WO2016148269A1 - Variable phantom, method for planning radiation treatment, and program - Google Patents

Variable phantom, method for planning radiation treatment, and program Download PDF

Info

Publication number
WO2016148269A1
WO2016148269A1 PCT/JP2016/058637 JP2016058637W WO2016148269A1 WO 2016148269 A1 WO2016148269 A1 WO 2016148269A1 JP 2016058637 W JP2016058637 W JP 2016058637W WO 2016148269 A1 WO2016148269 A1 WO 2016148269A1
Authority
WO
WIPO (PCT)
Prior art keywords
phantom
dose
elastic body
radiation
image
Prior art date
Application number
PCT/JP2016/058637
Other languages
French (fr)
Japanese (ja)
Inventor
倫之 角谷
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2017506215A priority Critical patent/JP6347568B2/en
Publication of WO2016148269A1 publication Critical patent/WO2016148269A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present invention relates to a moving object variable phantom, a radiation treatment plan creation method, and a program.
  • a radiation treatment plan (planned dose distribution) that prescribes the radiation irradiation position and dose is calculated by the radiation treatment planning device, and the radiation irradiation device irradiates the affected area with radiation based on the planned dose distribution.
  • a radiotherapy planning apparatus it describes in patent document 1, etc., for example.
  • Patent Document 2 discloses a technique for performing image deformation processing on a CT image or the like.
  • JP 2014-140431 A JP 2013-146540 A Japanese Patent Laid-Open No. 08-187238
  • the present invention is an example of a problem to deal with such a problem. That is, in the moving object variable phantom, it is possible to provide a moving object variable phantom capable of detecting the dose distribution in the phantom before and after deformation with high accuracy, and to evaluate image deformation processing (DIR) used for CT images with high accuracy.
  • the moving object variable phantom has at least the following configuration.
  • a moving body variable phantom for a radiation irradiation device It has a deformable elastic body, and a radiation dose detection part provided in the elastic body.
  • the radiation treatment plan preparation method of this invention comprises at least the following structures.
  • a radiation treatment plan creation method using the moving body variable phantom of the present invention Setting the characteristics of the elastic body of the variable moving phantom according to the stage of radiation therapy; And a step of detecting a radiation dose using the moving object variable phantom and creating a radiation treatment plan for defining a radiation irradiation position and a radiation irradiation dose based on the detection result.
  • the program of the present invention comprises at least the following configuration.
  • a program to be executed by a computer Using the moving object variable phantom of the present invention, a first combined dose distribution generated by performing image deformation processing on one of the dose distributions of the CT image of the phantom before and after deformation of the elastic body and adding it to the other (Calculated value) and the second combined dose distribution (actual measurement) generated according to the detection result of the irradiation dose by the irradiation dose detector (radiation dose detector) provided in the phantom before and after the deformation of the elastic body Value) and calculating the error from the Defining a deformation parameter relating to the image deformation processing based on the error.
  • the moving body variable type phantom which can detect the dose distribution in the phantom before and behind a deformation
  • DIR image deformation process
  • FIG. 1 is an overall schematic diagram illustrating an example of a radiotherapy system that employs a moving object variable phantom according to an embodiment of the present invention.
  • the figure which shows an example of the moving body variable type phantom which concerns on embodiment of this invention (a) is a figure which shows an example when the piston of a phantom is a 1st position (swelling state), (b) is the piston of a phantom The figure which shows an example in the case of the 2nd position (contracted state). The figure which shows an example of the cylindrical phantom which can be assembled and disassembled freely. The figure which shows an example of the phantom shown in FIG.
  • FIG. 3 (a) is an exploded view, (b) is an enlarged perspective view of a dosimeter container, (c) is an example of a dosimeter container, a radiation dose detection part, and a cover part.
  • the figure which shows an example of a winding type phantom (a) is the whole perspective view of the phantom, (b) is a figure which shows an example of the state which the phantom developed.
  • adopted the two-dimensional radiation dose detector (imaging device), (a) is side sectional drawing which shows an example of the state which isolate
  • the figure which shows an example of CT image and dose distribution of a phantom, (a) is a figure which shows an example of CT image and dose distribution Pa (treatment plan) of the deformation
  • FIG. 5 is a diagram showing an example of a CT image and a dose distribution of a phantom after deformation.
  • FIG. 10A is a diagram showing an example of a CT image and a dose distribution of a phantom
  • FIG. 10A is a diagram showing an example of a modified dose distribution Pa and a dose distribution shown in FIG. 10A
  • FIG. 18A is a diagram illustrating an example of the operation of the phantom illustrated in FIG.
  • FIG. 18A is a diagram illustrating an example when the piston is in the first position (inflated state), and FIG. 18B is a diagram when the piston is in the second position ( The figure which shows an example of the state which shrunk.
  • a moving body variable phantom is a moving body variable phantom for a radiation irradiation apparatus, and includes a deformable elastic body and a radiation dose detector provided on the elastic body.
  • the radiation dose detection unit is a dose accumulation type (X-ray energy accumulation type).
  • FIG. 1 is an overall schematic diagram showing an example of a radiation therapy system 100 employing a moving body variable phantom 10 (phantom) according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of the phantom 10. Specifically, FIG. 2A is a diagram showing an example of the case where the piston 16 of the phantom 10 is in the first position (inflated state), and FIG. 2B is a diagram where the piston 16 of the phantom 10 is in the second position. It is a figure which shows an example of a case (contracted state).
  • the radiation therapy system 100 includes a phantom 10, a CT apparatus 20 (Computed Tomography apparatus), a phantom dose detection apparatus 30, a radiation therapy apparatus 40, a control apparatus 50 (computer), and the like.
  • the CT apparatus 20 and the radiotherapy apparatus 40 correspond to a radiation irradiation apparatus.
  • the CT apparatus 20 performs CT imaging of a patient (subject) and the phantom 10 using, for example, helical CT (spiral CT) or non-helical CT (conventional CT).
  • an X-ray CT apparatus is employed as the CT apparatus 20.
  • the CT apparatus 20 includes a housing 20a having a gantry (rotary mount), an X-ray generation unit 21 (radiation generation unit), an X-ray detection unit 22, a rotation drive unit 23, a rotation position detection unit 24, and a base unit 25 ( A couch), a couchtop 26 as a cradle, a couchtop position detector 27, a couchtop drive unit 28, and the like.
  • An X-ray generation unit 21 (radiation generation unit) and an X-ray detection unit 22 are provided in the cylindrical casing 20a.
  • the X-ray generation unit 21 emits X-rays toward the subject and the phantom 10 on the top plate 26 of the base unit 25 under the control of the control device 50.
  • the X-ray detector 22 is disposed at a position facing the X-ray generator 21.
  • the X-ray detection unit 22 is a device that detects transmitted X-rays through the subject and the phantom 10, generates a signal corresponding to the detected X-ray dose, and outputs the signal to the control device 50.
  • the X-ray generation unit 21 and the X-ray detection unit 22 are fixed to a gantry (rotary mount) in the housing unit 20a, and the gantry is rotated by the rotation drive unit 23 under the control of the control device 50.
  • the X-ray generator 21 and the X-ray detector 22 are configured to be rotatable while maintaining the relative positions.
  • the rotational position detection unit 24 detects the rotational position of the X-ray generation unit 21 and the X-ray detection unit 22 based on a signal from a position sensor (angle sensor) provided in the gantry, for example, and controls the detection signal. Output to the device 50.
  • the top plate 26 on the base unit 25 as a bed is configured to be movable by the top plate driving unit 28 under the control of the control device 50.
  • the top plate position detection unit 27 includes a position sensor and the like, detects the position of the top plate 26, and transmits a detection signal to the control device 50. A subject and the phantom 10 are placed on the top plate 26.
  • the radiation therapy apparatus 40 performs treatment by irradiating a lesion (tumor) or the like of a subject (patient) with radiation such as an X-ray or electron beam generated by a radiation irradiation apparatus such as a linear accelerator (linac or linac). In a radiation irradiation apparatus using a linear accelerator, it is possible to irradiate sharp directional radiation.
  • the radiotherapy apparatus 40 can irradiate the phantom 10 on the top plate 26 with radiation such as X-rays.
  • the radiation therapy apparatus 40 irradiates radiation based on the radiation treatment position which prescribes
  • a radiation can be irradiated with high precision with respect to a lesion (tumor) or a simulated lesion, and irradiation to parts other than a target field can be reduced.
  • the radiotherapy device 40 is controlled by a control device 50 (computer).
  • a radiation irradiation device that does not use a linear accelerator may be employed, or a device that irradiates a lesion (tumor) with a proton beam or a heavy particle beam may be employed.
  • the control device 50 (computer) comprehensively controls the CT device 20, the radiation therapy device 40, the treatment plan generation device, and the like.
  • the control device 50 is not limited to this form, and may be configured by a plurality of computers, for example.
  • the control device 50 includes a control unit 51, a storage unit 52, a display unit 53, an operation input unit 54, a communication unit 55, an interface 56 (I / F), a communication line 57 such as a bus, and the like.
  • Each component such as the control unit 51 and the storage unit 52 is electrically connected by a communication line 57.
  • the control unit 51 comprehensively controls each component of the control device 50.
  • the control unit 51 comprehensively controls each component of the radiation therapy system 100.
  • the control unit 51 executes a program stored in the storage unit 52 to cause the control device 50 as a computer to realize the function according to the present invention. Detailed functions of the control unit 51 will be described later.
  • the storage unit 52 is a storage device such as a RAM, a ROM, an HDD, and an SSD, and stores programs and various data.
  • the control part 51 reads a program, data, etc. from a memory
  • the control unit 51 stores data or the like in the storage unit 52 as necessary.
  • the display unit 53 is a display device such as a display, and can display various data such as a CT image according to the present invention under the control of the control unit 51.
  • the operation input unit 54 is an input device such as a keyboard, a mouse, or a touch panel, and outputs an input signal to the control unit 51.
  • the communication unit 55 performs data communication with an external computer or the like via a wired or wireless communication path under the control of the control unit 51.
  • the interface 56 (I / F) includes predetermined components of the radiotherapy device 40, the phantom dose detection device 30, and the CT device 20, such as an X-ray generation unit 21, an X-ray detection unit 22, a rotation drive unit 23, and a rotation.
  • the position detection unit 24, the top plate position detection unit 27, the top plate drive unit 28, and the like are electrically connected.
  • the phantom 10 is a test body used for various calibrations of the CT apparatus 20 and the radiation therapy apparatus 40, for example.
  • the phantom 10 is used for accuracy verification of image deformation processing (DIR: Deformable Image Registration) by the control device 50.
  • DIR Deformable Image Registration
  • the phantom 10 has a portion having a predetermined X-ray absorption coefficient so as to imitate a part of a patient, for example.
  • the phantom 10 includes, for example, a portion that simulates a patient's lesion (lesion), a portion that simulates an X-ray absorption coefficient of normal tissue, and the like.
  • the moving body variable type phantom 10 is adopted as the phantom 10, and the phantom 10 is configured to be deformable so as to imitate a moving body such as a patient's breathing and heart motion.
  • a phantom 10 simulating the lung is employed.
  • the phantom 10 has an elastic body 11 disposed in a cylinder 15 as a case, and the elastic body 11 is configured to be deformable by a piston 16.
  • a piston rod 17 is connected to the piston 16.
  • the piston rod 17 is connected to a piston driving unit 175 such as a motor, and is configured to move the piston 16 under the control of the control device 50.
  • a cylinder 15 (case) that houses the phantom 10 and the piston is disposed on the plate-like member 121.
  • a piston driving unit 175 is disposed on the plate-like member 121 via a base 176.
  • the plate-like member 121 is configured such that the plate-like member 121 on which the phantom 10 and the piston driving unit 175 are placed can be easily carried.
  • an inclined member 171 is provided on the piston rod 17 so as to be movable in conjunction with the piston rod 17.
  • a vertical movement member 172 (stage) is disposed in the vicinity of the upper portion of the inclined member 171 so as to be movable up and down.
  • the vertically moving member 172 is disposed such that the lower end thereof is in contact with the inclined member 171. For this reason, the vertical movement member 172 is configured to move up and down in conjunction with the movement of the piston rod 17 and the piston 16.
  • a detection box is provided at the upper end of the vertical movement member 172, and the position of the detection box is detected by a piston position detection unit 173 such as an infrared imaging unit or a position sensor. That is, the piston position detection unit 173 detects the displacement and position of the piston 16 based on the vertical movement displacement of the vertical movement member 172 and outputs a detection signal to the control device 50.
  • a piston position detection unit 173 such as an infrared imaging unit or a position sensor. That is, the piston position detection unit 173 detects the displacement and position of the piston 16 based on the vertical movement displacement of the vertical movement member 172 and outputs a detection signal to the control device 50.
  • the phantom 10 shown in FIG. 2 includes an elastic body 11, a radiation dose detection unit 12 (irradiation dose detection unit), a balloon 13, a fluid 14 such as water or gas, a cylinder 15 as a case, a piston 16, a piston rod 17, an elasticity. It has a body holding part 18, a lid part 19, and the like.
  • the elastic body 11 is configured to be deformable by an external force such as a piston 16.
  • the elastic body 11 is formed of a shrinkable material.
  • the elastic body 11 is made of, for example, a material having a predetermined elastic modulus and a predetermined X-ray absorption coefficient such as a resin material.
  • a sponge-like porous resin material is employed as the elastic body 11.
  • the elastic body 11 is provided with the radiation dose detection unit 12.
  • a plurality of small glass dosimeters (fluorescent glass dosimeters) or the like are employed as the dose accumulation type (X-ray energy accumulation type) radiation dose detection unit 12.
  • the elastic body 11 is easily detachably disposed at a predetermined position. As a specific example, about 30 to 50 small glass dosimeters having a diameter of 1.5 mm and a length of 8.5 mm are arranged at predetermined intervals on the elastic body 11.
  • the radiation dose detection unit 12 is, for example, a silver activated phosphate glass element containing silver ions, and when this glass element is irradiated with radiation, a fluorescence center is formed by silver divalent ions or the like.
  • the This fluorescent center emits fluorescence when it returns to a stable state after being excited by external ultraviolet irradiation. This amount of luminescence is proportional to the radiation absorbed dose. The fluorescence center does not disappear by this measurement and can be read repeatedly.
  • the dose detector 31 of the phantom dose detector 30 shown in FIG. 1 is taken out from a predetermined position of the phantom 10, irradiates the glass element as the radiation dose detector 12 with ultraviolet rays, and the fluorescence of the glass element. The amount of fluorescence emitted from the center is measured, and the radiation absorbed dose is detected based on the measured amount.
  • the position specifying unit 32 of the phantom dose detection device 30 specifies the position of the glass element as the dose detection unit 31 of the phantom 10 and outputs the position information to the control device 50.
  • the radiation dose detection unit 12 of the phantom 10 in which the radiation dose detection unit 12 is arranged at a predetermined position of the elastic body 11 specified by the CT image of the CT apparatus 20 For example, optically specifying the position of.
  • the glass dose element does not generate an artifact (virtual image) on the CT image.
  • the position of the glass dose element can be accurately identified.
  • the glass dosimeter as the radiation dose detection unit 12 can be used for verification of the accuracy of image deformation processing (DIR).
  • the glass dosimeter as the radiation dose detection unit 12 can be used for verification of accuracy of image deformation processing (DIR) and accuracy of dose distribution deformation.
  • the radiation dose detector 12 After the radiation absorbed dose of the radiation dose detector 12 is detected and the position is specified by the phantom dose detector 30, the radiation dose detector 12 is arranged at a defined position of the elastic body 11 of the phantom 10.
  • an elastic body 11 is disposed in a cylindrical cylinder 15, and a balloon 13 made of an elastic body is provided around the elastic body 11.
  • a fluid 14 such as a liquid (water or the like) or a gas is disposed in a space surrounded by the cylinder 15 and the piston 16.
  • the cylinder 15 is formed in a cylindrical shape as a specific example, and has a diameter of about 25 cm.
  • a lid 19 is provided at the end of the cylinder 15, and the fluid 14 can be supplied or discharged by opening and closing the lid 19.
  • the elastic body holding portion 18 abuts on the elastic body 11 and holds the elastic body 11.
  • the contact surface of the elastic body holding portion 18 is formed in a curved shape so that the elastic body 11 is securely held even by the compression of the elastic body by the piston 16.
  • the elastic body holding portion 18 is formed with a plurality of vent holes 18a, and air can be exhausted or sucked by movement of the piston 16 in the compression direction or movement in the opposite direction.
  • the piston rod 17 has one end connected to a piston 16 that is movably disposed in the cylinder 15, and the other end connected to a piston drive unit.
  • the elastic body 11 of the phantom 10 is provided with a simulated tumor 1 (simulated lesion) made of a material having a predetermined X-ray absorption coefficient as a pseudo lesion as needed.
  • a plurality of microspheres (beads) made of a resin such as acrylic may be disposed on the elastic body 11 of the phantom 10 as necessary.
  • the diameter of the beads is about 1 mm to 3 mm as a specific example.
  • This resin bead is defined by a predetermined X-ray absorption coefficient rate and functions as a landmark on the CT image.
  • a resin wire such as nylon may be disposed on the elastic body 11 of the phantom 10 as necessary. This resin wire is defined by a predetermined X-ray absorption coefficient, and functions as a simulated blood vessel on the CT image.
  • the phantom 10 is configured to simulate the movement of the diaphragm due to respiration by displacing the piston 16 that simulates the diaphragm.
  • the substantially circular (spherical) simulated tumor 1 (1a) shown in FIG. 2A becomes a simulated tumor 1 (1b) deformed into an elliptical shape (elliptical body) as the elastic body 11 is deformed.
  • the positions of the radiation dose detection unit 12, the resin microspheres, and the wires arranged on the elastic body 11 are configured to move.
  • the piston 16 is configured so that the displacement amount can be adjusted. Specifically, for example, it can be set to a predetermined displacement amount such as ⁇ 5 mm, ⁇ 10 mm, ⁇ 15 mm, ⁇ 20 mm, ⁇ 25 mm, or the like.
  • FIG. 3 is a view showing an example of a cylindrical phantom 10A that can be assembled and disassembled.
  • FIG. 4 is a diagram showing an example of the phantom shown in FIG. Specifically, FIG. 4A is an exploded view thereof, FIG. 4B is an enlarged perspective view of the dosimeter container 10Ad, and FIG. 4C is a radiation dose detection of the dosimeter container 10Ad and a glass dosimeter. It is a perspective view which shows an example of the part 12 and lid part 10Ae.
  • the elastic body of the phantom has a multilayer structure that can be disassembled and assembled, and a dosimeter as the radiation dose detection unit 12 can be easily attached to and detached from each component.
  • the columnar phantom 10A shown in FIG. 3 includes a plurality of components formed of an elastic body, for example, a small-diameter columnar body 10Aa, a small-diameter cylindrical body 10Ab, and a large-diameter cylindrical body 10Ac. , Etc.
  • the large-diameter cylindrical body 10Ac includes a bottomed or bottomless hole h2, and is configured to accommodate the small-diameter cylindrical body 10Ab in the hole h2.
  • the small-diameter cylindrical body 10Ab includes a bottomed or non-bottomed hole h1, and is configured to accommodate the small-diameter columnar body 10Aa in the hole h1.
  • a cylindrical phantom 10A is obtained.
  • Each component of the phantom 10A has a plurality of holes for detachably holding a plurality of dosimeter housings 10Ad for housing a radiation dose detection unit 12 such as a glass dosimeter.
  • the large-diameter cylindrical body 10Ac has a plurality of holes 10Ah at predetermined positions, and the dosimeter container 10Ad can be accommodated in the holes 10Ah. It is configured.
  • the dosimeter container 10Ad shown in FIG. 4B is formed in a predetermined shape such as a rectangular parallelepiped, has a bottomed or bottomless hole h3, and accommodates a radiation dose detection unit 12 such as a glass dosimeter. It is comprised so that it can be covered with lid
  • the radiation dose detection unit 12 is disposed at a substantially central portion of the dosimeter container 10Ad.
  • the small-diameter cylindrical body 10Ab and the small-diameter columnar body 10Aa have a plurality of holes that detachably hold a plurality of dosimeter containers 10Ad, and a radiation dose detection unit such as a plurality of glass dosimeters. 12 can be held.
  • the cylindrical phantom 10A is configured such that a plurality of radiation dose detectors 12 such as a plurality of glass dosimeters can be easily and detachably disposed at predetermined positions in three dimensions.
  • the shape of the dosimeter container 10Ad described above was a rectangular parallelepiped, it is not limited to this form, and may be an arbitrary shape such as a cylindrical shape or an elliptical shape.
  • each component of the phantom 10A may be provided with a hole portion that directly and detachably holds the radiation dose detection unit 12 such as a glass dosimeter, and the radiation dose detection unit 12 may be disposed in the hole portion.
  • FIG. 5 is a view showing an example of a spherical phantom 10B that can be assembled and disassembled.
  • FIG. 5A is an overall view
  • FIG. 5B is an exploded perspective view
  • FIG. 5C is an enlarged perspective view of a dosimeter container 10Ad in which the radiation dose detection unit 12 is housed.
  • a spherical phantom 10B shown in FIG. 5A includes a plurality of components formed of an elastic body, for example, a large-diameter hemispherical dome-shaped body 10Ba, a large-diameter hemispherical dome-shaped body 10Bb, and a small-diameter phantom 10B.
  • a hole is formed in the large-diameter hemispherical dome-shaped body 10Ba, and the small-diameter hemispherical dome-shaped body 10Bc can be accommodated in the hole.
  • a small-diameter hole is formed in the small-diameter hemispherical dome-shaped body 10Bc, and the small-diameter hemispherical body 10Be can be accommodated in the hole.
  • a hole is formed in the large-diameter hemispherical dome-shaped body 10Bb, and a small-diameter hemispherical dome-shaped body 10Bd can be accommodated in the hole.
  • a small-diameter hole is formed in the small-diameter hemispherical dome-shaped body 10Bd, and the small-diameter hemispherical body 10Bf can be accommodated in the hole.
  • each component of the spherical phantom 10B has a plurality of holes 10Bh for detachably holding the dosimeter container 10Ad for housing the radiation dose detector 12.
  • the radiation dose detection unit 12 such as a plurality of glass dosimeters can be held.
  • the spherical phantom 10B is configured such that the radiation dose detectors 12 such as a plurality of glass dosimeters can be easily and detachably disposed at predetermined positions in a three-dimensional manner.
  • each component of the phantom 10B may be provided with a hole portion that directly and detachably holds the radiation dose detection unit 12 such as a glass dosimeter, and the radiation dose detection unit 12 may be disposed in the hole portion.
  • FIG. 6 shows an example of a wound phantom 10C.
  • FIG. 6A is an overall perspective view of the phantom 10C
  • FIG. 6B is a diagram illustrating an example of a developed state of the phantom 10C.
  • the wound phantom 10C is formed by winding a deformable long rectangular parallelepiped (plate-shaped) elastic body. Further, as shown in FIG. 6B, the expanded phantom 10C has a plurality of holes 10Ch that detachably holds a dosimeter container 10Ad that houses the radiation dose detector 12, and is made of glass. The radiation dose detector 12 such as a dosimeter can be held. By accommodating the radiation dose detection unit 12 in the plurality of holes 10Ch and then winding it, as shown in FIG. 6A, a substantially cylindrical phantom 10C can be obtained.
  • the wound phantom 10C is configured such that the radiation dose detectors 12 such as a plurality of glass dosimeters can be easily and detachably arranged at predetermined positions in three dimensions.
  • the phantom 10C is not limited to the above-described embodiment.
  • the developed phantom 10C may be provided with a hole portion that directly and detachably holds the radiation dose detection unit 12 such as a glass dosimeter, and the radiation dose detection unit 12 may be disposed in the hole portion and then wound.
  • FIG. 7 is a diagram illustrating an example of a phantom 10D that employs a two-dimensional radiation dose detector 12D (imaging device) as the radiation dose detection unit 12.
  • FIG. 7A is a side sectional view showing an example of a state where the elastic body of the phantom 10D and the two-dimensional radiation dose detector 12D are separated
  • FIG. 7B is a side sectional view showing an example of the assembled state. is there.
  • the phantom 10D shown in FIGS. 7A and 7B includes a plate-like two-dimensional radiation dose detector 12D on a main body 10Da formed of an elastic body having an arbitrary shape such as a cylindrical shape or a rectangular parallelepiped.
  • a plurality of bottomed or bottomless holes 10Dh (slits) that are detachably disposed are provided, and a two-dimensional radiation dose detector 12D can be disposed in each hole 10Dh.
  • the phantom 10D is configured such that a plurality of two-dimensional radiation dose detectors 12D can be arranged at predetermined intervals.
  • the two-dimensional radiation dose detector 12D is a dose accumulation type (X-ray energy accumulation type).
  • electrons in the crystal are excited to a metastable state by irradiation of radiation.
  • the photostimulable phosphor is irradiated with light having a predetermined wavelength, the electrons excited to the metastable state transition to the ground state and emit stimulable fluorescence.
  • the dose detection unit 31 and the position specifying unit 32 of the phantom dose detection device 30 (see FIG. 1) irradiate the two-dimensional radiation dose detector 12D with light having a predetermined wavelength, and the brightness from the two-dimensional radiation dose detector 12D.
  • a two-dimensional radiation dose distribution can be obtained by detecting and scanning the exhaustive fluorescence with the light receiving unit.
  • the phantom dose detection device 30 outputs this detection result to the control device.
  • An afterimage can be erased by uniformly irradiating the two-dimensional radiation dose detector 12D coated with the photostimulable phosphor with light having a predetermined wavelength for erasure, and again the two-dimensional radiation dose detector 12D. Can be used.
  • the two-dimensional radiation dose detector is not limited to the above-described form.
  • a radiographic film a radiochromic film (radiation sensitive dye dosimeter film), a plate glass dosimeter, or a combination thereof It may be.
  • Radiographic films utilize the reducing action of silver halide as the principle of reaction to radiation.
  • a two-dimensional radiation dose distribution can be obtained by developing the radiographic film using a developer or the like.
  • the radiochromic film is, for example, a resin film to which a substance that develops color upon irradiation is added, and uses a radiochromic reaction of a radiation-sensitive monomer as a reaction principle for radiation.
  • the radiochromic film does not require a developing treatment with a developer, and the two-dimensional radiation dose distribution can be read with an RGB color scanner, a densitometer, a camera, or the like.
  • FIG. 8 is a conceptual diagram showing an example of a phantom 10E having a gel-like body.
  • the phantom 10E has a deformable elastic body 11E (11) in the main body 10Ea, and includes a gel-like body 12E (gel dosimeter) such as a polymer gel as a radiation dose detection unit 12 therein.
  • a gel-like body 12E gel dosimeter
  • the polymer gel is a dose storage type (X-ray energy storage type). Specifically, when the polymer gel absorbs radiation or the like, a polymer reaction is locally generated to generate polymer microparticles of submicron size according to the radiation absorption dose. The fine polymer particles scatter visible light and are trapped in the gel as white cloudy masses.
  • X-ray energy storage type X-ray energy storage type
  • FIG. 8 shows a portion (white cloudy portion) 10Eb that has been irradiated with radiation and applied to the phantom 10E having a gel-like body, and has been altered according to the radiation absorbed dose.
  • the phantom dose detection device 30 by adopting an MRI (Magnetic resonance) imaging device, a three-dimensional optical scanner, or the like as the phantom dose detection device 30 (see FIG. 1), the phantom dose detection device 30 has an altered portion (a cloudy portion) of the phantom 10E. ) Is detected, and the detection result is output to the control device.
  • the control device can generate a three-dimensional distribution of the radiation absorbed dose based on the detection result.
  • FIG. 9 is a diagram illustrating an example of functional blocks of the control unit 51 of the control device.
  • the control part 51 implement
  • the control unit 51 includes a CT apparatus drive control unit 511, a CT image generation processing unit 512, an image deformation processing unit 513 (DIR), a treatment plan creation processing unit 514 (dose distribution creation processing unit), and a phantom deformation setting.
  • the CT apparatus drive control unit 511 controls each component related to the CT apparatus. Specifically, the CT apparatus drive control unit 511 comprehensively controls each component such as an X-ray generation unit, an X-ray detection unit, a rotation drive unit, and a rotation position detection unit of the CT apparatus.
  • the CT image generation processing unit 512 generates a CT image by image reconstruction processing or the like based on a signal from the X-ray detection unit, a signal indicating position information from the rotation position detection unit, or the like.
  • the image deformation processing unit 513 performs a process of deforming the CT image by image deformation processing such as DIR (Deformable Image Registration). Specifically, in this image deformation process (DIR), for example, the deformation source CT image can be deformed so as to match an arbitrary part of the reference CT image.
  • the image deformation process (DIR) performs a process of deforming an image obtained by superimposing the CT image and the dose distribution (treatment plan). By doing so, it is possible to add up the dose distributions (treatment plans) planned with different CT images.
  • this image deformation process defines a plurality of deformation control points in a lattice shape (mesh shape) for the CT image, sets the displacement amount and displacement direction of the deformation control points, Based on the set displacement amount and displacement direction of the deformation control point, a process of deforming each region of the CT image is performed.
  • a plurality of deformation control points are defined in a lattice shape (mesh shape) for a CT image, and the degree of coincidence between the two images at the deformation control points is evaluated using the similarity. Then, optimization is repeated using an optimization algorithm so that the degree of similarity becomes high.
  • a deformation process such as calculating an optimum displacement amount and displacement direction at the deformation control point set by the optimization process and displacing the position of each pixel in the region surrounded by the deformation control point is performed.
  • Image deformation parameters for image deformation processing include the distance and position between deformation control points, similarity (difference square sum, normalized cross-correlation method, mutual information, etc.), and optimization algorithms (Gradient descent, Downhill simplex etc.).
  • the interval between the deformation control points in the region of interest for example, a region such as a pseudo lesion
  • processing is performed so as to achieve high deformation accuracy with respect to the region of interest.
