WO2016148217A1 - Wiring substrate - Google Patents

Wiring substrate Download PDF

Info

Publication number
WO2016148217A1
WO2016148217A1 PCT/JP2016/058424 JP2016058424W WO2016148217A1 WO 2016148217 A1 WO2016148217 A1 WO 2016148217A1 JP 2016058424 W JP2016058424 W JP 2016058424W WO 2016148217 A1 WO2016148217 A1 WO 2016148217A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
terms
insulating substrate
wiring layer
wiring board
Prior art date
Application number
PCT/JP2016/058424
Other languages
French (fr)
Japanese (ja)
Inventor
梅田勇治
伊藤陽彦
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2017506599A priority Critical patent/JP6609622B2/en
Priority to CN201680016103.4A priority patent/CN107409472B/en
Publication of WO2016148217A1 publication Critical patent/WO2016148217A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a wiring board, for example, a wiring board suitable for use in a ceramic package, a high-frequency circuit board, or the like in which elements such as vibrators are mounted.
  • a wiring board having an insulating substrate made of ceramic such as alumina As a conventional wiring board, for example, a wiring board having an insulating substrate made of ceramic such as alumina, the wiring board described in, for example, Japanese Patent No. 3827447, Japanese Patent No. 3493310, Japanese Patent No. 3537698, and Japanese Patent No. 3898400 It has been known.
  • Japanese Patent No. 3827447 discloses an insulating substrate formed by laminating a plurality of insulating layers made of aluminum oxide ceramics having an average crystal grain size of a main crystal phase of 1.5 to 5.0 ⁇ m, and disposed inside the insulating substrate. There is described a wiring board having an internal wiring layer and a surface wiring layer disposed on the surface of the insulating substrate.
  • the copper diffusion distance to the ceramic around the internal wiring layer is 20 ⁇ m or less
  • the surface roughness (Ra) of the substrate surface on which the surface wiring layer of the insulating substrate is formed is 1 ⁇ m or less. It consists of the skin surface.
  • Japanese Patent No. 3493310 discloses a wiring board comprising a ceramic insulating substrate, and a surface wiring layer and an internal wiring layer formed on the inside and the surface of the insulating substrate by simultaneous firing with the insulating substrate.
  • the surface wiring layer contains 10 to 70% by volume of copper and 30 to 90% by volume of tungsten and / or molybdenum, and a metal layer is coated on the surface of the surface wiring layer by a plating method. It is formed by wearing.
  • the internal wiring layer contains 20 to 80% by volume of copper and 20 to 80% by volume of tungsten and / or molybdenum.
  • the sheet resistance of the surface wiring layer on which the internal wiring layer and the metal layer are deposited is 6 m ⁇ / sq. It is as follows.
  • Japanese Patent No. 3537698 discloses an insulating substrate made of a ceramic having a relative density of 95% or more, containing aluminum as a main component and containing a manganese compound in a ratio of 2.0 to 10.0% by weight in terms of MnO 2 , A wiring substrate having a surface wiring layer on at least the surface of an insulating substrate is described.
  • the surface wiring layer is formed by co-firing with an insulating substrate and contains 10 to 70% by volume of copper and 30 to 90% by volume of tungsten and / or molybdenum, and in a matrix made of copper. Tungsten and / or molybdenum is dispersed and contained as particles having an average particle diameter of 1 to 10 ⁇ m.
  • an insulating substrate made of ceramics mainly composed of alumina is 10 to 70% by volume of Cu (copper) melted during firing, tungsten (W) particles and / or molybdenum (Mo )
  • a wiring board on which a metallized wiring layer containing particles in a proportion of 30 to 90% by volume is deposited is described.
  • Cu and tungsten particles and / or molybdenum particles in the metallized wiring layer are not separated, and the surface of the metallized wiring layer has a surface roughness (Ra) of 2.5 to 4.5 ⁇ m. It has become.
  • the present invention has been made in consideration of such problems, and provides a wiring board that can be produced at a low firing temperature and that can improve the adhesion of the wiring layer to the insulating board. Objective.
  • a wiring board according to the present invention is a wiring board having an insulating substrate, a surface wiring layer disposed on a surface of the insulating substrate, and an internal wiring layer disposed inside the insulating substrate.
  • the insulating substrate has a crystal phase of at least Al 2 O 3 or a compound containing Al 2 O 3 as a main crystal phase, the crystal grain size of the Al 2 O 3 is less than 1.5 ⁇ m, and the surface wiring
  • the layer and the internal wiring layer include copper and tungsten, copper and molybdenum, or copper, tungsten, and molybdenum, and the grain size of the tungsten and molybdenum is less than 1.0 ⁇ m, and the surface wiring layer and the surface of the internal wiring layer
  • the roughness Ra is less than 2.5 ⁇ m.
  • the surface roughness Ra is more preferably 2.0 ⁇ m or less.
  • At least the surface wiring layer has an adhesive strength of 2 kg or more with the insulating substrate.
  • the insulating substrate is preferably a sintered body.
  • the sintering is preferably performed at a temperature of 1200 to 1350 ° C.
  • the temperature is preferably 1200 to 1300 ° C.
  • the insulating substrate may include only a BaAl 2 Si 2 O 8 crystal phase in addition to the main crystal phase.
  • the insulating substrate is composed of 89.0 to 92.0 mass% of Al in terms of Al 2 O 3 , 2.0 to 5.0 mass% of Si in terms of SiO 2 , and Mn in terms of MnO. It is preferable to contain 2.0 to 5.0 mass%, Mg is 0 to 2.0 mass% in terms of MgO, and Ba is 0.05 to 2.0 mass% in terms of BaO.
  • the insulating substrate may have Al 2 O 3 and ZrO 2 as a main crystal phase, and Mn 3 Al 2 (SiO 4 ) 3 or MgAl 2 O 4 in addition to the main crystal phase. .
  • the insulating substrate may have a crystal phase of 3Al 2 O 3 .2SiO 2 as a main crystal phase and Al 2 O 3 and ZrO 2 in addition.
  • Al is 40.0 to 70.0% by mass in terms of Al 2 O 3
  • Zr is 5.0 to 40.0% by mass in terms of ZrO 2
  • Si is 10.0 to in terms of SiO 2 It is preferable that 30.0% by mass and Mn is contained in an amount of 2.0 to 8.0% by mass in terms of MnO.
  • Ba is contained when the total of Al 2 O 3 , ZrO 2 , SiO 2 and MnO is 100 mass%, including at least one element of Ba, Ti, Y, Ca and Mg. If includes 1.5 mass% or less in terms of BaO, if it contains Ti, wherein 1.5 wt% or less in terms of TiO 2, if it contains Y, more than 1.5 wt% in terms of Y 2 O 3 If it contains Ca, it may contain 1.5 mass% or less in terms of CaO, and if it contains Mg, it may contain 1.5 mass% or less in terms of MgO.
  • the wiring board according to the present invention can be manufactured at a low firing temperature, and the adhesion of the wiring layer to the insulating substrate can be improved.
  • FIG. 1 is a cross-sectional view showing a ceramic package having a wiring board according to the present embodiment.
  • FIG. 2 is a process block diagram showing a method for manufacturing a ceramic package.
  • indicating a numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
  • the ceramic package 10 is configured by laminating a wiring board 12 according to the present embodiment, a frame body 14, and a lid body 16 in this order.
  • the wiring substrate 12 includes an insulating substrate 18, an upper surface wiring layer 20 formed on the upper surface of the insulating substrate 18, a lower surface wiring layer 22 formed on the lower surface of the insulating substrate 18, and an internal formed inside the insulating substrate 18.
  • a crystal resonator 30 is electrically connected to the upper surface wiring layer 20 via a conductor layer 32 in a housing space 28 surrounded by the upper surface of the insulating substrate 18 and the frame body 14. Further, in order to protect the crystal unit 30, the lid body 16 is hermetically sealed on the upper surface of the frame body 14 via the glass layer 34.
  • the crystal resonator 30 is mounted in the accommodation space 28 in the ceramic package 10 described above.
  • at least one of a resistor, a filter, a capacitor, and a semiconductor element may be mounted. .
  • the insulating substrate 18, the frame body 14, and the lid body 16 constituting the ceramic package 10 are made of the same ceramic substrate.
  • the ceramic substrate constituting the insulating substrate 18 and the like includes Al 2 O 3 as a main crystal phase and includes only a BaAl 2 Si 2 O 8 crystal phase.
  • Al is 89.0 to 92.0 mass% in terms of Al 2 O 3
  • Si is 2.0 to 5.0 mass% in terms of SiO 2
  • Mn is 2.0 to 5 mass in terms of MnO. It is preferable to contain 0% by mass, 0 to 2.0% by mass of Mg in terms of MgO, and 0.05 to 2.0% by mass of Ba in terms of BaO.
  • the insulating substrate 18 or the like is composed of 89.0 to 92.0% by mass of Al 2 O 3 powder, 2.0 to 5.0% by mass of SiO 2 powder, and 3.2 to 8.1% by mass of MnCO 3 powder ( 2.0 to 5.0 mass% in terms of MnO), 0 to 2.0 mass% in MgO powder, 0.06 to 2.6 mass% in BaCO 3 powder (0.05 to 2.0 mass in terms of BaO) %)), And then the molded body is fired at 1200 to 1350 ° C. (preferably 1200 to 1300 ° C.).
  • the average particle size of the raw material is 0.3 to 2.5 ⁇ m
  • the crystal grain size of Al 2 O 3 when formed into a sintered body is It is preferably 0.3 to 1.5 ⁇ m.
  • the crystal grain size of Al 2 O 3 is more preferably 0.5 to 1.0 ⁇ m.
  • the average particle size of the raw material is the integrated amount of passage from the small particle size side (integrated passage fraction) in the volume-based particle size distribution obtained by measuring by the laser diffraction scattering type particle size distribution measurement method (LA-920, manufactured by HORIBA). ) 50% particle size.
  • the crystal grain size when the sintered body was obtained was determined as follows. That is, when the surface of the sintered body was imaged with a scanning electron microscope, the magnification of the scanning electron microscope was adjusted so that about 500 to 1000 crystal particles were captured in the entire captured image. Then, 100 or more arbitrary crystal particles in the captured image were calculated based on the average particle diameter converted to a perfect circle using image processing software.
  • MgO powder is added as a sintering aid for Al 2 O 3
  • SiO 2 powder is used as a sintering aid for Al 2 O 3
  • Mn 2 SiO 4 glass phase is generated to lower the sintering temperature. It is added to achieve BaCO 3 powder is added to suppress the formation of MnAl 2 O 4 with increased hardness.
  • any one or more of TiO 2 powder, Ce 2 O 3 powder, and Fe 3 O 4 powder is included.
  • the dielectric loss tangent is increased, it is preferable not to include it as much as possible. Even if it is included, it is 0.1% by mass or less.
  • the dielectric loss tangent is preferably 30 ⁇ 10 ⁇ 4 or less at 1 MHz to 10 GHz. More preferably, it is 15 ⁇ 10 ⁇ 4 or less, more preferably 10 ⁇ 10 ⁇ 4 or less.
  • the wiring board 12 can be applied to a high-frequency circuit board, which is preferable.
  • the insulating substrate 18 can be realized which can be sintered at a low temperature of 1200 to 1350 ° C. (preferably 1200 to 1300 ° C.) and has a bending strength of 600 MPa or more.
  • “Bending strength” refers to a four-point bending strength, which is a value measured at room temperature based on JIS R1601 (bending test method for fine ceramics).
  • the Mg content By setting the Mg content to 0 to 2.0 mass% in terms of MgO, it is possible to suppress the sintering temperature from increasing, to suppress the grain growth of alumina, and to suppress the strength reduction.
  • the Si content By setting the Si content to 2.0 to 5.0 mass% in terms of SiO 2 , it is possible to suppress a decrease in the amount of the glass phase to be generated, 1200 to 1350 ° C. (preferably 1200 to 1300 ° C.) It is easy to achieve densification in the glass, and it is possible to suppress a decrease in the softening temperature and an increase in the porosity of the produced glass. Furthermore, a decrease in bending strength can be suppressed.
  • the Mn content By setting the Mn content to 3.2 to 8.1% by mass in terms of MnCO 3 , it is possible to suppress a decrease in the amount of the glass phase to be generated, 1200 to 1350 ° C. (preferably 1200 to 1300 ° C.) It is easy to achieve densification in the glass, and it is possible to suppress a decrease in the softening temperature and an increase in the porosity of the produced glass. Furthermore, a decrease in bending strength can be suppressed.
  • the Ba content By setting the Ba content to 0.05 to 2.0% by mass in terms of BaO, it becomes easy to suppress the formation of MnAl 2 O 4 and suppress the strength reduction. In addition, it is possible to suppress the sintering temperature from increasing, to suppress the grain growth of alumina, and to suppress the strength reduction.
  • the strength of the glass phase to be generated can be increased.
  • the bending strength is increased, and the wiring according to the present embodiment Miniaturization of the ceramic package 10 using the substrate 12 can be promoted.
  • it can be produced at a low firing temperature, which is advantageous for cost reduction.
  • the generated BaAl 2 Si 2 O 8 crystal phase suppresses extremely high hardness, can reduce the chipping occurrence rate in chip division by the pressure roller, and can improve productivity. it can.
  • the bending strength is 600 MPa or more. If the bending strength is lower than 600 MPa, thermal stress may be applied during the secondary mounting to cause destruction. Alternatively, there is a risk of destruction due to an impact or the like during handling or use. If the bending strength is 600 MPa or more, such a risk of destruction can be avoided.
  • the lid body 16 of the ceramic package 10 is prevented from being broken when hermetically sealed.
  • the manufacturing cost and reliability of the ceramic package 10 can be improved.
  • the ceramic substrate constituting the insulating substrate 18 and the like since the ceramic substrate constituting the insulating substrate 18 and the like has the above-described composition, it can be sintered at a low temperature of 1200 to 1350 ° C. (preferably 1200 to 1300 ° C.). Therefore, a ceramic substrate precursor (molded body before firing), various wiring layers (upper surface wiring layer 20, lower surface wiring layer 22, internal wiring layer 24) and via holes (first via hole 26a, second via hole 26b). By simultaneous firing, the wiring board 12 can be manufactured, and the manufacturing process can be simplified.
  • various wiring layers contain copper and tungsten, copper and molybdenum, copper and tungsten and molybdenum, and the particle size of tungsten and the particle size of molybdenum (after firing) are less than 1.0 ⁇ m. More preferably, it is 0.7 ⁇ m or less.
  • the particle size of tungsten and / or molybdenum when the sintered body of tungsten contained in the various wiring layers after firing was determined as follows. That is, the magnification of the scanning electron microscope was adjusted so that when the surface of various wiring layers was imaged with a scanning electron microscope, about 500 to 1000 tungsten particles and / or molybdenum particles were captured in the entire captured image. . Then, 100 or more arbitrary tungsten particles and / or molybdenum particles in the captured image were calculated by an average particle diameter converted into a perfect circle using image processing software.
  • the surface roughness Ra of the upper surface wiring layer 20 and the lower surface wiring layer 22 is less than 2.5 ⁇ m. Preferably they are 1.7 micrometers or more and less than 2.5 micrometers, More preferably, they are 1.7 micrometers or more and 2.0 micrometers or less.
  • the surface roughness was measured on the surfaces of the upper surface wiring layer 20 and the lower surface wiring layer 22 with a laser microscope (manufactured by Keyence Corporation: VK-9700) at a magnification of 500 times.
  • the upper surface wiring layer 20 and the lower surface wiring layer 22 had an adhesive strength with the insulating substrate 18 of 2 kg or more. Within this range, the upper surface wiring layer 20 and the lower surface wiring layer 22 are peeled off (including partial peeling and all peeling) during the manufacturing process of the wiring board 12, transportation, and the process of using as the ceramic package 10. This contributes to improvement in yield and reliability.
  • the adhesive strength is a concept representing the adhesion between the insulating substrate 18 and the conductor (the upper surface wiring layer 20 and the lower surface wiring layer 22).
  • a lead wire obtained by bending a 0.6 mm diameter tin-coated annealed copper wire into an L-shape is soldered to a conductor pattern having a square shape and a side length of 2 mm, and a tensile speed of 20 mm / sec. The tensile strength when pulled vertically.
