WO2016148125A1 - Novel fluorescently labeled sphingomyelin and use thereof - Google Patents

Novel fluorescently labeled sphingomyelin and use thereof Download PDF

Info

Publication number
WO2016148125A1
WO2016148125A1 PCT/JP2016/058079 JP2016058079W WO2016148125A1 WO 2016148125 A1 WO2016148125 A1 WO 2016148125A1 JP 2016058079 W JP2016058079 W JP 2016058079W WO 2016148125 A1 WO2016148125 A1 WO 2016148125A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
formula
independently
raft
Prior art date
Application number
PCT/JP2016/058079
Other languages
French (fr)
Japanese (ja)
Inventor
道雄 村田
信明 松森
祥尚 木下
明弘 楠見
鈴木 健一
Original Assignee
国立大学法人大阪大学
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 国立大学法人京都大学 filed Critical 国立大学法人大阪大学
Priority to JP2017506557A priority Critical patent/JP6398055B2/en
Publication of WO2016148125A1 publication Critical patent/WO2016148125A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/335Polymers modified by chemical after-treatment with organic compounds containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B11/00Diaryl- or thriarylmethane dyes
    • C09B11/28Pyronines ; Xanthon, thioxanthon, selenoxanthan, telluroxanthon dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors

Definitions

  • the present invention relates to a novel labeled fluorescent sphingomyelin and use thereof.
  • SM sphingomyelin
  • Non-Patent Literature 1 SM is an essential component of lipid rafts, direct information regarding SM behavior has not yet been obtained, particularly in biological membranes.
  • CARS coherent anti-Stokes Raman scattering
  • DSPC 1,2-distearoyl-sn-glycero-3-phosphocholine
  • DOPC dioleoylphosphatidylcholine
  • Fluorescence microscopy is a useful tool for observing lipid distribution and domain formation. Furthermore, recent advances in SFMT (fluorescence single molecule tracking method) have made it possible to obtain detailed information on behavior and interactions as well as the distribution of biomolecules at the nanoscale.
  • the simplest approach for examining the behavior of SM in such microscopic observation is to use a fluorescently labeled SM that is confirmed to behave similarly to the original SM. Many fluorescently-labeled SMs have already been synthesized and sold in part, but these fluorescently-labeled SMs hardly reflect the behavior of the original SM.
  • Non-Patent Documents 2 and 3 preferentially binds to a non-raft-like L d phase rather than the raft-like L o phase in the phase separation membrane. It is conceivable that a large fluorescent substance (fluorophore) bound to SM causes steric hindrance, which may impair lipid packing or be excluded from the domain of the raft-like structure (Non-patent Document 4). Inevitably, the apparent properties of rafts vary greatly, especially in living cells (Non-Patent Documents 5 and 6). Instead, lysenin is used as a fluorescent probe for SM.
  • fluorophore fluorophore
  • Non-patent Document 7 lysenin binds to the SM cluster and the endogenous tryptophan residue functions as a fluorophore.
  • Non-patent Document 8 one potential problem with using proteins as lipid probes is the difference in size between lipids and proteins.
  • the molecular weight of lysenin is 30 times the molecular weight of general phospholipids, and may change the properties of the membrane (Non-patent Document 8).
  • lipid rafts (less than 200 to 300 nm) of biological membranes are smaller than lipid rafts (over 1 ⁇ m) of artificial membranes, so that they are hardly visible with ordinary fluorescence microscopy. Due to such problems in imaging, it was not possible to obtain direct information on SM behavior and the role of SM in rafting.
  • An object of the present invention is to provide a new fluorescently labeled sphingomyelin that exhibits the same behavior as the original sphingomyelin.
  • An object of the present invention is to provide a lipid raft visualization agent, a diagnostic marker for lipid raft-related diseases, a reagent for detection or quantification of lipid rafts, and a lipid raft visualization method.
  • the present invention relates to the following inventions. [1] The following formula (1)
  • A represents a residue of a water-soluble fluorescent coloring compound
  • B and E represent the same or different linkers
  • R 1 to R 4 each independently represents a hydrogen atom or a substituent
  • X represents An integer of 3 to 50
  • m and n are each independently an integer of 10 to 30, and the following formula (2)
  • G 1 to G 7 are each independently a hydrogen atom or a water-soluble functional group
  • p is 4
  • R 5 to R 8 are each independently a hydrogen atom or a substituent, provided that The compound according to [1] above, wherein at least one of G 1 to G 6 and four G 7 is a water-soluble functional group.
  • B represents the following formula (4)
  • B 1c and B 2c are each independently —CONR 9 — or —COO—
  • B 1b and B 2b are each independently a C 1-20 alkylene group
  • R 9 to R 14 each independently represents a hydrogen atom or a substituent, 1d, 1e, 2d and 2e are each independently 0 or 1, and 1f and 2f are each independently Or an integer of 0 to 3).
  • E represents the following formula (11)
  • E 1c and E 2c are each independently —CONR 15 — or —COO—
  • E 1b and E 2b are each independently an alkylene group
  • E3 is —CONR 16 —, —COOCO—, —COO—, —NHCOO—, —O—, —OCO—, —C ⁇ C—, —CH ⁇ CH—, an alkylene group, —S—, —SO—, —SO 2 —, —NR 17 —, — NR 18 CO—, —NR 19 CONR 20 —, the following formula (5)
  • R 15 to R 20 each independently represents a hydrogen atom or a substituent
  • 1g, 1h, 2g and 2h are each independently 0 or 1
  • 1i and 2i are each independently The compound according to any one of the above [1] to [3], which is a group represented by [5]
  • a lipid raft visualization agent containing the compound according to any one of [1] to [4].
  • [6] A lipid raft-related disease diagnostic marker containing the compound according to any one of [1] to [4] or the agent according to [5].
  • [7] A lipid raft detection or quantification reagent containing the compound according to any one of [1] to [4] or the agent according to [5].
  • a lipid raft comprising a step of mixing the compound according to any one of [1] to [4] above with a cell containing a lipid raft, and a step of detecting fluorescence by irradiating the cell with light. Visualization method.
  • the present invention can provide a new fluorescently labeled sphingomyelin that exhibits the same behavior as the original sphingomyelin.
  • the present invention can provide a lipid raft visualization agent, a diagnostic marker for lipid raft-related diseases, a reagent for detection or quantification of lipid rafts, and a lipid raft visualization method.
  • FIG. 1 shows a fluorescence micrograph of GUV containing compound 5.
  • FIG. 2 shows a GUV fluorescence micrograph containing TX-red DHPE.
  • FIG. 3 shows a photograph in which FIGS. 1 and 2 are superimposed.
  • FIG. 4 shows a fluorescence micrograph of GUV containing compound 6.
  • FIG. 5 shows a fluorescence micrograph of GUV containing Bodipy-PC.
  • FIG. 6 shows a photograph in which FIGS. 4 and 5 are superimposed.
  • FIG. 7 shows a confocal laser micrograph of a cross section of GUV containing compound 5.
  • FIG. 8 shows the fluorescence intensity distribution of the cross section of GUV containing Compound 5.
  • FIG. 9 shows a confocal laser micrograph of a cross section of GUV containing compound 6.
  • FIG. 10 shows the fluorescence intensity distribution of the cross section of GUV containing Compound 6.
  • FIG. 11 shows the ratio of the fluorescence intensity of the raft-like phase / the fluorescence intensity of the non-raft-like phase in the GUV cross section.
  • FIG. 12 shows a confocal laser micrograph (FRET method) of a cross section of one GUV containing compounds 5 and 6.
  • FIG. 13 shows the fluorescence intensity distribution (FRET method) of the cross section of GUV containing compounds 5 and 6.
  • FIG. 14 shows a confocal laser scanning micrograph (FRET method) of a cross section of GUV containing a plurality of compounds 5 and 6.
  • FIG. 15 shows a fluorescence micrograph when compound 6 is added to one erythrocyte.
  • FIG. 16 shows a fluorescence micrograph (FRET method) when compounds 5 and 6 are added to one red blood cell.
  • FIG. 17 shows a differential interference microscopic photograph of an artificially formed echinosite obtained by adding compound 6 to a plurality of red blood cells.
  • FIG. 18 shows a fluorescence micrograph of an echinocyte artificially formed by adding Compound 6 to a plurality of red blood cells.
  • FIG. 19 shows a photograph in which FIGS. 17 and 18 are superimposed.
  • FIG. 20 shows the time course of diffusion movement of two molecules of compound 6 in CHO-K1 cells.
  • FIG. 21 shows the results of quantifying the colocalization of compound 6 in the raft region.
  • FIG. 22 shows the result of quantifying the colocalization of ATTO594-DOPE in the raft region.
  • FIG. 23 shows a fluorescence micrograph of compound 6 added to an erythrocyte ghost membrane.
  • FIG. 24 shows a fluorescence micrograph after treatment of the erythrocyte ghost membrane of FIG. 23 with a surfactant TX-100.
  • FIG. 25 shows a fluorescence micrograph of compound 6 added to a CHO—K1 ghost film.
  • FIG. 26 shows a fluorescence micrograph after the CHO-K1 ghost film of FIG. 25 has been treated with a surfactant TX-100.
  • FIG. 27 shows a fluorescence micrograph of compound 6 added to an ECV304 ghost membrane.
  • FIG. 28 shows a fluorescence micrograph after the ECV304 ghost membrane of FIG. 27 has been treated with a surfactant TX-100.
  • FIG. 29 shows an NMR chart of Compound 5 subjected to one-dimensional data processing.
  • FIG. 30 shows an NMR chart of Compound 5 that has been subjected to two-dimensional data processing.
  • FIG. 31 shows the HRMS chart of Compound 5.
  • FIG. 32 shows an NMR chart of Compound 6 subjected to one-dimensional data processing.
  • FIG. 33 shows an NMR chart of Compound 6 that has been subjected to two-dimensional data processing.
  • FIG. 34 shows the HRMS chart of Compound 6.
  • FIG. 35 shows a differential interference micrograph of echinosite.
  • FIG. 36 shows the distribution of CD59 labeled with the fluorescent antibody Cy3-IgG (confocal laser micrograph).
  • FIG. 37 shows a confocal laser micrograph in which compound 5 was added to the echinosite film.
  • FIG. 38 shows a photograph in which FIGS. 36 and 37 are superimposed.
  • FIG. 39 shows the distribution (confocal fluorescence micrograph) of compound 5 in the early stage of echinosite.
  • FIG. 40 shows the distribution (confocal fluorescence microscope image) of GPI-anchored CD59 labeled with Cy3-IgG at the early stage of echinosite.
  • FIG. 41 shows a differential interference micrograph of the initial echinosite.
  • FIG. 42 shows a photograph in which FIGS. 39 to 41 are superimposed.
  • the present invention includes a compound represented by the following formula (1) (hereinafter also referred to as the compound of the present invention).
  • the group represented by the following formula (2) is a single bond or a double bond.
  • A represents a residue of the water-soluble fluorescent coloring compound.
  • the water-soluble fluorescent coloring compound is, for example, a compound in which an electron excitation source emits light by an electromagnetic wave having a wavelength shorter than that of visible light.
  • the water-soluble fluorescent coloring compound is not particularly limited, and examples thereof include a fluorescent coloring compound having a water-soluble functional group such as a sulfonic acid group (sulfo group), a carboxyl group, and a quaternary amine. It is preferably a group (sulfo group).
  • the number of water-soluble functional groups possessed by the water-soluble fluorescent coloring compound is not particularly limited, but is preferably 1 to 10, more preferably 1 to 5, still more preferably 1 to 3.
  • Examples of the water-soluble fluorescent coloring compound represented by A include compounds having a rhodamine skeleton, an acridine skeleton, a cyanine skeleton, a fluorescein skeleton, an oxazine skeleton, a phenanthridine skeleton, etc., among which a compound having a rhodamine skeleton is preferable.
  • the water-soluble fluorescent coloring compound is preferably ATTO-488 (trade name) or ATTO-594 (trade name) sold by ATTO-TEC GmbH.
  • Examples of the residue of the water-soluble fluorescent coloring compound represented by A include the following formula (3): (In the formula, G 1 to G 7 are each independently a hydrogen atom or a water-soluble functional group, p is 4, and R 5 to R 8 are each independently a hydrogen atom or a substituent, provided that It is preferable that at least one of G 1 to G 6 and four G 7 is a water-soluble functional group.
  • examples of the water-soluble functional group include the groups exemplified above such as a sulfonic acid group.
  • the number of water-soluble functional groups can also be selected from the same range as described above (for example, about 1 to 10, preferably about 1 to 4).
  • G 3 and G 4 are sulfonic acid groups (sulfo groups), and G 1 , G 2 , G 5 , G 6 and G 7 are hydrogen atoms.
  • substituents include an aliphatic group and an aromatic group.
  • the aliphatic group include an alkyl group and a cycloalkyl group (for example, a cyclohexyl group).
  • alkyl group examples include C 1-20 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, preferably C 1-10 alkyl group. More preferably, a C 1-4 alkyl group and the like can be mentioned.
  • the aromatic group for example, an aromatic hydrocarbon group [for example, a phenyl group, a tolyl group, a xylyl group, an aryl group such as a naphthyl group (e.g., C 6 ⁇ 20 aryl group, preferably a C 6 ⁇ 12 aryl group) Etc.], and aromatic heterocyclic groups.
  • aromatic hydrocarbon group for example, a phenyl group, a tolyl group, a xylyl group, an aryl group such as a naphthyl group (e.g., C 6 ⁇ 20 aryl group, preferably a C 6 ⁇ 12 aryl group) Etc.
  • aromatic heterocyclic groups for example, an aromatic hydrocarbon group [for example, a phenyl group, a tolyl group, a xylyl group, an aryl group such as a naphthyl group (e.g., C 6 ⁇ 20 aryl group, preferably a
  • Examples of the aliphatic group having a substituent include, for example, an alkyl group substituted with an aromatic group [for example, an aralkyl group (for example, an arylalkyl group such as benzyl group, phenethyl group), a haloalkyl group (for example, a chloromethyl group, a bromoethyl group).
  • An alkyl group having a substituent such as a group etc.
  • the aromatic group having a substituent for example, haloaryl group (e.g., chlorophenyl group, halo C 6 ⁇ 20 aryl group such as a bromophenyl group, preferably halo C 6 ⁇ 12 aryl group).
  • R 5 ⁇ R 8 Preferred hydrogen atom as R 5 ⁇ R 8, an alkyl group (C 1 ⁇ 4 alkyl group such as a methyl group, an ethyl group), an aralkyl group (e.g., C 6 ⁇ 10 aryl C 1 ⁇ 4 such as a benzyl group, a phenethyl group An alkyl group), and it is more preferable that all of R 5 to R 8 are hydrogen atoms.
  • R 5 ⁇ R 8 an alkyl group (C 1 ⁇ 4 alkyl group such as a methyl group, an ethyl group), an aralkyl group (e.g., C 6 ⁇ 10 aryl C 1 ⁇ 4 such as a benzyl group, a phenethyl group An alkyl group), and it is more preferable that all of R 5 to R 8 are hydrogen atoms.
  • B and E represent the same or different linkers.
  • B is not particularly limited as long as it is a linker for binding A and the polyethylene glycol moiety.
  • the polyethylene glycol moiety refers to a moiety represented by the structural formula — (CH 2 CH 2 O) x— in formula (1).
  • X is an integer of 3 to 50, preferably 5 to 40, more preferably 7 to 30, still more preferably 8 to 20, and particularly preferably 8 to 12.
  • B is typically represented by the following formula (4): (Wherein B 1c and B 2c each independently represent —CONR 9 — or —COO—, B 1b and B 2b each independently represent an alkylene group, and B3 represents —CONR 10 —, —COOCO—, —COO—, —NHCOO—, —O—, —OCO—, —C ⁇ C—, —CH ⁇ CH—, an alkylene group, —S—, —SO—, —SO 2 —, —NR 11 —, — NR 12 CO—, —NR 13 CONR 14 —, the following formula (5)
  • R 9 to R 14 each independently represents a hydrogen atom or a substituent, 1d, 1e, 2d and 2e are each independently 0 or 1, and 1f and 2f are each independently Or an integer of 0 to 3).
  • examples of the alkylene group include a methylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, and an octamethylene group.
  • the alkylene group may be linear or branched, and may be particularly linear.
  • the substituent is the same as that of R 5 to R 8 [eg, alkyl group (methyl group, ethyl group, etc.), aryl group, haloalkyl group, haloaryl group, aralkyl group, etc.] Is mentioned.
  • R 9 ⁇ R 14, C 6 ⁇ 10 such as a hydrogen atom, an alkyl group (e.g., C 1 ⁇ 4 alkyl group such as a methyl group, an ethyl group), an aralkyl group (e.g., benzyl group, phenethyl group Aryl C 1-4 alkyl group) and the like.
  • an alkyl group e.g., C 1 ⁇ 4 alkyl group such as a methyl group, an ethyl group
  • an aralkyl group e.g., benzyl group, phenethyl group Aryl C 1-4 alkyl group
  • 2f is 2 or 3
  • B 2b , B 2c , 2d and 2e may be different from each other.
  • 2f is preferably 0.
  • B is shown in Table 1.
  • p 1 , p 2 and p 3 represent an integer of 1 or more, preferably 1 to 20, more preferably 1 to 12, particularly 2 to 8.
  • B is particularly preferably —CONR 9 — (CH 2 ) p 3 CONR 10 —.
  • R 9 , p 3 and R 10 are each independently described as above.
  • E is not particularly limited as long as it is a linker for binding the polyethylene glycol moiety and the sphingomyelin moiety represented by the following formula (12).
  • R 1 to R 4 each independently represent a hydrogen atom or a substituent.
  • substituents include the same substituents as R 5 to R 8 [eg, alkyl group (methyl group, ethyl group, etc.), aryl group, haloalkyl group, haloaryl group, aralkyl group, etc.].
  • Representative R 1 ⁇ R 4, C 6 ⁇ 10 such as a hydrogen atom, an alkyl group (e.g., C 1 ⁇ 4 alkyl group such as a methyl group, an ethyl group), an aralkyl group (e.g., benzyl group, phenethyl group Aryl C 1-4 alkyl group) and the like.
  • n is not particularly limited as long as it is within the range of 10 to 30, but is preferably 10 to 25, more preferably 10 to 20, further preferably 11 to 15, and preferably 13. Particularly preferred.
  • n is not particularly limited as long as it is within the range of 10 to 30, but it is preferably 14 to 25, more preferably 15 to 20, further preferably 16 to 18, and preferably 17. Particularly preferred.
  • E is typically represented by the following formula (11): Wherein E 1c and E 2c are each independently —CONR 15 — or —COO—, E 1b and E 2b are each independently an alkylene group, E3 is —CONR 16 —, —COOCO—, —COO—, —NHCOO—, —O—, —OCO—, —C ⁇ C—, —CH ⁇ CH—, an alkylene group, —S—, —SO—, —SO 2 —, —NR 17 —, — NR 18 CO—, —NR 19 CONR 20 —, the following formula (5) A group represented by formula (6): A group represented by formula (7): Or a group represented by the following formula (8) A group represented by formula (9):
  • R 15 to R 20 each independently represents a hydrogen atom or a substituent
  • 1g, 1h, 2g and 2h are each independently 0 or 1
  • 1i and 2i are each independently Or an integer of 0 to 3).
  • E 1b , E 1c , 1g and 1h may be different from each other.
  • E 2b , E 2c , 2g and 2h may be different from each other.
  • 2g and 2i are preferably 1.
  • E is shown in Table 2.
  • q represents an integer of 1 or more, and q is preferably 1 to 20, more preferably 1 to 12, and particularly 1 to 8.
  • E is preferably a combination of E-1 in Table 2.
  • the compound of the present invention can specifically migrate to the lipid raft region.
  • the compounds of the present invention are capable of visualizing lipid raft regions and are very useful, for example, in diagnosing lipid raft-related diseases.
  • the compound of this invention is not specifically limited, For example, it manufactures by referring the below-mentioned Example.
  • the compound of the present invention can be obtained, for example, as follows.
  • a water-soluble fluorescent coloring compound (a) having a functional group and a polyethylene glycol moiety derivative (b) are reacted as shown in the following reaction formula 1.
  • B 3a is formed by the reaction of B 1a of compound (I) and B 2a of compound (b).
  • Such functional groups B 1a and B 2a can be appropriately selected depending on the type of B3.
  • Examples include —N-succinimide group, maleimide group, tosyloxy group (—OTs), trifluoromethanesulfonyloxy group, cyano group and the like.
  • Table 3 shows representative combinations of B 1a , B 2a and B3. (In the table, X represents halogen.)
  • Reaction Formula 2 Reaction of reaction formula 2 is carried out using the derivative (b) of the polyethylene glycol moiety instead of (c) in reaction formula 2, and the resulting compound is used in place of compound (b) in reaction formula 1
  • E 1a compounds (c), E3 by the E 2a is the reaction of the compound (II) is formed.
  • Such functional groups E 1a and E 2a can be appropriately selected according to the type of E3.
  • hydroxyl group (—OH), alkylamino group, carboxyl group (—COOH), —NCO group, thiol group ( —SH), azide group (—N 3 ), acetylene group (—C ⁇ CH), vinyl group (—CH ⁇ CH 2 ), halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), —COO -N-succinimide group, maleimide group, tosyloxy group, trifluoromethanesulfonyloxy group and the like can be mentioned.
  • Table 4 shows typical combinations of E 1a , E 2a and E3.
  • Solvents and the like can be appropriately selected by those skilled in the art.
  • the compound (c) is not particularly limited.
  • the compound (b) is dissolved in DMF (N, N-dimethylformamide), and the compound (b) containing triethylamine and a polyethylene glycol part is added thereto in order, For 7 hours, the solvent is distilled off and the residue is purified by silica gel chromatography and gel permeation chromatography.
  • the compound of the present invention is not particularly limited.
  • a sphingomyelin portion in which compound (c) is dissolved in t-BuOH / H 2 O, copper sulfate and sodium ascorbate are added, and then dissolved in 100 ⁇ L of methanol is used.
  • the compound (d) containing the mixture is added, the solvent stirred at room temperature for 1 day is distilled off, and the residue is separated and purified by thin layer chromatography and gel permeation chromatography.
  • the present invention includes a lipid raft visualization agent (hereinafter also referred to as the agent of the present invention) containing the compound of the present invention.
  • the agent of this invention should just contain the compound of this invention, and may contain the other component, as long as there exists the effect of this invention.
  • the agent of the present invention can be appropriately selected by those skilled in the art according to the absorption wavelength of the water-soluble fluorescent coloring compound of A in Formula (1) representing the compound of the present invention, the type of excitation light, and the like.
  • the water-soluble fluorescent coloring compound is ATTO-488, ATTO-594, or a combination thereof, it is 450 nm or more, preferably 480 to 800 nm, particularly preferably 480 to irradiating with excitation light having a wavelength of 400 to 600 nm. It emits fluorescence with a wavelength of 670 nm. Since the agent of the present invention specifically migrates to the lipid raft region, the lipid raft region can be visualized. The agent of the present invention can enhance the contrast between the fluorescent portion and the non-fluorescent portion by using the FRET (Forster Resonance Energy Transfer) method.
  • FRET Fluorescence resonance energy transfer, which is a phenomenon in which excitation energy moves directly between two adjacent dye molecules not by electromagnetic waves but by electron resonance.
  • the usage mode of the agent of the present invention is not limited to those applied to a living body, and can be applied to cells, tissues, specimens and the like extracted outside the living body.
  • the agent of the present invention is useful because it does not cause damage to living tissue or DNA.
  • the agent of the present invention specifically migrates to the lipid raft region, the lipid raft region can be visualized, and is very useful for diagnosing lipid raft-related diseases, for example.
  • the agent of the present invention can be administered by intravenous injection, oral administration or the like, and can diagnose a disease by specific binding to a target biological substance in vivo.
  • the present invention includes a lipid raft-related disease diagnostic marker (hereinafter referred to as the diagnostic marker of the present invention) containing the compound of the present invention or the agent of the present invention.
  • the diagnostic marker of the present invention only needs to contain the compound of the present invention, and may contain other components as long as the effects of the present invention are exhibited.
  • the diagnostic marker of the present invention may contain one or more agents of the present invention.
  • the diagnostic marker of the present invention can be appropriately selected by those skilled in the art depending on the absorption wavelength of the water-soluble fluorescent coloring compound of A in formula (1) representing the compound of the present invention, the type of excitation light, and the like.
  • the water-soluble fluorescent coloring compound is ATTO-488, ATTO-594, or a combination thereof, it is 450 nm or more, preferably 480 to 800 nm, particularly preferably 480 to irradiating with excitation light having a wavelength of 400 to 600 nm. It emits fluorescence with a wavelength of 670 nm. Since the diagnostic marker of the present invention specifically moves to the lipid raft region, the lipid raft region can be visualized and is very useful for diagnosing a lipid raft-related disease.
  • lipid raft-related disease is a disease in which increase or decrease in lipid raft region is known to be related to exacerbation of the disease, and increase or decrease in lipid raft region may be related to exacerbation of the disease Includes diseases and the like.
  • Lipid raft-related diseases include, for example, systemic lupus erythematosus, central diseases (Alzheimer's disease, Parkinson's disease, etc.), inflammatory diseases (autoimmune arthritis, atopic dermatitis, asthma, emphysema, Behcet's disease, multiple sclerosis) , Spinocerebellar degeneration, uveitis, Guillain-Barre syndrome, Fisher syndrome, chronic inflammatory demyelinating polyneuritis, polymyositis, scleroderma, autoimmune hepatitis, sarcoidosis, chronic pancreatitis, inflammatory bowel disease, clone Disease, solid cancer, multiple myeloma, angiofibroma, atherosclerosis, arteriovenous malformation, granulation, hemangioma, hypertrophic scar, keloid, premature aging, psoriasis, febrile granuloma, hemorrhoid, hemor
  • the present invention (the compound of the present invention, the agent of the present invention, the diagnostic marker of the present invention, described later)
  • the reagent of the present invention is very useful for the diagnosis and prevention of lipid-related diseases such as systemic lupus erythematosus.
  • the diagnostic marker of the present invention is, for example, a solution prepared by dissolving the compound of the present invention or the agent of the present invention in an aqueous medium such as physiological saline or phosphate buffer, a solid agent such as fine particle powder, lyophilized powder, etc. Offered as.
  • aqueous medium such as physiological saline or phosphate buffer
  • solid agent such as fine particle powder, lyophilized powder, etc. Offered as.
  • the form of the diagnostic marker of the present invention is not particularly limited, and can be appropriately selected by those skilled in the art according to the purpose of use and the like.
  • Pharmacologically and pharmaceutically acceptable additives can be added to the diagnostic marker of the present invention.
  • excipients such as glucose, lactose, D-mannitol, starch, crystalline cellulose; disintegrating agents or disintegrating aids such as carboxymethylcellulose, starch, carboxymethylcellulose calcium; petrolatum, liquid paraffin, polyethylene glycol, gelatin, kaolin, glycerin Bases such as purified water and hard fat; isotonic agents such as glucose, sodium chloride, D-mannitol, glycerin; pH regulators such as inorganic acids, organic acids, inorganic bases, organic bases; vitamin A, vitamin E
  • pharmaceutical additives such as drugs that can contribute to stabilization such as coenzyme Q may be added.
  • the diagnostic marker of the present invention can be applied to, for example, a tissue, a specimen, etc. extracted outside the living body.
  • the diagnostic marker of the present invention can be used for, for example, inspection using a confocal laser microscope. It is possible to detect a foci by detecting fluorescence by irradiating near infrared rays or far infrared rays after bringing the reagent of the present invention into contact with tissues, cells, etc. suspected of having a foci of lipid raft-related diseases and washing them appropriately. it can.
  • the present invention includes a reagent for lipid raft detection or quantification (hereinafter also referred to as the reagent of the present invention) containing the compound of the present invention or the lipid raft visualization agent of the present invention.
  • the reagent of the present invention can be used, for example, for inspection using a confocal laser microscope. It is possible to detect a foci by detecting fluorescence by irradiating near infrared rays or far infrared rays after bringing the reagent of the present invention into contact with tissues, cells, etc. suspected of having a foci of lipid raft-related diseases and washing them appropriately. It is possible to know the presence / absence of disease, the degree of progression, the severity, etc. by quantifying the fluorescence.
  • the present invention includes the use of a compound of the present invention for producing a lipid raft visualization agent (hereinafter also referred to as use of the present invention).
  • the present invention relates to a lipid raft visualization method (hereinafter also referred to as the method of the present invention) comprising a step of mixing the compound of the present invention and a cell containing lipid raft, and a step of irradiating the cell with light to detect fluorescence. Included).
  • cells containing lipid rafts include cells known to contain lipid rafts, cells unknown whether lipid rafts are contained, and the like.
  • Cells containing lipid rafts are not particularly limited, and examples include red blood cells, white blood cells, and human bladder cancer cells. Examples of red blood cells include sea urchin red blood cells (echinocytes).
  • the method of the present invention is very useful in that a process on a sea urchin erythrocyte can be visualized and detected.
  • the step of mixing the compound of the present invention with cells containing lipid rafts is not particularly limited.
  • a solvent or the like is appropriately used so that the compound of the present invention and cells containing lipid rafts come into contact with each other. Can be selected and used.
  • the step of irradiating the cells containing lipid rafts with light to detect fluorescence is not particularly limited.
  • the cells containing lipid rafts are irradiated with visible light or near infrared light
  • Light from an excitation light source is applied to cells containing lipid rafts using infrared light observation with a CCD, fluorescence microscope, fluorescence endoscope, multiphoton excitation fluorescence microscope, confocal microscope, confocal endoscope, etc.
  • the detection method is not particularly limited, and examples thereof include Western blotting, protein array, flow cytometry, fluorescent ELISA, fluorescent immunostaining, FRET, and in vivo imaging.
  • the wavelength for excitation used in the present invention is not particularly limited as long as it does not affect the cell containing the compound of the present invention and lipid raft, but varies depending on the water-soluble fluorescent coloring compound of the compound of the present invention to be used. There is no particular limitation as long as the water-soluble fluorescent coloring compound of the compound of the present invention emits fluorescence efficiently.
  • the water-soluble fluorescent coloring compound is ATTO-488, ATTO-594, or a combination thereof, it is 450 nm or more, preferably 480 to 800 nm, particularly preferably 480 to irradiating with excitation light having a wavelength of 400 to 600 nm. It emits fluorescence with a wavelength of 670 nm.
  • the light source used in the method of the present invention is not particularly limited as long as it does not affect the cells containing the compound of the present invention and lipid rafts.
  • a dye laser, a semiconductor laser, an ion laser, a fiber laser, a halogen lamp, A xenon lamp, an evanescent wave, a tungsten lamp, etc. are mentioned.
  • a cell containing lipid rafts is irradiated with light to cause the water-soluble fluorescent coloring compound of the compound of the present invention to emit light in the lipid raft region of the cells containing lipid rafts.
  • the water-soluble fluorescent coloring compound of the compound of the present invention By imaging, a lipid raft region that emits light can be easily detected, and the state, localization, change, and the like of the lipid raft can be captured as an image.
  • the present invention includes embodiments in which the above configurations are combined in various ways within the technical scope of the present invention as long as the effects of the present invention are exhibited.
  • the electrode was dried under vacuum for 24 hours and then coated with a thin lipid membrane.
  • the electrodes arranged in parallel were sandwiched between two cover glasses (24 mm ⁇ 60 mm, thickness 0.12 to 0.17 mm) using a rubber spacer (thickness 1 mm) in the shape of a square frame. Placed in about 400 ⁇ L of MilliQ water. This chamber was fixed on a temperature-controlled sample stage (Thermoplate, Tokai Hit, Shizuoka, Japan). Samples were then incubated for 60 minutes at 50 ° C., a temperature well above the Tm of pure SM bilayers, and low frequency alternating current (AC) using a function generator (20 MHz, Agilent, Santa Clara, Calif.).
  • AC low frequency alternating current
  • Example 1 Transition to a raft-like phase in a ternary giant lipid membrane liposome (GUV) containing compound 5 and compound 6 (observation with a fluorescence microscope) Confocal GUV formed with SM / DOPC / chol (1/1/1 mol / mol / mol) containing 0.2% mol of Compound 5 or 0.2% mol of TX-red DHPE at 28.5 ° C. The sample was observed with a fluorescence microscope. GUV is known to phase-separate into a raft-like ordered phase and a non-raft-like disordered phase under this condition. In addition, the lipid composition is different in each phase, and it has been reported that SM, which is a major component of raft, is distributed abundantly in the ordered phase.
  • SM which is a major component of raft
  • FIGS. 1 and 5 Fluorescence microscope observation results are shown in FIGS.
  • the white portions in FIGS. 1 and 5 are blue fluorescent portions, and the white portions in FIGS. 2 and 4 are red fluorescent portions.
  • 3 and 6 are photographs in which FIGS. 1 and 2 and FIGS. 4 and 5 are superimposed. It was found that Compound 5 exhibited a distribution opposite to TX-red DHPE (Invitrogen, Eugene, OR, USA), which is known to bind to a disordered phase (non-raft-like phase) (FIGS. 1 to 3). This indicates that compound 5 is preferentially incorporated into the ordered phase (raft-like phase) as in normal SM.
  • TX-red DHPE Invitrogen, Eugene, OR, USA
  • compound 6 is preferentially distributed in the ordered phase (raft-like phase) because it exhibits the opposite distribution to Boipy-PC (Invitrogen, Eugene, OR, USA) that binds to the disordered phase (non-raft-like phase). (Figs. 4-6).
  • the laser power is 9 mW / cm 2 and 6 mW / cm 2
  • the scanning speed is 2 ⁇ s / pix and 4 ⁇ s / pix for GUV containing Compound 5 and GUV containing Compound 6, respectively
  • the confocal image is 1024 pix ⁇ 1024 pix.
  • the distribution of the ordered and non-ordered phases of Compound 5 and Compound 6 was examined by fluorescence intensity.
  • a cross section of the GUV is shown in FIGS.
  • the white portion in FIG. 7 indicates a blue fluorescent portion, and the white portion in FIG. 9 indicates a red fluorescent portion.
  • Twenty spherical GUVs were selected, and the intensity around the cross section was plotted (FIGS. 8 and 10). Both the fluorescence intensity of the ordered phase of Compound 5 and Compound 6 is 4 times the fluorescence intensity of the non-ordered phase (FIG. 11), indicating that Compound 5 and Compound 6 are highly distributed in the ordered phase.
  • Example 3 Detection of ordered phase Lo transition region of compound 6 by FRET method 0.2 mol% Compound 5 or compound 6 was added to a mixture of SM / DOPC / chol (1: 1: 0.5 mol / mol / mol). A GUV was created. The GUV containing compound 5 was irradiated with a laser having a wavelength of 473 ⁇ 2 nm. After energy transfer from compound 5 to compound 6, radiation from compound 6 was detected at a wavelength of 610-630 nm.
  • the white part of FIG.12 and FIG.14 shows a red fluorescent part.
  • the average intensity ratio of the ordered phase (Lo, raft-like phase) and the non-ordered phase (Ld, non-raft-like phase) is 5.9 ⁇ 1.1, confirming that the contrast is strengthened by the FRET phenomenon. It was done.
  • Example 4 Labeling of SM cluster in the protrusion structure of erythrocytes Blood was collected by injection at a clinic in Osaka University by a nurse. 1 mL of blood was suspended in 4 mL phosphate buffer solution (PBS, pH 7.4) and centrifuged. This operation was repeated twice, and 10 ⁇ L of the obtained erythrocytes were suspended in 990 mL of PBS. To this, 5 ⁇ L of an ethanol solution (0.5 mM) of compounds 5 and 6 was added and incubated at room temperature for 7 minutes. The method of adding compounds 5 and 6 to the erythrocyte membrane is a known method (Mikhalyov, I. & Samsonov, A.
  • the white part of FIG.15 and FIG.16 shows a red fluorescent part.
  • FIG. 16 shows a photograph with the background subtracted.
  • the brightness is normalized by the brightness of the SM-rich region so that the contrast can be easily compared (arrowhead).
  • a new domain that was not seen in the former appears (arrow in FIG. 16), and it can be seen that the contrast between the SM-rich / SM-poor regions is enhanced by using FRET.
  • the SM-rich region ( ⁇ 1 ⁇ m) obtained by these fluorescence observations was confirmed to be larger than the commonly known raft ( ⁇ 200 nm).
  • FIGS. 17 and 18 show differential interference microscopic images of protrusions on erythrocytes artificially induced by adding a higher concentration of compound 6 and fluorescent microscopic images of compound 6, respectively.
  • the white part of FIG. 18 is a red fluorescent part.
  • a photograph in which FIGS. 17 and 18 are superimposed is shown in FIG. 19 (scale bar is 5 ⁇ m). From these results, it was found that Compound 6 was localized in the protrusion on the erythrocyte. This result is the first example to directly visualize that SM is localized in a process on an erythrocyte. From this, it is considered that the change in the film curvature caused by the lipid embedding caused the aggregation of the compound 6.
  • Example 5 Time-dependent change in diffusion movement of Compound 6 in CHO-K1 cells
  • the time-dependent change in diffusion movement of Compound 6 in a Chinese hamster ovary-derived cultured cell line (CHO-K1 cell line) was measured using the SFMT method (1 fluorescent molecule). The pursuit method).
  • the result of 4 ms / frame focusing on the bimolecular compound 6 is shown in the upper column of FIG. 20, and the locus of the diffusion movement of the bimolecular compound 6 is shown in the lower column of FIG. From the results shown in FIG. 20, two molecules of Compound 6 that originally performed Brownian motion co-localize in the 9th frame, and continue co-diffusion until 29th frame, but the co-localization is resolved in the 30th frame. I found out.
  • the co-localization mentioned here means that the compound 6 is close to a distance below the resolution of the microscope ( ⁇ 240 nm). Moreover, this repeated process of free diffusion, co-diffusion, and free diffusion was also observed in other compounds 6.
  • the number of colocalizations was plotted as a function of the colocalization time (FIG. 21). Furthermore, in order to clarify the difference in colocalization time between different molecules, the apparent dimer lifetime (relaxation time) was estimated by fitting the obtained histogram with a first-order exponential function (line in FIG. 21). . As a result, the apparent dimer lifetime of Compound 6 was 50 ms, and a result showing that it was significantly longer than that of ATTO594-DOPE (34 ms) (FIG. 22), which is known to have no affinity for rafts, was obtained. It was. Presumably, the colocalization is stabilized by incorporating a plurality of compounds 6 into the raft region. This result is the first example of visualizing the behavior of SM in a biological membrane at a single molecule level.
  • Example 6 Confirmation of specific distribution of compound 6 to raft phase of erythrocyte ghost membrane
  • the erythrocyte ghost membrane is a non-patent document (Tsuji, a, Kawasaki, K., Ohnishi, S., Merkle, H. & Kusumi, a. Regulation of band 3 mobilities in erythrocyte ghost membranes by protein association and cytoskeletal meshwork. Biochemistry 27, 7447-52 (1988)). That is, 50 ⁇ L of blood collected by a nurse at a clinic in Osaka University was suspended in 450 mL phosphate buffer solution (PBS, pH 7.4) and centrifuged.
  • PBS phosphate buffer solution
  • erythrocytes were suspended in 1 mL of 5P8 buffer solution (140 mM NaCl, 5 mM Na 3 PO 4 / Na 2 HPO 4, and 20 mM phenylmethylsulfurfluoride (pH 8.0)) and incubated under ice-cooling for 20 minutes. did. Next, it was suspended in 5P8 buffer and centrifuged. This operation was performed 4 times.
  • 5P8 buffer solution 140 mM NaCl, 5 mM Na 3 PO 4 / Na 2 HPO 4, and 20 mM phenylmethylsulfurfluoride (pH 8.0)
  • FIG. 23 shows a fluorescence micrograph obtained by adding Compound 6 to the erythrocyte ghost membrane
  • FIG. 24 shows a fluorescence micrograph after the erythrocyte ghost membrane of FIG. 23 is treated with the surfactant TX-100. Since compound 6 remained in the erythrocyte ghost membrane after treatment with surfactant TX-100, it was confirmed that compound 6 selectively transferred to the raft phase of the erythrocyte ghost membrane.
  • Example 7 Confirmation of specific distribution of compound 6 to raft phase of CHO-K1 ghost membrane or ECV304 ghost membrane instead of erythrocytes CHO-K1 (Chinese hamster ovary cells) or ECV304 (human bladder cancer-derived cells) A ghost film was produced by the same method as in Example 6 except that (1) was used. The distribution of compound 6 was examined in the same manner as in Example 6.
  • FIG. 25 shows a fluorescence micrograph obtained by adding Compound 6 to the CHO-K1 ghost film
  • FIG. 26 shows a fluorescence micrograph after the CHO-K1 ghost film of FIG. 25 is treated with the surfactant TX-100. Since compound 6 remained in the ghost film after treatment with surfactant TX-100, it was confirmed that compound 6 selectively transferred to the raft phase of the CHO-K1 ghost film.
  • FIG. 27 shows a fluorescence micrograph obtained by adding Compound 6 to the ECV304 ghost film
  • FIG. 28 shows a fluorescence micrograph after the ECV304 ghost film of FIG. 27 is treated with the surfactant TX-100. Since compound 6 remained in the ECV304 ghost membrane after treatment with surfactant TX-100, it was confirmed that compound 6 selectively transferred to the raft phase of the ECV304 ghost membrane.
  • Example 8 Detection of red blood membrane protein (GPI-anchored CD59) existing region Spines of echinocytes (spinous erythrocytes) known to aggregate the raft-specific protein GPI-anchored CD59 (Fig. 37 white area), compound 5 was co-localized with GPI-anchored CD59 using a confocal laser microscope.
  • GPI-anchored CD59 red blood membrane protein
  • Red blood cells were extracted by washing 500 ⁇ L of blood twice with 10 times the amount of PBS buffer (pH 7.4).
  • the extracted erythrocytes were diluted 10-fold by suspending them in 450 ⁇ L of buffer solution.
  • 10 ⁇ L of Cy3-IgG (Suzuki, K. G. N., Fujiwara, T. K., Sanematsu, F., Iino, R., Edidin, M., Kusumi, A.
  • recruited red blood cell suspension prepared by the method described in recruitment, recruitment, Lyn, and Galpha, fortemporary, cluster, immobilization, and Lyn, activation: single-molecule, tracking, study, 1. J.
  • CD59 labeled with the fluorescent antibody Cy3-IgG is shown in FIG. From FIG. 36, a result was obtained showing that Cy3 aggregates in the echinocytic spines. Interestingly, compound 5 was also aggregated in the spines (FIG. 37) and its distribution was found to overlap with CD59 (FIG. 38).
  • FIGS. 39 and 40 show confocal fluorescence microscope images showing the distribution of GPI-anchored CD59 labeled with compound 5 and Cy3-IgG at the early stage of erythrocyte echinocytosis, respectively.
  • the differential interference microscope image is shown in FIG. 41, and the overlapping of FIGS. 39 to 41 is shown in FIG. Cy3 was excited with an ATTO488, 559 ⁇ 2 nm (120 ⁇ W / cm 2 ) laser with a 473 ⁇ 2 nm (8.9 ⁇ W / cm 2 ) laser. Each emission was detected at 485-515 nm and 590-690 nm. In such a spectral region, ATTO488 and Cy3 crosstalk (excitation wavelength overlap) is sufficiently small.
  • An image of 1024 pix ⁇ 1024 pix was obtained by scanning the laser at 10 ⁇ s / pix. In order to clarify each distribution, the brightness and contrast were adjusted with Adobe Photoshop.
  • the compound of the present invention is industrially useful because it can provide diagnostic markers and diagnostic compositions for lipid raft-related diseases, lipid raft detection or quantification methods, and lipid raft detection or quantification reagents.
  • the present invention can visualize a raft region on erythrocytes and is industrially useful.
  • the present invention is industrially useful because it can visualize the behavior and temporal capture of SM in a raft using SFMT (one fluorescent molecular tracking method).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Endocrinology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Polyethers (AREA)

Abstract

A compound represented by formula (1) (wherein A represents a residue of a water-soluble fluorescence-emitting compound; B and E represent linkers which are the same as or different from each other; R1 to R4 independently represent a hydrogen atom or an alkyl group which may be substituted; X represents 3 to 50; m and n independently represent 10 to 30; and the group represented by formula (2) represents a single bond or a double bond) is novel fluorescently labeled sphingomyelin that exhibits the same behavior as that of native sphingomyelin. The use of the fluorescently labeled sphingomyelin makes it possible to provide: a lipid raft visualizing agent, a diagnosis marker for a lipid raft-related disease, a reagent for detecting or quantifying a lipid raft, and a method for visualizing a lipid raft.

