부전극(211a,212a) 이격공간에 공극, 또는 상기 공극의 적어도 일부를 충진 하는 방전물질을 더 구비할 수 있다. 이때, 중첩된 한 쌍의 내부전극이 중첩되는 전극면적, 구비되는 내부전극의 개수, 이들 간의 이격거리, 공극의 개수 등은 외부전원의 정격전압보다 더 큰 항복전압(Vbr)을 갖도록 적절히 선택될 수 있다. 도 4에 도시된 것과 같이 감전보호소자(200')는 세 쌍의 내부전극(214a/215a,216a/217a, 218a/219a)을 구비할 수 있고, 각 쌍의 내부전극 사이의 이격공간에 공극(215)을 구비하고, 전극간의 중첩면적, 이격거리, 공극의 부피를 변경하여 외부전원의 정격전압보다 더 큰 항복전압을 가질 수 있다. On the other hand, according to an embodiment of the present invention, it is possible to implement an electric shock protection device as shown in Figure 3a and 3b. The electric shock protection device 200 illustrated in FIGS. 3A and 3B includes body 211, 212 and 213 and at least one pair of internal electrodes 211a and 212a provided in the body 211, 212 and 213. The external electrodes 133 and 134 may be further included on the outer surfaces of the bodies 211, 212, and 213 to be electrically connected to the 212a. In this case, the internal electrodes 211a and 212a may be arranged such that predetermined electrode areas overlap each other in the up and down directions. In addition, a gap or a discharge material filling at least a portion of the gap may be further provided in the spaced apart space between the pair of overlapping internal electrodes 211a and 212a. At this time, the overlapped electrode area, the number of internal electrodes provided, the distance between them, the number of voids, etc. may be appropriately selected to have a breakdown voltage (Vbr) larger than the rated voltage of the external power source. Can be. As illustrated in FIG. 4, the electric shock protection device 200 ′ may include three pairs of internal electrodes 214a / 215a, 216a / 217a, and 218a / 219a, and space in spaces between the pair of internal electrodes. 215 and has a breakdown voltage greater than the rated voltage of the external power source by changing the overlapping area, the separation distance, and the volume of the gap between the electrodes.
다만, 상술한 것과 같이 소체의 한정된 0.15 ~ 0.40 ㎣ 부피에서는 외부전원의 정격전압보다 큰 항복전압(Vbr)을 구현하기 용이하지 않거나, 충분한 항복전압을 구현하더라도 유입되는 데이터 신호의 감쇄를 억제하기 어려움에 따라서 상기 소체(211,212,213)는 티탄산바륨계 성분 및 유리질 성분을 포함할 수 있고, 이를 통해 유입되는 누설전류를 차단하고, 유입된 순간적으로 고압인 정전기로부터 내부회로를 보호할 수 있는 감전보호기능과 통과되는 데이터신호의 감쇄를 현저히 방지할 수 있는 감쇄억제 기능이 동시에 발현될 수 있다.However, as described above, in a limited volume of 0.15 to 0.40 ㎣ of the body, it is not easy to implement a breakdown voltage (Vbr) larger than the rated voltage of an external power source, or it is difficult to suppress attenuation of an incoming data signal even if a sufficient breakdown voltage is implemented. The body 211, 212, 213 may include a barium titanate-based component and a glassy component. The body 211, 212, and 213 may include a barium titanate-based component and a glassy component. An attenuation suppression function that can significantly prevent attenuation of the data signal passing through can be simultaneously expressed.
한편, 상기 소체(211,212,213)의 각 성분 및 이들의 함량, 소체의 유전율, 밀도, 구비되는 시트의 최소두께, 시트개수 등에 대한 설명은 상술한 바와 동일하여 생략한다.Meanwhile, descriptions of the components of the bodies 211, 212, and 213, their contents, the permittivity of the bodies, the density, the minimum thickness of the sheets provided, the number of sheets, and the like are omitted as described above.
한편, 본 발명에 따른 다른 구현예에 의하면, 부피가 0.15 ~ 0.40㎣이며, 티탄산바륨계 성분 및 유리질 성분을 포함하는 소체; 및 상기 소체 내부에 배치된 내부전극;을 포함하고, 내부로 유입되는 누설전류 및 정전기에 대해 방호하는 감전보호기능 및 내부로 유입되는 데이터신호의 감쇄를 억제하여 통과시키는 신호전달기능이 복합화된 감전보호소자를 포함한다.On the other hand, according to another embodiment of the present invention, the volume is 0.15 ~ 0.40㎣, a body comprising a barium titanate-based component and a glass component; And an internal electrode disposed inside the body, wherein an electric shock protection function that protects against leakage current and static electricity flowing into the body and a signal transmission function that suppresses and passes the attenuation of the data signal flowing into the electric shock are combined. It includes a protection element.
상술한 구현예와 동일한 부분의 설명은 생략하며 차이점 위주로 설명한다.The description of the same parts as the above-described embodiment will be omitted and the description will be given mainly on the differences.
상기 감전보호부에 구비될 수 있는 제1내부전극(111a,111a', 112a,112a') 길이는 소체의 횡단면이 직사각형인 경우 긴 변의 길이의 70 ~ 85%일 수 있고, 폭은 상기 긴 변 길이의 50 ~ 65%일 수 있다. 일예로, 가로길이 0.04인치, 세로길이 0.02인치의 감전보호소자에서 상기 제1내부전극의 길이는 0.032인치, 폭은 0.012인치일 수 있다.The length of the first internal electrodes 111a, 111a ', 112a, and 112a' that may be provided in the electric shock protection part may be 70 to 85% of the length of the long side when the body has a rectangular cross section, and the width of the first internal electrodes 111a, 111a ', 112a, 112a' may be provided. It can be 50-65% of the length. For example, in the electric shock protection device having a length of 0.04 inch and a length of 0.02 inch, the length of the first internal electrode may be 0.032 inch and the width of 0.012 inch.
상기 소체는 경박단소의 휴대기기 내부에 장착되기 용이한 정도의 크기로 구현되면서 누설전류를 차단하고, 8 kV 이상의 순간적인 고압의 정전기를 통과시킬 수 있으며, 유입되는 통신신호를 감쇄없이 통과시킬 수 있도록 티탄산바륨계 성분 및 유리질 성분을 포함하여 부피가 0.15 ~ 0.40 ㎣로 구현된다. 만일 소체의 부피가 0.15㎣ 미만일 경우 일정 수준 이상의 정전용량을 구현하기 위하여 전극이 인쇄될 수 있는 소체 내 면적이 감소하여 내부에 구비되는 전극의 배치, 구조 등을 통하여 정전용량을 조절하는 설계변경이 어려울 수 있는 문제가 있고, 구비되는 내부전극의 개수, 공극의 부피도 축소될 수 있음에 따라서 소체의 절연파괴가 쉽게 발생할 수 있다. 또한, 만일 소체의 부피가 0.40㎣를 초과할 경우 경박단소의 휴대기기에 적용되기 어려울 수 있다. 나아가, 일정규격 크기를 벗어나 구현된 감전보호소자는 기판상에 실장 시 해당 감전보호소자의 실장을 위하여 전체 PCB 설계를 변경해야 하는 어려움이 있으며, 기판 상에 실장공정에서 크기 이상에 따른 픽업에러(pick up error) 등 감전보호소자를 이용한 제품의 제조공정상에 문제를 발생시킬 수 있다. 이에 따라서 감전보호소자는 일예로, 가로 0.04인치, 세로 0.02인치, 높이 0.02인치인 규격화된 소자일 수 있다. The body is implemented in such a size that it is easy to be mounted inside a mobile device of a light and small size, and can block leakage current, pass instantaneous high voltage static electricity of 8 kV or more, and pass an incoming communication signal without attenuation. The volume is 0.15 ~ 0.40 mm by including a barium titanate-based component and a glassy component. If the volume of the body is less than 0.15㎣, the design change to control the capacitance through the arrangement, structure, etc. of the electrode provided therein is reduced by reducing the area in the body in which the electrode can be printed to achieve a certain level of capacitance. There is a problem that may be difficult, the number of internal electrodes provided, the volume of the pores can also be reduced, the breakdown of the body can easily occur. In addition, if the volume of the body exceeds 0.40㎣ it may be difficult to apply to light and thin mobile devices. In addition, the electric shock protection device implemented beyond a certain size has a difficulty in changing the overall PCB design for mounting the electric shock protection device when mounted on a substrate, and pick-up errors according to the size or more in the mounting process on the board. up error) may cause problems in the manufacturing process of the product using the electric shock protection device. Accordingly, the electric shock protection device may be, for example, a standardized device having a width of 0.04 inches, a length of 0.02 inches, and a height of 0.02 inches.
또한, 상기 소체는 목적하는 물성을 보다 현저히 발현하기 위하여 유리질 성분 100 중량부에 대하여 티탄산바륨계 성분을 30 ~ 50 중량부 포함할 수 있다. 또한, 보다 바람직하게는 티탄산바륨계 성분을 30 ~ 43 중량부로 포함할 수 있다. 만일 유리질 성분 100 중량부에 대해 티탄산바륨계 성분을 30 중량부 미만으로 구비한 경우 소형화됨에 따라 감소되는 정전용량을 보상시키기에 부족함에 따라서 감전보호기능 및 통신신호의 감쇄 억제 기능을 원활히 수행할 수 없거나 절연파괴되어 이와 같은 기능을 상실할 수 있는 문제가 있다. 또한, 상기 티탄산바륨계 성분이 50중량부를 초과하여 포함되는 경우 소체의 소형화에 따라 감소되는 정전용량의 보상은 충분할 수 있으나 소체의 밀도가 현저히 저하되어 기계적 강도가 저하될 수 있고, 밀도의 저하에 따라서 소체에 기공이 포함될 수 있음에 따라서 이로 인한 소체의 절연파괴가 가속화될 수 있는 문제가 있다. 또한, 소체의 소결온도가 증가함에 따라서 비교적 소결온도가 낮고 전도성이 좋은 내부 전극이 소재, 일예로 Ag와 같은 금속을 내부전극으로 사용하기 어려울 수 있다. In addition, the body may contain 30 to 50 parts by weight of the barium titanate-based component with respect to 100 parts by weight of the glass component in order to express the desired physical properties more remarkably. In addition, more preferably, the barium titanate-based component may be included in an amount of 30 to 43 parts by weight. If less than 30 parts by weight of the barium titanate-based component is contained with respect to 100 parts by weight of the glass component, the electric shock protection function and the suppression of the attenuation of the communication signal can be performed smoothly because it is insufficient to compensate for the reduced capacitance. There is a problem that can be lost or breakdown of this function. In addition, when the barium titanate-based component is included in an amount of more than 50 parts by weight, the compensation of the capacitance reduced according to the miniaturization of the body may be sufficient, but the density of the body may be remarkably lowered, thereby reducing the mechanical strength, Therefore, since the pores may be included in the body, there is a problem that the resulting dielectric breakdown of the body may be accelerated. In addition, as the sintering temperature of the body increases, the internal electrode having a relatively low sintering temperature and good conductivity may be difficult to use as a material, for example, a metal such as Ag as the internal electrode.
또한, 이를 통해 구현된 소체는 유전율이 650 ~ 950일 수 있고, 밀도가 4.5~ 5.8 g/㎣일 수 있다. 소체의 높은 유전율은 소형화된 크기의 소자가 순간적인 고압의 정전기를 통과시키거나 누설전류를 차단시키기에 적합하며, 유입되는 통신신호, 특히 모바일 무선 통신 주파수 대역(700㎒ 내지 2.6㎓)의 신호를 감쇄없이 통과시키기에 더욱 적합할 수 있다. 만일 소체의 유전율이 650 미만일 경우 0.15 ~ 0.40 ㎣로 구현되는 소체의 한정적 부피를 고려하여 본 발명이 목적하는 감전보호기능 및 통신신호 감쇄 억제 기능을 동시에 발현하기 어려울 수 있고, 소체의 절연파괴로 상기 기능들이 영구상실될 수 있는 문제가 있다. 또한, 상기 유전율이 950을 초과할 경우 체적에 비례해 상/하부로 이격해서 배치되는 내부전극(제1내부전극 및/또는 제2내부전극)의 중첩 전극면적이 작아지도록 내부전극을 설계해야 하고, 이와 같은 내부전극의 설계는 순간적으로 고압의 정전기가 유입되었을 때 절연특성을 가지는 소체의 대응면적을 감소시켜 전계가 특정부위에 집중되어 절연파괴가 일어날 가능성이 높아지는 문제가 있을 수 있다. 또한, 상기 소체의 밀도가 4.5g/㎣ 미만일 경우 소체의 기계적 강도가 매우 약하고, 소체에 기공 등이 포함되어 있을 수 있으며, 상기 기공은 소체의 크랙 등을 유발시킬 수 있음에 따라서 더욱 쉽게 절연파괴를 유발시킬 수 있는 문제가 있다. 또한, 상기 소체의 밀도가 5.8 g/㎣ 를 초과할 경우 소결온도 보다 더 높은 온도에서 장시간 소결시켜야 되고, 이로 인해 내부전극에 손상과 내부전극의 재질 선택에 제한 등의 문제점이 있을 수 있다. 특히, 소체 내 티탄산바륨계 성분의 함량이 높아짐으로 인한 저하되는 밀도를 보상하기 위해서는 소결온도를 높이거나 및/또는 소결시간을 연장해야 됨에 따라서 내부전극의 손상문제는 더욱 심화될 수 있다. 한편, 상기 소체(111,112,113,121,122,123,124,125,126,127,128)는 도 1b에도시된 것과 같이, 티탄산바륨계 성분 및 유리질 성분을 포함하는 복수개의 시트가 적층 및 소결되어 형성될 수 있는데, 이때, 상기 복수개의 시트 중 내부전극이 어느 일면에 형성된 시트는 최소두께가 20 ㎛ 이상일 수 있다. 상술하였듯이, 두께가 매우 얇은 시트가 구비될 경우 시트의 적층과정에서 크랙이 쉽게 발생할 수 있다. 또한, 내부에 기공 등의 결함을 포함하고 있을 경우 얇은 두께의 시트 내부결함은 이보다 두꺼운 두께의 시트 내부의 동일한 결함에 대비했을 때 상대적으로 더욱 쉽게 절연파괴될 수 있음에 따라서 내부전극이 일면에 형성된 시트는 최소 두께가 20㎛ 이상을 만족하는 것이 바람직하다. 한편, 소체 부피가 0.15 ~ 0.40 ㎣임을 고려했을 때, 제한된 소체의 두께에서 적층될 수 있는 시트의 개수는 한정적임에 따라서 시트의 두께를 일정 수준 이상으로 증가시키는 것은 오히려 감전보호기능 및/또는 데이터신호 감쇄 억제기능을 저하시키는 결과를 초래할 수 있다. 이에 따라서 내부전극이 일면에 구비된 일시트의 두께는 최소두께가 20 ㎛이상일 수 있고, 보다 바람직하게는 28㎛ 이상일 수 있으며, 더 바람직하게는 28 ~ 100㎛일 수 있다. In addition, the body implemented through this may have a dielectric constant of 650 ~ 950, the density may be 4.5 ~ 5.8 g / ㎣. The high dielectric constant of the body makes it suitable for miniaturized devices to pass instantaneous high-voltage static electricity or to block leakage currents, and to receive incoming communication signals, especially those in the mobile wireless communication frequency band (700 MHz to 2.6 GHz). It may be more suitable for passing without attenuation. If the dielectric constant of the body is less than 650 in consideration of the limited volume of the body implemented in 0.15 ~ 0.40 ㎣ it may be difficult to express the electric shock protection function and communication signal attenuation suppression function of the present invention at the same time, the insulation breakdown of the body as described above There is a problem that the functions may be permanently lost. In addition, when the dielectric constant exceeds 950, the internal electrode should be designed such that the overlapping electrode area of the internal electrodes (the first internal electrode and / or the second internal electrode) spaced apart from each other in proportion to the volume is small. However, the design of the internal electrode may reduce the corresponding area of the body having the insulation characteristics when the high-voltage static electricity flows in a moment, so that there is a problem that the electric field is concentrated on a specific portion and the possibility of insulation breakdown increases. In addition, if the density of the body is less than 4.5g / ㎣ the mechanical strength of the body is very weak, the body may contain pores, etc., the pores may cause cracks of the body, so that the breakdown more easily There is a problem that can cause. In addition, when the density of the body exceeds 5.8 g / 시켜야 it must be sintered at a temperature higher than the sintering temperature for a long time, which may cause problems such as damage to the internal electrode and limiting the material selection of the internal electrode. In particular, the damage problem of the internal electrode may be further exacerbated by increasing the sintering temperature and / or prolonging the sintering time in order to compensate for the lowering density due to the increased content of the barium titanate-based component in the body. Meanwhile, the bodies 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, and 128 may be formed by stacking and sintering a plurality of sheets including barium titanate-based components and glassy components, as shown in FIG. 1B. The sheet formed on one surface may have a minimum thickness of 20 μm or more. As described above, when a very thin sheet is provided, cracks may easily occur in the stacking process of the sheets. In addition, when the defects such as pores are included in the inside, the thinner sheet defects may be more easily insulated and destroyed in preparation for the same defects in the thicker sheets. The sheet preferably has a minimum thickness of 20 µm or more. On the other hand, considering that the body volume is 0.15 to 0.40 mm 3, the number of sheets that can be stacked at a limited thickness of the body is limited, so that increasing the thickness of the sheet to a certain level is more than an electric shock protection function and / or data. This may result in a decrease in signal attenuation suppression. Accordingly, the thickness of one sheet provided on one surface of the internal electrode may be 20 μm or more, more preferably 28 μm or more, and more preferably 28 to 100 μm.