  • This conductor pattern may be plated with Ni to ensure solder wettability.
  • step S1a of FIG. 2 the Al 2 O 3 powder is 89.0 to 92.0% by mass, the SiO 2 powder is 2.0 to 5.0% by mass, and the MnCO 3 powder is 3.2 to 8.1%.
  • a mixed powder containing 1% by mass, 0 to 2.0% by mass of MgO powder and 0.06 to 2.6% by mass of BaCO 3 powder is prepared.
  • step S1b an organic component (binder) is prepared, and step S1c Prepare a solvent.
  • the average particle size of the Al 2 O 3 powder is preferably 0.3 to 2.5 ⁇ m.
  • the average particle size of the SiO 2 powder is preferably 0.1 to 2.5 ⁇ m.
  • the average particle size of the MnCO 3 powder is preferably 0.5 to 4.0 ⁇ m.
  • the average particle size of the MgO powder is preferably 0.1 to 1.0 ⁇ m.
  • the average particle size of the BaCO 3 powder is preferably 0.5 to 4.0 ⁇ m.
  • Examples of the organic component (binder) prepared in step S1b include a resin, a surfactant, and a plasticizer.
  • examples of the resin include polyvinyl butyral
  • examples of the surfactant include tertiary amines
  • examples of the plasticizer include phthalic acid esters (for example, diisononyl phthalate: DINP).
  • Examples of the solvent prepared in step S1c include alcohol solvents and aromatic solvents.
  • Examples of the alcohol solvent include IPA (isopropyl alcohol), and examples of the aromatic solvent include toluene.
  • step S2 after mixing and dispersing the organic component and the solvent in the above-mentioned mixed powder, in step S3, by a known molding method such as a press method, a doctor blade method, a rolling method, an injection method, A ceramic molded body (also referred to as a ceramic tape) that is a precursor of the ceramic substrate is produced.
  • a known molding method such as a press method, a doctor blade method, a rolling method, an injection method
  • a ceramic molded body also referred to as a ceramic tape
  • an organic component or a solvent is added to the mixed powder to prepare a slurry, and then a ceramic tape having a predetermined thickness is formed by a doctor blade method.
  • an organic component is added to the mixed powder, and a ceramic tape having a predetermined thickness is produced by press molding, rolling molding, or the like.
  • step S4 the ceramic tape is cut and processed into a desired shape, a first tape having a large area for the first substrate, a second tape having a large area for the second substrate, and a third tape for the frame. Then, a fourth tape for the lid is produced, and further, through holes for forming the first via hole 26a and the second via hole 26b are formed by micro drilling, laser processing, or the like.
  • step S5 a conductive paste for forming the upper surface wiring layer 20, the lower surface wiring layer 22, and the internal wiring layer 24 is screen-printed and gravured on the first tape and the second tape manufactured as described above. Printing is applied by a method such as printing, and a conductive paste is filled in the through holes as desired.
  • Conductor paste uses a mixture of Cu and W, or a mixture of Cu and Mo, or a mixture of Cu, W and Mo as a conductor component, and this is equivalent to Al 2 O 3 powder, SiO 2 powder, or ceramic substrate
  • the powder is preferably added in an amount of, for example, 1 to 20% by mass, particularly 8% by mass or less.
  • step S6 the first tape and the second tape on which the conductive paste is printed and applied, and the third tape for the frame are aligned and laminated and pressure-bonded to produce a laminated body.
  • step S7 dividing grooves for dividing the chip are formed on both surfaces of the laminate by, for example, knife cutting.
  • a laminated original plate (multiple substrate) in which the laminate and the conductor paste are simultaneously fired is produced.
  • this firing as described above, it is possible to produce a ceramic substrate having a crystal phase of Al 2 O 3 as a main crystal phase and including only a BaAl 2 Si 2 O 8 crystal phase, that is, a multi-chip substrate. it can.
  • the oxidation of the metal in the conductor paste can be prevented by performing the firing atmosphere in the forming gas atmosphere as described above.
  • the firing temperature is preferably in the temperature range described above. When the firing temperature is lower than 1200 ° C., the densification is insufficient and the bending strength does not reach 600 MPa. When the firing temperature is higher than 1350 ° C., the first tape, the second tape, and the third tape constituting the laminated body Variations in shrinkage rate increase and dimensional accuracy decreases. This leads to a decrease in yield and increases the cost. Of course, the higher the firing temperature, the more expensive the equipment.
  • step S9 the above-mentioned multi-chip substrate is plated, and the upper wiring layer 20 and the lower wiring layer 22 formed on the surface of the multi-chip substrate are coated with Ni, Co, Cr, Au.
  • a plating layer made of at least one of Pd and Cu is formed.
  • step S10 the multi-piece substrate is pressed with a pressing roller or the like and divided into a plurality of pieces (chip division), and a plurality of wiring boards 12 having the accommodation spaces 28 are produced.
  • step S ⁇ b> 11 the crystal resonator 30 is mounted on the upper surface wiring layer 20 via the conductor layer 32 in each accommodation space 28 of the plurality of wiring boards 12.
  • step S12 the quartz resonator 30 is mounted on the upper surface of each wiring substrate 12 by hermetically sealing the ceramic substrate 16 with the sealing glass layer 34 formed thereon. A plurality of ceramic packages 10 are completed.
  • the crystal phase is a ceramic having Al 2 O 3 as the main crystal phase and only including the BaAl 2 Si 2 O 8 crystal phase and a bending strength of 600 MPa or more.
  • a substrate can be made. That is, a ceramic substrate capable of reducing the size and thickness of the ceramic package 10 and the like and improving the bending strength can be produced at a low firing temperature, and the cost of the ceramic substrate and the product using the ceramic substrate can be reduced. Can be reduced.
  • the ceramic substrate constituting the insulating substrate 18 of the ceramic package 10 described above is configured such that the crystal phase includes Al 2 O 3 as the main crystal phase and the BaAl 2 Si 2 O 8 crystal phase alone.
  • the ceramic bodies according to the first to third modifications to be described may be employed.
  • the crystal phase includes Al 2 O 3 and ZrO 2 as the main crystal phase, and the crystal phase includes Mn 3 Al 2 (SiO 4 ) 3 or MgAl 2 O 4 .
  • Mg is preferably contained in an amount of 0 to 2.0% by mass in terms of MgO.
  • the ceramic substrate according to the first modification is, for example, 70.0 to 90.0% by mass of Al 2 O 3 powder, 10.0 to 30.0% by mass of ZrO 2 powder, and 2.0 to 7. After forming a molded body containing 0% by mass, SiO 2 powder 2.0-7.0% by mass, BaO powder 0.5-2.0% by mass, MgO powder 0-2.0% by mass, The compact is produced by firing at 1200 to 1350 ° C. The bending strength of this ceramic substrate is 650 MPa or more.
  • the crystal phase includes 3Al 2 O 3 .2SiO 2 as a main crystal phase, and includes Al 2 O 3 and ZrO 2 in addition.
  • Al is 40.0 to 70.0% by mass in terms of Al 2 O 3
  • Zr is 5.0 to 40.0% by mass in terms of ZrO 2
  • Si is 10.0 to 30 in terms of SiO 2. It is preferable that 0.0% by mass and Mn be contained in an amount of 2.0 to 8.0% by mass in terms of MnO.
  • At least one element of Ba, Ti, Y, Ca, and Mg may be included.
  • the total of Al 2 O 3 , ZrO 2 , SiO 2 and MnO is 100% by mass
  • when Ba is included 1.5% by mass or less in terms of BaO is included
  • when Ti is included 1 in terms of TiO 2 It includes .5 wt% or less
  • it contains Ca comprises 1.5 wt% or less in terms of CaO
  • the ceramic substrate according to the second modification is, for example, 3Al 2 O 3 .2SiO 2 (mullite) powder of 50.0 to 93.0 mass%, ZrO 2 powder of 5.0 to 40.0 mass%, Al 2 O 3 After forming a compact containing 0 to 36.0% by mass of powder, 0 to 16.0% by mass of SiO 2 powder, and 2.0 to 8.0% by mass of MnO powder, It is produced by firing at 0 ° C. The bending strength of this ceramic substrate is 450 MPa or more.
  • the wiring board using the ceramic substrate according to the first modification and the second modification described above can also be sintered at a low temperature, and the adhesion of the wiring layer to the insulating board can be improved. It can be.
  • the example in which the wiring board is applied to the ceramic package is shown, but it can also be applied to a high-frequency circuit board or the like.
  • Examples 1 to 9 and Comparative Example 1 a wiring board similar to the wiring board 12 shown in FIG. 1 was prepared, and the sheet resistance of the surface wiring layer and the internal wiring layer, the W contained in the surface wiring layer and the internal wiring layer, and The grain size of Mo, the surface roughness Ra of the surface wiring layer, and the crystal grain size, crystal phase, bending strength (bending strength) of the insulating substrate 18 and adhesion strength of the surface wiring layer were confirmed.
  • the upper surface wiring layer, the lower surface wiring layer and the internal wiring layer shown in FIG. 1 were formed, and the formation of the first via hole and the second via hole was omitted.
  • Al 2 O 3 powder was used as the main component of the raw material powder.
  • the average particle diameter of the Al 2 O 3 powder is 1.1 ⁇ m.
  • the composition of the insulating substrate after firing was Al 2 O 3 : 92.5% by mass, SiO 2 : 4.0% by mass, MnO: 2.9% by mass, MgO: 0.3% by mass, BaO: 0. .2% by mass.
  • Insulating substrate No. 2 Insulating substrate No. 1 except that the average particle size of the Al 2 O 3 powder is 0.5 ⁇ m. Same as 1.
  • the composition of the insulating substrate after firing was Al 2 O 3 : 89.6 mass%, SiO 2 : 5.6 mass%, MnO: 4.1 mass%, MgO: 0.4 mass%, BaO: 0.3 Except for the mass%, the insulation substrate No. Same as 2.
  • Al 2 O 3 powder and ZrO 2 powder were used as the main component of the raw material powder. Among them, the average particle diameter of the Al 2 O 3 powder is 1.1 ⁇ m.
  • the composition of the insulating substrate after firing was Al 2 O 3 : 68.8% by mass, ZrO 2 : 18.7% by mass, SiO 2 : 4.8% by mass, MnO: 5.3% by mass, MgO: 1.0% by mass and BaO: 1.3% by mass.
  • Insulating substrate No. 5 3Al 2 O 3 .2SiO 2 powder and ZrO 2 powder were used as the main component of the raw material powder.
  • the composition of the insulating substrate after firing was as follows: Al 2 O 3 : 50.5% by mass, ZrO 2 : 24.1% by mass, SiO 2 : 19.9% by mass, MnO: 4.4% by mass, BaO: 1.1% by mass.
  • Al 2 O 3 powder was used as the main component of the raw material powder.
  • the average particle diameter of the Al 2 O 3 powder is 1.8 ⁇ m.
  • the composition of the insulating substrate after firing is Al 2 O 3 : 94.0% by mass, SiO 2 : 3.0% by mass, and MgO: 3.0% by mass.
  • DINP diisononyl phthalate
  • a conductive paste for forming a surface wiring layer (upper surface wiring layer, lower surface wiring layer) and an internal wiring layer was printed and applied to the first tape and the second tape.
  • the conductor paste used a mixture of Cu and W as a conductor component.
  • the composition of the conductor part after baking is Cu: 12 vol%, W: 88 vol%.
  • the laminated body, the third tape, and the fourth tape are fired in a forming gas atmosphere having a firing temperature (maximum temperature) of 1350 ° C. and H 2 + N 2 , and the wiring substrate, the first ceramic substrate, and the first ceramic substrate according to the first embodiment.
  • Two ceramic substrates were produced.
  • the surface wiring layer and the internal wiring layer were formed by simultaneous firing.
  • the first ceramic substrate is used for confirming the crystal grain size and the crystal phase
  • the production of the first ceramic substrate and the second ceramic substrate is the same in the following Examples 2 to 9 and Comparative Example 1.
  • the upper surface wiring layer has a square planar shape and a side length of 2 mm for measuring the adhesive strength.
  • Example 2 The same as Example 1 except that the composition of the conductor part after firing for forming the surface wiring layer (upper surface wiring layer, lower surface wiring layer) and the internal wiring layer was Cu: 18 vol%, W: 82 vol% Thus, a wiring board according to Example 2 was produced.
  • Example 3 Insulation substrate No. 2 using the raw material powder, the composition of the conductor part after firing was Cu: 23 vol%, W: 77 vol%, and the firing temperature (maximum temperature) was 1270 ° C. A wiring board according to Example 3 was produced.
  • Example 4 A wiring board according to Example 4 was produced in the same manner as in Example 3 except that the composition of the conductor part after firing was Cu: 35 vol% and W: 65 vol%.
  • Example 5 Insulation substrate No. 3, the composition of the conductor part after firing was Cu: 45 vol%, W: 55 vol%, and the firing temperature (maximum temperature) was 1200 ° C. A wiring board according to Example 5 was produced.
  • Example 6 A wiring board according to Example 6 was produced in the same manner as in Example 5 except that the composition of the conductor part after firing was Cu: 53 vol% and W: 47 vol%.
  • Example 7 is the same as Example 5 except that a mixture of Cu and Mo was used as the conductor component of the conductor paste, and the composition of the conductor part after firing was Cu: 53 vol% and Mo: 47 vol%. The wiring board which concerns on was produced.
  • Example 8 Insulation substrate No.
  • the raw material powder of No. 4 was used, the composition of the conductor part after firing was Cu: 15 vol%, W: 85 vol%, and the firing temperature (maximum temperature) was 1310 ° C.
  • a wiring board according to Example 8 was produced.
  • Example 9 Insulation substrate No. 5 using the raw material powder, the composition of the conductor part after firing was Cu: 25 vol%, W: 75 vol%, and the firing temperature (maximum temperature) was 1290 ° C. A wiring board according to Example 9 was produced.
  • Sheet resistance Each sheet resistance of the upper surface wiring layer, the lower surface wiring layer, and the internal wiring layer was measured by a four-terminal method, and the average value was defined as the sheet resistance.
  • Adhesive strength A lead wire obtained by bending a tin-coated annealed copper wire having a diameter of 0.6 mm into an L-shape was soldered to an upper surface wiring layer having a square shape and a side length of 2 mm, and was pulled vertically at a pulling speed of 20 mm / sec. The tensile strength was measured. The evaluation criteria are divided into three stages A, B, and C with the adhesive strength of 2 kg as the boundary, and the highest adhesive strength range is A, and the evaluation strengths B, C are evaluated in order as the adhesive strength decreases. did. Also, the evaluation strength D was less than 2 kg of adhesive strength.
  • the crystal grain size, crystal phase and bending strength (bending strength) of the insulating substrate were confirmed as follows.
  • Crystal phase Each first ceramic substrate was identified by X-ray diffraction. As a criterion for determining whether or not a crystal phase is contained, the main peak intensity of 3% or more of the intensity of the main peak (104 plane) of alumina was assumed. That is, the contained crystal phase was confirmed based on the position of the main peak intensity (peak position) of 3% or more, the Miller index, the lattice constant, and the like with respect to the intensity of the main peak of alumina.
  • the crystal grain size of Al 2 O 3 is less than 1.5 ⁇ m
  • the grain size of tungsten or molybdenum is less than 1.0 ⁇ m
  • the surface roughness Ra of the surface wiring layer is 2. It was less than 5 ⁇ m.
  • the sheet resistance of the surface wiring layer and the internal wiring layer was 6.0 m ⁇ / sq.
  • the adhesive strength was 2 kg or more.
  • the crystal grain size of Al 2 O 3 is less than 1.0 ⁇ m and the surface roughness Ra of the surface wiring layer is less than 2.0 ⁇ m.
  • the sheet resistance of the wiring layer is 3.0 m ⁇ / sq.
  • the adhesive strength was also evaluated as A.
  • Comparative Example 1 the evaluation of the adhesive strength was D. This is presumably because the crystal grain size of the insulating substrate is as large as 4.0 ⁇ m, and the surface roughness Ra of the surface wiring layer is as large as 3.0 ⁇ m, so that the adhesion of the surface wiring layer to the insulating substrate is reduced. In Comparative Example 1, the sheet resistance of the surface wiring layer and the internal wiring layer was 8.0 m ⁇ / sq. It was high. Furthermore, since the insulating substrate of Comparative Example 1 had only the Al 2 O 3 crystal phase as the crystal phase, the bending strength was as low as 550 MPa.
  • the wiring board according to the present invention is not limited to the above-described embodiment, and various configurations can be adopted without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