Description

新規蛍光標識スフィンゴミエリン及びその利用Novel fluorescently labeled sphingomyelin and its use
 本発明は、新規標識蛍光スフィンゴミエリン及びその利用に関する。 The present invention relates to a novel labeled fluorescent sphingomyelin and use thereof.
 スフィンゴミエリン(以下、「SM」とも記す)が1880年代にThudicumにより脳組織中に発見されて以来、脂質膜におけるSMの役割を解明することを目的としてSMの挙動(分布、移動性、分子間相互作用など)が研究されてきた。モデル膜を用いた複数の研究によると、SMの最も基本的な特徴はグリセロリン脂質よりも水素結合形成能が高いことであり、それによってコレステロールの存在の下、SMクラスターの形成が引き起こされる。このようなSM(及びコレステロール)が多量に含まれたミクロドメインは、脂質ラフトと呼ばれており、ウイルス感染や重篤な疾患の他にもタンパク質局在化やシグナル伝達などの重要な生物学的事象に関与していることから、科学者たちの関心を集めている。ラフト関連のウイルス感染や疾患に関しては過去の文献(例えば、非特許文献1等)にまとめられている。しかしながら、SMが脂質ラフトに不可欠な構成要素であるにも関わらず、SMの挙動に関する直接的な情報が、特に生体膜においてはいまだ得られていない。 Since the discovery of sphingomyelin (hereinafter also referred to as “SM”) in brain tissue by Thudicum in the 1880s, the behavior of SM (distribution, mobility, intermolecular) was aimed at elucidating the role of SM in lipid membranes. Interaction) has been studied. According to several studies using model membranes, the most basic characteristic of SM is that it has a higher hydrogen bond-forming ability than glycerophospholipid, thereby causing the formation of SM clusters in the presence of cholesterol. Such microdomains containing a large amount of SM (and cholesterol) are called lipid rafts, and are important in biology such as protein localization and signal transduction as well as viral infections and serious diseases. It has attracted the attention of scientists because it is involved in the phenomena. Raft-related virus infections and diseases are summarized in past literature (for example, Non-Patent Literature 1). However, although SM is an essential component of lipid rafts, direct information regarding SM behavior has not yet been obtained, particularly in biological membranes.
 最近の顕微鏡法の進歩により、人工膜における脂質の分布を直接可視化することができるようになった。例えば、ラマン分光法を用いた画像法であるCARS(コヒーレント反ストークスラマン散乱)では、DSPC(1,2-ジステアロイル-sn-グリセロ-3-ホスフォコリン)及びDOPC(ジオレオイルホスファチジルコリン)で構成されるL/Lβ相分離膜において、SMの代表的な類似物質の一つであるDSPCにラマンタグを付けたものの分布が明らかになった。二次イオン質量分析は、SM/DOPC/cholの組成を有する二重膜においてGM1の非存在下及び存在下で同位体標識された脂質の分布を調べる際に使用されており、脂質分布及び相分離はGM1の存在により強く調節されることを解明した。しかし、これらの高度な技術は、固定サンプルの調製及び凍結、超高真空下における観察、サンプルの破壊など技術的問題点があるため簡便ではない。したがって、一部の膜科学者はこの発見に懐疑的であり、これらの技術から脂質の分布以上の情報を今のところ得ることはできていない。 Recent advances in microscopy have made it possible to directly visualize lipid distribution in artificial membranes. For example, CARS (coherent anti-Stokes Raman scattering), which is an image method using Raman spectroscopy, is composed of DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine) and DOPC (dioleoylphosphatidylcholine). In the L d / L β phase separation membrane, the distribution of DSPC, which is one of the typical similar substances of SM, with a Raman tag is revealed. Secondary ion mass spectrometry is used to determine the distribution of the isotope-labeled lipid in the absence and presence of G M1 in a double layer with a composition of SM / DOPC / chol, lipid distribution and phase separation was elucidated to be strongly modulated by the presence of G M1. However, these advanced techniques are not simple due to technical problems such as preparation and freezing of fixed samples, observation under ultra-high vacuum, and sample destruction. Thus, some membrane scientists are skeptical of this discovery and no information has been available from these techniques beyond the lipid distribution so far.
 蛍光顕微鏡法は、脂質分布及びドメイン形成を観察するのに有用なツールである。さらに、SFMT(蛍光1分子追跡法)の最近の進歩により、ナノスケールでの生体分子の分布のみならず、挙動や相互作用に関する詳細情報も得られるようになった。このような顕微鏡観察においてSMの挙動を調べる最も単純なアプローチは、本来のSMと同様の挙動が確認される蛍光標識SMを使用することである。既に蛍光標識SMが多く合成され一部販売されているが、これらの蛍光標識SMは本来のSMの挙動をほとんど反映しない。すなわち、相分離膜においてラフト様L相ではなく非ラフト様L相に優先的に結合する(非特許文献2、3)。SMに結合した大きな蛍光物質(フルオロフォア)により立体障害が発生し、そのため脂質のパッキングが障害されたり、ラフト様構造のドメインから排除されたりすることが考えられる(非特許文献4)。必然的に、ラフトの見かけ上の性質は、特に生細胞では大きく変化する(非特許文献5、6)。その代わりに、ライセニンがSMの蛍光プローブとして使用されている。これはライセニンがSMのクラスターに結合し、内在のトリプトファン残基がフルオロフォアとして機能するためである(非特許文献7)。しかし、これらの著者が懸念しているとおり、脂質プローブとしてタンパク質を使用することの潜在的な問題点の一つに、脂質とタンパク質の大きさの違いがある。ライセニンの分子量は、一般的なリン脂質の分子量の30倍であり、膜の性質を変化させる可能性がある(非特許文献8)。結局、SM挙動を直接的に観察するには、本来のSMと同様の挙動を示す新たな蛍光SMを見出す必要がある。 Fluorescence microscopy is a useful tool for observing lipid distribution and domain formation. Furthermore, recent advances in SFMT (fluorescence single molecule tracking method) have made it possible to obtain detailed information on behavior and interactions as well as the distribution of biomolecules at the nanoscale. The simplest approach for examining the behavior of SM in such microscopic observation is to use a fluorescently labeled SM that is confirmed to behave similarly to the original SM. Many fluorescently-labeled SMs have already been synthesized and sold in part, but these fluorescently-labeled SMs hardly reflect the behavior of the original SM. That is, preferentially binds to a non-raft-like L d phase rather than the raft-like L o phase in the phase separation membrane (Non-Patent Documents 2 and 3). It is conceivable that a large fluorescent substance (fluorophore) bound to SM causes steric hindrance, which may impair lipid packing or be excluded from the domain of the raft-like structure (Non-patent Document 4). Inevitably, the apparent properties of rafts vary greatly, especially in living cells (Non-Patent Documents 5 and 6). Instead, lysenin is used as a fluorescent probe for SM. This is because lysenin binds to the SM cluster and the endogenous tryptophan residue functions as a fluorophore (Non-patent Document 7). However, as these authors are concerned, one potential problem with using proteins as lipid probes is the difference in size between lipids and proteins. The molecular weight of lysenin is 30 times the molecular weight of general phospholipids, and may change the properties of the membrane (Non-patent Document 8). After all, in order to directly observe the SM behavior, it is necessary to find a new fluorescent SM exhibiting the same behavior as the original SM.
 また、一般的に生体膜の脂質ラフト(200~300nm未満)は人工膜の脂質ラフト(1μm超)よりも小さいため、通常の蛍光顕微鏡法ではほとんど見えない。イメージングにおけるこのような問題により、SMの挙動及びラフト形成におけるSMの役割に関する直接的な情報を得ることが不可能であった。 In general, lipid rafts (less than 200 to 300 nm) of biological membranes are smaller than lipid rafts (over 1 μm) of artificial membranes, so that they are hardly visible with ordinary fluorescence microscopy. Due to such problems in imaging, it was not possible to obtain direct information on SM behavior and the role of SM in rafting.
 本発明は、本来のスフィンゴミエリンと同様の挙動を示す新たな蛍光標識スフィンゴミエリンを提供することを目的とする。
 本発明は、脂質ラフト可視化剤、脂質ラフト関連疾患の診断用マーカー、脂質ラフトの検出又は定量用試薬及び脂質ラフト可視化方法を提供することを目的とする。
An object of the present invention is to provide a new fluorescently labeled sphingomyelin that exhibits the same behavior as the original sphingomyelin.
An object of the present invention is to provide a lipid raft visualization agent, a diagnostic marker for lipid raft-related diseases, a reagent for detection or quantification of lipid rafts, and a lipid raft visualization method.
 本発明は以下の発明に関する。
〔1〕下記式(1)
The present invention relates to the following inventions.
[1] The following formula (1)
Figure JPOXMLDOC01-appb-C000018
(式(1)中、Aは水溶性蛍光発色化合物の残基を、B及びEは同一の又は異なるリンカーを、R~Rはそれぞれ独立して水素原子又は置換基を示し、Xは3~50の整数であり、m及びnはそれぞれ独立して10~30の整数であり、下記式(2)
Figure JPOXMLDOC01-appb-C000018
(In the formula (1), A represents a residue of a water-soluble fluorescent coloring compound, B and E represent the same or different linkers, R 1 to R 4 each independently represents a hydrogen atom or a substituent, and X represents An integer of 3 to 50, m and n are each independently an integer of 10 to 30, and the following formula (2)
Figure JPOXMLDOC01-appb-C000019
で示される基は単結合又は二重結合である。)で表される化合物。
〔2〕式(1)中、Aが下記式(3)
Figure JPOXMLDOC01-appb-C000019
Is a single bond or a double bond. ) A compound represented by
[2] In the formula (1), A represents the following formula (3)
Figure JPOXMLDOC01-appb-C000020
(式中、G~Gはそれぞれ独立して水素原子又は水溶性官能基であり、pは4であり、R~Rはそれぞれ独立して水素原子又は置換基を示す。ただし、G~G及び4つのGの少なくとも1つは水溶性官能基である。)で示される前記〔1〕に記載の化合物。
〔3〕式(1)中、Bが、下記式(4)
Figure JPOXMLDOC01-appb-C000020
(In the formula, G 1 to G 7 are each independently a hydrogen atom or a water-soluble functional group, p is 4, and R 5 to R 8 are each independently a hydrogen atom or a substituent, provided that The compound according to [1] above, wherein at least one of G 1 to G 6 and four G 7 is a water-soluble functional group.
[3] In formula (1), B represents the following formula (4)
Figure JPOXMLDOC01-appb-C000021
(式中、B1c及びB2cはそれぞれ独立して-CONR-又は-COO-を、B1b及びB2bはそれぞれ独立してC1-20アルキレン基を、B3は、-CONR10-、-COOCO-、-COO-、-NHCOO-、-O-、-OCO-、-O-、-C≡C-、-CH=CH-、-CH-CH-、-S-、-SO-、-SO-、-NR11-、-NR12CO-、-NR13CONR14-、下記式(5)
Figure JPOXMLDOC01-appb-C000021
(Wherein B 1c and B 2c are each independently —CONR 9 — or —COO—, B 1b and B 2b are each independently a C 1-20 alkylene group, and B3 is —CONR 10 —, -COOCO -, - COO -, - NHCOO -, - O -, - OCO -, - O -, - C≡C -, - CH = CH -, - CH 2 -CH 2 -, - S -, - SO —, —SO 2 —, —NR 11 —, —NR 12 CO—, —NR 13 CONR 14 —, the following formula (5)
Figure JPOXMLDOC01-appb-C000022
で示される基、下記式(6)
Figure JPOXMLDOC01-appb-C000022
A group represented by formula (6):
Figure JPOXMLDOC01-appb-C000023
で示される基、下記式(7)
Figure JPOXMLDOC01-appb-C000023
A group represented by formula (7):
Figure JPOXMLDOC01-appb-C000024
で示される基、下記式(8)
Figure JPOXMLDOC01-appb-C000024
A group represented by formula (8):
Figure JPOXMLDOC01-appb-C000025
で示される基、下記式(9)
Figure JPOXMLDOC01-appb-C000025
A group represented by formula (9):
Figure JPOXMLDOC01-appb-C000026
で示される基、又は下記式(10)
Figure JPOXMLDOC01-appb-C000026
Or a group represented by the following formula (10)
Figure JPOXMLDOC01-appb-C000027
で示される基を示し、R~R14はそれぞれ独立して水素原子又は置換基を示し、1d、1e、2d及び2eはそれぞれ独立して0又は1であり、1f及び2fはそれぞれ独立して0~3の整数である)で示される基である前記〔1〕又は〔2〕に記載の化合物。
〔4〕式(1)中、Eが下記式(11)
Figure JPOXMLDOC01-appb-C000027
R 9 to R 14 each independently represents a hydrogen atom or a substituent, 1d, 1e, 2d and 2e are each independently 0 or 1, and 1f and 2f are each independently Or an integer of 0 to 3). The compound according to [1] or [2] above.
[4] In formula (1), E represents the following formula (11)
Figure JPOXMLDOC01-appb-C000028
(式中、E1c及びE2cはそれぞれ独立して-CONR15-又は-COO-を、E1b及びE2bはそれぞれ独立してアルキレン基を、E3は、-CONR16-、-COOCO-、-COO-、-NHCOO-、-O-、-OCO-、-C≡C-、-CH=CH-、アルキレン基、-S-、-SO-、-SO-、-NR17-、-NR18CO-、-NR19CONR20-、下記式(5)
Figure JPOXMLDOC01-appb-C000028
Wherein E 1c and E 2c are each independently —CONR 15 — or —COO—, E 1b and E 2b are each independently an alkylene group, E3 is —CONR 16 —, —COOCO—, —COO—, —NHCOO—, —O—, —OCO—, —C≡C—, —CH═CH—, an alkylene group, —S—, —SO—, —SO 2 —, —NR 17 —, — NR 18 CO—, —NR 19 CONR 20 —, the following formula (5)
Figure JPOXMLDOC01-appb-C000029
で示される基、下記式(6)
Figure JPOXMLDOC01-appb-C000029
A group represented by formula (6):
Figure JPOXMLDOC01-appb-C000030
で示される基、下記式(7)
Figure JPOXMLDOC01-appb-C000030
A group represented by formula (7):
Figure JPOXMLDOC01-appb-C000031
で示される基、下記式(8)
Figure JPOXMLDOC01-appb-C000031
A group represented by formula (8):
Figure JPOXMLDOC01-appb-C000032
で示される基、下記式(9)
Figure JPOXMLDOC01-appb-C000032
A group represented by formula (9):
Figure JPOXMLDOC01-appb-C000033
で示される基、又は下記式(10)
Figure JPOXMLDOC01-appb-C000033
Or a group represented by the following formula (10)
Figure JPOXMLDOC01-appb-C000034
で示される基を示し、R15~R20はそれぞれ独立して水素原子又は置換基を示し、1g、1h、2g及び2hはそれぞれ独立して0又は1であり、1i及び2iはそれぞれ独立して0~3の整数である)で示される基である前記〔1〕~〔3〕のいずれかに記載の化合物。
〔5〕前記〔1〕~〔4〕のいずれかに記載の化合物を含有する脂質ラフト可視化剤。
〔6〕前記〔1〕~〔4〕のいずれかに記載の化合物又は前記〔5〕に記載の剤を含有する脂質ラフト関連疾患診断用マーカー。
〔7〕前記〔1〕~〔4〕のいずれかに記載の化合物又は前記〔5〕に記載の剤を含有する脂質ラフト検出又は定量用試薬。
〔8〕脂質ラフト可視化剤製造のための前記〔1〕~〔4〕のいずれかに記載の化合物の使用。
〔9〕前記〔1〕~〔4〕のいずれかに記載の化合物と脂質ラフトを含む細胞とを混合する工程、及び、前記細胞に光を照射して蛍光を検出する工程を含有する脂質ラフト可視化方法。
Figure JPOXMLDOC01-appb-C000034
R 15 to R 20 each independently represents a hydrogen atom or a substituent, 1g, 1h, 2g and 2h are each independently 0 or 1, and 1i and 2i are each independently The compound according to any one of the above [1] to [3], which is a group represented by
[5] A lipid raft visualization agent containing the compound according to any one of [1] to [4].
[6] A lipid raft-related disease diagnostic marker containing the compound according to any one of [1] to [4] or the agent according to [5].
[7] A lipid raft detection or quantification reagent containing the compound according to any one of [1] to [4] or the agent according to [5].
[8] Use of the compound according to any one of [1] to [4] for producing a lipid raft visualization agent.
[9] A lipid raft comprising a step of mixing the compound according to any one of [1] to [4] above with a cell containing a lipid raft, and a step of detecting fluorescence by irradiating the cell with light. Visualization method.
 本発明では、本来のスフィンゴミエリンと同様の挙動を示す新たな蛍光標識スフィンゴミエリンを提供することができる。
 本発明では、脂質ラフト可視化剤、脂質ラフト関連疾患の診断用マーカー、脂質ラフトの検出又は定量用試薬及び脂質ラフト可視化方法を提供することができる。
The present invention can provide a new fluorescently labeled sphingomyelin that exhibits the same behavior as the original sphingomyelin.
The present invention can provide a lipid raft visualization agent, a diagnostic marker for lipid raft-related diseases, a reagent for detection or quantification of lipid rafts, and a lipid raft visualization method.
図1は、化合物5を含むGUVの蛍光顕微鏡写真を示す。FIG. 1 shows a fluorescence micrograph of GUV containing compound 5. 図2は、TX-red DHPEを含むGUV蛍光顕微鏡写真を示す。FIG. 2 shows a GUV fluorescence micrograph containing TX-red DHPE. 図3は、図1及び図2を重ね合わせた写真を示す。FIG. 3 shows a photograph in which FIGS. 1 and 2 are superimposed. 図4は、化合物6を含むGUVの蛍光顕微鏡写真を示す。FIG. 4 shows a fluorescence micrograph of GUV containing compound 6. 図5は、Bodipy-PCを含むGUVの蛍光顕微鏡写真を示す。FIG. 5 shows a fluorescence micrograph of GUV containing Bodipy-PC. 図6は、図4及び図5を重ね合わせた写真を示す。FIG. 6 shows a photograph in which FIGS. 4 and 5 are superimposed. 図7は、化合物5を含むGUVの断面の共焦点レーザー顕微鏡写真を示す。FIG. 7 shows a confocal laser micrograph of a cross section of GUV containing compound 5. 図8は、化合物5を含むGUVの断面の蛍光強度分布を示す。FIG. 8 shows the fluorescence intensity distribution of the cross section of GUV containing Compound 5. 図9は、化合物6を含むGUVの断面の共焦点レーザー顕微鏡写真を示す。FIG. 9 shows a confocal laser micrograph of a cross section of GUV containing compound 6. 図10は、化合物6を含むGUVの断面の蛍光強度分布を示す。FIG. 10 shows the fluorescence intensity distribution of the cross section of GUV containing Compound 6. 図11は、GUVの断面のラフト様相の蛍光強度/非ラフト様相の蛍光強度比を示す。FIG. 11 shows the ratio of the fluorescence intensity of the raft-like phase / the fluorescence intensity of the non-raft-like phase in the GUV cross section. 図12は、化合物5と6を含む1つのGUVの断面の共焦点レーザー顕微鏡写真(FRET法)を示す。FIG. 12 shows a confocal laser micrograph (FRET method) of a cross section of one GUV containing compounds 5 and 6. 図13は、化合物5と6を含むGUVの断面の蛍光強度分布(FRET法)を示す。FIG. 13 shows the fluorescence intensity distribution (FRET method) of the cross section of GUV containing compounds 5 and 6. 図14は、複数の化合物5と6を含むGUVの断面の共焦点レーザー顕微鏡写真(FRET法)を示す。FIG. 14 shows a confocal laser scanning micrograph (FRET method) of a cross section of GUV containing a plurality of compounds 5 and 6. 図15は、1つの赤血球に化合物6を添加した際の蛍光顕微鏡写真を示す。FIG. 15 shows a fluorescence micrograph when compound 6 is added to one erythrocyte. 図16は、1つの赤血球に化合物5と6を添加した際の蛍光顕微鏡写真(FRET法)を示す。FIG. 16 shows a fluorescence micrograph (FRET method) when compounds 5 and 6 are added to one red blood cell. 図17は、化合物6を複数の赤血球に添加し、人工的に形成したエキノサイト(Echinocyte)の微分干渉顕微鏡写真を示す。FIG. 17 shows a differential interference microscopic photograph of an artificially formed echinosite obtained by adding compound 6 to a plurality of red blood cells. 図18は、化合物6を複数の赤血球に添加し、人工的に形成したエキノサイト(Echinocyte)の蛍光顕微鏡写真を示す。FIG. 18 shows a fluorescence micrograph of an echinocyte artificially formed by adding Compound 6 to a plurality of red blood cells. 図19は、図17と図18を重ね合わせた写真を示す。FIG. 19 shows a photograph in which FIGS. 17 and 18 are superimposed. 図20は、2分子の化合物6のCHO-K1細胞中における拡散運動の経時変化を示す。FIG. 20 shows the time course of diffusion movement of two molecules of compound 6 in CHO-K1 cells. 図21は、化合物6のラフト領域における共局在を定量した結果を示す。FIG. 21 shows the results of quantifying the colocalization of compound 6 in the raft region. 図22は、ATTO594-DOPEのラフト領域における共局在を定量した結果を示す。FIG. 22 shows the result of quantifying the colocalization of ATTO594-DOPE in the raft region. 図23は、化合物6を赤血球ゴースト膜に添加した蛍光顕微鏡写真示す。FIG. 23 shows a fluorescence micrograph of compound 6 added to an erythrocyte ghost membrane. 図24は、図23の赤血球ゴースト膜を界面活性化剤TX-100で処理後の蛍光顕微鏡写真を示す。FIG. 24 shows a fluorescence micrograph after treatment of the erythrocyte ghost membrane of FIG. 23 with a surfactant TX-100. 図25は、化合物6をCHO-K1ゴースト膜に添加した蛍光顕微鏡写真を示す。FIG. 25 shows a fluorescence micrograph of compound 6 added to a CHO—K1 ghost film. 図26は、図25のCHO-K1ゴースト膜を界面活性化剤TX-100で処理後の蛍光顕微鏡写真を示す。FIG. 26 shows a fluorescence micrograph after the CHO-K1 ghost film of FIG. 25 has been treated with a surfactant TX-100. 図27は、化合物6をECV304ゴースト膜に添加した蛍光顕微鏡写真を示す。FIG. 27 shows a fluorescence micrograph of compound 6 added to an ECV304 ghost membrane. 図28は、図27のECV304ゴースト膜を界面活性化剤TX-100で処理後の蛍光顕微鏡写真を示す。FIG. 28 shows a fluorescence micrograph after the ECV304 ghost membrane of FIG. 27 has been treated with a surfactant TX-100. 図29は、一次元データ処理した化合物5のNMRチャートを示す。FIG. 29 shows an NMR chart of Compound 5 subjected to one-dimensional data processing. 図30は、二次元データ処理した化合物5のNMRチャートを示す。FIG. 30 shows an NMR chart of Compound 5 that has been subjected to two-dimensional data processing. 図31は、化合物5のHRMSチャートを示す。FIG. 31 shows the HRMS chart of Compound 5. 図32は、一次元データ処理した化合物6のNMRチャートを示す。FIG. 32 shows an NMR chart of Compound 6 subjected to one-dimensional data processing. 図33は、二次元データ処理した化合物6のNMRチャートを示す。FIG. 33 shows an NMR chart of Compound 6 that has been subjected to two-dimensional data processing. 図34は、化合物6のHRMSチャートを示す。FIG. 34 shows the HRMS chart of Compound 6. 図35は、エキノサイトの微分干渉顕微鏡写真を示す。FIG. 35 shows a differential interference micrograph of echinosite. 図36は、蛍光抗体Cy3-IgGで標識したCD59の分布(共焦点レーザー顕微鏡写真)を示す。FIG. 36 shows the distribution of CD59 labeled with the fluorescent antibody Cy3-IgG (confocal laser micrograph). 図37は、化合物5をエキノサイト膜に添加した共焦点レーザー顕微鏡写真を示す。FIG. 37 shows a confocal laser micrograph in which compound 5 was added to the echinosite film. 図38は、図36及び図37を重ね合わせた写真を示す。FIG. 38 shows a photograph in which FIGS. 36 and 37 are superimposed. 図39は、エキノサイト初期における化合物5の分布(共焦点蛍光顕微鏡写真)を示す。FIG. 39 shows the distribution (confocal fluorescence micrograph) of compound 5 in the early stage of echinosite. 図40は、エキノサイト初期におけるCy3-IgGで標識されたGPI-anchored CD59の分布(共焦点蛍光顕微鏡画像)を示す。FIG. 40 shows the distribution (confocal fluorescence microscope image) of GPI-anchored CD59 labeled with Cy3-IgG at the early stage of echinosite. 図41は、初期エキノサイトの微分干渉顕微鏡写真を示す。FIG. 41 shows a differential interference micrograph of the initial echinosite. 図42は、図39~41を重ね合わせた写真を示す。FIG. 42 shows a photograph in which FIGS. 39 to 41 are superimposed.
