WO2007102396A1 - Method for production of labeled sphingolipid - Google Patents

Method for production of labeled sphingolipid Download PDF

Info

Publication number
WO2007102396A1
WO2007102396A1 PCT/JP2007/053917 JP2007053917W WO2007102396A1 WO 2007102396 A1 WO2007102396 A1 WO 2007102396A1 JP 2007053917 W JP2007053917 W JP 2007053917W WO 2007102396 A1 WO2007102396 A1 WO 2007102396A1
Authority
WO
WIPO (PCT)
Prior art keywords
sphingolipid
labeled
fatty acid
reaction
present
Prior art date
Application number
PCT/JP2007/053917
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Ito
Ai Yoshida
Hatsumi Monjusyo
Nozomu Okino
Original Assignee
Kyushu University
Takara Bio Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University, Takara Bio Inc. filed Critical Kyushu University
Publication of WO2007102396A1 publication Critical patent/WO2007102396A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • C07H15/10Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical containing unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2405/00Assays, e.g. immunoassays or enzyme assays, involving lipids
    • G01N2405/08Sphingolipids

Definitions

  • the present invention relates to a method for producing labeled sphingolipid useful for medicine, carbohydrate engineering, cell engineering, and the like, and a labeled sphingolipid obtained by the production method.
  • Sphingolipid is a general term for lipids having long-chain base sphingoids, including glycosphingolipids, sphingophospholipids, and ceramides, and is widely distributed from lower animals to higher animals. In recent years, these sphingolipids have been revealed to play an important role in biological activities such as cell proliferation, differentiation induction, and apoptosis. Moreover, since it is a structural component of the cell surface layer, it is also being used as an additive to cosmetics and the like.
  • the sphingolipid has a ceramide structure in which a long-chain fatty acid having a heterogeneous chain length is bound to an amide group of a sphingoid as an amide bond as a common structure.
  • sphingolipids do not exhibit characteristic absorption in the ultraviolet region or visible region, and are therefore difficult to detect optically by themselves. Therefore, labeling sphingolipids with chromophores, fluorescent dyes, piotin, antibody epitopes (no, pentene), etc., will help understand the functions of sphingolipids and biological membranes, leading to the development of drug discovery and artificial biological membranes. Is very useful for.
  • a long-chain fatty acid of a sphingolipid is modified! /
  • a method for producing a substituted sphingolipid or a sphingolipid derivative is based on a lysosphingolipid that lacks an acid amide-bonded fatty acid to the amino group of the sphingolipid of the sphingolipid.
  • chemical and enzymatic synthesis methods are known.
  • a fatty acid or a fatty acid derivative is condensed to an amino group of a lyso form by the following method.
  • a method using a fatty acid active ester such as N-hydroxysuccinimide ester of fatty acid a method using a coupling reagent such as fatty acid and carbonyldiimidazole dicyclohexyl carpositimide, a method using a fatty acid anhydride, a fatty acid salt
  • a method using a bowl is known.
  • Non-patent Document 1, Patent Document 1 and Patent Documents use lysogandarioside as a lysate of acidic glycolipid. Reported in tribute 2.
  • Non-Patent Document 2 for the method power using sphingosyl phosphorylcholine (lysosphingomyelin) as a lyso form of sphingophospholipid.
  • sphingosyl phosphorylcholine lysosphingomyelin
  • side reactions such as O-acylation may occur, and in order to obtain a product that is selectively N-acylated, complicated operations are required for the use and purification of protecting groups.
  • a sphingoid such as ceramide lysogandarioside obtained by chemically dehydrating a sphingoglycolipid containing a ceramide syratin and an amino sugar, a kind of sphingophosphonolipid.
  • Patent Document 3 This method is a method in which condensation is carried out by lipase in an organic solvent, and a substantially anhydrous organic solvent is required, and the substrate is limited by the solubility of the substrate.
  • the force reaction that describes the enzymatic synthesis method of ceramide and hybrid ceramide is not specific, and the generation of O-acylates has been found. As in the case of having multiple amino groups, it is difficult to specifically act only on the amino group of the sphingoid.
  • Non-Patent Document 3 and Patent Document 4 also describe the use of sphingolipid ceramide N-deacylase (SCD ase), an enzyme that specifically hydrolyzes acid amide bonds between sphingolipids of sphingolipids and fatty acids. Describes a method for producing a labeled sphingolipid by introducing a chromophore-forming substance, a fluorescent substance, piotin, a radioisotope, or the like into the fatty acid portion of the phospholipid.
  • SCD ase sphingolipid ceramide N-deacylase
  • the ⁇ -amino group of a ⁇ -amino fatty acid protected by ⁇ -trifluoroacetylation is protected with lysosaccharide using SCDase derived from Pseudomonas bacteria.
  • SCDase derived from Pseudomonas bacteria.
  • Sphingolipid ceramide N-deacylase is known to be SCDase (Patent Document 5, Non-Patent Document 4) derived from the marine bacterium, Shewanella alga G8. Only C14 labeled fatty acids have been identified.
  • Patent Document 1 JP-A-2-200697
  • Patent Document 2 Japanese Patent Laid-Open No. 7-309888
  • Patent Document 3 International Publication No. 94Z26919 Pamphlet
  • Patent Document 4 Pamphlet of International Publication No.98Z03529
  • Patent Document 5 International Publication No. 2002Z026963 Pamphlet
  • Non-Patent Document 1 Methods in Enzymology, 138, 319-341 (1987)
  • Non-Patent Document 2 Journal of Lipid Research, 28th, 710-718 (1987)
  • Non-Patent Document 3 Journal of Biochemistry, Vol. 126, pp. 604-611 (1999)
  • Non-Patent Document 4 Journal of Biologi cal Chemistry, 277, 17300-17307 (2002)
  • an object of the present invention is to provide a production method for specifically and simply synthesizing a labeled sphingolipid obtained by modifying or substituting a lysosphingolipid or a long-chain fatty acid that binds to the sphingoid from the sphingolipid.
  • Another object of the present invention is to provide a labeled sphingolipid obtained by the production method.
  • the present inventors have conducted a study on a method for synthesizing a sphingolipid having a label, Binding of fatty acid with label to lysosphingolipid sphingoid amino group, or substitution power of fatty acid with acid amide bond to sphingoid of sphingolipid and fatty acid with other label Sphingoid acid amide bond of sphingoid
  • SCDase an enzyme that acts on lysosphingolipids and hydrolyzes into fatty acids.
  • ⁇ -amino fatty acid having a protecting group is introduced into sphingolipids or lysosphingolipids using the above enzyme, followed by deprotection and labeling. Helped to react.
  • the present inventors can directly introduce a fatty acid having a label on the sphingoid amino group of lysosphingolipid under mild conditions in an aqueous solution by using a specific SCDase, Alternatively, the present inventors have found that a labeled sphingolipid can be synthesized by a simple operation by directly exchanging a fatty acid having an acid amide bond with a sphingolipid of a sphingolipid with a fatty acid having another label.
  • a sufingolipid ceramide N-deacylase a sphingolipid or lysosphingolipid and a chromophore-forming substance, a fluorescent substance, an aliphatic carboxylic acid having a label selected from the group consisting of piotin and stencil A labeled sphingolipid, characterized in that the labeled sphingolipid is obtained,
  • the present invention relates to a labeled sphingolipid obtained by the production method according to any one of [1] to [5].
  • the invention's effect is to be applied to any one of [1] to [5].
  • the present invention provides a method for producing labeled sphingolipids efficiently in a simple process.
  • INDUSTRIAL APPLICABILITY The present invention can directly introduce a fatty acid having a label into sphingolipid or lysosphingolipid, and is useful for industrial production of labeled sphingolipid.
  • labeled sphingolipid refers to a labeled sphingolipid.
  • the sphingolipid is a simple substance or a mixture of natural or synthetic products having a long-chain base sphingoid, including glycosphingolipid, sphingophospholipid, and ceramide. Can be mentioned.
  • lysosphingolipid or lysozyme of sphingolipid refers to an N-deacyl form of sphingolipid lacking a fatty acid bonded with an acid amide to the amino group of sphingoid.
  • the sphingolipid that can be used in the present invention is not particularly limited to the present invention.
  • celebrity mouthside GlcCer, GalCer, etc.
  • Gandario series GM1, GM2, GDI, etc.
  • lacto series ratatotetra
  • Neolacto series Neolatatotetraosylceramide etc.
  • Sphingoglycolipids such as Globo series
  • Sphingolin lipids such as Sphingomyelin
  • the aliphatic carboxylic acid includes a saturated fatty acid, an unsaturated fatty acid, and a hydrocarbon chain having a functional group such as a halogen, a substituted or unsubstituted amino group, an oxo group, a hydroxyl group, and a thiol group.
  • Carboxylic acids having aliphatic properties such as substituted saturated or unsaturated fatty acids, or saturated or unsaturated fatty acids in which the hydrocarbon chain has elements such as oxygen, sulfur and nitrogen are included.
  • C6-C26 preferably C10-C22, more preferably a saturated fatty acid having a carbon chain length of C12-C18, about C6-C26, preferably C10-C22, and more.
  • Fatty acids such as unsaturated fatty acids having a carbon chain length of C12 to C18 and 2-hydroxy fatty acids are exemplified as the aliphatic rubonic acid used in the present invention. By using those fatty acids labeled with these fatty acids, labeled sphingolipids can be produced.
  • the label used in the present invention means a substance capable of facilitating detection of a substance to which the label is added, and does not particularly limit the present invention, but forms a chromophore. It means substances, fluorescent substances, piotin, haptens, etc.
  • any commercially available chromogenic reagent can be used as the substance that forms a chromophore. Examples of such a chromophore include 4-phenol-trophenol, 2-phenol 1-phenol and 2-phenol. And naphthalene derivatives such as amino naphthalene.
  • a commercially available fluorescent substance can be used as the fluorescent substance.
  • Examples include 7—nitrobenz— 2—oxa— 1, 3 — diazole (NBD), 4, 4— difluor— 4— bora— 3a, 4a— diaza— s— indacene (B ODIPY (registered trademark)), fluorescein Not only these, but also a wide variety of fluorescent materials can be used.
  • the hapten is not particularly limited as long as an antibody that recognizes the hapten is available.
  • digoxigenin can be used in the present invention.
  • labeled fatty acid for example, NBD-labeled fatty acid, BODIPY-labeled fatty acid, or the like
  • labeled fatty acid for example, NBD-labeled fatty acid, BODIPY-labeled fatty acid, or the like
  • NBD-labeled fatty acid for example, NBD-labeled fatty acid, BODIPY-labeled fatty acid, or the like
  • These labels can be easily introduced by reacting a derivative of a labeled compound having reactivity with an amino group or thiol group with a fatty acid having an amino group or thiol group.
  • fluorescent substances and fluorescently labeled fatty acids that can be used in the present invention can be found in Invitrogen's Handbook of Fluorescent Probes and Research Products, Molecular Probes (Handbook of Fluorescent Prooes and Research Products, Molecular Probes). And it is self-loaded.
  • an enzyme that acts on an amide bond of a sphingoid of a sphingolipid and specifically hydrolyzes into a lysosphingolipid and a fatty acid that is, a sphingolipid ceramide N deacylase (SCDase) is used.
  • SCDase sphingolipid ceramide N deacylase
  • the ocean is an enzyme that acts widely on sphingolipids including sphingoglycolipids (gandariosides, neutral glycolipids) and sphingophospholipids (sphingomyelin).
  • a force including SCDase (Non-Patent Document 4, Patent Document 5) derived from the strain Shewanella alga G8 is not limited thereto.
  • the gene encoding SCDase derived from Siebanella alga G8 strain is obtained from, for example, a DNA fragment inserted in a plasmid held by Escherichia coli JM109 ZpSE5 deposited under Patent Document 5 under the accession number FERM BP-7717. can do. Therefore, a recombinant SCDase can be produced using the above gene. Furthermore, recombinant SC Dase described in Patent Document 5 and Non-Patent Document 4 from which the C-terminal polypeptide is deleted can also be suitably used in the present invention.
  • a culture solution or a crude product containing the enzyme as long as a desired reaction can be catalyzed.
  • An extract can also be used.
  • sphingolipid or lysosphingolipid and a labeled fatty acid may be added to the culture solution to produce labeled sphingolipid.
  • the labeled sphingolipid is produced by the method of the present invention in a buffer solution containing a raw sphingolipid or lysosphingolipid, a labeled aliphatic carboxylic acid, and SCDase.
  • the amount of these raw materials used is not particularly limited and can be used up to the saturation amount.
  • it is desirable that the aliphatic carboxylic acid is excessively present.
  • the reaction proceeds even if the molar ratio of the sphingolipid or lysosphingolipid to the aliphatic carboxylic acid is 1: 1. Or lysosphingolipid may be present in excess.
  • the molar ratio of the sphingolipid or lysosphingolipid to the aliphatic carboxylic acid is 2: 1 to 1:10.
  • the amount of the enzyme used is not particularly limited, and a wide range of force can be selected as appropriate. For example, per 1 mL of the starting solution, usually 0.1 lmU or more, preferably 0.5 mU to 200 mU, more preferably lmU to 10 mU, or The amount of sphingolipid or lysosphingolipid used is about 2 U to 20 U per lnmol.
