JP6349091B2 - Probe for super-resolution fluorescence imaging - Google Patents

Probe for super-resolution fluorescence imaging Download PDF

Info

Publication number
JP6349091B2
JP6349091B2 JP2014006456A JP2014006456A JP6349091B2 JP 6349091 B2 JP6349091 B2 JP 6349091B2 JP 2014006456 A JP2014006456 A JP 2014006456A JP 2014006456 A JP2014006456 A JP 2014006456A JP 6349091 B2 JP6349091 B2 JP 6349091B2
Authority
JP
Japan
Prior art keywords
group
super
compound
probe
fluorescence imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014006456A
Other languages
Japanese (ja)
Other versions
JP2014157150A (en
Inventor
泰照 浦野
泰照 浦野
真子 神谷
真子 神谷
真之介 宇野
真之介 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2014006456A priority Critical patent/JP6349091B2/en
Publication of JP2014157150A publication Critical patent/JP2014157150A/en
Application granted granted Critical
Publication of JP6349091B2 publication Critical patent/JP6349091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Pyrane Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

本発明は、スピロ環の環化平衡による蛍光発光特性を利用した新規な超解像蛍光イメージング用プローブ、及び当該プローブを用いた超解像蛍光イメージング方法に関する。 The present invention relates to a novel probe for super-resolution fluorescence imaging using fluorescence emission characteristics due to cyclization equilibrium of a spiro ring and a super-resolution fluorescence imaging method using the probe.

一般に、光の回折により点像は波長の半分程度に広がってしまうため、光学顕微鏡の空間分解能は、Abbeの回折限界に制限され、点像の広がりよりも近接に位置する2点を分離してイメージングすることは不可能と考えられてきた。しかしながら、1990年代から回折限界を上回る分解能での超解像イメージング手法がいくつか報告されてきており(Nat.Rev.Mol.Cell.Biol.,9,929,2008等)、生細胞に適用することで従来法では観測できなかった生物学的現象を捉える可能性が広がりつつある。 In general, the point image spreads to about half of the wavelength due to light diffraction, so the spatial resolution of the optical microscope is limited to the Abbe diffraction limit, and the two points located closer to the point image spread are separated. It has been considered impossible to image. However, several super-resolution imaging techniques with resolution exceeding the diffraction limit have been reported since the 1990s (Nat. Rev. Mol. Cell. Biol., 9,929, 2008, etc.) and applied to living cells. Therefore, the possibility of capturing biological phenomena that could not be observed by conventional methods is expanding.

超解像イメージング法の1種であるSTORM(stochasticopticalreconstructionmicroscopy)やPALM(photo−activatedlocalizationmicroscopy)に代表されるSLM法(singlemoleculelocalizationmicroscopy)では、試料内にある蛍光分子を十分距離が離れた1分子ずつ確率的に発光させ、その分子の位置を正確に特定し、重ね合わせることで数10nmの解像度の蛍光画像を構築することができる(例えば、Zhuangら、米国特許公開公報US2008/0032414)。 The SLM method (single molecular localization), which is a single molecule of the SLM method (single molecular localization), which is one of the SLM methods (single molecular localization microscopy), which is one of the super-resolution imaging methods, is represented by the SLM method (single molecular localization) in the sample, and in the SLM method (single molecular localization) A fluorescent image with a resolution of several tens of nanometers can be constructed by emitting light, pinpointing the position of the molecule, and superimposing them (for example, Zhuang et al., US Patent Publication No. US2008 / 0032414).

このようなSLMでは、主に、市販の蛍光色素や蛍光蛋白質が用いられている。しかしながら、このような市販の有機蛍光色素を確率的に発光させるためには、一般的に10〜100mM程度のチオール存在下、酸素を除去した条件において、無蛍光状態を達成するための0.8kW/cm程度の高強度のレーザーにより励起し、三重項等の長寿命の無蛍光状態を作り出すことが必須であり、このような条件は生細胞におけるイメージングには適さない。また、分子内の可逆的な光反応に基づき確率的に発光させるという試みもなされているが、その構造最適化は不十分であり、超解像蛍光イメージングへの適用例は殆ど報告されておらず、汎用されるに至っていない。 In such SLM, commercially available fluorescent dyes and fluorescent proteins are mainly used. However, in order to cause such a commercially available organic fluorescent dye to emit light stochastically, it is generally 0.8 kW for achieving a non-fluorescent state in the presence of 10 to 100 mM thiol and in the condition where oxygen is removed. It is essential to excite with a high-intensity laser of about / cm 2 to create a long-lived non-fluorescent state such as a triplet, and such conditions are not suitable for imaging in living cells. In addition, attempts have been made to emit light stochastically based on a reversible photoreaction within the molecule, but the structure optimization has been insufficient, and there have been few reports on applications to super-resolution fluorescence imaging. However, it has not been widely used.

これまでの、超解像蛍光イメージング法の開発は、主に光学系や解析ソフトウェアの観点からの開発がほとんどであり、重要な蛍光プローブの開発が遅れているのが現状である。 The development of super-resolution fluorescence imaging methods so far has mostly been developed from the viewpoint of optical systems and analysis software, and the development of important fluorescent probes has been delayed.

M.Fernandez−Suarezら、Nat.Rev.Mol.Cell.Biol.,9,929,2008M. Fernandez-Suarez et al., Nat. Rev. Mol. Cell. Biol. , 9,929, 2008

Zhuangら、米国特許公開公報US2008/0032414Zhuang et al., US Patent Publication No. US 2008/0032414.