 〔本発明の化合物〕
 本発明は、下記式(1)で表される化合物(以下、本発明の化合物とも記す)を包含する。
[Compound of the present invention]
The present invention includes a compound represented by the following formula (1) (hereinafter also referred to as the compound of the present invention).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 下記式(2)で示される基は単結合又は二重結合である。
Figure JPOXMLDOC01-appb-C000036
The group represented by the following formula (2) is a single bond or a double bond.
Figure JPOXMLDOC01-appb-C000036
 式(1)中、Aは水溶性蛍光発色化合物の残基を示す。水溶性蛍光発色化合物は、例えば、電子の励起源が可視光より短波長の電磁波による発光するものをいう。水溶性蛍光発色化合物は、特に限定されないが、例えば、スルホン酸基(スルホ基)、カルボキシル基、4級アミン等の水溶性官能基を有する蛍光発色化合物が挙げられ、水溶性官能基はスルホン酸基(スルホ基)であることが好ましい。水溶性蛍光発色化合物が有する水溶性官能基の数は、特に限定されないが、1~10であることが好ましく、1~5であることがより好ましく、1~3であることがさらに好ましく、2であることが特に好ましい。また、Aで示される水溶性蛍光発色化合物は、例えばローダミン骨格、アクリジン骨格、シアニン骨格、フルオレセイン骨格、オキサジン骨格、フェナンスリジン骨格等を持つ化合物等が挙げられ、中でもローダミン骨格を持つ化合物が好ましい。水溶性蛍光発色化合物は、具体的には、ATTO-TEC GmbHより販売されているATTO-488(商品名)、ATTO-594(商品名)等が好ましい。 In the formula (1), A represents a residue of the water-soluble fluorescent coloring compound. The water-soluble fluorescent coloring compound is, for example, a compound in which an electron excitation source emits light by an electromagnetic wave having a wavelength shorter than that of visible light. The water-soluble fluorescent coloring compound is not particularly limited, and examples thereof include a fluorescent coloring compound having a water-soluble functional group such as a sulfonic acid group (sulfo group), a carboxyl group, and a quaternary amine. It is preferably a group (sulfo group). The number of water-soluble functional groups possessed by the water-soluble fluorescent coloring compound is not particularly limited, but is preferably 1 to 10, more preferably 1 to 5, still more preferably 1 to 3. It is particularly preferred that Examples of the water-soluble fluorescent coloring compound represented by A include compounds having a rhodamine skeleton, an acridine skeleton, a cyanine skeleton, a fluorescein skeleton, an oxazine skeleton, a phenanthridine skeleton, etc., among which a compound having a rhodamine skeleton is preferable. . Specifically, the water-soluble fluorescent coloring compound is preferably ATTO-488 (trade name) or ATTO-594 (trade name) sold by ATTO-TEC GmbH.
 Aで示される水溶性蛍光発色化合物の残基としては、例えば、下記式(3)
Figure JPOXMLDOC01-appb-C000037
(式中、G~Gはそれぞれ独立して水素原子又は水溶性官能基であり、pは4であり、R~Rはそれぞれ独立して水素原子又は置換基を示す。ただし、G~G及び4つのGの少なくとも1つは水溶性官能基である。)で示される化合物であることが好ましい。
 式(3)において、水溶性官能基としては、スルホン酸基などの前記例示の基が挙げられる。水溶性官能基の数もまた前記と同様の範囲(例えば、1~10、好ましくは1~4程度)から選択できる。中でも、G及びGがスルホン酸基(スルホ基)であり、G、G、G、G及びGが水素原子であることが好ましい。
 R~Rにおいて、置換基としては、例えば、脂肪族基、芳香族基などが挙げられる。脂肪族基としては、例えば、アルキル基、シクロアルキル基(例えば、シクロヘキシル基など)などが挙げられる。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基などのC1~20アルキル基、好ましくはC1~10アルキル基、さらに好ましくはC1~4アルキル基などが挙げられる。
 芳香族基としては、例えば、芳香族炭化水素基[例えば、フェニル基、トリル基、キシリル基、ナフチル基などのアリール基(例えば、C6~20アリール基、好ましくはC6~12アリール基)など]、芳香族複素環基などが挙げられる。
 脂肪族基及び芳香族基には、さらに、置換基が置換した基も含まれる。置換基を有する脂肪族基としては、例えば、芳香族基が置換したアルキル基[例えば、アラルキル基(例えば、ベンジル基、フェネチル基などのアリールアルキル基)、ハロアルキル基(例えば、クロロメチル基、ブロモエチル基など)]などの置換基を有するアルキル基などが含まれる。
 置換基を有する芳香族基としては、例えば、ハロアリール基(例えば、クロロフェニル基、ブロモフェニル基などのハロC6~20アリール基、好ましくはハロC6~12アリール基)などが挙げられる。
 好ましいR~Rとしては水素原子、アルキル基(メチル基、エチル基などのC1~4アルキル基)、アラルキル基(例えば、ベンジル基、フェネチル基などのC6~10アリールC1~4アルキル基)が挙げられ、R~Rのいずれもが水素原子であることがより好ましい。
Examples of the residue of the water-soluble fluorescent coloring compound represented by A include the following formula (3):
Figure JPOXMLDOC01-appb-C000037
(In the formula, G 1 to G 7 are each independently a hydrogen atom or a water-soluble functional group, p is 4, and R 5 to R 8 are each independently a hydrogen atom or a substituent, provided that It is preferable that at least one of G 1 to G 6 and four G 7 is a water-soluble functional group.
In the formula (3), examples of the water-soluble functional group include the groups exemplified above such as a sulfonic acid group. The number of water-soluble functional groups can also be selected from the same range as described above (for example, about 1 to 10, preferably about 1 to 4). Among these, it is preferable that G 3 and G 4 are sulfonic acid groups (sulfo groups), and G 1 , G 2 , G 5 , G 6 and G 7 are hydrogen atoms.
In R 5 to R 8 , examples of the substituent include an aliphatic group and an aromatic group. Examples of the aliphatic group include an alkyl group and a cycloalkyl group (for example, a cyclohexyl group). Examples of the alkyl group include C 1-20 alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, preferably C 1-10 alkyl group. More preferably, a C 1-4 alkyl group and the like can be mentioned.
The aromatic group, for example, an aromatic hydrocarbon group [for example, a phenyl group, a tolyl group, a xylyl group, an aryl group such as a naphthyl group (e.g., C 6 ~ 20 aryl group, preferably a C 6 ~ 12 aryl group) Etc.], and aromatic heterocyclic groups.
The aliphatic group and the aromatic group further include a group substituted with a substituent. Examples of the aliphatic group having a substituent include, for example, an alkyl group substituted with an aromatic group [for example, an aralkyl group (for example, an arylalkyl group such as benzyl group, phenethyl group), a haloalkyl group (for example, a chloromethyl group, a bromoethyl group). An alkyl group having a substituent such as a group etc.].
The aromatic group having a substituent, for example, haloaryl group (e.g., chlorophenyl group, halo C 6 ~ 20 aryl group such as a bromophenyl group, preferably halo C 6 ~ 12 aryl group).
Preferred hydrogen atom as R 5 ~ R 8, an alkyl group (C 1 ~ 4 alkyl group such as a methyl group, an ethyl group), an aralkyl group (e.g., C 6 ~ 10 aryl C 1 ~ 4 such as a benzyl group, a phenethyl group An alkyl group), and it is more preferable that all of R 5 to R 8 are hydrogen atoms.
 B及びEは同一の又は異なるリンカーを示す。Bは、Aとポリエチレングリコール部とを結合するためのリンカーであれば特に限定されない。ポリエチレングリコール部とは、式(1)において構造式-(CHCHO)x-で示される部分をいう。Xは3~50の整数であり、5~40であることが好ましく、7~30であることがより好ましく、8~20であることがさらに好ましく、8~12であることが特に好ましい。 B and E represent the same or different linkers. B is not particularly limited as long as it is a linker for binding A and the polyethylene glycol moiety. The polyethylene glycol moiety refers to a moiety represented by the structural formula — (CH 2 CH 2 O) x— in formula (1). X is an integer of 3 to 50, preferably 5 to 40, more preferably 7 to 30, still more preferably 8 to 20, and particularly preferably 8 to 12.
 Bは、代表的には、下記式(4)
Figure JPOXMLDOC01-appb-C000038
(式中、B1c及びB2cはそれぞれ独立して-CONR-又は-COO-を、B1b及びB2bはそれぞれ独立してアルキレン基を、B3は、-CONR10-、-COOCO-、-COO-、-NHCOO-、-O-、-OCO-、-C≡C-、-CH=CH-、アルキレン基、-S-、-SO-、-SO-、-NR11-、-NR12CO-、-NR13CONR14-、下記式(5)
Figure JPOXMLDOC01-appb-C000039
で示される基、下記式(6)
Figure JPOXMLDOC01-appb-C000040
で示される基、下記式(7)
Figure JPOXMLDOC01-appb-C000041
で示される基、下記式(8)
Figure JPOXMLDOC01-appb-C000042
で示される基、下記式(9)
B is typically represented by the following formula (4):
Figure JPOXMLDOC01-appb-C000038
(Wherein B 1c and B 2c each independently represent —CONR 9 — or —COO—, B 1b and B 2b each independently represent an alkylene group, and B3 represents —CONR 10 —, —COOCO—, —COO—, —NHCOO—, —O—, —OCO—, —C≡C—, —CH═CH—, an alkylene group, —S—, —SO—, —SO 2 —, —NR 11 —, — NR 12 CO—, —NR 13 CONR 14 —, the following formula (5)
Figure JPOXMLDOC01-appb-C000039
A group represented by formula (6):
Figure JPOXMLDOC01-appb-C000040
A group represented by formula (7):
Figure JPOXMLDOC01-appb-C000041
A group represented by formula (8):
Figure JPOXMLDOC01-appb-C000042
A group represented by formula (9):
Figure JPOXMLDOC01-appb-C000043
で示される基、又は下記式(10)
Figure JPOXMLDOC01-appb-C000043
Or a group represented by the following formula (10)
Figure JPOXMLDOC01-appb-C000044
で示される基を示し、R~R14はそれぞれ独立して水素原子又は置換基を示し、1d、1e、2d及び2eはそれぞれ独立して0又は1であり、1f及び2fはそれぞれ独立して0~3の整数である)で示される基であってもよい。
 B1b、B2b及びB3において、アルキレン基としては、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基などのC1~20アルキレン基、好ましくはC1~16アルキレン基、さらに好ましくはC2~10アルキレン基などが挙げられる。なお、アルキレン基は、直鎖状又は分岐状のいずれであってもよく、特に直鎖状であってもよい。
 R~R14において、置換基としては、前記R~Rと同様の置換基[例えば、アルキル基(メチル基、エチル基など)、アリール基、ハロアルキル基、ハロアリール基、アラルキル基など]が挙げられる。代表的なR~R14としては、水素原子、アルキル基(例えば、メチル基、エチル基などのC1~4アルキル基)、アラルキル基(例えば、ベンジル基、フェネチル基などのC6~10アリールC1~4アルキル基)などが挙げられる。
 なお、1fが2又は3であるとき、B1b、B1c、1d、1eはそれぞれ異なっていてもよい。2fが2又は3であるとき、B2b、B2c、2d、2eはそれぞれ異なっていてもよい。2fは0であることが好ましい。通常1eが1のとき、1dであることが多い。
Figure JPOXMLDOC01-appb-C000044
R 9 to R 14 each independently represents a hydrogen atom or a substituent, 1d, 1e, 2d and 2e are each independently 0 or 1, and 1f and 2f are each independently Or an integer of 0 to 3).
In B 1b , B 2b and B3, examples of the alkylene group include a methylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, and an octamethylene group. 1-20 alkylene groups, preferably C 1 ~ 16 alkylene group, more preferably the like C 2 ~ 10 alkylene group. The alkylene group may be linear or branched, and may be particularly linear.
In R 9 to R 14 , the substituent is the same as that of R 5 to R 8 [eg, alkyl group (methyl group, ethyl group, etc.), aryl group, haloalkyl group, haloaryl group, aralkyl group, etc.] Is mentioned. Representative R 9 ~ R 14, C 6 ~ 10 , such as a hydrogen atom, an alkyl group (e.g., C 1 ~ 4 alkyl group such as a methyl group, an ethyl group), an aralkyl group (e.g., benzyl group, phenethyl group Aryl C 1-4 alkyl group) and the like.
When 1f is 2 or 3, B 1b , B 1c , 1d, and 1e may be different from each other. When 2f is 2 or 3, B 2b , B 2c , 2d and 2e may be different from each other. 2f is preferably 0. Usually, when 1e is 1, it is often 1d.
 Bの具体例を表1に示す。
Figure JPOXMLDOC01-appb-T000045
 なお、上記表中、p、p及びpは1以上の整数を示し、好ましくは1~20、さらに好ましくは1~12、特に2~8であってもよい。Bは、中でも-CONR-(CH)pCONR10-であることが好ましい。この場合において、R9、p及びR10はそれぞれ独立して、上記同様に説明される。
Specific examples of B are shown in Table 1.
Figure JPOXMLDOC01-appb-T000045
In the above table, p 1 , p 2 and p 3 represent an integer of 1 or more, preferably 1 to 20, more preferably 1 to 12, particularly 2 to 8. B is particularly preferably —CONR 9 — (CH 2 ) p 3 CONR 10 —. In this case, R 9 , p 3 and R 10 are each independently described as above.
 Eは、前記ポリエチレングリコール部と下記式(12)で示されるスフィンゴミエリン部とを結合するためのリンカーであれば特に限定されない。 E is not particularly limited as long as it is a linker for binding the polyethylene glycol moiety and the sphingomyelin moiety represented by the following formula (12).
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 R~Rはそれぞれ独立して水素原子又は置換基を示す。置換基としては、前記R~Rと同様の置換基[例えば、アルキル基(メチル基、エチル基など)、アリール基、ハロアルキル基、ハロアリール基、アラルキル基など]が挙げられる。代表的なR~Rとしては、水素原子、アルキル基(例えば、メチル基、エチル基などのC1~4アルキル基)、アラルキル基(例えば、ベンジル基、フェネチル基などのC6~10アリールC1~4アルキル基)などが挙げられる。
 mは10~30の範囲内であれば特に限定されないが、10~25であることが好ましく、10~20であることがより好ましく、11~15であることがさらに好ましく、13であることが特に好ましい。nは10~30の範囲内であれば特に限定されないが、14~25であることが好ましく、15~20であることがより好ましく、16~18であることがさらに好ましく、17であることが特に好ましい。
R 1 to R 4 each independently represent a hydrogen atom or a substituent. Examples of the substituent include the same substituents as R 5 to R 8 [eg, alkyl group (methyl group, ethyl group, etc.), aryl group, haloalkyl group, haloaryl group, aralkyl group, etc.]. Representative R 1 ~ R 4, C 6 ~ 10 , such as a hydrogen atom, an alkyl group (e.g., C 1 ~ 4 alkyl group such as a methyl group, an ethyl group), an aralkyl group (e.g., benzyl group, phenethyl group Aryl C 1-4 alkyl group) and the like.
m is not particularly limited as long as it is within the range of 10 to 30, but is preferably 10 to 25, more preferably 10 to 20, further preferably 11 to 15, and preferably 13. Particularly preferred. n is not particularly limited as long as it is within the range of 10 to 30, but it is preferably 14 to 25, more preferably 15 to 20, further preferably 16 to 18, and preferably 17. Particularly preferred.
 Eは、代表的には、下記式(11)
Figure JPOXMLDOC01-appb-C000047
(式中、E1c及びE2cはそれぞれ独立して-CONR15-又は-COO-を、E1b及びE2bはそれぞれ独立してアルキレン基を、E3は、-CONR16-、-COOCO-、-COO-、-NHCOO-、-O-、-OCO-、-C≡C-、-CH=CH-、アルキレン基、-S-、-SO-、-SO-、-NR17-、-NR18CO-、-NR19CONR20-、下記式(5)
Figure JPOXMLDOC01-appb-C000048
で示される基、下記式(6)
Figure JPOXMLDOC01-appb-C000049
で示される基、下記式(7)
Figure JPOXMLDOC01-appb-C000050
で示される基、又は下記式(8)
Figure JPOXMLDOC01-appb-C000051
で示される基、下記式(9)
E is typically represented by the following formula (11):
Figure JPOXMLDOC01-appb-C000047
Wherein E 1c and E 2c are each independently —CONR 15 — or —COO—, E 1b and E 2b are each independently an alkylene group, E3 is —CONR 16 —, —COOCO—, —COO—, —NHCOO—, —O—, —OCO—, —C≡C—, —CH═CH—, an alkylene group, —S—, —SO—, —SO 2 —, —NR 17 —, — NR 18 CO—, —NR 19 CONR 20 —, the following formula (5)
Figure JPOXMLDOC01-appb-C000048
A group represented by formula (6):
Figure JPOXMLDOC01-appb-C000049
A group represented by formula (7):
Figure JPOXMLDOC01-appb-C000050
Or a group represented by the following formula (8)
Figure JPOXMLDOC01-appb-C000051
A group represented by formula (9):
Figure JPOXMLDOC01-appb-C000052
で示される基、又は下記式(10)
Figure JPOXMLDOC01-appb-C000052
Or a group represented by the following formula (10)
Figure JPOXMLDOC01-appb-C000053
で示される基を示し、R15~R20はそれぞれ独立して水素原子又は置換基を示し、1g、1h、2g及び2hはそれぞれ独立して0又は1であり、1i及び2iはそれぞれ独立して0~3の整数である)で示される基であってもよい。1iが2又は3であるとき、E1b、E1c、1g、1hはそれぞれ異なっていてもよい。2iが2又は3であるとき、E2b、E2c、2g、2hはそれぞれ異なっていてもよい。スフィンゴミエリン部のNの塩基性を保持するために、2g及び2iは1であることが好ましい。
Figure JPOXMLDOC01-appb-C000053
R 15 to R 20 each independently represents a hydrogen atom or a substituent, 1g, 1h, 2g and 2h are each independently 0 or 1, and 1i and 2i are each independently Or an integer of 0 to 3). When 1i is 2 or 3, E 1b , E 1c , 1g and 1h may be different from each other. When 2i is 2 or 3, E 2b , E 2c , 2g and 2h may be different from each other. In order to maintain the basicity of N in the sphingomyelin part, 2g and 2i are preferably 1.
 Eの具体例を表2に示す。
Figure JPOXMLDOC01-appb-T000054
 なお、上記表中、qは1以上の整数を示し、qは好ましくは1~20、さらに好ましくは1~12、特に1~8であってもよい。Eは、中でも表2のE-1の組み合わせであることが好ましい。
Specific examples of E are shown in Table 2.
Figure JPOXMLDOC01-appb-T000054
In the above table, q represents an integer of 1 or more, and q is preferably 1 to 20, more preferably 1 to 12, and particularly 1 to 8. In particular, E is preferably a combination of E-1 in Table 2.
 本発明の化合物は、脂質ラフト領域に特異的に移行することができる。本発明の化合物は、脂質ラフト領域を可視化することができ、例えば、脂質ラフト関連疾患を診断するのに非常に有用である。 The compound of the present invention can specifically migrate to the lipid raft region. The compounds of the present invention are capable of visualizing lipid raft regions and are very useful, for example, in diagnosing lipid raft-related diseases.
 〔製造方法〕
 本発明の化合物は、特に限定されないが、例えば、後述の実施例を参照することにより製造される。本発明の化合物は、例えば、下記の様にして得られる。
 官能基を有する水溶性蛍光発色化合物(イ)とポリエチレングリコール部の誘導体(ロ)とを下記反応式1のように反応させる。
Figure JPOXMLDOC01-appb-C000055
〔Production method〕
Although the compound of this invention is not specifically limited, For example, it manufactures by referring the below-mentioned Example. The compound of the present invention can be obtained, for example, as follows.
A water-soluble fluorescent coloring compound (a) having a functional group and a polyethylene glycol moiety derivative (b) are reacted as shown in the following reaction formula 1.
Figure JPOXMLDOC01-appb-C000055
 すなわち、上記式の例では、化合物(イ)のB1aと、化合物(ロ)のB2aとが反応することによりB3が形成される。このような官能基B1a及びB2aとしては、B3の種類に応じて適宜選択でき、例えば、ヒドロキシル基(-OH)、アルキルアミノ基、カルボキシル基(-COOH)、-NCO基、チオール基(-SH)、アジ基(-N)、アセチレン基(-C≡CH)、ビニル基(-CH=CH)、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、-COO-N-スクシンイミド基、マレイミド基、トシルオキシ基(-OTs)、トリフルオロメタンスルホニルオキシ基、シアノ基などが挙げられる。 That is, in the example of the above formula, B 3a is formed by the reaction of B 1a of compound (I) and B 2a of compound (b). Such functional groups B 1a and B 2a can be appropriately selected depending on the type of B3. For example, hydroxyl group (—OH), alkylamino group, carboxyl group (—COOH), —NCO group, thiol group ( —SH), azide group (—N 3 ), acetylene group (—C≡CH), vinyl group (—CH═CH 2 ), halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), —COO Examples include —N-succinimide group, maleimide group, tosyloxy group (—OTs), trifluoromethanesulfonyloxy group, cyano group and the like.
 B1a、B2a及びB3の代表的な組み合わせを表3に示す。
Figure JPOXMLDOC01-appb-T000056
(表中、Xはハロゲンを示す。)
Table 3 shows representative combinations of B 1a , B 2a and B3.
Figure JPOXMLDOC01-appb-T000056
(In the table, X represents halogen.)
 反応式1で得られた(ハ)とスフィンゴミエリン部を含む化合物(ニ)とを下記反応式2の様に反応させる。反応式2における(ハ)の代わりにポリエチレングリコール部の誘導体(ロ)を用いて反応式2の反応を行い、得られた化合物を、反応式1における化合物(ロ)の代わりに用いて、官能基を有する水溶性蛍光発色化合物(イ)と反応させてもよい。すなわち、化合物(イ)及び(ロ)を反応させた後に化合物(ニ)を反応させてもよく、化合物(ロ)及び(ニ)を反応させた後に化合物(イ)を反応させてもよい。化合物(イ)、(ロ)、(ニ)は同時に反応させてもよい。溶媒等は当業者により適宜選択可能である。
Figure JPOXMLDOC01-appb-C000057
 すなわち、上記式の例では、化合物(ハ)のE1aと、化合物(二)のE2aとが反応することによりE3が形成される。このような官能基E1a及びE2aとしては、E3の種類に応じて適宜選択でき、例えば、ヒドロキシル基(-OH)、アルキルアミノ基、カルボキシル基(-COOH)、-NCO基、チオール基(-SH)、アジ基(-N)、アセチレン基(-C≡CH)、ビニル基(-CH=CH)、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、-COO-N-スクシンイミド基、マレイミド基、トシルオキシ基、トリフルオロメタンスルホニルオキシ基などが挙げられる。