  • a buffer solution having a pH of about 5 to 9 may be used in the present invention. It is desirable to carry out the production in a buffer solution of acid buffer or Tris-HCl buffer having a pH of around 6.5-9.
  • a surfactant may be usually added to the buffer solution for enzyme activity or substrate solubility.
  • the surfactant the present invention is not particularly limited, but a bile acid surfactant, a nonionic surfactant, or the like can be used.
  • the amount of surfactant to be added is particularly limited if it is set to an amount that activates the enzyme, dissolves the substrate, or is effective in obtaining the product efficiently.
  • a nonionic surfactant it is preferably added in the range of 0.01% to 2% by weight. More preferably, it is added in the range of 0.05% by weight to 0.5% by weight, and more preferably in the range of 0.05% by weight to 0.25% by weight.
  • Metal salts may be added to the buffer to activate the enzyme! /.
  • the metal salt for example, a divalent metal salt can be used, and for example, magnesium chloride, salt-manganese, salt-calcium and the like are preferably used.
  • the addition amount of the metal salt is not particularly limited as long as the activity of the enzyme is recognized or the product can be obtained efficiently, but it is preferably in the range of 1 mM to 10 mM.
  • an organic solvent may be added to these reaction solutions.
  • the organic solvent at this time may be a water-soluble organic solvent, or the reaction may be carried out in a two-phase system formed using a water-insoluble organic solvent.
  • the amount of organic solvent added is not particularly limited as long as the enzyme is not deactivated and the product can be obtained efficiently.
  • the labeled sphingolipid thus produced can be confirmed, for example, by thin layer chromatography.
  • the sphingolipid obtained according to the present invention is an unreacted sphingolipid or lysosphingolipid, and labeled aliphatic carboxylic acid by a purification means generally used for organic compounds, for example, extraction using an organic solvent or various chromatography. It can be separated and isolated and purified.
  • the present invention provides a method for producing labeled sphingolipid in which a label is added to the fatty acid of sphingolipid.
  • the desired labeled sphingolipid can be industrially advantageously produced using the production method.
  • Natural sphingolipids generally have a variety of long chain fatty acid chain lengths, and it has been difficult to obtain sphingolipids having a uniform long chain fatty acid chain length.
  • a sphingolipid having a chromophore-forming substance, a fluorescent substance, a marker such as piotin and the like, and a long-chain fatty acid homogenized Can be easily obtained.
  • Plasmid pSCDl was obtained from Escherichia coli JM109ZpSE5, which is a microorganism deposited under the accession number FERM BP-7717 described in Patent Document 5.
  • PETSCD-del a plasmid containing DNA encoding SCDase, which contains the DNA encoding SCDase contained in this plasmid and has a C-terminal polypeptide deleted in accordance with the procedure described in Patent Document 5. It was constructed.
  • Sphingolipid ceramide N-deacylase (SCDase) was purified according to the following series of procedures described in Patent Document 5, using bacterial cells recovered from 15 liters of culture broth as a starting material.
  • substrate solution [10 nmol gandarioside GMla, 5 mM MgCl, 5 mM Mn
  • Decomposition rate (%) ([area of free lysate GMla] Z [area of free lyso GMla + area of unreacted GMla]) X 100
  • one unit (U) of SCDase was defined as the amount of enzyme that decomposes 1 ⁇ mol of GMla per minute.
  • the optimum pH of the obtained SCDase was 5.5 to 6.5, and the molecular weight was 75 kDa.
  • Gandarioside GMla (Sigma) 325 nmol (approx. 500 ⁇ g) and SC Dase 8.4 mU prepared in Reference Example 2.5 mM MgCl, 2.5 mM MnCl, 2.5 mM CaCl and 0.1
  • Mia was confirmed in the ammonia elution fraction.
  • the solvent of this elution fraction was concentrated and removed to obtain purified lyso GMla.
  • FIG. 1 shows the results of detecting reaction products by fluorescence under a UV lamp.
  • Figure 2 shows the results of glycolipid detection for TLC plates using an orcinol sulfate reagent according to a conventional method.
  • Lanes 1 and 2 in Figure 1 and 2 are samples applied to the column, lane 2 is a flow-through fraction, lane 3 is a hydrochloric acid wash fraction, lane 4 is a methanol elution fraction, lane 5 is aqueous ammonia Z methanol elution fraction, lane 6 Is an SCDase digest (marker) of Gandarioside GMla. It was confirmed that NBD-labeled GMla (C12—NBD-GMla) was recovered in the methanol elution fraction (lane 4).
  • the methanol elution fraction was further purified using Sep-Pak C18 and Sep-Pak plus Silica (Waters) and subjected to mass spectrometry.
  • Mass spectrometry was performed in negative ion mode using API-3000 (Applied Biosystems).
  • Gandarioside GMla As glycolipid substrate, 1) Gandarioside GMla 2) Gandarioside Mitsutya 1) Galactosylceramide (GalCer) 4) Psychocin (Psy, galactosylsphingosine) was used. Gandarioside mistatia was prepared according to the method described in Methods in Enzymology, pages 14 and 660-664. GalCer (derived from bovine brain) and Psy were manufactured by Sigma-Aldrich.
  • a final concentration of 250 M glycolipid substrate and fluorescently labeled fatty acid were prepared in the reference example, and SCDase was added to a final concentration of 0.5 mM Triton X-100 containing 25 mM Tris-HCl.
  • the reaction was allowed to proceed for 16 hours at 37 ° C in buffer pH 7.5.
  • the final volume of the reaction liquid was 20 ⁇ .
  • the developed plate was observed under a UV lamp.
  • Gandarioside GM 1a NBD-labeled GM 1a and BODIPY-labeled GM 1a were produced.
  • Gandarioside Mitastia was used. Is the ability to produce each NBD-labeled Gandarioside and BODIPY-labeled Gandarioside NB D-labeled GalCer and BODIPY-labeled GalCer-generated power
  • Psy NBD-labeled GalCer and BODIPY-labeled GalCer Generation was confirmed.
  • the amount of fluorescent-labeled sphingoglycolipid produced increased as the amount of enzyme used increased.
  • the sphingolipid in addition to the condensation reaction of the fluorescent labeled fatty acid acyl group directly with the amino group of the sphingosine base of the lysosulfoglycolipid, the sphingolipid is also exchanged by a reaction in which the fatty acid portion of the sphingolipid and the fluorescent labeled fatty acid are exchanged.
  • a fluorescent group could be introduced into the glycolipid. That is, using either lysosphingoglycolipid or glycosphingolipid as a starting material (acceptor) It was also possible to introduce fluorescently labeled fatty acids (donors) into glycosphingolipids.
  • lysogandarioside GMla was used as the acceptor glycolipid
  • the C12-NBD-fatty acid used in Example 2 was used as the fluorescently labeled fatty acid.
  • the mixture was reacted at 37 ° C for 16 hours.
  • the final volume of the reaction solution was 20.
  • the buffer used was ⁇ 4-6: sodium acetate buffer; pH 6-7.5: phosphate buffer; pH 7.5-9.5: Tris-HCl buffer.
  • the reaction solution was treated at 100 ° C for 5 minutes.
  • CaCl 5: 4: l (vZvZv)
  • the fluorescent lipid was quantified with OOPC (manufactured by Shimadzu Corporation). The results are shown in Figure 3.
  • the condensation reaction rate was good in the range of pH 7.0 force to pH 9.0.
  • lysogandarioside GMla was used as the acceptor glycolipid
  • the C12-NBD-fatty acid used in Example 2 was used as the fluorescently labeled fatty acid.
  • the mixture was reacted at 37 ° C for 16 hours in H7.5.
  • the final volume of the reaction solution was 20.
  • the surfactants used were Triton X-100 (nonionic), sodium cholate (anionic), sodium taurodeoxycholate (TDC, anionic).
  • TDC sodium taurodeoxycholate
  • the final concentration was changed to 0%, 0.05% by weight, 0.1% by weight, 0.25% by weight, 0.5% by weight, 1% by weight, and 2% by weight.
  • the product was analyzed by the method described in Example 4. As a result, in the reaction to which Triton X-100 was added, a good condensation reaction rate was obtained when the concentration was in the range of 0.05 wt% to 0.25 wt%.
  • lysogandarioside GMla is used as an acceptor glycolipid, and a fluorescent standard is used.
  • the fatty acid the C12-NBD-fatty acid used in Example 2 was used.
  • the final concentration of 0.1% by weight of Triton X-100 and the final concentration of 5 mM of various metal salts were prepared by adding SCDase 80 ⁇ U prepared in a reference example with a glycolipid with a final concentration of 250 ⁇ each and a fluorescently labeled fatty acid.
  • the reaction was carried out at 37 ° C for 16 hours in 25 mM Tris-HCl buffer, pH 7.5.
  • the final volume of the reaction solution was 20 ⁇ m.
  • the metal salts used are CaCl, MnCl, MgCl, CuCl, ZnCl.
  • lysogandarioside GMla was used as the acceptor glycolipid
  • the C12-NBD-fatty acid used in Example 2 was used as the fluorescently labeled fatty acid.
  • MgCl final concentration 2 50 M final concentration 0.1 wt 0/0 was added
  • the reaction was carried out in hydrochloric acid buffer, pH 7.5, at 37 ° C for 16 hours.
  • the final volume of the reaction solution was 20.
  • the amount of enzyme used was 2000 U, 80 U, 40 U, 20 U, 10 ⁇ U, 5 U, 2.5 U, and 1.25 U, respectively. These are 400 U, 16 U, 8 U, 4 U, 2 U, 1 U, 0.5 U, and 0.25 U per lnmol of glycolipid, respectively.
  • the product was analyzed by the method described in Example 4. The results are shown in FIG. The condensation reaction rate was good when 20 ⁇ U to 80 ⁇ U SCDase was used.
  • the following 1-11 sphingolipids were used as acceptors, and the reaction was carried out using the C 12 -NBD-fatty acid used in Example 2 as the fluorescently labeled fatty acid.
  • a final concentration of 250 M glycolipids and fluorescently labeled fatty acids were prepared in the reference examples, and SCDase 40 U was added to a final concentration of 0.1 mM Triton X-100 and a final concentration of 5 mM CaCl containing 25 mM Tris HCl.
  • the reaction was carried out at 37 ° C. for 16 hours in a buffer, PH 7.5.
  • the final volume of the reaction solution was 20 L.
  • Sphingolipids used were 1) Sphingomyelin (derived from chicken egg yolk, manufactured by Sigma Aldrich), 2) Darcosylceramide (GlcCer, manufactured by Sigma-Aldrich), 3) Ratatosyl ceramide (LacCer, manufactured by Sigma-Aldrich) 4) Gandarioside GM3 (from Ushi brain) 5) Gandarioside GM2 (Matreya), 6) Gandarioside GMla (from Ushi brain), 7) Gandarioside GDla (from Ushi brain), 8) Gandarioside GTlb (from Ushi brain), 9) Ganglioside GQ lb 10) Crude Gandarioside Mixture (from porcine brain).
  • the product was subjected to TLC analysis by the method described in Example 4, and fluorescently labeled sphingolipid was detected under UV light. As a result, it was confirmed that all the sphingolipids used were fluorescently labeled.
  • Rhizogandarioside GMla was used as the acceptor glycolipid
  • C12-NBD-fatty acid used in Example 2 was used as the fluorescently labeled fatty acid.
  • the mixture was reacted at 37 ° C for 16 hours in a squirrel hydrochloric acid buffer, pH 7.5.
  • the final volume of the reaction solution was 600 ⁇ m.
  • the reaction solution was treated at 100 ° C for 5 minutes, and labeled GMla was separated using an Oasis MCX column (manufactured by Waters).
  • the Oasis MCX column was conditioned with methanol and equilibrated with water according to the manual supplied with the product. Hydrochloric acid was added to the reaction solution after heat treatment to a final concentration of 0.1 N, and then applied to the column.
  • the developed NBD detection plate was subjected to fluorescence detection using a chromatographic scanner CS9300PC according to a conventional method.
  • the glycolipid detection plate was quantified by using orcinol sulfate as a coloring reagent.
  • the condensation rate of the above reaction was about 40%
  • the purification recovery rate of the reaction product C12-NBD-GMla was about 90%
  • the obtained C12-NBD-GMla was about 50 nmol.
  • Sphingomyelin (SM, Sigma-Aldrich) was used as the acceptor lipid.
  • the reaction was carried out in a hydrochloric acid buffer, pH 7.5, at 37 ° C for 16 hours. The final volume of the reaction solution was 20.
  • the production method of the present invention has made it possible to efficiently and inexpensively prepare any labeled sphingolipid containing sphingoglycolipid and sphingomyelin.
  • the labeled sphingolipid obtained by the method of the present invention is useful for the development of medical technologies such as drug discovery and artificial biomembranes, as well as research in the fields of physiology and biochemistry such as elucidation of functions of sphingolipids and biomembranes.
  • FIG. 1 is a diagram showing the results (fluorescence signal) of TLC analysis of NBD-labeled GMla produced by the method of the present invention.
  • FIG. 2 is a diagram showing the results (sugar staining) of TLC analysis of NBD-labeled GMla produced by the method of the present invention.
  • FIG. 3 is a graph showing the results of examination of buffer solution and pH.
  • FIG. 4 is a diagram showing the results of study on metal salts.
  • FIG. 5 is a diagram showing the results of examination of the amount of enzyme.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Endocrinology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Disclosed is a method for production of a labeled sphingolipid, comprising reacting a sphingolipid or lysosphingolipid with an aliphatic carboxylic acid having a label selected from the group consisting of a substance capable of forming a chromophore, a fluorescent substance, biotin and a hapten by using sphingolipid ceramide N-deacylase to produce the labeled sphingolipid. The method enables to prepare any labeled sphingolipid including labeled sphingoglycolipid and labeled sphingomyelin with high efficiency and at a low cost.

