WO2016148531A1 - 압력 센서 - Google Patents

압력 센서 Download PDF

Info

Publication number
WO2016148531A1
WO2016148531A1 PCT/KR2016/002738 KR2016002738W WO2016148531A1 WO 2016148531 A1 WO2016148531 A1 WO 2016148531A1 KR 2016002738 W KR2016002738 W KR 2016002738W WO 2016148531 A1 WO2016148531 A1 WO 2016148531A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
diaphragm
resistors
strain gauge
strain
Prior art date
Application number
PCT/KR2016/002738
Other languages
English (en)
French (fr)
Inventor
김영덕
변을출
박봉현
Original Assignee
타이코에이엠피 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 타이코에이엠피 주식회사 filed Critical 타이코에이엠피 주식회사
Priority to CN201680016195.6A priority Critical patent/CN107430039A/zh
Priority to KR1020167010125A priority patent/KR20170119283A/ko
Publication of WO2016148531A1 publication Critical patent/WO2016148531A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance

Definitions

  • the description below relates to a pressure sensor.
  • the pressure sensor is a mechanism for measuring pressure, and may include, for example, a strain gauge.
  • a strain gauge refers to a measuring instrument that measures deformation when an object is deformed by an external force, and can be attached to an object and measured. When the alloy wire is deformed in the tensile direction, the length increases, the cross-sectional area decreases, the electrical resistance increases, and the increase can be measured.
  • An object of the embodiment is to provide a pressure sensor capable of miniaturizing the sensor packaging.
  • the pressure sensor may include a diaphragm; And a strain gauge including a plurality of electrodes and a plurality of resistors and glass bonded to the diaphragm, wherein at least one of the plurality of resistors is disposed in a space between two electrodes spaced apart from each other among the plurality of electrodes. Can be arranged.
  • the plurality of resistors may be four resistors arranged in the form of a Wheatstone bridge circuit.
  • the first and second resistors of the four resistors may be positioned in the center of the strain gauge, and the third and fourth resistors of the four resistors may be located at the left and right ends of the strain gauge, respectively.
  • Each of the third and fourth resistors may include a plurality of piezoresistors disposed long in the same direction.
  • Each of the first resistor and the second resistor may include at least one piezoresistor that is disposed in the same direction as the plurality of piezo resistors.
  • the plurality of electrodes and the plurality of resistors may be physically connected in series to form one closed loop.
  • At least one of the plurality of resistors may include a plurality of piezoresistors; And at least one connector for connecting the plurality of piezoresistors in series.
  • the plurality of piezoresistors may be silicon wires.
  • the plurality of piezoresistors may all be elongated in a direction parallel to each other.
  • the stress strain of the at least one connector may be lower than the stress strain of the plurality of piezoresistors.
  • the at least one resistor may be disposed at a position that is deformed to the maximum of the diaphragms.
  • the at least one resistor may be disposed in the center of the diaphragm.
  • the pressure sensor according to the embodiment has an advantage in terms of cost compared to the conventional pressure sensor.
  • the robust design of the sensor diaphragm is possible, and the overall sensor packaging can be miniaturized.
  • FIG. 1 is a diagram illustrating a strain gauge according to an exemplary embodiment.
  • FIG. 2 is a partial cross-sectional view of the pressure sensor including the strain gauge of FIG. 1.
  • FIG. 3 is a graph showing a value of a strain for each distance measured by the pressure sensor of FIG. 2.
  • FIG. 4 is a diagram illustrating a strain gauge according to another exemplary embodiment.
  • FIG. 5 is a circuit diagram schematically illustrating the strain gauge of FIG. 4.
  • FIG. 6 is a partial cross-sectional view of the pressure sensor including the strain gauge of FIG. 4.
  • FIG. 7 is a graph illustrating a value of strain for each distance measured by the pressure sensor of FIG. 6.
  • FIGS. 3 and 7 are graph simultaneously showing the graphs shown in FIGS. 3 and 7, respectively.
  • 9 and 10 are graphs showing a strain distribution diagram according to the pressure acting on the diaphragm of the pressure sensor of FIG. 6.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be “connected”, “coupled” or “connected”.
  • FIG. 1 is a diagram illustrating a strain gauge according to an exemplary embodiment.
  • a strain gauge 10 may include a first resistor R1, a second resistor R2, a first electrode 11, a second electrode 12, and a third electrode ( 13) may be included. Both ends of the first resistor R1 may be connected to the first electrode 11 and the third electrode 13, and both ends of the second resistor R2 may be connected to the second electrode 12 and the third electrode 13. Can be.
  • the strain gauge 10 according to an embodiment may be referred to as a half bridge strain gauge.
  • the first resistor R1 may include a plurality of piezoresistors R11 disposed in parallel with each other, and a connecting member R12 connecting the plurality of piezoresistors R11 in the vertical direction.
  • a piezoresistor R11 for example, a silicon wire may be used.
  • the connecting body R12 may be made of aluminum, for example.
  • the stress strain of the connector R12 may be smaller than that of the piezo resistors R11. According to the shape as described above, the stress strain of the first resistor (R1) is the largest in the longitudinal direction of the plurality of piezoresistor (R11).
  • the second resistor R2 may have the same structure as that of the first resistor R1, and the piezoresistor of the second resistor R2 is disposed to be elongated in the same direction as the piezoresistor R11 of the first resistor R1. Can be.
  • the strain gauge 10 may be more sensitive to a specific direction (the longitudinal direction of the piezoresistor R11 of the first resistor R1) than the other directions.
  • the diaphragm 1a is formed in a circular shape, and according to the pressure acting on the hollow 1c, the deformation of the diaphragm 1a is symmetrically radially (that is, biaxial direction) with respect to the center of the diaphragm 1a. It has a shape.
  • the strain gauge 10 reacts sensitively to a specific direction (ie, uniaxial direction), it is possible to reduce the problem that an error in the measured value is caused by deformation in a direction orthogonal thereto, and as a result, the strain gauge It is possible to measure a relatively accurate strain even if the center of (10) is not exactly aligned with the center of the diaphragm 1a.
  • FIG. 2 is a partial cross-sectional view of the pressure sensor including the strain gauge of FIG. 1.
  • the pressure sensor 1 includes a diaphragm 1a, a sidewall 1b supporting the diaphragm 1a, a hollow 1c enclosed by the diaphragm 1a and the sidewall 1b, and It may comprise two strain gauges 10 disposed on the diaphragm 1a.
  • the width of the hollow 1c may be "A”
  • the thickness of the side wall 1b may be "B”
  • the thickness of the diaphragm 1a may be "C”.
  • the diaphragm 1a may be formed of an inorganic material.
  • the diaphragm 1a may be, for example, a metal or a ceramic material.
  • the strain gauge 10 is disposed above the diaphragm 1a, and the diaphragm 1a may be thinner than the side wall 1b. In this case, a maximum stress change may occur at a portion where the strain gauge 10 is disposed by pressure or other external force.
  • the diaphragm 1a In response to the pressure acting on the hollow 1c, the diaphragm 1a is deformed, and the deformation amount of the diaphragm 1a can be measured using two strain gauges 10.
  • galss frit bonding may be applied in attaching each strain gauge 10 to the diaphragm 1a.
  • the minimum spacing d is required between the two strain gauges 10 so that they do not overlap each other.
  • the glasses 1d attaching the respective strain gauges may not overlap each other. If the glasses 1d overlap each other, the measured values may be inaccurate due to mutual interference of the two strain gauges, and a minimum distance d is essential for improving the accuracy of the sensor.
  • the size of the diaphragm using the half bridge strain gauge has a limit in reducing due to the minimum distance d.
  • the reason why glass frit bonding is used for fixing the strain gauge to the diaphragm is as follows. First, heat treatment is required to remove residual stress on the diaphragm with strain gages. In this process, the general epoxy adhesive does not withstand the heat treatment temperature. Second, in order to derive the strain value of the strain gage predicted from the diaphragm, the elastic modulus and the thermal expansion condition should be considered. Under these conditions, when an organic bonding material to which carbon is added is used, the predicted strain gauge strain value cannot be obtained. Therefore, a glass material which is an inorganic bonding material is used.
  • FIG. 3 is a graph showing a value of a strain for each distance measured by the pressure sensor of FIG. 2.
  • miniaturization of the diaphragm can be considered for miniaturization of the sensor.
  • FIG. 4 is a diagram illustrating a strain gauge according to another embodiment
  • FIG. 5 is a circuit diagram schematically illustrating the strain gauge of FIG. 4.
  • the strain gauge 20 may include a first resistor R1, a second resistor R2, a third resistor R3, a fourth resistor R4, and a first resistor R1.
  • the electrode 21, the second electrode 22, the third electrode 23, and the fourth electrode 24 may be included. Both ends of the first resistor R1 are connected to the first electrode 21 and the second electrode 22, and both ends of the second resistor R2 are connected to the second electrode 22 and the third electrode 23. Both ends of the third resistor R3 are connected to the first electrode 21 and the fourth electrode 24, and both ends of the fourth resistor R4 are the third electrode 23 and the fourth electrode 24.
  • the strain gauge 20 may be understood to include four resistors arranged in the form of a Wheatstone bridge circuit.
  • the strain gauge 10 according to another embodiment may be referred to as a full bridge strain gauge.
  • the first resistor R1 may include a plurality of piezoresistors R11 disposed in parallel with each other, and a connecting member R12 connecting the plurality of piezoresistors R11 in the vertical direction.
  • a piezoresistor R11 for example, a silicon wire may be used.
  • the connecting body R12 may be made of aluminum, for example. It can be understood that the four resistors each comprise a silicon wire that is physically and electrically connected.
  • the stress strain of the connector R12 may be smaller than that of the piezo resistors R11. According to the shape as described above, the stress strain of the first resistor (R1) is the largest in the longitudinal direction of the plurality of piezoresistor (R11).
  • the remaining resistors R2, R3, and R4 may also have the same structure as the first resistor R1, and the piezo resistors of the remaining resistors R2, R3, and R4 may include piezo resistors of the first resistor R1. It may be arranged long in the same direction as R11).
  • the first resistor R1 and the fourth resistor R4 may have symmetrical shapes with respect to the center of the strain gauge 20.
  • the second resistor R2 and the third resistor R3 may have symmetrical shapes with respect to the center of the strain gauge 20.
  • the strain gauge 10 may be more sensitive to a specific direction (the longitudinal direction of the piezoresistor R11 of the first resistor R1) than the other directions.
  • FIG. 6 is a partial cross-sectional view of the pressure sensor including the strain gauge of FIG. 4.
  • the pressure sensor 2 may include one strain gauge 20 disposed on the diaphragm 2a, the side wall 2b, the hollow 1c and the diaphragm 2a.
  • the strain gauge 20 may be fixed to the diaphragm 2a by glass bonding.
  • the glass applied to the diaphragm 2a by glass bonding was denoted by 2d.
  • the width of the hollow 2c may be "A '"
  • the thickness of the side wall 2b may be "B”
  • the thickness of the diaphragm 2a may be "C”. Since the pressure sensor 2 can measure the strain of the diaphragm 2a using only one strain gauge 20, the gap d is not required unlike the embodiments described with reference to FIGS.
  • the overall pressure sensor 2 can be miniaturized as a result.
  • the full bridge strain gauge 20 it is possible to eliminate the minimum distance d portion required when the half bridge strain gauge 10 is used, so that the width A 'of the hollow 1c can be reduced, thereby miniaturizing the sensor diaphragm accordingly. Is possible.
  • FIG. 7 is a graph showing the values of strain for each distance measured by the pressure sensor of FIG. 6, and FIG. 8 is a graph showing the graphs shown in FIGS. 3 and 7, respectively.
  • FIGS. 7 and 8 it can be seen that there is no dead zone unlike the embodiments described with reference to FIGS. 1 to 3.
  • the maximum strain value that can be sensed through the strain gauge 20 is shown. It can be seen that it is increased by G shown in 8. In other words, the sensitivity of the strain gauge 20 can be improved.
  • Table 1 shows the results when the half bridge strain gauge 10 and the full bridge strain gauge 20 are respectively applied to the same diaphragm.
  • the thickness of the sensor diaphragm In the pressure sensor to which the half bridge strain gauge 10 is applied, it can be seen that in order to measure the same strain as the full bridge strain gauge 20, the thickness of the sensor diaphragm must be made thinner.
  • Table 2 shows the results when designed to have the same sensitivity.
  • the thickness of the sensor diaphragm must be made thinner, and as a result, It can be seen that the durability is lowered. In other words, a more robust design is possible by using the full bridge strain gauge 20.
  • 9 and 10 are graphs showing a strain distribution diagram according to the pressure acting on the diaphragm of the pressure sensor of FIG. 6.
  • the pressure sensor according to the embodiment has an advantage in terms of cost compared to the conventional pressure sensor.
  • a strong construction system of the sensor diaphragm is possible, and the entire sensor packaging can be miniaturized.

Abstract

실시 예에 따르면 압력 센서는, 다이어프램; 및 복수 개의 전극과, 복수 개의 저항을 포함하고 상기 다이어프램에 글래스 본딩되는 스트레인 게이지를 포함하고, 상기 복수 개의 저항 중 적어도 하나 이상의 저항은, 상기 복수 개의 전극 중 서로 이격된 2개의 전극 사이의 공간에 배치될 수 있다.

Description

압력 센서
아래의 설명은 압력 센서에 관한 것이다.
압력 센서는 압력을 측정하는 기구로, 예를 들면, 스트레인 게이지를 포함할 수 있다. 스트레인 게이지란, 물체가 외력으로 변형될 때 등에 변형을 측정하는 측정기를 말하며, 물체에 부착시켜 측정할 수 있다. 합금선은 인장방향의 변형을 받으면 길이가 증가하여 단면적이 감소되어 전기저항이 증가하며, 그 증가분을 측정할 수 있다.
실시 예의 목적은 센서 패키징을 소형화시킬 수 있는 압력 센서를 제공하는 것이다.
실시 예에 따르면 압력 센서는, 다이어프램; 및 복수 개의 전극과, 복수 개의 저항을 포함하고 상기 다이어프램에 글래스 본딩되는 스트레인 게이지를 포함하고, 상기 복수 개의 저항 중 적어도 하나 이상의 저항은, 상기 복수 개의 전극 중 서로 이격된 2개의 전극 사이의 공간에 배치될 수 있다.
상기 복수 개의 저항은, 휘스톤 브릿지 회로의 형태로 배치되는 4개의 저항일 수 있다.
상기 4개의 저항 중 제 1 저항 및 제 2 저항은 상기 스트레인 게이지의 가운데에 위치하고, 상기 4개의 저항 중 제 3 저항 및 제 4 저항은 상기 스트레인 게이지의 좌측 단부 및 우측 단부에 각각 위치할 수 있다.
상기 제 3 저항 및 제 4 저항은 각각, 동일한 방향으로 길게 배치되는 복수 개의 압저항체를 포함할 수 있다.
상기 제 1 저항 및 제 2 저항은 각각, 상기 복수 개의 압저항체와 동일한 방향으로 길게 배치되는 적어도 하나 이상의 압저항체를 포함할 수 있다.
상기 복수 개의 전극 및 상기 복수 개의 저항은 물리적으로 직렬 연결되어 하나의 폐루프를 형성할 수 있다.
상기 복수 개의 저항 중 적어도 하나 이상의 저항은, 복수 개의 압저항체; 및 상기 복수 개의 압저항체를 직렬로 연결하는 적어도 하나 이상의 연결체를 포함할 수 있다.
상기 복수 개의 압저항체는 실리콘 와이어일 수 있다.
상기 복수 개의 압저항체는 모두 서로 평행한 방향으로 길게 배치될 수 있다.
상기 적어도 하나 이상의 연결체의 응력 변형률은 상기 복수 개의 압저항체의 응력 변형률보다 낮을 수 있다.
상기 적어도 하나 이상의 저항은, 상기 다이어프램 중 최대로 변형되는 위치에 배치될 수 있다.
상기 적어도 하나 이상의 저항은, 상기 다이어프램의 중심에 배치될 수 있다.
실시 예에 따른 압력 센서는, 종래의 압력 센서에 비하여 비용적인 측면에서 유리한 장점이 있다. 또한, 센서 다이어프램의 강건 설계가 가능하고, 전체 센서 패키징을 소형화시킬 수 있다는 장점을 갖는다.
도 1은 일 실시 예에 따른 스트레인 게이지를 나타내는 도면이다.
도 2는 도 1의 스트레인 게이지를 포함하는 압력 센서의 부분 단면도를 나타내는 도면이다.
도 3은 도 2의 압력 센서에서 측정된 거리별 스트레인의 값을 나타내는 그래프이다.
도 4는 다른 실시 예에 따른 스트레인 게이지를 나타내는 도면이다.
도 5는 도 4의 스트레인 게이지를 간략하게 도식화한 회로도이다.
도 6은 도 4의 스트레인 게이지를 포함하는 압력 센서의 부분 단면도를 나타내는 도면이다.
도 7은 도 6의 압력 센서에서 측정된 거리별 스트레인의 값을 나타내는 그래프이다.
도 8은 도 3 및 도 7에 각각 도시된 그래프를 동시에 나타내는 그래프이다.
도 9 및 도 10은 도 6의 압력 센서의 다이어프램에 작용하는 압력에 따른 스트레인 분포도를 나타내는 그래프이다.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
어느 하나의 실시 예에 포함된 구성요소와, 공통적인 기능을 포함하는 구성요소는, 다른 실시 예에서 동일한 명칭을 사용하여 설명하기로 한다. 반대되는 기재가 없는 이상, 어느 하나의 실시 예에 기재한 설명은 다른 실시 예에도 적용될 수 있으며, 중복되는 범위에서 구체적인 설명은 생략하기로 한다.
도 1은 일 실시 예에 따른 스트레인 게이지를 나타내는 도면이다.
도 1을 참조하면, 일 실시 예에 따른 스트레인 게이지(10)는, 제 1 저항(R1), 제 2 저항(R2), 제 1 전극(11), 제 2 전극(12) 및 제 3 전극(13)을 포함할 수 있다. 제 1저항(R1)의 양단은 제 1 전극(11) 및 제 3 전극(13)에 연결되고, 제 2 저항(R2)의 양단은 제 2 전극(12) 및 제 3 전극(13)에 연결될 수 있다. 일 실시 예에 따른 스트레인 게이지(10)는, 하프 브릿지 스트레인 게이지(Half bridge strain gauge)라고 할 수도 있다.
제 1 저항(R1)은, 서로 평행하게 배치되는 복수 개의 압저항체(R11)와, 복수 개의 압저항체(R11)를 상하 방향으로 연결하는 연결체(R12)를 포함할 수 있다. 압저항체(R11)는 예를 들어 실리콘 와이어가 사용될 수 있다. 연결체(R12)는 예를 들어 알루미늄 재질일 수 있다.
복수 개의 압저항체(R11) 보다 연결체(R12)의 응력변형률은 작을 수 있다. 위와 같은 형상에 의하면, 제 1 저항(R1)의 응력변형률이 복수 개의 압저항체(R11)의 길이 방향으로 가장 커지게 된다.
제 2 저항(R2)도 제 1 저항(R1)과 마찬가지의 구조를 가질 수 있으며, 제 2 저항(R2)의 압저항체는 제 1 저항(R1)의 압저항체(R11)와 동일한 방향으로 길게 배치될 수 있다.
위와 같은 형상에 의하면 스트레인 게이지(10)가 다른 방향보다 특정한 방향(제 1 저항(R1)의 압저항체(R11)의 길이 방향)에 대하여 민감할 수 있다. 통상적으로 다이어프램(1a)은 원형으로 형성되고, 중공(1c)에 작용하는 압력에 의하면, 다이어프램(1a)의 변형은 다이어프램(1a)의 중심을 기준으로 방사상(즉, 2축 방향)으로 대칭되는 형상을 갖는다. 스트레인 게이지(10)가 특정한 방향(즉, 1축 방향)에 대하여 민감하게 반응하는 경우, 그와 직교하는 방향에 대한 변형에 의해 측정값의 오차가 발생되는 문제를 줄일 수 있으며, 결과적으로 스트레인 게이지(10)의 중심을 다이어프램(1a)의 중심과 정확하게 일치하게 배치하지 않더라도 비교적 정확한 변형률을 측정하는 것이 가능해 진다.
도 2는 도 1의 스트레인 게이지를 포함하는 압력 센서의 부분 단면도를 나타내는 도면이다.
도 2를 참조하면, 압력 센서(1)는, 다이어프램(1a), 다이어프램(1a)을 지지하는 측벽(1b), 다이어프램(1a) 및 측벽(1b)에 의해 둘러 쌓여지는 중공(1c), 및 다이어프램(1a) 상에 배치되는 2개의 스트레인 게이지(10)를 포함할 수 있다. 한편, 중공(1c)의 폭을 "A", 측벽(1b)의 두께를 "B", 다이어프램(1a)의 두께를 "C"라고 할 수 있다.
다이어프램(1a)은 무기물 재질로 형성될 수 있다. 다이어프램(1a)은, 예를 들어, 메탈 또는 세라믹 재질일 수 있다. 다이어프램(1a)의 상측에 스트레인 게이지(10)가 배치되며, 다이어프램(1a)은, 측벽(1b)보다 두께가 얇을 수 있다. 이 경우, 압력 또는 기타 외부 힘에 의해서 스트레인 게이지(10)가 배치된 부분에서 최대로 응력 변화가 발생될 수 있다.
중공(1c)에 작용하는 압력에 대응하여 다이어프램(1a)은 변형되고, 다이어프램(1a)의 변형량을 2개의 스트레인 게이지(10)를 이용하여 측정할 수 있다. 이 경우 각각의 스트레인 게이지(10)를 다이어프램(1a)에 부착함에 있어서 글래스 본딩(galss frit bonding)을 적용할 수 있으며, 이 경우 글래스 본딩에 의해 다이어프램(1a)에 도포되는 각각의 글래스(1d)가 서로 겹치지 않도록 2개의 스트레인 게이지(10) 사이에는 최소 간격(d)이 요구된다. 최소 간격 d에 의해, 각각의 스트레인 게이지를 부착하는 글래스(1d)가 서로 겹치지 않을 수 있다. 만약 글래스(1d)가 서로 겹치게 된다면, 2개의 스트레인 게이지의 상호간 간섭에 의하여 측정 값이 부정확해질 수 있으며, 최소 간격 d는 센서의 정확성 향상을 위하여 필수적으로 요구된다. 위와 같은 이유로 하프 브릿지 스트레인 게이지를 이용한 다이어프램의 크기는 상기 최소 간격 d로 인하여 축소시키는 데에 한계가 있다.