(C) obtained in Reaction Formula 1 is reacted with Compound (d) containing a sphingomyelin moiety as shown in Reaction Formula 2 below. Reaction of reaction formula 2 is carried out using the derivative (b) of the polyethylene glycol moiety instead of (c) in reaction formula 2, and the resulting compound is used in place of compound (b) in reaction formula 1 You may make it react with the water-soluble fluorescent coloring compound (I) which has a group. That is, compound (ii) may be reacted after reacting compounds (ii) and (b), or compound (ii) may be reacted after reacting compounds (b) and (d). Compounds (a), (b) and (d) may be reacted at the same time. A solvent etc. can be suitably selected by those skilled in the art.
Figure JPOXMLDOC01-appb-C000057
That is, in the example of the above formula, and E 1a compounds (c), E3 by the E 2a is the reaction of the compound (II) is formed. Such functional groups E 1a and E 2a can be appropriately selected according to the type of E3. For example, hydroxyl group (—OH), alkylamino group, carboxyl group (—COOH), —NCO group, thiol group ( —SH), azide group (—N 3 ), acetylene group (—C≡CH), vinyl group (—CH═CH 2 ), halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), —COO -N-succinimide group, maleimide group, tosyloxy group, trifluoromethanesulfonyloxy group and the like can be mentioned.
 E1a、E2a及びE3の代表的な組み合わせを表4に示す。
Figure JPOXMLDOC01-appb-T000058
Table 4 shows typical combinations of E 1a , E 2a and E3.
Figure JPOXMLDOC01-appb-T000058
 溶媒等は当業者により適宜選択可能である。化合物(ハ)は、特に限定されないが、例えば、化合物(イ)をDMF(N,N-ジメチルホルムアミド)に溶解し、これに、トリエチルアミン、ポリエチレングリコール部を含む化合物(ロ)を順に加え、室温で7時間攪拌し、溶媒を留去し、残渣をシリカゲルクロマトグラフィー及びゲル浸透クロマトグラフィーにより精製することにより得られる。 Solvents and the like can be appropriately selected by those skilled in the art. The compound (c) is not particularly limited. For example, the compound (b) is dissolved in DMF (N, N-dimethylformamide), and the compound (b) containing triethylamine and a polyethylene glycol part is added thereto in order, For 7 hours, the solvent is distilled off and the residue is purified by silica gel chromatography and gel permeation chromatography.
 本発明の化合物は、特に限定されないが、例えば、化合物(ハ)をt-BuOH/HOに溶解し、硫酸銅とアスコルビン酸ナトリウムを加え、次にメタノール100μLに溶解させたスフィンゴミエリン部を含む化合物(ニ)を加え室温で1日攪拌した溶媒を留去し、残渣を薄層クロマトグラフィー及びゲル浸透クロマトグラフィーにより分離精製することにより得られる。 The compound of the present invention is not particularly limited. For example, a sphingomyelin portion in which compound (c) is dissolved in t-BuOH / H 2 O, copper sulfate and sodium ascorbate are added, and then dissolved in 100 μL of methanol is used. The compound (d) containing the mixture is added, the solvent stirred at room temperature for 1 day is distilled off, and the residue is separated and purified by thin layer chromatography and gel permeation chromatography.
〔脂質ラフト可視化剤〕
 本発明は、本発明の化合物を含有する脂質ラフト可視化剤(以下、本発明の剤とも記す)を包含する。本発明の剤は、本発明の化合物を含有していればよく、本発明の効果を奏する限り他の成分を含んでいてもよい。本発明の剤は、本発明の化合物を表す式(1)中のAの水溶性蛍光発色化合物の吸収波長、励起光の種類等に応じて、当業者により適宜選択可能である。水溶性蛍光発色化合物が、ATTO-488、ATTO-594等又はこれらの組み合わせである場合、400~600nmの波長の励起光を照射することにより450nm以上、好ましくは480~800nm、特に好ましくは480~670nmの波長の蛍光を発する。本発明の剤は、脂質ラフト領域に特異的に移行するので、脂質ラフト領域を可視化することができる。本発明の剤は、FRET(Forster Resonance Energy Transfer)法を用いることにより、蛍光部分と非蛍光部分とのコントラストを強くすることができる。なお、FRETとは、蛍光共鳴エネルギー移動のことで、近接した2個の色素分子の間で励起エネルギーが、電磁波にならず電子の共鳴により直接移動する現象のことをいう。
[Lipid raft visualization agent]
The present invention includes a lipid raft visualization agent (hereinafter also referred to as the agent of the present invention) containing the compound of the present invention. The agent of this invention should just contain the compound of this invention, and may contain the other component, as long as there exists the effect of this invention. The agent of the present invention can be appropriately selected by those skilled in the art according to the absorption wavelength of the water-soluble fluorescent coloring compound of A in Formula (1) representing the compound of the present invention, the type of excitation light, and the like. When the water-soluble fluorescent coloring compound is ATTO-488, ATTO-594, or a combination thereof, it is 450 nm or more, preferably 480 to 800 nm, particularly preferably 480 to irradiating with excitation light having a wavelength of 400 to 600 nm. It emits fluorescence with a wavelength of 670 nm. Since the agent of the present invention specifically migrates to the lipid raft region, the lipid raft region can be visualized. The agent of the present invention can enhance the contrast between the fluorescent portion and the non-fluorescent portion by using the FRET (Forster Resonance Energy Transfer) method. Note that FRET is fluorescence resonance energy transfer, which is a phenomenon in which excitation energy moves directly between two adjacent dye molecules not by electromagnetic waves but by electron resonance.
 本発明の剤の使用態様は生体に適用するものに限定されることはなく、生体外に摘出した細胞、組織、標本等にも適用され得る。 The usage mode of the agent of the present invention is not limited to those applied to a living body, and can be applied to cells, tissues, specimens and the like extracted outside the living body.
 本発明の剤は、生体組織やDNAの損傷を惹起することがないので有用である。また、本発明の剤は、脂質ラフト領域に特異的に移行するので、脂質ラフト領域を可視化することができ、例えば、脂質ラフト関連疾患を診断するのに非常に有用である。 The agent of the present invention is useful because it does not cause damage to living tissue or DNA. In addition, since the agent of the present invention specifically migrates to the lipid raft region, the lipid raft region can be visualized, and is very useful for diagnosing lipid raft-related diseases, for example.
 本発明の剤は、静脈注射、経口服用等により投与し、生体内における標的生体物質に対する特異的結合により疾病を診断することができる。 The agent of the present invention can be administered by intravenous injection, oral administration or the like, and can diagnose a disease by specific binding to a target biological substance in vivo.
〔脂質ラフト関連疾患診断用マーカー〕
 本発明は、本発明の化合物又は本発明の剤を含有する脂質ラフト関連疾患診断用マーカー(以下、本発明の診断用マーカーという)を包含する。本発明の診断用マーカーは、本発明の化合物を含有していればよく、本発明の効果を奏する限り他の成分を含んでいてもよい。本発明の診断用マーカーは、1又は2以上の本発明の剤を含んでいてもよい。本発明の診断用マーカーは、本発明の化合物を表す式(1)中のAの水溶性蛍光発色化合物の吸収波長、励起光の種類等に応じて、当業者により適宜選択可能である。水溶性蛍光発色化合物が、ATTO-488、ATTO-594等又はこれらの組み合わせである場合、400~600nmの波長の励起光を照射することにより450nm以上、好ましくは480~800nm、特に好ましくは480~670nmの波長の蛍光を発する。本発明の診断用マーカーは、脂質ラフト領域に特異的に移行するので、脂質ラフト領域を可視化することができ、脂質ラフト関連疾患を診断するのに非常に有用である。
[Diagnosis marker for lipid raft-related diseases]
The present invention includes a lipid raft-related disease diagnostic marker (hereinafter referred to as the diagnostic marker of the present invention) containing the compound of the present invention or the agent of the present invention. The diagnostic marker of the present invention only needs to contain the compound of the present invention, and may contain other components as long as the effects of the present invention are exhibited. The diagnostic marker of the present invention may contain one or more agents of the present invention. The diagnostic marker of the present invention can be appropriately selected by those skilled in the art depending on the absorption wavelength of the water-soluble fluorescent coloring compound of A in formula (1) representing the compound of the present invention, the type of excitation light, and the like. When the water-soluble fluorescent coloring compound is ATTO-488, ATTO-594, or a combination thereof, it is 450 nm or more, preferably 480 to 800 nm, particularly preferably 480 to irradiating with excitation light having a wavelength of 400 to 600 nm. It emits fluorescence with a wavelength of 670 nm. Since the diagnostic marker of the present invention specifically moves to the lipid raft region, the lipid raft region can be visualized and is very useful for diagnosing a lipid raft-related disease.
 本明細書において、脂質ラフト関連疾患とは脂質ラフト領域の増減が、その疾患の増悪に関連することが知られている疾患、脂質ラフト領域の増減がその疾患の増悪に関連する可能性がある疾患等を包含する。脂質ラフト関連疾患とは、例えば、全身性エリテマトーデス、中枢性疾患(アルツハイマー病、パーキンソン病等)、炎症性疾患(自己免疫性関節炎、アトピー性皮膚炎、喘息、肺気腫、ベーチェット病、多発性硬化症、脊髄小脳変性症、ブドウ膜炎、ギランバレー症候群、フィッシャー症候群、慢性炎症性脱髄性多発神経炎、多発性筋炎、強皮症、自己免疫性肝炎、サルコイドーシス、慢性膵炎、炎症性腸炎、クローン病、固形癌、多発性骨髄腫、血管線維腫、粥状動脈硬化、動静脈奇形、肉芽、血管腫、肥大性瘢痕、ケロイド、早老、乾癬、発熱性肉芽腫、疣、出血性関節、非結合骨折、リウマチ様関節炎(例えば、悪性関節リウマチ等)、変形性関節症、卵胞嚢胞、卵巣肥大症候群、多嚢胞卵巣、加齢性黄班変性症、糖尿病性網膜症、新生血管緑内障、トラコーマ、肺気腫、慢性気管支炎、肥満症、歯周病、角膜移植片の血管新生、動脈瘤等)、生活習慣病(糖尿病、高血圧、高脂血症等)、ウイルス感染、感染症等が挙げられる。例えば、全身性エリテマトーデスは、脂質ラフト領域の増大がその疾患の増悪に関連することが知られていることから、本発明(本発明の化合物、本発明の剤、本発明の診断用マーカー、後述する本発明の試薬、本発明の使用及び本発明の方法を含む)は、全身性エリテマトーデス等の脂質関連疾患の診断、予防等に非常に有用である。 In the present specification, lipid raft-related disease is a disease in which increase or decrease in lipid raft region is known to be related to exacerbation of the disease, and increase or decrease in lipid raft region may be related to exacerbation of the disease Includes diseases and the like. Lipid raft-related diseases include, for example, systemic lupus erythematosus, central diseases (Alzheimer's disease, Parkinson's disease, etc.), inflammatory diseases (autoimmune arthritis, atopic dermatitis, asthma, emphysema, Behcet's disease, multiple sclerosis) , Spinocerebellar degeneration, uveitis, Guillain-Barre syndrome, Fisher syndrome, chronic inflammatory demyelinating polyneuritis, polymyositis, scleroderma, autoimmune hepatitis, sarcoidosis, chronic pancreatitis, inflammatory bowel disease, clone Disease, solid cancer, multiple myeloma, angiofibroma, atherosclerosis, arteriovenous malformation, granulation, hemangioma, hypertrophic scar, keloid, premature aging, psoriasis, febrile granuloma, hemorrhoid, hemorrhagic joint, non Connective fracture, rheumatoid arthritis (eg, malignant rheumatoid arthritis), osteoarthritis, follicular cyst, ovarian hypertrophy syndrome, polycystic ovary, age-related macular degeneration, diabetic retinopathy, Live blood vessel glaucoma, trachoma, emphysema, chronic bronchitis, obesity, periodontal disease, angiogenesis of corneal graft, aneurysm, etc.), lifestyle diseases (diabetes, hypertension, hyperlipidemia, etc.), viral infection, infection Symptoms and the like. For example, since systemic lupus erythematosus is known to have an increased lipid raft region associated with exacerbation of the disease, the present invention (the compound of the present invention, the agent of the present invention, the diagnostic marker of the present invention, described later) The reagent of the present invention, including the use of the present invention and the method of the present invention) is very useful for the diagnosis and prevention of lipid-related diseases such as systemic lupus erythematosus.
 本発明の診断用マーカーは、例えば、本発明の化合物又は本発明の剤を生理食塩水、リン酸緩衝液等の水系媒体に溶解した溶液剤、微粒子状粉末、凍結乾燥粉末等の固形剤等として提供される。本発明の診断用マーカーの形態は、特に限定されず、当業者が使用目的等に応じて適宜選択可能である。 The diagnostic marker of the present invention is, for example, a solution prepared by dissolving the compound of the present invention or the agent of the present invention in an aqueous medium such as physiological saline or phosphate buffer, a solid agent such as fine particle powder, lyophilized powder, etc. Offered as. The form of the diagnostic marker of the present invention is not particularly limited, and can be appropriately selected by those skilled in the art according to the purpose of use and the like.
 本発明の診断用マーカーは、薬理学的、製剤学的に許容しうる添加物を添加することができる。例えば、ブドウ糖、乳糖、D-マンニトール、デンプン、結晶セルロース等の賦形剤;カルボキシメチルセルロース、デンプン、カルボキシメチルセルロースカルシウム等の崩壊剤又は崩壊補助剤;ワセリン、流動パラフィン、ポリエチレングリコール、ゼラチン、カオリン、グリセリン、精製水、ハードファット等の基剤;ブドウ糖、塩化ナトリウム、D-マンニトール、グリセリン等の等張化剤;無機酸、有機酸、無機塩基、有機塩基等のpH調節剤;ビタミンA、ビタミンE、コエンザイムQ等安定化に寄与しうる薬剤等の製剤用添加物を添加してもよい。 Pharmacologically and pharmaceutically acceptable additives can be added to the diagnostic marker of the present invention. For example, excipients such as glucose, lactose, D-mannitol, starch, crystalline cellulose; disintegrating agents or disintegrating aids such as carboxymethylcellulose, starch, carboxymethylcellulose calcium; petrolatum, liquid paraffin, polyethylene glycol, gelatin, kaolin, glycerin Bases such as purified water and hard fat; isotonic agents such as glucose, sodium chloride, D-mannitol, glycerin; pH regulators such as inorganic acids, organic acids, inorganic bases, organic bases; vitamin A, vitamin E Furthermore, pharmaceutical additives such as drugs that can contribute to stabilization such as coenzyme Q may be added.
 本発明の診断用マーカーは、例えば、生体外に摘出した組織、標本等に適用され得る。 The diagnostic marker of the present invention can be applied to, for example, a tissue, a specimen, etc. extracted outside the living body.
 本発明の診断用マーカーは、例えば、共焦点レーザー顕微鏡を用いた検査に使うことが出来る。脂質ラフト関連疾患の病巣の存在が疑われる組織、細胞等に、本発明の試薬を接触させ、適宜洗浄した後、近赤外線ないし遠赤外線を照射して蛍光を検出することで病巣を見つけ出すことができる。 The diagnostic marker of the present invention can be used for, for example, inspection using a confocal laser microscope. It is possible to detect a foci by detecting fluorescence by irradiating near infrared rays or far infrared rays after bringing the reagent of the present invention into contact with tissues, cells, etc. suspected of having a foci of lipid raft-related diseases and washing them appropriately. it can.
〔脂質ラフト検出又は定量用試薬〕
 本発明は、本発明の化合物又は本発明の脂質ラフト可視化剤を含有する脂質ラフト検出又は定量用試薬(以下、本発明の試薬とも記す)を包含する。
[Reagent for lipid raft detection or quantification]
The present invention includes a reagent for lipid raft detection or quantification (hereinafter also referred to as the reagent of the present invention) containing the compound of the present invention or the lipid raft visualization agent of the present invention.
 本発明の試薬は、例えば、共焦点レーザー顕微鏡を用いた検査に使うことが出来る。脂質ラフト関連疾患の病巣の存在が疑われる組織、細胞等に、本発明の試薬を接触させ、適宜洗浄した後、近赤外線ないし遠赤外線を照射して蛍光を検出することで病巣を見つけ出すことができ、蛍光を定量することで、疾患の有無、進行度および重症度などを知ることができる。 The reagent of the present invention can be used, for example, for inspection using a confocal laser microscope. It is possible to detect a foci by detecting fluorescence by irradiating near infrared rays or far infrared rays after bringing the reagent of the present invention into contact with tissues, cells, etc. suspected of having a foci of lipid raft-related diseases and washing them appropriately. It is possible to know the presence / absence of disease, the degree of progression, the severity, etc. by quantifying the fluorescence.
〔使用〕
 本発明は、脂質ラフト可視化剤製造のための本発明の化合物の使用(以下、本発明の使用とも記す)を包含する。
〔use〕
The present invention includes the use of a compound of the present invention for producing a lipid raft visualization agent (hereinafter also referred to as use of the present invention).
〔脂質ラフト可視化方法〕
 本発明は、本発明の化合物と脂質ラフトを含む細胞とを混合する工程、及び、前記細胞に光を照射して蛍光を検出する工程を含有する脂質ラフト可視化方法(以下、本発明の方法とも記す)を包含する。
[Lipid raft visualization method]
The present invention relates to a lipid raft visualization method (hereinafter also referred to as the method of the present invention) comprising a step of mixing the compound of the present invention and a cell containing lipid raft, and a step of irradiating the cell with light to detect fluorescence. Included).
 本発明の方法において、脂質ラフトを含む細胞とは、脂質ラフトを含有することがわかっている細胞、脂質ラフトを含有するかどうか不明の細胞等を包含する。脂質ラフトを含む細胞は、特に限定されないが、例えば、赤血球細胞、白血球細胞、ヒト膀胱癌細胞等が挙げられる。赤血球細胞として、ウニ状赤血球(エキノサイト、Echinocyte)等が挙げられる。本発明の方法は、ウニ状赤血球上の突起を可視化、検出等できる点で非常に有用である。 In the method of the present invention, cells containing lipid rafts include cells known to contain lipid rafts, cells unknown whether lipid rafts are contained, and the like. Cells containing lipid rafts are not particularly limited, and examples include red blood cells, white blood cells, and human bladder cancer cells. Examples of red blood cells include sea urchin red blood cells (echinocytes). The method of the present invention is very useful in that a process on a sea urchin erythrocyte can be visualized and detected.
 本発明の方法において、本発明の化合物と脂質ラフトを含む細胞とを混合する工程は、特に限定されず、例えば、本発明の化合物と脂質ラフトを含む細胞とが接触するように溶媒等を適宜選択し使用することができる。 In the method of the present invention, the step of mixing the compound of the present invention with cells containing lipid rafts is not particularly limited. For example, a solvent or the like is appropriately used so that the compound of the present invention and cells containing lipid rafts come into contact with each other. Can be selected and used.
 本発明の方法において、脂質ラフトを含む細胞に光を照射して蛍光を検出する工程は、特に限定されないが、例えば、脂質ラフトを含む細胞に可視光又は近赤外光を照射してカメラ、CCD等で観察する赤外光観察、蛍光顕微鏡、蛍光内視鏡、多光子励起蛍光顕微鏡、共焦点顕微鏡、共焦点内視鏡等によって、脂質ラフトを含む細胞に対して励起光光源から光を照射して、それによって発光している本発明の化合物の水溶性蛍光発色化合物の蛍光を検出すること等が挙げられる。検出する方法は、特に限定されないが、例えば、ウエスタンブロッティング、プロテインアレイ、フローサイトメトリー、蛍光ELISA、蛍光免疫染色、FRET、in vivoイメージング等が挙げられる。 In the method of the present invention, the step of irradiating the cells containing lipid rafts with light to detect fluorescence is not particularly limited. For example, the cells containing lipid rafts are irradiated with visible light or near infrared light, Light from an excitation light source is applied to cells containing lipid rafts using infrared light observation with a CCD, fluorescence microscope, fluorescence endoscope, multiphoton excitation fluorescence microscope, confocal microscope, confocal endoscope, etc. For example, it is possible to detect the fluorescence of the water-soluble fluorescent coloring compound of the compound of the present invention which has been irradiated to emit light. The detection method is not particularly limited, and examples thereof include Western blotting, protein array, flow cytometry, fluorescent ELISA, fluorescent immunostaining, FRET, and in vivo imaging.
 本発明で用いられる励起するための波長は、本発明の化合物と脂質ラフトを含む細胞に影響を与えなければ特に制限はされないが、使用する本発明の化合物の水溶性蛍光発色化合物によって異なる。本発明の化合物の水溶性蛍光発色化合物が効率よく蛍光を発すれば特に限定はされない。水溶性蛍光発色化合物が、ATTO-488、ATTO-594等又はこれらの組み合わせである場合、400~600nmの波長の励起光を照射することにより450nm以上、好ましくは480~800nm、特に好ましくは480~670nmの波長の蛍光を発する。 The wavelength for excitation used in the present invention is not particularly limited as long as it does not affect the cell containing the compound of the present invention and lipid raft, but varies depending on the water-soluble fluorescent coloring compound of the compound of the present invention to be used. There is no particular limitation as long as the water-soluble fluorescent coloring compound of the compound of the present invention emits fluorescence efficiently. When the water-soluble fluorescent coloring compound is ATTO-488, ATTO-594, or a combination thereof, it is 450 nm or more, preferably 480 to 800 nm, particularly preferably 480 to irradiating with excitation light having a wavelength of 400 to 600 nm. It emits fluorescence with a wavelength of 670 nm.