The present invention relates to a wiring substrate. This wiring substrate (12) comprises an insulating substrate (18), surface wiring layers (20, 22) that are provided on the surface of the insulating substrate (18), and an internal wiring layer (24) that is provided within the insulating substrate (18). The crystal phase of the insulating substrate (18) comprises at least Al2O3 or a compound containing Al2O3 as the main crystal phase, and the crystal grain size of Al2O3 is less than 1.5 μm. The surface wiring layers and the internal wiring layer contain copper and tungsten, copper and molybdenum, or copper, tungsten and molybdenum; and the grain sizes of tungsten and molybdenum are less than 1.0 μm. The surface wiring layers and the internal wiring layer have surface roughnesses Ra of less than 2.5 μm.

Description

配線基板Wiring board
 本発明は、配線基板に関し、例えば内部に振動子等の素子が実装されるセラミック製のパッケージや高周波用回路基板等に用いて好適な配線基板に関する。 The present invention relates to a wiring board, for example, a wiring board suitable for use in a ceramic package, a high-frequency circuit board, or the like in which elements such as vibrators are mounted.
 従来の配線基板、例えばアルミナ等のセラミックを用いた絶縁基板を有する配線基板として、例えば特許第3827447号公報、特許第3493310号公報、特許第3537698号公報及び特許第3898400号公報に記載の配線基板が知られている。 As a conventional wiring board, for example, a wiring board having an insulating substrate made of ceramic such as alumina, the wiring board described in, for example, Japanese Patent No. 3827447, Japanese Patent No. 3493310, Japanese Patent No. 3537698, and Japanese Patent No. 3898400 It has been known.
 特許第3827447号公報には、主結晶相の平均結晶粒径が1.5~5.0μmの酸化アルミニウム質セラミックスからなる複数の絶縁層を積層してなる絶縁基板と、絶縁基板内部に配設された内部配線層と、絶縁基板表面に配設された表面配線層とを具備した配線基板が記載されている。この配線基板は、内部配線層の周囲のセラミックスへの銅の拡散距離が20μm以下であり、且つ、絶縁基板の表面配線層が形成された基板表面の表面粗さ(Ra)が1μm以下の焼き肌面からなる。 Japanese Patent No. 3827447 discloses an insulating substrate formed by laminating a plurality of insulating layers made of aluminum oxide ceramics having an average crystal grain size of a main crystal phase of 1.5 to 5.0 μm, and disposed inside the insulating substrate. There is described a wiring board having an internal wiring layer and a surface wiring layer disposed on the surface of the insulating substrate. In this wiring board, the copper diffusion distance to the ceramic around the internal wiring layer is 20 μm or less, and the surface roughness (Ra) of the substrate surface on which the surface wiring layer of the insulating substrate is formed is 1 μm or less. It consists of the skin surface.
 特許第3493310号公報には、セラミック製の絶縁基板と、該絶縁基板の内部及び表面に絶縁基板と同時焼成によって形成された表面配線層及び内部配線層とを具備した配線基板が記載されている。この配線基板は、表面配線層が、銅を10~70体積%、タングステン及び/又はモリブデンを30~90体積%の割合で含有し、該表面配線層の表面に、金属層をめっき法によって被着形成してなる。内部配線層は、銅を20~80体積%、タングステン及び/又はモリブデンを20~80体積%の割合で含有する。内部配線層及び金属層が被着形成された表面配線層のシート抵抗はいずれも6mオーム/sq.以下である。 Japanese Patent No. 3493310 discloses a wiring board comprising a ceramic insulating substrate, and a surface wiring layer and an internal wiring layer formed on the inside and the surface of the insulating substrate by simultaneous firing with the insulating substrate. . In this wiring substrate, the surface wiring layer contains 10 to 70% by volume of copper and 30 to 90% by volume of tungsten and / or molybdenum, and a metal layer is coated on the surface of the surface wiring layer by a plating method. It is formed by wearing. The internal wiring layer contains 20 to 80% by volume of copper and 20 to 80% by volume of tungsten and / or molybdenum. The sheet resistance of the surface wiring layer on which the internal wiring layer and the metal layer are deposited is 6 mΩ / sq. It is as follows.
 特許第3537698号公報には、アルミニウムを主成分とし、マンガン化合物をMnO2換算で2.0~10.0重量%の割合で含有する相対密度が95%以上のセラミックスからなる絶縁基板と、該絶縁基板の少なくとも表面に表面配線層を具備してなる配線基板が記載されている。表面配線層は、絶縁基板との同時焼成によって形成され、且つ、銅を10~70体積%、タングステン及び/又はモリブデンを30~90体積%の割合で含有し、且つ、銅からなるマトリックス中にタングステン及び/又はモリブデンが平均粒径1~10μmの粒子として分散含有してなる。 Japanese Patent No. 3537698 discloses an insulating substrate made of a ceramic having a relative density of 95% or more, containing aluminum as a main component and containing a manganese compound in a ratio of 2.0 to 10.0% by weight in terms of MnO 2 , A wiring substrate having a surface wiring layer on at least the surface of an insulating substrate is described. The surface wiring layer is formed by co-firing with an insulating substrate and contains 10 to 70% by volume of copper and 30 to 90% by volume of tungsten and / or molybdenum, and in a matrix made of copper. Tungsten and / or molybdenum is dispersed and contained as particles having an average particle diameter of 1 to 10 μm.
 特許第3898400号公報には、アルミナを主成分とするセラミックスからなる絶縁基板の少なくとも表面に、焼成時に溶融したCu(銅)を10~70体積%、タングステン(W)粒子及び/又はモリブデン(Mo)粒子を30~90体積%の割合で含有するメタライズ配線層が被着形成された配線基板が記載されている。この配線基板は、メタライズ配線層におけるCuとタングステン粒子及び/又はモリブデン粒子とが分離しておらず、メタライズ配線層の表面が表面粗さ(Ra)2.5~4.5μmの焼き肌面となっている。 In Japanese Patent No. 3898400, at least the surface of an insulating substrate made of ceramics mainly composed of alumina is 10 to 70% by volume of Cu (copper) melted during firing, tungsten (W) particles and / or molybdenum (Mo ) A wiring board on which a metallized wiring layer containing particles in a proportion of 30 to 90% by volume is deposited is described. In this wiring board, Cu and tungsten particles and / or molybdenum particles in the metallized wiring layer are not separated, and the surface of the metallized wiring layer has a surface roughness (Ra) of 2.5 to 4.5 μm. It has become.
 上述した特許第3827447号公報、特許第3493310号公報、特許第3537698号公報及び特許第3898400号公報には、絶縁基板に対する配線層の密着性を高めることが望ましいとの記載があるが、具体的にどの程度の密着力であるのか記載がなく、しかも、主結晶相の粒径が大きいことから、密着力を高めるには、限界がある。 In the above-mentioned Japanese Patent No. 3827447, Japanese Patent No. 3493310, Japanese Patent No. 3537698, and Japanese Patent No. 3898400, there is a description that it is desirable to improve the adhesion of the wiring layer to the insulating substrate. However, there is a limit to increasing the adhesion because the grain size of the main crystal phase is large.
 本発明はこのような課題を考慮してなされたものであり、低い焼成温度にて作製することができ、配線層の絶縁基板に対する密着性の向上を図ることができる配線基板を提供することを目的とする。 The present invention has been made in consideration of such problems, and provides a wiring board that can be produced at a low firing temperature and that can improve the adhesion of the wiring layer to the insulating board. Objective.
[1] 本発明に係る配線基板は、絶縁基板と、前記絶縁基板の表面に配設された表面配線層と、前記絶縁基板の内部に配設された内部配線層とを有する配線基板であって、前記絶縁基板は、結晶相が、少なくともAl23又はAl23を含む化合物を主結晶相とし、前記Al23の結晶粒径が1.5μm未満であり、前記表面配線層及び前記内部配線層は、銅とタングステンあるいは銅とモリブデンあるいは銅とタングステン及びモリブデンを含み、前記タングステン及びモリブデンの粒径が1.0μm未満であり、前記表面配線層及び前記内部配線層の表面粗さRaが2.5μm未満であることを特徴とする。表面粗さRaは、さらに好ましくは2.0μm以下である。 [1] A wiring board according to the present invention is a wiring board having an insulating substrate, a surface wiring layer disposed on a surface of the insulating substrate, and an internal wiring layer disposed inside the insulating substrate. The insulating substrate has a crystal phase of at least Al 2 O 3 or a compound containing Al 2 O 3 as a main crystal phase, the crystal grain size of the Al 2 O 3 is less than 1.5 μm, and the surface wiring The layer and the internal wiring layer include copper and tungsten, copper and molybdenum, or copper, tungsten, and molybdenum, and the grain size of the tungsten and molybdenum is less than 1.0 μm, and the surface wiring layer and the surface of the internal wiring layer The roughness Ra is less than 2.5 μm. The surface roughness Ra is more preferably 2.0 μm or less.
[2] 本発明において、少なくとも前記表面配線層は、前記絶縁基板との接着強度が、2kg以上であることが好ましい。 [2] In the present invention, it is preferable that at least the surface wiring layer has an adhesive strength of 2 kg or more with the insulating substrate.
[3] 本発明において、絶縁基板が焼結体であることが好ましい。この場合、温度1200~1350℃にて焼結されていることが好ましい。好ましくは1200~1300℃である。 [3] In the present invention, the insulating substrate is preferably a sintered body. In this case, the sintering is preferably performed at a temperature of 1200 to 1350 ° C. The temperature is preferably 1200 to 1300 ° C.
[4] 本発明において、前記絶縁基板は、結晶相が、前記主結晶相の他、BaAl2Si28結晶相のみを含むようにしてもよい。 [4] In the present invention, the insulating substrate may include only a BaAl 2 Si 2 O 8 crystal phase in addition to the main crystal phase.
[5] この場合、前記絶縁基板は、AlをAl23換算で89.0~92.0質量%、SiをSiO2換算で2.0~5.0質量%、MnをMnO換算で2.0~5.0質量%、MgをMgO換算で0~2.0質量%、BaをBaO換算で0.05~2.0質量%含むことが好ましい。 [5] In this case, the insulating substrate is composed of 89.0 to 92.0 mass% of Al in terms of Al 2 O 3 , 2.0 to 5.0 mass% of Si in terms of SiO 2 , and Mn in terms of MnO. It is preferable to contain 2.0 to 5.0 mass%, Mg is 0 to 2.0 mass% in terms of MgO, and Ba is 0.05 to 2.0 mass% in terms of BaO.
[6] 本発明において、前記絶縁基板は、結晶相が、Al23及びZrO2を主結晶相とし、その他、Mn3Al2(SiO43又はMgAl24を含むようにしてもよい。 [6] In the present invention, the insulating substrate may have Al 2 O 3 and ZrO 2 as a main crystal phase, and Mn 3 Al 2 (SiO 4 ) 3 or MgAl 2 O 4 in addition to the main crystal phase. .
[7] この場合、AlをAl23換算で70.0~90.0質量%、ZrをZrO2換算で10.0~30.0質量%、Al23とZrO2の合計を100質量%とした場合、MnをMnO換算で2.0~7.0質量%、SiをSiO2換算で2.0~7.0質量%、BaをBaO換算で0.5~2.0質量%、MgをMgO換算で0~2.0質量%含むことが好ましい。 [7] In this case, 70.0 to 90.0 wt% of Al in terms of Al 2 O 3, 10.0 to 30.0 wt% of Zr in terms of ZrO 2, the total of Al 2 O 3 and ZrO 2 When 100 mass%, Mn is 2.0 to 7.0 mass% in terms of MnO, Si is 2.0 to 7.0 mass% in terms of SiO 2 , and Ba is 0.5 to 2.0 in terms of BaO. It is preferable to contain 0 to 2.0% by mass of Mg and Mg in terms of MgO.
[8] 本発明において、前記絶縁基板は、結晶相が、3Al23・2SiO2を主結晶相とし、その他、Al23及びZrO2を含むようにしてもよい。 [8] In the present invention, the insulating substrate may have a crystal phase of 3Al 2 O 3 .2SiO 2 as a main crystal phase and Al 2 O 3 and ZrO 2 in addition.
[9] この場合、AlをAl23換算で40.0~70.0質量%、ZrをZrO2換算で5.0~40.0質量%、SiをSiO2換算で10.0~30.0質量%、MnをMnO換算で2.0~8.0質量%を含むことが好ましい。 [9] In this case, Al is 40.0 to 70.0% by mass in terms of Al 2 O 3 , Zr is 5.0 to 40.0% by mass in terms of ZrO 2 , and Si is 10.0 to in terms of SiO 2 It is preferable that 30.0% by mass and Mn is contained in an amount of 2.0 to 8.0% by mass in terms of MnO.
[10] また、Ba、Ti、Y、Ca及びMgのうち、少なくとも1種の元素を含み、Al23、ZrO2、SiO2及びMnOの合計を100質量%としたとき、Baを含む場合は、BaO換算で1.5質量%以下含み、Tiを含む場合は、TiO2換算で1.5質量%以下含み、Yを含む場合は、Y23換算で1.5質量%以下含み、Caを含む場合は、CaO換算で1.5質量%以下含み、Mgを含む場合は、MgO換算で1.5質量%以下含むようにしてもよい。 [10] Moreover, Ba is contained when the total of Al 2 O 3 , ZrO 2 , SiO 2 and MnO is 100 mass%, including at least one element of Ba, Ti, Y, Ca and Mg. If includes 1.5 mass% or less in terms of BaO, if it contains Ti, wherein 1.5 wt% or less in terms of TiO 2, if it contains Y, more than 1.5 wt% in terms of Y 2 O 3 If it contains Ca, it may contain 1.5 mass% or less in terms of CaO, and if it contains Mg, it may contain 1.5 mass% or less in terms of MgO.
 本発明に係る配線基板によれば、低い焼成温度にて作製することができ、配線層の絶縁基板に対する密着性の向上を図ることができる。 The wiring board according to the present invention can be manufactured at a low firing temperature, and the adhesion of the wiring layer to the insulating substrate can be improved.
図1は、本実施の形態に係る配線基板を有するセラミックパッケージを示す断面図である。FIG. 1 is a cross-sectional view showing a ceramic package having a wiring board according to the present embodiment. 図2は、セラミックパッケージの製造方法を示す工程ブロック図である。FIG. 2 is a process block diagram showing a method for manufacturing a ceramic package.
 以下、本発明に係る配線基板をセラミックパッケージに適用した実施の形態例を図1及び図2を参照しながら説明する。なお、本明細書において数値範囲を示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。 Hereinafter, an embodiment in which a wiring board according to the present invention is applied to a ceramic package will be described with reference to FIGS. In the present specification, “˜” indicating a numerical range is used as a meaning including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
 セラミックパッケージ10は、本実施の形態に係る配線基板12と、枠体14と、蓋体16とが、この順番で積層されて構成されている。 The ceramic package 10 is configured by laminating a wiring board 12 according to the present embodiment, a frame body 14, and a lid body 16 in this order.
 配線基板12は、絶縁基板18と、絶縁基板18の上面に形成された上面配線層20と、絶縁基板18の下面に形成された下面配線層22と、絶縁基板18の内部に形成された内部配線層24と、該内部配線層24と下面配線層22とを電気的に接続する第1ビアホール26aと、内部配線層24と上面配線層20とを電気的に接続する第2ビアホール26bとを有する。 The wiring substrate 12 includes an insulating substrate 18, an upper surface wiring layer 20 formed on the upper surface of the insulating substrate 18, a lower surface wiring layer 22 formed on the lower surface of the insulating substrate 18, and an internal formed inside the insulating substrate 18. A wiring layer 24, a first via hole 26 a that electrically connects the internal wiring layer 24 and the lower surface wiring layer 22, and a second via hole 26 b that electrically connects the internal wiring layer 24 and the upper surface wiring layer 20. Have.
 このセラミックパッケージ10は、絶縁基板18の上面と枠体14とで囲まれた収容空間28に、水晶振動子30が導体層32を介して上面配線層20に電気的に接続されている。さらに、水晶振動子30を保護するため、枠体14の上面に、蓋体16がガラス層34を介して気密に封止されている。 In this ceramic package 10, a crystal resonator 30 is electrically connected to the upper surface wiring layer 20 via a conductor layer 32 in a housing space 28 surrounded by the upper surface of the insulating substrate 18 and the frame body 14. Further, in order to protect the crystal unit 30, the lid body 16 is hermetically sealed on the upper surface of the frame body 14 via the glass layer 34.
 上述したセラミックパッケージ10では、収容空間28内に、水晶振動子30を実装した例を示したが、その他、抵抗体、フィルタ、コンデンサ、半導体素子のうち、少なくとも1種以上を実装してもよい。 In the ceramic package 10 described above, an example in which the crystal resonator 30 is mounted in the accommodation space 28 has been shown. However, at least one of a resistor, a filter, a capacitor, and a semiconductor element may be mounted. .
 そして、セラミックパッケージ10を構成する絶縁基板18、枠体14及び蓋体16は、同一のセラミック素地にて構成している。 The insulating substrate 18, the frame body 14, and the lid body 16 constituting the ceramic package 10 are made of the same ceramic substrate.
 絶縁基板18等を構成するセラミック素地は、Al23を主結晶相とし、その他、BaAl2Si28結晶相のみを含む。 The ceramic substrate constituting the insulating substrate 18 and the like includes Al 2 O 3 as a main crystal phase and includes only a BaAl 2 Si 2 O 8 crystal phase.
 具体的には、AlをAl23換算で89.0~92.0質量%、SiをSiO2換算で2.0~5.0質量%、MnをMnO換算で2.0~5.0質量%、MgをMgO換算で0~2.0質量%、BaをBaO算で0.05~2.0質量%含むことが好ましい。 Specifically, Al is 89.0 to 92.0 mass% in terms of Al 2 O 3 , Si is 2.0 to 5.0 mass% in terms of SiO 2 , and Mn is 2.0 to 5 mass in terms of MnO. It is preferable to contain 0% by mass, 0 to 2.0% by mass of Mg in terms of MgO, and 0.05 to 2.0% by mass of Ba in terms of BaO.