本発明の解決しようする課題は、チオール等の還元剤非存在下かつ酸素存在下において、データ取得前に蛍光性のプローブを無蛍光状態にするために必要であったレーザー照射を省くことができ、かつ低出力のレーザー照射でも機能する超解像蛍光イメージングに適した蛍光プローブ化合物を開発し、生細胞にも適用可能な超解像蛍光イメージング手法を提供することである。 The problem to be solved by the present invention is that in the absence of a reducing agent such as thiol and in the presence of oxygen, it is possible to omit the laser irradiation that was necessary to bring the fluorescent probe into a non-fluorescent state before data acquisition. The aim is to develop a fluorescent probe compound suitable for super-resolution fluorescence imaging that functions even with low-power laser irradiation, and to provide a super-resolution fluorescence imaging technique that can be applied to living cells.

本発明者らは、上記課題を解決するべく鋭意検討を行った結果、ローダミン類の熱的な分子内スピロ環化平衡に着目し、分子内求核基と蛍光団の適切な組み合わせによって自発的な蛍光ON/OFF挙動を制御することで、従来のようなチオールとの反応やレーザー照射に依らずに、上記の生細胞にも適用可能な条件下における超解像蛍光イメージングを可能とする蛍光プローブ分子が得られることを見出した。より具体的には、蛍光プローブ分子内の求核基の求核性と蛍光団の求電子性を変化させて、開環分子の存在比や熱的な閉環速度を最適化することによって、超解像蛍光イメージングに適した確率的な発光が可能となることを見出した。これらの知見に基づき、本発明を完成するに至ったものである。 As a result of intensive studies to solve the above-mentioned problems, the present inventors focused on the thermal intramolecular spirocyclization equilibrium of rhodamines, and spontaneously achieved by an appropriate combination of an intramolecular nucleophilic group and a fluorophore. Fluorescence that enables super-resolution fluorescence imaging under conditions applicable to the above living cells, regardless of conventional reactions with thiols or laser irradiation, by controlling the ON / OFF behavior of the fluorescence It has been found that a probe molecule can be obtained. More specifically, by changing the nucleophilicity of the nucleophilic group in the fluorescent probe molecule and the electrophilicity of the fluorophore, the abundance ratio of the ring-opening molecule and the thermal ring-closing rate can be optimized. We found that stochastic emission suitable for resolving fluorescence imaging is possible. Based on these findings, the present invention has been completed.

すなわち、本発明は、一態様において、以下の式(I)で表される化合物又はその塩を含む超解像蛍光イメージング用プローブを提供するものである。

Figure 0006349091
That is, this invention provides the probe for super-resolution fluorescence imaging containing the compound or its salt represented by the following formula | equation (I) in one aspect | mode.
Figure 0006349091

式中、Xは、酸素原子又はC(R)(R)又はSi(R)(R)を表し(ここで、R及びRは、それぞれ独立に水素原子、又はアルキル基を表す);Rは、水素原子、アルキル基、カルボキシル基、エステル基、アルコキシ基、アミド基、又はアジド基を表し;Yは、C-Cアルキレン基を表し;Rは、置換されていてもよいアミノ基、置換されていてもよいアミド基、ヒドロキシル基、チオール基、又はカルボキシル基を表し;R、R、R、及びRは、それぞれ独立に水素原子、ヒドロキシル基、アルキル基、スルホ基、カルボキシル基、エステル基、アミド基、アジド基、又はハロゲン原子を表し;R及びRは、それぞれ独立に水素原子又はアルキル基を示し(ここで、R及びRは、それぞれR及びRと一緒になって、それらが結合する窒素原子を含む環構造を形成してもよい);及び、R及びR10は、それぞれ独立に水素原子もしくはアルキル基を示し、又は、N(R)(R10)がアミド基もしくはカルバメート基を形成する(ここで、R及びR10がアルキル基である場合、それぞれR及びRと一緒になって、それらが結合する窒素原子を含む環構造を形成してもよい)。 In the formula, X represents an oxygen atom, C (R a ) (R b ), or Si (R a ) (R b ) (where R a and R b are each independently a hydrogen atom or an alkyl group) R 1 represents a hydrogen atom, an alkyl group, a carboxyl group, an ester group, an alkoxy group, an amide group, or an azide group; Y represents a C 0 -C 3 alkylene group; R 2 represents a substituted group Represents an optionally substituted amino group, an optionally substituted amide group, a hydroxyl group, a thiol group, or a carboxyl group; R 3 , R 4 , R 7 , and R 8 are each independently a hydrogen atom, hydroxyl group, A group, an alkyl group, a sulfo group, a carboxyl group, an ester group, an amide group, an azide group, or a halogen atom; R 5 and R 6 each independently represents a hydrogen atom or an alkyl group (where R 5 and R 6 , Respectively together with R 3 and R 7, they may form a ring structure containing a nitrogen atom to which they are attached); and, R 9 and R 10 each independently represent a hydrogen atom or an alkyl group Or N (R 9 ) (R 10 ) forms an amide group or carbamate group (where R 9 and R 10 are alkyl groups together with R 8 and R 4 , respectively) May form a ring structure containing a nitrogen atom to which.

好ましくは、Xが、Si(R)(R)であり、Yが、メチレン基でありRが、置換されていてもよいアミノ基又はヒドロキシル基であり、R、R、R及びR10が、いずれもメチル基である。 Preferably, X is Si (R a ) (R b ), Y is a methylene group and R 2 is an optionally substituted amino group or hydroxyl group, and R 5 , R 6 , R 9 and R 10 are both methyl groups.