  • the treatment plan creation processing unit 514 (dose distribution creation processing unit), based on information such as a radiation treatment policy input by a user such as a doctor, a radiation irradiation position (irradiation region) and a radiation irradiation dose by the radiation therapy device 40.
  • a dose distribution (treatment plan) that defines The treatment plan creation processing unit 514 (dose distribution creation processing unit) may generate an image in which the dose distribution (treatment plan) is superimposed on the CT image.
  • the phantom deformation setting processing unit 515 performs a process of setting a phantom deformation amount based on information input by a user such as a doctor. For example, when the piston is driven by the piston driving unit to deform the elastic body of the phantom, the phantom deformation setting processing unit 515 sets the displacement amount of the piston. The phantom deformation setting processing unit 515 drives the piston by the piston driving unit based on the set displacement amount.
  • the intra-phantom dose identification processing unit 516 performs a process of identifying the radiation dose detected by the radiation dose detection unit 12 accommodated in the phantom via the dose detection unit 31 of the phantom dose detection device 30.
  • the in-phantom lightweight position specifying processing unit 517 performs processing for specifying the position of the radiation dose detecting unit 12 accommodated in the phantom via the position specifying unit 32 of the phantom dose detecting device 30.
  • the in-phantom lightweight position specifying processing unit 517 specifies the position of the radiation dose detecting unit 12 accommodated in the phantom via the position specifying unit 32 of the phantom dose detecting device 30.
  • the position of the radiation dose detection unit 12 of the phantom 10 is optically specified and specified by the CT image of the CT apparatus 20.
  • the radiation dose detection unit 12 may be arranged at a predetermined position and set as the arranged position.
  • the combined dose distribution generation processing unit 518 deforms the dose distribution generated based on the CT image before the phantom deformation, adds up the dose distribution generated based on the CT image after the phantom deformation, and adds up A process for generating a dose distribution is performed. In addition, the combined dose distribution generation processing unit 518 adds the dose distribution before phantom deformation (actually measured value by radiation irradiation) and the dose distribution after phantom deformation (actually measured value by radiation irradiation) to obtain the actually measured value by radiation irradiation. A process for generating a total combined dose distribution is performed.
  • the verification processing unit 519 related to the image deformation process is based on the dose distribution before and after the deformation of the moving object variable phantom (actual value) and the dose distribution before and after the image deformation by the image deformation process of the moving object variable phantom (calculated value). Based on the error calculated in this way, a verification process related to the image deformation process is performed.
  • the verification processing unit 519 related to the image deformation process includes a comparison processing unit 519a.
  • the comparison processing unit performs a process of comparing the dose distribution before and after the deformation of the moving object variable phantom (actually measured value) and the dose distribution before and after the image deformation by the image deforming process of the moving object variable phantom (calculated value).
  • the verification processing unit 519 regarding the image deformation process determines that the image deformation process of the image deformation processing unit 513 (DIR) is highly accurate when the error is within the specified range. It is determined that the accuracy of the image deformation processing of the deformation processing unit 513 (DIR) is low. When it is determined that the accuracy of the image deformation processing of the image deformation processing unit 513 (DIR) is low, for example, the verification processing unit 519 regarding the image deformation processing adjusts the deformation parameter regarding the image deformation processing of the image deformation processing unit 513 (DIR). By performing the process, the accuracy of the image deformation process is improved.
  • FIG. 10 is a diagram showing an example of a phantom CT image and a dose distribution.
  • FIG. 10A is a diagram showing an example of a CT image of a phantom before deformation and a dose distribution Pa (treatment plan) in a swelled state
  • FIG. 10B is a contracted state and deformed. It is a figure which shows an example of CT image and dose distribution of a later phantom.
  • the control device performs a CT scan with the CT device on the phantom before deformation in an inflated state, generates the CT image shown in FIG. 10A, and based on the CT image, the dose distribution Pa (treatment (Plan) is generated, and the dose distribution Pa (treatment plan) is superimposed on the CT image.
  • the dose distribution Pa treatment (Plan) is generated, and the dose distribution Pa (treatment plan) is superimposed on the CT image.
  • the phantom elastic body or the like is shown in the substantially central black part
  • the concentric dose distribution Pa (treatment plan) is shown near the pseudo lesion (pseudo lesion)
  • the piston is shown in the lower part of the figure
  • Cylinders (cases) are shown at the left and right ends
  • an elastic body holding part having a vent hole is shown at the top of the figure
  • a fluid such as water is shown between the elastic body and the cylinder.
  • the central portion indicates that the radiation dose is higher.
  • the control apparatus performs a CT scan on the deformed phantom with the CT apparatus using the CT apparatus to generate a CT image shown in FIG. 10B, and based on the CT image, the dose distribution Pb (treatment) (Plan) is generated, and the dose distribution Pb (treatment plan) is superimposed on the CT image.
  • the elastic body of the phantom is contracted and deformed by displacing the piston upward in FIG. Further, the position of the pseudo lesion (pseudo lesion) is shifted, and the position of the concentric dose distribution Pa (treatment plan) is shifted.
  • FIG. 11 shows an example of a phantom CT image and a dose distribution.
  • FIG. 11A is a diagram showing an example of an image obtained by modifying the dose distribution Pa shown in FIG. 10A and an example of the dose distribution
  • FIG. 11B is a phantom CT image and the combined dose distribution. It is a figure which shows an example.
  • the control device performs image deformation processing (DIR) so that the shape and position of the elastic body are matched to the CT image and dose distribution Pa shown in FIG. 10A based on the CT image shown in FIG. )
  • DIR image deformation processing
  • the control device determines each dose based on the CT image (deformed image) and dose distribution after the image deformation process shown in FIG. 11A and the CT image and dose distribution shown in FIG. 10B.
  • a process for generating a combined dose distribution by adding the distributions is performed.
  • the control device generates an image obtained by superimposing the combined dose distribution and the CT image (see FIG. 11B).
  • FIG. 12 is a diagram illustrating an example of a difference between CT images in a phantom inflated state and a contracted state.
  • the cross section is shown in the upper diagram of FIG. 12, the coronal surface is shown in the lower left diagram, and the sagittal plane is shown in the lower right diagram.
  • the black portion at the substantially central portion corresponds to an elastic body in a contracted state of the phantom
  • the gray portion surrounding the black portion corresponds to an elastic body in a swollen state of the phantom
  • the white part corresponds to each dose distribution (treatment plan).
  • FIG. 12 it can be seen that a deviation occurs when the CT images and dose distributions before and after the deformation of the phantom are superimposed in the carrying order.
  • FIG. 13 is a diagram illustrating an example of a difference between an image (deformation processed image) obtained by image deformation of a CT image with the phantom inflated by image deformation processing (DIR) and a CT image with the phantom contracted.
  • the cross section is shown in the upper diagram of FIG. 13, the coronal surface is shown in the lower left diagram, and the sagittal plane is shown in the lower right diagram.
  • the CT image with the phantom inflated is highly accurately deformed by image deformation processing (DIR) so as to match the CT image with the reference phantom contracted. Recognize. It can also be seen that the dose distribution is similarly subjected to image deformation processing with high accuracy.
  • FIGS. 14 to 17 are diagrams for explaining an example of the operation of the radiation therapy system.
  • the present embodiment for example, in the treatment of lung cancer, a case will be described in which the patient's body weight is reduced during the treatment and the patient's body shape is changed.
  • step S11 a doctor or the like performs various examinations on the patient, makes a diagnosis based on the examination results, and determines a treatment policy such as radiation therapy.
  • step S12 the result of measuring the weight of the patient before treatment was Ma [kg].
  • step S13 the control unit 51 of the control device 50 performs a CT scan before starting treatment of the patient using the CT device 20, and stores the obtained CT image in the storage unit.
  • step S14 the weight of the patient under treatment was measured and found to be Mb [kg]. In the present embodiment, Ma> Mb, and the weight is decreasing.
  • step S15 the control unit 51 of the control device 50 performs a CT scan of the patient being treated by the CT device 20, and stores the obtained CT image in the storage unit.
  • step S16 the control unit 51 generates a deformed image by image deformation processing (DIR) using the CT image before the start of treatment of the patient and the CT image being treated.
  • DIR image deformation processing
  • step S17 the control unit 51 calculates a change amount of the patient's body shape, a change amount of the lesion (tumor), and the like based on the result of the image deformation process (DIR).
  • DIR image deformation process
  • the characteristics of the moving object variable phantom 10 are set. Specifically, the density and elastic modulus of the elastic body 11 of the phantom 10 are set to the density and elastic modulus of the elastic body close to the anatomical information such as the treatment site of the patient, for example, the lung, the head and neck, and the pelvis. Further, a simulated tumor (simulated lesion) having a predetermined X-ray absorption coefficient is arranged on the elastic body 11 of the phantom 10. Then, the radiation dose detection unit 12 and the like are arranged on the phantom 10, and the phantom 10 and the like are arranged on the base unit 25 (bed) of the CT apparatus 20.
  • step S22 the control unit 51 sets the movement amount of the piston for deforming the phantom so as to be closest to the change amount of the patient's body shape, the change amount of the lesion (tumor) calculated in step S17 (phantom deformation). Movement setting).
  • step S23 the control unit 51 assumes the state of imaging before the start of treatment (S13), and drives and controls the piston drive unit 175 so that the phantom 10 is in an expanded state (before deformation). The position of the piston 16 is adjusted.
  • step S24 the control unit 51 performs a CT scan with the CT apparatus 20 with the phantom inflated (before deformation), and stores the obtained CT image in the storage unit (see FIG. 10A).
  • step S25 the control unit 51 uses the CT image obtained in step S24 to generate a treatment plan (dose distribution Pa) in the same manner as the treatment plan (dose distribution) of the corresponding patient with the simulated tumor in the CT image as a target. It is created and stored in the storage unit (see FIG. 10A).
  • step S26 it is assumed that there is a change in body shape during the treatment and the CT for treatment planning is taken again (step S15), and the control unit 51 causes the piston driving unit 175 to be in a contracted state of the phantom 10. And the position of the piston 16 of the phantom 10 is adjusted by the amount of movement set in step S22. The elastic body and simulated tumor of the phantom 10 are deformed by the force of the piston.
  • step S27 the control unit 51 performs a CT scan with the CT apparatus 20 in a state where the phantom is contracted (after deformation), and stores the obtained CT image in the storage unit (see FIG. 10B).
  • step S28 the control unit 51 creates a treatment plan (dose distribution Pb) using the CT image obtained in step S27 as a target for the simulated tumor of the CT image, and stores it in the storage unit (FIG. 10B). )reference).
  • dose distribution Pb dose distribution
  • step S31 in order to calculate the sum of the two dose distributions Pa and Pb, the control unit 51 uses the CT image after the phantom deformation as a reference based on the two CT images before and after the phantom deformation and the dose distribution.
  • the CT image before deformation and the dose distribution Pa created by the CT image are deformed by image deformation processing (DIR) so as to match the region, and the dose distribution Pa is deformed.
  • DIR image deformation processing
  • a dose distribution (image) and a deformed CT image are generated (step S32) and stored in the storage unit (see FIG. 11A).
  • step S33 the control unit 51 adds up the dose distribution obtained in step S28 and the dose distribution obtained in step S31, and adds up the dose distribution obtained by the image transformation process (see FIG. 11B). ) Is generated, stored in the storage unit, and displayed as a dose distribution on the CT image on the display unit (step S34). Then, the control unit 51 evaluates the dose to the tumor and the dose of the surrounding normal tissue based on the combined dose distribution.
  • the dose distribution in the phantom before and after the phantom deformation can be actually measured.
  • An example of the operation of the radiotherapy system in that case will be described. Steps S21, S22, S23, and S26 shown in FIG. 16 are the same as the above-described operations, and thus description thereof is omitted.
  • the control unit 51 performs a predetermined operation based on the CT image and the treatment plan (dose distribution Pa) obtained in steps S24 and S25 by the radiotherapy apparatus 40 with the phantom 10 inflated (before deformation). A process of irradiating radiation such as X-rays at a predetermined radiation irradiation dose is performed.
  • step S41 the control unit 51 measures the radiation dose by the radiation dose detection unit 12 (such as a dosimeter) provided in the phantom by the dose detection unit 31 of the phantom dose detection device 30.
  • the radiation dose detection unit 12 such as a dosimeter
  • step S42 the control unit 51 specifies the position information of the radiation dose detection unit 12 (such as a dosimeter) provided in the phantom by the position specification unit 32 of the phantom dose detection device 30.
  • the position information of the radiation dose detection unit 12 such as a dosimeter
  • step S41 and step S42 A specific example of step S41 and step S42 will be described.
  • each component of the phantom having a multilayer structure is disassembled, and a plurality of dose accumulation type radiation dose detectors 12 arranged in the phantom are taken out,
  • the dose of each radiation dose detector 12 is measured by the dose detector 31 of the phantom dose detector 30.
  • the position information of each radiation dose detection unit 12 in the phantom can be specified by the radiation dose detection unit 12 arranged at a predetermined position of the elastic body of the phantom or a CT image.
  • the position specifying unit 32 of the phantom dose detection device 30 acquires this position information.
  • each radiation dose detection unit 12 is disposed at a predetermined position of the phantom elastic body.
  • each radiation dose detection unit 12 is measured by the unit 31. After the measurement, each radiation dose detector 12 is placed at a predetermined position on the elastic body of the phantom and is in a wound state. Since the position information is the same as in the above example, the description is omitted.
  • the two-dimensional radiation dose detector as the radiation dose detector 12 is taken out from the phantom, and the dose of each radiation dose detector 12 is measured by the dose detector 31 of the phantom dose detector 30. To do. Since a two-dimensional distribution related to radiation absorption is obtained by the two-dimensional radiation dose detector, position information is specified based on the distribution, CT image, and the like. After the measurement, each two-dimensional radiation dose detector 12D is arranged at a predetermined position of the phantom elastic body.
  • an altered portion (white cloudy portion) of the gel-like body using an MRI apparatus or a three-dimensional optical scanner as the phantom dose detector 30 can be measured to obtain a radiation absorbed dose and a three-dimensional distribution (positional information).
  • step S43 the control unit 51 generates a dose distribution Qa based on the radiation dose and position information obtained in steps S40 and S42. In this case, the control unit 51 performs a process of superimposing the dose distribution Qa on the CT image in step S24 as necessary.
  • step S44 the control unit 51 performs predetermined processing based on the CT image and the treatment plan (dose distribution Pb) obtained in steps S27 and S28 by the radiation therapy apparatus 40 in a state where the phantom 10 is contracted (after deformation). A process of irradiating radiation such as X-rays at a predetermined radiation irradiation dose is performed.
  • step S45 for example, the control unit 51 measures the radiation dose by the radiation dose detection unit 12 (such as a dosimeter) provided in the phantom by the dose detection unit 31 of the phantom dose detection device 30.
  • the radiation dose detection unit 12 such as a dosimeter
  • step S46 the control unit 51 specifies the position information of the radiation dose detection unit 12 (such as a dosimeter) provided in the phantom by the position specifying unit 32 of the phantom dose detection device 30.
  • the position information of the radiation dose detection unit 12 such as a dosimeter
  • step S47 the control unit 51 generates a dose distribution Qb based on the radiation dose and the position information obtained in steps S45 and S46. In this case, the control unit 51 performs a process of superimposing the dose distribution Qb on the CT image in step S27 as necessary.
  • step S44 the radiation dose detection unit is irradiated with radiation.
  • step S47 a combined dose distribution can be obtained. That is, in this case, the dose distribution in step S47 is set as the total dose distribution without performing the summation process in step S48 (step S49).
  • step S40 if a dose storage type (X-ray energy storage type) radiation dose detection unit is irradiated with radiation and then a new radiation dose detection unit is adopted without being reused, the process of step S48 is performed. It needs to be done.
  • step S48 the control unit 51 performs a summation process of the dose distribution Qa and the dose distribution Qb to generate a summed dose distribution (step S49).
  • the combined dose distribution obtained in step S49 is generated based on a measurement value by a radiation dose detection unit such as a dosimeter in the phantom.
  • step S51 the control unit 51 includes the combined dose distribution generated based on the calculated value obtained by the image deformation process obtained in step S34, and the dosimeter in the phantom obtained in step S49.
  • the accuracy of the image deformation process is verified by performing a process of comparing the combined dose distribution generated based on the measurement value by the radiation dose detection unit.
  • step S52 the control unit 51 performs a process of calculating an error of the image deformation process based on the result of the comparison process.
  • step S53 if the error is within a specified value (for example, within 5%), the control unit 51 proceeds to the process of step S56, and otherwise proceeds to the process of step S54.
  • a specified value for example, within 5%
  • step S54 the control unit 51 determines that the error is large, adjusts again the image deformation parameter of the image deformation process and the region of interest used for the deformation, and performs a process of defining the optimum image deformation parameter and the region of interest.
  • step S55 the control unit 51 sets the image deformation parameter (parameter) determined in step S54, re-executes the image deformation process in step S31, and performs the processes in steps S32, S34, S51, S52, and S53.
  • step S56 the control unit 51 determines that the image deformation processing of the image deformation processing unit 513 (DIR) is highly accurate when the error in step S52 is within a specified value.
  • DIR image deformation processing of the image deformation processing unit 513
  • step S57 the control unit 51 performs dose evaluation for the patient based on the treatment plan (total dose distribution) generated in step S34, and performs radiation therapy using the radiation therapy apparatus 40 or the like.
  • the moving body variable phantom for the radiation irradiation apparatus includes the deformable elastic body 11 and the radiation dose detection unit 12 provided on the elastic body 11. Therefore, it is possible to provide a moving body variable phantom capable of detecting a dose distribution (actually measured value) in the phantom before and after deformation with high accuracy. Moreover, the phantom which can acquire the position of the radiation dose detection part in the phantom before and behind a deformation
  • the elastic body 11 of the moving body variable phantom according to the embodiment of the present invention is formed of a shrinkable material. For this reason, the phantom which can deform
  • the elastic body of the variable moving phantom according to the embodiment of the present invention has a multilayer structure that can be disassembled and assembled (see, for example, FIGS. 3, 4, and 5). For this reason, the phantom which can arrange
  • the elastic body of the moving body variable phantom has a nested structure including a member having a hole and a member that can be accommodated in the hole (for example, FIGS. 3 and 4). , See FIG.
  • the member having the hole portion of the elastic body of the nested structure is formed in a cylindrical shape or a hemispherical shape.
  • An ionization chamber dosimeter used for a normal radiation dose detector (a cable and an electric circuit are included in the detector) is not a small detector, and there are cables, etc., so there is an elastic body with the detector attached. It was difficult to deform.
  • this elastic body can easily arrange a plurality of small radiation dose detection units three-dimensionally in the elastic body, and can measure a three-dimensional dose distribution in the elastic body. Moreover, a radiation dose detection part can be easily removed after a measurement. Since the nested structure can be used not only in a cylindrical shape but also in a hemispherical shape, it can be used for three-dimensional dose distribution measurement of an elastic body simulating a tumor.
  • the elastic body of the moving body variable phantom is configured to be wound in a roll shape (see FIG. 6).
  • the radiation dose detector can be easily installed on the elastic body in a state where the elastic body is expanded in a plate shape, and a plurality of radiation dose detectors are three-dimensionally wound by winding in a roll shape.
  • the radiation dose detector can be easily removed by deploying the elastic body into a plate shape after measurement.
  • a plurality of small radiation detection units can be easily arranged three-dimensionally in the elastic body, and the three-dimensional dose distribution in the elastic body can be measured.
  • the elastic body of the variable moving phantom according to the embodiment of the present invention has a hole portion that detachably holds the radiation dose detection unit (see, for example, FIGS. 4 and 5). For this reason, a radiation dose detection part can be easily attached or detached to the elastic body of a phantom.
  • the radiation dose detector is a dose accumulation type (exposure dose accumulation type).
  • exposure dose accumulation type Exposure dose accumulation type
  • the radiation dose in a phantom can be detected with high precision by simple structure.
  • an ionization chamber dosimeter used for a normal radiation dose detector (a cable and an electric circuit are included in the detector) has a detector that is not small and has a cable. It was difficult to deform the elastic body in the state.
  • the glass dosimeter used in the embodiment of the present invention is, for example, a rod-shaped element having a diameter of 1.5 mm and a length of 12 mm, and is one of the smallest dosimeters. By using a plurality, the three-dimensional dose distribution inside the phantom can be measured with high accuracy.
  • the radiation dose in the phantom can be detected with high accuracy even when the phantom is deformed.
  • glass dosimeters are made of glass with a density of 2.61 g / cm 3 and, unlike other radiation detectors, are not metal structures, so metal artifacts on CT images Since (virtual image) does not occur, the position of the glass dosimeter (glass dose element) can be accurately specified.
  • the moving body variable phantom according to the embodiment of the present invention as a simulated organ having a simulated tumor (simulated lesion) having a prescribed radiation absorption coefficient, It is possible to calculate the planned dose distribution of specific radiotherapy. That is, it is possible to provide a phantom that can easily calculate the planned dose distribution of radiotherapy specific to the organ to be treated.
  • a plurality of slits A two-dimensional radiation dose detector is detachably disposed in the slit (see, for example, FIG. 7).
  • a three-dimensional radiation dose distribution can be easily calculated based on two-dimensional radiation dose distributions detected by a plurality of two-dimensional radiation dose detectors.
  • it since it has a slit structure, it is easy to remove the two-dimensional radiation detector.
  • the phantom In the case of a phantom having a gel dosimeter (such as a polymer gel dosimeter) held by a deformable elastic body, the phantom has a structure that holds the gel dosimeter in the elastic body.
  • the gel-type dosimeter is a three-dimensional radiation dose measuring device, and the three-dimensional radiation dose distribution in the phantom can be easily detected by using an MRI apparatus or an optical CT apparatus after irradiation.
  • the three-dimensional dose distribution in the phantom can be measured with higher accuracy than the three-dimensional dose distribution calculated using a plurality of glass dosimeters and two-dimensional radiation measuring instruments.
  • the shape of the dosimeter can be deformed in accordance with the deformation, and measurement can be performed while the phantom is deformed.
  • the three-dimensional dose distribution before and after can be measured with high accuracy.
  • the elastic body may be formed in a sponge shape and have a structure in which a gel dosimeter is absorbed and held.
  • the gel dosimeter may not be deformed well with respect to the deformation of the phantom.
  • the gel dosimeter is successfully deformed according to the deformation of the elastic body by absorbing the gel dosimeter into the sponge. Therefore, the elastic body can be greatly deformed. Further, the structure in which the polymer gel is absorbed and held in the sponge can be easily handled during transportation.
  • the radiation treatment plan creation method using the moving body variable phantom includes the step of setting the characteristics of the elastic body of the moving body variable phantom according to the stage of radiation therapy (S21), And a step (S22 to S49) of detecting a radiation dose using a moving body variable phantom and creating a radiation treatment plan (dose distribution) for defining a radiation irradiation position and a radiation irradiation dose based on the detection result. Therefore, it is possible to provide a radiation treatment plan creation method using a moving object variable phantom capable of creating a highly accurate radiation treatment plan (dose distribution). In this case, by using the moving object variable phantom, it is possible to calculate the radiation therapy planned dose distribution with high accuracy without depending on the image deformation processing of the CT image.
  • the program according to the embodiment of the present invention is a program that is executed by a control device that is a computer, and uses a moving body variable phantom, and dose distribution based on CT images of the phantom before and after deformation of the elastic body.
  • a first combined dose distribution generated by applying image deformation processing (DIR) to one of the two and adding the other to the other, and a radiation dose detection unit provided in the phantom before and after the deformation of the elastic body (
  • a step (S52) of calculating an error from the second combined dose distribution (see S49) generated according to the detection result of the irradiation dose (radiation dose) by the irradiation dose detection unit), and an image transformation process ( (S54) for defining deformation parameters relating to DIR). Therefore, it is possible to provide a program that can easily adjust the image deformation parameters related to the image deformation processing with high accuracy.
  • a CT device, a radiation treatment device, a control device (computer), etc. used in the radiation treatment system are checked for normal operation using a phantom or the like for each radiation treatment.
  • a moving body variable phantom according to the embodiment of the present invention, it is possible to easily check whether each device operates normally and adjust various parameters in a short time with high accuracy.
  • the radiotherapy system includes the radiotherapy apparatus, the CT apparatus, and the control apparatus (computer), but is not limited to this form.
  • the radiotherapy system may centrally control the radiotherapy apparatus, the CT apparatus, and the like by a plurality of control apparatuses (computers) that can communicate with each other.
  • an elastic body 11 such as a sponge is disposed in a cylindrical cylinder 15, and a liquid (water or the like) or gas is placed in a space surrounded by the cylinder 15 and the piston 16.
  • the present invention is not limited to this configuration.
  • the phantom is provided with a cylindrical elastic body 11B (11) such as sponge in a cylindrical cylinder 15B (15) made of resin such as acrylic, and the cylinder 15B.
  • the liquid may not be provided in the inside.
  • This elastic body is provided with a radiation dose detector. In the example shown in FIGS.
  • the piston 16 is provided so as to be able to move one-dimensionally in the axial direction of the cylindrical cylinder 15B (15), and the piston 16 is a cylindrical elastic body 11B (11). Is pressed in the axial direction, the elastic body 11B (11) is configured to be compressible (see FIG. 19B). From this state, as shown in FIG. 19A, when the piston 16 returns to the initial position, the elastic body 11B is restored to the original state.
  • the phantom 10 is configured to be able to press the piston rod 17 and the piston 16 by moving the movable portion 175K in the axial direction of the cylindrical portion by the drive motor 175M of the piston drive portion 175.
  • a vertically moving member 172 (stage) is disposed in the phantom so as to freely move up and down, and the vertically moving member 172 is connected to the movable portion 175K by a link 174L. That is, the vertical movement member 172 (stage) is configured to move up and down in conjunction with the movement of the movable portion 175K, the piston rod 17, and the piston 16.
  • the phantom of this embodiment detects the position of the upper end part 172a of the vertical movement member 172 with an imaging part, a position sensor, etc.,
  • the displacement, position, etc. of the piston 16 by displacement of the vertical movement of the vertical movement member 172 etc. is configured to be detectable.
  • the elastic body 11 ⁇ / b> B (11) is compressed or expanded in the axial direction by the movement of the piston 16 in the axial direction, and the movement in the direction orthogonal to the axial direction is a cylindrical cylinder. Since it is restricted by the inner wall of 15B (15), the reproducibility of the deformed state or the original state of the elastic body 11B (11) is high. That is, by using this highly reproducible phantom for verifying the accuracy of image deformation processing by a computer, highly reliable verification can be performed.
  • the phantom 10 is not limited to the above-described embodiment, and may be configured to be deformable by a plurality of pressing mechanisms as shown in FIG. 20, for example.
  • the cylindrical elastic body 11B (11) is arranged in the cylindrical cylinder 15B (15), and can be pressed in the axial direction at both axial ends thereof.
  • Pistons 16A and 16B may be provided.
  • the pistons 16A and 16B are configured to be movable in the axial direction by a piston rod or a piston driving unit (not shown).
  • the pistons 16A and 16B are respectively constituted by a plurality of small pistons 16Aa and 16Ba, and the elastic body 11B (by the predetermined pistons 16Aa and 16Ba is controlled by a control device (computer).
  • a control device computer
  • 11 The both ends of 11) can be locally pressed. That is, the elastic body 11B (11) is configured to be two-dimensionally deformable, and verification of image deformation processing by a computer can be performed with high accuracy.
  • the phantom 10 may have a plurality of pressing mechanisms in the axial direction and the orthogonal direction of the cylinder 15B (15).
  • the elastic body 11 ⁇ / b> B (11) has a plurality of pistons 16 ⁇ / b> Aa, 16 ⁇ / b> Ba, a piston rod 17 (rod), and a piston driving unit 175 that can locally press both ends of the elastic body 11 ⁇ / b> B (11).
  • a plurality of movable portions 177 that can press the side surface of the elastic body 11B (11) in a direction orthogonal to the axial direction are disposed on the side surface of the cylindrical cylinder 15B (15).
  • the movable part 177 is configured to be movable by a drive part 178 and a connection part 179.
  • a driving method of the movable part 177 for example, a predetermined driving method such as a pneumatic driving method, a hydraulic driving method, a driving method using a link mechanism, or the like can be adopted.
  • a material having a low X-ray absorption rate is provided on the side of the cylindrical cylinder 15B (15). It is preferable to provide the movable part 177 formed by the above and arrange the driving part 178 and the like outside the X-ray irradiation region.
  • a link mechanism is employ