 絶縁基板18等は、Al23粉末を89.0~92.0質量%、SiO2粉末を2.0~5.0質量%、MnCO3粉末を3.2~8.1質量%(MnO換算で2.0~5.0質量%)、MgO粉末を0~2.0質量%、BaCO3粉末を0.06~2.6質量%(BaO換算で0.05~2.0質量%)含有する成形体を作製した後、成形体を1200~1350℃(好ましくは1200~1300℃)にて焼成することにより作製される。 The insulating substrate 18 or the like is composed of 89.0 to 92.0% by mass of Al 2 O 3 powder, 2.0 to 5.0% by mass of SiO 2 powder, and 3.2 to 8.1% by mass of MnCO 3 powder ( 2.0 to 5.0 mass% in terms of MnO), 0 to 2.0 mass% in MgO powder, 0.06 to 2.6 mass% in BaCO 3 powder (0.05 to 2.0 mass in terms of BaO) %)), And then the molded body is fired at 1200 to 1350 ° C. (preferably 1200 to 1300 ° C.).
 この場合、Al23については、原料(Al23粉)の平均粒度が0.3~2.5μmであり、且つ、焼結体とした際のAl23の結晶粒径が0.3~1.5μmであることが好ましい。Al23の結晶粒径は、さらに好ましくは0.5~1.0μmである。 In this case, for Al 2 O 3 , the average particle size of the raw material (Al 2 O 3 powder) is 0.3 to 2.5 μm, and the crystal grain size of Al 2 O 3 when formed into a sintered body is It is preferably 0.3 to 1.5 μm. The crystal grain size of Al 2 O 3 is more preferably 0.5 to 1.0 μm.
 なお、原料の平均粒度は、レーザー回折散乱式粒度分布測定法(HORIBA製、LA-920)により測定して得られる体積基準粒度分布において、小粒径側からの通過分積算(積算通過分率)50%の粒子径をいう。 In addition, the average particle size of the raw material is the integrated amount of passage from the small particle size side (integrated passage fraction) in the volume-based particle size distribution obtained by measuring by the laser diffraction scattering type particle size distribution measurement method (LA-920, manufactured by HORIBA). ) 50% particle size.
 焼結体とした際の結晶粒径は、以下のようにして求めた。すなわち、焼結体の表面を、走査型電子顕微鏡にて撮像したとき、撮像した画像全体で500~1000個程度の結晶粒子が写るように走査型電子顕微鏡の倍率を調整した。そして、撮像した画像中、任意の100個以上の結晶粒子を、画像処理ソフトを用いて、各々真円に換算した粒径の平均により算出した。 The crystal grain size when the sintered body was obtained was determined as follows. That is, when the surface of the sintered body was imaged with a scanning electron microscope, the magnification of the scanning electron microscope was adjusted so that about 500 to 1000 crystal particles were captured in the entire captured image. Then, 100 or more arbitrary crystal particles in the captured image were calculated based on the average particle diameter converted to a perfect circle using image processing software.
 MgO粉末は、Al23の焼結助剤として添加され、SiO2粉末は、Al23の焼結助剤として、また、Mn2SiO4ガラス相を生成させて焼結温度の低下を図るために添加される。BaCO3粉末は、硬度が高くなるMnAl24の生成を抑制するために添加される。 MgO powder is added as a sintering aid for Al 2 O 3 , SiO 2 powder is used as a sintering aid for Al 2 O 3 , and Mn 2 SiO 4 glass phase is generated to lower the sintering temperature. It is added to achieve BaCO 3 powder is added to suppress the formation of MnAl 2 O 4 with increased hardness.
 従来では、TiO2粉末、Ce23粉末、Fe34粉末のいずれか1以上を含むようにしているが、誘電正接が大きくなるため、できるだけ含まないことが好ましい。含めるとしても、0.1質量%以下である。誘電正接は、1MHz~10GHzにおいて、30×10-4以下が好ましい。さらに好ましくは、15×10-4以下、より好ましくは10×10-4以下である。これにより、配線基板12を高周波用回路基板にも適用することができ、好ましい。 Conventionally, any one or more of TiO 2 powder, Ce 2 O 3 powder, and Fe 3 O 4 powder is included. However, since the dielectric loss tangent is increased, it is preferable not to include it as much as possible. Even if it is included, it is 0.1% by mass or less. The dielectric loss tangent is preferably 30 × 10 −4 or less at 1 MHz to 10 GHz. More preferably, it is 15 × 10 −4 or less, more preferably 10 × 10 −4 or less. Thereby, the wiring board 12 can be applied to a high-frequency circuit board, which is preferable.
 なお、必要に応じて、着色剤としてMo酸化物やW酸化物を1.0質量%以下含めるようにしてもよい。 In addition, you may make it include 1.0 mass% or less of Mo oxide and W oxide as a coloring agent as needed.
 これにより、温度1200~1350℃(好ましくは1200~1300℃)という低温にて焼結することができ、曲げ強度が600MPa以上の絶縁基板18を実現することができる。「曲げ強度」とは、4点曲げ強度をいい、JISR1601(ファインセラミックスの曲げ試験方法)に基づいて室温にて測定した値をいう。 Thereby, the insulating substrate 18 can be realized which can be sintered at a low temperature of 1200 to 1350 ° C. (preferably 1200 to 1300 ° C.) and has a bending strength of 600 MPa or more. “Bending strength” refers to a four-point bending strength, which is a value measured at room temperature based on JIS R1601 (bending test method for fine ceramics).
 なお、Alの含有量をAl23換算で89.0~92.0質量%とすることで、生成されるAl23の量が最適となり、焼成温度が上昇しても、Al23の結晶粒径の増大を抑えることができ、もって曲げ強度の向上を図り易くなる。 Note that by a 89.0 to 92.0 wt% and the content of Al in terms of Al 2 O 3, the amount of Al 2 O 3 which is generated becomes optimum, the firing temperature is also increased, Al 2 An increase in the crystal grain size of O 3 can be suppressed, so that the bending strength can be easily improved.
 Mgの含有量をMgO換算で0~2.0質量%とすることで、焼結温度の高温化を抑制して、アルミナの粒成長を抑えることができ、強度低下を抑えることができる。 By setting the Mg content to 0 to 2.0 mass% in terms of MgO, it is possible to suppress the sintering temperature from increasing, to suppress the grain growth of alumina, and to suppress the strength reduction.
 Siの含有量をSiO2換算で2.0~5.0質量%とすることで、生成されるガラス相の量の低下を抑えることができ、1200~1350℃(好ましくは1200~1300℃)での緻密化を達成し易くなり、また、生成されるガラスの軟化温度の低下並びに気孔率の増大を抑えることができる。さらに、曲げ強度の低下を抑えることができる。 By setting the Si content to 2.0 to 5.0 mass% in terms of SiO 2 , it is possible to suppress a decrease in the amount of the glass phase to be generated, 1200 to 1350 ° C. (preferably 1200 to 1300 ° C.) It is easy to achieve densification in the glass, and it is possible to suppress a decrease in the softening temperature and an increase in the porosity of the produced glass. Furthermore, a decrease in bending strength can be suppressed.
 Mnの含有量をMnCO3換算で3.2~8.1質量%とすることで、生成されるガラス相の量の低下を抑えることができ、1200~1350℃(好ましくは1200~1300℃)での緻密化を達成し易くなり、また、生成されるガラスの軟化温度の低下並びに気孔率の増大を抑えることができる。さらに、曲げ強度の低下を抑えることができる。 By setting the Mn content to 3.2 to 8.1% by mass in terms of MnCO 3 , it is possible to suppress a decrease in the amount of the glass phase to be generated, 1200 to 1350 ° C. (preferably 1200 to 1300 ° C.) It is easy to achieve densification in the glass, and it is possible to suppress a decrease in the softening temperature and an increase in the porosity of the produced glass. Furthermore, a decrease in bending strength can be suppressed.
 Baの含有量をBaO換算で0.05~2.0質量%とすることで、MnAl24の生成を抑制し易くなり、強度低下を抑えることができる。また、焼結温度の高温化を抑制して、アルミナの粒成長を抑えることができ、強度低下を抑えることができる。 By setting the Ba content to 0.05 to 2.0% by mass in terms of BaO, it becomes easy to suppress the formation of MnAl 2 O 4 and suppress the strength reduction. In addition, it is possible to suppress the sintering temperature from increasing, to suppress the grain growth of alumina, and to suppress the strength reduction.
 従って、Al、Si、Mn、Mg及びBaを上述した比率で含有させることで、生成されるガラス相の強度を高めることができ、その結果、曲げ強度が高くなり、本実施の形態に係る配線基板12を用いたセラミックパッケージ10の小型化を促進させることができる。しかも、低い焼成温度にて作製することができ、コストの低廉化に有利になる。さらに、生成されるBaAl2Si28結晶相によって、硬度が極度に高くなることが抑制され、押圧ローラーによるチップ分割でのチッピング発生率を低下させることができ、生産性を向上させることができる。 Therefore, by containing Al, Si, Mn, Mg and Ba in the above-described ratios, the strength of the glass phase to be generated can be increased. As a result, the bending strength is increased, and the wiring according to the present embodiment Miniaturization of the ceramic package 10 using the substrate 12 can be promoted. In addition, it can be produced at a low firing temperature, which is advantageous for cost reduction. Furthermore, the generated BaAl 2 Si 2 O 8 crystal phase suppresses extremely high hardness, can reduce the chipping occurrence rate in chip division by the pressure roller, and can improve productivity. it can.
 配線基板12は、上述した絶縁基板18にて構成しているため、曲げ強度が600MPa以上である。曲げ強度が600MPaよりも低くなると、二次実装の際に熱応力が加わって破壊するおそれがある。あるいは、ハンドリングの際や使用の際の衝撃等により破壊するおそれがある。曲げ強度が600MPa以上であれば、このような破壊のリスクを回避することができる。 Since the wiring board 12 is composed of the insulating substrate 18 described above, the bending strength is 600 MPa or more. If the bending strength is lower than 600 MPa, thermal stress may be applied during the secondary mounting to cause destruction. Alternatively, there is a risk of destruction due to an impact or the like during handling or use. If the bending strength is 600 MPa or more, such a risk of destruction can be avoided.
 また、絶縁基板18等を構成するセラミック素地を表面研磨せずに、セラミックパッケージ10の絶縁基板18及び蓋体16として使用しても、蓋体16を気密封止する際の破壊を防止することができ、セラミックパッケージ10の製造コスト及び信頼性を改善することができる。 Further, even when the ceramic substrate constituting the insulating substrate 18 or the like is used as the insulating substrate 18 and the lid body 16 of the ceramic package 10 without polishing the surface, the lid body 16 is prevented from being broken when hermetically sealed. The manufacturing cost and reliability of the ceramic package 10 can be improved.
 そして、絶縁基板18等を構成するセラミック素地が、上述した組成を有することから、温度1200~1350℃(好ましくは1200~1300℃)という低温にて焼結させることができる。そのため、セラミック素地の前駆体(焼成前の成形体)と、各種配線層(上面配線層20、下面配線層22、内部配線層24)及びビアホール(第1ビアホール26a、第2ビアホール26b)とを同時焼成することで、配線基板12を作製することができ、製造工程を簡略化することができる。 Then, since the ceramic substrate constituting the insulating substrate 18 and the like has the above-described composition, it can be sintered at a low temperature of 1200 to 1350 ° C. (preferably 1200 to 1300 ° C.). Therefore, a ceramic substrate precursor (molded body before firing), various wiring layers (upper surface wiring layer 20, lower surface wiring layer 22, internal wiring layer 24) and via holes (first via hole 26a, second via hole 26b). By simultaneous firing, the wiring board 12 can be manufactured, and the manufacturing process can be simplified.
 さらに、この配線基板12では、各種配線層が銅とタングステンあるいは銅とモリブデンあるいは銅とタングステン及びモリブデンを含み、タングステンの粒径及びモリブデンの粒径(焼成後)が1.0μm未満である。さらに好ましくは、0.7μm以下である。 Furthermore, in this wiring board 12, various wiring layers contain copper and tungsten, copper and molybdenum, copper and tungsten and molybdenum, and the particle size of tungsten and the particle size of molybdenum (after firing) are less than 1.0 μm. More preferably, it is 0.7 μm or less.
 焼成後の各種配線層に含まれるタングステンの焼結体とした際のタングステン及び/又はモリブデンの粒径は、以下のようにして求めた。すなわち、各種配線層の表面を、走査型電子顕微鏡にて撮像したとき、撮像した画像全体で500~1000個程度のタングステン粒子及び/又はモリブデン粒子が写るように走査型電子顕微鏡の倍率を調整した。そして、撮像した画像中、任意の100個以上のタングステン粒子及び/又はモリブデン粒子を、画像処理ソフトを用いて、各々真円に換算した粒径の平均により算出した。 The particle size of tungsten and / or molybdenum when the sintered body of tungsten contained in the various wiring layers after firing was determined as follows. That is, the magnification of the scanning electron microscope was adjusted so that when the surface of various wiring layers was imaged with a scanning electron microscope, about 500 to 1000 tungsten particles and / or molybdenum particles were captured in the entire captured image. . Then, 100 or more arbitrary tungsten particles and / or molybdenum particles in the captured image were calculated by an average particle diameter converted into a perfect circle using image processing software.
 また、配線基板12では、上面配線層20及び下面配線層22の表面粗さRaは、2.5μm未満である。好ましくは1.7μm以上2.5μm未満であり、さらに好ましくは1.7μm以上2.0μm以下である。表面粗さは、上面配線層20及び下面配線層22の表面をレーザ顕微鏡(株式会社キーエンス製:VK-9700)で倍率500倍にて測定した。 In the wiring board 12, the surface roughness Ra of the upper surface wiring layer 20 and the lower surface wiring layer 22 is less than 2.5 μm. Preferably they are 1.7 micrometers or more and less than 2.5 micrometers, More preferably, they are 1.7 micrometers or more and 2.0 micrometers or less. The surface roughness was measured on the surfaces of the upper surface wiring layer 20 and the lower surface wiring layer 22 with a laser microscope (manufactured by Keyence Corporation: VK-9700) at a magnification of 500 times.
 上面配線層20及び下面配線層22は、絶縁基板18との接着強度が、2kg以上であった。この範囲であれば、配線基板12の製造過程、運搬中、セラミックパッケージ10として使用している過程等において、上面配線層20及び下面配線層22が剥離(一部剥離、全部剥離を含む)することがなく、歩留まりの向上、信頼性の向上に寄与する。 The upper surface wiring layer 20 and the lower surface wiring layer 22 had an adhesive strength with the insulating substrate 18 of 2 kg or more. Within this range, the upper surface wiring layer 20 and the lower surface wiring layer 22 are peeled off (including partial peeling and all peeling) during the manufacturing process of the wiring board 12, transportation, and the process of using as the ceramic package 10. This contributes to improvement in yield and reliability.
 ここで、接着強度とは、絶縁基板18と導体(上面配線層20及び下面配線層22等)との密着力を表す概念である。具体的には、平面形状が正方形で一辺の長さが2mmの導体パターンに直径0.6mmの錫被覆軟銅線をL字型に曲げたリード線を半田付けし、20mm/secの引張り速度で垂直に引っ張ったときの引張り強度をいう。この導体パターンには、半田の濡れ性を確保するためにNiめっきを施してもよい。 Here, the adhesive strength is a concept representing the adhesion between the insulating substrate 18 and the conductor (the upper surface wiring layer 20 and the lower surface wiring layer 22). Specifically, a lead wire obtained by bending a 0.6 mm diameter tin-coated annealed copper wire into an L-shape is soldered to a conductor pattern having a square shape and a side length of 2 mm, and a tensile speed of 20 mm / sec. The tensile strength when pulled vertically. This conductor pattern may be plated with Ni to ensure solder wettability.
 次に、本実施の形態に係る配線基板12を有するセラミックパッケージ10の製造方法について図2を参照しながら説明する。 Next, a method for manufacturing the ceramic package 10 having the wiring board 12 according to the present embodiment will be described with reference to FIG.
 先ず、図2のステップS1aにおいて、Al23粉末を89.0~92.0質量%、SiO2粉末を2.0~5.0質量%、MnCO3粉末を3.2~8.1質量%、MgO粉末を0~2.0質量%、BaCO3粉末を0.06~2.6質量%含有する混合粉末を準備し、ステップS1bにおいて、有機成分(バインダー)を準備し、ステップS1cにおいて、溶剤を準備する。 First, in step S1a of FIG. 2, the Al 2 O 3 powder is 89.0 to 92.0% by mass, the SiO 2 powder is 2.0 to 5.0% by mass, and the MnCO 3 powder is 3.2 to 8.1%. A mixed powder containing 1% by mass, 0 to 2.0% by mass of MgO powder and 0.06 to 2.6% by mass of BaCO 3 powder is prepared. In step S1b, an organic component (binder) is prepared, and step S1c Prepare a solvent.
 Al23粉末の平均粒度は、上述したように、0.3~2.5μmが好ましい。SiO2粉末の平均粒度は、0.1~2.5μmが好ましい。MnCO3粉末の平均粒度は、0.5~4.0μmが好ましい。MgO粉末の平均粒度は0.1~1.0μmが好ましい。BaCO3粉末の平均粒度は、0.5~4.0μmが好ましい。 As described above, the average particle size of the Al 2 O 3 powder is preferably 0.3 to 2.5 μm. The average particle size of the SiO 2 powder is preferably 0.1 to 2.5 μm. The average particle size of the MnCO 3 powder is preferably 0.5 to 4.0 μm. The average particle size of the MgO powder is preferably 0.1 to 1.0 μm. The average particle size of the BaCO 3 powder is preferably 0.5 to 4.0 μm.
 ステップS1bにおいて準備される有機成分(バインダー)は、樹脂、界面活性剤、可塑剤等が挙げられる。樹脂としては、例えばポリビニルブチラールが挙げられ、界面活性剤としては、例えば3級アミンが挙げられ、可塑剤としては、例えばフタル酸エステル(例えばフタル酸ジイソノニル:DINP)が挙げられる。 Examples of the organic component (binder) prepared in step S1b include a resin, a surfactant, and a plasticizer. Examples of the resin include polyvinyl butyral, examples of the surfactant include tertiary amines, and examples of the plasticizer include phthalic acid esters (for example, diisononyl phthalate: DINP).