 本発明の方法で用いられる光源としては、本発明の化合物と脂質ラフトを含む細胞に影響を与えなければ特に制限はされず、例えば、色素レーザー、半導体レーザー、イオンレーザー、ファイバーレーザー、ハロゲンランプ、キセノンランプ、エバネッセント波、タングステンランプ等が挙げられる。また、各種光学フィルターを用いて、好ましい励起波長を得たり、蛍光のみを検出したりする事ができる。 The light source used in the method of the present invention is not particularly limited as long as it does not affect the cells containing the compound of the present invention and lipid rafts. For example, a dye laser, a semiconductor laser, an ion laser, a fiber laser, a halogen lamp, A xenon lamp, an evanescent wave, a tungsten lamp, etc. are mentioned. Moreover, it is possible to obtain a preferable excitation wavelength or detect only fluorescence using various optical filters.
 本発明の方法において、例えば、脂質ラフトを含む細胞に光を照射して、脂質ラフトを含む細胞の脂質ラフト領域で本発明の化合物の水溶性蛍光発色化合物を発光させ、脂質ラフトを含む細胞を撮像することにより、発光している脂質ラフト領域を容易に検出することができ、脂質ラフトの状態、局在、変化等を画像とし捉えることができる。 In the method of the present invention, for example, a cell containing lipid rafts is irradiated with light to cause the water-soluble fluorescent coloring compound of the compound of the present invention to emit light in the lipid raft region of the cells containing lipid rafts. By imaging, a lipid raft region that emits light can be easily detected, and the state, localization, change, and the like of the lipid raft can be captured as an image.
 本発明は、本発明の効果を奏する限り、本発明の技術的範囲内において、上記の構成を種々組み合わせた態様を含む。 The present invention includes embodiments in which the above configurations are combined in various ways within the technical scope of the present invention as long as the effects of the present invention are exhibited.
 次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。 EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples at all, and many variations are within the technical idea of the present invention. This is possible by those with ordinary knowledge.
 [製造例1]化合物5の合成
 まず、下記工程を経て、反応中間体(化合物3)を得た。
[Production Example 1] Synthesis of Compound 5 First, a reaction intermediate (compound 3) was obtained through the following steps.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 ATTO-488NHS-ester(ATTO-TEC GmbH)である6-アミノ-3-(14-アザニリジン)-9-(2-((2-((2,5-ジオキソピロリジン-1-イル)オキシ)-2-オキソエチル)(メチル)カルバモイル)フェニル)-3H-キサンテン-4,5-ジスルホン酸(化合物1)1.45μmolをDMF(N,N-ジメチルホルムアミド)450μLに溶解した。これに、トリエチルアミン3.71μL(18.3μmol)を加え、引き続き32-アジド-3,6,9,12,15,18,21,24,27,30-デカオキサドトリアコンタン-1-アミン(化合物2)(O-(2-Aminoethyl)-O'-(2-azidoethyl)nonaethylene glycol, Aldrich 社から購入)を1.45μmol加え、室温で7時間攪拌した。溶媒を留去し、残渣をシリカゲルクロマトグラフィー(移動相;クロロホルム、メタノール及び水の混合液(CHCl:CHOH:HO=13:9:2(容量比))及びゲル浸透クロマトグラフィー(JAIGEL-GS、溶媒CHOH)により精製し6-アミノ-3-(14-アザニリジン)-9-(2-((35-アジド-2-オキソ-6,9,12,15,18,21,24,27,30,33-デカオキサ-3-アザペンタトリアコンチル)(メチル)カルバモイル)フェニル)-3H-キサンテン-4,5-ジスルホン酸(化合物3)を得た。 6-amino-3- (14-azaniridin) -9- (2-((2-((2,5-dioxopyrrolidin-1-yl) oxy) which is ATTO-488NHS-ester (ATTO-TEC GmbH) -2-Oxoethyl) (methyl) carbamoyl) phenyl) -3H-xanthene-4,5-disulfonic acid (Compound 1) 1.45 μmol was dissolved in 450 μL of DMF (N, N-dimethylformamide). To this, 3.71 μL (18.3 μmol) of triethylamine was added, followed by 32-azido-3,6,9,12,15,18,21,24,27,30-decaoxadotriacontan-1-amine ( 1.45 μmol of compound 2) (O- (2-Aminoethyl) -O ′-(2-azidoethyl) nonaethylene glycol, purchased from Aldrich) was added and stirred at room temperature for 7 hours. The solvent was distilled off, and the residue was subjected to silica gel chromatography (mobile phase; mixed solution of chloroform, methanol and water (CHCl 3 : CH 3 OH: H 2 O = 13: 9: 2 (volume ratio)) and gel permeation chromatography. Purified by (JAIGEL-GS, solvent CH 3 OH) and purified by 6-amino-3- (14-azanilysine) -9- (2-((35-azido-2-oxo-6,9,12,15,18, 21,24,27,30,33-Decaoxa-3-azapentatriacontyl) (methyl) carbamoyl) phenyl) -3H-xanthene-4,5-disulfonic acid (Compound 3) was obtained.
 次に、下記工程を経て、化合物5を得た。 Next, Compound 5 was obtained through the following steps.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 得られた化合物3(1.0μmol)をt-BuOH/HO(4/1、400μL)に溶解し、硫酸銅(0.5μmol)とアスコルビン酸ナトリウム(1.5uμmol)を加え、次にメタノール100μLに溶解させた2-(エチニルジメチルアンモニオ)エチル((2S,3R,E)-3-ヒドロキシ-2-ステアルアミドオクタデク-4-エン-1-イル)リン酸塩(化合物4)(Sarah A. Goretta, Masanao Kinoshita, Shoko Mori, Hiroshi Tsuchikawa, Nobuaki Matsumori, Michio Murata Bioorg. Med. Chem.20, 4012-4019 (2012)に記載の方法により製造)を加え室温で1日攪拌した。溶媒を留去し、残渣を薄層クロマトグラフィー(展開溶媒CHCl/MeOH/HO=13/9/1)及びゲル浸透クロマトグラフィー(JAIGEL-GS、溶媒CHOH)により分離精製し、2-(((1-(1-(2-(6-アミノ-3-(14-アザニリジン)-4,5-ジスルホ-3H-キサンテン-9-イル)フェニル)-2-メチル-1,4-ジオキソ-8,11,14,17,20,23,26,29,32,35-デカオキサ-2,5-ジアザペンタトリアコンタン-37-イル)-1H-1,2,3-トリアゾール-4-イル)メチル)ジメチルアンモニオ)エチル((2S,3R,E)-3-ヒドロキシ-2-ステアルアミドオクタデク-4-エン-1-イル)(化合物5)を0.29μmol(総収率19%)得た。 The obtained compound 3 (1.0 μmol) is dissolved in t-BuOH / H 2 O (4/1, 400 μL), copper sulfate (0.5 μmol) and sodium ascorbate (1.5 uμmol) are added, and then 2- (ethynyldimethylammonio) ethyl ((2S, 3R, E) -3-hydroxy-2-stearamidooctadec-4-en-1-yl) phosphate (compound 4) dissolved in 100 μL of methanol ) (Manufactured by the method described in Sarah A. Goretta, Masanao Kinoshita, Shoko Mori, Hiroshi Tsuchikawa, Nobuaki Matsumori, Michio Murata Bioorg. Med. Chem. 20, 4012-4019 (2012)) and stirred at room temperature for 1 day . The solvent was distilled off, and the residue was separated and purified by thin layer chromatography (developing solvent CHCl 3 / MeOH / H 2 O = 13/9/1) and gel permeation chromatography (JAIGEL-GS, solvent CH 3 OH), 2-(((1- (1- (2- (6-Amino-3- (14-azaniridin) -4,5-disulfo-3H-xanthen-9-yl) phenyl) -2-methyl-1,4 -Dioxo-8,11,14,17,20,23,26,29,32,35-decaoxa-2,5-diazapentatriacontan-37-yl) -1H-1,2,3-triazole- 4-yl) methyl) dimethylammonio) ethyl ((2S, 3R, E) -3-hydroxy-2-stearamidooctadec-4-en-1-yl) (compound 5) (0.29 μmol (total) Yield 1 %) Was obtained.
 化合物5のNMRについて、NMRデータ処理プログラム(Delta 5.0.0)を用いて一次元データ処理、二次元データ処理した結果をそれぞれ図29、30に示した。化合物5のHRMSチャート(Xcalibur)を図31に示した。 Regarding the NMR of Compound 5, the results of one-dimensional data processing and two-dimensional data processing using an NMR data processing program (Delta 5.0.0) are shown in FIGS. 29 and 30, respectively. The HRMS chart (Xcalibur) of Compound 5 is shown in FIG.
 (化合物5)
NMR(400MHz,CD3OD)δ0.90(t,J=6.64Hz,6H),1.07-1.50(m,50H),1.52-1.69(m,2H),1.94-2.08(m,2H),2.11-2.24(m,2H),2.87(s,3H),3.17(s,6H),3.44-3.76(m,40H,PEG),3.82-4.16(m,4H),4.22-4.41(m,2H),4.58-4.70(m,1H),5.40-5.51(m,1H),5.61-5.78(m,1H),6.94-7.03(m,2H,aromatic),7.23-7.28(m,2H,aromatic),7.33-7.81(m,4H,aromatic),8.36-8.60(m,1H).
HRMS calcd for C9015125PS  [M]1852.9995, found: 1852.9972.
(Compound 5)
NMR (400 MHz, CD3OD) δ 0.90 (t, J = 6.64 Hz, 6H), 1.07-1.50 (m, 50H), 1.52-1.69 (m, 2H), 1.94 -2.08 (m, 2H), 2.11-2.24 (m, 2H), 2.87 (s, 3H), 3.17 (s, 6H), 3.44-3.76 (m , 40H, PEG), 3.82-4.16 (m, 4H), 4.22-4.41 (m, 2H), 4.58-4.70 (m, 1H), 5.40-5 .51 (m, 1H), 5.61-5.78 (m, 1H), 6.94-7.03 (m, 2H, aromatic), 7.23-7.28 (m, 2H, aromatic) , 7.33-7.81 (m, 4H, aromatic), 8.36-8.60 (m, 1H).
HRMS calcd for C 90 H 151 N 9 O 25 PS 2 + [M] + 1852.9995, found: 1852.997.
 [製造例2]化合物6の合成
 ATTO-488N-ヒドロキシコハク酸イミド誘導体の代わりに、ATTO-594N-ヒドロキシコハク酸イミド誘導体(ATTO-TEC GmbH)を用いた以外は、製造例1と同様の方法で合成し化合物6を0.34μmol(総収率22%)得た。
[Production Example 2] Synthesis of Compound 6 The same method as in Production Example 1 except that ATTO-594N-hydroxysuccinimide derivative (ATTO-TEC GmbH) was used instead of ATTO-488N-hydroxysuccinimide derivative. To obtain 0.34 μmol of compound 6 (total yield 22%).
 化合物6のNMRについて、NMRデータ処理プログラム(Delta 5.0.0)を用いて一次元データ処理、二次元データ処理した結果をそれぞれ図32、33に示した。化合物5のHRMSチャート(Xcalibur)を図34に示した。 Regarding the NMR of Compound 6, the results of one-dimensional data processing and two-dimensional data processing using an NMR data processing program (Delta 5.0.0) are shown in FIGS. 32 and 33, respectively. An HRMS chart (Xcalibur) of Compound 5 is shown in FIG.
 (化合物6)
NMR(500MHz,CD3OD)δ0.90(t,J=6.73Hz,6H),1.20-1.45(m,50H),1.51-1.66(m,6H),1.78(t,J=5.80Hz,1H),1.97-2.09(m,2H),2.13-2.23(m,2H),2.64(s,1H),2.72(s,1H),3.19(s,6H),3.43-3.52(m,2H),3.54-3.70(m,40H,PEG),3.70-3.78(m,2H),3.85(d,J=15.75Hz,1H),3.90-4.01(m,2H),4.03-4.09(m,1H),4.10-4.18(m,1H),4.33-4.39(m,1H),4.58(s,12H),4.64-4.68(m,1H),4.76(s,2H),5.41-5.48(m,1H),5.66-5.74(m,1H),5.89(s,1H),6.79(s,1H),7.38(d,J=15.32Hz,1H),7.46-7.53(m,1H),7.57-7.64(m,1H),7.68-7.76(m,2H),8.41(s,1H).
HRMS found:[M+2Na]2+ 1056.5724.
(Compound 6)
NMR (500 MHz, CD3OD) δ 0.90 (t, J = 6.73 Hz, 6H), 1.20-1.45 (m, 50H), 1.51-1.66 (m, 6H), 1.78 (T, J = 5.80 Hz, 1H), 1.97-2.09 (m, 2H), 2.13-2.23 (m, 2H), 2.64 (s, 1H), 2.72 (S, 1H), 3.19 (s, 6H), 3.43-3.52 (m, 2H), 3.54-3.70 (m, 40H, PEG), 3.70-3.78 (M, 2H), 3.85 (d, J = 15.75 Hz, 1H), 3.90-4.01 (m, 2H), 4.03-4.09 (m, 1H), 4.10 -4.18 (m, 1H), 4.33-4.39 (m, 1H), 4.58 (s, 12H), 4.64-4.68 (m, 1H), 4.76 (s , 2H), .41-5.48 (m, 1H), 5.66-5.74 (m, 1H), 5.89 (s, 1H), 6.79 (s, 1H), 7.38 (d, J = 15.32 Hz, 1H), 7.46-7.53 (m, 1H), 7.57-7.64 (m, 1H), 7.68-7.76 (m, 2H), 8.41. (S, 1H).
HRMS found: [M + 2Na] 2+ 1056.5724.
 [製造例3]人工膜リポソーム(GUV)の作製
 スフィンゴミエリン(SM)とDOPCは、Avanti Polar Lipid (Alabaster AL)から購入した。コレステロールは、Sigma Aldrich (St.Louis,LO)から購入した。SM、DOPC及びコレステロールから成る3成分系巨大脂質膜リポソーム(GUV: Giant Unilamellar Vesicle)は、Dimitrov, D. S. Liposome Electro formation. 303-311(1986)に従いエレクトロフォーメーション法を用いて作製した。具体的には、適量の蛍光プローブを添加したSM/DOPC/chol溶液(1mg/mL)5~10μLを電極(白金線、直径=100μm)の表面上に塗り広げた。この電極を真空下で24時間乾燥させた後、薄い脂質膜でコーティングした。次に、平行に配置した電極を、四角い枠の形をしたゴム製スペーサー(厚さ1mm)を使って2枚のカバーガラス(24mm×60mm、厚さ0.12~0.17mm)で挟んだ約400μLのミリQ水の中に入れた。このチャンバーは、温度制御されたサンプルステージ(サーモプレート、東海ヒット社、静岡、日本)の上に固定した。その後、サンプルは、純粋なSM二重層のTmよりも十分に高い温度である50℃で60分間インキュベートし、ファンクションジェネレータ(20MHz,Agilent社、カリフォルニア州サンタクララ)を使って低周波交流(AC)(正弦波関数、10Vpp、10Hz)を印加した。エレクトロフォーメーション後、その後の観察のためにGUVを25℃に冷却し、15分間平衡化してから、28.5℃まで加熱した。バルク溶液の温度は、別途にKタイプ温度計(AD-5602a、株式会社三商(SANSYO Co.,LTD)東京、日本)を用いて測定し、サンプルステージとサンプルの温度差を較正した。
[Production Example 3] Production of artificial membrane liposome (GUV) Sphingomyelin (SM) and DOPC were purchased from Avanti Polar Lipid (Alabaster AL). Cholesterol was purchased from Sigma Aldrich (St. Louis, LO). A ternary giant lipid membrane liposome (GUV) composed of SM, DOPC and cholesterol is disclosed in Dimitrov, D. et al. S. Liposome Electro formation. It was prepared using the electro-formation method according to 303-311 (1986). Specifically, 5 to 10 μL of SM / DOPC / chol solution (1 mg / mL) to which an appropriate amount of fluorescent probe was added was spread on the surface of the electrode (platinum wire, diameter = 100 μm). The electrode was dried under vacuum for 24 hours and then coated with a thin lipid membrane. Next, the electrodes arranged in parallel were sandwiched between two cover glasses (24 mm × 60 mm, thickness 0.12 to 0.17 mm) using a rubber spacer (thickness 1 mm) in the shape of a square frame. Placed in about 400 μL of MilliQ water. This chamber was fixed on a temperature-controlled sample stage (Thermoplate, Tokai Hit, Shizuoka, Japan). Samples were then incubated for 60 minutes at 50 ° C., a temperature well above the Tm of pure SM bilayers, and low frequency alternating current (AC) using a function generator (20 MHz, Agilent, Santa Clara, Calif.). (Sine wave function, 10 Vpp, 10 Hz) was applied. After electroformation, the GUV was cooled to 25 ° C for subsequent observation, equilibrated for 15 minutes, and then heated to 28.5 ° C. The temperature of the bulk solution was separately measured using a K-type thermometer (AD-5602a, Sansho Co., Ltd., Tokyo, Japan), and the temperature difference between the sample stage and the sample was calibrated.
 [実施例1]化合物5及び化合物6を含む3成分系巨大脂質膜リポソーム(GUV)におけるラフト様相への移行(蛍光顕微鏡観察)
 0.2%molの化合物5又は0.2%molのTX-red DHPEを含むSM/DOPC/chol(1/1/1mol/mol/mol)で形成されるGUVを28.5℃で共焦点蛍光顕微鏡観察した。なお、GUVは、この条件下において、ラフト様の秩序相と非ラフト様の無秩序相とに相分離することが知られている。またそれぞれの相では脂質組成が異なり、とりわけラフトの主要成分であるSMは秩序相に豊富に分布することが報告されている。
[Example 1] Transition to a raft-like phase in a ternary giant lipid membrane liposome (GUV) containing compound 5 and compound 6 (observation with a fluorescence microscope)
Confocal GUV formed with SM / DOPC / chol (1/1/1 mol / mol / mol) containing 0.2% mol of Compound 5 or 0.2% mol of TX-red DHPE at 28.5 ° C. The sample was observed with a fluorescence microscope. GUV is known to phase-separate into a raft-like ordered phase and a non-raft-like disordered phase under this condition. In addition, the lipid composition is different in each phase, and it has been reported that SM, which is a major component of raft, is distributed abundantly in the ordered phase.
 蛍光顕微鏡観察の結果を図1~6に示す。図1及び図5の白い部分は、青色蛍光部分であり、図2及び図4の白い部分は、赤色蛍光部分である。図3、図6はそれぞれ、図1及び図2、図4及び図5を重ね合わせた写真である。化合物5が、無秩序相(非ラフト様相)に結合することで知られるTX-red DHPE(Invitrogen, Eugene, OR, USA)と反対の分布を示すことがわかった(図1~3)。このことは化合物5が通常のSMと同様に秩序相(ラフト様相)に優先的に取り込まれることを示している。同様に化合物6も、無秩序相(非ラフト様相)に結合するBoipy-PC(Invitrogen,Eugene,OR,USA)と反対の分布を示すことより、秩序相(ラフト様相)に優先的に分布することがわかった(図4~6)。 Fluorescence microscope observation results are shown in FIGS. The white portions in FIGS. 1 and 5 are blue fluorescent portions, and the white portions in FIGS. 2 and 4 are red fluorescent portions. 3 and 6 are photographs in which FIGS. 1 and 2 and FIGS. 4 and 5 are superimposed. It was found that Compound 5 exhibited a distribution opposite to TX-red DHPE (Invitrogen, Eugene, OR, USA), which is known to bind to a disordered phase (non-raft-like phase) (FIGS. 1 to 3). This indicates that compound 5 is preferentially incorporated into the ordered phase (raft-like phase) as in normal SM. Similarly, compound 6 is preferentially distributed in the ordered phase (raft-like phase) because it exhibits the opposite distribution to Boipy-PC (Invitrogen, Eugene, OR, USA) that binds to the disordered phase (non-raft-like phase). (Figs. 4-6).
 [実施例2]化合物5と6のラフト様相及び非ラフト様相への分布の割合(共焦点レーザー顕微鏡観察)
 SM/DOPC/chol(1/1/1mol/mol/mol)からなるGUVにおける秩序相(Lo、ラフト様相)と非秩序相(Ld、非ラフト様相)でのSMの分布を、0.2mol%化合物5又は化合物6を加えて調べた。それぞれの励起は、共焦点レーザー(λex=473±2nm及び559±2nm)を用いた。それぞれの放射は、485nm-585nmと570nm-670nmで調べた。レーザーパワーは、9mW/cm2、6mW/cmで、スキャン速度は、化合物5を含むGUVと、化合物6を含むGUVでそれぞれ2μs/pix、4μs/pixで、共焦点イメージは、1024pix×1024pixで得た。
[Example 2] Ratio of distribution of compounds 5 and 6 to raft-like and non-raft-like phases (confocal laser microscope observation)
The SM distribution in the ordered phase (Lo, raft-like phase) and disordered phase (Ld, non-raft-like phase) in GUV consisting of SM / DOPC / chol (1/1/1 mol / mol / mol) is 0.2 mol%. It investigated by adding the compound 5 or the compound 6. For each excitation, confocal lasers (λex = 473 ± 2 nm and 559 ± 2 nm) were used. Each emission was examined at 485 nm-585 nm and 570 nm-670 nm. The laser power is 9 mW / cm 2 and 6 mW / cm 2 , and the scanning speed is 2 μs / pix and 4 μs / pix for GUV containing Compound 5 and GUV containing Compound 6, respectively, and the confocal image is 1024 pix × 1024 pix. Got in.
 化合物5と化合物6の秩序相及び非秩序相の分布を蛍光強度で調べた。GUVの断面を図7及び9に示す。図7の白い部分は、青色蛍光部分を、図9の白い部分は、赤色蛍光部分を示す。球状のGUVを20個選び、その断面周辺の強度をプロットした(図8及び10)。化合物5と化合物6の秩序相の蛍光強度はともに、非秩序相の蛍光強度の4倍であり(図11)、化合物5と化合物6は秩序相へ多く分布していることが示された。 The distribution of the ordered and non-ordered phases of Compound 5 and Compound 6 was examined by fluorescence intensity. A cross section of the GUV is shown in FIGS. The white portion in FIG. 7 indicates a blue fluorescent portion, and the white portion in FIG. 9 indicates a red fluorescent portion. Twenty spherical GUVs were selected, and the intensity around the cross section was plotted (FIGS. 8 and 10). Both the fluorescence intensity of the ordered phase of Compound 5 and Compound 6 is 4 times the fluorescence intensity of the non-ordered phase (FIG. 11), indicating that Compound 5 and Compound 6 are highly distributed in the ordered phase.
 [実施例3]FRET法による化合物6の秩序相Lo移行領域の検出
 0.2mol% 化合物5又は化合物6をSM/DOPC/cholの混合物(1:1:0.5mol/mol/mol)に加えて、GUVを作成した。化合物5を含むGUVに473±2nmの波長のレーザーを照射した。化合物5から化合物6へのエネルギー移行後、化合物6からの放射を波長610-630nmで検出した。レーザーパワー71mW/cm及び89mW/cm、スキャンスピード4μs/pix及び8μs/pixで得たFRETイメージ(1024pix×1024pix)を図12及び14(スケールバーは10μm)に示す。図12及び図14の白い部分は、赤色蛍光部分を示す。
[Example 3] Detection of ordered phase Lo transition region of compound 6 by FRET method 0.2 mol% Compound 5 or compound 6 was added to a mixture of SM / DOPC / chol (1: 1: 0.5 mol / mol / mol). A GUV was created. The GUV containing compound 5 was irradiated with a laser having a wavelength of 473 ± 2 nm. After energy transfer from compound 5 to compound 6, radiation from compound 6 was detected at a wavelength of 610-630 nm. FRET images (1024 pix × 1024 pix) obtained at laser powers 71 mW / cm 2 and 89 mW / cm 2 , scan speeds 4 μs / pix and 8 μs / pix are shown in FIGS. 12 and 14 (scale bar is 10 μm). The white part of FIG.12 and FIG.14 shows a red fluorescent part.
 同じ大きさのGUVを21個選び、GUV表面(図12参照)に沿った化合物6からのみの放射を波長(λem=610-630nm)で検出した結果から得られるFRET強度のプロファイルを図13に示した。その結果、秩序相(Lo、ラフト様相)と非秩序相(Ld、非ラフト様相)の平均的強度比は5.9±1.1であり、FRET現象によりコントラストが強くなっていることが確認された。 FIG. 13 shows a FRET intensity profile obtained by selecting 21 GUVs of the same size and detecting radiation only from Compound 6 along the GUV surface (see FIG. 12) at a wavelength (λem = 610-630 nm). Indicated. As a result, the average intensity ratio of the ordered phase (Lo, raft-like phase) and the non-ordered phase (Ld, non-raft-like phase) is 5.9 ± 1.1, confirming that the contrast is strengthened by the FRET phenomenon. It was done.
 [実施例4]赤血球の突起構造におけるSMクラスターの標識
 大阪大学の診療所にて看護師により注射で血液を採取した。1mLの血液を、4mL燐酸バッファ溶液(PBS、pH7.4)で懸濁し、遠心分離した。この操作を2回繰り返し、得られた赤血球10μLを990mLのPBSに懸濁した。これに、化合物5及び6のエタノール溶液(0.5mM)5μLを加え、7分間室温でインキュベートした。赤血球膜に化合物5及び6を添加する方法は既知の方法(Mikhalyov, I. & Samsonov, A. Lipid raft detecting in membranes of live erythrocytes. Biochim. Biophys. Acta 1808, 1930-9 (2011).)を参考にした。その後直ちに、10倍量のPBSで5回洗浄し、赤血球膜外にある化合物5及び6を完全に除いた。化合物5及び6が挿入された赤血球をPBSで1%(v/v)以下になるように希釈した。この希釈溶液をカバーグラス(広さ24mm×60mm、厚さ0.12-0.17mm)に乗せ蛍光顕微鏡及び共焦点顕微鏡観察した。