好ましくは、上記式中、Xが、酸素原子であり、Yがメチレン基であり、Rが、置換されていてもよいアミノ基又はヒドロキシル基であり、R及びRが、いずれも水素原子であり、N(R)(R10)がアミド基である。 Preferably, in the above formula, X is an oxygen atom, Y is a methylene group, R 2 is an optionally substituted amino group or hydroxyl group, and R 5 and R 6 are both hydrogen. An atom, and N (R 9 ) (R 10 ) is an amide group.

好ましくは、上記式中、Xが、酸素原子であり、Yがメチレン基であり、Rが、置換されていてもよいアミノ基又はヒドロキシル基であり、R、R、R及びR10が、いずれも水素原子である。 Preferably, in the above formula, X is an oxygen atom, Y is a methylene group, R 2 is an optionally substituted amino group or hydroxyl group, and R 5 , R 6 , R 9 and R 10 are all hydrogen atoms.

好ましい態様では、本発明は、上記式(I)における

Figure 0006349091
の部分構造が、以下よりなる群:
Figure 0006349091
から選択され、及び、
式(I)における
Figure 0006349091
の部分構造が、以下よりなる群:
Figure 0006349091
から選択され、式(I)の化合物がこれらの任意の組み合わせからなる、上記超解像蛍光イメージング用プローブに関する。 In a preferred embodiment, the present invention relates to the above formula (I)
Figure 0006349091
The partial structure of is a group consisting of:
Figure 0006349091
And selected from
In formula (I)
Figure 0006349091
The partial structure of is a group consisting of:
Figure 0006349091
The above-mentioned probe for super-resolution fluorescence imaging, wherein the compound of formula (I) is composed of any combination thereof.

より好ましい態様では、式(I)で表される化合物は、以下よりなる群から選択される。

Figure 0006349091
In a more preferred embodiment, the compound represented by formula (I) is selected from the group consisting of:
Figure 0006349091

別の態様において、本発明は、好ましくは、以下の平衡反応

Figure 0006349091
における式(I)の化合物と式(II)の化合物の存在比が、中性条件の水系溶液中において、1:10000〜1:10であり、より好ましくはは1:1000〜1:100であることを特徴とする、超解像蛍光イメージング用プローブである。 In another embodiment, the present invention preferably comprises the following equilibrium reaction:
Figure 0006349091
The abundance ratio of the compound of formula (I) to the compound of formula (II) in the aqueous solution is 1: 10000 to 1:10, more preferably 1: 1000 to 1: 100 in the aqueous solution under neutral conditions. It is a probe for super-resolution fluorescence imaging characterized by being.

上記平衡反応における平衡定数Kcyclが、pKcyclとして3〜7の範囲内となることが好ましく、4〜6の範囲内がより好ましい。 The equilibrium constant K cycl in the above equilibrium reaction is preferably in the range of 3-7 as pK cycl , and more preferably in the range of 4-6.

上記平衡反応における反応速度定数kが、中性条件の水系溶液中において、1〜1.0x10−1であることが好ましく、1〜100S−1であることがより好ましい。 The reaction rate constant k in the equilibrium reaction is preferably 1 to 1.0 × 10 6 S −1 and more preferably 1 to 100 S −1 in an aqueous solution under neutral conditions.

さらに別の態様において、本発明は、上記の超解像蛍光イメージング用プローブを用いる超解像蛍光イメージング方法であって、生体分子にプローブ分子を結合し、これにレーザー光を照射して前記プローブ分子からの蛍光発光を撮影した画像データを取得し、一定の時間間隔でこれを繰り返して得られた複数の前記画像データを解析したうえで重ね合わせることによって、前記生体分子の構造に対する超高解像のイメージ画像を得ることを含む、方法に関する。 In still another aspect, the present invention provides a super-resolution fluorescence imaging method using the above-described super-resolution fluorescence imaging probe, wherein a probe molecule is bound to a biomolecule, and the probe molecule is irradiated with laser light. Ultra high resolution for the structure of the biomolecule is obtained by acquiring image data obtained by photographing fluorescence emission from the molecule, and analyzing and superimposing a plurality of the image data obtained by repeating this at a predetermined time interval. The present invention relates to a method comprising obtaining an image of an image.

本発明の超解像蛍光イメージング方法は、チオールを含む化合物の非存在下で行われることが好ましく、同様に、酸素の存在下で行われることが好ましい。 The super-resolution fluorescence imaging method of the present invention is preferably performed in the absence of a thiol-containing compound, and is preferably performed in the presence of oxygen.

本発明によれば、蛍光プローブ分子内の求核基の求核性と蛍光団の求電子性を変化させて、分子内スピロ環化平衡における開環分子の存在比や熱的な閉環速度を検出器であるCCDカメラ等のフレームレートに最適化することによって、従来のような無蛍光状態を達成するためのチオールとの反応や高強度のレーザー照射に依らずに、超解像蛍光イメージングに適した確率的な発光が達成できる。 According to the present invention, by changing the nucleophilicity of the nucleophilic group in the fluorescent probe molecule and the electrophilicity of the fluorophore, the abundance ratio of the ring-opened molecule and the thermal ring closure rate in the intramolecular spirocyclization equilibrium can be changed. By optimizing the frame rate of a CCD camera, etc., which is a detector, super-resolution fluorescence imaging can be performed without relying on the reaction with thiols and high-intensity laser irradiation to achieve a conventional non-fluorescence state. Suitable stochastic light emission can be achieved.