Description

明 細 書  Specification
標識スフインゴ脂質の製造方法  Method for producing labeled sphingolipid
技術分野  Technical field
[0001] 本発明は、医薬、糖質工学及び細胞工学等に有用な標識スフインゴ脂質の製造方 法、並びに該製造方法により得られた標識スフインゴ脂質に関する。  The present invention relates to a method for producing labeled sphingolipid useful for medicine, carbohydrate engineering, cell engineering, and the like, and a labeled sphingolipid obtained by the production method.
背景技術  Background art
[0002] スフインゴ脂質はスフインゴ糖脂質、スフインゴリン脂質、セラミドを含む、長鎖塩基ス フインゴイドを持つ脂質の総称であり、下等動物から高等動物にまで広く分布してい る。これらスフインゴ脂質は近年、細胞の増殖、分化誘導、アポトーシス等のような生 物活性において重要な役割に関与していることが明らかにされつつある。また、細胞 表層の構成成分であることから化粧料等への添加物としても使用されつつある。  [0002] Sphingolipid is a general term for lipids having long-chain base sphingoids, including glycosphingolipids, sphingophospholipids, and ceramides, and is widely distributed from lower animals to higher animals. In recent years, these sphingolipids have been revealed to play an important role in biological activities such as cell proliferation, differentiation induction, and apoptosis. Moreover, since it is a structural component of the cell surface layer, it is also being used as an additive to cosmetics and the like.
[0003] スフインゴ脂質は、共通構造としてスフインゴイドのァミノ基に不均一な鎖長の長鎖 脂肪酸を酸アミド結合したセラミド構造を有して 、る。一般にスフインゴ脂質は紫外領 域や可視領域において特徴的な吸収を示さないため、それ自身では光学的に検出 することは難しい。従って、発色団ゃ蛍光色素、ピオチン、抗体のェピトープ (ノ、プテ ン)などでスフインゴ脂質を標識することは、スフインゴ脂質や生体膜の機能を理解し 、創薬や人工生体膜の開発に繋げるために非常に有用である。  [0003] The sphingolipid has a ceramide structure in which a long-chain fatty acid having a heterogeneous chain length is bound to an amide group of a sphingoid as an amide bond as a common structure. In general, sphingolipids do not exhibit characteristic absorption in the ultraviolet region or visible region, and are therefore difficult to detect optically by themselves. Therefore, labeling sphingolipids with chromophores, fluorescent dyes, piotin, antibody epitopes (no, pentene), etc., will help understand the functions of sphingolipids and biological membranes, leading to the development of drug discovery and artificial biological membranes. Is very useful for.
[0004] スフインゴ脂質の長鎖脂肪酸を修飾ある!/、は置換したスフインゴ脂質又はスフインゴ 脂質誘導体の製造法は、スフインゴ脂質のスフインゴイドのァミノ基に酸アミド結合し た脂肪酸を欠くリゾスフインゴ脂質を出発原料として、化学的、酵素的に合成する方 法が知られている。  [0004] A long-chain fatty acid of a sphingolipid is modified! /, A method for producing a substituted sphingolipid or a sphingolipid derivative is based on a lysosphingolipid that lacks an acid amide-bonded fatty acid to the amino group of the sphingolipid of the sphingolipid. As a result, chemical and enzymatic synthesis methods are known.
[0005] 化学的方法としては、リゾ体のアミノ基に以下の様な方法で脂肪酸あるいは脂肪酸 誘導体を縮合させる方法がある。例えば、脂肪酸の N—ヒドロキシスクシンイミドエス テル等の脂肪酸活性エステルを用いる方法、脂肪酸とカルボニルジイミダゾールゃ ジシクロへキシルカルポジイミドなどのカップリング試薬を用いる方法、脂肪酸の無水 物を用いる方法、脂肪酸塩ィ匕物を用いる方法などが知られている。酸性糖脂質のリ ゾ体としてリゾガンダリオシドを用いる方法は、非特許文献 1、特許文献 1及び特許文 献 2に報告されている。また、スフインゴリン脂質のリゾ体としてスフインゴシルホスホリ ルコリン (リゾスフインゴミエリン)を用いる方法力 非特許文献 2に記載されている。こ れらの方法によると O—ァシル化等の副反応が起こる場合があり選択的に N—ァシ ル化された物を得るためには保護基の使用、精製等に煩雑な操作が必要である。ま た、スフインゴホスホノリピドの一種セラミドシリアチンやアミノ糖を含むスフインゴ糖脂 質をィ匕学的に脱ァシルイ匕して得られるデー N—ァセチルリゾガンダリオシドのようにス フインゴイドのアミノ基以外にアミノ基をもつスフインゴ脂質のスフインゴイドのアミノ基 だけを選択的にァシル化したいときには保護基の導入、部分的ァシル化、ァシルイ匕 後の部分的脱ァシルイ匕と 、つた操作、あるいはデ— N—ァセチルリゾガンダリオシド をリボソームに取り込ませた後、選択的に N—ァシルイ匕する等の煩雑な操作が必要 であり困難を伴う。 [0005] As a chemical method, there is a method in which a fatty acid or a fatty acid derivative is condensed to an amino group of a lyso form by the following method. For example, a method using a fatty acid active ester such as N-hydroxysuccinimide ester of fatty acid, a method using a coupling reagent such as fatty acid and carbonyldiimidazole dicyclohexyl carpositimide, a method using a fatty acid anhydride, a fatty acid salt A method using a bowl is known. Non-patent Document 1, Patent Document 1 and Patent Documents use lysogandarioside as a lysate of acidic glycolipid. Reported in tribute 2. Further, it is described in Non-Patent Document 2 for the method power using sphingosyl phosphorylcholine (lysosphingomyelin) as a lyso form of sphingophospholipid. According to these methods, side reactions such as O-acylation may occur, and in order to obtain a product that is selectively N-acylated, complicated operations are required for the use and purification of protecting groups. It is. In addition, a sphingoid such as ceramide lysogandarioside obtained by chemically dehydrating a sphingoglycolipid containing a ceramide syratin and an amino sugar, a kind of sphingophosphonolipid. To selectively acylate only the sphingoid amino group of a sphingolipid having an amino group in addition to the amino group, introduction of a protecting group, partial acylation, partial deacylation after acylation, or an — After incorporating N-acetylylazogandarioside into the ribosome, complicated operations such as selective N-acetylation are necessary and difficult.
一方、酵素的合成方法は、特許文献 3に記載されている。この方法は、有機溶媒中 でリパーゼにより縮合を行う方法であり、実質的に無水の有機溶媒が必要であり、基 質の溶解性により基質が限定される。特許文献 3には、セラミド及びハイブリッドセラミ ドの酵素的合成方法が記載されている力 反応も特異的なものではなく O—ァシル 化物の生成が見出されており、またィ匕学的合成法と同様に複数のアミノ基をもつ場 合、スフインゴイドのアミノ基だけに特異的に作用させることは困難である。また、非特 許文献 3や特許文献 4には、スフインゴ脂質のスフインゴイドと脂肪酸との酸アミド結合 を特異的に加水分解する酵素であるスフインゴリピドセラミド N—デアシラーゼ(SCD ase)を用いてスフインゴ脂質の脂肪酸部分に、発色団を形成する物質、蛍光物質、 ピオチン、放射性同位元素等を導入して、標識スフインゴ脂質を作製する方法が記 載されている。し力しながら、ここに開示された方法では、まず ω—ァミノ脂肪酸の ω —アミノ基を Ν—トリフルォロアセチルイ匕して保護したものを、シユードモナス属細菌 由来の SCDaseを用いてリゾ糖脂質に導入した後、 Ν—トリフルォロアセチル基を脱 保護して、最後に ω—ァミノ基に蛍光色素を導入するというような保護、脱保護、精 製など煩雑な操作を行う必要がある。前記方法では、発色団を形成する物質や蛍光 物質を付加された脂肪酸をリゾスフインゴ脂質に直接導入可能カゝどうかは明らかにさ れていない。 [0007] スフインゴリピドセラミド N—デアシラーゼとして、海洋細菌シエバネラ アルガ G8 ( Shewanella alga G8)株由来の SCDase (特許文献 5、非特許文献 4)が知られて いるが、当該酵素による脂肪酸転移活性は C14標識した脂肪酸についてのみ確認 されている。 On the other hand, the enzymatic synthesis method is described in Patent Document 3. This method is a method in which condensation is carried out by lipase in an organic solvent, and a substantially anhydrous organic solvent is required, and the substrate is limited by the solubility of the substrate. In Patent Document 3, the force reaction that describes the enzymatic synthesis method of ceramide and hybrid ceramide is not specific, and the generation of O-acylates has been found. As in the case of having multiple amino groups, it is difficult to specifically act only on the amino group of the sphingoid. Non-Patent Document 3 and Patent Document 4 also describe the use of sphingolipid ceramide N-deacylase (SCD ase), an enzyme that specifically hydrolyzes acid amide bonds between sphingolipids of sphingolipids and fatty acids. Describes a method for producing a labeled sphingolipid by introducing a chromophore-forming substance, a fluorescent substance, piotin, a radioisotope, or the like into the fatty acid portion of the phospholipid. However, in the method disclosed herein, first, the ω-amino group of a ω-amino fatty acid protected by Ν-trifluoroacetylation is protected with lysosaccharide using SCDase derived from Pseudomonas bacteria. After introduction into the lipid, it is necessary to carry out complicated operations such as protection, deprotection and purification, such as deprotecting the Ν-trifluoroacetyl group and finally introducing a fluorescent dye into the ω-amino group. . In the above method, it has not been clarified whether a fatty acid to which a substance forming a chromophore or a fluorescent substance can be directly introduced into lysosphingolipid. [0007] Sphingolipid ceramide N-deacylase is known to be SCDase (Patent Document 5, Non-Patent Document 4) derived from the marine bacterium, Shewanella alga G8. Only C14 labeled fatty acids have been identified.
特許文献 1:特開平 2— 200697号公報  Patent Document 1: JP-A-2-200697
特許文献 2:特開平 7 - 309888号公報  Patent Document 2: Japanese Patent Laid-Open No. 7-309888
特許文献 3 :国際公開第 94Z26919号パンフレット  Patent Document 3: International Publication No. 94Z26919 Pamphlet
特許文献 4 :国際公開第 98Z03529号パンフレット  Patent Document 4: Pamphlet of International Publication No.98Z03529
特許文献 5:国際公開第 2002Z026963号パンフレット  Patent Document 5: International Publication No. 2002Z026963 Pamphlet
非特許文献 1 :メソッズ イン ェンザィモロジ一(Methods in Enzymology)、第 1 38卷、第 319〜341頁(1987)  Non-Patent Document 1: Methods in Enzymology, 138, 319-341 (1987)
非特許文献 2 :ジャーナルォブ リピッド リサーチ (Journal of Lipid Research) 、第 28卷、第 710〜718頁(1987)  Non-Patent Document 2: Journal of Lipid Research, 28th, 710-718 (1987)
非特許文献 3 :ジャーナル ォブ バイオケミストリー(Journal of Biochemistry)、 第 126卷、第 604〜611頁(1999)  Non-Patent Document 3: Journal of Biochemistry, Vol. 126, pp. 604-611 (1999)
非特許文献 4 :ジャーナル ォブ バイオロジカル ケミストリー(Journal of Biologi cal Chemistry)、第 277卷、第 17300〜17307頁(2002)  Non-Patent Document 4: Journal of Biologi cal Chemistry, 277, 17300-17307 (2002)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 上述したように、従来の化学的あるいは酵素的にスフインゴ脂質の長鎖脂肪酸を修 飾あるいは置換し標識スフインゴ脂質を合成する方法は、望ましくな 、副生成物がで きたり、基質が限定されたり、煩雑な操作を必要とするものである。したがって、本発 明の目的は、リゾスフインゴ脂質あるいはスフインゴ脂質からスフインゴイドに結合する 長鎖脂肪酸を修飾あるいは置換した標識スフインゴ脂質を特異的かつ簡便に合成す る製造方法を提供することにある。本発明の他の目的は、該製造方法により得られた 標識スフインゴ脂質を提供することにある。 [0008] As described above, the conventional method of chemically or enzymatically modifying or substituting long-chain fatty acids of sphingolipids to synthesize labeled sphingolipids is desirable because it produces by-products or limits the substrate. Or requires complicated operations. Therefore, an object of the present invention is to provide a production method for specifically and simply synthesizing a labeled sphingolipid obtained by modifying or substituting a lysosphingolipid or a long-chain fatty acid that binds to the sphingoid from the sphingolipid. Another object of the present invention is to provide a labeled sphingolipid obtained by the production method.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者らは、標識を有するスフインゴ脂質の合成法にっ 、て検討を行った結果、 リゾスフインゴ脂質のスフインゴイドのァミノ基への標識を有する脂肪酸の結合、ある いはスフインゴ脂質のスフインゴイドに酸アミド結合する脂肪酸と別の標識を有する脂 肪酸との置換力 スフインゴ脂質のスフインゴイドの酸アミド結合に作用しリゾスフイン ゴ脂質と脂肪酸に加水分解する酵素である SCDaseによって触媒され、任意の標識 を有するスフインゴ脂質を合成できることを見出し、本発明に到達した。従来、 SCDa seによる逆反応あるいは転移反応によって標識スフインゴ脂質を調製する場合は、保 護基を有する ω—ァミノ脂肪酸を前記酵素を用いてスフインゴ脂質あるいはリゾスフィ ンゴ脂質に導入した後、脱保護、標識反応を行わなければならな力つた。しかしなが ら、本発明者らは、特定の SCDaseを用いることにより、水溶液中の緩和な条件にお V、て、リゾスフインゴ脂質のスフインゴイドのァミノ基に標識を有する脂肪酸が直接導 入されたり、あるいはスフインゴ脂質のスフインゴイドに酸アミド結合する脂肪酸が別の 標識を有する脂肪酸と直接交換されることによって、簡便な操作で標識スフインゴ脂 質を合成できることを見出し、本発明を完成した。 [0009] The present inventors have conducted a study on a method for synthesizing a sphingolipid having a label, Binding of fatty acid with label to lysosphingolipid sphingoid amino group, or substitution power of fatty acid with acid amide bond to sphingoid of sphingolipid and fatty acid with other label Sphingoid acid amide bond of sphingoid The present inventors have found that sphingolipids having an arbitrary label can be synthesized by being catalyzed by SCDase, an enzyme that acts on lysosphingolipids and hydrolyzes into fatty acids. Conventionally, when preparing labeled sphingolipids by reverse reaction or transfer reaction with SCDase, ω-amino fatty acid having a protecting group is introduced into sphingolipids or lysosphingolipids using the above enzyme, followed by deprotection and labeling. Helped to react. However, the present inventors can directly introduce a fatty acid having a label on the sphingoid amino group of lysosphingolipid under mild conditions in an aqueous solution by using a specific SCDase, Alternatively, the present inventors have found that a labeled sphingolipid can be synthesized by a simple operation by directly exchanging a fatty acid having an acid amide bond with a sphingolipid of a sphingolipid with a fatty acid having another label.