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Provided is a variable phantom, wherein it is possible to highly accurately detect the dose distribution within the variable phantom before and after deformation thereof. This variable phantom is used for a radiotherapy apparatus, wherein the variable phantom has a deformable elastic body, and a radiation dose detection unit 12 provided to the elastic body. The elastic body is formed of, e.g., a freely contractible material. The elastic body is configured from, e.g., a multilayered structure that can be freely assembled and disassembled. For example, the elastic body has holes to removably hold the radiation dose detection unit 12. In addition, the radiation dose detection unit is, e.g., a cumulative-dose-type unit. The radiation dose detection unit is, e.g., a plurality of glass dosimeters, a plurality of two-dimensional dose detectors, a gel dosimeter supported by the deformable elastic body, or the like.

Description

動体可変型ファントム、放射線治療計画作成方法、プログラムMoving body phantom, radiation therapy planning method, program
 本発明は、動体可変型ファントム、放射線治療計画作成方法、プログラムに関する。 The present invention relates to a moving object variable phantom, a radiation treatment plan creation method, and a program.
 近年、がん患部の位置を正確に把握し、ピンポイントで放射線を照射できる放射線照射装置の開発が進み、健全な身体組織への放射線障害を回避し、高精度ながん治療を行うことが可能となっている。
 放射線治療では、放射線治療計画装置により放射線照射位置や照射線量などを規定する放射線治療計画(計画線量分布)を算出し、放射線照射装置がその計画線量分布に基づいて患部へ放射線を照射することが行われている。放射線治療計画装置としては、例えば、特許文献1などに記載されている。
In recent years, the development of radiation irradiation equipment that can accurately grasp the position of the affected cancer area and emit radiation at a pinpoint has progressed, avoiding radiation damage to healthy body tissues and performing highly accurate cancer treatment It is possible.
In radiation therapy, a radiation treatment plan (planned dose distribution) that prescribes the radiation irradiation position and dose is calculated by the radiation treatment planning device, and the radiation irradiation device irradiates the affected area with radiation based on the planned dose distribution. Has been done. As a radiotherapy planning apparatus, it describes in patent document 1, etc., for example.
 また、近年、放射線治療期間中の患者の腫瘍や体形変化に合わせて適宜治療計画を変更する適応放射線治療が普及し始め、放射線治療期間中に再治療計画を行うケースが増加してきている。このように同一患者の各段階の異なるCT画像で計画された放射線治療の計画線量分布を合算する場合、治療計画支援ソフトウェア(プログラム)によって、どちらかCT画像をもう一方のCT画像に合わせるように変形処理することにより、異なるCT画像で計画された線量分布の合算評価を行うことができる。CT画像などを画像変形処理する技術としては、例えば、特許文献2などに記載されている。 In recent years, adaptive radiotherapy, which changes the treatment plan as appropriate in accordance with changes in the tumor and body shape of the patient during the radiotherapy period, has begun to spread, and the number of cases where a retreatment plan is performed during the radiotherapy period has increased. In this way, when summing the planned dose distributions of the radiation therapy planned with different CT images of the same patient at each stage, either CT image is matched with the other CT image by the treatment plan support software (program). By performing the deformation process, it is possible to perform a combined evaluation of the dose distribution planned with different CT images. For example, Patent Document 2 discloses a technique for performing image deformation processing on a CT image or the like.
特開2014-140431号公報JP 2014-140431 A 特開2013-146540号公報JP 2013-146540 A 特開平08-187238号公報Japanese Patent Laid-Open No. 08-187238
 しかしながら、上述した放射線治療の計画線量分布の合算に必要な変形処理の精度評価を行う方法は知られていなかった。
例えば、特許文献3に示したような、変形しない単純な構造のファントム(人体模型)を用いただけでは、上述の課題を解決することができなかった。
However, there is no known method for evaluating the accuracy of the deformation process necessary for the summation of the planned dose distribution of the above-described radiotherapy.
For example, the above-described problem cannot be solved only by using a phantom (human body model) having a simple structure that does not deform as shown in Patent Document 3.
 本発明は、このような問題に対処することを課題の一例とするものである。すなわち、動体可変型ファントムにおいて、変形前後のファントム内の線量分布を高精度に検出可能な動体可変型ファントムを提供すること、CT画像に用いられる画像変形処理(DIR)を高精度に評価可能な動体可変型ファントムを提供すること、動体可変型ファントムを用いた放射線治療計画作成方法を提供すること、画像変形処理に関する画像変形パラメータを容易に高精度に調整可能なプログラムを提供すること、CT画像の画像変形処理に依らずに、放射線治療の計画線量分布を高精度に算出すること、などを目的とする。 The present invention is an example of a problem to deal with such a problem. That is, in the moving object variable phantom, it is possible to provide a moving object variable phantom capable of detecting the dose distribution in the phantom before and after deformation with high accuracy, and to evaluate image deformation processing (DIR) used for CT images with high accuracy. Providing a moving object variable phantom, providing a radiation treatment planning method using the moving object variable phantom, providing a program capable of easily and accurately adjusting image deformation parameters related to image deformation processing, CT image The purpose is to calculate the planned dose distribution of radiotherapy with high accuracy without depending on the image deformation processing.
 このような目的を達成するために、本発明による動体可変型ファントムは、以下の構成を少なくとも具備するものである。
 放射線照射装置用の動体可変型ファントムであって、
 変形可能な弾性体と、前記弾性体に設けられた放射線量検出部と、を有することを特徴とする。
In order to achieve such an object, the moving object variable phantom according to the present invention has at least the following configuration.
A moving body variable phantom for a radiation irradiation device,
It has a deformable elastic body, and a radiation dose detection part provided in the elastic body.
 また、本発明の放射線治療計画作成方法は、以下の構成を少なくとも具備するものである。
 上記本発明の動体可変型ファントムを用いた放射線治療計画作成方法であって、
 放射線治療の段階に応じて、該動体可変型ファントムの前記弾性体の特性を設定する工程と、
 前記動体可変型ファントムを用いて放射線量を検出し、検出結果に基づいて放射線照射位置と放射線照射線量を規定する放射線治療計画を作成する工程と、を有することを特徴とする
Moreover, the radiation treatment plan preparation method of this invention comprises at least the following structures.
A radiation treatment plan creation method using the moving body variable phantom of the present invention,
Setting the characteristics of the elastic body of the variable moving phantom according to the stage of radiation therapy;
And a step of detecting a radiation dose using the moving object variable phantom and creating a radiation treatment plan for defining a radiation irradiation position and a radiation irradiation dose based on the detection result.
 また、本発明のプログラムは、以下の構成を少なくとも具備するものである。
 コンピュータに実行させるプログラムであって、
 上記本発明の動体可変型ファントムを用いて、弾性体の変形前および変形後の該ファントムのCT画像による線量分布の一方に画像変形処理を施し他方に合算して生成した第1の合算線量分布(計算値)と、前記弾性体の変形前および変形後のファントムに設けられた照射線量検出部(放射線量検出部)による照射線量の検出結果に応じて生成した第2の合算線量分布(実測値)との誤差を算出するステップと、
 前記誤差に基づいて前記画像変形処理に関する変形パラメータを規定するステップと、を有することを特徴とする。
The program of the present invention comprises at least the following configuration.
A program to be executed by a computer,
Using the moving object variable phantom of the present invention, a first combined dose distribution generated by performing image deformation processing on one of the dose distributions of the CT image of the phantom before and after deformation of the elastic body and adding it to the other (Calculated value) and the second combined dose distribution (actual measurement) generated according to the detection result of the irradiation dose by the irradiation dose detector (radiation dose detector) provided in the phantom before and after the deformation of the elastic body Value) and calculating the error from the
Defining a deformation parameter relating to the image deformation processing based on the error.
 本発明によれば、動体可変型ファントムにおいて、変形前後のファントム内の線量分布を高精度に検出可能な動体可変型ファントムを提供することができる。
 また、本発明によれば、CT画像に用いられる画像変形処理(DIR)を高精度に評価可能な動体可変型ファントムを提供することができる。
 また、本発明によれば、動体可変型ファントムを用いた放射線治療計画作成方法を提供することができる。
 本発明によれば、動体可変型ファントムを用いることにより、CT画像の画像変形処理に依らずに、放射線治療の計画線量分布を高精度に算出することができる。
 また、本発明によれば、画像変形処理に関する画像変形パラメータを容易に高精度に調整可能なプログラムを提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, in a moving body variable type phantom, the moving body variable type phantom which can detect the dose distribution in the phantom before and behind a deformation | transformation with high precision can be provided.
Further, according to the present invention, it is possible to provide a moving object variable phantom capable of evaluating an image deformation process (DIR) used for a CT image with high accuracy.
Further, according to the present invention, it is possible to provide a radiation treatment plan creation method using a moving body variable phantom.
According to the present invention, by using the moving object variable phantom, it is possible to calculate the planned dose distribution of radiotherapy with high accuracy without depending on the image deformation process of the CT image.
Further, according to the present invention, it is possible to provide a program that can easily adjust the image deformation parameters related to the image deformation processing with high accuracy.
本発明の実施形態に係る動体可変型ファントムを採用した放射線治療システムの一例を示す全体概略図。1 is an overall schematic diagram illustrating an example of a radiotherapy system that employs a moving object variable phantom according to an embodiment of the present invention. 本発明の実施形態に係る動体可変型ファントムの一例を示す図、(a)はファントムのピストンが第1の位置の場合(膨らんだ状態)の一例を示す図、(b)はファントムのピストンが第2の位置の場合(収縮した状態)の一例を示す図。The figure which shows an example of the moving body variable type phantom which concerns on embodiment of this invention, (a) is a figure which shows an example when the piston of a phantom is a 1st position (swelling state), (b) is the piston of a phantom The figure which shows an example in the case of the 2nd position (contracted state). 組立及び分解自在な円柱形状のファントムの一例を示す図。The figure which shows an example of the cylindrical phantom which can be assembled and disassembled freely. 図3に示したファントムの一例を示す図、(a)は分解図、(b)は線量計収容体の拡大斜視図、(c)は線量計収容体と放射線量検出部と蓋部の一例を示す斜視図。The figure which shows an example of the phantom shown in FIG. 3, (a) is an exploded view, (b) is an enlarged perspective view of a dosimeter container, (c) is an example of a dosimeter container, a radiation dose detection part, and a cover part. FIG. 組立及び分解自在な球形状のファントムの一例を示す図、(a)は全体図、(b)は分解斜視図、(c)は放射線量検出部を収容した線量計収容体の拡大斜視図。The figure which shows an example of the spherical phantom which can be assembled and disassembled, (a) is a general view, (b) is an exploded perspective view, and (c) is an enlarged perspective view of a dosimeter container that houses a radiation dose detector. 巻回型のファントムの一例を示す図、(a)はそのファントムの全体斜視図、(b)はそのファントムの展開した状態の一例を示す図。The figure which shows an example of a winding type phantom, (a) is the whole perspective view of the phantom, (b) is a figure which shows an example of the state which the phantom developed. 2次元放射線量検出器(イメージングデバイス)を採用したファントムの一例を示す図、(a)は弾性体と2次元放射線量検出器を分離した状態の一例を示す側面断面図、(b)は組立てた状態の一例を示す側面断面図。The figure which shows an example of the phantom which employ | adopted the two-dimensional radiation dose detector (imaging device), (a) is side sectional drawing which shows an example of the state which isolate | separated the elastic body and the two-dimensional radiation dose detector, (b) is an assembly. Side surface sectional drawing which shows an example of the state which met. ゲル状体を有するファントムの一例を示す概念図。The conceptual diagram which shows an example of the phantom which has a gel-like body. 制御部の機能ブロックの一例を示す図。The figure which shows an example of the functional block of a control part. ファントムのCT画像および線量分布の一例を示す図、(a)は膨らんだ状態である変形前のファントムのCT画像および線量分布Pa(治療計画)の一例を示す図、(b)は収縮した状態であり変形後のファントムのCT画像および線量分布の一例を示す図。The figure which shows an example of CT image and dose distribution of a phantom, (a) is a figure which shows an example of CT image and dose distribution Pa (treatment plan) of the deformation | transformation phantom before a deformation | transformation, (b) is the state which contracted FIG. 5 is a diagram showing an example of a CT image and a dose distribution of a phantom after deformation. ファントムのCT画像および線量分布の一例を示す図、(a)は図10(a)に示した線量分布Paを変形した画像と線量分布の一例を示す図、(b)はファントムのCT画像と合算線量分布の一例を示す図。FIG. 10A is a diagram showing an example of a CT image and a dose distribution of a phantom, FIG. 10A is a diagram showing an example of a modified dose distribution Pa and a dose distribution shown in FIG. 10A, and FIG. The figure which shows an example of a total dose distribution. ファントムの膨らんだ状態と収縮した状態のCT画像の差の一例を示す図。The figure which shows an example of the difference of CT image of the state which the phantom expanded and contracted. ファントムの膨らんだ状態のCT画像を画像変形処理(DIR)により画像変形させた画像(変形処理画像)と、ファントムの収縮した状態のCT画像の差の一例を示す図。The figure which shows an example of the difference of the image (deformation processing image) which deform | transformed the CT image of the state where the phantom swelled by image deformation process (DIR), and the CT image of the state where the phantom contracted. 放射線治療システムの動作の一例を説明するための図。The figure for demonstrating an example of operation | movement of a radiotherapy system. 放射線治療システムの動作の一例を説明するための図。The figure for demonstrating an example of operation | movement of a radiotherapy system. 放射線治療システムの動作の一例を説明するための図。The figure for demonstrating an example of operation | movement of a radiotherapy system. 放射線治療システムの動作の一例を説明するための図。The figure for demonstrating an example of operation | movement of a radiotherapy system. 本発明の一実施形態に係る放射線治療システムのファントムの一例を示す斜視図。The perspective view which shows an example of the phantom of the radiotherapy system which concerns on one Embodiment of this invention. 図18に示したファントムの動作の一例を示す図、(a)はピストンが第1の位置の場合(膨らんだ状態)の一例を示す図、(b)はピストンが第2の位置の場合(収縮した状態)の一例を示す図。FIG. 18A is a diagram illustrating an example of the operation of the phantom illustrated in FIG. 18, FIG. 18A is a diagram illustrating an example when the piston is in the first position (inflated state), and FIG. 18B is a diagram when the piston is in the second position ( The figure which shows an example of the state which shrunk. 複数の押圧機構を有するファントムの一例を示す図。The figure which shows an example of the phantom which has a some press mechanism. 軸方向および直交方向に複数の押圧機構を有するファントムの一例を示す図。The figure which shows an example of the phantom which has a some press mechanism in an axial direction and an orthogonal direction.
 本発明の実施形態に係る動体可変型ファントムは、放射線照射装置用の動体可変型ファントムであり、変形可能な弾性体と、その弾性体に設けられた放射線量検出部と、を有する。また、本実施形態では、放射線量検出部は、線量蓄積型(X線エネルギー蓄積型)である。 A moving body variable phantom according to an embodiment of the present invention is a moving body variable phantom for a radiation irradiation apparatus, and includes a deformable elastic body and a radiation dose detector provided on the elastic body. In this embodiment, the radiation dose detection unit is a dose accumulation type (X-ray energy accumulation type).
 以下、図面を参照しながら本発明の実施形態を説明する。
 本発明の実施形態は図示の内容を含むが、これのみに限定されるものではない。なお、以後の各図の説明で、既に説明した部位と共通する部分は同一符号を付して重複説明を一部分省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The embodiment of the present invention includes the contents shown in the drawings, but is not limited to this. In the following description of each drawing, parts that are the same as those already described are assigned the same reference numerals, and duplicate descriptions are partially omitted.
 図1は本発明の実施形態に係る動体可変型ファントム10(ファントム)を採用した放射線治療システム100の一例を示す全体概略図である。
 図2はファントム10の一例を示す図である。詳細には、図2(a)はファントム10のピストン16が第1の位置の場合(膨らんだ状態)の一例を示す図、図2(b)はファントム10のピストン16が第2の位置の場合(収縮した状態)の一例を示す図である。
FIG. 1 is an overall schematic diagram showing an example of a radiation therapy system 100 employing a moving body variable phantom 10 (phantom) according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating an example of the phantom 10. Specifically, FIG. 2A is a diagram showing an example of the case where the piston 16 of the phantom 10 is in the first position (inflated state), and FIG. 2B is a diagram where the piston 16 of the phantom 10 is in the second position. It is a figure which shows an example of a case (contracted state).
 本実施形態では、放射線治療システム100は、ファントム10、CT装置20(Computed Tomography装置)、ファントム線量検出装置30、放射線治療装置40、制御装置50(コンピュータ)、などを有する。CT装置20や放射線治療装置40は放射線照射装置に対応する。 In this embodiment, the radiation therapy system 100 includes a phantom 10, a CT apparatus 20 (Computed Tomography apparatus), a phantom dose detection apparatus 30, a radiation therapy apparatus 40, a control apparatus 50 (computer), and the like. The CT apparatus 20 and the radiotherapy apparatus 40 correspond to a radiation irradiation apparatus.
<CT装置20>
 CT装置20は、例えば、ヘリカルCT(スパイラルCT)やノンヘリカルCT(コンベンショナルCT)などにより患者(被検体)やファントム10のCT撮影を行う。
 本実施形態では、CT装置20としてX線CT装置を採用している。CT装置20は、ガントリ(回転架台)を備えた筐体部20a、X線発生部21(放射線発生部)、X線検出部22、回転駆動部23、回転位置検出部24、台部25(寝台)、クレードルとしての天板26、天板位置検出部27、天板駆動部28、などを有する。
<CT apparatus 20>
The CT apparatus 20 performs CT imaging of a patient (subject) and the phantom 10 using, for example, helical CT (spiral CT) or non-helical CT (conventional CT).
In the present embodiment, an X-ray CT apparatus is employed as the CT apparatus 20. The CT apparatus 20 includes a housing 20a having a gantry (rotary mount), an X-ray generation unit 21 (radiation generation unit), an X-ray detection unit 22, a rotation drive unit 23, a rotation position detection unit 24, and a base unit 25 ( A couch), a couchtop 26 as a cradle, a couchtop position detector 27, a couchtop drive unit 28, and the like.
 円筒形状の筐体部20a内に、X線発生部21(放射線発生部)、X線検出部22が設けられている。X線発生部21は、制御装置50の制御により、台部25の天板26上の被検体やファントム10に向けてX線を照射する。X線検出部22はX線発生部21と対向する位置に配置されている。X線検出部22は、被検体やファントム10を介した透過X線を検出する装置であり、検出したX線量に対応した信号を生成し、制御装置50に出力する。
 本実施形態では、X線発生部21およびX線検出部22は、筐体部20a内のガントリ(回転架台)に固定されており、制御装置50の制御により回転駆動部23でガントリを回転駆動することで、X線発生部21およびX線検出部22の相対位置を保った状態で回転可能に構成されている。
 回転位置検出部24は、例えば、ガントリなどに設けられた位置センサ(角度センサ)からの信号に基づいて、X線発生部21やX線検出部22の回転位置を検出し、検出信号を制御装置50に出力する。
An X-ray generation unit 21 (radiation generation unit) and an X-ray detection unit 22 are provided in the cylindrical casing 20a. The X-ray generation unit 21 emits X-rays toward the subject and the phantom 10 on the top plate 26 of the base unit 25 under the control of the control device 50. The X-ray detector 22 is disposed at a position facing the X-ray generator 21. The X-ray detection unit 22 is a device that detects transmitted X-rays through the subject and the phantom 10, generates a signal corresponding to the detected X-ray dose, and outputs the signal to the control device 50.
In the present embodiment, the X-ray generation unit 21 and the X-ray detection unit 22 are fixed to a gantry (rotary mount) in the housing unit 20a, and the gantry is rotated by the rotation drive unit 23 under the control of the control device 50. By doing so, the X-ray generator 21 and the X-ray detector 22 are configured to be rotatable while maintaining the relative positions.
The rotational position detection unit 24 detects the rotational position of the X-ray generation unit 21 and the X-ray detection unit 22 based on a signal from a position sensor (angle sensor) provided in the gantry, for example, and controls the detection signal. Output to the device 50.
 寝台としての台部25上の天板26は、制御装置50の制御で天板駆動部28により移動可能に構成されている。天板位置検出部27は、位置センサなどを備え、天板26の位置を検出し、検出信号を制御装置50に送信する。天板26上には、被検体やファントム10が載置される。 The top plate 26 on the base unit 25 as a bed is configured to be movable by the top plate driving unit 28 under the control of the control device 50. The top plate position detection unit 27 includes a position sensor and the like, detects the position of the top plate 26, and transmits a detection signal to the control device 50. A subject and the phantom 10 are placed on the top plate 26.
<放射線治療装置40>
 放射線治療装置40は、直線加速器(リニアック・ライナック)などの放射線照射装置により発生するX線や電子線などの放射線を被検体(患者)の病巣(腫瘍)などに照射して治療を行う。直線加速器を用いた放射線照射装置では、鋭い指向性の放射線を照射可能である。また、放射線治療装置40は、天板26上のファントム10に対してX線などの放射線を照射可能である。
 また、放射線治療装置40は、標的領域である放射線照射位置と、その放射線照射位置への放射線照射線量を規定する放射線治療計画に基づいて放射線を照射する。こうすることで、病巣(腫瘍)や模擬病巣に対して高精度に放射線を照射することができ、標的領域以外の部分への照射を低減することができる。
 この放射線治療装置40は、制御装置50(コンピュータ)により制御される。
 尚、放射線治療装置40として、直線加速器を用いない放射線照射装置を採用してもよいし、陽子線や重粒子線を病巣(腫瘍)へ照射する装置を採用してもよい。
<Radiotherapy device 40>
The radiation therapy apparatus 40 performs treatment by irradiating a lesion (tumor) or the like of a subject (patient) with radiation such as an X-ray or electron beam generated by a radiation irradiation apparatus such as a linear accelerator (linac or linac). In a radiation irradiation apparatus using a linear accelerator, it is possible to irradiate sharp directional radiation. The radiotherapy apparatus 40 can irradiate the phantom 10 on the top plate 26 with radiation such as X-rays.
Moreover, the radiation therapy apparatus 40 irradiates radiation based on the radiation treatment position which prescribes | regulates the radiation irradiation position which is a target area | region, and the radiation irradiation dose to the radiation irradiation position. By carrying out like this, a radiation can be irradiated with high precision with respect to a lesion (tumor) or a simulated lesion, and irradiation to parts other than a target field can be reduced.
The radiotherapy device 40 is controlled by a control device 50 (computer).
As the radiotherapy device 40, a radiation irradiation device that does not use a linear accelerator may be employed, or a device that irradiates a lesion (tumor) with a proton beam or a heavy particle beam may be employed.
<制御装置50>
 制御装置50(コンピュータ)は、CT装置20、放射線治療装置40、治療計画生成装置、などを統括的に制御する。制御装置50は、この形態に限られるものではなく、例えば、複数のコンピュータにより構成されてもよい。
 詳細には、制御装置50は、制御部51、記憶部52、表示部53、操作入力部54、通信部55、インタフェース56(I/F)、バスなどの通信線57、などを有する。制御部51や記憶部52などの各構成要素は通信線57により電気的に接続されている。
<Control device 50>
The control device 50 (computer) comprehensively controls the CT device 20, the radiation therapy device 40, the treatment plan generation device, and the like. The control device 50 is not limited to this form, and may be configured by a plurality of computers, for example.
Specifically, the control device 50 includes a control unit 51, a storage unit 52, a display unit 53, an operation input unit 54, a communication unit 55, an interface 56 (I / F), a communication line 57 such as a bus, and the like. Each component such as the control unit 51 and the storage unit 52 is electrically connected by a communication line 57.
 制御部51は、制御装置50の各構成要素を統括的に制御する。また、制御部51は、放射線治療システム100の各構成要素を統括的に制御する。
 制御部51は、例えば、記憶部52に記憶されているプログラムを実行することにより、本発明に係る機能をコンピュータとしての制御装置50に実現させる。
 制御部51の詳細な機能について後述する。
The control unit 51 comprehensively controls each component of the control device 50. In addition, the control unit 51 comprehensively controls each component of the radiation therapy system 100.
For example, the control unit 51 executes a program stored in the storage unit 52 to cause the control device 50 as a computer to realize the function according to the present invention.
Detailed functions of the control unit 51 will be described later.
 記憶部52は、RAM、ROM、HDD、SSDなどの記憶装置であり、プログラムや各種データを記憶する。制御部51は、必要に応じて記憶部からプログラムやデータなどを読み出す。また、制御部51は、必要に応じてデータなどを記憶部52に記憶する。
 表示部53は、ディスプレイなどの表示装置であり、制御部51の制御により本発明に係るCT画像などの各種データを表示可能である。
 操作入力部54は、キーボード、マウス、タッチパネルなどの入力装置であり、入力信号を制御部51に出力する。
 通信部55は、制御部51の制御により、有線式または無線式の通信路を介して外部のコンピュータなどとデータ通信を行う。
 インタフェース56(I/F)には、放射線治療装置40、ファントム線量検出装置30、CT装置20の所定の構成要素、例えば、X線発生部21、X線検出部22、回転駆動部23、回転位置検出部24、天板位置検出部27、天板駆動部28などが電気的に接続されている。
The storage unit 52 is a storage device such as a RAM, a ROM, an HDD, and an SSD, and stores programs and various data. The control part 51 reads a program, data, etc. from a memory | storage part as needed. In addition, the control unit 51 stores data or the like in the storage unit 52 as necessary.
The display unit 53 is a display device such as a display, and can display various data such as a CT image according to the present invention under the control of the control unit 51.
The operation input unit 54 is an input device such as a keyboard, a mouse, or a touch panel, and outputs an input signal to the control unit 51.
The communication unit 55 performs data communication with an external computer or the like via a wired or wireless communication path under the control of the control unit 51.
The interface 56 (I / F) includes predetermined components of the radiotherapy device 40, the phantom dose detection device 30, and the CT device 20, such as an X-ray generation unit 21, an X-ray detection unit 22, a rotation drive unit 23, and a rotation. The position detection unit 24, the top plate position detection unit 27, the top plate drive unit 28, and the like are electrically connected.
<ファントム10>
 ファントム10は、例えば、CT装置20や放射線治療装置40の各種校正用として使用される試験体である。本実施形態では、ファントム10は、制御装置50による画像変形処理(DIR:Deformable Image Registration)の精度検証などに用いられる。
<Phantom 10>
The phantom 10 is a test body used for various calibrations of the CT apparatus 20 and the radiation therapy apparatus 40, for example. In the present embodiment, the phantom 10 is used for accuracy verification of image deformation processing (DIR: Deformable Image Registration) by the control device 50.
 このファントム10は、例えば、患者の部位を模すように、所定のX線吸収係数の部分を有する。このファントム10は、例えば、患者の病巣(病変)を模した部分、正常組織のX線吸収係数を模した部分などを有する。本実施形態では、ファントム10として動体可変型ファントム10を採用しており、このファントム10は、患者の呼吸や心臓の動きなどの動体を模すように変形可能に構成されている。 The phantom 10 has a portion having a predetermined X-ray absorption coefficient so as to imitate a part of a patient, for example. The phantom 10 includes, for example, a portion that simulates a patient's lesion (lesion), a portion that simulates an X-ray absorption coefficient of normal tissue, and the like. In this embodiment, the moving body variable type phantom 10 is adopted as the phantom 10, and the phantom 10 is configured to be deformable so as to imitate a moving body such as a patient's breathing and heart motion.
 図1、図2に示した例では、肺部を模したファントム10を採用している。このファントム10は、ケースとしてのシリンダ15内に配置された弾性体11を有し、この弾性体11をピストン16により変形自在に構成されている。
 ピストン16に、ピストンロッド17が接続されている。ピストンロッド17は、モータなどのピストン駆動部175に接続されており、制御装置50の制御により、ピストン16を移動可能に構成されている。
 本実施形態では、板状部材121上に、ファントム10およびピストンを収容したシリンダ15(ケース)が配置されている。また、板状部材121上に台部176を介してピストン駆動部175が配置されている。板状部材121の端部付近には把持部122,123が設けられている。このため、板状部材121は、ファントム10やピストン駆動部175を載置した板状部材121を容易に持ち運び可能に構成されている。
In the example shown in FIGS. 1 and 2, a phantom 10 simulating the lung is employed. The phantom 10 has an elastic body 11 disposed in a cylinder 15 as a case, and the elastic body 11 is configured to be deformable by a piston 16.
A piston rod 17 is connected to the piston 16. The piston rod 17 is connected to a piston driving unit 175 such as a motor, and is configured to move the piston 16 under the control of the control device 50.
In the present embodiment, a cylinder 15 (case) that houses the phantom 10 and the piston is disposed on the plate-like member 121. Further, a piston driving unit 175 is disposed on the plate-like member 121 via a base 176. In the vicinity of the end of the plate-like member 121, grips 122 and 123 are provided. For this reason, the plate-like member 121 is configured such that the plate-like member 121 on which the phantom 10 and the piston driving unit 175 are placed can be easily carried.
 また、ピストンロッド17に傾斜部材171が、ピストンロッド17と連動して移動可能に設けられている。傾斜部材171の上部付近には上下動部材172(ステージ)が上下動自在に配置されている。この上下動部材172は、その下端部が傾斜部材171に当接するように配置されている。このため、上下動部材172は、ピストンロッド17やピストン16の動きに連動して上下動するように構成されている。 Further, an inclined member 171 is provided on the piston rod 17 so as to be movable in conjunction with the piston rod 17. A vertical movement member 172 (stage) is disposed in the vicinity of the upper portion of the inclined member 171 so as to be movable up and down. The vertically moving member 172 is disposed such that the lower end thereof is in contact with the inclined member 171. For this reason, the vertical movement member 172 is configured to move up and down in conjunction with the movement of the piston rod 17 and the piston 16.
 また、本実施形態では、上下動部材172の上端部に検出用ボックスを設け、検出用ボックスの位置を、赤外線撮像部や位置センサなどのピストン位置検出部173により検出する。つまり、ピストン位置検出部173は、上下動部材172の上下動の変位により、ピストン16の変位や位置などを検出し、検出信号を制御装置50に出力する。 In this embodiment, a detection box is provided at the upper end of the vertical movement member 172, and the position of the detection box is detected by a piston position detection unit 173 such as an infrared imaging unit or a position sensor. That is, the piston position detection unit 173 detects the displacement and position of the piston 16 based on the vertical movement displacement of the vertical movement member 172 and outputs a detection signal to the control device 50.
 図2に示したファントム10は、弾性体11、放射線量検出部12(照射線量検出部)、バルーン13、水や気体などの流体14、ケースとしてのシリンダ15、ピストン16、ピストンロッド17、弾性体保持部18、蓋部19などを有する。 The phantom 10 shown in FIG. 2 includes an elastic body 11, a radiation dose detection unit 12 (irradiation dose detection unit), a balloon 13, a fluid 14 such as water or gas, a cylinder 15 as a case, a piston 16, a piston rod 17, an elasticity. It has a body holding part 18, a lid part 19, and the like.
 弾性体11は、ピストン16などの外力により変形自在に構成されている。本実施形態では、弾性体11は、収縮自在な材料で形成されている。弾性体11としては、例えば、樹脂材料などの所定の弾性率、所定のX線吸収係数の材料で構成されている。また、本実施形態では、弾性体11としては、スポンジ状の多孔性の樹脂材料を採用している。 The elastic body 11 is configured to be deformable by an external force such as a piston 16. In the present embodiment, the elastic body 11 is formed of a shrinkable material. The elastic body 11 is made of, for example, a material having a predetermined elastic modulus and a predetermined X-ray absorption coefficient such as a resin material. In the present embodiment, a sponge-like porous resin material is employed as the elastic body 11.