또한, 상기 소체는 부피 및 내부전극의 형성가능 면적(active area)를 고려했을 때, 두께가 0.5 ~ 0.85㎜임이 바람직하며, 이에 따라서 내부전극이 적어도 일면에 구비된 시트는 13 ~ 30 개로 적층되어 소결 후 소체를 형성함이 바람직하다. In addition, considering the volume and the active area of the internal electrode, the body has a thickness of 0.5 to 0.85 mm, and thus, the sheet having at least one inner electrode is stacked in 13 to 30 sheets. It is preferable to form the body after sintering.
만일 한정적 부피를 고려해서 두께가 0.85㎜를 초과하는 경우 내부 전극의 형성가능 면적이 감소하여 목적하는 수준의 정전용량 구현, 감전보호기능 및 데이터 신호 감쇄 억제기능을 동시에 달성할 수 없는 문제가 있을 수 있다. 또한, 한정된 부피를 고려 두께가 0.5㎜ 미만일 경우 내부 전극의 형성가능 면적이 증가하고, 내부전극간의 간격도 줄어들어 고정전용량을 구현하기에 적합할 수 있으나, 얇아진 시트의 두께는 고압의 정전기에 의해 쉽게 절연파괴되어 감전보호소자의 기능을 지속 발현할 수 없는 문제가 있다.If the thickness exceeds 0.85 mm in consideration of the limited volume, there is a problem that the formable area of the internal electrode is reduced, so that the desired level of capacitance, electric shock protection and data signal attenuation suppression cannot be simultaneously achieved. have. In addition, when the thickness is less than 0.5 mm in consideration of the limited volume, the formable area of the internal electrodes is increased, and the gap between the internal electrodes is also reduced, which may be suitable for realizing a fixed capacitance. There is a problem that it is not easy to break the insulation and express the function of the electric shock protection device.
한편, 본 발명의 일실시예에 의하면, 도 3a 및 도 3b와 같이 감전보호소자를 구현할 수 있다. 도 3a 및 도 3b에 도시된 감전보호소자(200)는 소체(211,212,213) 및 상기 소체(211,212,213) 내부에 구비되는 적어도 한 쌍의 내부전극(211a,212a)을 포함하고, 상기 내부전극(211a,212a)과 전기적으로 연결되도록 소체(211,212,213)의 외부면에 형성된 외부전극(133,134)을 더 포함할 수 있다. 이때, 상기 내부전극(211a,212a)은 바람직하게는 상,하 방향으로 일정 전극면적이 서로 중첩되도록 배치될 수 있다. 또한, 중첩된 한 쌍의 내부전극(211a,212a) 이격공간에 공극, 또는 상기 공극의 적어도 일부를 충진 하는 방전물질을 더 구비할 수 있다. 이때, 중첩된 한 쌍의 내부전극이 중첩되는 전극면적, 구비되는 내부전극의 개수, 이들 간의 이격거리, 공극의 개수 등은 외부전원의 정격전압보다 더 큰 항복전압(Vbr)을 갖도록 적절히 선택될 수 있다. 도 4에 도시된 것과 같이 감전보호소자(200')는 세 쌍의 내부전극(214a/215a,216a/217a, 218a/219a)을 구비할 수 있고, 각 쌍의 내부전극 사이의 이격공간에 공극(215)을 구비하고, 전극간의 중첩면적, 이격거리, 공극의 부피를 변경하여 외부전원의 정격전압보다 더 큰 항복전압을 가질 수 있다. On the other hand, according to an embodiment of the present invention, it is possible to implement an electric shock protection device as shown in Figs. 3a and 3b. The electric shock protection device 200 illustrated in FIGS. 3A and 3B includes body 211, 212 and 213 and at least one pair of internal electrodes 211a and 212a provided in the body 211, 212 and 213. The external electrodes 133 and 134 may be further included on the outer surfaces of the bodies 211, 212, and 213 to be electrically connected to the 212a. In this case, the internal electrodes 211a and 212a may be arranged such that predetermined electrode areas overlap each other in the up and down directions. In addition, a gap or a discharge material filling at least a portion of the gap may be further provided in the spaced apart space between the pair of overlapping internal electrodes 211a and 212a. At this time, the overlapped electrode area, the number of internal electrodes provided, the distance between them, the number of voids, etc. may be appropriately selected to have a breakdown voltage (Vbr) larger than the rated voltage of the external power source. Can be. As illustrated in FIG. 4, the electric shock protection device 200 ′ may include three pairs of internal electrodes 214a / 215a, 216a / 217a, and 218a / 219a, and space in spaces between the pair of internal electrodes. 215 and has a breakdown voltage greater than the rated voltage of the external power source by changing the overlapping area, the separation distance, and the volume of the gap between the electrodes.
다만, 상술한 것과 같이 소체의 한정된 0.15 ~ 0.40 ㎣ 부피에서는 외부전원의 정격전압보다 큰 항복전압(Vbr)을 구현하기 용이하지 않거나, 충분한 항복전압을 구현하더라도 유입되는 데이터 신호의 감쇄를 억제하기 어려움에 따라서 상기 소체(211,212,213)는 티탄산바륨계 성분 및 유리질 성분을 포함할 수 있고, 이를 통해 유입되는 누설전류를 차단하고, 유입된 순간적으로 고압인 정전기로부터 내부회로를 보호할 수 있는 감전보호기능과 통과되는 데이터신호의 감쇄를 현저히 방지할 수 있는 감쇄억제 기능이 동시에 발현될 수 있다.However, as described above, in a limited volume of 0.15 to 0.40 ㎣ of the body, it is not easy to implement a breakdown voltage (Vbr) larger than the rated voltage of an external power source, or it is difficult to suppress attenuation of an incoming data signal even if a sufficient breakdown voltage is implemented. The body 211, 212, 213 may include a barium titanate-based component and a glassy component. The body 211, 212, and 213 may include a barium titanate-based component and a glassy component. An attenuation suppression function that can significantly prevent attenuation of the data signal passing through can be simultaneously expressed.
한편, 상기 소체(211,212,213)의 각 성분 및 이들의 함량, 소체의 유전율, 밀도, 구비되는 시트의 최소두께, 시트개수 등에 대한 설명은 상술한 바와 동일하여 생략한다.Meanwhile, descriptions of the components of the bodies 211, 212, and 213, their contents, the permittivity of the bodies, the density, the minimum thickness of the sheets provided, the number of sheets, and the like are omitted as described above.
또는, 본 발명의 또 다른 일구현예에 의하면, 부피가 0.7 ~ 1.0 ㎣이며, 티탄산바륨계 성분 및 유리질 성분을 포함하는 소체; 및 상기 소체 내부에 배치된 내부전극;을 포함하고, 내부로 유입되는 누설전류 및 정전기에 대해 방호하는 감전보호기능 및 내부로 유입되는 데이터신호의 감쇄를 억제하여 통과시키는 신호전달기능이 복합화된 감전보호소자를 구현한다.Alternatively, according to another embodiment of the present invention, a body having a volume of 0.7 to 1.0 mm 3 and containing a barium titanate-based component and a glassy component; And an internal electrode disposed inside the body, wherein an electric shock protection function that protects against leakage current and static electricity flowing into the body and a signal transmission function that suppresses and passes the attenuation of the data signal flowing into the electric shock are combined. Implement a protection device.
상기 감전보호부에 구비되는 제1내부전극(111a,111a', 112a,112a') 길이는 소체의 횡단면이 직사각형인 경우 긴 변의 길이의 70 ~ 85%일 수 있고, 폭은 상기 긴 변 길이의 50 ~ 65%일 수 있다. 일예로, 가로길이 0.06인치, 세로길이 0.03인치의 감전보호소자에서 상기 제1내부전극의 길이는 0.048인치, 폭은 0.018인치일 수 있다.The length of the first internal electrodes 111a, 111a ', 112a, and 112a' provided in the electric shock protection part may be 70 to 85% of the length of the long side when the cross section of the body is rectangular, and the width of the long side length It can be 50 to 65%. For example, in the electric shock protection device having a length of 0.06 inches and a length of 0.03 inches, the length of the first internal electrode may be 0.048 inch and the width of 0.018 inch.
상기 소체는 경박단소의 휴대기기 내부에 장착되기 용이한 정도의 크기로 구현되면서 누설전류를 차단하고, 8kV 이상의 순간적인 고압의 정전기를 통과시킬 수 있으며, 유입되는 통신신호를 감쇄없이 통과시킬 수 있도록 티탄산바륨계 성분 및 유리질 성분을 포함하여 부피가 0.7 ~ 1 ㎣로 구현된다. 만일 소체(111,112,113,121,122,123,124,125,126,127,128)의 부피가 0.7 ㎣ 미만일 경우 일정 수준 이상의 정전용량을 구현하기 위하여 전극이 인쇄될 수 있는 소체 내 면적이 감소하여 내부에 구비되는 전극의 배치, 구조 등을 통하여 정전용량을 조절하는 설계변경이 어려울 수 있는 문제가 있고, 구비되는 내부전극의 개수, 공극의 부피도 축소될 수 있음에 따라서 소체의 절연파괴가 쉽게 발생할 수 있다. 또한, 만일 소체의 부피가 1 ㎣를 초과할 경우 경박단소의 휴대기기에 적용되기 어려울 수 있다. 나아가, 일정규격 크기를 벗어나 구현된 감전보호소자는 기판상에 실장 시 해당 감전보호소자의 실장을 위하여 전체 PCB 설계를 변경해야 하는 어려움이 있으며, 기판 상에 실장공정에서 크기 이상에 따른 픽업에러(pick up error) 등 감전보호소자를 이용한 제품의 제조공정상에 문제를 발생시킬 수 있다. 이에 따라서 감전보호소자는 일예로, 가로 0.06인치, 세로 0.03인치, 높이 0.03인치인 규격화된 소자일 수 있다. The body is implemented in such a size that it is easy to be mounted inside a mobile device of a light and small size, to block leakage current, to pass the instantaneous high voltage static electricity of 8kV or more, and to pass the incoming communication signal without attenuation. It includes a barium titanate-based component and a glassy component, and has a volume of 0.7 to 1 mm 3. If the volume of the bodies (111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128) is less than 0.7 mm, the capacitance within the body to which the electrodes can be printed is reduced to achieve a certain level of capacitance, thereby controlling the capacitance through the arrangement and structure of the electrodes provided therein. There is a problem that the design change can be difficult, the number of internal electrodes provided, the volume of the pores can also be reduced, the breakdown of the body can easily occur. In addition, if the volume of the body exceeds 1 ㎣ it may be difficult to apply to the light and thin mobile devices. In addition, the electric shock protection device implemented beyond a certain size has a difficulty in changing the overall PCB design for mounting the electric shock protection device when mounted on a substrate, and pick-up errors according to the size or more in the mounting process on the board. up error) may cause problems in the manufacturing process of the product using the electric shock protection device. Accordingly, the electric shock protection device may be, for example, a standardized device having a width of 0.06 inches, a length of 0.03 inches, and a height of 0.03 inches.