すなわち、本発明は、  That is, the present invention
[1] スフインゴ脂質又はリゾスフインゴ脂質と、発色団を形成する物質、蛍光物質、 ピオチン及びノ、プテンカ なる群より選択される標識を有する脂肪族カルボン酸とを 、スフインゴリピドセラミド N—デアシラーゼを用いて反応させ、標識スフインゴ脂質を 得ることを特徴とする、標識スフインゴ脂質の製造方法、  [1] Using a sufingolipid ceramide N-deacylase, a sphingolipid or lysosphingolipid and a chromophore-forming substance, a fluorescent substance, an aliphatic carboxylic acid having a label selected from the group consisting of piotin and stencil A labeled sphingolipid, characterized in that the labeled sphingolipid is obtained,
[2] スフインゴリピドセラミド N—デアシラーゼカ シエバネラ(Shewanella)属の細 菌由来のものである前記 [ 1 ]記載の製造方法、  [2] The production method according to the above [1], which is derived from a bacterium of the genus Sufingolipidceramide N-deacylase Cashebanella (Shewanella),
[3] スフインゴリピドセラミド N—デアシラーゼカ シエバネラ アルガ G8株由来の ものである前記 [2]記載の製造方法、  [3] The process according to the above [2], which is derived from Sufingolipidceramide N-deacylase Cassiabanara alga G8 strain,
[4] スフインゴリピドセラミド N—デアシラーゼが組換え酵素である前記 [ 1 ]記載の製 造方法、  [4] The production method of the above-mentioned [1], wherein Sphingolipidceramide N-deacylase is a recombinant enzyme,
[5] さらに、得られた標識スフインゴ脂質を単離する工程を包含する前記 [1]記載 の製造方法、ならびに  [5] The production method according to the above [1], further comprising the step of isolating the obtained labeled sphingolipid, and
[6] 前記 [ 1]〜 [5] 、ずれか記載の製造方法により得られる標識スフインゴ脂質 に関する。 発明の効果 [6] The present invention relates to a labeled sphingolipid obtained by the production method according to any one of [1] to [5]. The invention's effect
[0011] 本発明により、簡便な工程で、かつ効率よく標識スフインゴ脂質を製造する方法が 提供される。本発明はスフインゴ脂質又はリゾスフインゴ脂質に標識を有する脂肪酸 を直接導入することが可能であり、工業的な標識スフインゴ脂質の製造に有用である  [0011] The present invention provides a method for producing labeled sphingolipids efficiently in a simple process. INDUSTRIAL APPLICABILITY The present invention can directly introduce a fatty acid having a label into sphingolipid or lysosphingolipid, and is useful for industrial production of labeled sphingolipid.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、本発明を具体的に説明する。なお、本明細書において「標識スフインゴ脂質 」とは、標識されたスフインゴ脂質のことをいう。  Hereinafter, the present invention will be specifically described. In the present specification, “labeled sphingolipid” refers to a labeled sphingolipid.
[0013] 本明細書にぉ 、て、スフインゴ脂質とは、スフインゴ糖脂質、スフインゴリン脂質、セ ラミドを含む、長鎖塩基スフインゴイドを有する天然物あるいは合成物の単体、あるい はそれらの混合物等が挙げられる。また、本明細書において、リゾスフインゴ脂質、あ るいはスフインゴ脂質のリゾ体とは、スフインゴイドのァミノ基に酸アミド結合した脂肪 酸を欠くスフインゴ脂質の N—脱ァシル体を示す。  In the present specification, the sphingolipid is a simple substance or a mixture of natural or synthetic products having a long-chain base sphingoid, including glycosphingolipid, sphingophospholipid, and ceramide. Can be mentioned. In the present specification, lysosphingolipid or lysozyme of sphingolipid refers to an N-deacyl form of sphingolipid lacking a fatty acid bonded with an acid amide to the amino group of sphingoid.
[0014] 本発明に使用できるスフインゴ脂質としては、本発明を特に限定するものではない 力 例えばセレブ口シド(GlcCer、 GalCer等)、ガンダリオ系列(GM1、 GM2、 GDI 等)、ラクト系列(ラタトテトラオシルセラミド等)、ネオラクト系列 (ネオラタトテトラオシル セラミド等)、グロボ系列などのスフインゴ糖脂質、スフインゴミエリンなどのスフインゴリ ン脂質が挙げられ、これらのリゾ体を使用することができる。  The sphingolipid that can be used in the present invention is not particularly limited to the present invention. For example, celebrity mouthside (GlcCer, GalCer, etc.), Gandario series (GM1, GM2, GDI, etc.), lacto series (ratatotetra) Osylceramide etc.), Neolacto series (Neolatatotetraosylceramide etc.), Sphingoglycolipids such as Globo series, and Sphingolin lipids such as Sphingomyelin, and these lyso forms can be used.
[0015] 本明細書において、脂肪族カルボン酸には、飽和脂肪酸、不飽和脂肪酸、炭化水 素鎖がハロゲン、置換若しくは非置換のアミノ基、ォキソ基、水酸基、チオール基等 の官能性基で置換されている飽和又は不飽和の脂肪酸、あるいは当該炭化水素鎖 が酸素、硫黄、窒素等の元素を有する飽和又は不飽和の脂肪酸等の脂肪族性をも つカルボン酸が含まれる。特に本発明を限定するものではないが、 C6〜C26程度、 好ましくは C10〜C22、より好ましくは C12〜C18の炭素鎖長を持つ飽和脂肪酸、 C 6〜C26程度、好ましくは C10〜C22、より好ましくは C12〜C18の炭素鎖長を持つ 不飽和脂肪酸、 2—ヒドロキシ脂肪酸などの脂肪酸が本発明で使用される脂肪族力 ルボン酸として例示される。これらの脂肪酸に標識が付されたものを使用することによ り、標識スフインゴ脂質を作製することができる。 [0016] 本発明で使用される標識とは、当該標識を付加された物質の検出を容易にするこ とができる物質を意味し、特に本発明を限定するものではないが、発色団を形成する 物質、蛍光物質、ピオチン、ハプテン等を意味する。発色団を形成する物質としては 、市販されているいずれの発色試薬でも使用することが出来るが、例としては、 4— - トロフエノール、 2 クロ口一 4 -トロフエノールなどのフエノール誘導体や 2 -ァミノ ナフタレンなどのナフタレン誘導体などが挙げられる。蛍光物質としては、市販されて いる蛍光物質を使用することが出来る。例としては、 7— nitrobenz— 2— oxa— 1, 3 — diazole (NBD)や 4, 4— difluor— 4— bora— 3a, 4a― diaza— s— indacene (B ODIPY (登録商標))、 fluoresceinなどが挙げられる力 これらに限らず、多種多様 な蛍光物質を用いることが出来る。ハプテンとしては当該ハプテンを認識する抗体が 入手可能なものであれば特に限定はなぐ例えばジゴキシゲニン等を本発明に使用 することができる。本発明では、あらかじめ前記の標識が付加された脂肪酸 (以下、「 標識脂肪酸」と記載することもある)、例えば NBD標識脂肪酸や BODIPY標識脂肪 酸などを使用することが出来る。これらの標識は、アミノ基ゃチオール基に反応性を 有する標識化合物の誘導体をァミノ基ゃチオール基を持つ脂肪酸と反応させること により容易に導入することができる。例えば、本発明に使用可能な蛍光物質や蛍光 標識脂肪酸の例はインビトロジェン社のハンドブック ォブ フルォレツセントプローブ ズ アンド リサーチプロダクツ、モレキュラープローブズ(Handbook of Fluoresc ent Prooes and Research Products, Molecular Probesノに し 己载さ れている。 In the present specification, the aliphatic carboxylic acid includes a saturated fatty acid, an unsaturated fatty acid, and a hydrocarbon chain having a functional group such as a halogen, a substituted or unsubstituted amino group, an oxo group, a hydroxyl group, and a thiol group. Carboxylic acids having aliphatic properties such as substituted saturated or unsaturated fatty acids, or saturated or unsaturated fatty acids in which the hydrocarbon chain has elements such as oxygen, sulfur and nitrogen are included. Although it does not specifically limit the present invention, it is about C6-C26, preferably C10-C22, more preferably a saturated fatty acid having a carbon chain length of C12-C18, about C6-C26, preferably C10-C22, and more. Fatty acids such as unsaturated fatty acids having a carbon chain length of C12 to C18 and 2-hydroxy fatty acids are exemplified as the aliphatic rubonic acid used in the present invention. By using those fatty acids labeled with these fatty acids, labeled sphingolipids can be produced. [0016] The label used in the present invention means a substance capable of facilitating detection of a substance to which the label is added, and does not particularly limit the present invention, but forms a chromophore. It means substances, fluorescent substances, piotin, haptens, etc. As the substance that forms a chromophore, any commercially available chromogenic reagent can be used. Examples of such a chromophore include 4-phenol-trophenol, 2-phenol 1-phenol and 2-phenol. And naphthalene derivatives such as amino naphthalene. A commercially available fluorescent substance can be used as the fluorescent substance. Examples include 7—nitrobenz— 2—oxa— 1, 3 — diazole (NBD), 4, 4— difluor— 4— bora— 3a, 4a— diaza— s— indacene (B ODIPY (registered trademark)), fluorescein Not only these, but also a wide variety of fluorescent materials can be used. The hapten is not particularly limited as long as an antibody that recognizes the hapten is available. For example, digoxigenin can be used in the present invention. In the present invention, a fatty acid to which the above-mentioned label has been added (hereinafter sometimes referred to as “labeled fatty acid”), for example, NBD-labeled fatty acid, BODIPY-labeled fatty acid, or the like can be used. These labels can be easily introduced by reacting a derivative of a labeled compound having reactivity with an amino group or thiol group with a fatty acid having an amino group or thiol group. For example, examples of fluorescent substances and fluorescently labeled fatty acids that can be used in the present invention can be found in Invitrogen's Handbook of Fluorescent Probes and Research Products, Molecular Probes (Handbook of Fluorescent Prooes and Research Products, Molecular Probes). And it is self-loaded.
[0017] 本発明にはスフインゴ脂質のスフインゴイドのアミド結合に作用しリゾスフインゴ脂質 と脂肪酸とに特異的に加水分解する酵素、すなわち、スフインゴリピドセラミド N デ アシラーゼ (SCDase)が使用される。本発明への使用に好適なスフインゴリピドセラミ ド N デアシラーゼとして、スフインゴ糖脂質 (ガンダリオシド、中性糖脂質)、スフイン ゴリン脂質 (スフインゴミエリン)を含むスフインゴ脂質に幅広く作用する酵素である海 洋細菌シエバネラ アルガ G8 (Shewanella alga G8)株由来の SCDase (非特 許文献 4、特許文献 5)が挙げられる力 これに限定されるものではない。また、 SCD aseをコードする遺伝子を用いて得られた組換え酵素、更に、 SCDaseをコードする 遺伝子の塩基配列において 1以上、好ましくは 1〜60個、より好ましくは 1〜30個の 塩基が欠失、付加、挿入若しくは置換された遺伝子を用いて得られる組換え酵素で あっても、スフインゴ脂質のスフインゴイドと脂肪酸との酸アミド結合を特異的に加水 分解する酵素であれば、本明細書で言う SCDaseに含まれる。 [0017] In the present invention, an enzyme that acts on an amide bond of a sphingoid of a sphingolipid and specifically hydrolyzes into a lysosphingolipid and a fatty acid, that is, a sphingolipid ceramide N deacylase (SCDase) is used. As a sphingolipid ceramid N deacylase suitable for use in the present invention, the ocean is an enzyme that acts widely on sphingolipids including sphingoglycolipids (gandariosides, neutral glycolipids) and sphingophospholipids (sphingomyelin). A force including SCDase (Non-Patent Document 4, Patent Document 5) derived from the strain Shewanella alga G8 is not limited thereto. Recombinant enzyme obtained using a gene encoding SCDase, and also encoding SCDase Even if it is a recombinant enzyme obtained by using a gene in which one or more, preferably 1 to 60, more preferably 1 to 30 bases are deleted, added, inserted or substituted in the base sequence of the gene, Any enzyme that specifically hydrolyzes the acid amide bond between lipid sphingoids and fatty acids is included in the SCDase referred to herein.
[0018] シエバネラ アルガ G8株由来の SCDaseをコードする遺伝子は、例えば特許文 献 5に FERM BP— 7717の受託番号で寄託された、 Escherichia coli JM109 ZpSE5の保持するプラスミドに挿入された DNA断片より取得することができる。した がって、前記の遺伝子を利用して組換え SCDaseを製造することができる。さらに、特 許文献 5、非特許文献 4に記載された、 C末端側のポリペプチドを欠失した組換え SC Daseも本発明に好適に使用することができる。  [0018] The gene encoding SCDase derived from Siebanella alga G8 strain is obtained from, for example, a DNA fragment inserted in a plasmid held by Escherichia coli JM109 ZpSE5 deposited under Patent Document 5 under the accession number FERM BP-7717. can do. Therefore, a recombinant SCDase can be produced using the above gene. Furthermore, recombinant SC Dase described in Patent Document 5 and Non-Patent Document 4 from which the C-terminal polypeptide is deleted can also be suitably used in the present invention.
[0019] 本発明の標識スフインゴ脂質の製造方法では、前記のスフインゴリピドセラミド N— デアシラーゼの精製品の他、所望の反応を触媒することが可能な範囲で該酵素を含 む培養液又は粗抽出液を用いることもできる。さらに、前記酵素の生産能を有する微 生物の培養に際して、スフインゴ脂質又はリゾスフインゴ脂質と標識脂肪酸を培養液 に添加して標識スフインゴ脂質の製造を実施してもよい。  [0019] In the method for producing a labeled sphingolipid of the present invention, in addition to the purified product of sphingolipid ceramide N-deacylase, a culture solution or a crude product containing the enzyme as long as a desired reaction can be catalyzed. An extract can also be used. Furthermore, when cultivating a microorganism having the ability to produce the enzyme, sphingolipid or lysosphingolipid and a labeled fatty acid may be added to the culture solution to produce labeled sphingolipid.