このように、熱的な分子内スピロ環化平衡を確率的な蛍光発光の原理とするため、本発明による超解像蛍光イメージングでは、高濃度のチオールの添加は不要であり、従来法のようにデータ取得前に蛍光性のプローブを無蛍光状態にするために必要であったレーザー照射を省くことができるため、細胞毒性を低減することができる。さらに、レーザー強度を従来の1/10程度に低減することができ、酸素存在下においても十分に測定可能である。実際に、かかる条件下において、in vitroで構築した微小管やプラスミドSNA上のRecA filamentsといった微小構造や固定細胞及又は生細胞中の微小管の超解像蛍光イメージング観察に成功した。従って、生細胞へのダメージを最小限に抑えた測定を行うことができるため、今後の生物学的な現象の理解に貢献できると考えられる。 In this way, since the thermal intramolecular spirocyclization equilibrium is the principle of stochastic fluorescence emission, the super-resolution fluorescence imaging according to the present invention does not require the addition of a high concentration of thiols. In addition, since it is possible to omit the laser irradiation necessary to bring the fluorescent probe into a non-fluorescent state before data acquisition, cytotoxicity can be reduced. Furthermore, the laser intensity can be reduced to about 1/10 of the conventional level, and measurement is possible even in the presence of oxygen. In fact, under such conditions, we succeeded in super-resolution fluorescence imaging observation of microstructures such as microtubules constructed in vitro and RecA filaments on plasmid SNA, microtubules in fixed cells and living cells. Therefore, since it is possible to perform measurement with minimal damage to living cells, it is considered that it can contribute to the understanding of biological phenomena in the future.

さらに、本発明の超解像蛍光イメージング用プローブが、その分子内にタンパク質等への結合部位(カルボキシル基等)を有する場合には、目標タンパク質等へのラベル化にも適しており、固定細胞だけでなく、生細胞系における広範な研究に利用できると期待できる。また、当該プローブに基づく超解像蛍光イメージング法は、市販の顕微鏡を光学系として利用することができるため、汎用性の高い手法であると考えられる。このように、開発したプローブの基礎研究上、産業上の利用価値、経済効果は極めて大きいものといえる。 Furthermore, when the probe for super-resolution fluorescence imaging of the present invention has a binding site (carboxyl group or the like) to a protein or the like in the molecule, it is also suitable for labeling to a target protein or the like, and fixed cells It can be expected that it can be used for a wide range of research in living cell systems. In addition, the super-resolution fluorescence imaging method based on the probe is considered to be a highly versatile technique because a commercially available microscope can be used as an optical system. In this way, it can be said that the basic utility of the developed probe has extremely high industrial utility value and economic effect.