또한, 상기 소체(111,112,113,121,122,123,124,125,126,127,128)는 목적하는 물성을 보다 현저히 발현하기 위하여 유리질 성분 100 중량부에 대하여 티탄산바륨계 성분을 10 ~ 30 중량부 포함할 수 있다. 또한, 보다 바람직하게는 티탄산바륨계 성분을 15 ~ 25 중량부로 포함할 수 있다. 만일 유리질 성분 100 중량부에 대해 티탄산바륨계 성분을 10 중량부 미만으로 구비한 경우 소형화됨에 따라 감소되는 정전용량을 보상시키기에 부족함에 따라서 감전보호기능 및 통신신호의 감쇄 억제 기능을 원활히 수행할 수 없거나 절연파괴되어 이와 같은 기능을 상실할 수 있는 문제가 있다. 또한, 상기 티탄산바륨계 성분이 30중량부를 초과하여 포함되는 경우 소체의 소형화에 따라 감소되는 정전용량의 보상은 충분할 수 있으나 소체의 밀도가 현저히 저하되어 기계적 강도가 저하될 수 있고, 밀도의 저하에 따라서 소체에 기공이 포함될 수 있음에 따라서 이로 인한 소체의 절연파괴가 가속화될 수 있는 문제가 있다. 또한, 소체의 소결온도가 증가함에 따라서 비교적 소결온도가 낮고 전도성이 좋은 내부 전극이 소재, 일예로 Ag와 같은 금속을 내부전극으로 사용하기 어려울 수 있다. In addition, the body (111, 112, 113, 121, 122, 123, 124, 125, 126, 127, 128) may contain 10 to 30 parts by weight of the barium titanate-based component with respect to 100 parts by weight of the glass component to express the desired physical properties more remarkably. In addition, more preferably, the barium titanate-based component may be included in an amount of 15 to 25 parts by weight. If less than 10 parts by weight of the barium titanate-based component is contained with respect to 100 parts by weight of the glass component, the electric shock protection function and the suppression of the attenuation of the communication signal can be smoothly performed because it is insufficient to compensate for the reduced capacitance. There is a problem that can be lost or breakdown of this function. In addition, when the barium titanate-based component is included in an amount of more than 30 parts by weight, the compensation of the capacitance reduced according to the miniaturization of the body may be sufficient, but the density of the body may be remarkably lowered, thereby reducing the mechanical strength, Therefore, since the pores may be included in the body, there is a problem that the resulting dielectric breakdown of the body may be accelerated. In addition, as the sintering temperature of the body increases, the internal electrode having a relatively low sintering temperature and good conductivity may be difficult to use as a material, for example, a metal such as Ag as the internal electrode.
또한, 이를 통해 구현된 소체는 유전율이 180 ~ 680일 수 있고, 밀도가 4.5 ~ 5.8 g/㎣일 수 있다. 소체의 높은 유전율은 소형화된 크기의 소자가 순간적인 고압의 정전기를 통과시키거나 누설전류를 차단시키기에 적합하며, 유입되는 통신신호, 특히 모바일 무선 통신 주파수 대역(700㎒ 내지 2.6㎓)의 신호를 감쇄없이 통과시키기에 더욱 적합할 수 있다. 만일 소체의 유전율이 180 미만일 경우 0.70 ~ 1.0 ㎣로 구현되는 소체의 한정적 부피를 고려하여 본 발명이 목적하는 감전보호기능 및 통신신호 감쇄 억제 기능을 동시에 발현하기 어려울 수 있고, 소체의 절연파괴로 상기 기능들이 영구상실될 수 있는 문제가 있다. 또한, 상기 유전율이 680을 초과할 경우 체적에 비례해 상/하부로 이격해서 배치되는 내부전극(제1내부전극 및/또는 제2내부전극)의 중첩 전극면적이 작아지도록 내부전극을 설계해야 하고, 이와 같은 내부전극의 설계는 순간적으로 고압의 정전기가 유입되었을 때 절연특성을 가지는 소체의 대응면적을 감소시켜 전계가 특정부위에 집중되어 절연파괴가 일어날 가능성이 높아지는 문제가 있을 수 있다.In addition, the body implemented through this may have a dielectric constant of 180 to 680, the density may be 4.5 to 5.8 g / ㎣. The high dielectric constant of the body makes it suitable for miniaturized devices to pass instantaneous high-voltage static electricity or to block leakage currents, and to receive incoming communication signals, especially those in the mobile wireless communication frequency band (700 MHz to 2.6 GHz). It may be more suitable for passing without attenuation. If the dielectric constant of the body is less than 180 in consideration of the limited volume of the body implemented in 0.70 ~ 1.0 ㎣ it may be difficult to express the electric shock protection function and the communication signal attenuation suppression function of the present invention at the same time, the insulation breakdown of the body as described above There is a problem that the functions may be permanently lost. In addition, when the dielectric constant exceeds 680, the internal electrode should be designed such that the overlapping electrode area of the internal electrodes (first internal electrode and / or second internal electrode) which are spaced apart up and down in proportion to volume is small. However, the design of the internal electrode may reduce the corresponding area of the body having the insulation characteristics when the high-voltage static electricity flows in a moment, so that there is a problem that the electric field is concentrated on a specific portion and the possibility of insulation breakdown increases.
또한, 상기 소체의 밀도가 4.5g/㎣ 미만일 경우 소체의 기계적 강도가 매우 약하고, 소체에 기공 등이 포함되어 있을 수 있으며, 상기 기공은 소체의 크랙 등을 유발시킬 수 있음에 따라서 더욱 쉽게 절연파괴를 유발시킬 수 있는 문제가 있다. 또한, 상기 소체의 밀도가 5.8 g/㎣ 를 초과할 경우 소결온도 보다 더 높은 온도에서 장시간 소결시켜야 되고, 이로 인해 내부전극에 손상과 내부전극의 재질 선택에 제한 등의 문제점이 있을 수 있다. 특히, 소체 내 티탄산바륨계 성분의 함량이 높아짐으로 인한 저하되는 밀도를 보상하기 위해서는 소결온도를 높이거나 및/또는 소결시간을 연장해야 됨에 따라서 내부전극의 손상문제는 더욱 심화될 수 있다. In addition, if the density of the body is less than 4.5g / ㎣ the mechanical strength of the body is very weak, the body may contain pores, etc., the pores may cause cracks of the body, so that the breakdown more easily There is a problem that can cause. In addition, when the density of the body exceeds 5.8 g / 시켜야 it must be sintered at a temperature higher than the sintering temperature for a long time, which may cause problems such as damage to the internal electrode and limiting the material selection of the internal electrode. In particular, the damage problem of the internal electrode may be further exacerbated by increasing the sintering temperature and / or prolonging the sintering time in order to compensate for the lowering density due to the increased content of the barium titanate-based component in the body.
한편, 상기 소체(111,112,113,121,122,123,124,125,126,127,128)는 도 1b에도시된 것과 같이, 티탄산바륨계 성분 및 유리질 성분을 포함하는 복수개의 시트가 적층 및 소결되어 형성될 수 있는데, 이때, 상기 복수개의 시트 중 내부전극이 어느 일면에 형성된 시트는 최소두께가 20 ㎛ 이상일 수 있다. 상술하였듯이, 두께가 매우 얇은 시트가 구비될 경우 시트의 적층과정에서 크랙이 쉽게 발생할 수 있고, 내부에 기공 등의 결함을 포함하고 있을 경우 얇은 두께의 시트 내부결함은 이보다 두꺼운 두께의 시트 내부의 동일한 결함에 대비했을 때 상대적으로 더욱 쉽게 절연파괴될 수 있음에 따라서 내부전극이 일면에 형성된 시트는 최소 두께가 20㎛ 이상을 만족하는 것이 바람직하다. 한편, 소체 부피가 0.7~ 1.0 ㎣임을 고려했을 때, 제한된 소체의 두께에서 적층될 수 있는 시트의 개수는 한정적임에 따라서 시트의 두께를 일정 수준 이상으로 증가시키는 것은 오히려 감전보호기능 및/또는 데이터신호 감쇄 억제기능을 저하시키는 결과를 초래할 수 있다. 이에 따라서 내부전극이 일면에 구비된 일시트의 두께는 20 ~ 70 ㎛로 구현됨이 바람직하다. Meanwhile, the bodies 111, 112, 113, 121, 122, 123, 124, 125, 126, 127, and 128 may be formed by stacking and sintering a plurality of sheets including barium titanate-based components and glassy components, as shown in FIG. 1B. The sheet formed on one surface may have a minimum thickness of 20 μm or more. As described above, when a sheet having a very thin thickness is provided, cracks may easily occur during the stacking process of the sheet, and when a defect such as pores is included therein, a defect in the sheet having a thin thickness is the same as that inside the sheet having a thicker thickness. As the insulation can be more easily destroyed in preparation for a defect, it is preferable that the sheet having the internal electrode formed on one surface satisfies a minimum thickness of 20 μm or more. On the other hand, considering that the body volume is 0.7 to 1.0 mm 3, the number of sheets that can be laminated at a limited thickness of the body is limited, so that increasing the thickness of the sheet to a certain level is more than an electric shock protection function and / or data. This may result in a decrease in signal attenuation suppression. Accordingly, the thickness of one sheet provided on one surface of the internal electrode is preferably implemented to 20 ~ 70 ㎛.
또한, 상기 소체는 부피 및 내부전극의 형성가능 면적(active area)를 고려했을 때, 두께가 0.5 ~ 1 ㎜, 보다 바람직하게는 0.5 ~ 0.8㎜, 보다 더 바람직하게는 0.5 ~ 0.6㎜임이 바람직하며, 이에 따라서 내부전극이 적어도 일면에 구비된 시트는 구현하고자 하는 정전용량을 고려하여 2 ~ 40 개로 적층되어 소결 후 일체의 소체를 형성함이 바람직하다. 만일 한정적 부피를 고려해서 두께가 1㎜를 초과하는 경우 내부 전극의 형성가능 면적이 감소하여 목적하는 수준의 정전용량 구현, 감전보호기능 및 데이터 신호 감쇄 억제기능을 동시에 달성할 수 없는 문제가 있을 수 있다. 또한, 한정된 부피를 고려 두께가 0.5㎜ 미만일 경우 내부 전극의 형성가능 면적이 증가하고, 내부전극간의 간격도 줄어들어 고정전용량을 구현하기에 적합할 수 있으나, 얇아진 시트의 두께는 고압의 정전기에 의해 쉽게 절연파괴되어 감전보호소자의 기능을 지속 발현할 수 없는 문제가 있다. In addition, the body has a thickness of 0.5 to 1 mm, more preferably 0.5 to 0.8 mm, even more preferably 0.5 to 0.6 mm, considering the volume and the active area of the internal electrode. Accordingly, the sheet having at least one inner electrode is stacked in two to forty in consideration of the capacitance to be implemented to form an integrated body after sintering. If the thickness exceeds 1 mm in consideration of the limited volume, there is a problem that the formable area of the internal electrode is reduced, so that the desired level of capacitance, electric shock protection and data signal attenuation suppression cannot be simultaneously achieved. have. In addition, when the thickness is less than 0.5 mm in consideration of the limited volume, the formable area of the internal electrodes is increased, and the gap between the internal electrodes is also reduced, which may be suitable for realizing a fixed capacitance. There is a problem that it is not easy to break the insulation and express the function of the electric shock protection device.
한편, 본 발명의 일실시예에 의하면, 도 3a 및 도 3b와 같이 감전보호소자를 구현할 수 있다. 도 3a 및 도 3b에 도시된 감전보호소자(200)는 소체(211,212,213) 및 상기 소체(211,212,213) 내부에 구비되는 적어도 한 쌍의 내부전극(211a,212a)을 포함하고, 상기 내부전극(211a,212a)과 전기적으로 연결되도록 소체(211,212,213)의 외부면에 형성된 외부전극(133,134)을 더 포함할 수 있다. 이때, 상기 내부전극(211a,212a)은 바람직하게는 상,하 방향으로 일정 전극면적이 서로 중첩되도록 배치될 수 있다. 또한, 중첩된 한 쌍의 내부전극(211a,212a) 이격공간에 공극, 또는 상기 공극의 적어도 일부를 충진 하는 방전물질을 더 구비할 수 있다. 이때, 중첩된 한 쌍의 내부전극이 중첩되는 전극면적, 구비되는 내부전극의 개수, 이들 간의 이격거리, 공극의 개수 등은 외부전원의 정격전압보다 더 큰 항복전압(Vbr)을 갖도록 적절히 선택될 수 있다. 도 4에 도시된 것과 같이 감전보호소자(200')는 세 쌍의 내부전극(214a/215a,216a/217a,218a/219a)을 구비할 수 있고, 각 쌍의 내부전극 사이의 이격공간에 공극(215)을 구비하고, 전극간의 중첩면적, 이격거리, 공극의 부피를 변경하여 외부전원의 정격전압보다 더 큰 항복전압을 가질 수 있다. On the other hand, according to an embodiment of the present invention, it is possible to implement an electric shock protection device as shown in Figs. 3a and 3b. The electric shock protection device 200 illustrated in FIGS. 3A and 3B includes body 211, 212 and 213 and at least one pair of internal electrodes 211a and 212a provided in the body 211, 212 and 213. The external electrodes 133 and 134 may be further included on the outer surfaces of the bodies 211, 212, and 213 to be electrically connected to the 212a. In this case, the internal electrodes 211a and 212a may be arranged such that predetermined electrode areas overlap each other in the up and down directions. In addition, a gap or a discharge material filling at least a portion of the gap may be further provided in the spaced apart space between the pair of overlapping internal electrodes 211a and 212a. At this time, the overlapped electrode area, the number of internal electrodes provided, the distance between them, the number of voids, etc. may be appropriately selected to have a breakdown voltage (Vbr) larger than the rated voltage of the external power source. Can be. As shown in FIG. 4, the electric shock protection device 200 ′ may include three pairs of internal electrodes 214a / 215a, 216a / 217a, and 218a / 219a, and space in spaces between the pair of internal electrodes. 215 and has a breakdown voltage greater than the rated voltage of the external power source by changing the overlapping area, the separation distance, and the volume of the gap between the electrodes.
다만, 상술한 것과 같이 소체의 한정된 0.7 ~ 1.0 ㎣ 부피에서는 외부전원의 정격전압보다 큰 항복전압(Vbr)을 구현하기 용이하지 않거나, 충분한 항복전압을 구현하더라도 유입되는 데이터 신호의 감쇄를 억제하기 어려움에 따라서 상기 소체(211,212,213)는 티탄산바륨계 성분 및 유리질 성분을 포함할 수 있고, 이를 통해 유입되는 누설전류를 차단하고, 유입된 순간적으로 고압인 정전기로부터 내부회로를 보호할 수 있는 감전보호기능과 통과되는 데이터신호의 감쇄를 현저히 방지할 수 있는 감쇄억제 기능이 동시에 발현될 수 있다.However, as described above, in the limited 0.7 ~ 1.0 ㎣ volume of the body, it is not easy to implement a breakdown voltage (Vbr) larger than the rated voltage of the external power source, or difficult to suppress the attenuation of the incoming data signal even if a sufficient breakdown voltage is implemented. The body 211, 212, 213 may include a barium titanate-based component and a glassy component. The body 211, 212, and 213 may include a barium titanate-based component and a glassy component. An attenuation suppression function that can significantly prevent attenuation of the data signal passing through can be simultaneously expressed.