[0020] 本発明の方法による標識スフインゴ脂質の製造は、原料となるスフインゴ脂質又はリ ゾスフインゴ脂質と、標識を有する脂肪族カルボン酸と、 SCDaseとを含む緩衝液中 で実施される。これら原料の使用量は特に限定されず、その飽和量まで使用できる。 通常、当該脂肪族カルボン酸が過剰に存在する状態が望ましいが、本発明において はスフインゴ脂質又はリゾスフインゴ脂質と、脂肪族カルボン酸とのモル比は 1: 1でも 反応が進行することから、スフインゴ脂質又はリゾスフインゴ脂質が過剰に存在しても 良い。従って、スフインゴ脂質又はリゾスフインゴ脂質と、脂肪族カルボン酸とのモル 比は 2 : 1〜1: 10であることが望ましい。更に、酵素の使用量は特に限定されるもの ではなぐ広い範囲力も適宜選択でき、例えば出発溶液 lmL当り、通常 0. lmU以 上、好ましくは 0. 5mU〜200mU、より好ましくは lmU〜10mU、あるいは使用する スフインゴ脂質又はリゾスフインゴ脂質量 lnmol当り 2 U〜20 U程度使用すれば よい。  [0020] The labeled sphingolipid is produced by the method of the present invention in a buffer solution containing a raw sphingolipid or lysosphingolipid, a labeled aliphatic carboxylic acid, and SCDase. The amount of these raw materials used is not particularly limited and can be used up to the saturation amount. Usually, it is desirable that the aliphatic carboxylic acid is excessively present. However, in the present invention, the reaction proceeds even if the molar ratio of the sphingolipid or lysosphingolipid to the aliphatic carboxylic acid is 1: 1. Or lysosphingolipid may be present in excess. Therefore, it is desirable that the molar ratio of the sphingolipid or lysosphingolipid to the aliphatic carboxylic acid is 2: 1 to 1:10. Furthermore, the amount of the enzyme used is not particularly limited, and a wide range of force can be selected as appropriate. For example, per 1 mL of the starting solution, usually 0.1 lmU or more, preferably 0.5 mU to 200 mU, more preferably lmU to 10 mU, or The amount of sphingolipid or lysosphingolipid used is about 2 U to 20 U per lnmol.
[0021] 緩衝液としては、本発明には pHが 5〜9程度の緩衝液を用いれば良ぐ例えばリン 酸緩衝液ゃトリス塩酸緩衝液の pH6. 5〜9付近の緩衝液中で製造を行うことが望ま しい。また、緩衝液中には通常、酵素の活性ィ匕あるいは基質の可溶ィ匕のために界面 活性剤を添加してもよい。界面活性剤として、特に本発明を限定するものではないが 、胆汁酸系界面活性剤あるいは非イオン性界面活性剤等が使用できる。界面活性 剤の添加量は、その酵素の活性化、基質の可溶ィ匕のため、あるいは生成物が効率よ く得られる等の効果が認められる量で設定すればよぐ特に限定されるものではない 力 非イオン性界面活性剤の場合には、好適には 0. 01重量%〜2重量%の範囲内 で添加することが好ましい。より好適には 0. 05重量%〜0. 5重量%の範囲、さらに 好適には 0. 05重量%〜0. 25重量%の範囲で添加される。緩衝液中には酵素の活 性化のために金属塩を添加してもよ!/、。金属塩としては例えば 2価金属塩ィ匕物など が使用でき、例えば、塩化マグネシウム、塩ィ匕マンガン、塩ィ匕カルシウムなどが好適 に用いられる。金属塩の添加量は、酵素の活性ィ匕が認められる、あるいは生成物が 効率よく得られる量で設定すればよぐ特に限定されるものではないが、好適には 1 mM〜10mMの範囲内で添カ卩するのが好ましい。また更に、これらの反応液に有機 溶媒を添加しても良い。この時の有機溶媒は水溶性有機溶媒でも良ぐまた非水溶 性有機溶媒を使用して形成される 2相系で反応を行っても良い。有機溶媒添加量は 酵素が失活せず生成物が効率よく得られる量であれば良ぐ特に限定されるもので はない。このようにして生成した標識スフインゴ脂質は、例えば薄層クロマトグラフィー によって確認できる。本発明によって得られたスフインゴ脂質は有機化合物で一般的 に用いられる精製手段、例えば有機溶媒を用いた抽出や各種のクロマトグラフィーに よって未反応のスフインゴ脂質又はリゾスフインゴ脂質、ならびに標識脂肪族カルボン 酸と分離し、単離精製することができる。 [0021] As the buffer solution, a buffer solution having a pH of about 5 to 9 may be used in the present invention. It is desirable to carry out the production in a buffer solution of acid buffer or Tris-HCl buffer having a pH of around 6.5-9. Further, a surfactant may be usually added to the buffer solution for enzyme activity or substrate solubility. As the surfactant, the present invention is not particularly limited, but a bile acid surfactant, a nonionic surfactant, or the like can be used. The amount of surfactant to be added is particularly limited if it is set to an amount that activates the enzyme, dissolves the substrate, or is effective in obtaining the product efficiently. In the case of a nonionic surfactant, it is preferably added in the range of 0.01% to 2% by weight. More preferably, it is added in the range of 0.05% by weight to 0.5% by weight, and more preferably in the range of 0.05% by weight to 0.25% by weight. Metal salts may be added to the buffer to activate the enzyme! /. As the metal salt, for example, a divalent metal salt can be used, and for example, magnesium chloride, salt-manganese, salt-calcium and the like are preferably used. The addition amount of the metal salt is not particularly limited as long as the activity of the enzyme is recognized or the product can be obtained efficiently, but it is preferably in the range of 1 mM to 10 mM. It is preferable to add it with the following. Furthermore, an organic solvent may be added to these reaction solutions. The organic solvent at this time may be a water-soluble organic solvent, or the reaction may be carried out in a two-phase system formed using a water-insoluble organic solvent. The amount of organic solvent added is not particularly limited as long as the enzyme is not deactivated and the product can be obtained efficiently. The labeled sphingolipid thus produced can be confirmed, for example, by thin layer chromatography. The sphingolipid obtained according to the present invention is an unreacted sphingolipid or lysosphingolipid, and labeled aliphatic carboxylic acid by a purification means generally used for organic compounds, for example, extraction using an organic solvent or various chromatography. It can be separated and isolated and purified.
このように本発明により、スフインゴ脂質の脂肪酸に標識が付加された標識スフイン ゴ脂質の製造方法が提供される。また当該製造方法を用いて所望の標識スフインゴ 脂質を工業的に有利に製造することが可能となる。天然スフインゴ脂質は一般に長 鎖脂肪酸の鎖長に多様性があり、均一な長鎖脂肪酸鎖長のスフインゴ脂質を得るこ とが困難であった。しかしながら、本発明の方法によって、発色団を形成する物質、 蛍光物質、ピオチン等の標識を有しかつ長鎖脂肪酸が均一化されたスフインゴ脂質 を簡便に得ることが可能となった。本発明の方法で得られる標識スフインゴ脂質はそ の存在や分布を容易に調べることが可能であるので、スフインゴ脂質代謝に関与する 酵素、タンパク質の検出、スフインゴ脂質の細胞内代謝や輸送経路の解明等への応 用が可能である。 As described above, the present invention provides a method for producing labeled sphingolipid in which a label is added to the fatty acid of sphingolipid. In addition, the desired labeled sphingolipid can be industrially advantageously produced using the production method. Natural sphingolipids generally have a variety of long chain fatty acid chain lengths, and it has been difficult to obtain sphingolipids having a uniform long chain fatty acid chain length. However, by the method of the present invention, a sphingolipid having a chromophore-forming substance, a fluorescent substance, a marker such as piotin and the like, and a long-chain fatty acid homogenized Can be easily obtained. Since the presence and distribution of labeled sphingolipids obtained by the method of the present invention can be easily examined, detection of enzymes and proteins involved in sphingolipid metabolism, intracellular metabolism of sphingolipids, and elucidation of transport pathways It can be applied to
実施例  Example
[0023] 以下、実施例を挙げて本発明を更に具体的に示す力 本発明は以下の実施例に 限定されるものではない。  [0023] Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to the following examples.
[0024] 参考例 シエバネラ アルガ G8 (Shewanella alga G8)株由来のスフインゴリピド セラミド N—デアシラーゼの調製  [0024] Reference Example Preparation of Sphingolipid Ceramide N-Deacylase from Shewanella alga G8 Strain
特許文献 5に記載された、 FERM BP— 7717の受託番号で寄託された微生物で ある Escherichia coli JM109ZpSE5よりプラスミド pSCDlを得た。このプラスミド に含有される、 SCDaseをコードする DNAを材料とし、特許文献 5に記載された手順 にしたがって C末端側のポリペプチドを欠失した SCDaseをコードする DNAを有する プラスミドである pETSCD— delを構築した。  Plasmid pSCDl was obtained from Escherichia coli JM109ZpSE5, which is a microorganism deposited under the accession number FERM BP-7717 described in Patent Document 5. PETSCD-del, a plasmid containing DNA encoding SCDase, which contains the DNA encoding SCDase contained in this plasmid and has a C-terminal polypeptide deleted in accordance with the procedure described in Patent Document 5. It was constructed.
[0025] 前記のプラスミド pETSCD— delで形質転換した大腸菌 Escherichia coli BL21  [0025] Escherichia coli BL21 transformed with the plasmid pETSCD-del
(DE3) pLysEを LB培地中で培養し、得られた培養液より菌体を回収した。 15リット ルの培養液から回収した菌体を出発材料とし、特許文献 5に記載された下記の一連 の手順にしたがってスフインゴリピドセラミド N—デアシラーゼ(SCDase)を精製した。 (DE3) pLysE was cultured in LB medium, and cells were collected from the obtained culture solution. Sphingolipid ceramide N-deacylase (SCDase) was purified according to the following series of procedures described in Patent Document 5, using bacterial cells recovered from 15 liters of culture broth as a starting material.
(1)凍結融解、超音波処理による菌体の破砕 (1) Fracture of cells by freeze-thawing and ultrasonic treatment
(2) HiTrap Chelatingカラム(GEヘルスケアバイオサイエンス社製)によるクロマト グラフィー  (2) Chromatography using HiTrap Chelating column (GE Healthcare Bioscience)
(3) HiTrap Qカラム(GEヘルスケアバイオサイエンス社製)によるクロマトグラフィ  (3) Chromatography using HiTrap Q column (GE Healthcare Bioscience)
(4) HiLoad Superdex 200pgカラム(GEヘルスケアバイオサイエンス社製)によ るクロマトグラフィー (4) Chromatography using HiLoad Superdex 200pg column (GE Healthcare Bioscience)
(5) HiTrap Qカラム(GEヘルスケアバイオサイエンス社製)によるクロマトグラフィ なお、上記の操作にぉ 、てスフインゴリピドセラミド N—デアシラーゼの活性は下記 の方法で測定した。 (5) Chromatography using HiTrap Q column (manufactured by GE Healthcare Bioscience) In addition, the activity of Sphingolipidceramide N-deacylase is as follows. It measured by the method of.
[0026] の基質溶液〔10nmol ガンダリオシド GMla、 5mM MgCl、 5mM Mn  [0026] substrate solution [10 nmol gandarioside GMla, 5 mM MgCl, 5 mM Mn
2  2
CI、 5mM CaCl、 0. 2重量0 /0 トリトン X— 100、 200mM NaCl、 50mM 酢酸CI, 5mM CaCl, 0. 2 weight 0/0 Triton X- 100, 200mM NaCl, 50mM acetate
2 2 twenty two
緩衝液 (pH5. 5)〕に、 10 Lの粗酵素液をカ卩え、 37°Cで 30分間インキュベートして 、粗酵素液と基質とを反応させた。その後、 100°Cで 5分間煮沸して、反応を止めた。 得られた反応物を遠心濃縮機を用いて調製した濃縮乾固物に、 10 Lのクロ口ホル ム Zメタノール(2 : 1、 vZv)を添加し、超音波処理して濃縮乾固物を溶解した。得ら れた溶解物を、シリカゲル TLCプレートにスポットした。クロ口ホルム Zメタノール Z0 . 02% CaCl (5 :4 : 1、 vZvZv)で展開し、オルシノール硫酸法により、シリカゲル  In the buffer solution (pH 5.5), 10 L of the crude enzyme solution was added and incubated at 37 ° C. for 30 minutes to react the crude enzyme solution with the substrate. Thereafter, the reaction was stopped by boiling at 100 ° C for 5 minutes. To the concentrated dried product prepared using the centrifugal concentrator, 10 L of black mouth form Zmethanol (2: 1, vZv) was added and sonicated to obtain the concentrated dried product. Dissolved. The resulting lysate was spotted on a silica gel TLC plate. Expanded with black mouth form Z methanol Z0.02% CaCl (5: 4: 1, vZvZv) and silica gel by orcinol sulfate method.
2  2
TLCプレート上の糖脂質を発色させた。発色後のシリカゲル TLCプレート上のスポッ トにつ 、て、 TLCクロマトスキャナー(島津製作所製)を用いて吸光度 (波長: 540nm )を測定し、以下の式により分解率を測定した。  Glycolipids on the TLC plate were developed. Absorbance (wavelength: 540 nm) was measured using a TLC chromatographic scanner (manufactured by Shimadzu Corporation) on the spot on the silica gel TLC plate after color development, and the decomposition rate was measured by the following formula.
分解率(%) = (〔遊離したリゾ GMlaの面積〕 Z〔遊離したリゾ GMlaの面積 +未反 応の GMlaの面積〕) X 100  Decomposition rate (%) = ([area of free lysate GMla] Z [area of free lyso GMla + area of unreacted GMla]) X 100
ここで、 SCDaseの 1単位(U)は、 1分間に 1 μ molの GMlaを分解する酵素量として 定義した。なお、得られた SCDaseの至適 pHは 5. 5〜6. 5、分子量は 75kDaであ つた o  Here, one unit (U) of SCDase was defined as the amount of enzyme that decomposes 1 μmol of GMla per minute. The optimum pH of the obtained SCDase was 5.5 to 6.5, and the molecular weight was 75 kDa.
[0027] 実施例 1 リゾ GMlaの調製  Example 1 Preparation of lyso GMla
ガンダリオシド GMla (シグマ社製) 325nmol (約 500 μ g)と参考例で調製した SC Dase 8. 4mUを 2. 5mM MgCl、 2. 5mM MnCl、 2. 5mM CaCl及び 0. 1  Gandarioside GMla (Sigma) 325 nmol (approx. 500 μg) and SC Dase 8.4 mU prepared in Reference Example 2.5 mM MgCl, 2.5 mM MnCl, 2.5 mM CaCl and 0.1