 ステップS1cにおいて準備される溶剤は、アルコール系溶剤、芳香族系溶剤等が挙げられる。アルコール系溶剤としては、例えばIPA(イソプロピルアルコール)が挙げられ、芳香族系溶剤としては、例えばトルエンが挙げられる。 Examples of the solvent prepared in step S1c include alcohol solvents and aromatic solvents. Examples of the alcohol solvent include IPA (isopropyl alcohol), and examples of the aromatic solvent include toluene.
 そして、次のステップS2において、上述の混合粉末に、有機成分及び溶剤を混合、分散させた後、ステップS3において、プレス法、ドクターブレード法、圧延法、射出法等の周知の成形方法によって、セラミック素地の前駆体であるセラミック成形体(セラミックテープとも記す)を作製する。例えば混合粉末に有機成分や溶剤を添加してスラリーを調製した後、ドクターブレード法によって所定の厚みのセラミックテープを形成する。あるいは、混合粉末に有機成分を加え、プレス成形、圧延成形等により所定の厚みのセラミックテープを作製する。 Then, in the next step S2, after mixing and dispersing the organic component and the solvent in the above-mentioned mixed powder, in step S3, by a known molding method such as a press method, a doctor blade method, a rolling method, an injection method, A ceramic molded body (also referred to as a ceramic tape) that is a precursor of the ceramic substrate is produced. For example, an organic component or a solvent is added to the mixed powder to prepare a slurry, and then a ceramic tape having a predetermined thickness is formed by a doctor blade method. Alternatively, an organic component is added to the mixed powder, and a ceramic tape having a predetermined thickness is produced by press molding, rolling molding, or the like.
 ステップS4において、セラミックテープを所望の形状に切断、加工して、第1基板用の広い面積の第1テープと、第2基板用の広い面積の第2テープと、枠体用の第3テープと、蓋体用の第4テープを作製し、さらに、マイクロドリル加工、レーザー加工等により、第1ビアホール26a及び第2ビアホール26bを形成するための貫通孔を形成する。 In step S4, the ceramic tape is cut and processed into a desired shape, a first tape having a large area for the first substrate, a second tape having a large area for the second substrate, and a third tape for the frame. Then, a fourth tape for the lid is produced, and further, through holes for forming the first via hole 26a and the second via hole 26b are formed by micro drilling, laser processing, or the like.
 次に、ステップS5において、上述のように作製した第1テープ及び第2テープに対して、上面配線層20、下面配線層22、内部配線層24を形成するための導体ペーストをスクリーン印刷、グラビア印刷等の方法により印刷塗布し、さらに、所望により、導体ペーストを貫通孔内に充填する。 Next, in step S5, a conductive paste for forming the upper surface wiring layer 20, the lower surface wiring layer 22, and the internal wiring layer 24 is screen-printed and gravured on the first tape and the second tape manufactured as described above. Printing is applied by a method such as printing, and a conductive paste is filled in the through holes as desired.
 導体ペーストは、導体成分として、CuとWの混合物、あるいはCuとMoの混合物、あるいはCuとWとMoの混合物を用い、これにAl23粉末、又はSiO2粉末、又はセラミック素地と同等の粉末を例えば1~20質量%、特に8質量%以下の割合で添加したものが好ましい。これにより、導体層の導通抵抗を低く維持したままアルミナ焼結体と導体層の密着性を高め、めっき欠け等の不良の発生を防止することができる。 Conductor paste uses a mixture of Cu and W, or a mixture of Cu and Mo, or a mixture of Cu, W and Mo as a conductor component, and this is equivalent to Al 2 O 3 powder, SiO 2 powder, or ceramic substrate The powder is preferably added in an amount of, for example, 1 to 20% by mass, particularly 8% by mass or less. Thereby, the adhesiveness of the alumina sintered body and the conductor layer can be enhanced while maintaining the conduction resistance of the conductor layer low, and the occurrence of defects such as lack of plating can be prevented.
 その後、ステップS6において、導体ペーストを印刷塗布した第1テープ及び第2テープ並びに枠体用の第3テープを位置合わせし、積層圧着して、積層体を作製する。 Thereafter, in step S6, the first tape and the second tape on which the conductive paste is printed and applied, and the third tape for the frame are aligned and laminated and pressure-bonded to produce a laminated body.
 その後、ステップS7において、積層体の両面にチップ分割のための分割溝を例えばナイフカットにて形成する。 Thereafter, in step S7, dividing grooves for dividing the chip are formed on both surfaces of the laminate by, for example, knife cutting.
 次のステップS8において、積層体及び第4テープを、水素を5%以上含む、水素と窒素のフォーミングガス雰囲気、例えばH2/N2=30%/70%のフォーミングガス雰囲気(ウェッター温度25~47℃)で、1200~1350℃(好ましくは1200~1300℃)の温度範囲で焼成する。これによって、積層体及び導体ペーストが同時焼成された積層原板(多数個取り基板)が作製される。この焼成によって、上述したように、結晶相が、Al23を主結晶相とし、その他、BaAl2Si28結晶相のみを含むセラミック素地、すなわち、多数個取り基板を作製することができる。 In the next step S8, the laminate and the fourth tape are formed into a hydrogen and nitrogen forming gas atmosphere containing 5% or more of hydrogen, for example, a H 2 / N 2 = 30% / 70% forming gas atmosphere (wetter temperature 25 to 25%). 47 ° C.) at a temperature range of 1200 to 1350 ° C. (preferably 1200 to 1300 ° C.). As a result, a laminated original plate (multiple substrate) in which the laminate and the conductor paste are simultaneously fired is produced. By this firing, as described above, it is possible to produce a ceramic substrate having a crystal phase of Al 2 O 3 as a main crystal phase and including only a BaAl 2 Si 2 O 8 crystal phase, that is, a multi-chip substrate. it can.
 焼成雰囲気を、上述のようなフォーミングガス雰囲気で行うことで、導体ペースト中の金属の酸化を防止することができる。焼成温度は、上述した温度範囲が好ましい。焼成温度が1200℃よりも低いと、緻密化が不十分で曲げ強度が600MPaに達せず、また、1350℃よりも高くなると、積層体を構成する第1テープ、第2テープ及び第3テープの収縮率のばらつきが大きくなり、寸法精度が低下する。これは歩留りの低下につながり、コストの高価格化を招く。もちろん、焼成温度が高くなれば、それだけ設備にコストがかかるという問題もある。 The oxidation of the metal in the conductor paste can be prevented by performing the firing atmosphere in the forming gas atmosphere as described above. The firing temperature is preferably in the temperature range described above. When the firing temperature is lower than 1200 ° C., the densification is insufficient and the bending strength does not reach 600 MPa. When the firing temperature is higher than 1350 ° C., the first tape, the second tape, and the third tape constituting the laminated body Variations in shrinkage rate increase and dimensional accuracy decreases. This leads to a decrease in yield and increases the cost. Of course, the higher the firing temperature, the more expensive the equipment.
 次に、ステップS9において、上述の多数個取り基板にめっき処理を行って、該多数個取り基板の表面に形成されている上面配線層20及び下面配線層22に、Ni、Co、Cr、Au、Pd及びCuのうち、少なくとも1種からなるめっき層を形成する。 Next, in step S9, the above-mentioned multi-chip substrate is plated, and the upper wiring layer 20 and the lower wiring layer 22 formed on the surface of the multi-chip substrate are coated with Ni, Co, Cr, Au. A plating layer made of at least one of Pd and Cu is formed.
 その後、ステップS10において、多数個取り基板を、押圧ローラー等で押し当てて複数に分割し(チップ分割)、収容空間28を有する複数の配線基板12を作製する。ステップS11において、複数の配線基板12の各収容空間28にそれぞれ水晶振動子30を上面配線層20に導体層32を介して実装する。 Thereafter, in step S10, the multi-piece substrate is pressed with a pressing roller or the like and divided into a plurality of pieces (chip division), and a plurality of wiring boards 12 having the accommodation spaces 28 are produced. In step S <b> 11, the crystal resonator 30 is mounted on the upper surface wiring layer 20 via the conductor layer 32 in each accommodation space 28 of the plurality of wiring boards 12.
 そして、ステップS12において、各配線基板12の上面に、封止用のガラス層34が形成されたセラミック製の蓋体16により気密に封止することによって、内部に水晶振動子30が実装された複数のセラミックパッケージ10が完成する。 In step S12, the quartz resonator 30 is mounted on the upper surface of each wiring substrate 12 by hermetically sealing the ceramic substrate 16 with the sealing glass layer 34 formed thereon. A plurality of ceramic packages 10 are completed.
 このセラミックパッケージ10の製造方法においては、上述したように、結晶相が、Al23を主結晶相とし、その他、BaAl2Si28結晶相のみを含み、曲げ強度が600MPa以上のセラミック素地を作製することができる。すなわち、セラミックパッケージ10等の小型化及び薄型化、並びに曲げ強度の向上を図ることができるセラミック素地を、低い焼成温度にて作製することができ、セラミック素地並びにセラミック素地を用いた製品のコストを低減することができる。 In the method for manufacturing the ceramic package 10, as described above, the crystal phase is a ceramic having Al 2 O 3 as the main crystal phase and only including the BaAl 2 Si 2 O 8 crystal phase and a bending strength of 600 MPa or more. A substrate can be made. That is, a ceramic substrate capable of reducing the size and thickness of the ceramic package 10 and the like and improving the bending strength can be produced at a low firing temperature, and the cost of the ceramic substrate and the product using the ceramic substrate can be reduced. Can be reduced.
 上述のセラミックパッケージ10の絶縁基板18を構成するセラミック素地は、結晶相が、Al23を主結晶相とし、その他、BaAl2Si28結晶相のみを含む構成としたが、以下に説明する第1変形例~第3変形例に係るセラミック素地を採用してもよい。 The ceramic substrate constituting the insulating substrate 18 of the ceramic package 10 described above is configured such that the crystal phase includes Al 2 O 3 as the main crystal phase and the BaAl 2 Si 2 O 8 crystal phase alone. The ceramic bodies according to the first to third modifications to be described may be employed.
(第1変形例)
 第1変形例に係るセラミック素地は、結晶相が、結晶相が、Al23及びZrO2を主結晶相とし、その他、Mn3Al2(SiO43又はMgAl24を含む。
(First modification)
In the ceramic substrate according to the first modification, the crystal phase includes Al 2 O 3 and ZrO 2 as the main crystal phase, and the crystal phase includes Mn 3 Al 2 (SiO 4 ) 3 or MgAl 2 O 4 .
 具体的には、AlをAl23換算で70.0~90.0質量%、ZrをZrO2換算で10.0~30.0質量%、Al23とZrO2の合計を100質量%とした場合、MnをMnO換算で2.0~7.0質量%、SiをSiO2換算で2.0~7.0質量%、BaをBaO換算で0.5~2.0質量%、MgをMgO換算で0~2.0質量%含むことが好ましい。 Specifically, 70.0 to 90.0 wt% of Al in terms of Al 2 O 3, 10.0 to 30.0 wt% of Zr in terms of ZrO 2, the total of Al 2 O 3 and ZrO 2 100 If the mass% from 2.0 to 7.0 mass% of Mn in terms of MnO 2.0 to 7.0 mass% of Si in terms of SiO 2, 0.5-2.0 mass Ba in terms of BaO %, Mg is preferably contained in an amount of 0 to 2.0% by mass in terms of MgO.
 第1変形例に係るセラミック素地は、例えばAl23粉末を70.0~90.0質量%、ZrO2粉末を10.0~30.0質量%、MnO粉末を2.0~7.0質量%、SiO2粉末を2.0~7.0質量%、BaO粉末を0.5~2.0質量%、MgO粉末を0~2.0質量%含有する成形体を作製した後、成形体を1200~1350℃にて焼成することにより作製される。このセラミック素地の曲げ強度は650MPa以上である。 The ceramic substrate according to the first modification is, for example, 70.0 to 90.0% by mass of Al 2 O 3 powder, 10.0 to 30.0% by mass of ZrO 2 powder, and 2.0 to 7. After forming a molded body containing 0% by mass, SiO 2 powder 2.0-7.0% by mass, BaO powder 0.5-2.0% by mass, MgO powder 0-2.0% by mass, The compact is produced by firing at 1200 to 1350 ° C. The bending strength of this ceramic substrate is 650 MPa or more.
(第2変形例)
 第2変形例に係るセラミック素地は、結晶相が、3Al23・2SiO2を主結晶相とし、その他、Al23及びZrO2を含む。
(Second modification)
In the ceramic substrate according to the second modification, the crystal phase includes 3Al 2 O 3 .2SiO 2 as a main crystal phase, and includes Al 2 O 3 and ZrO 2 in addition.
 磁器組成としては、AlをAl23換算で40.0~70.0質量%、ZrをZrO2換算で5.0~40.0質量%、SiをSiO2換算で10.0~30.0質量%、MnをMnO換算で2.0~8.0質量%含むことが好ましい。 As the porcelain composition, Al is 40.0 to 70.0% by mass in terms of Al 2 O 3 , Zr is 5.0 to 40.0% by mass in terms of ZrO 2 , and Si is 10.0 to 30 in terms of SiO 2. It is preferable that 0.0% by mass and Mn be contained in an amount of 2.0 to 8.0% by mass in terms of MnO.
 添加剤として、Ba、Ti、Y、Ca及びMgのうち、少なくとも1種の元素を含んでもよい。Al23、ZrO2、SiO2及びMnOの合計を100質量%としたとき、Baを含む場合は、BaO換算で1.5質量%以下含み、Tiを含む場合は、TiO2換算で1.5質量%以下含み、Yを含む場合は、Y23換算で1.5質量%以下含み、Caを含む場合は、CaO換算で1.5質量%以下含み、Mgを含む場合は、MgO換算で1.5質量%以下含むことが好ましい。 As an additive, at least one element of Ba, Ti, Y, Ca, and Mg may be included. When the total of Al 2 O 3 , ZrO 2 , SiO 2 and MnO is 100% by mass, when Ba is included, 1.5% by mass or less in terms of BaO is included, and when Ti is included, 1 in terms of TiO 2 It includes .5 wt% or less, if it contains Y is Y include 2 O 3 in terms of 1.5 wt% or less, if it contains Ca, comprises 1.5 wt% or less in terms of CaO, when containing Mg is It is preferable to contain 1.5 mass% or less in terms of MgO.
 第2変形例に係るセラミック素地は、例えば3Al23・2SiO2(ムライト)粉末を50.0~93.0質量%、ZrO2粉末を5.0~40.0質量%、Al23粉末を0~36.0質量%、SiO2粉末を0~16.0質量%、MnO粉末を2.0~8.0質量%含有する成形体を作製した後、成形体を1200~1400℃にて焼成することにより作製される。このセラミック素地の曲げ強度は450MPa以上である。 The ceramic substrate according to the second modification is, for example, 3Al 2 O 3 .2SiO 2 (mullite) powder of 50.0 to 93.0 mass%, ZrO 2 powder of 5.0 to 40.0 mass%, Al 2 O 3 After forming a compact containing 0 to 36.0% by mass of powder, 0 to 16.0% by mass of SiO 2 powder, and 2.0 to 8.0% by mass of MnO powder, It is produced by firing at 0 ° C. The bending strength of this ceramic substrate is 450 MPa or more.
 上述した第1変形例及び第2変形例に係るセラミック素地を用いた配線基板においても、低温にて焼結することができ、配線層の絶縁基板に対する密着性の向上を図ることができる配線基板とすることができる。 The wiring board using the ceramic substrate according to the first modification and the second modification described above can also be sintered at a low temperature, and the adhesion of the wiring layer to the insulating board can be improved. It can be.
 上述した例では、配線基板をセラミックパッケージに適用した例を示したが、高周波用回路基板等にも適用することができる。 In the above-described example, the example in which the wiring board is applied to the ceramic package is shown, but it can also be applied to a high-frequency circuit board or the like.
 実施例1~9、比較例1について、図1に示す配線基板12と同様の配線基板を作製し、表面配線層及び内部配線層のシート抵抗、表面配線層及び内部配線層に含まれるW及びMoの粒径、表面配線層の表面粗さRa、並びに絶縁基板18の結晶粒径、結晶相、抗折強度(曲げ強度)及び表面配線層の接着強度を確認した。作製した配線基板は、図1に示す上面配線層、下面配線層及び内部配線層を形成し、第1ビアホール及び第2ビアホールの形成は省略した。 For Examples 1 to 9 and Comparative Example 1, a wiring board similar to the wiring board 12 shown in FIG. 1 was prepared, and the sheet resistance of the surface wiring layer and the internal wiring layer, the W contained in the surface wiring layer and the internal wiring layer, and The grain size of Mo, the surface roughness Ra of the surface wiring layer, and the crystal grain size, crystal phase, bending strength (bending strength) of the insulating substrate 18 and adhesion strength of the surface wiring layer were confirmed. In the produced wiring board, the upper surface wiring layer, the lower surface wiring layer and the internal wiring layer shown in FIG. 1 were formed, and the formation of the first via hole and the second via hole was omitted.
[絶縁基板]
 絶縁基板18として、下記表1に示すように、6種類の絶縁基板(No.1~6)を用いた。以下に、その内訳を説明する。
[Insulated substrate]
As shown in Table 1 below, six types of insulating substrates (Nos. 1 to 6) were used as the insulating substrate 18. The breakdown will be described below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(絶縁基板No.1)
 原料粉末の主成分としてAl23粉末を用いた。Al23粉末の平均粒径は1.1μmである。また、焼成後の絶縁基板の組成は、Al23:92.5質量%、SiO2:4.0質量%、MnO:2.9質量%、MgO:0.3質量%、BaO:0.2質量%である。
(Insulating substrate No. 1)
Al 2 O 3 powder was used as the main component of the raw material powder. The average particle diameter of the Al 2 O 3 powder is 1.1 μm. The composition of the insulating substrate after firing was Al 2 O 3 : 92.5% by mass, SiO 2 : 4.0% by mass, MnO: 2.9% by mass, MgO: 0.3% by mass, BaO: 0. .2% by mass.
(絶縁基板No.2)
 Al23粉末の平均粒径が0.5μmであること以外は、絶縁基板No.1と同じである。
(Insulating substrate No. 2)
Insulating substrate No. 1 except that the average particle size of the Al 2 O 3 powder is 0.5 μm. Same as 1.
(絶縁基板No.3)
 焼成後の絶縁基板の組成が、Al23:89.6質量%、SiO2:5.6質量%、MnO:4.1質量%、MgO:0.4質量%、BaO:0.3質量%であること以外は、絶縁基板No.2と同じである。
(Insulating substrate No. 3)
The composition of the insulating substrate after firing was Al 2 O 3 : 89.6 mass%, SiO 2 : 5.6 mass%, MnO: 4.1 mass%, MgO: 0.4 mass%, BaO: 0.3 Except for the mass%, the insulation substrate No. Same as 2.