[Example 4] Labeling of SM cluster in the protrusion structure of erythrocytes Blood was collected by injection at a clinic in Osaka University by a nurse. 1 mL of blood was suspended in 4 mL phosphate buffer solution (PBS, pH 7.4) and centrifuged. This operation was repeated twice, and 10 μL of the obtained erythrocytes were suspended in 990 mL of PBS. To this, 5 μL of an ethanol solution (0.5 mM) of compounds 5 and 6 was added and incubated at room temperature for 7 minutes. The method of adding compounds 5 and 6 to the erythrocyte membrane is a known method (Mikhalyov, I. & Samsonov, A. Lipid raft detecting in membranes of live erythrocytes. Biochim. Biophys. Acta 1808, 1930-9 (2011)). It was helpful. Immediately thereafter, the cells were washed 5 times with 10 times the amount of PBS to completely remove compounds 5 and 6 outside the erythrocyte membrane. Red blood cells into which compounds 5 and 6 were inserted were diluted with PBS to 1% (v / v) or less. This diluted solution was placed on a cover glass (width 24 mm × 60 mm, thickness 0.12-0.17 mm) and observed with a fluorescence microscope and a confocal microscope.
 λex=559±2nm(178mW/cm)のレーザーで化合物6を励起しλem=610-630nmの発光を検出した蛍光顕微鏡観察の結果を図15に示す。λex=473±2nm(178mW/cm)のレーザーで化合物5を励起し、化合物6からの発光(λem=610-630nm)を側方走査速度8μs/pixで検出した共焦点顕微鏡観察(1024pix.×1024pix.)の結果を図16に示す。図15及び図16の白い部分は、赤色蛍光部分を示す。なお、この領域で、化合物5と化合物6のクロストーク(発光波長の重複)が生じないことを確認した。共焦点顕微鏡像(1024pix.×1024pix.)は側方走査速度100μs/pixで共焦点顕微鏡像を取得した。通常の蛍光顕微鏡像にくらべ、FRET法では長時間の露光が必要となるため比較的大きなバックグラウンド(デジタルノイズ)を被る。そのため、図16にはそのバックグラウンドを差し引いた写真を示した。 FIG. 15 shows the results of fluorescence microscope observation in which compound 6 was excited with a laser of λex = 559 ± 2 nm (178 mW / cm 2 ) and emission of λem = 610-630 nm was detected. Compound 5 was excited with a laser of λex = 473 ± 2 nm (178 mW / cm 2 ), and emission from compound 6 (λem = 610-630 nm) was detected at a lateral scanning speed of 8 μs / pix (1024 pix. The result of × 1024 pix.) Is shown in FIG. The white part of FIG.15 and FIG.16 shows a red fluorescent part. In this region, it was confirmed that no crosstalk (duplication of emission wavelength) between compound 5 and compound 6 occurred. A confocal microscope image (1024 pix. × 1024 pix.) Was obtained at a lateral scanning speed of 100 μs / pix. Compared to a normal fluorescent microscope image, the FRET method requires a long exposure and thus suffers a relatively large background (digital noise). Therefore, FIG. 16 shows a photograph with the background subtracted.
 図15及び図16において、コントラストが比較しやすいように、輝度はSM-rich領域の明るさで規格化した(矢尻)。後者では前者では見られなかった新しいドメインが現れていることから(図16矢印)、FRETを用いることでSM-rich/SM-poor領域間でのコントラストが強調されていることがわかる。一方、これらの蛍光観察で得られたSM-rich領域(~1μm)は、通常知られているラフト(<200nm)よりも大きいことが確認された。 In FIGS. 15 and 16, the brightness is normalized by the brightness of the SM-rich region so that the contrast can be easily compared (arrowhead). In the latter, a new domain that was not seen in the former appears (arrow in FIG. 16), and it can be seen that the contrast between the SM-rich / SM-poor regions is enhanced by using FRET. On the other hand, the SM-rich region (˜1 μm) obtained by these fluorescence observations was confirmed to be larger than the commonly known raft (<200 nm).
 そこで、ここで得られたSMの凝集は赤血球上の突起(Echinocyte)の形成に関与しているのではないかと考え、化合物5及び6の赤血球上の突起への取り込みについて調べた。より高濃度の化合物6を加えることで人工的に誘起させた赤血球上の突起の微分干渉顕微鏡像、化合物6の蛍光顕微鏡像をそれぞれ図17、図18に示す。図18の白い部分は、赤色蛍光部分である。図17及び図18を重ね合わせた写真を図19に示す(スケールバーは5μm)。これらの結果より化合物6が、赤血球上の突起に局在することがわかった。この結果はSMが赤血球上の突起に局在することを直接的に可視化した初めての例である。このことから、脂質の埋込みにより生じた膜曲率の変化が化合物6の凝集を引き起こしたと考えられる。 Thus, the SM aggregation obtained here was considered to be involved in the formation of protrusions on erythrocytes, and the incorporation of compounds 5 and 6 into the protrusions on erythrocytes was examined. FIGS. 17 and 18 show differential interference microscopic images of protrusions on erythrocytes artificially induced by adding a higher concentration of compound 6 and fluorescent microscopic images of compound 6, respectively. The white part of FIG. 18 is a red fluorescent part. A photograph in which FIGS. 17 and 18 are superimposed is shown in FIG. 19 (scale bar is 5 μm). From these results, it was found that Compound 6 was localized in the protrusion on the erythrocyte. This result is the first example to directly visualize that SM is localized in a process on an erythrocyte. From this, it is considered that the change in the film curvature caused by the lipid embedding caused the aggregation of the compound 6.
 また、これまでの研究で、ラフトの主要成分であるGPI-anchoredタンパク質は赤血球上の突起に局在し、赤血球上の突起を介して細胞間でのタンパク質のやりとりが行われることが示唆されていることを考慮すると、図15~19の結果から、赤血球におけるタンパク質のやりとりにはGPI-anchoredタンパク質だけではなくSMも関与していることが示唆される。タンパク質の選択ややりとりは、生体膜におけるラフトの代表的な機能の一つであることを考慮すると、興味深い結果である。 In addition, research to date suggests that the GPI-anchored protein, which is a major component of rafts, is localized in the processes on the erythrocytes, and that proteins are exchanged between the cells via the processes on the erythrocytes. 15-19, it is suggested that not only GPI-anchored protein but also SM is involved in protein exchange in erythrocytes. Considering that protein selection and exchange is one of the typical functions of rafts in biological membranes, it is an interesting result.
 [実施例5]CHO-K1細胞中における化合物6の拡散運動の経時変化
 チャイニーズハムスター卵巣由来培養細胞株(CHO-K1細胞株)中における化合物6の拡散運動の経時変化をSFMT法(1蛍光分子追跡法)で調べた。2分子の化合物6に注目した4ms/フレームの結果を図20上欄に、2分子の化合物6の拡散運動の軌跡を図20下欄に示す。図20の結果から、当初独立にブラウン運動していた2分子の化合物6が9フレーム目で共局在し、その後、29フレームまで共拡散を続けるが、30フレーム目で共局在が解消されたことがわかった。ここで述べた共局在とは、化合物6が顕微鏡の分解能以下(<240nm)の距離まで近接していることを意味する。また、この自由拡散、共拡散、自由拡散の繰り返しプロセスは他の化合物6でも観察された。
[Example 5] Time-dependent change in diffusion movement of Compound 6 in CHO-K1 cells The time-dependent change in diffusion movement of Compound 6 in a Chinese hamster ovary-derived cultured cell line (CHO-K1 cell line) was measured using the SFMT method (1 fluorescent molecule). The pursuit method). The result of 4 ms / frame focusing on the bimolecular compound 6 is shown in the upper column of FIG. 20, and the locus of the diffusion movement of the bimolecular compound 6 is shown in the lower column of FIG. From the results shown in FIG. 20, two molecules of Compound 6 that originally performed Brownian motion co-localize in the 9th frame, and continue co-diffusion until 29th frame, but the co-localization is resolved in the 30th frame. I found out. The co-localization mentioned here means that the compound 6 is close to a distance below the resolution of the microscope (<240 nm). Moreover, this repeated process of free diffusion, co-diffusion, and free diffusion was also observed in other compounds 6.
 そこで、化合物6の共局在を定量的に評価するため、共局在の数を共局在時間の関数としてプロットした(図21)。さらに、異なる分子間での共局在時間の差を明示するため、得られたヒストグラムを一次の指数関数でフィッティングすることにより見かけのダイマー寿命(緩和時間)を見積もった(図21中の線)。その結果化合物6の見かけのダイマー寿命は50msとなり、ラフトに親和性を持たないことが知られているATTO594-DOPEのダイマー寿命(34ms)(図22)より、有意義に長いことを示す結果が得られた。おそらく、複数個の化合物6がラフト領域に取り込まれることで、その共局在が安定化されているのではないかと考えられる。この結果は生体膜内におけるSMの挙動を一分子レベルで可視化した初めての例である。 Therefore, in order to quantitatively evaluate the colocalization of Compound 6, the number of colocalizations was plotted as a function of the colocalization time (FIG. 21). Furthermore, in order to clarify the difference in colocalization time between different molecules, the apparent dimer lifetime (relaxation time) was estimated by fitting the obtained histogram with a first-order exponential function (line in FIG. 21). . As a result, the apparent dimer lifetime of Compound 6 was 50 ms, and a result showing that it was significantly longer than that of ATTO594-DOPE (34 ms) (FIG. 22), which is known to have no affinity for rafts, was obtained. It was. Presumably, the colocalization is stabilized by incorporating a plurality of compounds 6 into the raft region. This result is the first example of visualizing the behavior of SM in a biological membrane at a single molecule level.
 [実施例6]化合物6の赤血球ゴースト膜ラフト相への特異的分布の確認
 赤血球ゴースト膜は、非特許文献(Tsuji, a, Kawasaki, K., Ohnishi, S., Merkle, H. & Kusumi, a. Regulation of band 3 mobilities in erythrocyte ghost membranes by protein association and cytoskeletal meshwork. Biochemistry 27, 7447-52 (1988).)に従い作製した。
 すなわち、大阪大学の診療所にて看護師により注射で採取した50μLの血液を、450mL燐酸バッファ溶液(PBS、pH7.4)で懸濁し、遠心分離した。この操作を3回繰り返し、得られた赤血球を1mLの5P8バッファ溶液(140mM NaCl,5mM NaPO/NaHPO4,及び20mMphenylmethylsulfonylfluoride(pH8.0))に懸濁し、20分間氷冷下インキュベートした。次に、5P8バッファで懸濁し、遠心分離した。この操作を4回行った。
[Example 6] Confirmation of specific distribution of compound 6 to raft phase of erythrocyte ghost membrane The erythrocyte ghost membrane is a non-patent document (Tsuji, a, Kawasaki, K., Ohnishi, S., Merkle, H. & Kusumi, a. Regulation of band 3 mobilities in erythrocyte ghost membranes by protein association and cytoskeletal meshwork. Biochemistry 27, 7447-52 (1988)).
That is, 50 μL of blood collected by a nurse at a clinic in Osaka University was suspended in 450 mL phosphate buffer solution (PBS, pH 7.4) and centrifuged. This operation was repeated three times, and the obtained erythrocytes were suspended in 1 mL of 5P8 buffer solution (140 mM NaCl, 5 mM Na 3 PO 4 / Na 2 HPO 4, and 20 mM phenylmethylsulfurfluoride (pH 8.0)) and incubated under ice-cooling for 20 minutes. did. Next, it was suspended in 5P8 buffer and centrifuged. This operation was performed 4 times.
 得られた赤血球ゴースト膜の溶液10μLを1mLのPBSバッファ(pH7.4)で懸濁した。続いて、これに化合物5と6およびATTO-DOPEを、実施例4に記載した方法で添加した。これを適当量(約3μL)poly-Llysineでコートされたガラスに乗せた。
 カバーガラスに固定した赤血球ゴースト膜に200μLの1%TX-100(界面活性剤トリトンX-100)を加え15分間氷冷下インキュベートした。その後、PBSバッファで2回洗浄し、界面活性剤を取り除いた。
10 μL of the obtained erythrocyte ghost membrane solution was suspended in 1 mL of PBS buffer (pH 7.4). Subsequently, compounds 5 and 6 and ATTO-DOPE were added to this by the method described in Example 4. This was placed on a glass coated with an appropriate amount (about 3 μL) of poly-Lycine.
200 μL of 1% TX-100 (surfactant Triton X-100) was added to an erythrocyte ghost membrane fixed on a cover glass and incubated for 15 minutes under ice cooling. Thereafter, the plate was washed twice with PBS buffer to remove the surfactant.
 化合物6を赤血球ゴースト膜に添加した蛍光顕微鏡写真を図23に、図23の赤血球ゴースト膜を界面活性化剤TX-100で処理後の蛍光顕微鏡写真を図24に示した。化合物6は、界面活性化剤TX-100で処理後も赤血球ゴースト膜に残っていることから、化合物6は、赤血球ゴースト膜のラフト相に選択的に移行していることが確認された。 FIG. 23 shows a fluorescence micrograph obtained by adding Compound 6 to the erythrocyte ghost membrane, and FIG. 24 shows a fluorescence micrograph after the erythrocyte ghost membrane of FIG. 23 is treated with the surfactant TX-100. Since compound 6 remained in the erythrocyte ghost membrane after treatment with surfactant TX-100, it was confirmed that compound 6 selectively transferred to the raft phase of the erythrocyte ghost membrane.
 [実施例7]化合物6のCHO-K1ゴースト膜又はECV304ゴースト膜のラフト相への特異的分布の確認
 赤血球の代わりに、CHO-K1(チャイニーズハムスター卵巣細胞)又はECV304(ヒト膀胱がん由来細胞)を用いた以外は実施例6と同様の方法によりのゴースト膜を作製した。実施例6と同様の方法で化合物6の分布を調べた。
[Example 7] Confirmation of specific distribution of compound 6 to raft phase of CHO-K1 ghost membrane or ECV304 ghost membrane instead of erythrocytes CHO-K1 (Chinese hamster ovary cells) or ECV304 (human bladder cancer-derived cells) A ghost film was produced by the same method as in Example 6 except that (1) was used. The distribution of compound 6 was examined in the same manner as in Example 6.
 化合物6をCHO-K1ゴースト膜に添加した蛍光顕微鏡写真を図25に、図25のCHO-K1ゴースト膜を界面活性化剤TX-100で処理後の蛍光顕微鏡写真を図26に示した。化合物6は、界面活性化剤TX-100で処理後もゴースト膜に残っていることから、化合物6は、CHO-K1ゴースト膜のラフト相に選択的に移行していることが確認された。 FIG. 25 shows a fluorescence micrograph obtained by adding Compound 6 to the CHO-K1 ghost film, and FIG. 26 shows a fluorescence micrograph after the CHO-K1 ghost film of FIG. 25 is treated with the surfactant TX-100. Since compound 6 remained in the ghost film after treatment with surfactant TX-100, it was confirmed that compound 6 selectively transferred to the raft phase of the CHO-K1 ghost film.
 化合物6をECV304ゴースト膜に添加した蛍光顕微鏡写真を図27に、図27のECV304ゴースト膜を界面活性化剤TX-100で処理後の蛍光顕微鏡写真を図28に示した。化合物6は、界面活性化剤TX-100で処理後もECV304ゴースト膜に残っていることから、化合物6は、ECV304ゴースト膜のラフト相に選択的に移行していることが確認された。 FIG. 27 shows a fluorescence micrograph obtained by adding Compound 6 to the ECV304 ghost film, and FIG. 28 shows a fluorescence micrograph after the ECV304 ghost film of FIG. 27 is treated with the surfactant TX-100. Since compound 6 remained in the ECV304 ghost membrane after treatment with surfactant TX-100, it was confirmed that compound 6 selectively transferred to the raft phase of the ECV304 ghost membrane.
 上記結果から、化合物5及び化合物6は、脂質ラフト領域を選択的に標識することが確認できた。 From the above results, it was confirmed that Compound 5 and Compound 6 selectively label the lipid raft region.
 [実施例8]赤血膜のタンパク質(GPI-anchored CD59)の存在領域の検出
 ラフト特異的なタンパク質GPI-anchored CD59が凝集することが知られているエキノサイト(棘状赤血球)の棘(図37の白い領域)において、化合物5がGPI-anchored CD59と共局在することを、共焦点レーザー顕微鏡を用いて調べた。
[Example 8] Detection of red blood membrane protein (GPI-anchored CD59) existing region Spines of echinocytes (spinous erythrocytes) known to aggregate the raft-specific protein GPI-anchored CD59 (Fig. 37 white area), compound 5 was co-localized with GPI-anchored CD59 using a confocal laser microscope.
 大阪大学の診療所にて看護師により注射で血液を採取した。500μLの血液を10倍量のPBS緩衝液(pH7.4)で2回洗浄することで、赤血球を抽出した。抽出した赤血球5μLを450μLの緩衝液に懸濁することで10倍希釈した。次に、10μLのCy3-IgG(Suzuki, K. G. N., Fujiwara, T. K., Sanematsu, F., Iino, R., Edidin, M., Kusumi, A. GPI-anchored receptor clusters transiently recruit Lyn and Galpha for temporary cluster immobilization and Lyn activation:single-molecule tracking study 1. J. Cell Biol. 177, 717-730 (2007) に記載の方法で作製)(150μg/mL)を希釈した赤血球懸濁液に加え、37℃で1時間温置することで、GPI-anchored CD59を標識化した。次に、1μgの化合物5を含む200μLのPBS緩衝液を加え室温で7.5分放置した。その後、サンプルはPBS緩衝液で5回洗浄することにより、膜に取り込まれていない蛍光物質を除去した。最後に、赤血球にPBS緩衝液を加え、~1%(v/v)に希釈した。試料はカバーガラス(24mm×60mm、厚さ0.12mm~0.17mm)上に置き、共焦点顕微鏡観察を行った。採取した血液は3日以内に使用した。標識化は観察の直前に行った。 At the Osaka University clinic, blood was collected by injection by a nurse. Red blood cells were extracted by washing 500 μL of blood twice with 10 times the amount of PBS buffer (pH 7.4). The extracted erythrocytes were diluted 10-fold by suspending them in 450 μL of buffer solution. Next, 10 μL of Cy3-IgG (Suzuki, K. G. N., Fujiwara, T. K., Sanematsu, F., Iino, R., Edidin, M., Kusumi, A. Recruited red blood cell suspension (prepared by the method described in recruitment, recruitment, Lyn, and Galpha, fortemporary, cluster, immobilization, and Lyn, activation: single-molecule, tracking, study, 1. J. Cell, Biol, 177, 717-730 (2007)) (150 μg / mL) In addition to the solution, GPI-anchored CD59 was labeled by incubating at 37 ° C. for 1 hour. Next, 200 μL of PBS buffer containing 1 μg of Compound 5 was added and left at room temperature for 7.5 minutes. Thereafter, the sample was washed 5 times with a PBS buffer solution to remove fluorescent substances not incorporated in the membrane. Finally, PBS buffer was added to erythrocytes and diluted to ˜1% (v / v). The sample was placed on a cover glass (24 mm × 60 mm, thickness 0.12 mm to 0.17 mm) and observed with a confocal microscope. The collected blood was used within 3 days. Labeling was performed immediately before observation.
 蛍光抗体Cy3-IgGで標識したCD59の分布を図36に示した。図36より、Cy3はエキノサイトの棘に凝集することを示す結果を得た。興味深いことに、化合物5も棘に凝集しており(図37)、その分布はCD59と重複することがわかった(図38)。 The distribution of CD59 labeled with the fluorescent antibody Cy3-IgG is shown in FIG. From FIG. 36, a result was obtained showing that Cy3 aggregates in the echinocytic spines. Interestingly, compound 5 was also aggregated in the spines (FIG. 37) and its distribution was found to overlap with CD59 (FIG. 38).
 前記赤血球のエキノサイト初期における化合物5、Cy3-IgGで標識されたGPI-anchored CD59の分布を示す共焦点蛍光顕微鏡画像を、それぞれ図39、40に示した。微分干渉顕微鏡像を図41に、図39~41の重ねあわせを図42に示した。
 473±2nm(8.9μW/cm)のレーザーでATTO488、559±2nm(120μW/cm)のレーザーでCy3を励起した。それぞれの発光は485-515nm及び590-690nmで検出した。そのようなスペクトル領域においてATTO488とCy3のクロストーク(励起光の波長の重複)は十分に小さい。10μs/pixでレーザーを走査することにより1024pix×1024pixの画像を得た。それぞれの分布を明示するため、明るさとコントラストはAdobe Photoshopで調整した。
FIGS. 39 and 40 show confocal fluorescence microscope images showing the distribution of GPI-anchored CD59 labeled with compound 5 and Cy3-IgG at the early stage of erythrocyte echinocytosis, respectively. The differential interference microscope image is shown in FIG. 41, and the overlapping of FIGS. 39 to 41 is shown in FIG.
Cy3 was excited with an ATTO488, 559 ± 2 nm (120 μW / cm 2 ) laser with a 473 ± 2 nm (8.9 μW / cm 2 ) laser. Each emission was detected at 485-515 nm and 590-690 nm. In such a spectral region, ATTO488 and Cy3 crosstalk (excitation wavelength overlap) is sufficiently small. An image of 1024 pix × 1024 pix was obtained by scanning the laser at 10 μs / pix. In order to clarify each distribution, the brightness and contrast were adjusted with Adobe Photoshop.
 エキノサイトが出来かけの状態においても、化合物5とCy3-GPI-anchored CD59の共局在が観察できた。このことより、僅かな曲率の変化が引き金となり、GPI-anchored CD59とSMが~1μMサイズのラフト様領域を形成することが示唆される。 Even when the echinosite was ready, co-localization of Compound 5 and Cy3-GPI-anchored CD59 could be observed. This suggests that a slight change in curvature triggers GPI-anchored CD59 and SM to form a raft-like region of ˜1 μM size.
 本発明の化合物は、脂質ラフト関連疾患の診断用マーカー及び診断用組成物、脂質ラフトの検出又は定量方法、脂質ラフトの検出又は定量用試薬を提供でき、産業上有用である。また、本発明は、赤血球上のラフト領域を可視化することができ、産業上有用である。さらに本発明は、SFMT(1蛍光分子追跡法)を使用してラフトにおけるSMの挙動及び一時的な捕捉を可視化することができ、産業上有用である。 The compound of the present invention is industrially useful because it can provide diagnostic markers and diagnostic compositions for lipid raft-related diseases, lipid raft detection or quantification methods, and lipid raft detection or quantification reagents. In addition, the present invention can visualize a raft region on erythrocytes and is industrially useful. Furthermore, the present invention is industrially useful because it can visualize the behavior and temporal capture of SM in a raft using SFMT (one fluorescent molecular tracking method).