 また、本発明の実施形態では、弾性体11に放射線量検出部12が設けられている。図2に示した例では、線量蓄積型(X線エネルギー蓄積型)の放射線量検出部12として、複数の小型のガラス線量計(蛍光ガラス線量計)などを採用し、放射線量検出部12を弾性体11の所定位置に容易に着脱自在に配置している。一具体例として、直径1.5mm、長さ8.5mmの小型のガラス線量計を30~50個程度、弾性体11の所定位置に所定の間隔で配置している。 Moreover, in the embodiment of the present invention, the elastic body 11 is provided with the radiation dose detection unit 12. In the example shown in FIG. 2, a plurality of small glass dosimeters (fluorescent glass dosimeters) or the like are employed as the dose accumulation type (X-ray energy accumulation type) radiation dose detection unit 12. The elastic body 11 is easily detachably disposed at a predetermined position. As a specific example, about 30 to 50 small glass dosimeters having a diameter of 1.5 mm and a length of 8.5 mm are arranged at predetermined intervals on the elastic body 11.
 詳細には、放射線量検出部12は、例えば、銀イオンを含有した銀活性リン酸塩ガラス素子などであり、このガラス素子に放射線を照射すると、銀の二価イオンなどによる蛍光中心が形成される。この蛍光中心は、外部からの紫外線照射により励起された後、安定状態に戻るときに蛍光を発光する。この発光量は放射線吸収線量に比例する。蛍光中心はこの測定により消滅せず、何度も繰り返し読み取ることができる。 Specifically, the radiation dose detection unit 12 is, for example, a silver activated phosphate glass element containing silver ions, and when this glass element is irradiated with radiation, a fluorescence center is formed by silver divalent ions or the like. The This fluorescent center emits fluorescence when it returns to a stable state after being excited by external ultraviolet irradiation. This amount of luminescence is proportional to the radiation absorbed dose. The fluorescence center does not disappear by this measurement and can be read repeatedly.
 本実施形態では、図1に示したファントム線量検出装置30の線量検出部31が、ファントム10の所定位置から取り出され、放射線量検出部12としてのガラス素子に紫外線を照射し、ガラス素子の蛍光中心からの蛍光の発光量を測定し、その測定量に基づいて放射線吸収線量を検出する。 In the present embodiment, the dose detector 31 of the phantom dose detector 30 shown in FIG. 1 is taken out from a predetermined position of the phantom 10, irradiates the glass element as the radiation dose detector 12 with ultraviolet rays, and the fluorescence of the glass element. The amount of fluorescence emitted from the center is measured, and the radiation absorbed dose is detected based on the measured amount.
 また、本実施形態では、ファントム線量検出装置30の位置特定部32は、ファントム10の線量検出部31としてのガラス素子の位置を特定し、位置情報を制御装置50に出力する。放射線量検出部12の位置情報の特定方法としては、CT装置20のCT画像により特定する、弾性体11の予め規定した位置に放射線量検出部12を配置する、ファントム10の放射線量検出部12の位置を光学的に特定する、などを挙げることができる。 In this embodiment, the position specifying unit 32 of the phantom dose detection device 30 specifies the position of the glass element as the dose detection unit 31 of the phantom 10 and outputs the position information to the control device 50. As a method for specifying the position information of the radiation dose detection unit 12, the radiation dose detection unit 12 of the phantom 10 in which the radiation dose detection unit 12 is arranged at a predetermined position of the elastic body 11 specified by the CT image of the CT apparatus 20. For example, optically specifying the position of.
 放射線量検出部12をガラス線量計のガラス素子を採用し、CT装置20によりファントム10内のガラス素子の位置を特定する場合、ガラス線量素子は、CT画像上でアーチファクト(虚像)を発生しないことから、ガラス線量素子の位置を正確に特定することができる。このため、放射線量検出部12としてのガラス線量計は、画像変形処理(DIR)の精度の検証用として使用することができる。また、放射線量検出部12としてのガラス線量計は、画像変形処理(DIR)の精度と線量分布変形精度の検証用として使用することができる。 When the radiation dose detection unit 12 employs a glass element of a glass dosimeter and the position of the glass element in the phantom 10 is specified by the CT apparatus 20, the glass dose element does not generate an artifact (virtual image) on the CT image. Thus, the position of the glass dose element can be accurately identified. For this reason, the glass dosimeter as the radiation dose detection unit 12 can be used for verification of the accuracy of image deformation processing (DIR). Further, the glass dosimeter as the radiation dose detection unit 12 can be used for verification of accuracy of image deformation processing (DIR) and accuracy of dose distribution deformation.
 ファントム線量検出装置30による、放射線量検出部12の放射線吸収線量の検出や位置の特定が行われた後、放射線量検出部12はファントム10の弾性体11の規定された位置に配置される。 After the radiation absorbed dose of the radiation dose detector 12 is detected and the position is specified by the phantom dose detector 30, the radiation dose detector 12 is arranged at a defined position of the elastic body 11 of the phantom 10.
 図2に示した例では、筒形状のシリンダ15内に弾性体11が配置され、弾性体11の周囲に弾性体からなるバルーン13が設けられている。シリンダ15とピストン16により囲まれた空間には、液体(水など)や気体などの流体14が配置されている。シリンダ15は、一具体例として円筒形状に形成されており、直径25cm程度である。 In the example shown in FIG. 2, an elastic body 11 is disposed in a cylindrical cylinder 15, and a balloon 13 made of an elastic body is provided around the elastic body 11. In a space surrounded by the cylinder 15 and the piston 16, a fluid 14 such as a liquid (water or the like) or a gas is disposed. The cylinder 15 is formed in a cylindrical shape as a specific example, and has a diameter of about 25 cm.
 シリンダ15の端部には、蓋部19が設けられており、蓋部19を開閉することにより流体14を供給または排出可能に構成されている。弾性体保持部18は、弾性体11に当接し、弾性体11を保持する。本実施形態では、弾性体保持部18の当接面は、ピストン16による弾性体の圧縮によっても確実に弾性体11を保持するように、湾曲形状に形成されている。また、弾性体保持部18には、複数の通気孔18aが形成されており、ピストン16の圧縮方向への移動または反対方向への移動により、空気を排気または吸気可能である。 A lid 19 is provided at the end of the cylinder 15, and the fluid 14 can be supplied or discharged by opening and closing the lid 19. The elastic body holding portion 18 abuts on the elastic body 11 and holds the elastic body 11. In the present embodiment, the contact surface of the elastic body holding portion 18 is formed in a curved shape so that the elastic body 11 is securely held even by the compression of the elastic body by the piston 16. Further, the elastic body holding portion 18 is formed with a plurality of vent holes 18a, and air can be exhausted or sucked by movement of the piston 16 in the compression direction or movement in the opposite direction.
 ピストンロッド17は、一方の端部がシリンダ15内で移動自在に配置されたピストン16に接続されており、他方の端部がピストン駆動部に接続されている。 The piston rod 17 has one end connected to a piston 16 that is movably disposed in the cylinder 15, and the other end connected to a piston drive unit.
 また、ファントム10の弾性体11には、疑似病変として所定のX線吸収係数の材料で構成された模擬腫瘍1(模擬病巣)が必要に応じて設けられている。また、ファントム10の弾性体11には、必要に応じて、複数のアクリル製などの樹脂製の複数の微小球体(ビーズ)を配置してもよい。このビーズの直径は一具体例として約1mm~3mm程度である。この樹脂製のビーズは、所定のX線吸収係数率に規定されており、CT画像上でのランドマークとして機能する。
 また、ファントム10の弾性体11には、必要に応じてナイロン製などの樹脂製のワイヤを配置してもよい。この樹脂製のワイヤは、所定のX線吸収係数に規定されており、CT画像上で模擬血管として機能する。
In addition, the elastic body 11 of the phantom 10 is provided with a simulated tumor 1 (simulated lesion) made of a material having a predetermined X-ray absorption coefficient as a pseudo lesion as needed. In addition, a plurality of microspheres (beads) made of a resin such as acrylic may be disposed on the elastic body 11 of the phantom 10 as necessary. The diameter of the beads is about 1 mm to 3 mm as a specific example. This resin bead is defined by a predetermined X-ray absorption coefficient rate and functions as a landmark on the CT image.
Further, a resin wire such as nylon may be disposed on the elastic body 11 of the phantom 10 as necessary. This resin wire is defined by a predetermined X-ray absorption coefficient, and functions as a simulated blood vessel on the CT image.
 図2(a)、図2(b)に示した例では、横隔膜を模擬するピストン16を変位させることにより、呼吸による横隔膜の動きを模擬するようにファントム10が構成されている。
 図2(a)に示した略円形状(球形状)の模擬腫瘍1(1a)が弾性体11の変形に伴い、楕円形状(楕円体)に変形した模擬腫瘍1(1b)となっている。
 また、弾性体11の変形に連動して、弾性体11に配置された放射線量検出部12や樹脂製の微小球体、ワイヤの位置が移動するように構成されている。
In the example shown in FIGS. 2A and 2B, the phantom 10 is configured to simulate the movement of the diaphragm due to respiration by displacing the piston 16 that simulates the diaphragm.
The substantially circular (spherical) simulated tumor 1 (1a) shown in FIG. 2A becomes a simulated tumor 1 (1b) deformed into an elliptical shape (elliptical body) as the elastic body 11 is deformed. .
Further, in conjunction with the deformation of the elastic body 11, the positions of the radiation dose detection unit 12, the resin microspheres, and the wires arranged on the elastic body 11 are configured to move.
 また、ピストン16は変位量を調整できるように構成されており、具体的には、例えば、±5mm、±10mm、±15mm、±20mm、±25mmなど、所定の変位量に設定可能である。 Further, the piston 16 is configured so that the displacement amount can be adjusted. Specifically, for example, it can be set to a predetermined displacement amount such as ± 5 mm, ± 10 mm, ± 15 mm, ± 20 mm, ± 25 mm, or the like.
 次に、ファントムの一実施例を説明する。
<円柱形状のファントム>
 図3は組立及び分解自在な円柱形状のファントム10Aの一例を示す図である。図4は図3に示したファントムの一例を示す図である。詳細には、図4(a)はその分解図、図4(b)は線量計収容体10Adの拡大斜視図、図4(c)は線量計収容体10Adとガラス線量計などの放射線量検出部12と蓋部10Aeの一例を示す斜視図である。
Next, an embodiment of the phantom will be described.
<Cylindrical phantom>
FIG. 3 is a view showing an example of a cylindrical phantom 10A that can be assembled and disassembled. FIG. 4 is a diagram showing an example of the phantom shown in FIG. Specifically, FIG. 4A is an exploded view thereof, FIG. 4B is an enlarged perspective view of the dosimeter container 10Ad, and FIG. 4C is a radiation dose detection of the dosimeter container 10Ad and a glass dosimeter. It is a perspective view which shows an example of the part 12 and lid part 10Ae.
 ファントムの弾性体は、分解および組立て自在な多層構造に構成されており、各構成要素に放射線量検出部12としての線量計を容易に着脱自在に構成されている。
 詳細には、図3に示した円柱形状のファントム10Aは、弾性体で形成された複数の構成要素、例えば、小径の円柱形状体10Aa、小径の円筒形状体10Ab、大径の円筒形状体10Ac、などを有する。
 大径の円筒形状体10Acは、有底または無底の孔部h2を備え、その孔部h2に小径の円筒形状体10Abを収容可能に構成されている。小径の円筒形状体10Abは、有底または無底の孔部h1を備え、その孔部h1に小径の円柱形状体10Aaを収容可能に構成されている。
 この小径の円柱形状体10Aa、小径の円筒形状体10Ab、大径の円筒形状体10Acを組み立てることにより、円柱形状のファントム10Aとなる。
The elastic body of the phantom has a multilayer structure that can be disassembled and assembled, and a dosimeter as the radiation dose detection unit 12 can be easily attached to and detached from each component.
Specifically, the columnar phantom 10A shown in FIG. 3 includes a plurality of components formed of an elastic body, for example, a small-diameter columnar body 10Aa, a small-diameter cylindrical body 10Ab, and a large-diameter cylindrical body 10Ac. , Etc.
The large-diameter cylindrical body 10Ac includes a bottomed or bottomless hole h2, and is configured to accommodate the small-diameter cylindrical body 10Ab in the hole h2. The small-diameter cylindrical body 10Ab includes a bottomed or non-bottomed hole h1, and is configured to accommodate the small-diameter columnar body 10Aa in the hole h1.
By assembling the small-diameter cylindrical body 10Aa, the small-diameter cylindrical body 10Ab, and the large-diameter cylindrical body 10Ac, a cylindrical phantom 10A is obtained.
 また、ファントム10Aの各構成要素は、ガラス線量計などの放射線量検出部12を収容する複数の線量計収容体10Adを着脱自在に保持する複数の穴部を有する。詳細には、図4(a)に示したように、大径の円筒形状体10Acは、所定位置に複数の穴部10Ahを有し、その穴部10Ahに線量計収容体10Adを収容可能に構成されている。 Each component of the phantom 10A has a plurality of holes for detachably holding a plurality of dosimeter housings 10Ad for housing a radiation dose detection unit 12 such as a glass dosimeter. Specifically, as shown in FIG. 4A, the large-diameter cylindrical body 10Ac has a plurality of holes 10Ah at predetermined positions, and the dosimeter container 10Ad can be accommodated in the holes 10Ah. It is configured.
 図4(b)に示した線量計収容体10Adは、直方体などの所定の形状に形成され、有底または無底の穴部h3を有し、ガラス線量計などの放射線量検出部12を収容可能に構成され、蓋部10Aeにより蓋をすることができるように構成されている。図4(b)に示した例では、線量計収容体10Adの略中央部に放射線量検出部12が配置される。 The dosimeter container 10Ad shown in FIG. 4B is formed in a predetermined shape such as a rectangular parallelepiped, has a bottomed or bottomless hole h3, and accommodates a radiation dose detection unit 12 such as a glass dosimeter. It is comprised so that it can be covered with lid | cover part 10Ae. In the example shown in FIG. 4B, the radiation dose detection unit 12 is disposed at a substantially central portion of the dosimeter container 10Ad.
 同様に、小径の円筒形状体10Ab、小径の円柱形状体10Aaは、複数の線量計収容体10Adを着脱自在に保持する複数の穴部を有し、複数のガラス線量計などの放射線量検出部12を保持可能に構成されている。 Similarly, the small-diameter cylindrical body 10Ab and the small-diameter columnar body 10Aa have a plurality of holes that detachably hold a plurality of dosimeter containers 10Ad, and a radiation dose detection unit such as a plurality of glass dosimeters. 12 can be held.
 上述したように、円柱形状のファントム10Aは、複数のガラス線量計などの放射線量検出部12を、容易に着脱自在に、3次元的に所定位置に所定間隔で配置可能に構成されている。 As described above, the cylindrical phantom 10A is configured such that a plurality of radiation dose detectors 12 such as a plurality of glass dosimeters can be easily and detachably disposed at predetermined positions in three dimensions.
 尚、上述した線量計収容体10Adの形状は、直方体であったが、この形態に限られるものではなく、円柱形状、楕円形状など任意の形状であってもよい。 In addition, although the shape of the dosimeter container 10Ad described above was a rectangular parallelepiped, it is not limited to this form, and may be an arbitrary shape such as a cylindrical shape or an elliptical shape.
 また、ファントム10Aは、上述した実施形態に限られるものではない。例えば、ファントム10Aの各構成要素に、ガラス線量計などの放射線量検出部12を直接着脱自在に保持する穴部を設け、その穴部に放射線量検出部12を配置してもよい。 Further, the phantom 10A is not limited to the above-described embodiment. For example, each component of the phantom 10A may be provided with a hole portion that directly and detachably holds the radiation dose detection unit 12 such as a glass dosimeter, and the radiation dose detection unit 12 may be disposed in the hole portion.
<球形状のファントム>
 図5は組立及び分解自在な球形状のファントム10Bの一例を示す図である。詳細には、図5(a)は全体図、図5(b)は分解斜視図、図5(c)は放射線量検出部12を収容した線量計収容体10Adの拡大斜視図である。
<Spherical phantom>
FIG. 5 is a view showing an example of a spherical phantom 10B that can be assembled and disassembled. Specifically, FIG. 5A is an overall view, FIG. 5B is an exploded perspective view, and FIG. 5C is an enlarged perspective view of a dosimeter container 10Ad in which the radiation dose detection unit 12 is housed.
 図5(a)に示した球形状のファントム10Bは、弾性体で形成された複数の構成要素、例えば、大径の半球形ドーム状体10Ba、大径の半球形ドーム状体10Bb、小径の半球形ドーム状体10Bc、小径の半球形ドーム状体10Bd、小径の半球形体10Be、小径の半球形体10Bf、などを有する。 A spherical phantom 10B shown in FIG. 5A includes a plurality of components formed of an elastic body, for example, a large-diameter hemispherical dome-shaped body 10Ba, a large-diameter hemispherical dome-shaped body 10Bb, and a small-diameter phantom 10B. A hemispherical dome-shaped body 10Bc, a small-diameter hemispherical dome-shaped body 10Bd, a small-diameter hemispherical body 10Be, a small-diameter hemispherical body 10Bf, and the like.
 大径の半球形ドーム状体10Baには穴部が形成され、その穴部に小径の半球形ドーム状体10Bcを収容可能に構成されている。小径の半球形ドーム状体10Bcには小径の穴部が形成され、その穴部に小径の半球形体10Beを収容可能に構成されている。大径の半球形ドーム状体10Bbには穴部が形成され、その穴部に小径の半球形ドーム状体10Bdを収容可能に構成されている。小径の半球形ドーム状体10Bdには小径の穴部が形成され、その穴部に小径の半球形体10Bfを収容可能に構成されている。 A hole is formed in the large-diameter hemispherical dome-shaped body 10Ba, and the small-diameter hemispherical dome-shaped body 10Bc can be accommodated in the hole. A small-diameter hole is formed in the small-diameter hemispherical dome-shaped body 10Bc, and the small-diameter hemispherical body 10Be can be accommodated in the hole. A hole is formed in the large-diameter hemispherical dome-shaped body 10Bb, and a small-diameter hemispherical dome-shaped body 10Bd can be accommodated in the hole. A small-diameter hole is formed in the small-diameter hemispherical dome-shaped body 10Bd, and the small-diameter hemispherical body 10Bf can be accommodated in the hole.
 球形状のファントム10Bの各構成要素には、図5(c)に示したように、放射線量検出部12を収容する線量計収容体10Adを着脱自在に保持する複数の穴部10Bhを有し、複数のガラス線量計などの放射線量検出部12を保持可能に構成されている。 As shown in FIG. 5C, each component of the spherical phantom 10B has a plurality of holes 10Bh for detachably holding the dosimeter container 10Ad for housing the radiation dose detector 12. The radiation dose detection unit 12 such as a plurality of glass dosimeters can be held.
 上述したように、球形状のファントム10Bは、複数のガラス線量計などの放射線量検出部12を、容易に着脱自在に、3次元的に所定位置に所定間隔で配置可能に構成されている。 As described above, the spherical phantom 10B is configured such that the radiation dose detectors 12 such as a plurality of glass dosimeters can be easily and detachably disposed at predetermined positions in a three-dimensional manner.
 尚、ファントム10Bは、上述した実施形態に限られるものではない。例えば、ファントム10Bの各構成要素に、ガラス線量計などの放射線量検出部12を直接着脱自在に保持する穴部を設け、その穴部に放射線量検出部12を配置してもよい。 The phantom 10B is not limited to the embodiment described above. For example, each component of the phantom 10B may be provided with a hole portion that directly and detachably holds the radiation dose detection unit 12 such as a glass dosimeter, and the radiation dose detection unit 12 may be disposed in the hole portion.
<巻回型のファントム>
 図6は巻回型のファントム10Cの一例を示す図である。詳細には、図6(a)はそのファントム10Cの全体斜視図、図6(b)はそのファントム10Cの展開した状態の一例を示す図である。
<Winded phantom>
FIG. 6 shows an example of a wound phantom 10C. Specifically, FIG. 6A is an overall perspective view of the phantom 10C, and FIG. 6B is a diagram illustrating an example of a developed state of the phantom 10C.
 図6(a)、図6(b)に示したように、巻回型のファントム10Cは、変形自在な長尺の直方体(板形状)の弾性体を巻回して構成されている。また、図6(b)に示したように、展開した状態のファントム10Cは、放射線量検出部12を収容する線量計収容体10Adを着脱自在に保持する複数の穴部10Chを有し、ガラス線量計などの放射線量検出部12を保持可能に構成されている。この複数の穴部10Chに放射線量検出部12を収容した後、巻回することで、図6(a)に示したように、略円柱形状のファントム10Cとすることができる。 As shown in FIGS. 6A and 6B, the wound phantom 10C is formed by winding a deformable long rectangular parallelepiped (plate-shaped) elastic body. Further, as shown in FIG. 6B, the expanded phantom 10C has a plurality of holes 10Ch that detachably holds a dosimeter container 10Ad that houses the radiation dose detector 12, and is made of glass. The radiation dose detector 12 such as a dosimeter can be held. By accommodating the radiation dose detection unit 12 in the plurality of holes 10Ch and then winding it, as shown in FIG. 6A, a substantially cylindrical phantom 10C can be obtained.
 上述したように、巻回型のファントム10Cは、複数のガラス線量計などの放射線量検出部12を、容易に着脱自在に、3次元的に所定位置に所定間隔で配置可能に構成されている。
 尚、ファントム10Cは、上述した実施形態に限られるものではない。例えば、展開したファントム10Cに、ガラス線量計などの放射線量検出部12を直接着脱自在に保持する穴部を設け、その穴部に放射線量検出部12を配置した後、巻回してもよい。
As described above, the wound phantom 10C is configured such that the radiation dose detectors 12 such as a plurality of glass dosimeters can be easily and detachably arranged at predetermined positions in three dimensions. .
The phantom 10C is not limited to the above-described embodiment. For example, the developed phantom 10C may be provided with a hole portion that directly and detachably holds the radiation dose detection unit 12 such as a glass dosimeter, and the radiation dose detection unit 12 may be disposed in the hole portion and then wound.
<2次元放射線量検出器を採用したファントム>
 図7は放射線量検出部12として2次元放射線量検出器12D(イメージングデバイス)を採用したファントム10Dの一例を示す図である。詳細には、図7(a)はファントム10Dの弾性体と2次元放射線量検出器12Dを分離した状態の一例を示す側面断面図、(b)は組立てた状態の一例を示す側面断面図である。
<Phantom with a two-dimensional radiation dose detector>
FIG. 7 is a diagram illustrating an example of a phantom 10D that employs a two-dimensional radiation dose detector 12D (imaging device) as the radiation dose detection unit 12. Specifically, FIG. 7A is a side sectional view showing an example of a state where the elastic body of the phantom 10D and the two-dimensional radiation dose detector 12D are separated, and FIG. 7B is a side sectional view showing an example of the assembled state. is there.
 図7(a)、図7(b)に示したファントム10Dは、円柱形状や直方体などの任意の形状の弾性体で構成された本体部10Daに、板状の2次元放射線量検出器12Dを着脱自在に配置する複数の有底または無底の穴部10Dh(スリット)を有し、各穴部10Dhに2次元放射線量検出器12Dを配置可能に構成されている。詳細には、ファントム10Dは、複数の2次元放射線量検出器12Dを所定の間隔で配置可能に構成されている。 The phantom 10D shown in FIGS. 7A and 7B includes a plate-like two-dimensional radiation dose detector 12D on a main body 10Da formed of an elastic body having an arbitrary shape such as a cylindrical shape or a rectangular parallelepiped. A plurality of bottomed or bottomless holes 10Dh (slits) that are detachably disposed are provided, and a two-dimensional radiation dose detector 12D can be disposed in each hole 10Dh. Specifically, the phantom 10D is configured such that a plurality of two-dimensional radiation dose detectors 12D can be arranged at predetermined intervals.
 2次元放射線量検出器12Dは、線量蓄積型(X線エネルギー蓄積型)である。2次元放射線量検出器は、例えば、光輝尽性蛍光体(BaFX:Eu2+(X=Br、I)など)を樹脂製の板部材に塗布して形成されている。
 この光輝尽性蛍光体は、放射線の照射により、結晶内の電子が準安定状態に励起される。この状態で、所定の波長の光を光輝尽性蛍光体に照射すると、準安定状態に励起された電子が基底状態に遷移し、輝尽性蛍光を発光する。
The two-dimensional radiation dose detector 12D is a dose accumulation type (X-ray energy accumulation type). The two-dimensional radiation dose detector is formed, for example, by applying a photostimulable phosphor (BaFX: Eu 2+ (X = Br, I) or the like) to a resin plate member.
In this photostimulable phosphor, electrons in the crystal are excited to a metastable state by irradiation of radiation. In this state, when the photostimulable phosphor is irradiated with light having a predetermined wavelength, the electrons excited to the metastable state transition to the ground state and emit stimulable fluorescence.
 ファントム線量検出装置30(図1参照)の線量検出部31および位置特定部32は、2次元放射線量検出器12Dに所定の波長の光を照射して、2次元放射線量検出器12Dからの輝尽性蛍光を受光部により検出スキャンすることにより、2次元の放射線量分布を得ることができる。ファントム線量検出装置30は、この検出結果を制御装置に出力する。 The dose detection unit 31 and the position specifying unit 32 of the phantom dose detection device 30 (see FIG. 1) irradiate the two-dimensional radiation dose detector 12D with light having a predetermined wavelength, and the brightness from the two-dimensional radiation dose detector 12D. A two-dimensional radiation dose distribution can be obtained by detecting and scanning the exhaustive fluorescence with the light receiving unit. The phantom dose detection device 30 outputs this detection result to the control device.
 光輝尽性蛍光体を塗布した2次元放射線量検出器12Dに、消去用の所定の波長の光を均一に照射することにより、残像を消去することができ、再度、2次元放射線量検出器12Dを使用することができる。 An afterimage can be erased by uniformly irradiating the two-dimensional radiation dose detector 12D coated with the photostimulable phosphor with light having a predetermined wavelength for erasure, and again the two-dimensional radiation dose detector 12D. Can be used.
 尚、2次元放射線量検出器は上記形態に限られるものではなく、例えば、ラジオグラフィックフィルム、ラジオクロミックフィルム(放射線有感色素線量計フィルム)、板状ガラス線量計などの何れか又はそれらの組合せであってもよい。
 ラジオグラフィックフィルムは、放射線に対する反応原理としてハロゲン化銀の還元作用を利用している。このラジオグラフィックフィルムに対して現像液などを用いて現像処理を行うことにより、2次元放射線量分布を得ることができる。
 ラジオクロミックフィルムは、例えば、放射線照射により発色する物質を添加した樹脂製フィルムであり、放射線に対する反応原理として放射線感受性単量体のラジオクロミック反応を利用している。ラジオクロミックフィルムは、現像液による現像処理が不要であり、RGBカラースキャナ、デンシトメーター(densitometer、光学濃度計)、カメラなどで2次元放射線量分布を読み取ることができる。
Note that the two-dimensional radiation dose detector is not limited to the above-described form. For example, a radiographic film, a radiochromic film (radiation sensitive dye dosimeter film), a plate glass dosimeter, or a combination thereof It may be.
Radiographic films utilize the reducing action of silver halide as the principle of reaction to radiation. A two-dimensional radiation dose distribution can be obtained by developing the radiographic film using a developer or the like.
The radiochromic film is, for example, a resin film to which a substance that develops color upon irradiation is added, and uses a radiochromic reaction of a radiation-sensitive monomer as a reaction principle for radiation. The radiochromic film does not require a developing treatment with a developer, and the two-dimensional radiation dose distribution can be read with an RGB color scanner, a densitometer, a camera, or the like.
<ゲル状体を有するファントム>
 図8はゲル状体を有するファントム10Eの一例を示す概念図である。
 ファントム10Eは、本体部10Eaに変形可能な弾性体11E(11)を有し、その内部に、放射線量検出部12として、ポリマーゲルなどのゲル状体12E(ゲル状線量計)を備える。
<Phantom with gel-like body>
FIG. 8 is a conceptual diagram showing an example of a phantom 10E having a gel-like body.
The phantom 10E has a deformable elastic body 11E (11) in the main body 10Ea, and includes a gel-like body 12E (gel dosimeter) such as a polymer gel as a radiation dose detection unit 12 therein.
 ポリマーゲルは、線量蓄積型(X線エネルギー蓄積型)である。詳細には、ポリマーゲルは、放射線などを吸収した場合、局所的に重合反応を生じることにより、放射線吸収線量に応じてサブミクロンサイズのポリマー微粒子を生成する。このポリマー微粒子は可視光を散乱し、白く濁った固まりとしてゲル内に閉じ込められる。 The polymer gel is a dose storage type (X-ray energy storage type). Specifically, when the polymer gel absorbs radiation or the like, a polymer reaction is locally generated to generate polymer microparticles of submicron size according to the radiation absorption dose. The fine polymer particles scatter visible light and are trapped in the gel as white cloudy masses.
 図8には、放射線がゲル状体を有するファントム10Eに照射され、放射線吸収線量に応じて変質した部分(白濁した部分)10Ebを示している。この場合、ファントム線量検出装置30(図1参照)として、MRI(Magnetic resonance imaging)装置や3次元光学スキャナなどを採用するにより、ファントム線量検出装置30は、ファントム10Eの変質した部分(白濁した部分)の位置と濃度などを検出し、この検出結果を制御装置に出力する。制御装置は、この検出結果に基づいて放射線吸収線量の3次元分布を生成することができる。 FIG. 8 shows a portion (white cloudy portion) 10Eb that has been irradiated with radiation and applied to the phantom 10E having a gel-like body, and has been altered according to the radiation absorbed dose. In this case, by adopting an MRI (Magnetic resonance) imaging device, a three-dimensional optical scanner, or the like as the phantom dose detection device 30 (see FIG. 1), the phantom dose detection device 30 has an altered portion (a cloudy portion) of the phantom 10E. ) Is detected, and the detection result is output to the control device. The control device can generate a three-dimensional distribution of the radiation absorbed dose based on the detection result.
 図9は制御装置の制御部51の機能ブロックの一例を示す図である。
 制御部51は、プログラムを実行することにより、本発明の機能をコンピュータとしての制御装置に実現する。本実施形態では、制御部51は、CT装置駆動制御部511、CT画像生成処理部512、画像変形処理部513(DIR)、治療計画作成処理部514(線量分布作成処理部)、ファントム変形設定処理部515、ファントム内線量特定処理部516、ファントム内軽量位置特定処理部517、合算線量分布生成処理部518、画像変形処理に関する検証処理部519、などを有する。
FIG. 9 is a diagram illustrating an example of functional blocks of the control unit 51 of the control device.
The control part 51 implement | achieves the function of this invention in the control apparatus as a computer by running a program. In the present embodiment, the control unit 51 includes a CT apparatus drive control unit 511, a CT image generation processing unit 512, an image deformation processing unit 513 (DIR), a treatment plan creation processing unit 514 (dose distribution creation processing unit), and a phantom deformation setting. A processing unit 515, an in-phantom dose identification processing unit 516, an in-phantom light-weight position identification processing unit 517, a combined dose distribution generation processing unit 518, a verification processing unit 519 for image deformation processing, and the like.
 CT装置駆動制御部511は、CT装置に関する各構成要素に対する制御を行う。詳細には、CT装置駆動制御部511は、CT装置のX線発生部、X線検出部、回転駆動部、回転位置検出部などの各構成要素を統括的に制御する。 The CT apparatus drive control unit 511 controls each component related to the CT apparatus. Specifically, the CT apparatus drive control unit 511 comprehensively controls each component such as an X-ray generation unit, an X-ray detection unit, a rotation drive unit, and a rotation position detection unit of the CT apparatus.
 CT画像生成処理部512は、X線検出部からの信号や回転位置検出部などからの位置情報を示す信号などに基づいて、画像再構成処理などによりCT画像を生成する。 The CT image generation processing unit 512 generates a CT image by image reconstruction processing or the like based on a signal from the X-ray detection unit, a signal indicating position information from the rotation position detection unit, or the like.
 画像変形処理部513は、DIR(Deformable Image Registration)などの画像変形処理によりCT画像を変形する処理を行う。詳細には、この画像変形処理(DIR)は、例えば、基準となるCT画像の任意の部位に合わせるように、変形元のCT画像を変形させることができる。
 また、この画像変形処理(DIR)は、CT画像と線量分布(治療計画)を重ね合わせた画像を変形する処理を行う。こうすることにより、異なるCT画像で計画された線量分布(治療計画)の合算を行うことができる。
 詳細には、この画像変形処理(DIR)は、例えば、CT画像に対して複数の変形制御点を格子状(メッシュ状)に規定し、この変形制御点の変位量や変位方向を設定し、その設定された変形制御点の変位量や変位方向に基づいて、CT画像の各領域を変形させる処理を行う。
 この画像変形処理(DIR)は、例えば、CT画像に対して複数の変形制御点を格子状(メッシュ状)に規定し、その変形制御点における二つの画像の一致度を類似度を用いて評価し、その類似度が高くなるように最適化アルゴリズムを用いて最適化を繰り返す。その最適化処理により設定された変形制御点における最適な変位量や変位方向を算出し、変形制御点で囲まれる領域の各画素の位置を変位させる等の変形処理を行う。
 画像変形処理(DIR)の画像変形パラメータとしては、各変形制御点間の間隔や位置、類似度(差分自乗和、正規化相互相関法、相互情報量等)、最適化アルゴリズム(Gradient descent,Downhill simplex等) などを挙げることができる。
 また、この画像変形処理(DIR)は、CT画像の関心領域(例えば、擬似病巣等の領域)の各変形制御点間の間隔を、関心領域以外の各変形制御点間の間隔よりも短く設定することで、関心領域に関して高い変形精度となるように処理を行っている。
The image deformation processing unit 513 performs a process of deforming the CT image by image deformation processing such as DIR (Deformable Image Registration). Specifically, in this image deformation process (DIR), for example, the deformation source CT image can be deformed so as to match an arbitrary part of the reference CT image.
The image deformation process (DIR) performs a process of deforming an image obtained by superimposing the CT image and the dose distribution (treatment plan). By doing so, it is possible to add up the dose distributions (treatment plans) planned with different CT images.
Specifically, this image deformation process (DIR), for example, defines a plurality of deformation control points in a lattice shape (mesh shape) for the CT image, sets the displacement amount and displacement direction of the deformation control points, Based on the set displacement amount and displacement direction of the deformation control point, a process of deforming each region of the CT image is performed.
In this image deformation process (DIR), for example, a plurality of deformation control points are defined in a lattice shape (mesh shape) for a CT image, and the degree of coincidence between the two images at the deformation control points is evaluated using the similarity. Then, optimization is repeated using an optimization algorithm so that the degree of similarity becomes high. A deformation process such as calculating an optimum displacement amount and displacement direction at the deformation control point set by the optimization process and displacing the position of each pixel in the region surrounded by the deformation control point is performed.