図1は、本発明の超解像蛍光イメージング用プローブである化合物7(HMSiRCOOH)、化合物11(AMSiRCOOH)、化合物14(HMAcRG)、化合物16(AMAcRG)、化合物17(AMRG)、及び化合物21(HMAcRGCOOH)の各pHにおける吸収スペクトル変化(a)及び蛍光スペクトル変化(b)を示した図である。FIG. 1 shows compounds 7 (HMSiRCOOH), Compound 11 (AMSiRCOOH), Compound 14 (HMAcRG), Compound 16 (AMAcRG), Compound 17 (AMRG), and Compound 21 (AMRG), which are probes for super-resolution fluorescence imaging of the present invention. It is the figure which showed the absorption spectrum change (a) and fluorescence spectrum change (b) in each pH of HMAcRGCOOH). 図1は、本発明の超解像蛍光イメージング用プローブである化合物7(HMSiRCOOH)、化合物11(AMSiRCOOH)、化合物14(HMAcRG)、化合物16(AMAcRG)、化合物17(AMRG)、及び化合物21(HMAcRGCOOH)の各pHにおける吸収スペクトル変化(a)及び蛍光スペクトル変化(b)を示した図である。FIG. 1 shows compounds 7 (HMSiRCOOH), Compound 11 (AMSiRCOOH), Compound 14 (HMAcRG), Compound 16 (AMAcRG), Compound 17 (AMRG), and Compound 21 (AMRG), which are probes for super-resolution fluorescence imaging of the present invention. It is the figure which showed the absorption spectrum change (a) and fluorescence spectrum change (b) in each pH of HMAcRGCOOH). 図1は、本発明の超解像蛍光イメージング用プローブである化合物7(HMSiRCOOH)、化合物11(AMSiRCOOH)、化合物14(HMAcRG)、化合物16(AMAcRG)、化合物17(AMRG)、及び化合物21(HMAcRGCOOH)の各pHにおける吸収スペクトル変化(a)及び蛍光スペクトル変化(b)を示した図である。FIG. 1 shows compounds 7 (HMSiRCOOH), Compound 11 (AMSiRCOOH), Compound 14 (HMAcRG), Compound 16 (AMAcRG), Compound 17 (AMRG), and Compound 21 (AMRG), which are probes for super-resolution fluorescence imaging of the present invention. It is the figure which showed the absorption spectrum change (a) and fluorescence spectrum change (b) in each pH of HMAcRGCOOH). 図1は、本発明の超解像蛍光イメージング用プローブである化合物7(HMSiRCOOH)、化合物11(AMSiRCOOH)、化合物14(HMAcRG)、化合物16(AMAcRG)、化合物17(AMRG)、及び化合物21(HMAcRGCOOH)の各pHにおける吸収スペクトル変化(a)及び蛍光スペクトル変化(b)を示した図である。FIG. 1 shows compounds 7 (HMSiRCOOH), Compound 11 (AMSiRCOOH), Compound 14 (HMAcRG), Compound 16 (AMAcRG), Compound 17 (AMRG), and Compound 21 (AMRG), which are probes for super-resolution fluorescence imaging of the present invention. It is the figure which showed the absorption spectrum change (a) and fluorescence spectrum change (b) in each pH of HMAcRGCOOH). 図1は、本発明の超解像蛍光イメージング用プローブである化合物7(HMSiRCOOH)、化合物11(AMSiRCOOH)、化合物14(HMAcRG)、化合物16(AMAcRG)、化合物17(AMRG)、及び化合物21(HMAcRGCOOH)の各pHにおける吸収スペクトル変化(a)及び蛍光スペクトル変化(b)を示した図である。FIG. 1 shows compounds 7 (HMSiRCOOH), Compound 11 (AMSiRCOOH), Compound 14 (HMAcRG), Compound 16 (AMAcRG), Compound 17 (AMRG), and Compound 21 (AMRG), which are probes for super-resolution fluorescence imaging of the present invention. It is the figure which showed the absorption spectrum change (a) and fluorescence spectrum change (b) in each pH of HMAcRGCOOH). 図1は、本発明の超解像蛍光イメージング用プローブである化合物7(HMSiRCOOH)、化合物11(AMSiRCOOH)、化合物14(HMAcRG)、化合物16(AMAcRG)、化合物17(AMRG)、及び化合物21(HMAcRGCOOH)の各pHにおける吸収スペクトル変化(a)及び蛍光スペクトル変化(b)を示した図である。FIG. 1 shows compounds 7 (HMSiRCOOH), Compound 11 (AMSiRCOOH), Compound 14 (HMAcRG), Compound 16 (AMAcRG), Compound 17 (AMRG), and Compound 21 (AMRG), which are probes for super-resolution fluorescence imaging of the present invention. It is the figure which showed the absorption spectrum change (a) and fluorescence spectrum change (b) in each pH of HMAcRGCOOH). 図2は、プローブ化合物の蛍光団の部分構造を固定して、種々の求核基を変化させた場合における各吸光度変化を示したグラフである。吸光度が最大値の半分になるpHをpKcyclとした。FIG. 2 is a graph showing changes in absorbance when the fluorophore partial structure of the probe compound is fixed and various nucleophilic groups are changed. The pH at which the absorbance was half of the maximum value was defined as pK cycl . 図3は、プローブ化合物の求核基を固定して、蛍光団の部分構造を変化させた場合における各吸光度変化を示したグラフである。吸光度が最大値の半分になるpHをpKcyclとした。FIG. 3 is a graph showing changes in absorbance when the nucleophilic group of the probe compound is fixed and the partial structure of the fluorophore is changed. The pH at which the absorbance was half of the maximum value was defined as pK cycl . 図4は、本発明の超解像蛍光イメージング用プローブである化合物7(HMSiRCOOH)のカルボキシル基をエステル化した化合物12(HMSiR−NHS)を用いてラベル化したチューブリンをin vitroで構築した微小管をSTORM顕微鏡で観察した結果を示すものである。FIG. 4 shows a microscopic structure in which tubulin labeled with compound 12 (HMSiR-NHS) obtained by esterifying the carboxyl group of compound 7 (HMSiRCOOH), which is a probe for super-resolution fluorescence imaging of the present invention, was constructed in vitro. The result of having observed the pipe | tube with the STORM microscope is shown. 図5は、本発明の超解像蛍光イメージング用プローブである化合物7(HMSiRCOOH)のカルボキシル基をエステル化した化合物12(HMSiR−NHS)を用いて、プラスミドDNA上に構築したRecAfilamentをSTORM顕微鏡で観察した結果を示す図である。FIG. 5 shows a RecAfilament constructed on plasmid DNA using compound 12 (HMSiR-NHS) obtained by esterifying the carboxyl group of compound 7 (HMSiRCOOH), which is a probe for super-resolution fluorescence imaging of the present invention, with a STORM microscope. It is a figure which shows the result of observation. 図6は、本発明の超解像蛍光イメージング用プローブである化合物7(HMSiRCOOH)のカルボキシル基をベンジルグアニン誘導体にした化合物26(HMSiR−BG)を用いて、固定細胞(HeLa細胞)の微小管(β−チューブリン)をSTORM顕微鏡で観察した結果を示す図である。FIG. 6 shows microtubules of fixed cells (HeLa cells) using compound 26 (HMSiR-BG) in which the carboxyl group of compound 7 (HMSiRCOOH), which is a probe for super-resolution fluorescence imaging of the present invention, is converted to a benzylguanine derivative. It is a figure which shows the result of having observed ((beta) -tubulin) with the STORM microscope. 図7は、本発明の超解像蛍光イメージング用プローブである化合物7(HMSiRCOOH)のカルボキシル基をベンジルグアニン誘導体にした化合物26(HMSiR−BG)を用いて、生細胞(HeLa細胞)の微小管(β−チューブリン)をSTORM顕微鏡で観察した結果を示す図である。FIG. 7 shows microtubules of living cells (HeLa cells) using compound 26 (HMSiR-BG) in which the carboxyl group of compound 7 (HMSiRCOOH), which is a probe for super-resolution fluorescence imaging of the present invention, is converted to a benzylguanine derivative. It is a figure which shows the result of having observed ((beta) -tubulin) with the STORM microscope.

以下、本発明の実施形態について説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。 Hereinafter, embodiments of the present invention will be described. The scope of the present invention is not limited to these descriptions, and other than the following examples, the scope of the present invention can be appropriately changed and implemented without departing from the spirit of the present invention.