(絶縁基板No.4)
 原料粉末の主成分としてAl23粉末とZrO2粉末を用いた。そのうち、Al23粉末の平均粒径は1.1μmである。また、焼成後の絶縁基板の組成は、Al23:68.8質量%、ZrO2:18.7質量%、SiO2:4.8質量%、MnO:5.3質量%、MgO:1.0質量%、BaO:1.3質量%である。
(Insulating substrate No. 4)
Al 2 O 3 powder and ZrO 2 powder were used as the main component of the raw material powder. Among them, the average particle diameter of the Al 2 O 3 powder is 1.1 μm. The composition of the insulating substrate after firing was Al 2 O 3 : 68.8% by mass, ZrO 2 : 18.7% by mass, SiO 2 : 4.8% by mass, MnO: 5.3% by mass, MgO: 1.0% by mass and BaO: 1.3% by mass.
(絶縁基板No.5)
 原料粉末の主成分として3Al23・2SiO2粉末とZrO2粉末を用いた。また、焼成後の絶縁基板の組成は、Al23:50.5質量%、ZrO2:24.1質量%、SiO2:19.9質量%、MnO:4.4質量%、BaO:1.1質量%である。
(Insulating substrate No. 5)
3Al 2 O 3 .2SiO 2 powder and ZrO 2 powder were used as the main component of the raw material powder. The composition of the insulating substrate after firing was as follows: Al 2 O 3 : 50.5% by mass, ZrO 2 : 24.1% by mass, SiO 2 : 19.9% by mass, MnO: 4.4% by mass, BaO: 1.1% by mass.
(絶縁基板No.6)
 原料粉末の主成分としてAl23粉末を用いた。Al23粉末の平均粒径は1.8μmである。また、焼成後の絶縁基板の組成は、Al23:94.0質量%、SiO2:3.0質量%、MgO:3.0質量%である。
(Insulating substrate No. 6)
Al 2 O 3 powder was used as the main component of the raw material powder. The average particle diameter of the Al 2 O 3 powder is 1.8 μm. The composition of the insulating substrate after firing is Al 2 O 3 : 94.0% by mass, SiO 2 : 3.0% by mass, and MgO: 3.0% by mass.
<実施例1>
 絶縁基板No.1の原料粉末に、有機成分として、ポリビニルブチラール、3級アミン及びフタル酸エステル(フタル酸ジイソノニル:DINP)を混合し、溶剤として、IPA(イソプロピルアルコール)及びトルエンを混合、拡散してスラリーを調製し、その後、ドクターブレード法にて厚さ60~270μmのセラミックテープを作製した。そして、セラミックテープを所望の形状に切断、加工して、第1テープ~第4テープを作製した。
<Example 1>
Insulation substrate No. Polyvinyl butyral, tertiary amine and phthalic acid ester (diisononyl phthalate: DINP) as organic components are mixed into 1 raw material powder, and IPA (isopropyl alcohol) and toluene are mixed and diffused as a solvent to prepare a slurry. Thereafter, a ceramic tape having a thickness of 60 to 270 μm was produced by a doctor blade method. Then, the ceramic tape was cut and processed into a desired shape to produce first to fourth tapes.
 第1テープ及び第2テープに対して、表面配線層(上面配線層、下面配線層)及び内部配線層を形成するための導体ペーストを印刷塗布した。導体ペーストは、導体成分として、CuとWとの混合物を用いた。焼成後の導体部の組成は、Cu:12vol%、W:88vol%である。 A conductive paste for forming a surface wiring layer (upper surface wiring layer, lower surface wiring layer) and an internal wiring layer was printed and applied to the first tape and the second tape. The conductor paste used a mixture of Cu and W as a conductor component. The composition of the conductor part after baking is Cu: 12 vol%, W: 88 vol%.
 その後、導体ペーストを印刷塗布した第1テープ及び第2テープを位置合わせし、積層圧着して、積層体を作製した。この積層体並びに第3テープ及び第4テープを、焼成温度(最高温度)が1350℃、H2+N2のフォーミングガス雰囲気にて焼成して実施例1に係る配線基板並びに第1セラミック基板及び第2セラミック基板を作製した。表面配線層及び内部配線層は同時焼成にて形成した。第1セラミック基板は、結晶粒径と結晶相を確認するために使用され、第2セラミック基板は、抗折強度を確認するために使用される。第1セラミック基板及び第2セラミック基板を作製することは、以下の実施例2~9並びに比較例1についても同様である。上面配線層は、接着強度の測定用に平面形状が正方形で一辺の長さが2mmの大きさとした。 Then, the 1st tape and 2nd tape which carried out the printing application | coating of the conductor paste were aligned, the lamination | stacking pressure bonding was carried out, and the laminated body was produced. The laminated body, the third tape, and the fourth tape are fired in a forming gas atmosphere having a firing temperature (maximum temperature) of 1350 ° C. and H 2 + N 2 , and the wiring substrate, the first ceramic substrate, and the first ceramic substrate according to the first embodiment. Two ceramic substrates were produced. The surface wiring layer and the internal wiring layer were formed by simultaneous firing. The first ceramic substrate is used for confirming the crystal grain size and the crystal phase, and the second ceramic substrate is used for confirming the bending strength. The production of the first ceramic substrate and the second ceramic substrate is the same in the following Examples 2 to 9 and Comparative Example 1. The upper surface wiring layer has a square planar shape and a side length of 2 mm for measuring the adhesive strength.
<実施例2>
 表面配線層(上面配線層、下面配線層)及び内部配線層を形成するための焼成後の導体部の組成を、Cu:18vol%、W:82vol%としたこと以外は、実施例1と同様にして、実施例2に係る配線基板を作製した。
<Example 2>
The same as Example 1 except that the composition of the conductor part after firing for forming the surface wiring layer (upper surface wiring layer, lower surface wiring layer) and the internal wiring layer was Cu: 18 vol%, W: 82 vol% Thus, a wiring board according to Example 2 was produced.
<実施例3>
 絶縁基板No.2の原料粉末を用い、焼成後の導体部の組成を、Cu:23vol%、W:77vol%とし、焼成温度(最高温度)を1270℃としたこと以外は、実施例1と同様にして、実施例3に係る配線基板を作製した。
<Example 3>
Insulation substrate No. 2 using the raw material powder, the composition of the conductor part after firing was Cu: 23 vol%, W: 77 vol%, and the firing temperature (maximum temperature) was 1270 ° C. A wiring board according to Example 3 was produced.
<実施例4>
 焼成後の導体部の組成を、Cu:35vol%、W:65vol%としたこと以外は、実施例3と同様にして、実施例4に係る配線基板を作製した。
<Example 4>
A wiring board according to Example 4 was produced in the same manner as in Example 3 except that the composition of the conductor part after firing was Cu: 35 vol% and W: 65 vol%.
<実施例5>
 絶縁基板No.3の原料粉末を用い、焼成後の導体部の組成を、Cu:45vol%、W:55vol%とし、焼成温度(最高温度)を1200℃としたこと以外は、実施例1と同様にして、実施例5に係る配線基板を作製した。
<Example 5>
Insulation substrate No. 3, the composition of the conductor part after firing was Cu: 45 vol%, W: 55 vol%, and the firing temperature (maximum temperature) was 1200 ° C. A wiring board according to Example 5 was produced.
<実施例6>
 焼成後の導体部の組成を、Cu:53vol%、W:47vol%としたこと以外は、実施例5と同様にして、実施例6に係る配線基板を作製した。
<Example 6>
A wiring board according to Example 6 was produced in the same manner as in Example 5 except that the composition of the conductor part after firing was Cu: 53 vol% and W: 47 vol%.
<実施例7>
 導体ペーストの導体成分として、CuとMoとの混合物を用い、焼成後の導体部の組成をCu:53vol%、Mo:47vol%としたこと以外は、実施例5と同様にして、実施例7に係る配線基板を作製した。
<Example 7>
Example 7 is the same as Example 5 except that a mixture of Cu and Mo was used as the conductor component of the conductor paste, and the composition of the conductor part after firing was Cu: 53 vol% and Mo: 47 vol%. The wiring board which concerns on was produced.
<実施例8>
 絶縁基板No.4の原料粉末を用い、焼成後の導体部の組成を、Cu:15vol%、W:85vol%とし、焼成温度(最高温度)を1310℃としたこと以外は、実施例1と同様にして、実施例8に係る配線基板を作製した。
<Example 8>
Insulation substrate No. The raw material powder of No. 4 was used, the composition of the conductor part after firing was Cu: 15 vol%, W: 85 vol%, and the firing temperature (maximum temperature) was 1310 ° C. A wiring board according to Example 8 was produced.
<実施例9>
 絶縁基板No.5の原料粉末を用い、焼成後の導体部の組成を、Cu:25vol%、W:75vol%とし、焼成温度(最高温度)を1290℃としたこと以外は、実施例1と同様にして、実施例9に係る配線基板を作製した。
<Example 9>
Insulation substrate No. 5 using the raw material powder, the composition of the conductor part after firing was Cu: 25 vol%, W: 75 vol%, and the firing temperature (maximum temperature) was 1290 ° C. A wiring board according to Example 9 was produced.
<比較例1>
 絶縁基板No.6の原料粉末を用い、焼成後の導体部の組成を、Cu:5vol%、W:95vol%とし、焼成温度(最高温度)を1500℃としたこと以外は、実施例1と同様にして、比較例1に係る配線基板を作製した。
<Comparative Example 1>
Insulation substrate No. The raw material powder of No. 6 was used, the composition of the conductor part after firing was Cu: 5 vol%, W: 95 vol%, and the firing temperature (maximum temperature) was 1500 ° C. A wiring board according to Comparative Example 1 was produced.
[評価方法]
 表面配線層及び内部配線層のシート抵抗、W及びMoの粒径及び表面配線層の表面粗さRaを以下のように確認した。
[Evaluation methods]
The sheet resistance of the surface wiring layer and the internal wiring layer, the grain size of W and Mo, and the surface roughness Ra of the surface wiring layer were confirmed as follows.
(シート抵抗)
 上面配線層、下面配線層及び内部配線層の各シート抵抗を4端子法にて測定し、その平均値をシート抵抗とした。
(Sheet resistance)
Each sheet resistance of the upper surface wiring layer, the lower surface wiring layer, and the internal wiring layer was measured by a four-terminal method, and the average value was defined as the sheet resistance.
(W及びMoの粒径)
 上面配線層、下面配線層及び内部配線層の表面を、走査型電子顕微鏡にて撮像したとき、撮像した画像全体で500~1000個程度のW粒子及びMo粒子が写るように走査型電子顕微鏡の倍率を調整した。そして、撮像した画像中、任意の100個以上のW粒子及びMo粒子を、画像処理ソフトを用いて、各々真円に換算した粒径の平均により算出した。
(Particle size of W and Mo)
When the surface of the upper surface wiring layer, the lower surface wiring layer, and the internal wiring layer is imaged with a scanning electron microscope, about 500 to 1000 W particles and Mo particles are captured in the entire captured image. The magnification was adjusted. Then, in the captured image, arbitrary 100 or more W particles and Mo particles were calculated by average of particle diameters converted into perfect circles using image processing software.
(表面粗さRa)
 上面配線層及び下面配線層の各表面をレーザ顕微鏡(株式会社キーエンス製:VK-9700)で倍率500倍にて測定し、その平均値を表面粗さRaとした。
(Surface roughness Ra)
Each surface of the upper surface wiring layer and the lower surface wiring layer was measured with a laser microscope (manufactured by Keyence Corporation: VK-9700) at a magnification of 500 times, and the average value was defined as the surface roughness Ra.
(接着強度)
 平面形状が正方形で一辺の長さが2mmの上面配線層に直径0.6mmの錫被覆軟銅線をL字型に曲げたリード線を半田付けし、20mm/secの引張り速度で垂直に引っ張ったときの引張り強度を測定した。評価基準は、接着強度2kgを境に、それよりも高い範囲を3段階A、B及びCに分け、最も接着強度が高い範囲をAとし、接着強度が低くなるに従って順番に評価B、Cとした。また、接着強度が2kg未満を評価Dとした。
(Adhesive strength)
A lead wire obtained by bending a tin-coated annealed copper wire having a diameter of 0.6 mm into an L-shape was soldered to an upper surface wiring layer having a square shape and a side length of 2 mm, and was pulled vertically at a pulling speed of 20 mm / sec. The tensile strength was measured. The evaluation criteria are divided into three stages A, B, and C with the adhesive strength of 2 kg as the boundary, and the highest adhesive strength range is A, and the evaluation strengths B, C are evaluated in order as the adhesive strength decreases. did. Also, the evaluation strength D was less than 2 kg of adhesive strength.
 絶縁基板の結晶粒径、結晶相及び抗折強度(曲げ強度)を以下のように確認した。 The crystal grain size, crystal phase and bending strength (bending strength) of the insulating substrate were confirmed as follows.
(Al23の結晶粒径)
 粉末化する前の各第1セラミック基板の表面を、上述したように、走査型電子顕微鏡にて撮像したとき、撮像した画像全体で500~1000個程度の結晶粒子が写るように走査型電子顕微鏡の倍率を調整した。そして、撮像した画像中、任意の100個以上の結晶粒子を、画像処理ソフトを用いて、各々真円に換算した粒径の平均により算出した。
(Al 2 O 3 crystal grain size)
As described above, when the surface of each first ceramic substrate before powdering is imaged with a scanning electron microscope, about 500 to 1000 crystal particles are captured in the entire captured image. The magnification of was adjusted. Then, 100 or more arbitrary crystal particles in the captured image were calculated based on the average particle diameter converted to a perfect circle using image processing software.
(結晶相)
 各第1セラミック基板を、X線回折により同定した。結晶相が含まれているかどうかの判定基準として、アルミナのメインピーク(104面)の強度に対し、3%以上のメインピーク強度を持つものとした。すなわち、アルミナのメインピークの強度に対し、3%以上のメインピーク強度の位置(ピーク位置)とミラー指数並びに格子定数等に基づいて、含まれる結晶相を確認した。
(Crystal phase)
Each first ceramic substrate was identified by X-ray diffraction. As a criterion for determining whether or not a crystal phase is contained, the main peak intensity of 3% or more of the intensity of the main peak (104 plane) of alumina was assumed. That is, the contained crystal phase was confirmed based on the position of the main peak intensity (peak position) of 3% or more, the Miller index, the lattice constant, and the like with respect to the intensity of the main peak of alumina.
(抗折強度)
 各第2セラミック基板を、JISR1601の4点曲げ強度試験に基づいて室温にて測定した。
(Folding strength)
Each second ceramic substrate was measured at room temperature based on a four-point bending strength test of JIS R1601.
[評価結果]
 実施例1~9及び比較例1の評価結果を下記表2に示す。
[Evaluation results]
The evaluation results of Examples 1 to 9 and Comparative Example 1 are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~9は、いずれもAl23の結晶粒径が1.5μm未満であり、タングステン又はモリブデンの粒径が1.0μm未満であり、表面配線層の表面粗さRaが2.5μm未満であった。その結果、表面配線層及び内部配線層のシート抵抗を6.0mΩ/sq.以下に低減することができ、接着強度も2kg以上であった。 In all of Examples 1 to 9, the crystal grain size of Al 2 O 3 is less than 1.5 μm, the grain size of tungsten or molybdenum is less than 1.0 μm, and the surface roughness Ra of the surface wiring layer is 2. It was less than 5 μm. As a result, the sheet resistance of the surface wiring layer and the internal wiring layer was 6.0 mΩ / sq. The adhesive strength was 2 kg or more.
 その中でも、実施例5~7は、Al23の結晶粒径が1.0μm未満で、且つ、表面配線層の表面粗さRaが2.0μm未満であることから、表面配線層及び内部配線層のシート抵抗を3.0mΩ/sq.以下に低減することができ、接着強度も評価Aであった。 Among them, in Examples 5 to 7, the crystal grain size of Al 2 O 3 is less than 1.0 μm and the surface roughness Ra of the surface wiring layer is less than 2.0 μm. The sheet resistance of the wiring layer is 3.0 mΩ / sq. The adhesive strength was also evaluated as A.
 また、実施例1~7の絶縁基板は、Al23結晶相の他、BaAl2Si28結晶相を含み、実施例8の絶縁基板は、Al23結晶相の他、ZrO2結晶相及びMgAl24結晶相を含み、実施例9の絶縁基板は、Al23結晶相の他、ZrO2結晶相及び3Al23・2SiO2結晶相を含むことから、抗折強度として600MPa以上が得られている。 The insulating substrate of Examples 1-7, other Al 2 O 3 crystal phase, comprising a BaAl 2 Si 2 O 8 crystal phase, the insulating substrate of Example 8, another Al 2 O 3 crystalline phase, ZrO 2 includes a crystal phase and MgAl 2 O 4 crystalline phase, the insulating substrate of example 9, another Al 2 O 3 crystal phase, because they contain a ZrO 2 crystalline phase and 3Al 2 O 3 · 2SiO 2 crystal phase, anti A bending strength of 600 MPa or more is obtained.
 これに対して、比較例1は、接着強度の評価がDであった。これは、絶縁基板の結晶粒径が4.0μmと大きく、表面配線層の表面粗さRaも3.0μmと大きいことから、表面配線層の絶縁基板に対する密着性が低下したからだと考えられる。また、比較例1は、表面配線層及び内部配線層のシート抵抗が8.0mΩ/sq.と高かった。さらに、比較例1の絶縁基板は、結晶相として、Al23結晶相のみであったため、抗折強度が550MPaと低かった。 On the other hand, in Comparative Example 1, the evaluation of the adhesive strength was D. This is presumably because the crystal grain size of the insulating substrate is as large as 4.0 μm, and the surface roughness Ra of the surface wiring layer is as large as 3.0 μm, so that the adhesion of the surface wiring layer to the insulating substrate is reduced. In Comparative Example 1, the sheet resistance of the surface wiring layer and the internal wiring layer was 8.0 mΩ / sq. It was high. Furthermore, since the insulating substrate of Comparative Example 1 had only the Al 2 O 3 crystal phase as the crystal phase, the bending strength was as low as 550 MPa.
 なお、本発明に係る配線基板は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。 Of course, the wiring board according to the present invention is not limited to the above-described embodiment, and various configurations can be adopted without departing from the gist of the present invention.