Claims (9)

  1.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Aは水溶性蛍光発色化合物の残基を、B及びEは同一の又は異なるリンカーを、R~Rはそれぞれ独立して水素原子又は置換基を示し、Xは3~50の整数であり、m及びnはそれぞれ独立して10~30の整数であり、下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    で示される基は単結合又は二重結合である。)で表される化合物。
    Following formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), A represents a residue of a water-soluble fluorescent coloring compound, B and E represent the same or different linkers, R 1 to R 4 each independently represents a hydrogen atom or a substituent, and X represents An integer of 3 to 50, m and n are each independently an integer of 10 to 30, and the following formula (2)
    Figure JPOXMLDOC01-appb-C000002
    Is a single bond or a double bond. ) A compound represented by
  2.  式(1)中、Aが下記式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、G~Gはそれぞれ独立して水素原子又は水溶性官能基であり、pは4であり、R~Rはそれぞれ独立して水素原子又は置換基を示す。ただし、G~G及び4つのGの少なくとも1つは水溶性官能基である。)で示される請求項1に記載の化合物。
    In formula (1), A represents the following formula (3)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, G 1 to G 7 are each independently a hydrogen atom or a water-soluble functional group, p is 4, and R 5 to R 8 are each independently a hydrogen atom or a substituent, provided that The compound of claim 1, wherein at least one of G 1 to G 6 and four G 7 is a water-soluble functional group.
  3.  式(1)中、Bが、下記式(4)
    Figure JPOXMLDOC01-appb-C000004
    (式中、B1c及びB2cはそれぞれ独立して-CONR-又は-COO-を、B1b及びB2bはそれぞれ独立してC1-20アルキレン基を、B3は、-CONR10-、-COOCO-、-COO-、-NHCOO-、-O-、-OCO-、-C≡C-、-CH=CH-、-CH-CH-、-S-、-SO-、-SO-、-NR11-、-NR12CO-、-NR13CONR14-、下記式(5)
    Figure JPOXMLDOC01-appb-C000005
    で示される基、下記式(6)
    Figure JPOXMLDOC01-appb-C000006
    で示される基、下記式(7)
    Figure JPOXMLDOC01-appb-C000007
    で示される基、下記式(8)
    Figure JPOXMLDOC01-appb-C000008
    で示される基、下記式(9)
    Figure JPOXMLDOC01-appb-C000009
    で示される基、又は下記式(10)
    Figure JPOXMLDOC01-appb-C000010
    で示される基を示し、R~R14はそれぞれ独立して水素原子又は置換基を示し、1d、1e、2d及び2eはそれぞれ独立して0又は1であり、1f及び2fはそれぞれ独立して0~3の整数である)で示される基である請求項1又は2に記載の化合物。
    In formula (1), B represents the following formula (4)
    Figure JPOXMLDOC01-appb-C000004
    (Wherein B 1c and B 2c are each independently —CONR 9 — or —COO—, B 1b and B 2b are each independently a C 1-20 alkylene group, and B3 is —CONR 10 —, -COOCO -, - COO -, - NHCOO -, - O -, - OCO -, - C≡C -, - CH = CH -, - CH 2 -CH 2 -, - S -, - SO -, - SO 2 -, - NR 11 -, - NR 12 CO -, - NR 13 CONR 14 -, the following formula (5)
    Figure JPOXMLDOC01-appb-C000005
    A group represented by formula (6):
    Figure JPOXMLDOC01-appb-C000006
    A group represented by formula (7):
    Figure JPOXMLDOC01-appb-C000007
    A group represented by formula (8):
    Figure JPOXMLDOC01-appb-C000008
    A group represented by formula (9):
    Figure JPOXMLDOC01-appb-C000009
    Or a group represented by the following formula (10)
    Figure JPOXMLDOC01-appb-C000010
    R 9 to R 14 each independently represents a hydrogen atom or a substituent, 1d, 1e, 2d and 2e are each independently 0 or 1, and 1f and 2f are each independently The compound according to claim 1 or 2, wherein the compound is an integer of 0 to 3.
  4.  式(1)中、Eが下記式(11)
    Figure JPOXMLDOC01-appb-C000011
    (式中、E1c及びE2cはそれぞれ独立して-CONR15-又は-COO-を、E1b及びE2bはそれぞれ独立してアルキレン基を、E3は、-CONR16-、-COOCO-、-COO-、-NHCOO-、-O-、-OCO-、-C≡C-、-CH=CH-、アルキレン基、-S-、-SO-、-SO-、-NR17-、-NR18CO-、-NR19CONR20-、下記式(5)
    Figure JPOXMLDOC01-appb-C000012
    示される基、下記式(6)
    Figure JPOXMLDOC01-appb-C000013
    で示される基、下記式(7)
    Figure JPOXMLDOC01-appb-C000014
    で示される基、下記式(8)
    Figure JPOXMLDOC01-appb-C000015
    で示される基、下記式(9)
    Figure JPOXMLDOC01-appb-C000016
    で示される基、又は下記式(10)
    Figure JPOXMLDOC01-appb-C000017
    で示される基を示し、R15~R20はそれぞれ独立して水素原子又は置換基を示し、1g、1h、2g及び2hはそれぞれ独立して0又は1であり、1i及び2iはそれぞれ独立して0~3の整数である)で示される基である請求項1~3のいずれかに記載の化合物。
    In formula (1), E represents the following formula (11)
    Figure JPOXMLDOC01-appb-C000011
    Wherein E 1c and E 2c are each independently —CONR 15 — or —COO—, E 1b and E 2b are each independently an alkylene group, E3 is —CONR 16 —, —COOCO—, —COO—, —NHCOO—, —O—, —OCO—, —C≡C—, —CH═CH—, an alkylene group, —S—, —SO—, —SO 2 —, —NR 17 —, — NR 18 CO—, —NR 19 CONR 20 —, the following formula (5)
    Figure JPOXMLDOC01-appb-C000012
    Group shown, the following formula (6)
    Figure JPOXMLDOC01-appb-C000013
    A group represented by formula (7):
    Figure JPOXMLDOC01-appb-C000014
    A group represented by formula (8):
    Figure JPOXMLDOC01-appb-C000015
    A group represented by formula (9):
    Figure JPOXMLDOC01-appb-C000016
    Or a group represented by the following formula (10)
    Figure JPOXMLDOC01-appb-C000017
    R 15 to R 20 each independently represents a hydrogen atom or a substituent, 1g, 1h, 2g and 2h are each independently 0 or 1, and 1i and 2i are each independently The compound according to any one of claims 1 to 3, which is an integer of 0 to 3).
  5.  請求項1~4のいずれかに記載の化合物を含有する脂質ラフト可視化剤。 A lipid raft visualization agent comprising the compound according to any one of claims 1 to 4.
  6.  請求項1~4のいずれかに記載の化合物又は請求項5に記載の剤を含有する脂質ラフト関連疾患診断用マーカー。 A marker for diagnosis of a lipid raft-related disease comprising the compound according to any one of claims 1 to 4 or the agent according to claim 5.
  7.  請求項1~4のいずれかに記載の化合物又は請求項5に記載の剤を含有する脂質ラフト検出又は定量用試薬。 A lipid raft detection or quantification reagent comprising the compound according to any one of claims 1 to 4 or the agent according to claim 5.
  8.  脂質ラフト可視化剤製造のための請求項1~4のいずれかに記載の化合物の使用。 Use of the compound according to any one of claims 1 to 4 for producing a lipid raft visualization agent.
  9.  請求項1~4のいずれかに記載の化合物と脂質ラフトを含む細胞とを混合する工程、及び、前記細胞に光を照射して蛍光を検出する工程を含有する脂質ラフト可視化方法。 A lipid raft visualization method comprising the steps of mixing the compound according to any one of claims 1 to 4 and a cell containing lipid raft, and detecting fluorescence by irradiating the cell with light.
PCT/JP2016/058079 2015-03-16 2016-03-15 Novel fluorescently labeled sphingomyelin and use thereof WO2016148125A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017506557A JP6398055B2 (en) 2015-03-16 2016-03-15 Novel fluorescently labeled sphingomyelin and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015052518 2015-03-16
JP2015-052518 2015-03-16