本明細書において、「アルキル基」は直鎖状、分枝鎖状、環状、又はそれらの組み合わせからなるアルキル基のいずれであってもよい。アルキル基の炭素数は特に限定されないが、例えば炭素数1〜6個程度、好ましくは炭素数1〜4個程度である。本明細書において、アルキル基は任意の置換基を1個以上有していてもよい。該置換基としては、例えば、アルコキシ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、又はヨウ素原子のいずれであってもよい)、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、アシル基、又はアリール基などを挙げることができるが、これらに限定されることはない。アルキル基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。アルキル部分を含む他の置換基(例えばアルキルオキシ基やアラルキル基など)のアルキル部分についても同様である。 In the present specification, the “alkyl group” may be any of an alkyl group composed of linear, branched, cyclic, or a combination thereof. Although carbon number of an alkyl group is not specifically limited, For example, it is about C1-C6, Preferably it is C1-C4. In the present specification, the alkyl group may have one or more arbitrary substituents. Examples of the substituent include an alkoxy group, a halogen atom (which may be a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom), an amino group, a mono- or di-substituted amino group, a substituted silyl group, and an acyl group. A group, an aryl group, and the like can be mentioned, but are not limited thereto. When the alkyl group has two or more substituents, they may be the same or different. The same applies to the alkyl moiety of other substituents containing an alkyl moiety (for example, an alkyloxy group or an aralkyl group).

また、本明細書において、ある官能基について「置換基を有していてもよい」と定義されている場合には、置換基の種類、置換位置、及び置換基の個数は特に限定されず、2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。置換基としては、例えば、アルキル基、アルコキシ基、水酸基、カルボキシル基、ハロゲン原子、スルホ基、アミノ基、アルコキシカルボニル基、オキソ基などを挙げることができるが、これらに限定されることはない。これらの置換基にはさらに置換基が存在していてもよい。このような例として、例えば、ハロゲン化アルキル基、ジアルキルアミノ基などを挙げることができるが、これらに限定されることはない。 In the present specification, when a functional group is defined as “may have a substituent”, the type of substituent, the substitution position, and the number of substituents are not particularly limited, When it has two or more substituents, they may be the same or different. Examples of the substituent group include, but are not limited to, an alkyl group, an alkoxy group, a hydroxyl group, a carboxyl group, a halogen atom, a sulfo group, an amino group, an alkoxycarbonyl group, and an oxo group. These substituents may further have a substituent. Examples of such include, but are not limited to, a halogenated alkyl group, a dialkylamino group, and the like.

(1)超解像蛍光イメージング用プローブ
本発明の超解像蛍光イメージング用プローブは、一態様において、以下の一般式(I)で表される構造を有する化合物である。

Figure 0006349091
(1) Probe for Super-Resolution Fluorescence Imaging In one aspect, the probe for super-resolution fluorescence imaging of the present invention is a compound having a structure represented by the following general formula (I).
Figure 0006349091

上記一般式(I)において、Xは、酸素原子又はC(R)(R)又はSi(R)(R)を表す。ここで、R及びRは、それぞれ独立に水素原子、又はアルキル基を表す。R及びRが、アルキル基である場合、それらは1以上の置換基を有することができ、そのような置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン原子、水酸基、カルボキシル基、アミノ基、スルホ基などを1個又は2個以上有していてもよい。R及びRは、いずれもメチル基であることが好ましい。また、場合によっては、R及びRは互いに結合して環構造を形成していてもよい。例えば、R及びRがともにアルキル基である場合に、R及びRが互いに結合してスピロ炭素環を形成することができる。形成される環は、例えば5ないし8員環程度であることが好ましい。 In the general formula (I), X represents an oxygen atom, C (R a ) (R b ), or Si (R a ) (R b ). Here, R a and R b each independently represent a hydrogen atom or an alkyl group. When R a and R b are alkyl groups, they can have one or more substituents, and examples of such substituents include alkyl groups, alkoxy groups, halogen atoms, hydroxyl groups, carboxyl groups, You may have 1 or 2 or more amino groups, sulfo groups, etc. R a and R b are preferably both methyl groups. In some cases, R a and R b may be bonded to each other to form a ring structure. For example, when R a and R b are both alkyl groups, R a and R b can be bonded to each other to form a spirocarbocycle. The ring formed is preferably about 5 to 8 membered ring, for example.

は、水素原子、アルキル基、カルボキシル基、エステル基、アルコキシ基、アミド基、又はアジド基を表す。これらの置換基は、タンパク質等の生体分子と共有結合等により結合し得る置換基(ラベル化置換基)を含むことが好ましい。その場合、それら自身がラベル化置換基であってもよいし、又はラベル化置換基によって置換されていてもよい。例えば、カルボキシル基がN-ヒドロキシスクシンイミド等の脱離基やSNAP−tagの基質であるベンジルグアニン誘導体やHaloTag(登録商標)で用いられるリガンドで置換されていてもよい。そのようなラベル化置換基は、特に限定されず、当該技術分野において公知のものであれば用いることができる。Rが水素原子以外である場合、そのベンゼン環における位置は特に限定されないが、Yを有する置換基に対してメタ位であることが好ましい。また、ベンゼン環上に2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。 R 1 represents a hydrogen atom, an alkyl group, a carboxyl group, an ester group, an alkoxy group, an amide group, or an azide group. These substituents preferably include a substituent (labeled substituent) that can be bonded to a biomolecule such as a protein by a covalent bond or the like. In that case, they may themselves be a labeled substituent or may be substituted by a labeled substituent. For example, the carboxyl group may be substituted with a leaving group such as N-hydroxysuccinimide, a benzylguanine derivative that is a substrate of SNAP-tag, or a ligand used in HaloTag (registered trademark). Such a labeled substituent is not particularly limited, and any known substituent in the technical field can be used. When R 1 is other than a hydrogen atom, the position in the benzene ring is not particularly limited, but is preferably a meta position with respect to the substituent having Y. Moreover, when it has two or more substituents on the benzene ring, they may be the same or different.