2 2 2 重量0 /0トリトン (Triton) X— 100を含む 25mM 酢酸ナトリウム緩衝液 (pH5. 5)中( 反応液量 1200 で37で、 1時間反応させた後、反応液を 100°Cで 5分間保持し て反応を停止させた。この試料より Oasis MCXカラム(ウォーターズ社製)を用いて リゾ GMlaを分離した。 Oasis MCXカラムはあらかじめ商品添付のマニュアルに従 つてメタノールでコンディショニングした後に水で平衡ィ匕しておき、熱処理後の反応 液に終濃度 0. 1Nになるように塩酸をカ卩えたものを前記のカラムにアプライした。 lm Lの 0. 1N塩酸でカラムを洗浄後、 5mLのメタノールと、 5mLの 5%アンモニア水メタ ノール溶液でそれぞれ吸着物を溶出した。溶出画分はメルク社製シリカゲル 60TLC (薄層クロマトグラフィー)プレートで (展開溶媒:クロ口ホルム Zメタノール ZO. 2%Ca CI溶液 = 2 : 3 : 1 (v/v/v)、発色試薬:オルシノール硫酸)で分析したところ、リゾ G2 2 2 Weight 0/0 Triton (Triton) 25 mM sodium acetate buffer containing X- 100 at (pH 5. 5) in (in reaction volume 1200 37 After reacting 1 hour, the reaction solution 100 ° C The reaction was stopped by holding for 5 minutes, and the lyso-GMla was separated from this sample using an Oasis MCX column (Waters Co.) The Oasis MCX column was conditioned with methanol according to the manual attached to the product in advance and then with water. After equilibration, the reaction solution after the heat treatment was added to the column with hydrochloric acid so that the final concentration was 0.1 N. After washing the column with lm L of 0.1 N hydrochloric acid, 5 mL The adsorbate was eluted with 5 mL of methanol and 5 mL of 5% aqueous ammonia in methanol. (Thin layer chromatography) When analyzed with a plate (developing solvent: Kuroguchi form Z methanol ZO. 2% Ca CI solution = 2: 3: 1 (v / v / v), color reagent: orcinol sulfate) G
2 2
Miaがアンモニア溶出画分に確認された。この溶出画分の溶媒は濃縮除去し、精製 されたリゾ GMlaを得た。  Mia was confirmed in the ammonia elution fraction. The solvent of this elution fraction was concentrated and removed to obtain purified lyso GMla.
実施例 2 リゾ GMlaと C12— NBD—脂肪酸の縮合反応 Example 2 Condensation reaction of lyso GMla and C12—NBD—fatty acid
実施例 1で得られたリゾ GM 1 aと 200nmolの C 12- NBD 脂肪酸〔 7— nitroben z— 2— oxa— 1, 5— diazole (NBD)標識 Laurie acid (別名 n— aodecanoic aci d)、インビトロジェン社製〕とを参考例で調製した SCDase 5. 6mUを添カロした 0. 5 重量%トリトン X— 100を含む 25mMトリス塩酸緩衝液 pH7. 5中で 37°C、 1時間反 応させた。反応液の最終液量は 800 であった。反応終了後、 Oasis MCXカラム を用いて実施例 1に記載の方法で反応生成物を精製した。各溶出画分につ!、て実 施例 1に記載の方法で TLC分析を行った。 TLC分析の結果を図 1、図 2に示す。図 1は UVランプ下で蛍光によって反応生成物を検出した結果である。図 2は TLCプレ ートについてオルシノール硫酸試薬で定法に従って糖脂質の検出を行った結果であ る。図 1と 2のレーン 1はカラムに供したサンプル、レーン 2は素通り画分、レーン 3は 塩酸洗浄画分、レーン 4はメタノール溶出画分、レーン 5はアンモニア水 Zメタノール 溶出画分、レーン 6はガンダリオシド GMlaの SCDase消化物(マーカー)である。 N BD標識 GMla (C12— NBD— GMla)はメタノール溶出画分(レーン 4)に回収され ていることが確認された。  The lyso GM 1a obtained in Example 1 and 200 nmol of C 12- NBD fatty acid [7—nitroben z— 2—oxa— 1, 5-diazole (NBD) -labeled Laurie acid (also known as n—aodecanoic acid), Invitrogen The product was reacted at 37 ° C. for 1 hour in 25 mM Tris-HCl buffer pH 7.5 containing 0.5 wt% Triton X-100 supplemented with SCDase 5.6 mU prepared in Reference Example. The final volume of the reaction solution was 800. After completion of the reaction, the reaction product was purified by the method described in Example 1 using an Oasis MCX column. For each eluted fraction, TLC analysis was performed by the method described in Example 1. The results of TLC analysis are shown in Figs. Figure 1 shows the results of detecting reaction products by fluorescence under a UV lamp. Figure 2 shows the results of glycolipid detection for TLC plates using an orcinol sulfate reagent according to a conventional method. Lanes 1 and 2 in Figure 1 and 2 are samples applied to the column, lane 2 is a flow-through fraction, lane 3 is a hydrochloric acid wash fraction, lane 4 is a methanol elution fraction, lane 5 is aqueous ammonia Z methanol elution fraction, lane 6 Is an SCDase digest (marker) of Gandarioside GMla. It was confirmed that NBD-labeled GMla (C12—NBD-GMla) was recovered in the methanol elution fraction (lane 4).
メタノール溶出画分をさらに Sep— Pak C18、Sep— Pak plus Silica (ウォーター ズ社製)を用いて精製して質量分析に供した。質量分析は、 API - 3000 (アプライド バイオシステムズ社製)を用いてネガティブイオンモードで実施した。試料は 10mM 酢酸アンモ-ゥム溶液 Zァセトニトリル = 1: 1溶液 (v/v)に溶解して質量分析器に 直接導入した。得られたマスク口マトグラムでは C12— NBD— GMla (予想分子量 1 641)の [M— H]—イオンに対応する mZz = 1640. 3のシグナルと [M— 2H] 2—ィォ ンに対応する mZz = 819. 4のシグナルが確認された。 The methanol elution fraction was further purified using Sep-Pak C18 and Sep-Pak plus Silica (Waters) and subjected to mass spectrometry. Mass spectrometry was performed in negative ion mode using API-3000 (Applied Biosystems). The sample was dissolved in 10 mM ammonium acetate solution Z-acetonitrile = 1: 1 solution (v / v) and introduced directly into the mass spectrometer. The resulting mask mouth matogram corresponds to a signal of mZz = 1640.3 corresponding to [M—H] —ion of C12—NBD—GMla (expected molecular weight 1 641) and [M—2H] 2 —ion A signal of mZz = 819. 4 was confirmed.
この結果によって、本発明の方法を用いればリゾ GMlaに NBD標識脂肪酸を直接 導入可能であることが示された。 実施例 3 SCDaseによる種々の蛍光スフインゴ糖脂質の調製 From this result, it was shown that NBD-labeled fatty acid can be directly introduced into lyso GMla by using the method of the present invention. Example 3 Preparation of various fluorescent glycosphingolipids with SCDase
糖脂質基質として 1)ガンダリオシド GMla 2)ガンダリオシドミタスチヤ一 3)ガラク トシルセラミド (GalCer) 4)サイコシン(Psy、ガラクトシルスフィンゴシン)を用いた。 ガンダリオシドミタスチヤ一はメソッズ イン ェンザィモロジ一(Methods in Enzy mology)、第 14卷、第 660— 664頁記載の方法に従って調製した。 GalCer (牛脳 由来)、 Psyはシグマ—アルドリッチ社製のものを使用した。蛍光標識脂肪酸としては 、 A)実施例 2で用いた C12— NBD—脂肪酸 B) C12— BODIPY—脂肪酸 [ (4, 4 difluor 4 bora 3a, 4a— diaza s— indacene (BODIPY) 識 Laurie ac id、インビトロジェン社製]を用いた。各々終濃度 250 Mの糖脂質基質と蛍光標識 脂肪酸とを参考例で調製した SCDaseを添加した終濃度 0. 5重量%のトリトン X— 1 00を含む 25mMトリス塩酸緩衝液 pH7. 5中で 37°C、 16時間反応させた。反応液の 最終液量 ίま 20 μ であった。 SCDase添カロ量 ίま i) 200 μ ii) 20 μ iii) 2. 5 μ Uとした。反応終了後、反応液を 100°Cで 5分間処理し、全量濃縮乾固した後、 10 Lのクロ口ホルム/メタノール = 2 : 1 (v/v)に溶解し、そのうち 5 μ Lを TLCプレート にアプライし、混合溶媒クロ口ホルム Ζメタノール /0. 02%CaCl溶液 = 5 : 4 : 1 (V  As glycolipid substrate, 1) Gandarioside GMla 2) Gandarioside Mitsutya 1) Galactosylceramide (GalCer) 4) Psychocin (Psy, galactosylsphingosine) was used. Gandarioside mistatia was prepared according to the method described in Methods in Enzymology, pages 14 and 660-664. GalCer (derived from bovine brain) and Psy were manufactured by Sigma-Aldrich. As fluorescently labeled fatty acids, A) C12—NBD—fatty acid B) C12—BODIPY—fatty acid used in Example 2 [(4, 4 difluor 4 bora 3a, 4a— diaza s—indacene (BODIPY) recognition Laurie acid, Manufactured by Invitrogen Co., Ltd. In each case, a final concentration of 250 M glycolipid substrate and fluorescently labeled fatty acid were prepared in the reference example, and SCDase was added to a final concentration of 0.5 mM Triton X-100 containing 25 mM Tris-HCl. The reaction was allowed to proceed for 16 hours at 37 ° C in buffer pH 7.5.The final volume of the reaction liquid was 20 μ. The amount of SCDase-added calorie i) 200 μ ii) 20 μ iii) 2.5 μ U. After completion of the reaction, the reaction solution was treated at 100 ° C for 5 min, concentrated to dryness, and then dissolved in 10 L of chloroform / methanol = 2: 1 (v / v), 5 μL of which was dissolved in TLC. Apply to the plate, mixed solvent black form Ζ methanol / 0.02% CaCl solution = 5: 4: 1 (V
2  2
ZvZv)で展開した。展開後のプレートを UVランプ下で観察したところ、ガンダリオ シド GM 1 aを用 、た場合には NBD標識 GM 1 aおよび BODIPY標識 GM 1 aの生成 力 ガンダリオシドミタスチヤ一を用いた場合には NBD標識された各ガンダリオシドぉ よび BODIPY標識された各ガンダリオシドの生成力 GalCerを用いた場合には NB D標識 GalCerおよび BODIPY標識 GalCerの生成力 Psyを用いた場合には NBD 標識 GalCerおよび BODIPY標識 GalCerの生成が確認された。蛍光標識スフインゴ 糖脂質の生成量は使用する酵素量が多いほど上昇した。これらの結果から、本発明 の方法によって、種々のスフインゴ糖脂質に対して、 NBD標識脂肪酸のみならず BO DIPY標識脂肪酸も直接導入されることが明らかとなった。また、本発明の方法では 、リゾスフインゴ糖脂質のスフインゴシン塩基のァミノ基に直接蛍光標識脂肪酸のァシ ル基が縮合反応するほかに、スフインゴ脂質の脂肪酸部分と蛍光標識脂肪酸が交換 する反応によってもスフインゴ糖脂質に蛍光基を導入することが出来た。すなわち、リ ゾスフインゴ糖脂質、スフインゴ糖脂質いずれを出発材料 (ァクセプター)として用いて も蛍光標識脂肪酸 (ドナー)をスフインゴ糖脂質に導入する事が可能であった。 ZvZv). The developed plate was observed under a UV lamp. When Gandarioside GM 1a was used, NBD-labeled GM 1a and BODIPY-labeled GM 1a were produced. When Gandarioside Mitastia was used. Is the ability to produce each NBD-labeled Gandarioside and BODIPY-labeled Gandarioside NB D-labeled GalCer and BODIPY-labeled GalCer-generated power When Psy is used NBD-labeled GalCer and BODIPY-labeled GalCer Generation was confirmed. The amount of fluorescent-labeled sphingoglycolipid produced increased as the amount of enzyme used increased. From these results, it was revealed that not only NBD-labeled fatty acids but also BO DIPY-labeled fatty acids were directly introduced into various glycosphingolipids by the method of the present invention. In addition, in the method of the present invention, in addition to the condensation reaction of the fluorescent labeled fatty acid acyl group directly with the amino group of the sphingosine base of the lysosulfoglycolipid, the sphingolipid is also exchanged by a reaction in which the fatty acid portion of the sphingolipid and the fluorescent labeled fatty acid are exchanged. A fluorescent group could be introduced into the glycolipid. That is, using either lysosphingoglycolipid or glycosphingolipid as a starting material (acceptor) It was also possible to introduce fluorescently labeled fatty acids (donors) into glycosphingolipids.
[0030] 実施例 4 反応 pHの検討  Example 4 Examination of reaction pH
本実施例では、ァクセプター糖脂質としてリゾガンダリオシド GMlaを用い、蛍光標 識脂肪酸としては、実施例 2で用いた C12— NBD—脂肪酸を用いた。各々終濃度 2 50 μ Μの糖脂質と蛍光標識脂肪酸とを参考例で調製した SCDase 80 μ Uを添カロ した終濃度 0. 1重量%のトリトン X— 100と終濃度 5mM MgClを含む 25mM緩衝  In this example, lysogandarioside GMla was used as the acceptor glycolipid, and the C12-NBD-fatty acid used in Example 2 was used as the fluorescently labeled fatty acid. 25 mM buffer containing 0.1 wt% Triton X-100 and final concentration of 5 mM MgCl
2  2
液中で 37°C、 16時間反応させた。反応液の最終液量は 20 であった。用いた緩 衝液は ρΗ4〜6 :酢酸ナトリウムバッファー; pH6〜7. 5 :リン酸バッファー; pH7. 5〜 9. 5 :トリス塩酸バッファーであった。反応終了後、反応液を 100°Cで 5分間処理した 。反応液を全量濃縮乾固した後、 200 Lのクロ口ホルム Zメタノール = 2 : 1 (v/v) に溶解し、そのうち 5 Lを TLCにアプライした。クロ口ホルム/メタノール /0. 02% CaCl = 5 :4 : l (vZvZv)を用いて展開後、定法に従ってクロマトスキャナー CS93 The mixture was reacted at 37 ° C for 16 hours. The final volume of the reaction solution was 20. The buffer used was ρΗ4-6: sodium acetate buffer; pH 6-7.5: phosphate buffer; pH 7.5-9.5: Tris-HCl buffer. After completion of the reaction, the reaction solution was treated at 100 ° C for 5 minutes. The reaction solution was concentrated to dryness and then dissolved in 200 L of Kuroguchi Form Z methanol = 2: 1 (v / v), 5 L of which was applied to TLC. Chloroform formaldehyde / methanol / 0.02% CaCl = 5: 4: l (vZvZv)
2 2
OOPC (島津製作所社製)で蛍光脂質を定量した。結果を図 3に示す。縮合反応率は pH7. 0力ら pH9. 0の範囲で良好であった。  The fluorescent lipid was quantified with OOPC (manufactured by Shimadzu Corporation). The results are shown in Figure 3. The condensation reaction rate was good in the range of pH 7.0 force to pH 9.0.
[0031] 実施例 5 界面活性剤の検討 [0031] Example 5 Examination of surfactant
本実施例では、ァクセプター糖脂質としてリゾガンダリオシド GMlaを用い、蛍光標 識脂肪酸としては、実施例 2で用いた C12— NBD—脂肪酸を用いた。各々終濃度 2 50 μ Μの糖脂質と蛍光標識脂肪酸とを参考例で調製した SCDase 80 μ Uと各種 界面活性剤を添加した終濃度 5mM MgClを含む 25mMトリス塩酸バッファー、 p  In this example, lysogandarioside GMla was used as the acceptor glycolipid, and the C12-NBD-fatty acid used in Example 2 was used as the fluorescently labeled fatty acid. 25 mM Tris HCl buffer containing SCDase 80 μ U prepared in the reference example and final concentrations of 5 mM MgCl, each containing a final concentration of 2,500 μΜ glycolipid and fluorescently labeled fatty acid, p
2  2
H7. 5中で 37°C、 16時間反応させた。反応液の最終液量は 20 であった。用い た界面活性剤は、トリトン X— 100 (非イオン性)、コール酸ナトリウム(陰イオン性)、タ ゥロデオキシコール酸ナトリウム (TDC、陰イオン性)であった。それぞれの界面活性 剤について終濃度を 0%、 0. 05重量%、 0. 1重量%、 0. 25重量%、 0. 5重量%、 1重量%、 2重量%に変えて検討した。反応終了後、実施例 4記載の方法で生成物 の分析を行った。この結果、トリトン X— 100を添加した反応では、その濃度が 0. 05 重量%から 0. 25重量%の範囲で良好な縮合反応率が得られた。  The mixture was reacted at 37 ° C for 16 hours in H7.5. The final volume of the reaction solution was 20. The surfactants used were Triton X-100 (nonionic), sodium cholate (anionic), sodium taurodeoxycholate (TDC, anionic). For each surfactant, the final concentration was changed to 0%, 0.05% by weight, 0.1% by weight, 0.25% by weight, 0.5% by weight, 1% by weight, and 2% by weight. After completion of the reaction, the product was analyzed by the method described in Example 4. As a result, in the reaction to which Triton X-100 was added, a good condensation reaction rate was obtained when the concentration was in the range of 0.05 wt% to 0.25 wt%.