Claims (10)

  1.  絶縁基板(18)と、
     前記絶縁基板(18)の表面に配設された表面配線層(20、22)と、
     前記絶縁基板(18)の内部に配設された内部配線層(24)とを有する配線基板であって、
     前記絶縁基板(18)は、結晶相が、少なくともAl23又はAl23を含む化合物を主結晶相とし、前記Al23の結晶粒径が1.5μm未満であり、
     前記表面配線層(20、22)及び前記内部配線層(24)は、銅とタングステンあるいは銅とモリブデンあるいは銅とタングステン及びモリブデンを含み、
     前記タングステン及びモリブデンの粒径が1.0μm未満であり、
     前記表面配線層(20、22)及び前記内部配線層(24)の表面粗さRaが2.5μm未満であることを特徴とする配線基板。
    An insulating substrate (18);
    Surface wiring layers (20, 22) disposed on the surface of the insulating substrate (18);
    A wiring board having an internal wiring layer (24) disposed inside the insulating substrate (18),
    The insulating substrate (18) has a crystal phase of at least Al 2 O 3 or a compound containing Al 2 O 3 as a main crystal phase, and the crystal grain size of the Al 2 O 3 is less than 1.5 μm,
    The surface wiring layer (20, 22) and the internal wiring layer (24) include copper and tungsten, copper and molybdenum, copper, tungsten and molybdenum,
    The tungsten and molybdenum have a particle size of less than 1.0 μm,
    A wiring board, wherein the surface wiring layer (20, 22) and the internal wiring layer (24) have a surface roughness Ra of less than 2.5 μm.
  2.  請求項1記載の配線基板において、
     少なくとも前記表面配線層(20、22)は、前記絶縁基板(18)との接着強度が、2kg以上であることを特徴とする配線基板。
    The wiring board according to claim 1,
    At least the surface wiring layers (20, 22) have a bonding strength with the insulating substrate (18) of 2 kg or more.
  3.  請求項1又は2記載の配線基板において、
     前記絶縁基板(18)が焼結体であることを特徴とする配線基板。
    In the wiring board according to claim 1 or 2,
    The wiring substrate, wherein the insulating substrate (18) is a sintered body.
  4.  請求項1~3のいずれか1項に記載の配線基板において、
     前記絶縁基板(18)は、結晶相が、前記主結晶相の他、BaAl2Si28結晶相のみを含むことを特徴とする配線基板。
    The wiring board according to any one of claims 1 to 3,
    The insulating substrate (18) is characterized in that the crystal phase includes only the BaAl 2 Si 2 O 8 crystal phase in addition to the main crystal phase.
  5.  請求項4記載の配線基板において、
     前記絶縁基板(18)は、AlをAl23換算で89.0~92.0質量%、SiをSiO2換算で2.0~5.0質量%、MnをMnO換算で2.0~5.0質量%、MgをMgO換算で0~2.0質量%、BaをBaO換算で0.05~2.0質量%含むことを特徴とする配線基板。
    The wiring board according to claim 4,
    In the insulating substrate (18), Al is 89.0 to 92.0 mass% in terms of Al 2 O 3 , Si is 2.0 to 5.0 mass% in terms of SiO 2 , and Mn is 2.0 in terms of MnO. A wiring board comprising: -5.0 mass%, Mg: 0-2.0 mass% in terms of MgO, and Ba: 0.05-2.0 mass% in terms of BaO.
  6.  請求項1~3のいずれか1項に記載の配線基板において、
     前記絶縁基板(18)は、結晶相が、Al23及びZrO2を主結晶相とし、その他、Mn3Al2(SiO43又はMgAl24を含むことを特徴とする配線基板。
    The wiring board according to any one of claims 1 to 3,
    The insulating substrate (18) has a crystal phase of Al 2 O 3 and ZrO 2 as main crystal phases, and additionally contains Mn 3 Al 2 (SiO 4 ) 3 or MgAl 2 O 4. .
  7.  請求項6記載の配線基板において、
     AlをAl23換算で70.0~90.0質量%、ZrをZrO2換算で10.0~30.0質量%、Al23とZrO2の合計を100質量%とした場合、MnをMnO換算で2.0~7.0質量%、SiをSiO2換算で2.0~7.0質量%、BaをBaO換算で0.5~2.0質量%、MgをMgO換算で0~2.0質量%含むことを特徴とする配線基板。
    The wiring board according to claim 6,
    70.0 to 90.0 wt% of Al in terms of Al 2 O 3, 10.0 to 30.0 wt% of Zr in terms of ZrO 2, when the sum of the Al 2 O 3 and ZrO 2 is 100 mass% , Mn is 2.0 to 7.0 mass% in terms of MnO, Si is 2.0 to 7.0 mass% in terms of SiO 2 , Ba is 0.5 to 2.0 mass% in terms of BaO, and Mg is MgO. A wiring board comprising 0 to 2.0% by mass in terms of conversion.
  8.  請求項1~3のいずれか1項に記載の配線基板において、
     前記絶縁基板(18)は、結晶相が、3Al23・2SiO2を主結晶相とし、その他、Al23及びZrO2を含むことを特徴とする配線基板。
    The wiring board according to any one of claims 1 to 3,
    The wiring board, wherein the insulating substrate (18) has a crystal phase of 3Al 2 O 3 .2SiO 2 as a main crystal phase and Al 2 O 3 and ZrO 2 in addition.
  9.  請求項8記載の配線基板において、
     AlをAl23換算で40.0~70.0質量%、ZrをZrO2換算で5.0~40.0質量%、SiをSiO2換算で10.0~30.0質量%、MnをMnO換算で2.0~8.0質量%を含むことを特徴とする配線基板。
    The wiring board according to claim 8,
    Al is 40.0-70.0% by mass in terms of Al 2 O 3 , Zr is 5.0-40.0% by mass in terms of ZrO 2 , Si is 10.0-30.0% by mass in terms of SiO 2 , A wiring board comprising Mn in an amount of 2.0 to 8.0% by mass in terms of MnO.
  10.  請求項9記載の配線基板において、
     Ba、Ti、Y、Ca及びMgのうち、少なくとも1種の元素を含み、
     Al23、ZrO2、SiO2及びMnOの合計を100質量%としたとき、
     Baを含む場合は、BaO換算で1.5質量%以下含み、
     Tiを含む場合は、TiO2換算で1.5質量%以下含み、
     Yを含む場合は、Y23換算で1.5質量%以下含み、
     Caを含む場合は、CaO換算で1.5質量%以下含み、
     Mgを含む場合は、MgO換算で1.5質量%以下含むことを特徴とする配線基板。
    The wiring board according to claim 9, wherein
    Including at least one element of Ba, Ti, Y, Ca and Mg,
    When the total of Al 2 O 3 , ZrO 2 , SiO 2 and MnO is 100% by mass,
    When Ba is contained, it contains 1.5% by mass or less in terms of BaO,
    When Ti is contained, it contains 1.5% by mass or less in terms of TiO 2 ,
    When Y is included, it is 1.5% by mass or less in terms of Y 2 O 3 ,
    When it contains Ca, it contains 1.5 mass% or less in terms of CaO,
    When Mg is contained, it contains 1.5 mass% or less in terms of MgO.
PCT/JP2016/058424 2015-03-17 2016-03-17 Wiring substrate WO2016148217A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017506599A JP6609622B2 (en) 2015-03-17 2016-03-17 Wiring board
CN201680016103.4A CN107409472B (en) 2015-03-17 2016-03-17 Wiring substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-053448 2015-03-17
JP2015053448 2015-03-17