한편, 상기 소체(211,212,213)의 각 성분 및 이들의 함량, 소체의 유전율, 밀도, 구비되는 시트의 최소두께, 시트개수 등에 대한 설명은 상술한 바와 동일하여 생략한다.Meanwhile, descriptions of the components of the bodies 211, 212, and 213, their contents, the permittivity of the bodies, the density, the minimum thickness of the sheets provided, the number of sheets, and the like are omitted as described above.
이상으로 상술한 본 발명의 일 실시예에 의한 감전보호소자는 정전용량이 4 ~ 100 pF일 수 있으며, 이를 통하여 본 발명이 목적하는 감전보호 기능 및 통과하는 통신신호의 감쇄 억제 기능을 동시에 발현할 수 있는 동시에 더욱 우수한 성능으로 발현할 수 있다. 만일 정전용량이 4pF 이내일 경우 정전기 등에 대한 감전보호 성능 및 통신신호 감쇄 억제기능을 발현할 수 없을 수 있다.As described above, the electric shock protection device according to the embodiment of the present invention may have a capacitance of 4 to 100 pF, through which the electric shock protection function and the attenuation suppression function of a communication signal passing through the present invention may be simultaneously expressed. At the same time it can be expressed with better performance. If the capacitance is within 4pF, it may not be possible to express the electric shock protection performance against static electricity and the suppression of communication signal attenuation.
또한, 상기 감전보호소자(100,100',200,200')는 도 5a에 도시된 바와 같이, 휴대용 전자장치(10)에서, 외장 메탈 케이스와 같은 전도체(12)와 회로부(14) 사이에 배치될 수 있다. In addition, the electric shock protection device 100, 100 ′, 200, 200 ′ may be disposed between the conductor 12, such as an external metal case, and the circuit unit 14 in the portable electronic device 10, as illustrated in FIG. 5A. .
여기서, 상기 휴대용 전자장치(10)는 휴대가 가능하고 운반이 용이한 휴대용 전자기기의 형태일 수 있다. 일례로, 상기 휴대용 전자장치는 스마트폰, 셀룰러폰 등과 같은 휴대단말기일 수 있으며, 스마트 워치, 디지털 카메라, DMB, 전자책, 넷북, 태블릿 PC, 휴대용 컴퓨터 등일 수 있다. 이러한 전자장치들은 외부기기와의 통신을 위한 안테나 구조들을 포함하는 임의의 적절한 전자 컴포넌트들을 구비할 수 있다. 더불어, 와이파이 및 블루투스와 같은 근거리 네트워크 통신을 사용하는 기기일 수 있다. Here, the portable electronic device 10 may be in the form of a portable electronic device that is portable and easy to carry. For example, the portable electronic device may be a mobile terminal such as a smart phone or a cellular phone, and may be a smart watch, a digital camera, a DMB, an e-book, a netbook, a tablet PC, a portable computer, or the like. Such electronics may have any suitable electronic components including antenna structures for communication with an external device. In addition, the device may be a device using local area network communication such as Wi-Fi and Bluetooth.
이와 같은 휴대용 전자장치(10)는 금속(알루미늄, 스테인리스 스틸 등)과 같은 도전성 재료들, 또는 탄소-섬유 합성 재료 또는 기타 섬유 계열 합성물들, 유리, 세라믹, 플라스틱 및 이들을 조합한 재료로 이루어진 외부 하우징을 포함할 수 있다. Such a portable electronic device 10 is an outer housing made of conductive materials such as metal (aluminum, stainless steel, etc.), or carbon-fiber composite materials or other fiber-based composites, glass, ceramic, plastic, and combinations thereof. It may include.
이때, 휴대용 전자장치(10)의 하우징은 금속으로 이루어지고 외부로 노출되는 전도체(12)를 포함할 수 있다. 여기서, 상기 전도체(12)는 상기 전자장치와 외부기기의 통신을 위한 안테나, 메탈 케이스, 및 도전성 장신구 중 적어도 하나를 포함할 수 있다.In this case, the housing of the portable electronic device 10 may include a conductor 12 made of metal and exposed to the outside. Here, the conductor 12 may include at least one of an antenna, a metal case, and conductive ornaments for communication between the electronic device and an external device.
특히, 상기 메탈 케이스는 상기 휴대용 전자장치(10)의 하우징의 측부를 부분적으로 둘러싸거나 전체적으로 둘러싸도록 구비될 수 있다. 또한, 상기 메탈 케이스는 상기 전자장치의 하우징의 전면 또는 후면에 외부로 노출되도록 구비되는 카메라를 둘러싸도록 구비될 수 있다. In particular, the metal case may be provided to partially or entirely surround the side of the housing of the portable electronic device 10. In addition, the metal case may be provided to surround the camera provided to the outside of the front or rear of the housing of the electronic device.
이와 같이, 감전보호소자(100)는 누설전류 및 정전기로부터 내부의 회로를 보호하기 위해 휴대용 전자장치(10)의 인체 접촉가능한 전도체(12)와 회로부(14) 사이에 배치될 수 있다. As such, the electric shock protection device 100 may be disposed between the human body contactable conductor 12 of the portable electronic device 10 and the circuit unit 14 to protect the internal circuit from leakage current and static electricity.
이와 같은 감전방지소자(100)는 상기 휴대용 전자장치(10)의 하우징에 구비되는 메탈 케이스의 개수에 맞춰 적절하게 구비될 수 있다. 다만, 상기 메탈 케이스가 복수개로 구비되는 경우 각각의 메탈 케이스(12a,12b,12c,12d)는 모두 감전방지소자(100)가 개별적으로 연결되도록 상기 휴대용 전자장치(10)의 하우징에 내장될 수 있다. Such an electric shock prevention device 100 may be appropriately provided according to the number of metal cases provided in the housing of the portable electronic device 10. However, when a plurality of metal cases are provided, each of the metal cases 12a, 12b, 12c, and 12d may be embedded in a housing of the portable electronic device 10 so that the electric shock prevention devices 100 are individually connected. have.
즉, 도 5a에 도시된 바와 같이 상기 휴대용 전자장치(10)의 하우징의 측부를 둘러싸는 메탈 케이스와 같은 전도체(12)가 세 부분으로 이루어지는 경우 각각의 전도체(12a,12b,12c,12d)는 모두 감전방지소자(100,100',200,200')와 연결됨으로써 누설전류 및 정전기로부터 상기 휴대용 전자장치(10) 내부의 회로를 보호할 수 있다.That is, as shown in FIG. 5A, when the conductor 12 such as a metal case surrounding the side of the housing of the portable electronic device 10 has three parts, the respective conductors 12a, 12b, 12c, and 12d are All of them are connected to the electric shock prevention devices 100, 100 ′, 200, and 200 ′ to protect circuits inside the portable electronic device 10 from leakage current and static electricity.
이때, 상기 감전방지소자(100)는 복수의 메탈 케이스(12a,12b,12c,12d)가 구비되는 경우 상기 메탈 케이스(12a,12b,12c,12d)의 해당 역할에 맞게 다양한 방식으로 구비될 수 있다.In this case, when the plurality of metal cases 12a, 12b, 12c, and 12d are provided, the electric shock prevention device 100 may be provided in various ways to meet the corresponding roles of the metal cases 12a, 12b, 12c, and 12d. have.
일례로, 상기 휴대용 전자장치(10)의 하우징에 외부로 노출되는 카메라가 구비되는 경우 상기 카메라를 둘러싸는 전도체(12d)에 상기 감전방지소자(100)가 적용되는 경우, 상기 감전방지소자(100,100',200,200')는 누설전류를 차단하고 정전기로부터 내부회로를 방호하는 형태로 구비될 수 있다.For example, when the camera 100 is exposed to the outside of the housing of the portable electronic device 10 when the electric shock prevention device 100 is applied to the conductor 12d surrounding the camera, the electric shock prevention device (100,100) ', 200, 200' may be provided in the form of blocking leakage current and protecting the internal circuit from static electricity.
또한, 상기 메탈 케이스(12b)가 그라운드 역할을 수행하는 경우 상기 감전방지소자(100,100',200,200')는 상기 메탈 케이스(12b)와 연결되어 누설전류를 차단하고 정전기로부터 내부회로를 보호하는 형태로 구비될 수 있다.In addition, when the metal case 12b serves as a ground, the electric shock prevention devices 100, 100 ′, 200 and 200 ′ are connected to the metal case 12 b to block leakage current and protect internal circuits from static electricity. It may be provided.
한편, 도 5b에 도시된 바와 같이, 감전보호소자(100,100',200,200')는 메탈 케이스(12')와 회로기판(14') 사이에 배치될 수 있다. 이때, 감전보호소자(100,100',200,200')는 정전기를 자체 파손 없이 통과시키기 위한 것이기 때문에, 회로기판(14')은 정전기를 접지로 바이패스하기 위한 별도의 보호소자(16)를 구비할 수 있다. 여기서, 보호소자(16)는 써프레서 또는 바리스터일 수 있다. Meanwhile, as illustrated in FIG. 5B, the electric shock protection devices 100, 100 ′, 200, and 200 ′ may be disposed between the metal case 12 ′ and the circuit board 14 ′. In this case, since the electric shock protection devices 100, 100 ′, 200, and 200 ′ are for passing static electricity without damage to themselves, the circuit board 14 ′ may include a separate protection device 16 for bypassing static electricity to ground. have. Here, the protection element 16 may be a suppressor or a varistor.
도 5c에 도시된 바와 같이, 감전보호소자(100,100',200,200')는 메탈 케이스(12')와 FFM(front End Module)(14a) 사이에서 정합회로(예를 들면, R 및 L 성분)를 통하여 배치될 수 있다. 여기서 메탈 케이스(12')는 안테나일 수 있다. 이때, 감전보호소자(100)는 통신 신호를 감쇄없이 통과시키는 동시에 메탈 케이스(12')로부터의 정전기를 통과시키고, 정합회로를 통하여 접지로부터 유입되는 누설전류를 차단시키기 위한 것이다. As shown in FIG. 5C, the electric shock protection devices 100, 100 ′, 200, and 200 ′ form a matching circuit (eg, R and L components) between the metal case 12 ′ and the front end module (FFM) 14a. Can be arranged through. The metal case 12 ′ may be an antenna. At this time, the electric shock protection device 100 is to pass a communication signal without attenuation and at the same time to pass the static electricity from the metal case 12 ', and to block the leakage current flowing from the ground through the matching circuit.
도 5d에 도시된 바와 같이, 감전보호소자(100,100',200,200')는 안테나가 구비된 메탈 케이스(12')와 해당 안테나를 통한 통신 기능을 구현하는 IC(14c) 사이에 배치될 수 있다. 여기서, 해당 통신 기능은 NFC 통신일 수 있다. 이때, 감전보호소자(100)는 정전기를 자체 파손 없이 통과시키기 위한 것이기 때문에, 정전기를 접지로 바이패스하기 위한 별도의 보호소자(16)를 구비할 수 있다. 여기서, 보호소자(16)는 써프레서 또는 바리스터일 수 있다. As shown in FIG. 5D, the electric shock protection devices 100, 100 ′, 200, and 200 ′ may be disposed between the metal case 12 ′ having the antenna and the IC 14c implementing the communication function through the corresponding antenna. Here, the communication function may be NFC communication. In this case, since the electric shock protection device 100 is for passing static electricity without damage to itself, an electric shock protection device 100 may include a separate protection device 16 for bypassing static electricity to the ground. Here, the protection element 16 may be a suppressor or a varistor.
도 5e에 도시된 바와 같이, 감전보호소자(100,100',200,200')는 PIFA(Planar Inverted F Antenna) 안테나(20)의 쇼트 핀(short pin)(22)과 매칭회로 사이에 배치될 수 있다. 이때, 감전보호소자(100)는 통신 신호를 감쇄없이 통과시키는 동시에 메탈 케이스(12')로부터의 정전기를 통과시키고, 정합회로를 통하여 접지로부터 유입되는 누설전류를 차단시키기 위한 것이다. As illustrated in FIG. 5E, the electric shock protection devices 100, 100 ′, 200, and 200 ′ may be disposed between the short pin 22 of the Planar Inverted F Antenna (PIFA) antenna 20 and the matching circuit. At this time, the electric shock protection device 100 is to pass a communication signal without attenuation and at the same time to pass the static electricity from the metal case 12 ', and to block the leakage current flowing from the ground through the matching circuit.
이러한 감전보호소자(100,100',200,200')는, 도 6a 내지 도 6c에 도시된 바와 같이, 외부전원에 의한 누설전류, 및 전도체(12)로부터 유입되는 정전기에 따라 상이한 기능을 가질 수 있다. As illustrated in FIGS. 6A to 6C, the electric shock protection devices 100, 100 ′, 200 and 200 ′ may have different functions according to leakage current by external power and static electricity flowing from the conductor 12.
즉, 도 6a에 도시된 바와 같이, 회로부(14)의 회로기판, 예를 들면, 접지를 통하여 외부전원의 누설전류가 전도체(12)로 유입되는 경우, 감전보호소자(100)는 그 항복전압(Vbr)이 누설전류에 의한 과전압에 비하여 크기 때문에, 오픈 상태로 유지될 수 있다. 즉, 감전보호소자(100,100',200,200')는 그의 항복전압(Vbr)이 휴대용 전자장치의 외부전원의 정격전압보다 크기 때문에, 전기적으로 도통되지 않고 오픈 상태를 유지하여 메탈 케이스 등과 같은 인체접착 가능한 전도체(12)로 누설전류가 전달되는 것을 차단할 수 있다. That is, as shown in Figure 6a, when the leakage current of the external power supply to the conductor 12 through the circuit board, for example, the ground of the circuit portion 14, the electric shock protection device 100 is the breakdown voltage Since Vbr is larger than the overvoltage caused by the leakage current, it can be kept open. That is, since the breakdown voltage Vbr is greater than the rated voltage of the external power source of the portable electronic device, the electric shock protection device 100, 100 ', 200, 200' is not electrically conductive and can be kept open so that it can be attached to a human body such as a metal case. The leakage current may be blocked from being transmitted to the conductor 12.