[0032] 実施例 6 金属塩の検討 Example 6 Examination of metal salt
本実施例では、ァクセプター糖脂質としてリゾガンダリオシド GMlaを用い、蛍光標 識脂肪酸としては、実施例 2で用いた C12— NBD—脂肪酸を用いた。各々終濃度 2 50 μ Μの糖脂質と蛍光標識脂肪酸とを参考例で調製した SCDase 80 μ Uを添カロ した終濃度 0. 1重量%のトリトン X— 100と終濃度 5mMの各種金属塩を含む 25mM トリス塩酸バッファー、 pH7. 5中で 37°C、 16時間反応させた。反応液の最終液量は 20 μ であった。用いた金属塩は、 CaCl、 MnCl、 MgCl、 CuCl、 ZnClであつ In this example, lysogandarioside GMla is used as an acceptor glycolipid, and a fluorescent standard is used. As the fatty acid, the C12-NBD-fatty acid used in Example 2 was used. The final concentration of 0.1% by weight of Triton X-100 and the final concentration of 5 mM of various metal salts were prepared by adding SCDase 80 μU prepared in a reference example with a glycolipid with a final concentration of 250 μΜ each and a fluorescently labeled fatty acid. The reaction was carried out at 37 ° C for 16 hours in 25 mM Tris-HCl buffer, pH 7.5. The final volume of the reaction solution was 20 μm. The metal salts used are CaCl, MnCl, MgCl, CuCl, ZnCl.
2 2 2 2 2 た。さらに EDTAについても検討した。反応終了後、実施例 4記載の方法で生成物 の分析を行った。結果を図 4に示す。縮合反応率は CaCl、 MnCl、 MgClを添加し  2 2 2 2 2 We also examined EDTA. After completion of the reaction, the product was analyzed by the method described in Example 4. The results are shown in Fig. 4. Condensation rate is calculated by adding CaCl, MnCl, MgCl
2 2 2 た場合、金属塩無添カ卩に比べて良好であった。  2 2 2 was better than that without metal salt.
[0033] 実施例 7 酵素量の検討 Example 7 Examination of enzyme amount
本実施例では、ァクセプター糖脂質としてリゾガンダリオシド GMlaを用い、蛍光標 識脂肪酸としては、実施例 2で用いた C12— NBD—脂肪酸を用いた。各々終濃度 2 50 M (5nmol)の糖脂質と蛍光標識脂肪酸とを参考例で調製した SCDaseを添カロ した終濃度 0. 1重量0 /0のトリトン X—100と終濃度 5mMの MgClを含む 25mMトリス In this example, lysogandarioside GMla was used as the acceptor glycolipid, and the C12-NBD-fatty acid used in Example 2 was used as the fluorescently labeled fatty acid. Include each MgCl final concentration 2 50 M final concentration 0.1 wt 0/0 was added Caro the SCDase prepared in Reference Example and a glycolipid and a fluorescent-labeled fatty acids (5 nmol) Triton X-100 and a final concentration of 5mM 25 mM Tris
2  2
塩酸バッファー、 pH7. 5中で 37°C、 16時間反応させた。反応液の最終液量は 20 であった。用 ヽた酵素量 ίま、それぞれ 2000 U、 80 U、 40 U、 20 U、 10 μ U、 5 U、 2. 5 U、 1. 25 Uであった。これは、糖脂質 lnmolあたりそれぞれ、 4 00 U、 16 U、 8 U、 4 U、 2 U、 1 U、 0. 5 U、 0. 25 Uである。反応 終了後、実施例 4記載の方法で生成物の分析を行った。結果を図 5に示す。縮合反 応率は 20 μ U〜80 μ Uの SCDaseを用いた場合に良好であった。  The reaction was carried out in hydrochloric acid buffer, pH 7.5, at 37 ° C for 16 hours. The final volume of the reaction solution was 20. The amount of enzyme used was 2000 U, 80 U, 40 U, 20 U, 10 μU, 5 U, 2.5 U, and 1.25 U, respectively. These are 400 U, 16 U, 8 U, 4 U, 2 U, 1 U, 0.5 U, and 0.25 U per lnmol of glycolipid, respectively. After completion of the reaction, the product was analyzed by the method described in Example 4. The results are shown in FIG. The condensation reaction rate was good when 20 μU to 80 μU SCDase was used.
[0034] 実施例 8 スフインゴ脂質の標識 Example 8 Labeling of sphingolipid
ァクセプターとして下記 1〜 11のスフインゴ脂質を用い、蛍光標識脂肪酸としては、 実施例 2で用 ヽた C 12 - NBD -脂肪酸を用 、た反応を行つた。各々終濃度 250 Mの糖脂質と蛍光標識脂肪酸とを参考例で調製した SCDase 40 Uを添加した終 濃度 0. 1重量%のトリトン X— 100と終濃度 5mMの CaClを含む 25mMトリス塩酸バ  The following 1-11 sphingolipids were used as acceptors, and the reaction was carried out using the C 12 -NBD-fatty acid used in Example 2 as the fluorescently labeled fatty acid. A final concentration of 250 M glycolipids and fluorescently labeled fatty acids were prepared in the reference examples, and SCDase 40 U was added to a final concentration of 0.1 mM Triton X-100 and a final concentration of 5 mM CaCl containing 25 mM Tris HCl.
2  2
ッファー、 PH7. 5中で 37°C、 16時間反応させた。反応液の最終液量は 20 Lであ つた。用いたスフインゴ脂質は 1)スフインゴミエリン (鶏卵黄由来、シグマ アルドリツ チ社製)、 2)ダルコシルセラミド (GlcCer、シグマ一アルドリッチ社製)、 3)ラタトシル セラミド (LacCer、シグマ—アルドリッチ社製)、 4)ガンダリオシド GM3 (ゥシ脳由来) 、 5)ガンダリオシド GM2 (マトレャ社製)、 6)ガンダリオシド GMla (ゥシ脳由来)、 7) ガンダリオシド GDla (ゥシ脳由来)、 8)ガンダリオシド GTlb (ゥシ脳由来)、 9)ガング リオシド GQ lb (ゥシ脳由来)、 10)粗ガンダリオシド Mixture (ブタ脳由来)であった。 反応終了後、実施例 4記載の方法で生成物の TLC分析を行い、 UVライト下で蛍光 標識スフインゴ脂質を検出した。その結果、使用した全てのスフインゴ脂質について 蛍光標識されたことが確認された。 The reaction was carried out at 37 ° C. for 16 hours in a buffer, PH 7.5. The final volume of the reaction solution was 20 L. Sphingolipids used were 1) Sphingomyelin (derived from chicken egg yolk, manufactured by Sigma Aldrich), 2) Darcosylceramide (GlcCer, manufactured by Sigma-Aldrich), 3) Ratatosyl ceramide (LacCer, manufactured by Sigma-Aldrich) 4) Gandarioside GM3 (from Ushi brain) 5) Gandarioside GM2 (Matreya), 6) Gandarioside GMla (from Ushi brain), 7) Gandarioside GDla (from Ushi brain), 8) Gandarioside GTlb (from Ushi brain), 9) Ganglioside GQ lb 10) Crude Gandarioside Mixture (from porcine brain). After completion of the reaction, the product was subjected to TLC analysis by the method described in Example 4, and fluorescently labeled sphingolipid was detected under UV light. As a result, it was confirmed that all the sphingolipids used were fluorescently labeled.
[0035] 実施例 9 リゾガンダリオシド GMlaを用いた標識 GMlaの製造 Example 9 Labeling with Rhizogandarioside GMla Production of GMla
本実施例ではァクセプター糖脂質としてリゾガンダリオシド GMla、蛍光標識脂肪 酸として実施例 2で用いた C12—NBD—脂肪酸を用いた。終濃度 250 M (各々 1 50nmol)の糖脂質基質と蛍光標識脂肪酸とを参考例で調製した SCDase 1. 2m Uを添加した終濃度 0. 1重量0 /0のトリトン X— 100と 5mMの MgClを含む 25mM ト In this example, Rhizogandarioside GMla was used as the acceptor glycolipid, and C12-NBD-fatty acid used in Example 2 was used as the fluorescently labeled fatty acid. Final concentration 250 M (each 1 50 nmol) of the glycolipid substrate and a fluorescent-labeled fatty acid and a MgCl of SCDase 1. 2m U final concentration was added to 0.1 weight 0/0 Triton X- 100 and 5mM prepared in Reference Example 25mM including
2  2
リス塩酸緩衝液、 pH7. 5中で 37°C、 16時間反応させた。反応液の最終液量は 600 μ であった。反応終了後、反応液を 100°Cで 5分間処理し、 Oasis MCXカラム(ゥ オーターズ社製)を用いて標識 GMlaを分離した。 Oasis MCXカラムはあらかじめ 商品添付のマニュアルに従って、メタノールでコンディショニングした後に水で平衡化 しておいた。熱処理後の反応液に終濃度 0. 1Nになるように塩酸をカ卩えてから、カラ ムにアプライした。 2mLの 0. 01N塩酸でカラムを洗浄後、 5mLのメタノールと、 5mL の 5%アンモニア水メタノール溶液でそれぞれ吸着物を溶出した。溶出画分から 1Z 50量をサンプリングして、溶媒を除去後、 100 μ Lのクロ口ホルム Ζメタノール = 2 : 1 (ν/ν)に溶解し、そのうち 5 Lを NBD検出用として、残り全量を糖脂質検出用とし て、それぞれ TLCプレートにアプライし、クロ口ホルム Ζメタノール Ζ0. 02%CaCl  The mixture was reacted at 37 ° C for 16 hours in a squirrel hydrochloric acid buffer, pH 7.5. The final volume of the reaction solution was 600 μm. After completion of the reaction, the reaction solution was treated at 100 ° C for 5 minutes, and labeled GMla was separated using an Oasis MCX column (manufactured by Waters). The Oasis MCX column was conditioned with methanol and equilibrated with water according to the manual supplied with the product. Hydrochloric acid was added to the reaction solution after heat treatment to a final concentration of 0.1 N, and then applied to the column. After washing the column with 2 mL of 0.01N hydrochloric acid, the adsorbate was eluted with 5 mL of methanol and 5 mL of 5% aqueous ammonia in methanol. Sample 1Z 50 from the elution fraction, remove the solvent, dissolve in 100 μL of black mouth form Ζ methanol = 2: 1 (ν / ν), 5 L of which is used for NBD detection, For glycolipid detection, each was applied to TLC plate and black mouth form ホ ル methanol Ζ0.02% CaCl
2 溶液 = 5 :4 : 1 (vZvZv)を用いて展開した。展開後の NBD検出用プレートは定法 に従ってクロマトスキヤナー CS9300PCにより蛍光の検出を行った。糖脂質検出用 プレートはオルシノール硫酸を発色試薬に用いて糖脂質を定量した。その結果、上 記の反応の縮合率は約 40%、反応産物である C12— NBD— GMlaの精製回収率 は約 90%となり、得られた C12— NBD— GMlaは約 50nmolであった。  Two solutions were developed using 5: 4: 1 (vZvZv). The developed NBD detection plate was subjected to fluorescence detection using a chromatographic scanner CS9300PC according to a conventional method. The glycolipid detection plate was quantified by using orcinol sulfate as a coloring reagent. As a result, the condensation rate of the above reaction was about 40%, the purification recovery rate of the reaction product C12-NBD-GMla was about 90%, and the obtained C12-NBD-GMla was about 50 nmol.
[0036] 実施例 10 蛍光標識スフインゴミエリンの調製 Example 10 Preparation of fluorescently labeled sphingomyelin
本実施例ではァクセプター脂質としてスフインゴミエリン (SM、シグマ一アルドリッチ 社製)を、蛍光標識脂肪酸として、 A)実施例 2で用いた C12— NBD—脂肪酸、又は B)実施例 3で用いた C12— BODIPY—脂肪酸を用いた。各々終濃度 250 Mのス フインゴ脂質と蛍光標識脂肪酸とを参考例で調製した SCDase 200 μ Uあるいは 2 0 μ Uを添加した終濃度 0. 1重量0 /0のトリトン X— 100を含む 25mMトリス塩酸バッフ ァー、 pH7. 5中で 37°C、 16時間反応させた。反応液の最終液量は 20 であった 。実施例 3に記載の方法で反応液の TLC分析を行ったところ、 NBD標識 SMと BOD IPY標識 SMが生成していることが確認された。この結果から、本発明の方法によつ て、スフインゴミエリンをァクセプターとしても蛍光標識脂肪酸を導入することが出来る 事が明ら力となった。 In this example, Sphingomyelin (SM, Sigma-Aldrich) was used as the acceptor lipid. As a fluorescently labeled fatty acid, A) C12-NBD-fatty acid used in Example 2 or B) C12-BODIPY-fatty acid used in Example 3 was used. 25mM Tris, each containing a final concentration 250 M of the scan Fuingo SCDase 200 μ U or 2 0 mu final concentration 0.1 weight with the addition of U 0/0 Triton X- 100 for the lipids and fluorescent-labeled fatty acid prepared in Reference Example The reaction was carried out in a hydrochloric acid buffer, pH 7.5, at 37 ° C for 16 hours. The final volume of the reaction solution was 20. When TLC analysis of the reaction solution was performed by the method described in Example 3, it was confirmed that NBD-labeled SM and BOD IPY-labeled SM were generated. From this result, it became clear that the fluorescently labeled fatty acid can be introduced using sphingomyelin as an acceptor by the method of the present invention.
産業上の利用可能性  Industrial applicability
[0037] 本発明の製造方法により、スフインゴ糖脂質、スフインゴミエリンを含む任意の標識 スフインゴ脂質を効率よく安価に調製することが可能となった。本発明の方法により得 られる標識スフインゴ脂質はスフインゴ脂質や生体膜の機能の解明のような生理、生 化学分野の研究の他、創薬や人工生体膜といった医療技術の開発に有用である。 図面の簡単な説明 [0037] The production method of the present invention has made it possible to efficiently and inexpensively prepare any labeled sphingolipid containing sphingoglycolipid and sphingomyelin. The labeled sphingolipid obtained by the method of the present invention is useful for the development of medical technologies such as drug discovery and artificial biomembranes, as well as research in the fields of physiology and biochemistry such as elucidation of functions of sphingolipids and biomembranes. Brief Description of Drawings
[0038] [図 1]本発明の方法によって製造した NBD標識 GMlaの TLC分析の結果 (蛍光シグ ナル)を示す図である。  FIG. 1 is a diagram showing the results (fluorescence signal) of TLC analysis of NBD-labeled GMla produced by the method of the present invention.
[図 2]本発明の方法によって製造した NBD標識 GMlaの TLC分析の結果 (糖染色) を示す図である。  FIG. 2 is a diagram showing the results (sugar staining) of TLC analysis of NBD-labeled GMla produced by the method of the present invention.
[図 3]緩衝液と pHの検討結果を示す図である。  FIG. 3 is a graph showing the results of examination of buffer solution and pH.
[図 4]金属塩の検討結果を示す図である。  FIG. 4 is a diagram showing the results of study on metal salts.
[図 5]酵素量の検討結果を示す図である。  FIG. 5 is a diagram showing the results of examination of the amount of enzyme.