Image deformation parameters for image deformation processing (DIR) include the distance and position between deformation control points, similarity (difference square sum, normalized cross-correlation method, mutual information, etc.), and optimization algorithms (Gradient descent, Downhill simplex etc.).
In this image deformation process (DIR), the interval between the deformation control points in the region of interest (for example, a region such as a pseudo lesion) of the CT image is set shorter than the interval between the deformation control points other than the region of interest. Thus, processing is performed so as to achieve high deformation accuracy with respect to the region of interest.
 治療計画作成処理部514(線量分布作成処理部)は、医者などのユーザにより入力された放射線治療の方針などの情報に基づいて、放射線治療装置40による放射線照射位置(照射領域)と放射線照射線量を規定する線量分布(治療計画)を生成する。
 また、治療計画作成処理部514(線量分布作成処理部)は、CT画像上に線量分布(治療計画)を重畳させた画像を生成してもよい。
The treatment plan creation processing unit 514 (dose distribution creation processing unit), based on information such as a radiation treatment policy input by a user such as a doctor, a radiation irradiation position (irradiation region) and a radiation irradiation dose by the radiation therapy device 40. A dose distribution (treatment plan) that defines
The treatment plan creation processing unit 514 (dose distribution creation processing unit) may generate an image in which the dose distribution (treatment plan) is superimposed on the CT image.
 ファントム変形設定処理部515は、医者などのユーザにより入力された情報に基づいて、ファントムの変形量などを設定する処理を行う。例えば、ピストン駆動部によりピストンを駆動してファントムの弾性体等を変形させる場合、ファントム変形設定処理部515は、ピストンの変位量などを設定する。また、ファントム変形設定処理部515は、設定された変位量に基づいて、ピストン駆動部によりピストンを駆動する。 The phantom deformation setting processing unit 515 performs a process of setting a phantom deformation amount based on information input by a user such as a doctor. For example, when the piston is driven by the piston driving unit to deform the elastic body of the phantom, the phantom deformation setting processing unit 515 sets the displacement amount of the piston. The phantom deformation setting processing unit 515 drives the piston by the piston driving unit based on the set displacement amount.
 ファントム内線量特定処理部516は、ファントム線量検出装置30の線量検出部31を介して、ファントム内に収容されていた放射線量検出部12で検出された放射線量を特定する処理を行う。 The intra-phantom dose identification processing unit 516 performs a process of identifying the radiation dose detected by the radiation dose detection unit 12 accommodated in the phantom via the dose detection unit 31 of the phantom dose detection device 30.
 ファントム内軽量位置特定処理部517は、ファントム線量検出装置30の位置特定部32を介して、ファントム内に収容されていた放射線量検出部12の位置を特定する処理を行う。 The in-phantom lightweight position specifying processing unit 517 performs processing for specifying the position of the radiation dose detecting unit 12 accommodated in the phantom via the position specifying unit 32 of the phantom dose detecting device 30.
 ファントム内軽量位置特定処理部517は、ファントム線量検出装置30の位置特定部32を介して、ファントム内に収容されていた放射線量検出部12の位置を特定する。上述したように、放射線量検出部12の位置情報の特定方法としては、ファントム10の放射線量検出部12の位置を光学的に特定する、CT装置20のCT画像により特定する、弾性体11の予め規定した位置に放射線量検出部12を配置し、その配置された位置とする、などを挙げることができる。 The in-phantom lightweight position specifying processing unit 517 specifies the position of the radiation dose detecting unit 12 accommodated in the phantom via the position specifying unit 32 of the phantom dose detecting device 30. As described above, as a method for specifying the position information of the radiation dose detection unit 12, the position of the radiation dose detection unit 12 of the phantom 10 is optically specified and specified by the CT image of the CT apparatus 20. For example, the radiation dose detection unit 12 may be arranged at a predetermined position and set as the arranged position.
 合算線量分布生成処理部518は、ファントム変形前のCT画像等に基づいて生成された線量分布を画像変形させ、ファントム変形後のCT画像等に基づいて生成された線量分布を合算して、合算線量分布を生成する処理を行う。
 また、合算線量分布生成処理部518は、ファントム変形前の線量分布(放射線照射による実測値)と、ファントム変形後の線量分布(放射線照射による実測値)を合算して、放射線照射による実測値に基づいた合算線量分布を生成する処理を行う。
The combined dose distribution generation processing unit 518 deforms the dose distribution generated based on the CT image before the phantom deformation, adds up the dose distribution generated based on the CT image after the phantom deformation, and adds up A process for generating a dose distribution is performed.
In addition, the combined dose distribution generation processing unit 518 adds the dose distribution before phantom deformation (actually measured value by radiation irradiation) and the dose distribution after phantom deformation (actually measured value by radiation irradiation) to obtain the actually measured value by radiation irradiation. A process for generating a total combined dose distribution is performed.
 画像変形処理に関する検証処理部519は、動体可変型ファントムの変形前後の線量分布(実測値)と、前記動体可変型ファントムの画像変形処理による画像変形前後の線量分布(計算値)と、に基づいて算出した誤差に基づいて、画像変形処理に関する検証処理を行う。 The verification processing unit 519 related to the image deformation process is based on the dose distribution before and after the deformation of the moving object variable phantom (actual value) and the dose distribution before and after the image deformation by the image deformation process of the moving object variable phantom (calculated value). Based on the error calculated in this way, a verification process related to the image deformation process is performed.
 また、画像変形処理に関する検証処理部519は、比較処理部519aを有する。
 比較処理部は、動体可変型ファントムの変形前後の線量分布(実測値)と、前記動体可変型ファントムの画像変形処理による画像変形前後の線量分布(計算値)と、を比較する処理を行う。
The verification processing unit 519 related to the image deformation process includes a comparison processing unit 519a.
The comparison processing unit performs a process of comparing the dose distribution before and after the deformation of the moving object variable phantom (actually measured value) and the dose distribution before and after the image deformation by the image deforming process of the moving object variable phantom (calculated value).
 また、画像変形処理に関する検証処理部519は、その誤差が規定以内の場合、画像変形処理部513(DIR)の画像変形処理が高精度であると判別し、誤差が規定値より大きい場合、画像変形処理部513(DIR)の画像変形処理の精度が低いと判別する。
 画像変形処理部513(DIR)の画像変形処理の精度が低いと判別した場合、例えば、画像変形処理に関する検証処理部519は、画像変形処理部513(DIR)の画像変形処理に関する変形パラメータを調整する処理を行うことで、画像変形処理の精度を向上させる。
Further, the verification processing unit 519 regarding the image deformation process determines that the image deformation process of the image deformation processing unit 513 (DIR) is highly accurate when the error is within the specified range. It is determined that the accuracy of the image deformation processing of the deformation processing unit 513 (DIR) is low.
When it is determined that the accuracy of the image deformation processing of the image deformation processing unit 513 (DIR) is low, for example, the verification processing unit 519 regarding the image deformation processing adjusts the deformation parameter regarding the image deformation processing of the image deformation processing unit 513 (DIR). By performing the process, the accuracy of the image deformation process is improved.
 次に、ファントムのCT画像および線量分布の一例を説明する。
 図10はファントムのCT画像および線量分布の一例を示す図である。詳細には、図10(a)は膨らんだ状態である変形前のファントムのCT画像および線量分布Pa(治療計画)の一例を示す図であり、図10(b)は収縮した状態であり変形後のファントムのCT画像および線量分布の一例を示す図である。
Next, an example of a phantom CT image and a dose distribution will be described.
FIG. 10 is a diagram showing an example of a phantom CT image and a dose distribution. Specifically, FIG. 10A is a diagram showing an example of a CT image of a phantom before deformation and a dose distribution Pa (treatment plan) in a swelled state, and FIG. 10B is a contracted state and deformed. It is a figure which shows an example of CT image and dose distribution of a later phantom.
 制御装置は、膨らんだ状態である変形前のファントムに対してCT装置によりCTスキャンを行い、図10(a)に示したCT画像を生成し、そのCT画像に基づいて、線量分布Pa(治療計画)を生成し、線量分布Pa(治療計画)をそのCT画像に重ね合わせる処理を行う。図10(a)の略中央黒部分にファントムの弾性体等を示し、擬似病変(擬似病巣)付近に同心円形状の線量分布Pa(治療計画)を示し、図の下部にピストンを示し、図の左右両端部にシリンダ(ケース)を示し、図の上部に通気孔を有する弾性体保持部を示し、弾性体とシリンダの間に水などの流体を示している。
ている。同心円形状の線量分布Pa(治療計画)において、中心部分ほど放射線量が高いことを示す。
The control device performs a CT scan with the CT device on the phantom before deformation in an inflated state, generates the CT image shown in FIG. 10A, and based on the CT image, the dose distribution Pa (treatment (Plan) is generated, and the dose distribution Pa (treatment plan) is superimposed on the CT image. In FIG. 10 (a), the phantom elastic body or the like is shown in the substantially central black part, the concentric dose distribution Pa (treatment plan) is shown near the pseudo lesion (pseudo lesion), the piston is shown in the lower part of the figure, Cylinders (cases) are shown at the left and right ends, an elastic body holding part having a vent hole is shown at the top of the figure, and a fluid such as water is shown between the elastic body and the cylinder.
ing. In the concentric circular dose distribution Pa (treatment plan), the central portion indicates that the radiation dose is higher.
 制御装置は、収縮した状態であり変形後のファントムに対してCT装置によりCTスキャンを行い、図10(b)に示したCT画像を生成し、そのCT画像に基づいて、線量分布Pb(治療計画)を生成し、線量分布Pb(治療計画)をそのCT画像に重ね合わせる処理を行う。この場合、ピストンを図10(b)の上方へ変位させたことにより、ファントムの弾性体が収縮して変形していることを示している。また、擬似病変(擬似病巣)の位置がずれ、同心円形状の線量分布Pa(治療計画)の位置がずれていることを示している。 The control apparatus performs a CT scan on the deformed phantom with the CT apparatus using the CT apparatus to generate a CT image shown in FIG. 10B, and based on the CT image, the dose distribution Pb (treatment) (Plan) is generated, and the dose distribution Pb (treatment plan) is superimposed on the CT image. In this case, it is shown that the elastic body of the phantom is contracted and deformed by displacing the piston upward in FIG. Further, the position of the pseudo lesion (pseudo lesion) is shifted, and the position of the concentric dose distribution Pa (treatment plan) is shifted.
 図11はファントムのCT画像および線量分布の一例を示す図である。詳細には、図11(a)は図10(a)に示した線量分布Paを変形した画像と線量分布の一例を示す図であり、図11(b)はファントムのCT画像と合算線量分布の一例を示す図である。 FIG. 11 shows an example of a phantom CT image and a dose distribution. Specifically, FIG. 11A is a diagram showing an example of an image obtained by modifying the dose distribution Pa shown in FIG. 10A and an example of the dose distribution, and FIG. 11B is a phantom CT image and the combined dose distribution. It is a figure which shows an example.
 制御装置は、図10(a)に示したCT画像および線量分布Paに対して、図10(b)に示したCT画像を基準として弾性体の形状や位置を合わせるように画像変形処理(DIR)を施し、図11(a)に示したように、画像変形処理後のCT画像(変形画像)および線量分布を生成する。
 次に、制御装置は、その図11(a)にした画像変形処理後のCT画像(変形画像)および線量分布と、図10(b)に示したCT画像および線量分布に基づいて、各線量分布を合算処理して合算線量分布を生成する処理を行う。また、制御装置は、合算線量分布とCT画像とを重ね合わせた画像を生成する(図11(b)参照)。
The control device performs image deformation processing (DIR) so that the shape and position of the elastic body are matched to the CT image and dose distribution Pa shown in FIG. 10A based on the CT image shown in FIG. ) To generate a CT image (deformed image) and a dose distribution after the image deformation process, as shown in FIG.
Next, the control device determines each dose based on the CT image (deformed image) and dose distribution after the image deformation process shown in FIG. 11A and the CT image and dose distribution shown in FIG. 10B. A process for generating a combined dose distribution by adding the distributions is performed. In addition, the control device generates an image obtained by superimposing the combined dose distribution and the CT image (see FIG. 11B).
 図12はファントムの膨らんだ状態と収縮した状態のCT画像の差の一例を示す図である。詳細には、図12の上図に横断面を示し、左下図に冠状面を示し、右下図に矢状面を示す。
 図12において、略中心部の黒部分がファントムの収縮した状態の弾性体などに対応し、その黒部分を取り囲むグレー部分がファントムの膨らんだ状態の弾性体などに対応し、黒部分の内側の白部分が各線量分布(治療計画)に対応する。
 図12に示したように、ファントムの変形前後の各CT画像、各線量分布を担持順に重ね合わせるとずれが生じることがわかる。
FIG. 12 is a diagram illustrating an example of a difference between CT images in a phantom inflated state and a contracted state. In detail, the cross section is shown in the upper diagram of FIG. 12, the coronal surface is shown in the lower left diagram, and the sagittal plane is shown in the lower right diagram.
In FIG. 12, the black portion at the substantially central portion corresponds to an elastic body in a contracted state of the phantom, and the gray portion surrounding the black portion corresponds to an elastic body in a swollen state of the phantom, The white part corresponds to each dose distribution (treatment plan).
As shown in FIG. 12, it can be seen that a deviation occurs when the CT images and dose distributions before and after the deformation of the phantom are superimposed in the carrying order.
 図13はファントムの膨らんだ状態のCT画像を画像変形処理(DIR)により画像変形させた画像(変形処理画像)と、ファントムの収縮した状態のCT画像の差の一例を示す図である。詳細には、図13の上図に横断面を示し、左下図に冠状面を示し、右下図に矢状面を示す。
 図13に示すように、基準となるファントムの収縮した状態のCT画像に合うように、画像変形処理(DIR)により、ファントムの膨らんだ状態のCT画像を高精度に画像変形していることがわかる。また、線量分布も同様に高精度に画像変形処理されていることがわかる。
FIG. 13 is a diagram illustrating an example of a difference between an image (deformation processed image) obtained by image deformation of a CT image with the phantom inflated by image deformation processing (DIR) and a CT image with the phantom contracted. In detail, the cross section is shown in the upper diagram of FIG. 13, the coronal surface is shown in the lower left diagram, and the sagittal plane is shown in the lower right diagram.
As shown in FIG. 13, the CT image with the phantom inflated is highly accurately deformed by image deformation processing (DIR) so as to match the CT image with the reference phantom contracted. Recognize. It can also be seen that the dose distribution is similarly subjected to image deformation processing with high accuracy.
<放射線治療システムの動作の一例>
 放射線治療システムの動作の一例を上記図面、および、図14~図17に示した図面を参照しながら説明する。図14~図17は、放射線治療システムの動作の一例を説明するための図である。本実施形態では、例えば、肺がんの治療において、治療の途中で患者の体重が減少して、患者の体形が変化した場合を説明する。
<Example of operation of radiation therapy system>
An example of the operation of the radiation therapy system will be described with reference to the above drawings and the drawings shown in FIGS. 14 to 17 are diagrams for explaining an example of the operation of the radiation therapy system. In the present embodiment, for example, in the treatment of lung cancer, a case will be described in which the patient's body weight is reduced during the treatment and the patient's body shape is changed.
 ステップS11において、医者などが患者に対して種々の検査を行い、その検査結果を基に診断し、放射線治療などの治療の方針を決定する。 In step S11, a doctor or the like performs various examinations on the patient, makes a diagnosis based on the examination results, and determines a treatment policy such as radiation therapy.
 ステップS12において、治療前の患者の体重を測定した結果、Ma[kg]であった。 In step S12, the result of measuring the weight of the patient before treatment was Ma [kg].
 ステップS13において、制御装置50の制御部51は、CT装置20により、その患者の治療開始前のCTスキャンを行い、得られたCT画像を記憶部に記憶する。 In step S13, the control unit 51 of the control device 50 performs a CT scan before starting treatment of the patient using the CT device 20, and stores the obtained CT image in the storage unit.
 ステップS14において、治療中の患者の体重を測定した結果、Mb[kg]であった。本実施形態では、Ma>Mbであり、体重が減少している。 In step S14, the weight of the patient under treatment was measured and found to be Mb [kg]. In the present embodiment, Ma> Mb, and the weight is decreasing.
 ステップS15において、制御装置50の制御部51は、CT装置20により、治療中の患者のCTスキャンを行い、得られたCT画像を記憶部に記憶する。 In step S15, the control unit 51 of the control device 50 performs a CT scan of the patient being treated by the CT device 20, and stores the obtained CT image in the storage unit.
 ステップS16において、制御部51は、患者の治療開始前のCT画像と治療途中のCT画像を用いて、画像変形処理(DIR)により変形画像を生成する。 In step S16, the control unit 51 generates a deformed image by image deformation processing (DIR) using the CT image before the start of treatment of the patient and the CT image being treated.
 ステップS17において、制御部51は、その画像変形処理(DIR)の結果により、患者の体型の変化量、病巣(腫瘍)の変化量、などを算出する。 In step S17, the control unit 51 calculates a change amount of the patient's body shape, a change amount of the lesion (tumor), and the like based on the result of the image deformation process (DIR).
 次に、ステップS21において、動体可変型ファントム10の特性を設定する。詳細には、ファントム10の弾性体11の密度や弾性率などを、患者の治療部位、例えば、肺、頭頸部、骨盤部などの解剖情報に近い弾性体の密度や弾性率に設定する。また、ファントム10の弾性体11に所定のX線吸収係数となる模擬腫瘍(模擬病巣)を配置する。
 そして、ファントム10に放射線量検出部12などを配置し、CT装置20の台部25(寝台)上にファントム10などを配置する。
Next, in step S21, the characteristics of the moving object variable phantom 10 are set. Specifically, the density and elastic modulus of the elastic body 11 of the phantom 10 are set to the density and elastic modulus of the elastic body close to the anatomical information such as the treatment site of the patient, for example, the lung, the head and neck, and the pelvis. Further, a simulated tumor (simulated lesion) having a predetermined X-ray absorption coefficient is arranged on the elastic body 11 of the phantom 10.
Then, the radiation dose detection unit 12 and the like are arranged on the phantom 10, and the phantom 10 and the like are arranged on the base unit 25 (bed) of the CT apparatus 20.
 ステップS22において、制御部51は、ステップS17で算出した患者の体型の変化量、病巣(腫瘍)の変化量などに最も近くなるように、ファントムを変形させるピストンの移動量を設定する(ファントム変形の動き設定)。 In step S22, the control unit 51 sets the movement amount of the piston for deforming the phantom so as to be closest to the change amount of the patient's body shape, the change amount of the lesion (tumor) calculated in step S17 (phantom deformation). Movement setting).
 ステップS23において、制御部51は、治療開始前に撮像した状態(S13)を想定し、ファントム10が膨らんだ状態(変形前)となるように、ピストン駆動部175を駆動制御して、ファントム10のピストン16の位置を調整する。 In step S23, the control unit 51 assumes the state of imaging before the start of treatment (S13), and drives and controls the piston drive unit 175 so that the phantom 10 is in an expanded state (before deformation). The position of the piston 16 is adjusted.
 ステップS24において、制御部51は、ファントムが膨らんだ状態(変形前)で、CT装置20によりCTスキャンを行い、得られたCT画像を記憶部に記憶する(図10(a)参照)。 In step S24, the control unit 51 performs a CT scan with the CT apparatus 20 with the phantom inflated (before deformation), and stores the obtained CT image in the storage unit (see FIG. 10A).
 ステップS25において、制御部51は、ステップS24で得られたCT画像を用いて、CT画像の模擬腫瘍をターゲットとして該当する患者の治療計画(線量分布)と同様に治療計画(線量分布Pa)を作成し、記憶部に記憶する(図10(a)参照)。 In step S25, the control unit 51 uses the CT image obtained in step S24 to generate a treatment plan (dose distribution Pa) in the same manner as the treatment plan (dose distribution) of the corresponding patient with the simulated tumor in the CT image as a target. It is created and stored in the storage unit (see FIG. 10A).
 ステップS26において、治療途中に体型変化があり、再度、治療計画用CTを撮影した状態を想定し(ステップS15)、制御部51は、ファントム10が収縮した状態となるように、ピストン駆動部175を駆動制御し、ステップS22で設定した移動量だけ、ファントム10のピストン16の位置を調整する。ファントム10の弾性体や模擬腫瘍は、ピストンによる力で変形する。 In step S26, it is assumed that there is a change in body shape during the treatment and the CT for treatment planning is taken again (step S15), and the control unit 51 causes the piston driving unit 175 to be in a contracted state of the phantom 10. And the position of the piston 16 of the phantom 10 is adjusted by the amount of movement set in step S22. The elastic body and simulated tumor of the phantom 10 are deformed by the force of the piston.
 ステップS27において、制御部51は、ファントムが収縮した状態(変形後)で、CT装置20によりCTスキャンを行い、得られたCT画像を記憶部に記憶する(図10(b)参照)。 In step S27, the control unit 51 performs a CT scan with the CT apparatus 20 in a state where the phantom is contracted (after deformation), and stores the obtained CT image in the storage unit (see FIG. 10B).
 ステップS28において、制御部51は、ステップS27で得られたCT画像を用いて、CT画像の模擬腫瘍をターゲットとして治療計画(線量分布Pb)を作成し、記憶部に記憶する(図10(b)参照)。 In step S28, the control unit 51 creates a treatment plan (dose distribution Pb) using the CT image obtained in step S27 as a target for the simulated tumor of the CT image, and stores it in the storage unit (FIG. 10B). )reference).
 ステップS31において、制御部51は、2つの線量分布Pa、Pbの合算を算出するために、ファントム変形前後の2つのCT画像と線量分布に基づいて、ファントム変形後のCT画像を基準としてその各部位に合うように、変形前のCT画像およびそのCT画像で作成された線量分布Paを(図10(a)参照)を画像変形処理(DIR)により画像変形し、線量分布Paを画像変形した線量分布(画像)、および画像変形したCT画像を生成し(ステップS32)、記憶部に記憶する(図11(a)参照)。 In step S31, in order to calculate the sum of the two dose distributions Pa and Pb, the control unit 51 uses the CT image after the phantom deformation as a reference based on the two CT images before and after the phantom deformation and the dose distribution. The CT image before deformation and the dose distribution Pa created by the CT image (see FIG. 10A) are deformed by image deformation processing (DIR) so as to match the region, and the dose distribution Pa is deformed. A dose distribution (image) and a deformed CT image are generated (step S32) and stored in the storage unit (see FIG. 11A).
 ステップS33において、制御部51は、ステップS28で得られた線量分布と、ステップS31で得られた線量分布を合算処理し、画像変形処理による計算値である合算線量分布(図11(b)参照)を生成して記憶部に記憶し、CT画像上の線量分布として表示部に表示する処理を行う(ステップS34)。そして、制御部51は、合算線量分布に基づいて、腫瘍への線量および周辺の正常組織の線量を評価する。 In step S33, the control unit 51 adds up the dose distribution obtained in step S28 and the dose distribution obtained in step S31, and adds up the dose distribution obtained by the image transformation process (see FIG. 11B). ) Is generated, stored in the storage unit, and displayed as a dose distribution on the CT image on the display unit (step S34). Then, the control unit 51 evaluates the dose to the tumor and the dose of the surrounding normal tissue based on the combined dose distribution.
 上述したように、本発明の実施形態に係る動体可変型ファントム10では、ファントム変形前と変形後のファントム内の線量分布を実際に測定することができる。その場合の放射線治療システムの動作の一例を説明する。
 図16に示したステップS21、S22、S23、S26は、上述した動作と同様であるので説明を省略する。
 ステップS40において、制御部51は、ファントム10が膨らんだ状態(変形前)で、放射線治療装置40により、ステップS24、S25で得られたCT画像および治療計画(線量分布Pa)に基づいて、所定の放射線照射位置に所定の放射線照射線量でX線などの放射線を照射する処理を行う。
As described above, in the moving body variable phantom 10 according to the embodiment of the present invention, the dose distribution in the phantom before and after the phantom deformation can be actually measured. An example of the operation of the radiotherapy system in that case will be described.
Steps S21, S22, S23, and S26 shown in FIG. 16 are the same as the above-described operations, and thus description thereof is omitted.
In step S40, the control unit 51 performs a predetermined operation based on the CT image and the treatment plan (dose distribution Pa) obtained in steps S24 and S25 by the radiotherapy apparatus 40 with the phantom 10 inflated (before deformation). A process of irradiating radiation such as X-rays at a predetermined radiation irradiation dose is performed.
 ステップS41において、制御部51は、例えば、ファントムに設けられた放射線量検出部12(線量計など)による放射線量を、ファントム線量検出装置30の線量検出部31により測定する。 In step S41, for example, the control unit 51 measures the radiation dose by the radiation dose detection unit 12 (such as a dosimeter) provided in the phantom by the dose detection unit 31 of the phantom dose detection device 30.
 ステップS42において、制御部51は、ファントムに設けられた放射線量検出部12(線量計など)の位置情報を、ファントム線量検出装置30の位置特定部32により特定する。 In step S42, the control unit 51 specifies the position information of the radiation dose detection unit 12 (such as a dosimeter) provided in the phantom by the position specification unit 32 of the phantom dose detection device 30.
 ステップS41と、ステップS42の一具体例を説明する。
 例えば、図3、図4、図5に示したファントムを用いた場合、多層構造のファントムの各構成要素を分解し、ファントム内に配置した線量蓄積型の複数の放射線量検出部12を取り出し、ファントム線量検出装置30の線量検出部31により各放射線量検出部12の線量を測定する。ファントム内の各放射線量検出部12の位置情報は、ファントムの弾性体の所定位置に配置された放射線量検出部12やCT画像により特定することができる。ファントム線量検出装置30の位置特定部32は、この位置情報を取得する。
 上記測定後、各放射線量検出部12をファントムの弾性体の所定位置に配置する。
A specific example of step S41 and step S42 will be described.
For example, when the phantom shown in FIGS. 3, 4, and 5 is used, each component of the phantom having a multilayer structure is disassembled, and a plurality of dose accumulation type radiation dose detectors 12 arranged in the phantom are taken out, The dose of each radiation dose detector 12 is measured by the dose detector 31 of the phantom dose detector 30. The position information of each radiation dose detection unit 12 in the phantom can be specified by the radiation dose detection unit 12 arranged at a predetermined position of the elastic body of the phantom or a CT image. The position specifying unit 32 of the phantom dose detection device 30 acquires this position information.
After the measurement, each radiation dose detection unit 12 is disposed at a predetermined position of the phantom elastic body.
 また、例えば、図6に示したファントムを用いた場合、巻回したファントムを展開し、ファントム内に配置した線量蓄積型の複数の放射線量検出部12を取り出し、ファントム線量検出装置30の線量検出部31により各放射線量検出部12の線量を測定する。その測定後、各放射線量検出部12をファントムの弾性体の所定位置に配置して、巻回した状態とする。位置情報については上記例と同様なので説明を省略する。 Further, for example, when the phantom shown in FIG. 6 is used, the wound phantom is expanded, and a plurality of dose accumulation type radiation dose detectors 12 arranged in the phantom are taken out, and the dose detection of the phantom dose detector 30 is performed. The dose of each radiation dose detection unit 12 is measured by the unit 31. After the measurement, each radiation dose detector 12 is placed at a predetermined position on the elastic body of the phantom and is in a wound state. Since the position information is the same as in the above example, the description is omitted.
 図7に示したファントムを用いた場合、ファントムから放射線量検出部12としての2次元放射線量検出器を取り出し、ファントム線量検出装置30の線量検出部31により各放射線量検出部12の線量を測定する。2次元放射線量検出器により放射線吸収に関する2次元分布が得られるので、その分布やCT画像などに基づいて位置情報を特定する。上記測定後、各2次元放射線量検出器12Dをファントムの弾性体の所定位置に配置する。 When the phantom shown in FIG. 7 is used, the two-dimensional radiation dose detector as the radiation dose detector 12 is taken out from the phantom, and the dose of each radiation dose detector 12 is measured by the dose detector 31 of the phantom dose detector 30. To do. Since a two-dimensional distribution related to radiation absorption is obtained by the two-dimensional radiation dose detector, position information is specified based on the distribution, CT image, and the like. After the measurement, each two-dimensional radiation dose detector 12D is arranged at a predetermined position of the phantom elastic body.
 図8に示したゲル状線量計を有するファントムを用いた場合、ファントム線量検出装置30(図1参照)としてMRI装置や3次元光学スキャナなどで、ゲル状体の変質した部分(白濁した部分)などを測定し、放射線吸収線量および3次元分布(位置情報)を得ることができる。 When the phantom having the gel-like dosimeter shown in FIG. 8 is used, an altered portion (white cloudy portion) of the gel-like body using an MRI apparatus or a three-dimensional optical scanner as the phantom dose detector 30 (see FIG. 1). Etc. can be measured to obtain a radiation absorbed dose and a three-dimensional distribution (positional information).
 ステップS43において、制御部51は、ステップS40、S42で得られた放射線量および位置情報に基づいて線量分布Qaを生成する。この場合、制御部51は、必要に応じてステップS24のCT画像上に線量分布Qaを重ね合わせる処理を行う。 In step S43, the control unit 51 generates a dose distribution Qa based on the radiation dose and position information obtained in steps S40 and S42. In this case, the control unit 51 performs a process of superimposing the dose distribution Qa on the CT image in step S24 as necessary.
 ステップS44において、制御部51は、ファントム10が収縮した状態(変形後)で、放射線治療装置40により、ステップS27、S28で得られたCT画像および治療計画(線量分布Pb)に基づいて、所定の放射線照射位置に所定の放射線照射線量でX線などの放射線を照射する処理を行う。 In step S44, the control unit 51 performs predetermined processing based on the CT image and the treatment plan (dose distribution Pb) obtained in steps S27 and S28 by the radiation therapy apparatus 40 in a state where the phantom 10 is contracted (after deformation). A process of irradiating radiation such as X-rays at a predetermined radiation irradiation dose is performed.
 ステップS45において、制御部51は、例えば、ファントムに設けられた放射線量検出部12(線量計など)による放射線量を、ファントム線量検出装置30の線量検出部31により測定する。 In step S45, for example, the control unit 51 measures the radiation dose by the radiation dose detection unit 12 (such as a dosimeter) provided in the phantom by the dose detection unit 31 of the phantom dose detection device 30.
 ステップS46において、制御部51は、ファントムに設けられた放射線量検出部12(線量計など)の位置情報を、ファントム線量検出装置30の位置特定部32により特定する。 In step S46, the control unit 51 specifies the position information of the radiation dose detection unit 12 (such as a dosimeter) provided in the phantom by the position specifying unit 32 of the phantom dose detection device 30.
 ステップS47において、制御部51は、ステップS45、S46で得られた放射線量および位置情報に基づいて線量分布Qbを生成する。この場合、制御部51は、必要に応じてステップS27のCT画像上に線量分布Qbを重ね合わせる処理を行う。 In step S47, the control unit 51 generates a dose distribution Qb based on the radiation dose and the position information obtained in steps S45 and S46. In this case, the control unit 51 performs a process of superimposing the dose distribution Qb on the CT image in step S27 as necessary.
 尚、ステップS40で線量蓄積型(X線エネルギー蓄積型)の放射線量検出部に、放射線照射した後、それを再利用して、ステップS44で、その放射線量検出部に放射線を照射した場合、ステップS47で合算線量分布を得ることができる。つまり、この場合、ステップS48の合算処理を行うことなく、ステップS47の線量分布を合算線量分布とする(ステップS49)。 In addition, after irradiating the dose accumulation type (X-ray energy accumulation type) radiation dose detection unit in step S40 and reusing it, in step S44, the radiation dose detection unit is irradiated with radiation. In step S47, a combined dose distribution can be obtained. That is, in this case, the dose distribution in step S47 is set as the total dose distribution without performing the summation process in step S48 (step S49).
 例えば、ステップS40で、線量蓄積型(X線エネルギー蓄積型)の放射線量検出部に放射線照射した後、それを再利用せずに、新しい放射線量検出部を採用した場合、ステップS48の処理を行うことを要する。
 ステップS48において、制御部51は、線量分布Qaと線量分布Qbの合算処理を行い、合算線量分布を生成する(ステップS49)。
For example, in step S40, if a dose storage type (X-ray energy storage type) radiation dose detection unit is irradiated with radiation and then a new radiation dose detection unit is adopted without being reused, the process of step S48 is performed. It needs to be done.