이때, 감전보호소자(100,100',200,200') 내에 구비된 신호전달부는 누설전류에 포함된 DC 성분을 차단할 수 있고, 누설 전류가 무선통신 대역에 비하여 상대적으로 낮은 주파수를 갖기 때문에, 해당 주파수에 대하여 큰 임피던스로 작용함으로써 누설전류를 차단할 수 있다. At this time, the signal transmission unit provided in the electric shock protection device (100, 100 ', 200, 200') can block the DC component included in the leakage current, and because the leakage current has a relatively low frequency compared to the wireless communication band, By acting with large impedance, leakage current can be cut off.
결과적으로, 감전보호소자(100,100',200,200')는 회로부(14)의 접지로부터 유입되는 외부전원에 누설전류를 차단하여 사용자를 감전으로부터 보호할 수 있다. As a result, the electric shock protection devices 100, 100 ′, 200, and 200 ′ may protect the user from electric shock by blocking leakage current from external power flowing from the ground of the circuit unit 14.
또한, 도 6b에 도시된 바와 같이, 전도체(12)를 통하여 외부로부터 정전기가 유입되면, 감전보호소자(100,100',200,200')는 써프레서와 같은 정전기 보호 소자로서 기능한다. 즉, 감전보호소자(100,100',200,200')는 정전기 방전을 위한 써프레서의 동작 전압(방전 개시 전압)이 정전기의 순간 전압보다 작기 때문에, 순간 방전에 의해 정전기를 통과시킬 수 있다. 결과적으로, 감전보호소자(100,100',200,200')는 전도체(12)로부터 정전기 유입시 전기적 저항이 낮아져 자체가 절연파괴되지 않고 정전기를 통과시킬 수 있다.In addition, as shown in FIG. 6B, when static electricity flows from the outside through the conductor 12, the electric shock protection devices 100, 100 ′, 200, and 200 ′ function as an electrostatic protection device such as a suppressor. That is, since the operating voltage (discharge starting voltage) of the suppressor for electrostatic discharge is smaller than the instantaneous voltage of static electricity, the electric shock protection devices 100, 100 ', 200, and 200' can pass static electricity by instantaneous discharge. As a result, the electric shock protection devices 100, 100 ′, 200, and 200 ′ may have low electrical resistance when static electricity flows from the conductor 12, and thus may pass static electricity without breaking the insulation itself.
이때, 감전보호소자(100,100',200,200') 내에 구비된 신호전달부의 절연파괴 전압(Vcp)이 감전보호부(110,110',210)의 항복전압(Vbr)보다 크기 때문에, 정전기는 신호전달부(120a,120b)로 유입되지 않고, 감전보호부(110,110',210)로만 통과될 수 있다.At this time, since the insulation breakdown voltage Vcp of the signal transmission unit provided in the electric shock protection device 100, 100 ′, 200, 200 ′ is greater than the breakdown voltage Vbr of the electric shock protection units 110, 110 ′ and 210, the static electricity is a signal transmission unit ( It does not flow into the 120a, 120b, it can pass only to the electric shock protection unit (110,110 ', 210).
여기서, 회로부(14)는 정전기를 접지로 바이패스하기 위한 별도의 보호소자를 구비할 수 있다. 결과적으로, 감전보호소자(100,100',200,200')는 전도체(12)로부터 유입되는 정전기에 의해 절연파괴되지 않고 정전기를 통과시켜, 후단의 내부 회로를 보호할 수 있다. Here, the circuit unit 14 may include a separate protection device for bypassing static electricity to ground. As a result, the electric shock protection devices 100, 100 ′, 200, and 200 ′ may pass the static electricity without being destroyed by the static electricity flowing from the conductor 12, thereby protecting the internal circuit of the rear stage.
또한, 도 6c에 도시된 바와 같이, 전도체(12)를 통하여 통신 신호가 유입되는 경우, 감전보호소자(100,100',200,200')는 유입되는 통신신호를 감쇄를 최소화하거나 감쇄없이 통과시킬 수 있는 기능을 수행한다. 즉, 감전보호소자(100,100',200,200')는 감전보호부(110,110',210)가 오픈 상태로 유지되어 전도체(12)와 회로부(14)를 차단하지만, 내부의 신호전달부(120a,120b)는 유입된 통신 신호를 통과시킬 수 있다. 이와 같이, 감전보호소자(100)의 신호전달부(120a,120b)는 통신 신호의 유입 경로를 제공할 수 있다. In addition, as shown in FIG. 6C, when a communication signal is introduced through the conductor 12, the electric shock protection device 100, 100 ′, 200, 200 ′ has a function of passing the incoming communication signal without attenuation or without attenuation. Do this. That is, the electric shock protection devices 100, 100 ′, 200, and 200 ′ block the conductors 12 and the circuit part 14 by keeping the electric shock protection parts 110, 110 ′ and 210 in an open state, but internal signal transmission parts 120 a and 120 b. ) Can pass incoming communication signals. As such, the signal transmission units 120a and 120b of the electric shock protection device 100 may provide an inflow path of the communication signal.
하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.Although the present invention will be described in more detail with reference to the following examples, the following examples are not intended to limit the scope of the present invention, which will be construed as to aid the understanding of the present invention.
<실시예 1><Example 1>
소체를 형성하는 복수의 성형시트를 제조하기 위해 시트형성 조성물을 제조하였으며, 구체적으로 메타티탄산바륨 성분(MLC-302M, sinocera) 및 유리질 성분(L40, FERRO)을 각각 준비하였다. 상기 유리질성분 100 중량부에 대해 티탄산바륨을 60중량부 혼합하였다. 이후 상기 혼합물에 물을 용매로 24시간 볼밀(ball mill)하여 평균입경 0.2 ~ 0.4㎛인 유리분말 및 평균입경 0.4 ~ 0.8㎛인 메타티탄산바륨 분말의 혼합물을 준비했다.In order to manufacture a plurality of molded sheets forming the body, a sheet forming composition was prepared, and specifically, a barium meta titanate component (MLC-302M, sinocera) and a glassy component (L40, FERRO) were prepared, respectively. 60 parts by weight of barium titanate was mixed with respect to 100 parts by weight of the glassy component. Then, the mixture was ball milled with water for 24 hours with a solvent to prepare a mixture of glass powder having an average particle diameter of 0.2 to 0.4 µm and barium titanate powder having an average particle diameter of 0.4 to 0.8 µm.
이후, 준비된 원료분말에 바인더로 폴리비닐부티랄계 바인더(제조사, 상품명)를 원료 분말 100 중량부에 대하여 8 중량부 혼합될 수 있도록 톨루엔/알코올(toluene/alcohol)계 유기용매에 용해시켜 투입했다. 그 후, 소형 볼밀로 약 24시간 동안 밀링(milling) 및 혼합하여 시트형성 조성물을 제조했다.Thereafter, a polyvinyl butyral binder (manufacturer, trade name) was dissolved in a toluene / alcohol (toluene / alcohol) organic solvent so as to be mixed with 100 parts by weight of the raw material powder. Thereafter, the sheet-forming composition was prepared by milling and mixing with a small ball mill for about 24 hours.
상기 시트형성 조성물을 상기 표 1의 티탄산바륨계성분에 따른 수축율을 고려하여 닥터 블레이드(doctor blade)방법으로 시트를 제조하였고, 25℃로 24시간 동안 건조시켜 두께가 30㎛인 시트를 제조하였다. 이후, 제조된 시트를 가로 0.55㎜, 세로 0.25㎜로 절단하여 복수개의 시트를 만들었다.In consideration of the shrinkage rate according to the barium titanate-based component of Table 1, the sheet forming composition was prepared by a doctor blade method, and dried at 25 ° C. for 24 hours to prepare a sheet having a thickness of 30 μm. Thereafter, the prepared sheet was cut into a width of 0.55 mm and a length of 0.25 mm to make a plurality of sheets.
먼저, 감전보호부를 준비하기 위해 제조된 시트성형물의 일면에 하기의 준비예 1로 제조된 내부전극 페이스트를 소결 후 두께 3㎛, 길이 0.44㎜, 폭 0.33㎜이 되도록 도포하였다. 이때, 한 장의 시트성형물 일면에 2개의 내부전극이 형성되도록 내부전극 페이스트를 도포하였고, 각 내부전극의 길이방향을 기준으로 측면 일부가 서로 마주보는 어긋난 11자의 형태이며, 전극의 길이방향으로 자유단과 소체의 끝단간 거리가 110㎛, 전극간 이격거리가 40㎛가 되도록 하였다.First, the internal electrode paste prepared in Preparation Example 1 below was coated on one surface of the sheet molding prepared to prepare the electric shock protection part so as to have a thickness of 3 μm, a length of 0.44 mm, and a width of 0.33 mm. At this time, the inner electrode paste was applied so that two inner electrodes were formed on one sheet molded sheet, and the side portions of the sheet electrodes faced each other with respect to the length direction of each inner electrode. The distance between the ends of the body was 110 µm and the separation distance between the electrodes was 40 µm.
이후 상기 이격된 내부전극 사이 공간에 소결 후 공극의 체적이 소체부피의5%가 되도록 시트의 소결 온도도달 이전에 기화되는 통상의 수지조성물인 공극형성부를 인쇄시켰다. 이후 아무런 처리가 되지 않은 다른 시트성형물을 내부전극 페이스트가 도포된 시트성형물 상에 적층시켰다.Thereafter, in the space between the spaced internal electrodes, the pore forming portion, which is a conventional resin composition vaporized before reaching the sintering temperature of the sheet, was printed so that the volume of the voids was 5% of the body volume after sintering. Thereafter, another sheet molding which was not treated was laminated on the sheet molding to which the internal electrode paste was applied.
또한, 신호전달부를 준비하기 위하여, 하기 준비예의 내부전극 페이스트가 일면에 도포된 시트성형물을 총 10장 준비하였다. 구체적으로 각 시트성형물에는 소결 후 두께 3㎛, 길이 0.44㎜, 폭 0.33㎜이 되도록 내부전극 페이스트를 도 1b의 내부전극(121a)의 형상으로 도포하였다.In addition, in order to prepare a signal transmission unit, a total of 10 sheet moldings on which one surface of the internal electrode paste of Preparation Example was applied were prepared. Specifically, the inner electrode paste was applied to each sheet molding in the shape of the inner electrode 121a of FIG. 1B to have a thickness of 3 μm, a length of 0.44 mm, and a width of 0.33 mm after sintering.
이후, 감전보호부를 위해 준비된 적층된 시트성형물을 사이에 두고, 상하로 신호전달부를 위해 준비된 시트성형물을 각각 5개씩 적층시켰다. 이때, 내부전극의 배치는 소결 후 감전보호소자의 단면의 전극배치가 도 7과 같은 유형이 되도록 적층시켰다.Thereafter, the stacked sheet moldings prepared for the electric shock protection unit were sandwiched therebetween, and five sheet moldings prepared for the signal transmission unit were stacked up and down. At this time, the arrangement of the internal electrodes were laminated so that the electrode arrangement of the cross section of the electric shock protection device after sintering was of the type shown in FIG. 7.
이후 소성로에서 상압, 공기분위기 하에서 1200℃로 소결 시켜 부피가 0.328㎣인 소결체를 제조하였다.After sintering at 1200 ° C. under atmospheric pressure and air atmosphere in a sintering furnace, a sintered compact having a volume of 0.328㎣ was prepared.
이후, 양 단에 돌출된 내부전극 간을 병렬로 전기적 접속되도록 내부전극이 돌출된 양단에 하기의 준비예에서 준비된 외부전극 형성 조성물을 도포 후 700℃로 120분 간 전극소부를 시켜 최종 두께 20㎛인 외부전극이 구비된 하기 표 1과 같은 감전보호소자를 제조하였다.Thereafter, the external electrode forming composition prepared in the following Preparation Example was applied to both ends of the inner electrodes protruding in parallel so as to be electrically connected in parallel, and then the electrode was baked at 700 ° C. for 120 minutes to obtain a final thickness of 20 μm. To prepare an electric shock protection device as shown in Table 1 with an external electrode.
*준비예* Preparation
먼저, 내부전극 페이스트는 Ag 분말 및 Pd 분말을 7 : 3 중량비로 에틸셀룰로오스 바인더 수지 및 유기용제에 혼합한 금속분말이 80중량%인 Ag/Pd 페이스트를 준비하였다.First, the internal electrode paste prepared an Ag / Pd paste containing 80% by weight of a metal powder obtained by mixing Ag powder and Pd powder in an ethyl cellulose binder resin and an organic solvent in a 7: 3 weight ratio.
다음으로 외부전극페이스트는 Ag 분말을 에틸셀룰로오스 바인더 수지 및 유기용제에 혼합한 80중량% Ag 페이스트를 준비하였다.Next, as the external electrode paste, an 80 wt% Ag paste prepared by mixing Ag powder with an ethyl cellulose binder resin and an organic solvent was prepared.
<실시예 2 ~ 5> <Examples 2 to 5>
실시예 1과 동일하게 실시하여 제조하되, 하기 표 1과 같이 시트성형물의 조성을 변경하여 하기 표 1과 같은 감전보호소자를 제조하였다.It was prepared in the same manner as in Example 1, but by changing the composition of the sheet molding as shown in Table 1 to prepare an electric shock protection device as shown in Table 1.
<비교예 1>Comparative Example 1
실시예 1과 동일하게 실시하여 제조하되, 소체의 소결온도를 1000℃로 변경하여 하기 표 1과 같은 감전보호소자를 제조하였다. Prepared and carried out in the same manner as in Example 1, to change the sintering temperature of the body to 1000 ℃ to prepare an electric shock protection device as shown in Table 1.
<실험예>Experimental Example
실시예 및 비교예에서 제조된 감전보호소자에 대하여 하기의 물성을 평가하여 하기 표 1에 나타내었다.The physical properties of the electric shock protection devices manufactured in Examples and Comparative Examples are shown in Table 1 below.
1. 정전기 방호성능1. Static electricity protection performance
휴대용 전자기기에서의 외부 정전기에 의한 ESD 방호성능을 평가하기 위하여, 휴대폰 구조와 유사한 평가용 보드(evaluation board)를 만들어 ESD 방호성능을 평가하였다. 이때 휴대폰의 외부메탈케이스를 ESD의 소스원으로 가정하여 만든 구리를 이용한 전도성 라인에 전압을 높여가며 ESD를 인가하고 반대편을 PCB 그라운드 IC단으로 가정하여 오실로스코프를 통해 파형의 변화를 관찰함과 동시에 보드로부터 흘러나오는 누설전류를 측정하여 최대로 통과시킬 수 있는 ESD의 피크전압을 측정하였다.In order to evaluate the ESD protection performance by external static electricity in portable electronic devices, an evaluation board (evaluation board) similar to a mobile phone structure was made to evaluate the ESD protection performance. At this time, the voltage is applied to the conductive line made of copper, which assumes the external metal case of the mobile phone as the source of ESD, and ESD is applied, while the other side is assumed to be the PCB ground IC, and the waveform is observed through the oscilloscope. We measured the leakage current flowing out of the circuit and measured the peak voltage of ESD that can pass the maximum.