Yは、C-Cアルキレン基を表す。当該アルキレン基は直鎖状アルキレン基又は分枝鎖状アルキレン基のいずれであってもよい。例えば、メチレン基(−CH−)、エチレン基(−CH−CH−)、プロピレン基(−CH−CH−CH−)のほか、分枝鎖状アルキレン基として−CH(CH)−、−CH−CH(CH)−、−CH(CHCH)−なども使用することができる。これらのうち、メチレン基又はエチレン基が好ましく、閉環速度の観点からメチレン基がさらに好ましい。なお、Cアルキレン基とは、Yが結合であること、すなわち、Rがベンゼン環に直接結合している場合を表している。 Y represents a C 0 -C 3 alkylene group. The alkylene group may be a linear alkylene group or a branched alkylene group. For example, in addition to a methylene group (—CH 2 —), an ethylene group (—CH 2 —CH 2 —), a propylene group (—CH 2 —CH 2 —CH 2 —), a branched alkylene group such as —CH ( CH 3 ) —, —CH 2 —CH (CH 3 ) —, —CH (CH 2 CH 3 ) — and the like can also be used. Among these, a methylene group or an ethylene group is preferable, and a methylene group is more preferable from the viewpoint of a ring closing speed. The C 0 alkylene group represents that Y is a bond, that is, R 2 is directly bonded to the benzene ring.

は、置換されていてもよいアミノ基、置換されていてもよいアミド基、ヒドロキシル基、チオール基、又はカルボキシル基を表す。好ましくは、置換されていてもよいアミノ基又はヒドロキシル基である。Rが、置換されていてもよいアミノ基又は置換されていてもよいアミド基である場合、当該置換基を、例えば、アルキル基、アルコキシ基、ハロゲン原子、水酸基、カルボキシル基、アミノ基、スルホ基などが挙げられるが、これらに限定されるわけではない。また、当該置換基を1個又は2個以上有していてもよい。 R 2 represents an optionally substituted amino group, an optionally substituted amide group, a hydroxyl group, a thiol group, or a carboxyl group. Preferably, it is an optionally substituted amino group or hydroxyl group. When R 2 is an optionally substituted amino group or an optionally substituted amide group, the substituent is, for example, an alkyl group, an alkoxy group, a halogen atom, a hydroxyl group, a carboxyl group, an amino group, a sulfo group. Examples include, but are not limited to, groups. Moreover, you may have the said substituent 1 or 2 or more.

、R、R、及びRは、それぞれ独立に水素原子、ヒドロキシル基、アルキル基、スルホ基、カルボキシル基、エステル基、アミド基、アジド基、又はハロゲン原子を表す。R及びRがいずれも水素原子であることが好ましい。また、R及びRが、いずれも水素原子であるか、又は、いずれもスルホ基であることが好ましい。場合によっては、R、R、R、又はRのいずれかが、上記のような、タンパク質等の生体分子と共有結合し得るラベル化置換基を含むこともできる。その場合、それら自身がラベル化置換基であってもよいし、又はラベル化置換基によって置換されていてもよい。 R 3 , R 4 , R 7 , and R 8 each independently represent a hydrogen atom, a hydroxyl group, an alkyl group, a sulfo group, a carboxyl group, an ester group, an amide group, an azide group, or a halogen atom. R 3 and R 4 are preferably both hydrogen atoms. Moreover, it is preferable that both R 7 and R 8 are hydrogen atoms, or both are sulfo groups. In some cases, any of R 3 , R 4 , R 7 , or R 8 can include a labeled substituent that can be covalently bound to a biomolecule such as a protein, as described above. In that case, they may themselves be a labeled substituent or may be substituted by a labeled substituent.

及びRは、それぞれ独立に水素原子又はアルキル基を示す。R及びRがともにアルキル基を示す場合には、それらは同一でも異なっていてもよい。例えば、R及びRはそれぞれ独立に、メチル基又はエチル基であることが好ましく、R及びRがいずれもメチル基である場合がさらに好ましい。また、R及びRがアルキル基の場合に、それぞれR及びRと一緒になって、それらが結合する窒素原子を含む環構造を形成してもよい。その場合、RとR、又はR及びRの組み合わせのいずれか一方のみが環構造を形成してもよいし、いずれもが環構造を形成してもよい。 R 5 and R 6 each independently represent a hydrogen atom or an alkyl group. When R 5 and R 6 both represent an alkyl group, they may be the same or different. For example, each of R 5 and R 6 is preferably independently a methyl group or an ethyl group, and more preferably R 5 and R 6 are both methyl groups. When R 5 and R 6 are alkyl groups, they may be combined with R 3 and R 7 to form a ring structure containing a nitrogen atom to which they are bonded. In that case, only one of R 5 and R 3 , or a combination of R 6 and R 7 may form a ring structure, or all may form a ring structure.