Publications (1)

Publication Number Publication Date
WO2016148217A1 true WO2016148217A1 (en) 2016-09-22

Family

ID=56919245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058424 WO2016148217A1 (en) 2015-03-17 2016-03-17 Wiring substrate

Country Status (3)

Country Link
JP (1) JP6609622B2 (en)
CN (1) CN107409472B (en)
WO (1) WO2016148217A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019179851A (en) * 2018-03-30 2019-10-17 日本特殊陶業株式会社 Ceramic wiring board
WO2020085148A1 (en) * 2018-10-22 2020-04-30 日本碍子株式会社 Ceramic green body
WO2021070375A1 (en) * 2019-10-11 2021-04-15 日本碍子株式会社 Package
WO2021070373A1 (en) * 2019-10-11 2021-04-15 日本碍子株式会社 Package
JPWO2021079450A1 (en) * 2019-10-24 2021-04-29
WO2023152918A1 (en) * 2022-02-10 2023-08-17 Ngkエレクトロデバイス株式会社 Package manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6822334B2 (en) * 2017-07-04 2021-01-27 株式会社デンソー Temperature sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997862A (en) * 1995-09-29 1997-04-08 Toshiba Corp High-strength circuit board and its manufacturing method
JP2002217336A (en) * 2001-01-22 2002-08-02 Kyocera Corp Wiring board
JP2004006624A (en) * 2002-03-27 2004-01-08 Kyocera Corp Wiring board and its manufacturing method
JP2009004516A (en) * 2007-06-20 2009-01-08 Ngk Spark Plug Co Ltd Ceramic wiring board and manufacturing method of the ceramic wiring board
JP2010177335A (en) * 2009-01-28 2010-08-12 Kyocera Corp Multilayer wiring board and manufacturing method therefor
JP2012129447A (en) * 2010-12-17 2012-07-05 Kyocera Corp Method of manufacturing electronic component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794839A (en) * 1993-09-20 1995-04-07 Kyocera Corp Circuit board
JP3537698B2 (en) * 1998-08-31 2004-06-14 京セラ株式会社 Wiring board and method of manufacturing the same
JP4507148B2 (en) * 2000-10-24 2010-07-21 株式会社ニッカトー Heat treatment member made of mullite sintered body
JP5559590B2 (en) * 2009-11-18 2014-07-23 日本碍子株式会社 Ceramic sintered body, method for producing the same, and ceramic structure
JP5902292B2 (en) * 2012-03-29 2016-04-13 日本碍子株式会社 Ceramic substrate and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997862A (en) * 1995-09-29 1997-04-08 Toshiba Corp High-strength circuit board and its manufacturing method
JP2002217336A (en) * 2001-01-22 2002-08-02 Kyocera Corp Wiring board
JP2004006624A (en) * 2002-03-27 2004-01-08 Kyocera Corp Wiring board and its manufacturing method
JP2009004516A (en) * 2007-06-20 2009-01-08 Ngk Spark Plug Co Ltd Ceramic wiring board and manufacturing method of the ceramic wiring board
JP2010177335A (en) * 2009-01-28 2010-08-12 Kyocera Corp Multilayer wiring board and manufacturing method therefor
JP2012129447A (en) * 2010-12-17 2012-07-05 Kyocera Corp Method of manufacturing electronic component

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019179851A (en) * 2018-03-30 2019-10-17 日本特殊陶業株式会社 Ceramic wiring board
JPWO2020085148A1 (en) * 2018-10-22 2021-09-16 日本碍子株式会社 Ceramic substrate
WO2020085148A1 (en) * 2018-10-22 2020-04-30 日本碍子株式会社 Ceramic green body
JP7108704B2 (en) 2018-10-22 2022-07-28 日本碍子株式会社 ceramic base
WO2021070373A1 (en) * 2019-10-11 2021-04-15 日本碍子株式会社 Package
JPWO2021070373A1 (en) * 2019-10-11 2021-10-28 日本碍子株式会社 package
JPWO2021070375A1 (en) * 2019-10-11 2021-12-02 日本碍子株式会社 package
JP7008169B2 (en) 2019-10-11 2022-01-25 日本碍子株式会社 package
JP7008168B2 (en) 2019-10-11 2022-01-25 日本碍子株式会社 package
WO2021070375A1 (en) * 2019-10-11 2021-04-15 日本碍子株式会社 Package
WO2021079450A1 (en) * 2019-10-24 2021-04-29 日本碍子株式会社 Package
JPWO2021079450A1 (en) * 2019-10-24 2021-04-29
JP7316370B2 (en) 2019-10-24 2023-07-27 日本碍子株式会社 package
WO2023152918A1 (en) * 2022-02-10 2023-08-17 Ngkエレクトロデバイス株式会社 Package manufacturing method

Also Published As

Publication number Publication date
JP6609622B2 (en) 2019-11-20
JPWO2016148217A1 (en) 2018-01-11
CN107409472A (en) 2017-11-28
CN107409472B (en) 2019-09-24

Similar Documents

Publication Publication Date Title
JP6609622B2 (en) Wiring board
JP5645136B2 (en) Dielectric porcelain composition, multilayer dielectric substrate, electronic component, and method for producing dielectric porcelain composition
JP6632995B2 (en) Ceramic body and method of manufacturing the same
JP5321066B2 (en) Ceramic composition and ceramic substrate
JP4557417B2 (en) Manufacturing method of low-temperature fired ceramic wiring board
JP2010045209A (en) Method of manufacturing laminated ceramic electronic component
JP6728859B2 (en) Ceramic substrate and manufacturing method thereof
JP6314292B1 (en) Ceramic substrate and manufacturing method thereof
JP6573872B2 (en) Ceramic substrate and manufacturing method thereof
JP2022136766A (en) Ceramic electronic component
KR101188770B1 (en) Low temperature co-fired ceramic material, low temperature co-fired ceramic body, and multilayer ceramic substrate
JP6581967B2 (en) Ceramic substrate and manufacturing method thereof
JP4496529B2 (en) Multilayer ceramic substrate manufacturing method and multilayer ceramic substrate
JP5648682B2 (en) Metal base substrate
JP4449344B2 (en) Oxide porcelain composition and ceramic multilayer substrate
JP6640112B2 (en) Ceramic body and method of manufacturing the same
JPH11157945A (en) Production of ceramic electronic part and green sheet for dummy used therefor
JP2010045212A (en) Laminated ceramic electronic component and its manufacturing method
JP6597268B2 (en) Method for producing ceramic fired body
JP3330817B2 (en) Multilayer ceramic parts
JP2005260136A (en) Manufacturing method for low-temperature baking multilayer ceramic board
JP2008094655A (en) Dielectric ceramic raw material composition, ceramic substrate and method of manufacturing multilayer ceramic substrate
JP2006216363A (en) Conductor composition, wiring substrate using it and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765046

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506599

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16765046

Country of ref document: EP

Kind code of ref document: A1