2. 누설전류 차단성능2. Leakage Current Breaking Performance
내부 누설전류 차단성을 평가하기 위하여, 누설전류가 최대로 증가될 수 있는 경우를 상정하기 위하여, 충전기의 AC 전원을 DC로 변환할 때 쓰이는 트렌스포머에 Y-CAP 소자의 Capacitance 값을 증가 시켜 AC 전원에서 DC 회로로 더 많은 양의 누설이 일어나도록 내부회로를 임의로 변경시킨 충전기를 제조하였다.To evaluate the internal leakage current blocking property, to increase the leakage current can be maximized, to increase the capacitance value of the Y-CAP element in the transformer used when converting the AC power of the charger to DC The charger was fabricated by arbitrarily changing the internal circuit so that a greater amount of leakage occurred from the power supply to the DC circuit.
또한, 외부하우징이 메탈소재이며, 감전 보호소자를 장착한 평가용 휴대폰을 제조하였다.In addition, the outer housing is a metal material, and an evaluation mobile phone equipped with an electric shock protection device was manufactured.
이후, 220V 콘센트에 연결된 상기 충전기에 상기 휴대폰을 연결시키고, 디지털멀티미터의 COM단 프루브를 콘센트 그라운드 단과 연결하고 나머지 프루브를 휴대폰의 메탈소재 외부 하우징에 컨택하여 누설전류를 측정했다.Thereafter, the mobile phone was connected to the charger connected to the 220V outlet, the COM terminal probe of the digital multimeter was connected to the outlet ground terminal, and the remaining probe was contacted with the metal housing of the cellular phone to measure the leakage current.
3. 통신신호 감쇄 억제 성능3. Communication signal attenuation suppression performance
감전보호소자가 RF 수신감도를 저해하는지 여부를 평가하기 위해, 3D anechoic chamber에 외부하우징이 메탈소재이며, 감전 보호소자를 장착한 평가용 휴대폰을 넣은 후 안테나를 통해 외부 기기와 통신이 이뤄지는 주파수 대역의 RF 신호를 쏘아주면서 각 주파수 대역별로 정해진 기준치를 만족하는지 여부를 RF receiver를 통해 TIP, TIS 값들을 비교 평가하여 측정했다. 이때 DUT와 안테나의 측정 각도를 0~360도 변화시켜가며 측정하였고, 평가결과 데이터신호에 이상이 없는 경우 ×, 신호 감쇄가 발생한 경우 ○ 로 나타내었다.In order to evaluate whether the electric shock protection device interferes with the RF reception sensitivity, the external housing is a metal material in the 3D anechoic chamber, and an evaluation mobile phone equipped with the electric shock protection device is placed in the frequency band where communication with an external device is made through an antenna. The RF signal was measured and compared to evaluate the TIP and TIS values through RF receivers to determine whether they meet the specified threshold for each frequency band. At this time, the measurement angle of DUT and antenna was changed by 0 ~ 360 degree, and when there is no abnormality in the data signal as a result of evaluation, it is indicated as × and ○ when signal attenuation occurred.
4. 단면의 결함유무 평가4. Evaluation of defects on cross section
제조된 감전보호소자의 단면을 절단하여 기공, 크랙 등이 발생하였는지를 SEM 사진을 통해 확인하였고, 크랙이나 기공이 있는 경우 ×, 결함이 발견되지 않는 경우 ○로 나타내었다.The cross section of the manufactured electric shock protection device was checked by SEM photographs to determine whether pores, cracks, etc. occurred, and if there are cracks or pores, × is indicated if no defects are found.
Figure PCTKR2016002790-appb-T000001
Figure PCTKR2016002790-appb-T000001
상기 표 1에서 확인할 수 있듯이, As can be seen in Table 1 above,
동일한 전극구조 및 동일한 시트성형물을 적층시켜 제조한 비교예 1의 경우 본 발명에 따른 부피범위를 벗어남에 따라서 낮은 밀도를 가짐에 따라서 소체 강도문제로 인해 터미네이션이 불가능하여 전기적 특성을 측정할 수 없었고, 단면 역시 결함이 83개 검출되어 감전보호소자로 사용되더라도 절연파괴 될 것을 예상할 수 있다.In Comparative Example 1 prepared by stacking the same electrode structure and the same sheet molding, as the out of the volume range according to the present invention has a low density, it was impossible to measure the electrical properties due to the body strength problem, the termination was impossible. The cross section can also be expected to break even if 83 defects are detected and used as an electric shock protection device.
또한, 실시예 2의 경우 티탄산바륨의 함량이 본 발명에 따른 바람직한 범위를 벗어남에 따라서 누설전류 평가는 실시예 1보다 우수했으나 ESD에 대한 방호성능이 실시예 1에 비해 50% 감소하였고, 데이터신호 역시 감쇄됨에 따라서 ESD에 대한 방호성 및 데이터신호 감소억제기능이 제대로 발현되지 못함을 확인할 수 있다.In addition, in the case of Example 2, the leakage current evaluation was superior to Example 1 as the barium titanate content was outside the preferred range according to the present invention, but the protection performance against ESD was reduced by 50% compared to Example 1, and the data signal As it is also attenuated, it can be seen that the protection against ESD and data signal reduction suppression function are not properly expressed.
또한, 실시예 5의 경우 티탄산바륨의 함량이 본 발명에 따른 바람직한 범위를 벗어남에 따라서 실시예 1에 대비하여 누설전류 평가결과가 허용치(5㎂)를 벗어나 매우 좋지 않은 것을 확인할 수 있고, ESD 방호성능 역시 실시예 1에 대비하여 66.7% 감소하였음을 확인할 수 있고, 데이터신호를 감쇄함에 따라서 3가지 기능을 모두 수행할 수 없음을 알 수 있다.In addition, in the case of Example 5, as the content of the barium titanate is outside the preferred range according to the present invention, it can be confirmed that the leakage current evaluation result is not very good beyond the allowable value (5 mA) in comparison with Example 1, ESD protection It can be seen that the performance is also reduced by 66.7% compared to the first embodiment, and all three functions cannot be performed as the data signal is attenuated.
또한, 실시예 3은 티탄산바륨의 함량이 본 발명에 따른 바람직한 범위내 있음에 따라서 ESD방호, 누설전류차단 및 데이터신호감쇄 모두 우수한 성능을 발현하고 있음을 확인할 수 있다. 다만, 실시예 4는 티탄산 바륨의 함량이 본 발명에 따른 바람직한 범위내에 있으나 보다 바람직한 범위 밖에 있음에 따라서 누설전류 평가결과 허용치를 다소 초과했고, ESD 방호성능도 실시예 1에 대비 50% 감소한 것을 확인할 수 있다.In addition, in Example 3, it can be seen that, as the content of barium titanate is within the preferred range according to the present invention, both ESD protection, leakage current blocking, and data signal attenuation express excellent performance. However, in Example 4, the content of barium titanate was in the preferred range according to the present invention but outside the more preferred range, and thus the leakage current evaluation result was slightly exceeded, and the ESD protection performance was also reduced by 50% compared with Example 1. Can be.
<실시예7>Example 7
실시예 1과 동일하게 실시하여 제조하되, 상기 시트형성 조성물을 닥터 블레이드(doctor blade)방법으로 시트를 제조하였고, 25℃로 24시간 동안 건조시켜 두께가 30㎛인 시트를 제조하였다. 이후, 제조된 시트를 가로가 2.317㎜, 세로가 1.158㎜로 절단하여 복수개의 시트를 만들었다.It was prepared in the same manner as in Example 1, the sheet forming composition was prepared by a doctor blade method (doctor blade) method, and dried for 24 hours at 25 ℃ to prepare a sheet having a thickness of 30㎛. Thereafter, the prepared sheet was cut to 2.317 mm in width and 1.158 mm in length to make a plurality of sheets.
먼저, 감전보호부를 준비하기 위해 제조된 시트성형물의 일면에 하기의 준비예 1로 제조된 내부전극 페이스트를 소결 후 두께 3㎛, 길이 1.85㎜, 폭 1.39㎜이 되도록 도포하였다. 이때, 한 장의 시트성형물 일면에 2개의 내부전극이 형성되도록 내부전극 페이스트를 도포하였고, 각 내부전극의 길이방향을 기준으로 측면 일부가 서로 마주보는 어긋난 11자의 형태이며, 전극의 길이방향으로 자유단과 소체의 끝단간 거리가 463㎛, 전극간 이격거리가 40㎛가 되도록 하였다.First, the internal electrode paste prepared in Preparation Example 1 below was coated on one surface of the sheet molding prepared to prepare the electric shock protection part so as to have a thickness of 3 μm, a length of 1.85 mm, and a width of 1.39 mm. At this time, the inner electrode paste was applied so that two inner electrodes were formed on one sheet molded sheet, and the side portions of the sheet electrodes faced each other with respect to the length direction of each inner electrode. The distance between the ends of the body was 463 µm and the distance between the electrodes was 40 µm.
이후 상기 이격된 내부전극 사이 공간에 소결 후 공극의 체적이 소체 부피의 5%가 되도록 시트의 소결 온도도달 이전에 기화되는 통상의 수지조성물인 공극형성부를 인쇄시켰다. 이후 아무런 처리가 되지 않은 다른 시트성형물을 내부전극 페이스트가 도포된 시트성형물 상에 적층시켰다.Thereafter, the pore forming portion, which is a conventional resin composition vaporized before reaching the sintering temperature of the sheet, was printed in the space between the spaced inner electrodes so that the volume of the voids was 5% of the body volume. Thereafter, another sheet molding which was not treated was laminated on the sheet molding to which the internal electrode paste was applied.
또한, 신호전달부를 준비하기 위하여, 하기 준비예의 내부전극 페이스트가 일면에 도포된 시트성형물을 총 32장 준비하였다. 구체적으로 각 시트성형물에는 소결 후 두께 3㎛, 길이 1.85㎜, 폭 1.39㎜이 되도록 내부전극 페이스트를 도 1b의 내부전극(121a)의 형상으로 도포하였다.In addition, in order to prepare a signal transmission unit, a total of 32 sheet molded articles coated with one surface of the internal electrode paste of Preparation Example below were prepared. Specifically, the inner electrode paste was applied to each sheet molding in the shape of the inner electrode 121a of FIG. 1B to have a thickness of 3 μm, a length of 1.85 mm, and a width of 1.39 mm after sintering.
이후, 감전보호부를 위해 준비된 적층된 시트성형물을 사이에 두고, 상하로 신호전달부를 위해 준비된 시트성형물을 각각 16개씩 적층시켰다. 이때, 내부전극의 배치는 소결 후 감전보호소자의 단면의 전극배치가 도 7과 같은 유형이 되도록 적층시켰다. Thereafter, the stacked sheet moldings prepared for the electric shock protection unit were sandwiched therebetween, and each of the sheet moldings prepared for the signal transmission unit was stacked up and down 16 pieces each. At this time, the arrangement of the internal electrodes were laminated so that the electrode arrangement of the cross section of the electric shock protection device after sintering was of the type shown in FIG. 7.
이후 소성로에서 상압, 공기분위기 하에서 900℃로 소결 시켜 부피가 0.810㎣인 소결체를 제조하였다.After sintering at 900 ℃ under atmospheric pressure and air atmosphere in the kiln to prepare a sintered body having a volume of 0.810㎣.
이후, 양 단에 돌출된 내부전극 간을 병렬로 전기적 접속되도록 내부전극이 돌출된 양단에 하기의 준비예에서 준비된 외부전극 형성 조성물을 도포 후 700℃로 120분 간 전극소부를 시켜 최종 두께 20㎛인 외부전극이 구비된 하기 표 2와 같은 감전보호소자를 제조하였다.Thereafter, the external electrode forming composition prepared in the following Preparation Example was applied to both ends of the inner electrodes protruding in parallel so as to be electrically connected in parallel, and then the electrode was baked at 700 ° C. for 120 minutes to obtain a final thickness of 20 μm. To prepare an electric shock protection device as shown in Table 2 provided with an external electrode.
*준비예* Preparation
내부전극 페이스트 및 외부전극 페이스트로써, Ag 분말을 에틸셀룰로오스 바인더 수지 및 유기용제에 혼합한 80중량% Ag 페이스트를 준비하였다.As the internal electrode paste and the external electrode paste, an 80 wt% Ag paste prepared by mixing Ag powder with an ethyl cellulose binder resin and an organic solvent was prepared.
<실시예 8 ~ 12> <Examples 8 to 12>
실시예 7과 동일하게 실시하여 제조하되, 하기 표 1과 같이 시트성형물의 조성을 변경하여 하기 표 2와 같은 감전보호소자를 제조하였다.Prepared in the same manner as in Example 7, except for changing the composition of the sheet molding as shown in Table 1 to prepare an electric shock protection device as shown in Table 2.
<비교예 2>Comparative Example 2
실시예 7과 동일하게 실시하여 제조하되, 시트성형물을 적층한 후 소결온도를 900℃ 대신에 750℃로 변경하여 하기 표 1과 같은 감전보호소자를 제조하였다. Preparation was carried out in the same manner as in Example 7, after stacking the sheet molding to change the sintering temperature to 750 ℃ instead of 900 ℃ to prepare an electric shock protection device as shown in Table 1.
<실험예>Experimental Example
실시예 및 비교예에서 제조된 감전보호소자에 대하여 상술한 평가방법에 의해 물성을 평가하여 하기 표 2에 나타내었다.The physical properties of the electric shock protection devices manufactured in Examples and Comparative Examples were evaluated by the above-described evaluation method, and are shown in Table 2 below.