Claims

請求の範囲 The scope of the claims
[1] スフインゴ脂質又はリゾスフインゴ脂質と、発色団を形成する物質、蛍光物質、ピオ チン及びノ、プテンカ なる群より選択される標識を有する脂肪族カルボン酸とを、ス フインゴリピドセラミド N—デアシラーゼを用いて反応させ、標識スフインゴ脂質を得る ことを特徴とする、標識スフインゴ脂質の製造方法。  [1] Sphingolipid ceramide N-deacylase is obtained by combining sphingolipid or lysosphingolipid with a chromophore-forming substance, a fluorescent substance, piotin, and an aliphatic carboxylic acid having a label selected from the group consisting of ptenca. A labeled sphingolipid production method, characterized in that the labeled sphingolipid is obtained by reacting with the use of
[2] スフインゴリピドセラミド N—デアシラーゼカ シエバネラ(Shewanella)属の細菌由 来のものである請求項 1記載の製造方法。 [2] The production method according to claim 1, wherein the bacterium is derived from a bacterium belonging to the genus Sheungella, Sphingolipidceramide N-deacylase.
[3] スフインゴリピドセラミド N—デアシラーゼカ シエバネラ アルガ G8株由来のもの である請求項 2記載の製造方法。 [3] The production method according to claim 2, wherein the method is derived from Sufingolipidceramide N-deacylase Cassiva laarga G8.
[4] スフインゴリピドセラミド N—デアシラーゼが組換え酵素である請求項 1記載の製造 方法。 [4] The production method according to claim 1, wherein the sulfingolipidceramide N-deacylase is a recombinant enzyme.
[5] さらに、得られた標識スフインゴ脂質を単離する工程を包含する請求項 1記載の製 造方法。  [5] The production method according to claim 1, further comprising the step of isolating the obtained labeled sphingolipid.
[6] 請求項 1〜5いずれか 1項に記載の製造方法により得られる標識スフインゴ脂質。  [6] A labeled sphingolipid obtained by the production method according to any one of claims 1 to 5.
PCT/JP2007/053917 2006-03-02 2007-03-01 Method for production of labeled sphingolipid WO2007102396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-056753 2006-03-02
JP2006056753 2006-03-02

Publications (1)

Publication Number Publication Date
WO2007102396A1 true WO2007102396A1 (en) 2007-09-13

Family

ID=38474827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053917 WO2007102396A1 (en) 2006-03-02 2007-03-01 Method for production of labeled sphingolipid

Country Status (1)

Country Link
WO (1) WO2007102396A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148125A1 (en) * 2015-03-16 2016-09-22 国立大学法人大阪大学 Novel fluorescently labeled sphingomyelin and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081655A (en) * 1996-07-19 1998-03-31 Takara Shuzo Co Ltd Production of sphingolipid and sphingolipid derivative
JP2002058507A (en) * 2000-08-22 2002-02-26 Akiyama Shigeju Buckle with pedometer
WO2002026963A1 (en) * 2000-09-26 2002-04-04 Takara Bio Inc. Shingolipid ceramide deacylase gene
WO2003093287A1 (en) * 2002-05-03 2003-11-13 Institut Pasteur Novel method for preparing alpha-glycosylceramides, novel alpha-glycosylceramide derivatives and their uses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081655A (en) * 1996-07-19 1998-03-31 Takara Shuzo Co Ltd Production of sphingolipid and sphingolipid derivative
JP2002058507A (en) * 2000-08-22 2002-02-26 Akiyama Shigeju Buckle with pedometer
WO2002026963A1 (en) * 2000-09-26 2002-04-04 Takara Bio Inc. Shingolipid ceramide deacylase gene
WO2003093287A1 (en) * 2002-05-03 2003-11-13 Institut Pasteur Novel method for preparing alpha-glycosylceramides, novel alpha-glycosylceramide derivatives and their uses

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BERGSTROEM F. ET AL.: "Dimers of dipyrrometheneboron difluoride (BODIPY) with light spectroscopic applications in chemistry and biology", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 124, no. 2, 2002, pages 196 - 204 *
BOLDYREV I.A. ET AL.: "A synthesis and properties of new 4,4-difluoro-3a,4a-diaza-s-indacene (BODIPY)-labeled lipids", RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, vol. 32, no. 1, January 2006 (2006-01-01), pages 78 - 83 *
GEGE C. ET AL.: "Synthesis of fluorescence labeled sialyl Lewisx glycosphingolipids", TETRAHEDRON LETTERS, vol. 42, no. 3, 2001, pages 377 - 380 *
HE X. ET AL.: "A fluorescence-based high-performance liquid chromatographic assay to determine acid sphingomyelinase activity and diagnose types A and B Niemann-Pick disease", ANALYTICAL BIOCHEMISTRY, vol. 314, no. 1, 2003, pages 116 - 120 *
KLAR R. ET AL.: "Synthesis of pyrenesulfonylamido-sphingomyelin and its use as substrate for determining sphingomyelinase activity and diagnosing Niemann-Pick disease", CLINICA CHIMICA ACTA, vol. 176, no. 3, 1988, pages 259 - 267 *
MARCHESINI S. ET AL.: "Synthesis, spectral properties and enzymic hydrolysis of fluorescent derivatives of cerebroside sulfate containing long-wavelength-emission probes", CHEMISTRY AND PHYSICS OF LIPIDS, vol. 53, no. 2-3, 1990, pages 165 - 175 *
NAKAGAWA T. ET AL.: "Preparation of fluorescence-labeled GM1 and sphingomyelin by the reverse hydrolysis reaction of sphingolipid ceramide N-deacylase as substrates for assay of sphingolipid-degrading enzymes and for detection of sphingolipid-binding proteins", JOURNAL OF BIOCHEMISTRY (TOKYO), vol. 126, no. 3, 1999, pages 604 - 611 *
RON I. ET AL.: "Use of fluorescent substrates for characterization of Gaucher disease mutations", BLOOD CELLS, MOLECULES & DISEASES, vol. 35, no. 1, 2005, pages 57 - 65 *
SALVAYRE R. ET AL.: "Use of mixed dispersion of fluorescent galactosylceramide and sodium dodecylsulfate for assaying galactosylceramide-beta-galactosidase and diagnosing Krabbe disease", ENZYME, vol. 33, no. 3, 1985, pages 175 - 180 *
SUMIDA T. ET AL.: "Molecular cloning and characterization of a novel glucocerebrosidase of Paenibacillus sp. TS12", JOURNAL OF BIOCHEMISTRY (TOKYO, JAPAN), vol. 132, no. 2, 2002, pages 237 - 243 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148125A1 (en) * 2015-03-16 2016-09-22 国立大学法人大阪大学 Novel fluorescently labeled sphingomyelin and use thereof
JPWO2016148125A1 (en) * 2015-03-16 2017-07-13 国立大学法人大阪大学 Novel fluorescently labeled sphingomyelin and its use

Similar Documents

Publication Publication Date Title
Gelb et al. Do membrane-bound enzymes access their substrates from the membrane or aqueous phase: interfacial versus non-interfacial enzymes
KR100468306B1 (en) Process for the preparation of sphingolipids and sphingolipid derivatives
Bruzik et al. Phospholipids chiral at phosphorus. Part 3. Preparation and spectral properties of chiral thiophospholipids
WO2007102396A1 (en) Method for production of labeled sphingolipid
Damnjanović et al. Enzymatic modification of phospholipids by phospholipase D
JP2002272493A (en) Method for base exchange of phospholipid
JP3669595B2 (en) Sphingolipid ceramide deacylase
JP3625244B2 (en) Method for producing lysosphingolipid
US20110224096A1 (en) Fluorescent phosphonic ester library
US6428999B1 (en) Sphingolipid ceramide N-deacylase, methods for producing sphingolipids and sphingolipid derivatives, and spingolipid ceramide N-deacylase gene
JP3868052B2 (en) Sphingolipid ceramide N-deacylase
JP2657274B2 (en) Method for producing phospholipid
KR100585471B1 (en) Process for producing lysosphingolipids
JPH0761276B2 (en) Enzymatic method for producing phospholipid-d-serine derivative
JPH0253498A (en) Enzymatic resolution of optical isomer of racemic ester derivative of 3-mercapto-2-alkyl- propionic acid
JPH03123493A (en) Hydrolysis of diacylglyceroline lipid
den Kamp et al. Two isomers of glucosaminylphosphatidylglycerol. Their occurrence in Bacillus megaterium, structural analysis, and chemical synthesis
Riedy et al. The stereoselectivity of the Clostridium perfringens phospholipase C: hydrolysis of thiophosphate analogs of phosphatidylcholine
Huang et al. A facile method for controlling the reaction equilibrium of sphingolipid ceramide
JP2683590B2 (en) Method for producing enzyme-converted phospholipid
JP2000300287A (en) Introduction of sugar chain by using transglutaminase
JP3970898B2 (en) Process for producing optically active α-methylalkanedicarboxylic acid-ω-monoester and its enantiomer diester
JPH0656856A (en) Phospholipid derivative
Lombardo et al. Rate-deter111ining Step in Phospholipase A2 Mechanislll
JP2000270857A (en) Phospholipase d and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP