JP7181576B2 - X-ray CT CTDI measurement method, dosimeter holding jig therefor, and X-ray CT CTDI measurement method and apparatus using the same - Google Patents

X-ray CT CTDI measurement method, dosimeter holding jig therefor, and X-ray CT CTDI measurement method and apparatus using the same Download PDF

Info

Publication number
JP7181576B2
JP7181576B2 JP2018123725A JP2018123725A JP7181576B2 JP 7181576 B2 JP7181576 B2 JP 7181576B2 JP 2018123725 A JP2018123725 A JP 2018123725A JP 2018123725 A JP2018123725 A JP 2018123725A JP 7181576 B2 JP7181576 B2 JP 7181576B2
Authority
JP
Japan
Prior art keywords
dosimeter
ionization chamber
ctdi
ray
phantom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018123725A
Other languages
Japanese (ja)
Other versions
JP2020000557A (en
Inventor
誠 杉山
美貴 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Technol Corp
Original Assignee
Chiyoda Technol Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Technol Corp filed Critical Chiyoda Technol Corp
Priority to JP2018123725A priority Critical patent/JP7181576B2/en
Publication of JP2020000557A publication Critical patent/JP2020000557A/en
Application granted granted Critical
Publication of JP7181576B2 publication Critical patent/JP7181576B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、X線CT(Computed Tomography)のCTDI(Computed Tomography Dose Index)測定方法、そのための線量計保持治具、及び、これを用いたX線CTのCTDI測定方法、装置に係り、特に、電離箱の代わりに蛍光ガラス線量計(以下単にガラス線量計と称する)や光(刺激)ルミネッセンス線量計(OSLD)、熱ルミネッセンス線量計(TLD)などを用いてCTDIを迅速、簡便且つ安価に測定することが可能なX線CTのCTDI測定方法、そのための線量計保持治具、及び、これを用いたX線CTのCTDI測定方法、装置に関する。 The present invention relates to a CTDI (Computed Tomography Dose Index) measuring method for X-ray CT (Computed Tomography), a dosimeter holding jig therefor, and a CTDI measuring method and apparatus for X-ray CT using the same. Measure CTDI quickly, easily, and inexpensively by using fluorescent glass dosimeters (hereinafter referred to simply as glass dosimeters), optical (stimulated) luminescence dosimeters (OSLD), thermoluminescence dosimeters (TLD), etc. instead of ionization chambers. The present invention relates to a CTDI measuring method for X-ray CT, a dosimeter holding jig therefor, and a CTDI measuring method and apparatus for X-ray CT using the same.

CTDIは線量指標であり、X線CT装置の性能評価や管理のための線量値であるが、測定のためのファントムを人体のサイズに近づけることにより、CT検査時の患者被曝線量の評価の指標としても用いられている(特許文献1参照)。近年、被曝線量の出力機能が機器認証の要求事項に含まれるようになっており、JISZ4752-2-6で規定されているように、不変性試験の線量評価指標として、少なくとも半年に1回、専用のCT線量測定用ファントムと線量計を用いて測定する必要がある。 CTDI is a dose index, which is a dose value for performance evaluation and management of X-ray CT equipment. It is also used as (see Patent Document 1). In recent years, the output function of exposure dose has come to be included in the requirements for equipment certification. Measurements must be made using a dedicated CT dosimetry phantom and dosimeter.

CT線量測定用ファントムとしては、図1に例示するような例えばアクリル樹脂製、直径320mmの腹部用と直径160mmの頭部用の円柱形のCT線量測定用ファントム10が知られており、これをX線管球などのX線源22とカメラ24を備えたガントリ20内に挿入して、X線源22とカメラ24をCT線量測定用ファントム10の周りに回転しつつ測定する。CT線量測定用ファントム10には、中心及び上下左右方向の表面から例えば深さ10mmの位置にCT用電離箱の入る電離箱挿入孔12が空けられており、ここにペンシル型のCT用電離箱を挿入して測定を行う。 As a CT dosimetry phantom, for example, a cylindrical CT dosimetry phantom 10 made of acrylic resin and having a diameter of 320 mm for the abdomen and a diameter of 160 mm for the head is known, as shown in FIG. It is inserted into a gantry 20 equipped with an X-ray source 22 such as an X-ray tube and a camera 24, and the X-ray source 22 and camera 24 are rotated around the CT dosimetry phantom 10 for measurement. The CT dosimetry phantom 10 has an ionization chamber insertion hole 12 at a depth of, for example, 10 mm from the center and the top, bottom, left, and right surfaces of the phantom 10 for CT dosimetry. and take measurements.

測定の一例を図2に示す。患者寝台30上にCT用電離箱14を挿入したCT線量測定用ファントム10を直接又は浮かせて配置し、例えばシングルスキャンを行うことによって測定する。 An example of measurement is shown in FIG. The CT dosimetry phantom 10 in which the CT ionization chamber 14 is inserted is placed directly or floated on the patient bed 30, and measurement is performed, for example, by performing a single scan.

一方近年、CT用電離箱の代わりに取扱いの容易なガラス線量計を用いる試みもなされている(特許文献2、非特許文献1参照)。 On the other hand, in recent years, attempts have been made to use an easy-to-handle glass dosimeter instead of the CT ionization chamber (see Patent Document 2 and Non-Patent Document 1).

特開2006-26417号公報JP-A-2006-26417 特開2016-174863号公報JP 2016-174863 A

廣澤文香他「X線CTにおける線量評価を目的とした蛍光ガラス線量計の特性および使用方法の検討」日本放射線技術学会雑誌71巻1号 2015年1月Fumika Hirosawa et al., “Study on the characteristics and usage of fluorescent glass dosimeters for dose evaluation in X-ray CT,” Journal of the Japan Society of Radiological Technology, Vol.71, No.1, January 2015

しかしながら従来は、CT線量測定用ファントムに電離箱以外の、電離箱より小さなガラス線量計や光(刺激)ルミネッセンス線量計(OSLD)、熱ルミネッセンス線量計(TLD)などを装着する適切な方法が考えられていなかった。 However, in the past, an appropriate method of attaching a glass dosimeter smaller than the ionization chamber, an optical (stimulation) luminescence dosimeter (OSLD), or a thermoluminescence dosimeter (TLD) other than the ionization chamber to the CT dosimetry phantom was considered. It wasn't done.

本発明は、前記従来の問題点を解決するべくなされたもので、電離箱以外の、電離箱より小さなガラス線量計や光(刺激)ルミネッセンス線量計(OSLD)、熱ルミネッセンス線量計(TLD)などを用いて迅速、簡便且つ安価にX線CTのCTDIを測定可能とすることを課題とする。 The present invention has been made to solve the above-mentioned conventional problems. It is an object of the present invention to enable the CTDI of X-ray CT to be measured quickly, easily, and inexpensively by using a .

本発明は、電離箱以外の、電離箱より小さな線量計を保持した治具をCT線量測定用ファントムに挿入してCTDI(例えばCTDIvol)を測定するX線CTのCTDI測定方法であって、前記治具を、前記CT線量測定用ファントムのCT用電離箱を挿入するために空けられた孔に、前記CT用電離箱の代わりに挿入することにより、前記課題を解決するものである。 The present invention is an X-ray CT CTDI measurement method in which a jig holding a dosimeter smaller than the ionization chamber is inserted into a CT dose measurement phantom to measure CTDI (for example, CTDIvol). The problem is solved by inserting a jig instead of the CT ionization chamber into the hole of the CT dosimetry phantom, which is provided for inserting the CT ionization chamber.

ここで、前記治具が、前記線量計を前記CT線量測定用ファントムの所定位置に保持するようにすることができる。 Here , the jig can hold the dosimeter at a predetermined position of the CT dosimetry phantom.

又、前記線量計をガラス線量計とすることができる。 Also, the dosimeter can be a glass dosimeter.

本発明は、又、散乱を起こしてX線の検出を邪魔しない物質でなり、電離箱以外の、電離箱より小さな線量計を収容する部分、及び、CT線量測定用ファントムに形成されたCT用電離箱挿入孔に、CT用電離箱の代わりに挿入可能な筒状の外形を有することを特徴とするX線CTのCTDI測定用線量計保持治具を提供するものである。 The present invention also provides a portion other than the ionization chamber, which is made of a material that does not interfere with the detection of X-rays due to scattering, and contains a dosimeter smaller than the ionization chamber, and a CT dosimetry phantom formed in the phantom for CT dosimetry. A dosimeter holding jig for CTDI measurement of X-ray CT, characterized by having a tubular outer shape that can be inserted into an ionization chamber insertion hole in place of a CT ionization chamber.

ここで、前記保持治具を発泡性プラスチックで形成することができる。 Here, the holding jig can be made of foamed plastic.

又、前記保持治具を、中央に線量計を収容する孔が形成された本体部と、該本体部の線量計収容孔を覆うキャップ部と、から構成することができる。 Further, the holding jig can be composed of a main body portion having a hole for housing the dosimeter formed in the center thereof, and a cap portion for covering the dosimeter housing hole of the main body portion.

本発明は、又、線量計保持治具に電離箱以外の、電離箱より小さな線量計を挿入して線量測定ユニットとし、該線量測定ユニットをCT線量測定用ファントムに形成されたCT用電離箱挿入孔に、CT用電離箱の代わりに挿入して、X線を照射し、透過したX線を検出することを特徴とするX線CTのCTDI測定方法を提供するものである。 The present invention also provides a dosimetry unit by inserting a dosimeter smaller than the ionization chamber into the dosimeter holding jig, and the dose measurement unit is a CT ionization chamber formed in a CT dosimetry phantom. A CTDI measuring method for X-ray CT characterized by inserting an ionization chamber instead of a CT ionization chamber into an insertion hole , irradiating X-rays, and detecting transmitted X-rays.

本発明は、又、電離箱以外の、電離箱より小さな線量計と、該線量計が挿入される保持治具と、該保持治具に前記線量計が挿入された線量測定ユニットと、CT用電離箱挿入孔が形成され、該CT用電離箱挿入孔に、前記線量測定ユニットがCT用電離箱の代わりに挿入されるCT線量測定用ファントムと、該CT線量測定用ファントムにX線を照射する手段と、前記CT線量測定用ファントムを透過したX線を検出する手段と、を備えたことを特徴とするX線CTのCTDI測定装置を提供するものである。 The present invention also provides a dosimeter other than the ionization chamber smaller than the ionization chamber, a holding jig into which the dosimeter is inserted, a dosimetry unit in which the dosimeter is inserted into the holding jig, and a CT scanner. An ionization chamber insertion hole is formed, and the dose measurement unit is inserted into the CT ionization chamber insertion hole instead of the CT ionization chamber , and the CT dose measurement phantom is irradiated with X-rays. and means for detecting X-rays transmitted through the CT dosimetry phantom.

本発明によれば、電離箱以外の、電離箱より小さなガラス線量計や光(刺激)ルミネッセンス線量計(OSLD)、熱ルミネッセンス線量計(TLD)などを用いて、X線CTのCTDI(特にCTDIvol)を迅速、簡便且つ安価に測定することが可能となる。 According to the present invention, CTDI of X-ray CT (especially CTDIvol ) can be measured quickly, easily and inexpensively.

CT線量測定用ファントムの例を示す概略図Schematic showing an example of a CT dosimetry phantom CTDIの測定配置の例を示す断面図Cross-sectional view showing an example of CTDI measurement arrangement 本発明に係るCTDI測定用ガラス線量計保持治具の実施形態の構成を示す斜視図1 is a perspective view showing the configuration of an embodiment of a holding jig for a CTDI measuring glass dosimeter according to the present invention; FIG. 前記保持治具に挿入されるガラス線量計の一例を示す分解斜視図The exploded perspective view which shows an example of the glass dosimeter inserted in the said holding jig. 本発明の実施形態におけるCTDIの測定手順を示す流れ図FIG. 2 is a flow chart showing a CTDI measurement procedure in an embodiment of the present invention; FIG. 前記測定手順でCT線量測定用ファントムとガントリの位置合せを行っている状態を示す側面図及び斜視図A side view and a perspective view showing a state in which the phantom for CT dose measurement and the gantry are aligned in the measurement procedure. 同じく中央の線量測定ユニットをCT線量測定用ファントムに挿入している状態を示す斜視図Perspective view showing a state in which the central dosimetry unit is similarly inserted into the CT dosimetry phantom. 同じくCT線量測定用ファントム挿入後の線量測定ユニットの位置を示す側面図及び斜視図Side view and perspective view similarly showing the position of the dosimetry unit after insertion of the phantom for CT dosimetry 同じくCT線量測定用ファントム挿入後の5本の線量測定ユニットの配置を示す側面図及び斜視図Side view and perspective view similarly showing the arrangement of five dose measurement units after the phantom for CT dose measurement is inserted. 同じく撮影時のCT線量測定用ファントムにおける撮影範囲を示す水平断面図Horizontal sectional view showing the imaging range of the phantom for CT dose measurement during imaging.

以下、図面を参照して、本発明の実施の形態について詳細に説明する。なお、本発明は以下の実施形態及び実施例に記載した内容により限定されるものではない。又、以下に記載した実施形態及び実施例における構成要件には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。更に、以下に記載した実施形態及び実施例で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the present invention is not limited by the contents described in the following embodiments and examples. In addition, the configuration requirements in the embodiments and examples described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those that fall within the so-called equivalent range. Furthermore, the constituent elements disclosed in the embodiments and examples described below may be combined as appropriate, or may be selected and used as appropriate.

本発明で用いるCTDI測定用ガラス線量計保持治具の実施形態を図3に示す。 FIG. 3 shows an embodiment of a holding jig for a CTDI measuring glass dosimeter used in the present invention.

この保持治具40は、散乱を起こしてX線の検出を邪魔しない物質、例えば透過率が空気に近い発泡性プラスチックでなり、中央に後出のガラス線量計50を収容するガラス線量計収容孔44が形成され、図1に例示したCT線量測定用ファントム10に挿入される外形を有する筒状の本体部42と、同じく発泡性プラスチックでなり、前記本体部42のガラス線量計収容孔44を覆うキャップ部46とから構成されている。 The holding jig 40 is made of a material that does not interfere with the detection of X-rays by causing scattering, such as foamed plastic with a transmittance close to that of air. 44 is formed, and a cylindrical body portion 42 having an outer shape to be inserted into the CT dosimetry phantom 10 illustrated in FIG. and a cap portion 46 for covering.

前記キャップ部46には、例えばCT線量測定用ファントム10への挿入位置である中央(C)、上(T)、下(B)、右(R)、左(L)を識別するための位置識別番号などが付されたシール48が貼られている。なお、シール48の代わりに手書きで位置識別番号などを記入することもできる。 Positions for identifying the center (C), upper (T), lower (B), right (R), and left (L) insertion positions into the CT dosimetry phantom 10 are provided on the cap portion 46, for example. A seal 48 with an identification number or the like is attached. Instead of the seal 48, the position identification number or the like can be written by hand.

前記本体部42のガラス線量計収容孔44に収容されるガラス線量計50は、図4に詳細に示す如く、ガラス素子52と、該ガラス素子52を収容するホルダ54と、該ホルダ54のキャップ56とを含んで構成されている。前記ホルダ54の例えば側面には、ホルダ54を識別するためのID58が付されている。前記ホルダ54には、補正用のフィルタを備えたものと備えていないものがあり、用途に応じて使い分けられる。 The glass dosimeter 50 housed in the glass dosimeter housing hole 44 of the main body 42 includes, as shown in detail in FIG. 56. An ID 58 for identifying the holder 54 is attached to, for example, the side surface of the holder 54 . The holder 54 may or may not have a filter for correction, and may be used depending on the application.

CTDIの測定に際しては、図5に示す如く、まずステップ100で保持治具40にガラス線量計50を挿入して、線量測定ユニット60とする。 When measuring CTDI, as shown in FIG. 5, first, in step 100, the glass dosimeter 50 is inserted into the holding jig 40 to form a dose measuring unit 60. As shown in FIG.

次いで、ステップ110でCT線量測定用ファントム10をガントリ20内に設定する。 Next, at step 110 , the CT dosimetry phantom 10 is set within the gantry 20 .

具体的には、X線CTのヘッドレストや延長寝台を取り外し、タオル等を患者寝台30上に敷いてCT線量測定用ファントム10が固定される環境を作り、図6に例示する如く、CT線量測定用ファントム10の中心がガントリ20の中心になり、周辺部の測定点が例えば12時、3時、6時、9時の位置にくるように設置する。 Specifically, the headrest and extension bed of the X-ray CT are removed, and a towel or the like is laid on the patient bed 30 to create an environment in which the CT dose measurement phantom 10 is fixed. The center of the phantom 10 is the center of the gantry 20, and the peripheral measurement points are positioned at, for example, 12 o'clock, 3 o'clock, 6 o'clock, and 9 o'clock.

次いでステップ120で投光レーザにより確認し、ステップ130で、X線源22を固定したままガラス線量計50や保持治具40を挿入することなく、CTスキャンの撮影範囲を決定するために、正面(0°)のスカウト撮影を行い、CT線量測定用ファントム10の位置を確認する。 Next, in step 120, confirmation is performed using a projection laser, and in step 130, without inserting the glass dosimeter 50 or the holding jig 40 while the X-ray source 22 is fixed, the front side is used to determine the imaging range of the CT scan. (0°) scout imaging is performed to confirm the position of the CT dosimetry phantom 10 .

次いでステップ200に進み、図7に例示する如く、CT線量測定用ファントム10の電離箱挿入孔12に、線量測定ユニット60を寝台側からガントリ側に向かって挿入する。この際、本体部42を完全に挿入するとキャップ部46で自然に留まり、線量測定ユニット60の測定部が図8に示す如くCT線量測定用ファントム10の中心に配置される。そして、図9に示す如く、CT線量測定用ファントム10の中央C、上T、下B、右R、左Lの測定点5箇所全てに線量測定ユニット60を挿入する。 Next, in step 200, as shown in FIG. 7, the dosimetry unit 60 is inserted into the ionization chamber insertion hole 12 of the CT dosimetry phantom 10 from the bed side toward the gantry side. At this time, when the main body portion 42 is completely inserted, it naturally stops at the cap portion 46, and the measurement portion of the dose measurement unit 60 is arranged at the center of the CT dose measurement phantom 10 as shown in FIG. Then, as shown in FIG. 9, the dose measurement units 60 are inserted at all five measurement points of the CT dose measurement phantom 10: center C, top T, bottom B, right R, and left L.

次いでステップ300に進み、本発明に係る線量測定ユニット60によるCTDI測定を行う。具体的には、図10に従ってCT線量測定用ファントム10の中心が撮影中心になるように、例えば10cmの範囲を撮影する。同様の撮影を1条件につき5セット分行って測定を終了する。 Next, proceeding to step 300, CTDI measurement is performed by the dosimetry unit 60 according to the present invention. Specifically, according to FIG. 10, a range of, for example, 10 cm is imaged so that the center of the CT dose measurement phantom 10 is the imaging center. Five sets of similar imaging are performed for each condition, and the measurement is completed.

このようにして、5点の測定を同時に行うことができるので、電離箱を用いる従来に比べて1/5の時間で測定を行うことができる。 In this manner, measurements can be performed at five points simultaneously, so that the measurement can be performed in one-fifth of the time required in the conventional method using an ionization chamber.

前記実施形態においては、保持治具40が本体部42とキャップ部46の組合せとされ、材質が発泡性プラスチックとされていたが、保持治具の形状や材質はこれらに限定されない。 In the above-described embodiment, the holding jig 40 is a combination of the main body portion 42 and the cap portion 46 and is made of foamed plastic, but the shape and material of the holding jig are not limited to these.

又、前記実施形態においては、線量計としてガラス線量計が用いられていたが、光(刺激)ルミネッセンス線量計(OSLD)や、熱ルミネッセンス線量計(TLD)など、電離箱以外の、電離箱より小さな他の線量計を用いることも可能である。 In the above-described embodiment, a glass dosimeter was used as a dosimeter. It is also possible to use other small dosimeters.

測定対象もCTDIvolに限定されない。 The object of measurement is not limited to CTDIvol.

10…CT線量測定用ファントム
12…電離箱挿入孔
20…ガントリ
40…ガラス線量計保持治具
42…本体部
44…ガラス線量計収容孔
46…キャップ部
50…(蛍光)ガラス線量計
52…ガラス素子
54…ホルダ
56…キャップ
60…線量測定ユニット
DESCRIPTION OF SYMBOLS 10... Phantom for CT dose measurement 12... Ionization chamber insertion hole 20... Gantry 40... Glass dosimeter holding jig 42... Body part 44... Glass dosimeter accommodation hole 46... Cap part 50... (Fluorescence) glass dosimeter 52... Glass Element 54... Holder 56... Cap 60... Dose measurement unit

Claims (8)

電離箱以外の、電離箱より小さな線量計を保持した治具をCT線量測定用ファントムに挿入してCTDIを測定するX線CTのCTDI測定方法であって、
前記治具を、前記CT線量測定用ファントムのCT用電離箱を挿入するために空けられた孔に、前記CT用電離箱の代わりに挿入することを特徴とするX線CTのCTDI測定方法。
A CTDI measurement method for X-ray CT in which a jig holding a dosimeter smaller than the ionization chamber other than the ionization chamber is inserted into a CT dose measurement phantom to measure CTDI,
A CTDI measurement method for X-ray CT, wherein the jig is inserted in place of the CT ionization chamber into a hole provided in the CT dosimetry phantom for inserting the CT ionization chamber.
前記治具が、前記線量計を前記CT線量測定用ファントムの所定位置に保持するようにされていることを特徴とする請求項1に記載のX線CTのCTDI測定方法。 2. The CTDI measurement method for X-ray CT according to claim 1, wherein said jig holds said dosimeter at a predetermined position of said CT dosimetry phantom. 前記線量計がガラス線量計であることを特徴とする請求項1又は2に記載のX線CTのCTDI測定方法。 3. The CTDI measuring method for X-ray CT according to claim 1, wherein said dosimeter is a glass dosimeter. 散乱を起こしてX線の検出を邪魔しない物質でなり、電離箱以外の、電離箱より小さな線量計を収容する部分、及び、CT線量測定用ファントムに形成されたCT用電離箱挿入孔に、CT用電離箱の代わりに挿入可能な筒状の外形を有することを特徴とするX線CTのCTDI測定用線量計保持治具。 A portion other than the ionization chamber that is made of a material that does not interfere with the detection of X-rays by causing scattering and that accommodates a dosimeter smaller than the ionization chamber , and the CT ionization chamber insertion hole formed in the CT dosimetry phantom, A dosimeter holding jig for CTDI measurement of X-ray CT, characterized by having a tubular outer shape that can be inserted in place of a CT ionization chamber. 発泡性プラスチックで形成されていることを特徴とする請求項4に記載のX線CTのCTDI測定用線量計保持治具。 5. The dosimeter holding jig for CTDI measurement of X-ray CT according to claim 4, wherein the dosimeter holding jig is made of foamed plastic. 中央に線量計を収容する孔が形成された本体部と、該本体部の線量計収容孔を覆うキャップ部と、から構成されることを特徴とする請求項4又は5に記載のX線CTのCTDI測定用線量計保持治具。 6. An X-ray CT according to claim 4 or 5, comprising: a main body having a hole for accommodating a dosimeter in the center thereof; and a cap covering the dosimeter-accommodating hole of the main body. Dosimeter holding jig for CTDI measurement. 線量計保持治具に電離箱以外の、電離箱より小さな線量計を挿入して線量測定ユニットとし、
該線量測定ユニットをCT線量測定用ファントムに形成されたCT用電離箱挿入孔に、
CT用電離箱の代わりに挿入して、
X線を照射し、
透過したX線を検出することを特徴とするX線CTのCTDI測定方法。
A dosimeter other than the ionization chamber, which is smaller than the ionization chamber, is inserted into the dosimeter holding jig to form a dosimeter unit,
The dosimetry unit is inserted into the CT ionization chamber insertion hole formed in the CT dosimetry phantom,
Insert instead of ionization chamber for CT,
irradiate with X-rays,
A CTDI measuring method for X-ray CT, characterized by detecting transmitted X-rays.
電離箱以外の、電離箱より小さな線量計と、
該線量計が挿入される保持治具と、
該保持治具に前記線量計が挿入された線量測定ユニットと、
CT用電離箱挿入孔が形成され、該CT用電離箱挿入孔に、前記線量測定ユニットがCT用電離箱の代わりに挿入されるCT線量測定用ファントムと、
該CT線量測定用ファントムにX線を照射する手段と、
前記CT線量測定用ファントムを透過したX線を検出する手段と、
を備えたことを特徴とするX線CTのCTDI測定装置。
a dosimeter, other than the ionization chamber, smaller than the ionization chamber;
a holding jig into which the dosimeter is inserted;
A dose measurement unit in which the dosimeter is inserted into the holding jig;
a CT dosimetry phantom in which a CT ionization chamber insertion hole is formed and the dose measurement unit is inserted into the CT ionization chamber insertion hole instead of the CT ionization chamber;
means for irradiating the CT dosimetry phantom with X-rays;
means for detecting X-rays transmitted through the CT dosimetry phantom;
An X-ray CT CTDI measuring device comprising:
JP2018123725A 2018-06-28 2018-06-28 X-ray CT CTDI measurement method, dosimeter holding jig therefor, and X-ray CT CTDI measurement method and apparatus using the same Active JP7181576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018123725A JP7181576B2 (en) 2018-06-28 2018-06-28 X-ray CT CTDI measurement method, dosimeter holding jig therefor, and X-ray CT CTDI measurement method and apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018123725A JP7181576B2 (en) 2018-06-28 2018-06-28 X-ray CT CTDI measurement method, dosimeter holding jig therefor, and X-ray CT CTDI measurement method and apparatus using the same

Publications (2)

Publication Number Publication Date
JP2020000557A JP2020000557A (en) 2020-01-09
JP7181576B2 true JP7181576B2 (en) 2022-12-01

Family

ID=69097659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018123725A Active JP7181576B2 (en) 2018-06-28 2018-06-28 X-ray CT CTDI measurement method, dosimeter holding jig therefor, and X-ray CT CTDI measurement method and apparatus using the same

Country Status (1)

Country Link
JP (1) JP7181576B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121733A (en) 1998-10-09 2000-04-28 Hitachi Medical Corp Jig for dosage measurement
JP2011239830A (en) 2010-05-14 2011-12-01 Gunma Univ Multipurpose phantom and using method thereof
US20150316657A1 (en) 2014-05-02 2015-11-05 Mark Ruschin Multi-modality dosimeter for use with arc-based radiotherapy quality assurance phantom
WO2016148269A1 (en) 2015-03-19 2016-09-22 国立大学法人東北大学 Variable phantom, method for planning radiation treatment, and program
JP2016174863A (en) 2015-03-23 2016-10-06 学校法人北里研究所 Phantom for x-ray ct apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121733A (en) 1998-10-09 2000-04-28 Hitachi Medical Corp Jig for dosage measurement
JP2011239830A (en) 2010-05-14 2011-12-01 Gunma Univ Multipurpose phantom and using method thereof
US20150316657A1 (en) 2014-05-02 2015-11-05 Mark Ruschin Multi-modality dosimeter for use with arc-based radiotherapy quality assurance phantom
WO2016148269A1 (en) 2015-03-19 2016-09-22 国立大学法人東北大学 Variable phantom, method for planning radiation treatment, and program
JP2016174863A (en) 2015-03-23 2016-10-06 学校法人北里研究所 Phantom for x-ray ct apparatus

Also Published As

Publication number Publication date
JP2020000557A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
Zhang et al. A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms
JP5207138B2 (en) Dose measurement method, phantom used in this dose measurement method, and X-ray imaging apparatus
JP2008011922A (en) Correction phantom for diagnostic apparatus
Lavoie et al. Characterization of a commercially-available, optically-stimulated luminescent dosimetry system for use in computed tomography
Figueroa et al. TLD assessment of mouse dosimetry during microCT imaging
US9936935B1 (en) Phantom systems and methods for diagnostic radiographic and fluoroscopic X-ray equipment
JP7181576B2 (en) X-ray CT CTDI measurement method, dosimeter holding jig therefor, and X-ray CT CTDI measurement method and apparatus using the same
Maraghechi et al. Filmless quality assurance of a Leksell Gamma Knife® Icon™
KR101823958B1 (en) Phantom dosimeter and phantom dosimeter system using the same
KR101820863B1 (en) Phantom device for radiation dosimetry
Trichter et al. 15 years of 106Ru eye plaque dosimetry at Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical Center using radiochromic film in a Solid Water phantom
KR101518289B1 (en) Cylindric Phantom for Measurement of Standard Uptake Value
Vrigneaud et al. Application of the optically stimulated luminescence (OSL) technique for mouse dosimetry in micro‐CT imaging
KR101752972B1 (en) Phantom apparatus for measuring dose of brachytherapy radiation
Campelo et al. CTDI versus New AAPM Metrics to assess Doses in CT: a case study
JP6164362B2 (en) Breast examination imaging device
Goldstein Exposure and dose in panoramic radiology
Batista et al. Assessment of protocols in cone-beam CT with symmetric and asymmetric beams usingeffective dose and air kerma-area product
Zink et al. The measurement of radiation dose profiles for electron‐beam computed tomography using film dosimetry
Adrien et al. A new Monte Carlo tool for organ dose estimation in computed tomography
JP2006263353A (en) Quality inspecting method and instrument for radiation source
US7368720B2 (en) Collimators for an array of radioactive lines for use on a spect system for non-uniform attenuation correction measurements
Delage Radiochromic film dosimetry system: from calibration to in vivo measurements and intensity-modulated radiation therapy quality assurance measurements
Gopan Charge-coupled device-based detector array for dose quantification at diagnostic energies
Mendez et al. Development of a phantom for dosimetric comparison of murine micro‐CT protocols with optically stimulated luminescent dosimeters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210512

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221111

R150 Certificate of patent or registration of utility model

Ref document number: 7181576

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150