Publications (1)

Publication Number Publication Date
WO2016148125A1 true WO2016148125A1 (en) 2016-09-22

Family

ID=56919996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058079 WO2016148125A1 (en) 2015-03-16 2016-03-15 Novel fluorescently labeled sphingomyelin and use thereof

Country Status (2)

Country Link
JP (1) JP6398055B2 (en)
WO (1) WO2016148125A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344419A (en) * 2002-05-31 2003-12-03 Inst Of Physical & Chemical Res Cholesterol detection reagent
US20050026235A1 (en) * 2003-06-30 2005-02-03 Graham Ronald J. Fluorescent phospholipase assays and compositions
WO2007102396A1 (en) * 2006-03-02 2007-09-13 Kyushu University Method for production of labeled sphingolipid
US20120028290A1 (en) * 2009-02-04 2012-02-02 President And Fellows Of Harvard College Compositions and Methods for Labeling and Imaging Phospholipids

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5271912B2 (en) * 2006-10-24 2013-08-21 ケレオス インコーポレーティッド Improved linker for immobilizing targeting ligands

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344419A (en) * 2002-05-31 2003-12-03 Inst Of Physical & Chemical Res Cholesterol detection reagent
US20050026235A1 (en) * 2003-06-30 2005-02-03 Graham Ronald J. Fluorescent phospholipase assays and compositions
WO2007102396A1 (en) * 2006-03-02 2007-09-13 Kyushu University Method for production of labeled sphingolipid
US20120028290A1 (en) * 2009-02-04 2012-02-02 President And Fellows Of Harvard College Compositions and Methods for Labeling and Imaging Phospholipids

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ISHITSUKA, REIKO ET AL.: "Imaging Lipid Rafts", J. BIOCHEM., vol. 137, 2005, pages 249 - 254, XP055311887 *
MUKHERJEE, SOUMI ET AL.: "Organization and dynamics of N-(7-nitrobenz-2-oxa-1,3-diazol-4- yl)-labeled lipids: a fluorescence approach", CHEMISTRY AND PHYSICS OF LIPIDS, vol. 127, 2004, pages 91 - 101, XP055311889 *

Also Published As

Publication number Publication date
JPWO2016148125A1 (en) 2017-07-13
JP6398055B2 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
Shi et al. Label-retention expansion microscopy
Collot et al. BODIPY with tuned amphiphilicity as a fluorogenic plasma membrane probe
JP6349091B2 (en) Probe for super-resolution fluorescence imaging
JP2012006935A (en) Fluorescently tagged ligand
JP7344982B2 (en) Compounds and fluorescently labeled biological substances using them
Roubinet et al. Photoactivatable rhodamine spiroamides and diazoketones decorated with “Universal Hydrophilizer” or hydroxyl groups
WO2020142490A1 (en) Expansion microscopy compatible anchorable h&amp;e staining for histopathology
WO2018003686A1 (en) Enzyme-specific intracellularly-retained red fluorescent probe
WO2004106923A1 (en) Differential analysis of cell surface proteins on closed membrane structures by labelling with dyes in the presence of an internal standard
KR101233679B1 (en) Dual-color imaging method of sodium/calcium activities using two-photon fluorescent probes and preparation method of two-photon fluorescent probes
Li et al. Novel coumarin-based sensitive and selective fluorescent probes for biothiols in aqueous solution and in living cells
JPWO2016157937A1 (en) pH sensitive fluorescent probe
US11851410B2 (en) Sensors for detection of negatively charged phosphate-containing membranes and membrane components
JP6398055B2 (en) Novel fluorescently labeled sphingomyelin and its use
CN113717164B (en) Red fluorescent probe and preparation and application thereof in cell imaging
Zadmard et al. Synthesis and protein binding properties of novel highly functionalized Calix [4] arene
CN113292571B (en) Turn-on type fluorescent molecular probe responding to polarity of living cells of organism as well as preparation method and application thereof
Koenig et al. Polyamine-modified near-infrared cyanine dyes for targeting the nuclei and nucleoli of cells
JP2015034809A (en) Fluorescence lifetime imaging probe
US7511167B2 (en) Two-photon dyes for real-time imaging of lipid rafts
JP2007055956A (en) New quinoline compound as fluorescent labeling reagent and hydrophobic site-detecting reagent
JP5229700B2 (en) Novel fluorescent compound and method for detecting intracellular cholesterol using the same
US20150276751A1 (en) Reagent for imaging intracellular acetylation
DE102020109362A1 (en) Fluorescent dyes with a high Stokes shift based on bridged benzopyrylium salts
WO2002012867A1 (en) Fluorescent probe for magnesium ion determination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506557

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764955

Country of ref document: EP

Kind code of ref document: A1