실시예7Example 7 실시예8Example 8 실시예9Example 9 실시예10Example 10 실시예11Example 11 비교예2Comparative Example 2
소결전Before sintering 시트조성물Sheet composition 티탄산바륨(중량부)Barium titanate (parts by weight) 100100 100100 100100 100100 100100 100100
유리질성분(중량부/유전율)Glassy component (parts by weight / dielectric constant) 20/4020/40 8/408/40 12/4012/40 28/4028/40 33/4033/40 20/4020/40
감전보호부Electric shock protection department 시트성형물두께(㎛)Sheet molding thickness (㎛) 3030 3030 3030 3030 3030 3030
신호전달부Signal Transmitter 시트성형물두께(㎛)Sheet molding thickness (㎛) 3030 3030 3030 3030 3030 3030
적층수Stacked Number 3232 3232 3232 3232 3232 3232
소결 후After sintering 소체corpuscle 부피(㎣)Volume 0.8100.810 0.7390.739 0.7950.795 0.8690.869 0.9210.921 1.1031.103
두께(㎜)Thickness (mm) 0.760.76 0.700.70 0.740.74 0.740.74 0.810.81 0.820.82
밀도(g/㎡)Density (g / ㎡) 5.345.34 5.565.56 5.455.45 5.165.16 5.085.08 3.863.86
유전율permittivity 398398 122122 201201 558558 726726 6464
감전보호부Electric shock protection department 소결후 시트(두께(㎛)/수축율(%))Sheet after sintering (thickness (μm) / shrinkage (%)) 21.2/29.321.2 / 29.3 19.6/34.719.6 / 34.7 20.9/30.320.9 / 30.3 22.7/24.322.7 / 24.3 24.9/17.024.9 / 17.0 27.9/7.027.9 / 7.0
신호전달부Signal Transmitter 소결후 시트(두께(㎛)/수축율(%))Sheet after sintering (thickness (μm) / shrinkage (%)) 21.2/29.321.2 / 29.3 19.6/34.719.6 / 34.7 20.9/30.320.9 / 30.3 22.7/24.322.7 / 24.3 24.9/17.024.9 / 17.0 27.9/7.027.9 / 7.0
정전용량(㎊)Capacitance 3131 1111 2424 3737 6565 측정 불가능Not measurable
물성Properties ESDESD Max 15kVMax 15kV Max 4kVMax 4kV Max 15kVMax 15kV Max 10kVMax 10kV Max 7kVMax 7kV
누설전류Leakage current 0.17㎂↓0.17㎂ ↓ 0.08㎂↓0.08㎂ ↓ 0.04㎂↓0.04㎂ ↓ 0.36㎂↓0.36㎂ ↓ Max 78.3㎂Max 78.3㎂
데이터신호 감쇄Data signal attenuation ×× ×× ××
단면결함Section defect ×× ×× ×× ×× ○ (2개)○ (2) ○(68개)○ (68)
상기 표 2에서 확인할 수 있듯이, As can be seen in Table 2 above,
동일한 전극구조 및 동일한 시트성형물을 적층시켜 제조한 비교예 2의 경우 본 발명에 따른 부피범위를 벗어남에 따라서 낮은 밀도를 가짐에 따라서 소체 강도문제로 인해 터미네이션이 불가능하여 전기적 특성을 측정할 수 없었고, 단면 역시 결함이 68개 검출되어 감전보호소자로 사용되더라도 절연파괴 될 것을 예상할 수 있다.In Comparative Example 2 prepared by stacking the same electrode structure and the same sheet molding, as the out of the volume range according to the present invention has a low density, the termination was impossible due to the body strength problem, and thus electrical properties could not be measured. The cross section can also be expected to break down even if 68 defects are detected and used as an electric shock protection device.
또한, 실시예 8의 경우 티탄산바륨의 함량이 본 발명에 따른 바람직한 범위를 벗어남에 따라서 누설전류 평가는 실시예 7보다 우수했으나 ESD에 대한 방호성능이 실시예 7에 비해 73% 감소하였고, 데이터신호 역시 감쇄됨에 따라서 ESD에 대한 방호성 및 데이터신호 감소억제기능이 제대로 발현되지 못함을 확인할 수 있다.In addition, in the case of Example 8, as the content of barium titanate was outside the preferred range according to the present invention, leakage current evaluation was superior to Example 7, but the protection performance against ESD was reduced by 73% compared to Example 7, and the data signal As it is also attenuated, it can be seen that the protection against ESD and data signal reduction suppression function are not properly expressed.
또한, 실시예 11의 경우 티탄산바륨의 함량이 본 발명에 따른 바람직한 범위를 벗어남에 따라서 실시예 7에 대비하여 누설전류 평가결과가 허용치(5㎂)를 벗어나 매우 좋지 않은 것을 확인할 수 있고, ESD 방호성능 역시 실시예 7에 대비하여 53.3% 감소하였음을 확인할 수 있고, 데이터신호를 감쇄함에 따라서 3가지 기능을 모두 수행할 수 없음을 알 수 있다.In addition, in the case of Example 11, as the content of the barium titanate is out of the preferred range according to the present invention, it can be confirmed that the leakage current evaluation result is not very good beyond the allowable value (5 mA) in comparison with Example 7, ESD protection It can be seen that the performance is also reduced by 53.3% compared to the seventh embodiment, and it can be seen that all three functions cannot be performed as the data signal is attenuated.
또한, 실시예 9 및 실시예 10의 경우 티탄산바륨의 함량이 본 발명에 따른 바람직한 범위내 있음에 따라서 ESD방호, 누설전류차단 및 데이터신호감쇄 모두 우수한 성능을 발현하고 있음을 확인할 수 있다.In addition, in the case of Example 9 and Example 10, the content of barium titanate is within the preferred range according to the present invention, it can be seen that both ESD protection, leakage current blocking and data signal attenuation exhibit excellent performance.
<실시예 13>Example 13
실시예 1과 동일하게 실시하여 제조하되, 상기 시트형성 조성물을 닥터 블레이드(doctor blade)방법으로 시트를 제조하였고, 25℃로 24시간 동안 건조시켜 두께가 30㎛인 시트를 제조하였다. 이후, 제조된 시트를 가로 1.14㎜, 세로 0.57㎜로 절단하여 복수개의 시트를 만들었다.It was prepared in the same manner as in Example 1, the sheet forming composition was prepared by a doctor blade method (doctor blade) method, and dried for 24 hours at 25 ℃ to prepare a sheet having a thickness of 30㎛. Thereafter, the prepared sheet was cut into a width of 1.14 mm and a length of 0.57 mm to make a plurality of sheets.
먼저, 감전보호부를 준비하기 위해 제조된 시트성형물의 일면에 하기의 준비예 1로 제조된 내부전극 페이스트를 소결 후 두께 3㎛, 길이 0.91㎜, 폭 0.68㎜이 되도록 도포하였다. 이때, 한 장의 시트성형물 일면에 2개의 내부전극이 형성되도록 내부전극 페이스트를 도포하였고, 각 내부전극의 길이방향을 기준으로 측면 일부가 서로 마주보는 어긋난 11자의 형태이며, 전극의 길이방향으로 자유단과 소체의 끝단간 거리가 230㎛, 전극간 이격거리가 40㎛가 되도록 하였다.First, the internal electrode paste prepared in Preparation Example 1 below was coated on one surface of the sheet molding manufactured to prepare the electric shock protection part, so as to have a thickness of 3 μm, a length of 0.91 mm, and a width of 0.68 mm. At this time, the inner electrode paste was applied so that two inner electrodes were formed on one sheet molded sheet, and the side portions of the sheet electrodes faced each other with respect to the length direction of each inner electrode. The distance between the ends of the body was 230 µm and the separation distance between the electrodes was 40 µm.
이후 상기 이격된 내부전극 사이 공간에 소결 후 공극의 체적이 소체부피의5%가 되도록 시트의 소결 온도도달 이전에 기화되는 통상의 수지조성물인 공극형성부를 인쇄시켰다. 이후 아무런 처리가 되지 않은 다른 시트성형물을 내부전극 페이스트가 도포된 시트성형물 상에 적층시켰다.Thereafter, in the space between the spaced internal electrodes, the pore forming portion, which is a conventional resin composition vaporized before reaching the sintering temperature of the sheet, was printed so that the volume of the voids was 5% of the body volume after sintering. Thereafter, another sheet molding which was not treated was laminated on the sheet molding to which the internal electrode paste was applied.
또한, 신호전달부를 준비하기 위하여, 하기 준비예의 내부전극 페이스트가 일면에 도포된 시트성형물을 총 20장 준비하였다. 구체적으로 각 시트성형물에는 소결 후 두께 3㎛, 길이 0.91㎜, 폭 0.68㎜이 되도록 내부전극 페이스트를 도 1b의 내부전극(121a)의 형상으로 도포하였다. 이후, 감전보호부를 위해 준비된 적층된 시트성형물을 사이에 두고, 상하로 신호전달부를 위해 준비된 시트성형물을 각각 10개씩 적층시켰다. 이때, 내부전극의 배치는 소결 후 감전보호소자의 단면의 전극배치가 도 7과 같은 유형이 되도록 적층시켰다. 이후 소성로에서 상압, 공기분위기 하에서 980℃로 소결 시켜 부피가 0.262㎣인 소결체를 제조하였다. 이후, 양 단에 돌출된 내부전극 간을 병렬로 전기적 접속되도록 내부전극이 돌출된 양단에 하기의 준비예에서 준비된 외부전극 형성 조성물을 도포 후 700℃로 120분 간 전극소부를 시켜 최종 두께 20㎛인 외부전극이 구비된 하기 표 1과 같은 감전보호소자를 제조하였다. In addition, in order to prepare the signal transmission unit, a total of 20 sheet molded articles coated on one surface of the internal electrode paste of Preparation Example were prepared. Specifically, the inner electrode paste was applied to each sheet molding in the shape of the inner electrode 121a of FIG. Thereafter, the stacked sheet moldings prepared for the electric shock protection unit were sandwiched therebetween, and each of the sheet moldings prepared for the signal transmission unit was stacked up and down. At this time, the arrangement of the internal electrodes were laminated so that the electrode arrangement of the cross section of the electric shock protection device after sintering was of the type shown in FIG. 7. After sintering at 980 ° C. under atmospheric pressure and air atmosphere in a sintering furnace, a sintered body having a volume of 0.262 ㎣ was prepared. Thereafter, the external electrode forming composition prepared in the following Preparation Example was applied to both ends of the inner electrodes protruding in parallel so as to be electrically connected in parallel, and then the electrode was baked at 700 ° C. for 120 minutes to obtain a final thickness of 20 μm. To prepare an electric shock protection device as shown in Table 1 with an external electrode.
*준비예* Preparation
내부전극 페이스트 및 외부전극 페이스트로써, Ag 분말을 에틸셀룰로오스 바인더 수지 및 유기용제에 혼합한 80중량% Ag 페이스트를 준비하였다.As the internal electrode paste and the external electrode paste, an 80 wt% Ag paste prepared by mixing Ag powder with an ethyl cellulose binder resin and an organic solvent was prepared.
<실시예 14 ~ 17> <Examples 14 to 17>
실시예 13과 동일하게 실시하여 제조하되, 하기 표 3과 같이 시트성형물의 조성을 변경하여 하기 표 3과 같은 감전보호소자를 제조하였다.Prepared in the same manner as in Example 13, but by changing the composition of the sheet molding as shown in Table 3 to prepare an electric shock protection device as shown in Table 3.
<비교예 3>Comparative Example 3
실시예 13과 동일하게 실시하여 제조하되, 소결온도를 850℃로 변경 소결하여 하기 표 3과 같은 감전보호소자를 제조하였다. Prepared in the same manner as in Example 13, except that the sintering temperature was changed to 850 ℃ to prepare an electric shock protection device as shown in Table 3.
<실험예>Experimental Example
실시예 및 비교예에서 제조된 감전보호소자에 대해 상술한 물성을 평가하여 표 3에 나타내었다.Table 3 shows the above-described physical properties of the electric shock protection devices manufactured in Examples and Comparative Examples.
실시예13Example 13 실시예14Example 14 실시예15Example 15 실시예16Example 16 실시예17Example 17 비교예3Comparative Example 3
소결전Before sintering 시트조성물Sheet composition 티탄산바륨(중량부)Barium titanate (parts by weight) 100100 100100 100100 100100 100100 100100
유리질성분(중량부/유전율)Glassy component (parts by weight / dielectric constant) 40/4040/40 28/4028/40 32/4032/40 48/4048/40 52/4052/40 40/4040/40
감전보호부Electric shock protection department 시트성형물두께(㎛)Sheet molding thickness (㎛) 3030 3030 3030 3030 3030 3030
신호전달부Signal Transmitter 시트성형물두께(㎛)Sheet molding thickness (㎛) 3030 3030 3030 3030 3030 3030
총 적층수Total stacks 2020 2020 2020 2020 2020 2020
소결 후After sintering 소체corpuscle 부피(㎣)Volume 0.2800.280 0.2500.250 0.2700.270 0.2890.289 0.3020.302 0.4110.411
두께(㎜)Thickness (mm) 0.210.21 0.190.19 0.210.21 0.210.21 0.230.23 0.590.59
밀도(g/㎡)Density (g / ㎡) 5.385.38 5.585.58 5.425.42 5.095.09 4.874.87 3.883.88
유전율permittivity 748748 559559 685685 909909 10881088 191191
감전보호부Electric shock protection department 소결후 시트(두께(㎛)/수축율(%))Sheet after sintering (thickness (μm) / shrinkage (%)) 22.1/26.322.1 / 26.3 20.9/30.320.9 / 30.3 21.2/29.321.2 / 29.3 22.9/23.722.9 / 23.7 23.4/22.023.4 / 22.0 27.99/6.727.99 / 6.7
신호전달부Signal Transmitter 소결후 시트(두께(㎛)/수축율(%))Sheet after sintering (thickness (μm) / shrinkage (%)) 22.1/26.322.1 / 26.3 20.9/30.320.9 / 30.3 21.2/29.321.2 / 29.3 22.9/23.722.9 / 23.7 23.4/22.023.4 / 22.0 27.99/6.727.99 / 6.7
정전용량(㎊)Capacitance 34.334.3 22.822.8 37.037.0 44.944.9 50.150.1 8.638.63
물성Properties ESDESD Max 15kVMax 15kV Max 7kVMax 7kV Max 20kVMax 20kV Max 8kVMax 8kV Max 2kVMax 2kV Max 1kVMax 1kV
누설전류Leakage current 0.46㎂↓0.46㎂ ↓ 0.15㎂↓0.15㎂ ↓ 1.48㎂↓1.48㎂ ↓ 2.31㎂↓2.31㎂ ↓ 8.5㎂↓8.5㎂ ↓ Short(105㎂↑)Short (105㎂ ↑)
데이터신호Data signal ×× ×× ××
단면결함유무Cross section defect ×× ×× ×× ×× ×× ○(13개)○ (13)
상기 표 3에서 확인할 수 있듯이, As can be seen in Table 3 above,
동일한 전극구조 및 동일한 시트성형물을 적층시켜 제조한 비교예 3의 경우 본 발명에 따른 부피범위를 벗어남에 따라서 낮은 밀도를 가짐에 따라서 소체 강도문제로 인해 단면 결함이 현저히 많았다. 또한, ESD에 대한 방호성능 및 누설전류 차단 성능 모두 실시예에 비해 현저히 좋지 않음을 확인할 수 있다. In Comparative Example 3 prepared by stacking the same electrode structure and the same sheet molding, as the out of the volume range according to the present invention has a low density, the cross-sectional defects were significantly due to the body strength problem. In addition, it can be seen that both the protection against ESD and the leakage current blocking performance are significantly worse than those of the embodiment.