In step S48, the control unit 51 performs a summation process of the dose distribution Qa and the dose distribution Qb to generate a summed dose distribution (step S49).
 このステップS49で得られた合算線量分布は、ファントム内の線量計などの放射線量検出部による計測値に基づいて生成されている。 The combined dose distribution obtained in step S49 is generated based on a measurement value by a radiation dose detection unit such as a dosimeter in the phantom.
 次に、ステップS51において、制御部51は、ステップS34で得られた、画像変形処理による計算値に基づいて生成された合算線量分布と、ステップS49で得られた、ファントム内の線量計などの放射線量検出部による計測値に基づいて生成された合算線量分布とを比較する処理を行うことで、画像変形処理の精度を検証する。 Next, in step S51, the control unit 51 includes the combined dose distribution generated based on the calculated value obtained by the image deformation process obtained in step S34, and the dosimeter in the phantom obtained in step S49. The accuracy of the image deformation process is verified by performing a process of comparing the combined dose distribution generated based on the measurement value by the radiation dose detection unit.
 ステップS52において、制御部51は、上記比較処理の結果に基づいて、画像変形処理の誤差を算出する処理を行う。 In step S52, the control unit 51 performs a process of calculating an error of the image deformation process based on the result of the comparison process.
 ステップS53において、制御部51は、その誤差が規定値以内(例えば、5%以内)の場合、ステップS56の処理に進み、それ以外の場合、ステップS54の処理に進む。 In step S53, if the error is within a specified value (for example, within 5%), the control unit 51 proceeds to the process of step S56, and otherwise proceeds to the process of step S54.
 ステップS54において、制御部51は、誤差が大きいと判別し、画像変形処理の画像変形パラメータや変形に用いる関心領域を再度調整し、最適な画像変形パラメータと関心領域を規定する処理などを行う。 In step S54, the control unit 51 determines that the error is large, adjusts again the image deformation parameter of the image deformation process and the region of interest used for the deformation, and performs a process of defining the optimum image deformation parameter and the region of interest.
 ステップS55において、制御部51は、ステップS54で決定した画像変形パラメータ(パラメータ)を設定し、ステップS31の画像変形処理を再実行し、ステップS32、S34、S51、S52、S53の処理を行う。 In step S55, the control unit 51 sets the image deformation parameter (parameter) determined in step S54, re-executes the image deformation process in step S31, and performs the processes in steps S32, S34, S51, S52, and S53.
 ステップS56において、制御部51は、ステップS52の誤差が規定値以内である場合に、画像変形処理部513(DIR)の画像変形処理が高精度であると判定する。 In step S56, the control unit 51 determines that the image deformation processing of the image deformation processing unit 513 (DIR) is highly accurate when the error in step S52 is within a specified value.
 ステップS57において、制御部51は、ステップS34で生成した治療計画(合算線量分布)に基づいて、患者への線量評価を行い、放射線治療装置40などによる放射線治療を行う。 In step S57, the control unit 51 performs dose evaluation for the patient based on the treatment plan (total dose distribution) generated in step S34, and performs radiation therapy using the radiation therapy apparatus 40 or the like.
 以上、説明したように、本発明の実施形態に係る放射線照射装置用の動体可変型ファントムは、変形可能な弾性体11と、弾性体11に設けられた放射線量検出部12と、を有する。
 このため、変形前後のファントム内の線量分布(実測値)を高精度に検出可能な動体可変型ファントムを提供することができる。
 また、変形前後のファントム内の放射線量検出部の位置を高精度に取得することができるファントムを提供することができる。
 また、本実施形態では、変形前後のファントム内の放射線量検出部の位置および線量分布(実測値)を容易に取得可能なファントムを提供することができる。
 このファントムを用いることで、画像変形処理によって算出された合算線量分布の精度評価を行うことができ、高精度な放射線治療計画を実現させることができる。
As described above, the moving body variable phantom for the radiation irradiation apparatus according to the embodiment of the present invention includes the deformable elastic body 11 and the radiation dose detection unit 12 provided on the elastic body 11.
Therefore, it is possible to provide a moving body variable phantom capable of detecting a dose distribution (actually measured value) in the phantom before and after deformation with high accuracy.
Moreover, the phantom which can acquire the position of the radiation dose detection part in the phantom before and behind a deformation | transformation with high precision can be provided.
Moreover, in this embodiment, the phantom which can acquire easily the position and dose distribution (actual value) of the radiation dose detection part in the phantom before and behind a deformation | transformation can be provided.
By using this phantom, it is possible to evaluate the accuracy of the combined dose distribution calculated by the image deformation process, and to realize a highly accurate radiation treatment plan.
 また、本発明の実施形態に係る動体可変型ファントムの弾性体11は、収縮自在な材料で形成されている。このため、弾性体を容易に変形可能なファントムを提供することができる。 Further, the elastic body 11 of the moving body variable phantom according to the embodiment of the present invention is formed of a shrinkable material. For this reason, the phantom which can deform | transform an elastic body easily can be provided.
 また、本発明の実施形態に係る動体可変型ファントムの弾性体は、分解および組立て自在な多層構造に構成されている(例えば、図3、図4、図5等参照)。
 このため、多層構造の弾性体に複数の放射線量検出部を3次元的に容易に配置可能なファントムを提供することができる。
 例えば、動体可変型ファントムに複数回、放射線を照射する場合であっても、放射線量検出部をファントムに容易に着脱することができる。
複数の小型の放射線量検出部を配置する構造であり、従来困難であった変形前と変形後の線量を容易に測定することができる。また、放射線量検出部を配置させた状態でも弾性体を変形させることができ、変形前と変形後の合算線量を検出器を装着した状態で測定することができる。
In addition, the elastic body of the variable moving phantom according to the embodiment of the present invention has a multilayer structure that can be disassembled and assembled (see, for example, FIGS. 3, 4, and 5).
For this reason, the phantom which can arrange | position a some radiation dose detection part to the elastic body of a multilayer structure easily three-dimensionally can be provided.
For example, even when radiation is applied to the moving object variable phantom a plurality of times, the radiation dose detection unit can be easily attached to and detached from the phantom.
It has a structure in which a plurality of small radiation dose detection units are arranged, and doses before and after deformation, which has been difficult in the past, can be easily measured. In addition, the elastic body can be deformed even when the radiation dose detection unit is arranged, and the combined dose before and after the deformation can be measured with the detector attached.
 また、本発明の実施形態に係る動体可変型ファントムの弾性体は、孔部を有する部材と該孔部に収容自在な部材で構成された入れ子構造となっている(例えば、図3、図4、図5等参照)。詳細には、入れ子構造の弾性体の孔部を有する部材は円筒形状または半球形状に形成されている。通常の放射線量検出器に使用する電離箱線量計(検出器にケーブルや電気回路が含まれている)では検出器が小型ではなく、またケーブル等もあるため検出器を装着した状態で弾性体を変形させることは困難であった。しかし、この弾性体は弾性体内に3次元的に複数の小型放射線量検出部を容易に配置可能であり、弾性体内の3次元線量分布を測定することが可能である。また、測定後、容易に放射線量検出部を取り外すことができる。入れ子構造は、円筒形状以外にも半球形状にも使用できるため、腫瘍を模擬した弾性体の3次元線量分布測定に利用できる。 Moreover, the elastic body of the moving body variable phantom according to the embodiment of the present invention has a nested structure including a member having a hole and a member that can be accommodated in the hole (for example, FIGS. 3 and 4). , See FIG. Specifically, the member having the hole portion of the elastic body of the nested structure is formed in a cylindrical shape or a hemispherical shape. An ionization chamber dosimeter used for a normal radiation dose detector (a cable and an electric circuit are included in the detector) is not a small detector, and there are cables, etc., so there is an elastic body with the detector attached. It was difficult to deform. However, this elastic body can easily arrange a plurality of small radiation dose detection units three-dimensionally in the elastic body, and can measure a three-dimensional dose distribution in the elastic body. Moreover, a radiation dose detection part can be easily removed after a measurement. Since the nested structure can be used not only in a cylindrical shape but also in a hemispherical shape, it can be used for three-dimensional dose distribution measurement of an elastic body simulating a tumor.
 また、本発明の実施形態に係る動体可変型ファントムの弾性体は、ロール状に巻回自在に構成されている(図6参照)。この場合、弾性体を板状に展開した状態で、放射線量検出部を弾性体に容易に設置することができ、ロール状に巻回することで、3次元的に複数の放射線量検出部を容易に配置することができ、測定後、弾性体を板状に展開することで、容易に放射線量検出部を取り外すことができる。ロール状の場合も入れ子構造の場合と同様に、弾性体内の3次元的に複数の小型放射線検出部を容易に配置可能であり、弾性体内の3次元線量分布を測定することができる。さらにロール状の場合、より小型放射線検出部の設置および取り外しが容易で、効率よく測定を行うことができる。 Further, the elastic body of the moving body variable phantom according to the embodiment of the present invention is configured to be wound in a roll shape (see FIG. 6). In this case, the radiation dose detector can be easily installed on the elastic body in a state where the elastic body is expanded in a plate shape, and a plurality of radiation dose detectors are three-dimensionally wound by winding in a roll shape. The radiation dose detector can be easily removed by deploying the elastic body into a plate shape after measurement. In the case of a roll, as in the case of the nested structure, a plurality of small radiation detection units can be easily arranged three-dimensionally in the elastic body, and the three-dimensional dose distribution in the elastic body can be measured. Furthermore, in the case of a roll, it is easier to install and remove a small radiation detection unit, and the measurement can be performed efficiently.
 また、本発明の実施形態に係る動体可変型ファントムの弾性体は、放射線量検出部を着脱自在に保持する穴部を有する(例えば、図4、図5等参照)。
 このため、ファントムの弾性体に放射線量検出部を容易に着脱することができる。
In addition, the elastic body of the variable moving phantom according to the embodiment of the present invention has a hole portion that detachably holds the radiation dose detection unit (see, for example, FIGS. 4 and 5).
For this reason, a radiation dose detection part can be easily attached or detached to the elastic body of a phantom.
 また、本発明の実施形態では、放射線量検出部が線量蓄積型(被曝線量蓄積型)である。
 このため、複数回の放射線照射を線量蓄積型の放射線量検出部により検出することで、ファントム内の合算線量分布を容易に得ることができるファントムを提供することができる。
In the embodiment of the present invention, the radiation dose detector is a dose accumulation type (exposure dose accumulation type).
For this reason, the phantom which can obtain the total dose distribution in a phantom easily can be provided by detecting multiple times of radiation irradiation by a dose accumulation type radiation dose detection part.
 また、放射線量検出部として複数のガラス線量計を採用したファントムの場合、簡単な構成で、ファントム内の放射線量を高精度に検出することができる。
 比較例として、通常の放射線量検出器に使用する電離箱線量計(検出器にケーブルや電気回路が含まれている)では検出器が小型ではなく、またケーブル等もあるため検出器を装着した状態で弾性体を変形させることは困難であった。
 本発明の実施形態で用いたガラス線量計は、例えば、直径1.5mm、長さ12mmの棒状素子で線量計としては最も小型の線量計の一つであり、このような小型の線量計を複数使用することでファントム内部の3次元線量分布を高精度に測定できる。
Moreover, in the case of the phantom which employ | adopted the several glass dosimeter as a radiation dose detection part, the radiation dose in a phantom can be detected with high precision by simple structure.
As a comparative example, an ionization chamber dosimeter used for a normal radiation dose detector (a cable and an electric circuit are included in the detector) has a detector that is not small and has a cable. It was difficult to deform the elastic body in the state.
The glass dosimeter used in the embodiment of the present invention is, for example, a rod-shaped element having a diameter of 1.5 mm and a length of 12 mm, and is one of the smallest dosimeters. By using a plurality, the three-dimensional dose distribution inside the phantom can be measured with high accuracy.
 また、複数の小型のガラス線量計を変形可能な弾性体に設けたファントムの場合、ファントムが変形した場合であっても、ファントム内の放射線量を高精度に検出することができる。 Further, in the case of a phantom in which a plurality of small glass dosimeters are provided on a deformable elastic body, the radiation dose in the phantom can be detected with high accuracy even when the phantom is deformed.
 また、ファントムの変形と連動する樹脂製(アクリル製など)の微小球体(ビーズ)、ガラス線量計(ガラス線量素子)の位置変化の情報をCT装置によるCT画像でモニターし、ファントム変形前後の線量計により計測される線量値の合算によって、組織の線量分布を正確に評価することができる。
 詳細には、ガラス線量計(ガラス線量素子)は密度が2.61g/cm3のガラスで作成されており、他の放射線検出器と異なり金属製の構造ではないため、CT画像上で金属アーチファクト(虚像)が発生しないので、ガラス線量計(ガラス線量素子)の位置を正確に特定することができる。
In addition, information on positional changes of resin-made microspheres (beads) and glass dosimeters (glass dose elements) linked to phantom deformation is monitored with CT images from a CT device, and dose before and after phantom deformation. The dose distribution of the tissue can be accurately evaluated by adding the dose values measured by the meter.
Specifically, glass dosimeters (glass dose elements) are made of glass with a density of 2.61 g / cm 3 and, unlike other radiation detectors, are not metal structures, so metal artifacts on CT images Since (virtual image) does not occur, the position of the glass dosimeter (glass dose element) can be accurately specified.
 また、本実施形態によれば、規定の放射線吸収係数の模擬腫瘍(模擬病巣)を有する模擬臓器として、本発明の実施形態に係る動体可変型ファントムを採用することで、治療対象の臓器に対して特異的な放射線治療の計画線量分布の算出することを可能である。
 つまり、治療対象の臓器特異的な放射線治療の計画線量分布を容易に算出可能なファントムを提供することができる。
In addition, according to the present embodiment, by adopting the moving body variable phantom according to the embodiment of the present invention as a simulated organ having a simulated tumor (simulated lesion) having a prescribed radiation absorption coefficient, It is possible to calculate the planned dose distribution of specific radiotherapy.
That is, it is possible to provide a phantom that can easily calculate the planned dose distribution of radiotherapy specific to the organ to be treated.
 また、弾性体に、放射線量検出部として複数の2次元放射線量検出器(イメージングプレート等)を設けたファントムの場合、詳細には、弾性体が所定方向に並んで配置された複数のスリット(複数の有底または無底の穴部)を有し、2次元放射線量検出器がスリットに着脱自在に配置される構造となっている(例えば、図7参照)。このスリット構造にすることにより、複数の2次元放射線量検出器で検出された2次元放射線量分布に基づいて、容易に3次元放射線量分布を算出することができる。また、スリット構造であるため2次元放射線検出器の取り外しが容易である。変形方向に垂直に2次元放射線量検出器を配置させることで、ファントムを変形させながら測定することが可能であり、ファントムの変形前後の線量を正確に測定することができる。 In addition, in the case of a phantom in which a plurality of two-dimensional radiation dose detectors (imaging plates or the like) are provided as a radiation dose detection unit on an elastic body, in detail, a plurality of slits ( A two-dimensional radiation dose detector is detachably disposed in the slit (see, for example, FIG. 7). With this slit structure, a three-dimensional radiation dose distribution can be easily calculated based on two-dimensional radiation dose distributions detected by a plurality of two-dimensional radiation dose detectors. Moreover, since it has a slit structure, it is easy to remove the two-dimensional radiation detector. By arranging the two-dimensional radiation dose detector perpendicularly to the deformation direction, it is possible to measure while deforming the phantom, and it is possible to accurately measure the dose before and after the deformation of the phantom.
 また、変形可能な弾性体により保持されたゲル状線量計(ポリマーゲル線量計など)を有するファントムの場合、ファントムは弾性体内にゲル状線量計を保持する構造となっている。ゲル状線量計は3次元放射線量測定器であり、放射線照射後、MRI装置や光学的CT装置を用いることで、容易にファントム中の3次元放射線量分布を検出することができる。ガラス線量計や2次元放射線測定器を複数使用して算出した3次元線量分布よりもより高精度にファントム内の3次元線量分布を測定することができる。また、ゲル状の構造を有しているため、ファントムを変形させた場合もその変形に合わせて線量計の形も変形させることができ、ファントムを変形させながら測定することができ、ファントムの変形前後の3次元線量分布を高精度に測定することができる。 In the case of a phantom having a gel dosimeter (such as a polymer gel dosimeter) held by a deformable elastic body, the phantom has a structure that holds the gel dosimeter in the elastic body. The gel-type dosimeter is a three-dimensional radiation dose measuring device, and the three-dimensional radiation dose distribution in the phantom can be easily detected by using an MRI apparatus or an optical CT apparatus after irradiation. The three-dimensional dose distribution in the phantom can be measured with higher accuracy than the three-dimensional dose distribution calculated using a plurality of glass dosimeters and two-dimensional radiation measuring instruments. In addition, since it has a gel-like structure, even when the phantom is deformed, the shape of the dosimeter can be deformed in accordance with the deformation, and measurement can be performed while the phantom is deformed. The three-dimensional dose distribution before and after can be measured with high accuracy.
 また、弾性体はスポンジ状に形成され、ゲル状線量計を吸収保持した構造としてもよい。例えば、上記のゲル状線量計を弾性体の中に保持させる方法では、ファントムの変形に対してゲル状線量計が上手く変形されない場合もある。一方、弾性体がスポンジ状に形成され、ゲル状線量計を吸収保持した構造では、ゲル状線量計をスポンジに吸収させることで、弾性体に変形に合わせてゲル状線量計が上手く変形されるため、弾性体を大きく変形させることができる。また、ポリマーゲルをスポンジに吸収保持した構造とすることで、運搬時など容易に取り扱い可能である。 Also, the elastic body may be formed in a sponge shape and have a structure in which a gel dosimeter is absorbed and held. For example, in the method of holding the gel dosimeter in an elastic body, the gel dosimeter may not be deformed well with respect to the deformation of the phantom. On the other hand, in a structure in which the elastic body is formed in a sponge shape and the gel dosimeter is absorbed and held, the gel dosimeter is successfully deformed according to the deformation of the elastic body by absorbing the gel dosimeter into the sponge. Therefore, the elastic body can be greatly deformed. Further, the structure in which the polymer gel is absorbed and held in the sponge can be easily handled during transportation.
 また、本発明の実施形態に係る動体可変型ファントムを用いた放射線治療計画作成方法は、放射線治療の段階に応じて、該動体可変型ファントムの弾性体の特性を設定する工程(S21)と、動体可変型ファントムを用いて放射線量を検出し、検出結果に基づいて放射線照射位置と放射線照射線量を規定する放射線治療計画(線量分布)を作成する工程(S22~S49)と、を有する。このため、高精度な放射線治療計画(線量分布)を作成可能な動体可変型ファントムを用いた放射線治療計画作成方法を提供することができる。
 この場合、動体可変型ファントムを用いることにより、CT画像の画像変形処理に依らずに、放射線治療の計画線量分布を高精度に算出することができる。
In addition, the radiation treatment plan creation method using the moving body variable phantom according to the embodiment of the present invention includes the step of setting the characteristics of the elastic body of the moving body variable phantom according to the stage of radiation therapy (S21), And a step (S22 to S49) of detecting a radiation dose using a moving body variable phantom and creating a radiation treatment plan (dose distribution) for defining a radiation irradiation position and a radiation irradiation dose based on the detection result. Therefore, it is possible to provide a radiation treatment plan creation method using a moving object variable phantom capable of creating a highly accurate radiation treatment plan (dose distribution).
In this case, by using the moving object variable phantom, it is possible to calculate the radiation therapy planned dose distribution with high accuracy without depending on the image deformation processing of the CT image.
 また、本発明の実施形態に係るプログラムは、コンピュータである制御装置に実行させるプログラムであって、動体可変型ファントムを用いて、弾性体の変形前および変形後の該ファントムのCT画像による線量分布の一方に画像変形処理(DIR)を施し他方に合算して生成した第1の合算線量分布(S34参照)と、前記弾性体の変形前および変形後のファントムに設けられた放射線量検出部(照射線量検出部)による照射線量(放射線量)の検出結果に応じて生成した第2の合算線量分布(S49参照)との誤差を算出するステップ(S52)と、誤差に基づいて画像変形処理(DIR)に関する変形パラメータを規定するステップ(S54)とを有する。
 このため、画像変形処理に関する画像変形パラメータを容易に高精度に調整可能なプログラムを提供することができる。
Further, the program according to the embodiment of the present invention is a program that is executed by a control device that is a computer, and uses a moving body variable phantom, and dose distribution based on CT images of the phantom before and after deformation of the elastic body. A first combined dose distribution (see S34) generated by applying image deformation processing (DIR) to one of the two and adding the other to the other, and a radiation dose detection unit provided in the phantom before and after the deformation of the elastic body ( A step (S52) of calculating an error from the second combined dose distribution (see S49) generated according to the detection result of the irradiation dose (radiation dose) by the irradiation dose detection unit), and an image transformation process ( (S54) for defining deformation parameters relating to DIR).
Therefore, it is possible to provide a program that can easily adjust the image deformation parameters related to the image deformation processing with high accuracy.
 また、放射線治療システムに用いられるCT装置や放射線治療装置、制御装置(コンピュータ)などは、放射線治療毎にファントム等を用いて正常に動作するかチェックが行われる。本発明の実施形態に係る動体可変型ファントムを用いることにより、各装置が正常に動作するかのチェックや、各種パラメータの調整を高精度に短時間に容易に行うことができる。 Also, a CT device, a radiation treatment device, a control device (computer), etc. used in the radiation treatment system are checked for normal operation using a phantom or the like for each radiation treatment. By using the moving body variable phantom according to the embodiment of the present invention, it is possible to easily check whether each device operates normally and adjust various parameters in a short time with high accuracy.
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。
 また、上述の各図で示した実施形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの記載内容を組み合わせることが可能である。
 また、各図の記載内容はそれぞれ独立した実施形態になり得るものであり、本発明の実施形態は各図を組み合わせた一つの実施形態に限定されるものではない。
As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and there are design changes and the like without departing from the gist of the present invention. Is included in the present invention.
Further, the embodiments described in the above drawings can be combined with each other as long as there is no particular contradiction or problem in the purpose and configuration.
Moreover, the description content of each figure can become independent embodiment, respectively, and embodiment of this invention is not limited to one embodiment which combined each figure.
 例えば、上述した実施形態では、放射線治療システムは放射線治療装置とCT装置と制御装置(コンピュータ)を備えていたが、この形態に限られるものではない。放射線治療システムは、互いに通信可能な複数の制御装置(コンピュータ)により、放射線治療装置やCT装置などを統括的に制御してもよい。 For example, in the above-described embodiment, the radiotherapy system includes the radiotherapy apparatus, the CT apparatus, and the control apparatus (computer), but is not limited to this form. The radiotherapy system may centrally control the radiotherapy apparatus, the CT apparatus, and the like by a plurality of control apparatuses (computers) that can communicate with each other.
 また、図2などに示した実施形態のファントムでは、筒形状のシリンダ15内にスポンジ等の弾性体11が配置され、シリンダ15とピストン16により囲まれた空間に、液体(水など)や気体などの流体14が配置されていたが、この形態に限られるものではない。
 ファントムは、例えば、図18、図19に示したように、アクリルなどの樹脂製の筒形状のシリンダ15B(15)内にスポンジ等の円柱形状の弾性体11B(11)が設けられ、シリンダ15B(15)内に水などの液体が設けられていない形態であってもよい。この弾性体には放射線量検出部が設けられている。
 図18,図19に示した例では、ピストン16が筒形状のシリンダ15B(15)の軸方向に一次元的に移動可能に設けられており、ピストン16が円柱形状の弾性体11B(11)を軸方向に押圧した場合、弾性体11B(11)を圧縮可能に構成されている(図19(b)参照)。その状態から、図19(a)に示したように、ピストン16が初期位置に戻った場合、弾性体11Bは元の状態に復元する。
In the phantom of the embodiment shown in FIG. 2 and the like, an elastic body 11 such as a sponge is disposed in a cylindrical cylinder 15, and a liquid (water or the like) or gas is placed in a space surrounded by the cylinder 15 and the piston 16. However, the present invention is not limited to this configuration.
For example, as shown in FIGS. 18 and 19, the phantom is provided with a cylindrical elastic body 11B (11) such as sponge in a cylindrical cylinder 15B (15) made of resin such as acrylic, and the cylinder 15B. (15) The liquid may not be provided in the inside. This elastic body is provided with a radiation dose detector.
In the example shown in FIGS. 18 and 19, the piston 16 is provided so as to be able to move one-dimensionally in the axial direction of the cylindrical cylinder 15B (15), and the piston 16 is a cylindrical elastic body 11B (11). Is pressed in the axial direction, the elastic body 11B (11) is configured to be compressible (see FIG. 19B). From this state, as shown in FIG. 19A, when the piston 16 returns to the initial position, the elastic body 11B is restored to the original state.
 詳細には、このファントム10は、ピストン駆動部175の駆動モータ175Mにより可動部175Kが筒状部の軸方向に移動することで、ピストンロッド17及びピストン16を押圧可能に構成されている。また、ファントムには、上下動部材172(ステージ)が上下動自在に配置されており、上下動部材172が可動部175Kとリンク174Lにより接続されている。つまり、上下動部材172(ステージ)が、可動部175K、ピストンロッド17、ピストン16の動きに連動して上下動するように構成されている。また、本実施形態のファントムは、上下動部材172の上端部172aの位置を撮像部や位置センサなどで検出することで、上下動部材172の上下動の変位により、ピストン16の変位や位置などを検出可能に構成されている。 Specifically, the phantom 10 is configured to be able to press the piston rod 17 and the piston 16 by moving the movable portion 175K in the axial direction of the cylindrical portion by the drive motor 175M of the piston drive portion 175. In addition, a vertically moving member 172 (stage) is disposed in the phantom so as to freely move up and down, and the vertically moving member 172 is connected to the movable portion 175K by a link 174L. That is, the vertical movement member 172 (stage) is configured to move up and down in conjunction with the movement of the movable portion 175K, the piston rod 17, and the piston 16. Moreover, the phantom of this embodiment detects the position of the upper end part 172a of the vertical movement member 172 with an imaging part, a position sensor, etc., The displacement, position, etc. of the piston 16 by displacement of the vertical movement of the vertical movement member 172 etc. Is configured to be detectable.
 図18、図19に示したように、ピストン16の軸方向の移動により、弾性体11B(11)が軸方向に圧縮又は伸張し、軸方向に対して直交する方向の動きが筒状のシリンダ15B(15)の内壁により規制されているので、弾性体11B(11)の変形状態又は元の状態の再現性が高い。
 つまり、コンピュータによる画像変形処理の精度の検証などに、この高い再現性を有するファントムを用いることで、信頼性の高い検証などを行うことができる。
As shown in FIGS. 18 and 19, the elastic body 11 </ b> B (11) is compressed or expanded in the axial direction by the movement of the piston 16 in the axial direction, and the movement in the direction orthogonal to the axial direction is a cylindrical cylinder. Since it is restricted by the inner wall of 15B (15), the reproducibility of the deformed state or the original state of the elastic body 11B (11) is high.
That is, by using this highly reproducible phantom for verifying the accuracy of image deformation processing by a computer, highly reliable verification can be performed.
 また、ファントム10は、上述した実施形態に限られるものではなく、例えば、図20に示したように、複数の押圧機構により変形自在に構成されていてもよい。
 詳細には、図20に示した例では、筒状のシリンダ15B(15)内に、円柱形状の弾性体11B(11)が配置され、その軸方向の両端部に、軸方向に押圧可能なピストン16A、16Bが設けられていてもよい。このピストン16A、16Bは、ピストンロッドやピストン駆動部(不図示)により軸方向に移動可能に構成されている。
The phantom 10 is not limited to the above-described embodiment, and may be configured to be deformable by a plurality of pressing mechanisms as shown in FIG. 20, for example.
Specifically, in the example shown in FIG. 20, the cylindrical elastic body 11B (11) is arranged in the cylindrical cylinder 15B (15), and can be pressed in the axial direction at both axial ends thereof. Pistons 16A and 16B may be provided. The pistons 16A and 16B are configured to be movable in the axial direction by a piston rod or a piston driving unit (not shown).
 また、図20に示した例では、ピストン16A、16Bがそれぞれ複数の小さなピストン16Aa、16Baにより構成されており、制御装置(コンピュータ)の制御により、所定のピストン16Aa、16Baにより、弾性体11B(11)の両端を局所的に押圧可能に構成されている。つまり、弾性体11B(11)は2次元的に変形可能に構成されており、コンピュータによる画像変形処理の検証などを、高精度に行うことができる。 Further, in the example shown in FIG. 20, the pistons 16A and 16B are respectively constituted by a plurality of small pistons 16Aa and 16Ba, and the elastic body 11B (by the predetermined pistons 16Aa and 16Ba is controlled by a control device (computer). 11) The both ends of 11) can be locally pressed. That is, the elastic body 11B (11) is configured to be two-dimensionally deformable, and verification of image deformation processing by a computer can be performed with high accuracy.
 また、ファントム10は、例えば、図21に示したように、シリンダ15B(15)の軸方向および直交方向に複数の押圧機構を有していてもよい。詳細には、図21に示した例では、弾性体11B(11)の両端を局所的に軸方向に押圧可能な複数のピストン16Aa,16Ba、ピストンロッド17(ロッド)、ピストン駆動部175を有し、筒状のシリンダ15B(15)の側面には、弾性体11B(11)の側面を軸方向に対して直交する方向に押圧可能な複数の可動部177が配置されている。この可動部177は、駆動部178や接続部179により移動可能に構成されている。可動部177の駆動方式としては、例えば、空気圧駆動方式、水圧駆動方式、リンク機構による駆動方式、などの所定の駆動方式を採用することができる。X線発生部21からX線検出部22へ向けて放射されたX線の吸収の影響を低減するために、筒状のシリンダ15B(15)の側面側には、X線吸収率の低い材料で形成された可動部177を設け、駆動部178などをX線照射領域外に配置することが好ましい。また、リンク機構を採用した場合には、リンク機構をアクリルなどの樹脂材料により形成することが好ましい。また、X線吸収率の低い水や気体などを用いた駆動方式を採用してもよい。 Further, for example, as shown in FIG. 21, the phantom 10 may have a plurality of pressing mechanisms in the axial direction and the orthogonal direction of the cylinder 15B (15). Specifically, in the example shown in FIG. 21, the elastic body 11 </ b> B (11) has a plurality of pistons 16 </ b> Aa, 16 </ b> Ba, a piston rod 17 (rod), and a piston driving unit 175 that can locally press both ends of the elastic body 11 </ b> B (11). A plurality of movable portions 177 that can press the side surface of the elastic body 11B (11) in a direction orthogonal to the axial direction are disposed on the side surface of the cylindrical cylinder 15B (15). The movable part 177 is configured to be movable by a drive part 178 and a connection part 179. As a driving method of the movable part 177, for example, a predetermined driving method such as a pneumatic driving method, a hydraulic driving method, a driving method using a link mechanism, or the like can be adopted. In order to reduce the influence of absorption of X-rays radiated from the X-ray generation unit 21 toward the X-ray detection unit 22, a material having a low X-ray absorption rate is provided on the side of the cylindrical cylinder 15B (15). It is preferable to provide the movable part 177 formed by the above and arrange the driving part 178 and the like outside the X-ray irradiation region. Moreover, when a link mechanism is employ | adopted, it is preferable to form a link mechanism with resin materials, such as an acryl. Moreover, you may employ | adopt the drive system using water, gas, etc. with a low X-ray absorption factor.
 10…ファントム(動体可変型ファントム)
 11…弾性体
 12…放射線量検出部(照射線量検出部)
 13…バルーン
 14…流体(液体、気体など)
 15…シリンダ(ケース)
 16…ピストン
 17…ピストンロッド
 18…弾性体保持部
 19…蓋部
 20…CT装置
 30…ファントム線量検出装置
 31…線量検出部
 32…位置特定部
 40…放射線治療装置
 50…制御装置(コンピュータ)
100…放射線治療システム
10 ... Phantom (movable body variable type phantom)
DESCRIPTION OF SYMBOLS 11 ... Elastic body 12 ... Radiation dose detection part (irradiation dose detection part)
13 ... Balloon 14 ... Fluid (liquid, gas, etc.)
15 ... Cylinder (case)
DESCRIPTION OF SYMBOLS 16 ... Piston 17 ... Piston rod 18 ... Elastic body holding part 19 ... Lid part 20 ... CT apparatus 30 ... Phantom dose detection apparatus 31 ... Dose detection part 32 ... Position specification part 40 ... Radiation therapy apparatus 50 ... Control apparatus (computer)
100 ... Radiation therapy system