한편, 스트레인 게이지를 다이어프램에 고정시킬 때에 글래스 본딩(Glass frit bonding)을 사용하는 이유는 다음과 같다. 첫째, 스트레인 게이지가 부착된 다이어프램에 잔유응력을 제거하기 위하여 열처리가 요구되는데, 이 과정에서 일반적인 에폭시 접착제는 열처리 온도에 견디지 못하기 때문이다. 둘째, 다이어프램에서 예측된 스트레인 게이지의 변형 값을 도출하기 위해서는, 탄성 계수 및 열팽창 조건을 고려해야 한다. 이 조건 하에서는 카본이 첨가된 유기물 본딩 재료를 사용하면, 예측된 스트레인 게이지의 변형 값을 얻을 수 없다 따라서, 무기물 본딩 재료인 글래스 재료를 사용한다.
도 3은 도 2의 압력 센서에서 측정된 거리별 스트레인의 값을 나타내는 그래프이다.
도 3을 참조하면, 2개의 스트레인 게이지(10)가 간격 d를 두고 이격하여 배치되므로, 도 3의 그래프와 같이 불감영역이 발생됨을 알 수 있다.
한편, 센서 소형화를 위해서 다이어프램을 소형화시키는 것을 고려할 수 있다. 이하에서는 스트레인 게이지를 변경하여 다이어프램을 소형화하고, 결과적으로 전체 압력 센서를 소형화시킬 수 있는 실시 예에 대하여 설명하기로 한다.
도 4는 다른 실시 예에 따른 스트레인 게이지를 나타내는 도면이고, 도 5는 도 4의 스트레인 게이지를 간략하게 도식화한 회로도이다.
도 4 및 도 5를 참조하면 다른 실시 예에 따른 스트레인 게이지(20)는, 제 1 저항(R1), 제 2 저항(R2), 제 3 저항(R3), 제 4 저항(R4), 제 1 전극(21), 제 2 전극(22), 제 3 전극(23) 및 제 4 전극(24)을 포함할 수 있다. 제 1저항(R1)의 양단은 제 1 전극(21) 및 제 2 전극(22)에 연결되고, 제 2 저항(R2)의 양단은 제 2 전극(22) 및 제 3 전극(23)에 연결되고, 제 3 저항(R3)의 양단은 제 1 전극(21) 및 제 4 전극(24)에 연결되고, 제 4 저항(R4)의 양단은 제 3 전극(23) 및 제 4 전극(24)에 연결될 수 있다. 다시 말하면, 스트레인 게이지(20)는, 휘스톤 브릿지 회로의 형태로 배치되는 4개의 저항을 포함하는 것으로 이해될 수 있다. 다른 실시 예에 따른 스트레인 게이지(10)는, 풀 브릿지 스트레인 게이지(Full bridge strain gauge)라고 할 수도 있다.
제 1 저항(R1)은, 서로 평행하게 배치되는 복수 개의 압저항체(R11)와, 복수 개의 압저항체(R11)를 상하 방향으로 연결하는 연결체(R12)를 포함할 수 있다. 압저항체(R11)는 예를 들어 실리콘 와이어가 사용될 수 있다. 연결체(R12)는 예를 들어 알루미늄 재질일 수 있다. 4개의 저항은 각각 물리적 및 전기적으로 연결된 실리콘 와이어를 포함하는 것으로 이해될 수 있다.
복수 개의 압저항체(R11) 보다 연결체(R12)의 응력변형률은 작을 수 있다. 위와 같은 형상에 의하면, 제 1 저항(R1)의 응력변형률이 복수 개의 압저항체(R11)의 길이 방향으로 가장 커지게 된다.
나머지 저항들(R2, R3, R4)도 제 1 저항(R1)과 마찬가지의 구조를 가질 수 있으며, 나머지 저항들(R2, R3, R4)의 압저항체는 제 1 저항(R1)의 압저항체(R11)와 동일한 방향으로 길게 배치될 수 있다.
제 1 저항(R1) 및 제 4 저항(R4)은 스트레인 게이지(20)의 중심을 기준으로 서로 대칭되는 형상을 가질 수 있다.
제 2 저항(R2) 및 제 3 저항(R3)은 스트레인 게이지(20)의 중심을 기준으로 서로 대칭되는 형상을 가질 수 있다.
위와 같은 형상에 의하면 스트레인 게이지(10)가 다른 방향보다 특정한 방향(제 1 저항(R1)의 압저항체(R11)의 길이 방향)에 대하여 민감할 수 있다.
도 6은 도 4의 스트레인 게이지를 포함하는 압력 센서의 부분 단면도를 나타내는 도면이다.
도 6을 참조하면, 압력 센서(2)는, 다이어프램(2a), 측벽(2b), 중공(1c) 및 다이어프램(2a) 상에 배치되는 1개의 스트레인 게이지(20)를 포함할 수 있다. 스트레인 게이지(20)는 다이어프램(2a)에 글라스 본딩으로 고정될 수 있다. 글래스 본딩에 의해 다이어프램(2a)에 도포되는 글래스를 2d로 표기하였다. 한편, 중공(2c)의 폭을 "A'", 측벽(2b)의 두께를 "B", 다이어프램(2a)의 두께를 "C"라고 할 수 있다. 압력 센서(2)는 1개의 스트레인 게이지(20)만을 이용하여 다이어프램(2a)의 변형률을 측정할 수 있으므로, 도 1 내지 도 3에서 설명한 실시 예와 달리 간격 d가 요구되지 않아 중공(1c)의 폭 A'를 줄일 수 있으므로, 결과적으로 전체 압력 센서(2)를 소형화시킬 수 있다. 다시 말하면, 풀 브릿지 스트레인 게이지(20)를 적용함으로써 하프 브릿지 스트레인 게이지(10) 사용시에 필요한 최소 간격 d부분을 삭제할 수 있어서 중공(1c)의 폭 A'를 축소시킬 수 있어서 이에 따른 센서 다이어 프램 소형화가 가능하다.
도 7은 도 6의 압력 센서에서 측정된 거리별 스트레인의 값을 나타내는 그래프이고, 도 8은 도 3 및 도 7에 각각 도시된 그래프를 동시에 나타내는 그래프이다.
도 7 및 도 8을 참조하면, 앞서 설명한 도 1 내지 도 3에서 설명한 실시 예와 달리 불감영역이 없음을 알 수 있다. 또한, 다이어프램(2a)은 측벽(2b)으로부터 가장 먼 부분, 다시 말하면, 다이어프램(2a)의 중심부분에서 가장 큰 변형이 일어나게 되므로, 스트레인 게이지(20)를 통하여 감지할 수 있는 최대 스트레인 값이 도 8에 도시된 G만큼 증가되는 것을 알 수 있다. 다시 말하면, 스트레인 게이지(20)의 감도(sensitivity)가 향상될 수 있다.
한편, 도 7 및 도 8을 비교한 결과를 표로 나타내면 아래와 같다.
구분 Half Bridge Full Bridge
TOTAL STRAIN 800ustrain 1000ustrain
민감도 Full bridge 대비 80%수준 -
표 1은 동일한 다이어프램에 하프 브릿지 스트레인 게이지(10) 및 풀 브릿지 스트레인 게이지(20)를 각각 적용하였을 때에 나타난 결과이다. 하프 브릿지 스트레인 게이지(10)를 적용한 압력 센서에서, 풀 브릿지 스트레인 게이지(20)와 동일한 스트레인을 측정하기 위하여는 센서 다이어 프램의 두께를 보다 얇게 하여야 함을 알 수 있다.
구분 Half Bridge Full Bridge
TOTAL STRAIN 1000ustrain 1000ustrain
다이어프램 두께 Full bridge 대비 10% 얇게 설계 -
센서 파괴압 Full bridge 대비 낮음 Half bridge 대비 높음
표 2는 동일한 민감도를 갖도록 설계하였을 때를 나타낸 결과이다. 하프 브릿지 스트레인 게이지(10)를 적용한 압력 센서가, 풀 브릿지 스트레인 게이지(20)를 적용한 압력 센서와 동일한 민감도를 갖도록 하기 위하여는, 센서 다이어 프렘의 두께를 보다 얇게 하여야하고, 결과적으로 센서 파괴압이 낮아져서 내구성이 떨어지게 됨을 알 수 있다. 다시 말하면, 풀 브릿지 스트레인 게이지(20)를 이용하면 보다 강건한 설계가 가능하다.
도 9 및 도 10은 도 6의 압력 센서의 다이어프램에 작용하는 압력에 따른 스트레인 분포도를 나타내는 그래프이다.
도 9 및 도 10을 참조하면, 스트레인 게이지(20)의 각각의 저항에서 감지되는 스트레인의 방향성은 아래의 표와 같음을 알 수 있다.
구분 R1 R2 R3 R4
스트레인 방향(도 9) - + + -
스트레인 방향(도 10) + - - +
실시 예에 따른 압력 센서는, 종래의 압력 센서에 비하여 비용적인 측면에서 유리한 장점이 있다. 또한, 센서 다이어프램의 강건설계가 가능하고, 전체 센서 패키징을 소형화시킬 수 있다는 장점을 갖는다.
이상에서 설명된 실시 예는 본 발명의 바람직한 실시 예를 설명한 것에 불과하고, 본 발명의 권리범위는 설명된 실시 예에 한정되는 것은 아니며, 이 분야의 통상의 기술자에 의하여 본 발명의 기술적 사상과 특허청구범위 내에서의 다양한 변경, 변형 또는 치환이 가능할 것이며, 그와 같은 실시 예들은 본 발명의 범위에 속하는 것으로 보아야 한다.

Claims (12)

  1. 다이어프램; 및
    복수 개의 전극과, 복수 개의 저항을 포함하고 상기 다이어프램에 글래스 본딩되는 스트레인 게이지를 포함하고,
    상기 복수 개의 저항 중 적어도 하나 이상의 저항은, 상기 복수 개의 전극 중 서로 이격된 2개의 전극 사이의 공간에 배치되는 압력 센서.
  2. 제 1 항에 있어서,
    상기 복수 개의 저항은, 휘스톤 브릿지 회로의 형태로 배치되는 4개의 저항인 압력 센서.
  3. 제 2 항에 있어서,
    상기 4개의 저항 중 제 1 저항 및 제 2 저항은 상기 스트레인 게이지의 가운데에 위치하고,
    상기 4개의 저항 중 제 3 저항 및 제 4 저항은 상기 스트레인 게이지의 좌측 단부 및 우측 단부에 각각 위치하는 압력 센서.
  4. 제 3 항에 있어서,
    상기 제 3 저항 및 제 4 저항은 각각, 동일한 방향으로 길게 배치되는 복수 개의 압저항체를 포함하는 압력 센서.
  5. 제 4 항에 있어서,
    상기 제 1 저항 및 제 2 저항은 각각, 상기 복수 개의 압저항체와 동일한 방향으로 길게 배치되는 적어도 하나 이상의 압저항체를 포함하는 압력 센서.
  6. 제 1 항에 있어서,
    상기 복수 개의 전극 및 상기 복수 개의 저항은 물리적으로 직렬 연결되어 하나의 폐루프를 형성하는 압력 센서.
  7. 제 1 항에 있어서,
    상기 복수 개의 저항 중 적어도 하나 이상의 저항은,
    복수 개의 압저항체; 및
    상기 복수 개의 압저항체를 직렬로 연결하는 적어도 하나 이상의 연결체를 포함하는 압력 센서.
  8. 제 7 항에 있어서,
    상기 복수 개의 압저항체는 실리콘 와이어인 압력 센서.
  9. 제 7 항에 있어서,
    상기 복수 개의 압저항체는 모두 서로 평행한 방향으로 길게 배치되는 압력 센서.
  10. 제 7 항에 있어서,
    상기 적어도 하나 이상의 연결체의 응력 변형률은 상기 복수 개의 압저항체의 응력 변형률보다 낮은 압력 센서.
  11. 제 1 항에 있어서,
    상기 적어도 하나 이상의 저항은, 상기 다이어프램 중 최대로 변형되는 위치에 배치되는 압력 센서.
  12. 제 1 항에 있어서,
    상기 적어도 하나 이상의 저항은, 상기 다이어프램의 중심에 배치되는 압력 센서.
PCT/KR2016/002738 2015-03-17 2016-03-17 압력 센서 WO2016148531A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680016195.6A CN107430039A (zh) 2015-03-17 2016-03-17 压力传感器
KR1020167010125A KR20170119283A (ko) 2015-03-17 2016-03-17 압력 센서

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0036841 2015-03-17
KR20150036841 2015-03-17

Publications (1)

Publication Number Publication Date
WO2016148531A1 true WO2016148531A1 (ko) 2016-09-22

Family

ID=56920157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002738 WO2016148531A1 (ko) 2015-03-17 2016-03-17 압력 센서

Country Status (3)

Country Link
KR (1) KR20170119283A (ko)
CN (1) CN107430039A (ko)
WO (1) WO2016148531A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180180502A1 (en) * 2016-12-26 2018-06-28 Hyundai Kefico Corporation Sensor element
KR20190037457A (ko) * 2017-09-29 2019-04-08 주식회사 만도 압력 센서 모듈 및 압력 센서 모듈 제작 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102053741B1 (ko) * 2019-06-18 2019-12-09 대양전기공업 주식회사 반도체 압력센서
KR102286967B1 (ko) * 2019-07-15 2021-08-09 한국전자기술연구원 스트레인 게이지, 다이아프램 구조체 및 그를 포함하는 센서

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100528636B1 (ko) * 2004-04-26 2005-11-15 (주)센서시스템기술 압력센서 및 그의 제조방법
JP2006030158A (ja) * 2004-06-15 2006-02-02 Canon Inc 半導体装置およびその製造方法
US7412892B1 (en) * 2007-06-06 2008-08-19 Measurement Specialties, Inc. Method of making pressure transducer and apparatus
US20100107771A1 (en) * 2006-06-15 2010-05-06 Kulite Semiconductor Products, Inc. Sensor array for a high temperature pressure transducer employing a metal diaphragm
JP2011069823A (ja) * 2009-09-24 2011-04-07 Robert Bosch Gmbh パッシベーションを用いずにセンサデバイスを製造する方法並びにセンサデバイス

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1257578A (zh) * 1997-03-24 2000-06-21 集成微型机器公司 批量生产的半导体薄膜压力传感器及其制造方法
DE602005021793D1 (de) * 2004-08-23 2010-07-22 Honeywell Int Inc Abgasrückführungssystem unter verwendung von unein
US8230743B2 (en) * 2010-08-23 2012-07-31 Honeywell International Inc. Pressure sensor
US8302483B2 (en) * 2011-02-25 2012-11-06 Continental Automotive Systems, Inc. Robust design of high pressure sensor device
US9156676B2 (en) * 2013-04-09 2015-10-13 Honeywell International Inc. Sensor with isolated diaphragm

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100528636B1 (ko) * 2004-04-26 2005-11-15 (주)센서시스템기술 압력센서 및 그의 제조방법
JP2006030158A (ja) * 2004-06-15 2006-02-02 Canon Inc 半導体装置およびその製造方法
US20100107771A1 (en) * 2006-06-15 2010-05-06 Kulite Semiconductor Products, Inc. Sensor array for a high temperature pressure transducer employing a metal diaphragm
US7412892B1 (en) * 2007-06-06 2008-08-19 Measurement Specialties, Inc. Method of making pressure transducer and apparatus
JP2011069823A (ja) * 2009-09-24 2011-04-07 Robert Bosch Gmbh パッシベーションを用いずにセンサデバイスを製造する方法並びにセンサデバイス

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180180502A1 (en) * 2016-12-26 2018-06-28 Hyundai Kefico Corporation Sensor element
CN108240843A (zh) * 2016-12-26 2018-07-03 现代凯菲克株式会杜 传感器元件
US10876916B2 (en) 2016-12-26 2020-12-29 Hyundai Kefico Corporation Sensor element
CN108240843B (zh) * 2016-12-26 2021-07-27 现代凯菲克株式会杜 传感器元件
KR20190037457A (ko) * 2017-09-29 2019-04-08 주식회사 만도 압력 센서 모듈 및 압력 센서 모듈 제작 방법
KR102137117B1 (ko) * 2017-09-29 2020-07-24 주식회사 만도 압력 센서 모듈 및 압력 센서 모듈 제작 방법

Also Published As

Publication number Publication date
KR20170119283A (ko) 2017-10-26
CN107430039A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
WO2017026610A1 (ko) 플렉서블 촉각 센서 및 이의 제조 방법
WO2016148531A1 (ko) 압력 센서
US5490427A (en) Six axis force sensor employing multiple shear strain gages
EP2568270B1 (en) Packaged sensor with multiple sensors elements
WO2013191333A1 (ko) 압력 및 전단력 측정이 가능한 변형 측정 센서 및 그 구조물
US6293154B1 (en) Vibration compensated pressure sensing assembly
CN103335699A (zh) 多量程称重传感器的弹性体结构
WO2011115386A2 (ko) 변형률계를 구비한 온도 보상 로드 셀
WO2018164320A1 (ko) 공압 기반 촉각센서
US20180172534A1 (en) Pressure detecting device
WO2017209435A1 (ko) 크랙 함유 투명 전도성 박막을 구비하는 고감도 센서 및 그의 제조 방법
US9689757B2 (en) Strain transmitter
WO2018066929A2 (ko) 멀티 센서 장치 및 멀티 센서 장치의 제조 방법
WO2017155142A1 (ko) 광센서를 이용한 토크 센서 및 이를 포함하는 토크 측정 장치
WO2010120042A2 (en) Displacement sensor
KR20150049057A (ko) Mems 센서 및 이를 포함하는 디바이스
US11846557B2 (en) Torque and force transducer
WO2015147586A1 (ko) 출력 특성을 보상할 수 있는 하중 측정 장치
WO2019107680A1 (ko) 반도체 압력센서
WO2016032156A1 (ko) 무게 보상 장치 및 방법
CN214224409U (zh) 双量程测力传感器
JP2514067Y2 (ja) セラミック製トランスデュ−サ
WO2018176199A1 (zh) 压阻式传感器、压力检测装置以及电子设备
CN112197687A (zh) 一种用于导管的应变计
JPH0830716B2 (ja) 半導体加速度検出装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20167010125

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16765287

Country of ref document: EP

Kind code of ref document: A1