또한, 실시예 14의 경우 티탄산바륨의 함량이 본 발명에 따른 바람직한 범위를 벗어남에 따라서 누설전류 평가는 실시예 13보다 우수했으나 ESD에 대한 방호성능이 실시예 13에 비해 53.3% 감소하였고, 데이터신호 역시 감쇄됨에 따라서 ESD에 대한 방호성 및 데이터신호 감소억제기능이 제대로 발현되지 못함을 확인할 수 있다.In addition, in the case of Example 14, the leakage current evaluation was superior to Example 13 as the barium titanate content was outside the preferred range according to the present invention, but the protection performance against ESD was reduced by 53.3% compared to Example 13, and the data signal As it is also attenuated, it can be seen that the protection against ESD and data signal reduction suppression function are not properly expressed.
또한, 실시예 17의 경우 티탄산바륨의 함량이 본 발명에 따른 바람직한 범위를 벗어남에 따라서 실시예 13에 대비하여 누설전류 평가결과가 허용치인 5㎂를 벗어나 좋지 않은 것을 확인할 수 있고, ESD 방호성능 역시 실시예 13에 대비하여 86.7% 감소하였음을 확인할 수 있고, 데이터신호를 감쇄함에 따라서 3가지 기능을 모두 수행할 수 없음을 알 수 있다.In addition, in the case of Example 17, as the content of barium titanate is out of the preferred range according to the present invention, it can be confirmed that the leakage current evaluation result is not good beyond 5 kV, which is acceptable compared to Example 13, and ESD protection performance is also good. As compared with Example 13, it can be seen that the decrease was 86.7%. As the data signal is attenuated, all three functions cannot be performed.
또한, 실시예 15 및 실시예 16의 경우 티탄산바륨의 함량이 본 발명에 따른 바람직한 범위내 있음에 따라서 ESD 방호, 누설전류차단 및 데이터신호감쇄 모두 우수한 성능을 발현하고 있음을 확인할 수 있다.In addition, in the case of Example 15 and Example 16, the content of barium titanate is within the preferred range according to the present invention, it can be seen that both ESD protection, leakage current blocking and data signal attenuation exhibit excellent performance.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiments set forth herein, and those skilled in the art who understand the spirit of the present invention, within the scope of the same idea, the addition of components Other embodiments may be easily proposed by changing, deleting, adding, etc., but this will also be within the scope of the present invention.

Claims (18)

  1. 부피가 0.025 ~ 0.06㎣이며, 티탄산바륨계 성분 및 유리질 성분을 포함하는 소체; 및 A body having a volume of 0.025 to 0.06 mm 3 and comprising a barium titanate-based component and a glassy component; And
    상기 소체 내부에 배치된 내부전극;을 포함하고,An internal electrode disposed inside the body;
    내부로 유입되는 누설전류 및 정전기에 대해 방호하는 감전보호기능 및 내부로 유입되는 데이터신호의 감쇄를 억제하여 통과시키는 신호전달기능이 복합화된 감전보호소자.An electric shock protection device that combines an electric shock protection function that protects against leakage current and static electricity flowing into the inside and a signal transmission function that suppresses and passes the attenuation of the data signal flowing inside.
  2. 제1항에 있어서, The method of claim 1,
    상기 감전보호소자는 전기적으로 병렬로 접속된, 내부로 유입되는 누설전류 및 정전기에 대해 방호하는 감전보호부 및 내부로 유입되는 데이터신호의 감쇄를 억제하여 통과시키는 신호전달부를 포함하는 감전보호소자.The electric shock protection device includes an electric shock protection device that is electrically connected in parallel, the electric shock protection unit for protecting the leakage current and static electricity flowing into the inside and the signal transmission section for suppressing passing of the attenuation of the data signal flowing into the interior.
  3. 제2항에 있어서, The method of claim 2,
    상기 감전보호소자에 구비되는 내부전극은 적어도 한 쌍의 제1내부전극을 포함하고, 상기 제1내부전극은 수평방향 또는 수직방향으로 이격되어 배치되어 감전보호부를 형성하는 감전보호소자.The internal electrode provided in the electric shock protection device includes at least a pair of first internal electrodes, wherein the first internal electrodes are spaced apart in the horizontal or vertical direction to form an electric shock protection unit.
  4. 제3항에 있어서,The method of claim 3,
    이격된 상기 한 쌍의 제1내부전극 사이에는 공극, 또는 상기 공극의 일부 또는 전부를 충진하는 방전물질을 더 구비하는 감전보호소자.An electric shock protection device further comprising a gap or a discharge material filling part or all of the gap between the pair of spaced apart first internal electrodes.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 공극의 체적은 상기 감전보호소자의 총 체적 대비 1~15%인 감전보호소자.The volume of the air gap is an electric shock protection device of 1 to 15% of the total volume of the electric shock protection device.
  6. 제2항에 있어서,The method of claim 2,
    상기 감전보호소자에 구비되는 내부전극은 적어도 한 쌍의 제2내부전극을 포함하고, 상기 제2내부전극은 수직방향으로 각각의 전극면 적어도 일부가 중첩되도록 배치되어 신호전달부를 형성하는 감전보호소자.The internal electrode provided in the electric shock protection device includes at least a pair of second internal electrodes, and the second internal electrode is disposed so that at least a part of each electrode surface is overlapped in the vertical direction to form a signal transmission part. .
  7. 제2항에 있어서, The method of claim 2,
    상기 감전보호부는 제1내부전극을 포함하고, 상기 신호전달부는 제2내부전극를 포함하며, 인접하여 배치되는 상기 제1내부전극과 상기 제2내부전극간 수직방향 이격거리는 20 ~ 100㎛ 인 감전보호소자.The electric shock protection unit includes a first internal electrode and the signal transmission unit includes a second internal electrode, and a vertical separation distance between the first internal electrode and the second internal electrode disposed adjacent to each other is 20 to 100 μm. device.
  8. 제1항에 있어서, The method of claim 1,
    상기 소체는 유입되는 데이터 신호의 감쇄 억제, 절연파괴 없이 유입되는 정전기 통과 및 유입되는 외부전원의 누설전류를 차단하도록 유전율이 900 ~ 1500 인 감전보호소자.The body has a dielectric constant of 900 ~ 1500 so as to block the attenuation of the incoming data signal, to prevent the passage of static electricity flowing without the insulation breakdown and leakage current of the incoming external power source.
  9. 제1항에 있어서,The method of claim 1,
    상기 소체는 유리질 성분 100 중량부에 대하여 티탄산바륨계 성분을 30 ~ 50 중량부 포함하는 감전보호소자.The body is electric shock protection device comprising 30 to 50 parts by weight of the barium titanate-based component with respect to 100 parts by weight of the glass component.
  10. 제1항에 있어서,The method of claim 1,
    상기 소체는 밀도가 4.5 ~ 5.8 g/㎣인 감전보호소자.The body has an electric shock protection device having a density of 4.5 ~ 5.8 g / ㎣.
  11. 제1항에 있어서, The method of claim 1,
    상기 소체는 두께가 0.2 ~ 0.4㎜인 감전보호소자.The body has an electric shock protection device having a thickness of 0.2 ~ 0.4㎜.
  12. 제1항에 있어서,The method of claim 1,
    상기 소체는 티탄산바륨계 성분 및 유리질 성분을 포함하는 복수개의 시트가 적층 및 소결되어 형성되고,The body is formed by laminating and sintering a plurality of sheets including a barium titanate-based component and a glassy component,
    상기 복수개의 시트 중 상기 내부전극이 어느 일면에 형성된 시트는 최소두께가 20 ㎛ 이상인 포함하는 감전보호소자.An electric shock protection device comprising a sheet having the internal electrode formed on one surface of the plurality of sheets having a minimum thickness of 20 μm or more.
  13. 제1항에 있어서,The method of claim 1,
    상기 유리질 성분은 산화알루미늄 및 산화규소를 포함하는 감전보호소자.The glassy component is an electric shock protection device comprising aluminum oxide and silicon oxide.
  14. 제13항에 있어서,The method of claim 13,
    상기 유리질 성분은 유전율이 25 이상인 감전보호소자.The glass component is an electric shock protection device having a dielectric constant of 25 or more.
  15. 제1항에 있어서,The method of claim 1,
    상기 감전보호소자는 정전용량이 4 ~ 100 ㎊ 인 감전보호소자.The electric shock protection device is an electric shock protection device having a capacitance of 4 ~ 100 ㎊.
  16. 제1항에 있어서,The method of claim 1,
    상기 감전보호소자는 상기 내부전극과 전기적으로 연결되도록 상기 소체의 외부면에 형성된 외부전극을 더 포함하는 감전보호소자.The electric shock protection device further comprises an external electrode formed on the outer surface of the body to be electrically connected to the internal electrode.
  17. 인체 접촉가능 전도체;Human contactable conductors;
    회로부 및Circuit part and
    상기 전도체와 상기 회로부 사이에 배치되는 제1항에 따른 감전보호소자;를 구비하는 휴대용 전자장치.And an electric shock protection device according to claim 1, disposed between the conductor and the circuit portion.
  18. 제17항에 있어서,The method of claim 17,
    상기 전도체는 상기 전자장치와 외부기기의 통신을 위한 안테나, 메탈 케이스, 및 도전성 장신구 중 적어도 하나를 포함하는 휴대용 전자장치.The conductor includes at least one of an antenna, a metal case, and conductive jewelry for communication between the electronic device and an external device.
PCT/KR2016/002790 2015-03-18 2016-03-18 Electric shock protection device and portable electronic device equipped with same WO2016148546A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150037620 2015-03-18
KR10-2015-0037619 2015-03-18
KR20150037619 2015-03-18
KR10-2015-0037620 2015-03-18

Publications (1)

Publication Number Publication Date
WO2016148546A1 true WO2016148546A1 (en) 2016-09-22

Family

ID=56919065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002790 WO2016148546A1 (en) 2015-03-18 2016-03-18 Electric shock protection device and portable electronic device equipped with same

Country Status (2)

Country Link
KR (4) KR101978426B1 (en)
WO (1) WO2016148546A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102108947B1 (en) * 2017-07-14 2020-05-12 주식회사 아모텍 Hybrid electric device and electronic device with the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257781A (en) * 2002-03-05 2003-09-12 Murata Mfg Co Ltd Multilayer ceramic capacitor with discharge function
JP2005109996A (en) * 2003-09-30 2005-04-21 Kyocera Corp Image pickup unit
KR100573364B1 (en) * 2005-06-11 2006-04-26 주식회사 이노칩테크놀로지 Chip type surge arrester
JP2010146779A (en) * 2008-12-17 2010-07-01 Panasonic Corp Overvoltage protection component
KR101452540B1 (en) * 2007-05-03 2014-10-21 에프코스 아게 Electric multi-layer component with electrically non-contacted protective structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003803A (en) * 1998-06-16 2000-01-07 Matsushita Electric Ind Co Ltd Positive temperature coefficient thermistor and production method thereof
JP2007194992A (en) * 2006-01-20 2007-08-02 Matsushita Electric Ind Co Ltd Composite electronic component, wireless circuit module, and method of manufacturing composite electronic part
KR101012965B1 (en) * 2008-10-20 2011-02-08 주식회사 아모텍 Complex device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257781A (en) * 2002-03-05 2003-09-12 Murata Mfg Co Ltd Multilayer ceramic capacitor with discharge function
JP2005109996A (en) * 2003-09-30 2005-04-21 Kyocera Corp Image pickup unit
KR100573364B1 (en) * 2005-06-11 2006-04-26 주식회사 이노칩테크놀로지 Chip type surge arrester
KR101452540B1 (en) * 2007-05-03 2014-10-21 에프코스 아게 Electric multi-layer component with electrically non-contacted protective structure
JP2010146779A (en) * 2008-12-17 2010-07-01 Panasonic Corp Overvoltage protection component

Also Published As

Publication number Publication date
KR20170076637A (en) 2017-07-04
KR20160113054A (en) 2016-09-28
KR20160113056A (en) 2016-09-28
KR101978426B1 (en) 2019-05-14
KR102119512B1 (en) 2020-06-05
KR101673219B1 (en) 2016-11-07
KR20160113055A (en) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2016080625A1 (en) Electric shock protection member and mobile electronic device equipped with same
WO2017003001A1 (en) Electric shock-preventing contactor and portable electronic device having same
WO2016080624A1 (en) Electric shock protection member and mobile electronic device equipped with same
WO2021187724A1 (en) Conductive liquid metal microparticles comprising hydrogen-doped liquid metal oxide, conductive ink comprising same, and preparation method therefor
WO2017204584A1 (en) Protection contactor
WO2016122245A1 (en) Portable electronic device with embedded electric shock protection function
WO2016148546A1 (en) Electric shock protection device and portable electronic device equipped with same
WO2017175979A2 (en) Positive electrode active material, method for manufacturing same, and lithium secondary battery containing same
WO2019013585A1 (en) Multifunctional element and electronic device comprising same
WO2017074088A1 (en) Electric shock prevention apparatus
WO2018182249A1 (en) Electric shock protection device, method for manufacturing same, and portable electronic device having same
WO2020055139A1 (en) Method for producing composite device and composite device realized thereby
WO2022164087A1 (en) Wireless charging apparatus and transportation means comprising same
WO2022108027A1 (en) Composite solid electrolyte for secondary battery, secondary battery comprising same, and method of preparing same
WO2021085955A1 (en) Wireless charging device and moving means including same
WO2020204416A1 (en) Complex element and electronic device including same
WO2017196116A1 (en) Functional contactor
WO2016080623A1 (en) Electric shock protection device and portable electronic device having same
WO2018117447A1 (en) Complex protective element and electronic device comprising same
WO2017204585A1 (en) Protection contactor
WO2019112329A1 (en) Diode composite device and manufacturing method therefor
WO2017196149A1 (en) Contactor, and electronic device provided with same
WO2017196151A1 (en) Contactor, and electronic device provided with same
WO2020204415A1 (en) Composite element and electronic device including same
WO2021091303A1 (en) Heat dissipation sheet for low-frequency antenna, method for manufacturing same, and electronic device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16765302

Country of ref document: EP

Kind code of ref document: A1