Claims (16)

  1.  放射線照射装置用の動体可変型ファントムであって、
     変形可能な弾性体と、
     前記弾性体に設けられた放射線量検出部と、を有することを特徴とする
     動体可変型ファントム。
    A moving body variable phantom for a radiation irradiation device,
    A deformable elastic body;
    And a radiation dose detection unit provided on the elastic body.
  2.  前記弾性体は、収縮自在な材料で形成されていることを特徴とする請求項1に記載の動体可変型ファントム。 The moving body variable phantom according to claim 1, wherein the elastic body is made of a shrinkable material.
  3.  前記弾性体は、分解および組立て自在な多層構造に構成されていることを特徴とする請求項1または請求項2に記載の動体可変型ファントム。 The moving body variable phantom according to claim 1 or 2, wherein the elastic body has a multilayer structure that can be disassembled and assembled.
  4.  前記弾性体は、孔部を有する部材と該孔部に収容自在な部材で構成された入れ子構造となっていることを特徴とする請求項3に記載の動体可変型ファントム。 The moving body variable phantom according to claim 3, wherein the elastic body has a nested structure including a member having a hole and a member that can be accommodated in the hole.
  5.  前記入れ子構造の弾性体の孔部を有する部材は円筒形状または半球形状に形成されていることを特徴とする請求項4に記載の動体可変型ファントム。 5. The moving body variable phantom according to claim 4, wherein the member having a hole portion of the elastic body of the nested structure is formed in a cylindrical shape or a hemispherical shape.
  6.  前記弾性体は、ロール状に巻回自在に構成されていることを特徴とする請求項1または請求項2に記載の動体可変型ファントム。 The moving body variable phantom according to claim 1 or 2, wherein the elastic body is configured to be freely wound in a roll shape.
  7.  前記弾性体は、前記放射線量検出部を着脱自在に保持する穴部を有することを特徴とする請求項1から請求項4のいずれかに記載の動体可変型ファントム。 The moving body variable phantom according to any one of claims 1 to 4, wherein the elastic body has a hole for detachably holding the radiation dose detection section.
  8.  前記放射線量検出部は、線量蓄積型であることを有することを特徴とする請求項1から請求項7のいずれかに記載の動体可変型ファントム。 The moving body variable phantom according to any one of claims 1 to 7, wherein the radiation dose detection unit has a dose accumulation type.
  9.  前記放射線量検出部は、複数のガラス線量計であることを特徴とする請求項1から請求項8のいずれかに記載の動体可変型ファントム。 The moving body variable phantom according to any one of claims 1 to 8, wherein the radiation dose detection unit is a plurality of glass dosimeters.
  10.  前記弾性体に、前記放射線量検出部として複数の2次元放射線量検出器を設けたことを特徴とする請求項1または請求項2に記載の動体可変型ファントム。 The moving body variable phantom according to claim 1 or 2, wherein the elastic body is provided with a plurality of two-dimensional radiation dose detectors as the radiation dose detector.
  11.  前記弾性体は、複数のスリットを有し、
     前記2次元放射線量検出器は前記スリットに着脱自在に配置される構造となっていることを特徴とする請求項10に記載の動体可変型ファントム。
    The elastic body has a plurality of slits,
    The moving body variable phantom according to claim 10, wherein the two-dimensional radiation dose detector is configured to be detachably disposed in the slit.
  12.  変形可能な前記弾性体により保持されたゲル状線量計を有することを特徴とする請求項1または請求項2に記載の動体可変型ファントム。 3. The moving body variable phantom according to claim 1, further comprising a gel dosimeter held by the deformable elastic body.
  13.  前記弾性体は、ゲル状線量計を内部に収容する構造を有することを特徴とする請求項12に記載の動体可変型ファントム。 13. The moving body variable phantom according to claim 12, wherein the elastic body has a structure in which a gel dosimeter is accommodated.
  14.  前記弾性体はスポンジ状に形成され、ゲル状線量計のポリマーゲルを吸収保持した構造を有することを特徴とする請求項12に記載の動体可変型ファントム。 The moving body variable phantom according to claim 12, wherein the elastic body is formed in a sponge shape and has a structure in which a polymer gel of a gel dosimeter is absorbed and held.
  15.  請求項1から請求項14のいずれかに記載の動体可変型ファントムを用いた放射線治療計画作成方法であって、
     放射線治療の段階に応じて、該動体可変型ファントムの前記弾性体の特性を設定する工程と、
     前記動体可変型ファントムを用いて放射線量を検出し、検出結果に基づいて放射線照射位置と放射線照射線量を規定する放射線治療計画を作成する工程と、を有することを特徴とする
     放射線治療計画作成方法。
    A radiation treatment plan creation method using the moving object variable phantom according to any one of claims 1 to 14,
    Setting the characteristics of the elastic body of the variable moving phantom according to the stage of radiation therapy;
    A radiation treatment plan creating method comprising: detecting a radiation dose using the moving body variable phantom; and creating a radiation treatment plan for defining a radiation irradiation position and a radiation irradiation dose based on the detection result. .
  16.  請求項1から請求項14のいずれかに記載の前記動体可変型ファントムを用いて、弾性体の変形前および変形後の該ファントムのCT画像による線量分布の一方に画像変形処理を施し他方に合算して生成した第1の合算線量分布と、前記弾性体の変形前および変形後のファントムに設けられた照射線量検出部による照射線量の検出結果に応じて生成した第2の合算線量分布との誤差を算出するステップと、
     前記誤差に基づいて前記画像変形処理に関する変形パラメータを規定するステップと、
     をコンピュータに実行させるプログラム。
    Using the moving body variable phantom according to any one of claims 1 to 14, image deformation processing is performed on one of dose distributions based on CT images of the phantom before and after deformation of the elastic body, and the other is added to the other And the second combined dose distribution generated according to the detection result of the irradiation dose by the irradiation dose detector provided in the phantom before and after the deformation of the elastic body. Calculating an error;
    Defining a deformation parameter for the image deformation process based on the error;
    A program that causes a computer to execute.
PCT/JP2016/058637 2015-03-19 2016-03-18 Variable phantom, method for planning radiation treatment, and program WO2016148269A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017506215A JP6347568B2 (en) 2015-03-19 2016-03-18 Moving body phantom, radiation therapy planning method, program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015056542 2015-03-19
JP2015-056542 2015-03-19

Publications (1)

Publication Number Publication Date
WO2016148269A1 true WO2016148269A1 (en) 2016-09-22

Family

ID=56918911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058637 WO2016148269A1 (en) 2015-03-19 2016-03-18 Variable phantom, method for planning radiation treatment, and program

Country Status (2)

Country Link
JP (1) JP6347568B2 (en)
WO (1) WO2016148269A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019176988A (en) * 2018-03-30 2019-10-17 キヤノンメディカルシステムズ株式会社 X-ray CT apparatus, calibration method, and phantom
JP2020000557A (en) * 2018-06-28 2020-01-09 株式会社千代田テクノル Ctdi measurement method for x-ray ct, dosimeter holding jig therefor, and ctdi measurement method and device for x-ray ct using the same
CN110799244A (en) * 2017-04-21 2020-02-14 皇家飞利浦有限公司 Planning system for adaptive radiation therapy
WO2020146086A1 (en) * 2019-01-07 2020-07-16 University Of Kentucky Research Foundation Quality assurance device for a medical accelerator
JP2020533128A (en) * 2017-09-14 2020-11-19 オーストラリアン ニュークリア サイエンス アンド テクノロジー オーガニゼーション Irradiation method and system
CN112120720A (en) * 2019-06-09 2020-12-25 固安县朝阳生物科技有限公司 Production method of medical CT spiral bead mould body
WO2021162110A1 (en) * 2020-02-14 2021-08-19 学校法人北里研究所 Gel dosimeter for measuring radiation doses
WO2024047960A1 (en) * 2022-08-30 2024-03-07 株式会社 東芝 Radiation-measuring instrument support device, radiation measurement device and radiation measurement method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534174B (en) * 2019-07-18 2023-01-06 北京全域医疗技术集团有限公司 Radiotherapy plan analysis device, storage medium and equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114624U (en) * 1987-01-19 1988-07-23
JPH0780089A (en) * 1993-09-14 1995-03-28 Technol Res Assoc Of Medical & Welfare Apparatus Phantom
JP2007139547A (en) * 2005-11-17 2007-06-07 Okayama Univ Radiation dose detector
WO2009055817A2 (en) * 2007-10-26 2009-04-30 Radiology Support Devices, Inc. Systems and methods related to radiation delivery
JP2011072818A (en) * 2000-02-18 2011-04-14 William Beaumont Hospital Method of calibrating radiation therapy system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114624U (en) * 1987-01-19 1988-07-23
JPH0780089A (en) * 1993-09-14 1995-03-28 Technol Res Assoc Of Medical & Welfare Apparatus Phantom
JP2011072818A (en) * 2000-02-18 2011-04-14 William Beaumont Hospital Method of calibrating radiation therapy system
JP2007139547A (en) * 2005-11-17 2007-06-07 Okayama Univ Radiation dose detector
WO2009055817A2 (en) * 2007-10-26 2009-04-30 Radiology Support Devices, Inc. Systems and methods related to radiation delivery

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AMANDA CHERPAK: "4D dose-position verification in radiation therapy using the RADPOS system in a deformable lung phantom", MEDICAL PHYSICS, vol. 38, no. 1, January 2011 (2011-01-01), pages 179 - 187, XP012144997 *
HIDEYO SASAKI: "Prototype development of movable thorax phantom with reproducing tumor motion", BULLETIN OF TOKAI POLYTECHNIC COLLEGE, March 2011 (2011-03-01), pages 43 - 46 *
MAMORU KATO: "Shinkekkan Satsuei Ryoiki ni Okeru Kanja Hibaku Senryo-yo Sokutei Sogu no Kaihatsu", JAPANESE JOURNAL OF RADIOLOGICAL TECHNOLOGY, vol. 70, no. 8, August 2014 (2014-08-01), pages 814 - 820 *
YUSUKE ONOZATO: "Deformable Image Registration Kensho-yo no Hai Phantom no Kaihatsu", DAI 2 KAI TOHOKU HOSHASEN IRYO GIJUTSU TAIKAI PROGRAM, 3 November 2012 (2012-11-03) *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110799244B (en) * 2017-04-21 2022-04-05 皇家飞利浦有限公司 Planning system for adaptive radiation therapy
CN110799244A (en) * 2017-04-21 2020-02-14 皇家飞利浦有限公司 Planning system for adaptive radiation therapy
JP2020512909A (en) * 2017-04-21 2020-04-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Planning system for adaptive radiation therapy
JP7405743B2 (en) 2017-09-14 2023-12-26 オーストラリアン ニュークリア サイエンス アンド テクノロジー オーガニゼーション Irradiation method and system
JP2020533128A (en) * 2017-09-14 2020-11-19 オーストラリアン ニュークリア サイエンス アンド テクノロジー オーガニゼーション Irradiation method and system
JP2019176988A (en) * 2018-03-30 2019-10-17 キヤノンメディカルシステムズ株式会社 X-ray CT apparatus, calibration method, and phantom
JP7102190B2 (en) 2018-03-30 2022-07-19 キヤノンメディカルシステムズ株式会社 X-ray CT device and calibration method
JP2020000557A (en) * 2018-06-28 2020-01-09 株式会社千代田テクノル Ctdi measurement method for x-ray ct, dosimeter holding jig therefor, and ctdi measurement method and device for x-ray ct using the same
JP7181576B2 (en) 2018-06-28 2022-12-01 株式会社千代田テクノル X-ray CT CTDI measurement method, dosimeter holding jig therefor, and X-ray CT CTDI measurement method and apparatus using the same
WO2020146086A1 (en) * 2019-01-07 2020-07-16 University Of Kentucky Research Foundation Quality assurance device for a medical accelerator
EP3908371A4 (en) * 2019-01-07 2022-09-28 University Of Kentucky Research Foundation Quality assurance device with passive optical component and remote camera
WO2020146088A1 (en) 2019-01-07 2020-07-16 University Of Kentucky Research Foundation Quality assurance device with passive optical component and remote camera
US11890490B2 (en) 2019-01-07 2024-02-06 University Of Kentucky Research Foundation Quality assurance device with passive optical component and remote camera
US11964172B2 (en) 2019-01-07 2024-04-23 University Of Kentucky Research Foundation Quality assurance device for a medical accelerator
CN112120720A (en) * 2019-06-09 2020-12-25 固安县朝阳生物科技有限公司 Production method of medical CT spiral bead mould body
WO2021162110A1 (en) * 2020-02-14 2021-08-19 学校法人北里研究所 Gel dosimeter for measuring radiation doses
WO2024047960A1 (en) * 2022-08-30 2024-03-07 株式会社 東芝 Radiation-measuring instrument support device, radiation measurement device and radiation measurement method

Also Published As

Publication number Publication date
JPWO2016148269A1 (en) 2017-08-03
JP6347568B2 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
JP6347568B2 (en) Moving body phantom, radiation therapy planning method, program
US11266858B2 (en) Systems, devices, and methods for quality assurance of radiation therapy
US6853702B2 (en) Radiation therapy dosimetry quality control process
US8238516B2 (en) Radiotherapy support apparatus
US20160148401A1 (en) Image processor, image processing method, and treatment system
JP5773881B2 (en) Radiation beam analyzer and radiation beam analysis method
US7636419B1 (en) Method and apparatus for automated three dimensional dosimetry
CN101678211B (en) Simulation and visualization of scattered radiation
JPH1052421A (en) Device and method for inspecting radioactive rays supplied to object
US8471222B2 (en) Radiotherapy apparatus control method and radiotherapy apparatus control apparatus
CN104125803A (en) Mobile radiographic apparatus/methods with tomosynthesis capability
CN101801272A (en) Linear accelerator with wide bore CT scanner
US20180140265A1 (en) Radiation therapy system and methods of use thereof
WO2005119295A1 (en) Method and apparatus for verifying radiation dose distributions
CN110353721A (en) Adjust the collimator of x-ray source
US20140254761A1 (en) Real-time x-ray monitoring
CN110075428A (en) A kind of beam examines, measurement method and device
WO2014022480A1 (en) Deformable dosimetric phantom
CN115393256A (en) Irradiation dose measuring method and device based on neural network and Cerenkov light
CN112774043A (en) System and method for validating a primary radiation dose distribution curve, storage medium
JP6351164B2 (en) Beam irradiation object confirmation device, beam irradiation object confirmation program, and stopping power ratio calculation program
US20080269568A1 (en) Methods for validating a radiotherapy plan by a dosimetry service
WO2020230642A1 (en) Medical image processing device, medical image processing program, medical device, and treatment system
JP2020081874A (en) Determination of radiation dose measurement
KR101239133B1 (en) Digital phantom for medical radiography, system and method of processing medical image using digital phantom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506215

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16765098

Country of ref document: EP

Kind code of ref document: A1