及びR10は、それぞれ独立に水素原子、アルキル基を示し、又は、N(R)(R10)がアミド基もしくはカルバメート基を形成するものであることができる。R及びR10がともにアルキル基を示す場合には、それらは同一でも異なっていてもよい。例えば、R及びR10はそれぞれ独立に、メチル基又はエチル基であることが好ましく、R及びR10がいずれもメチル基である場合がさらに好ましい。R又はR10の一方が水素原子であって、他方がカルボニル基であることも好ましい。この場合、N(R)(R10)はアミド結合を形成する。カルボニル基に結合する他の置換基は特に限定されないが、アルキル基が好ましく、メチル基がより好ましい。場合によっては、N(R)(R10)が、上記のような、タンパク質等の生体分子と共有結合し得るラベル化置換基を含むこともできる。その場合、それら自身がラベル化置換基であってもよいし、又はラベル化置換基によって置換されていてもよい。 R 9 and R 10 each independently represent a hydrogen atom or an alkyl group, or N (R 9 ) (R 10 ) may form an amide group or a carbamate group. When R 9 and R 10 both represent an alkyl group, they may be the same or different. For example, R 9 and R 10 are each independently preferably a methyl group or an ethyl group, and more preferably R 9 and R 10 are both methyl groups. It is also preferred that one of R 9 or R 10 is a hydrogen atom and the other is a carbonyl group. In this case, N (R 9 ) (R 10 ) forms an amide bond. Although the other substituent couple | bonded with a carbonyl group is not specifically limited, An alkyl group is preferable and a methyl group is more preferable. In some cases, N (R 9 ) (R 10 ) can also contain a labeled substituent that can be covalently bonded to a biomolecule such as a protein, as described above. In that case, they may themselves be a labeled substituent or may be substituted by a labeled substituent.

また、R及びR10がアルキル基の場合に、それぞれR及びRと一緒になって、それらが結合する窒素原子を含む環構造を形成してもよい。その場合、RとR、又はR及びRの組み合わせのいずれか一方のみが環構造を形成してもよいし、いずれもが環構造を形成してもよい。 When R 9 and R 10 are alkyl groups, they may be combined with R 8 and R 4 to form a ring structure containing a nitrogen atom to which they are bonded. In that case, only one of R 5 and R 3 , or a combination of R 6 and R 7 may form a ring structure, or all may form a ring structure.

上記各置換基の好ましい組み合わせとしては、例えば、Xが、Si(R)(R)であり、Yが、メチレン基であり、Rが、置換されていてもよいアミノ基又はヒドロキシル基であり、R、R、R及びR10が、いずれもメチル基である場合が挙げられる。同様に、Xが、酸素原子であり、Yがメチレン基であり、RRが、置換されていてもよいアミノ基又はヒドロキシル基であり、R及びRが、いずれも水素原子であり、N(R)(R10)がアミド基である場合も好ましい。さらに、Xが、酸素原子であり、Yがメチレン基であり、Rが、置換されていてもよいアミノ基又はヒドロキシル基であり、R、R、R及びR10が、いずれも水素原子である場合も好ましい。 Preferable combinations of the above substituents include, for example, X is Si (R a ) (R b ), Y is a methylene group, and R 2 is an optionally substituted amino group or hydroxyl group. And R 5 , R 6 , R 9 and R 10 are all methyl groups. Similarly, X is an oxygen atom, Y is a methylene group, RR 2 is an optionally substituted amino group or hydroxyl group, R 5 and R 6 are both hydrogen atoms, It is also preferred when N (R 9 ) (R 10 ) is an amide group. Furthermore, X is an oxygen atom, Y is a methylene group, R 2 is an optionally substituted amino group or hydroxyl group, and R 5 , R 6 , R 9 and R 10 are all Also preferred is a hydrogen atom.

このような置換基の組み合わせは、式(I)における求核基である

Figure 0006349091
の部分構造の求核性、及び、式(I)における蛍光団骨格である
Figure 0006349091
の部分構造の求電子性に基づいて、適宜選択することが可能である。 Such a combination of substituents is a nucleophilic group in formula (I)
Figure 0006349091
Is the nucleophilicity of the partial structure of and the fluorophore skeleton in formula (I)
Figure 0006349091
It is possible to select as appropriate based on the electrophilicity of the partial structure.

式(I)における求核基の部分構造の具体例としては、

Figure 0006349091
が挙げられる。一方、式(I)における蛍光団骨格の部分構造の具体例としては、
Figure 0006349091
が挙げられる。ただし、これらに限定されるものではなく、あくまで代表的な例を示しているに過ぎない。当該求核基の求核性と蛍光団骨格の求電子性のバランスによって、式(I)の化合物のスピロ環化のし易さが決定されるため、これら部分構造の適切な組み合わせを選択することによって、後述の開環構造(すなわち、式(I)に示される構造)と閉環構造との間の平衡反応における所望の平衡定数及び反応速度を得ることができる。上記の求核基又は蛍光団骨格が任意の位置にラベル化置換基を含むことが好ましい。 As a specific example of the partial structure of the nucleophilic group in the formula (I),
Figure 0006349091
Is mentioned. On the other hand, as a specific example of the partial structure of the fluorophore skeleton in the formula (I),
Figure 0006349091
Is mentioned. However, the present invention is not limited to these, and merely shows representative examples. The balance between the nucleophilicity of the nucleophilic group and the electrophilicity of the fluorophore skeleton determines the ease of spirocyclization of the compound of formula (I), so select an appropriate combination of these partial structures Thus, a desired equilibrium constant and reaction rate in an equilibrium reaction between a ring-opened structure (that is, a structure represented by the formula (I)) described later and a ring-closed structure can be obtained. The nucleophilic group or fluorophore skeleton preferably contains a labeled substituent at an arbitrary position.

本発明の超解像蛍光イメージング用プローブとして特に適切な式(I)の化合物の具体例としては、

Figure 0006349091
が挙げられる。ただし、これらに限定されるものではない。また、当該化合物は、任意の位置にラベル化置換基を有することができる。 Specific examples of compounds of formula (I) that are particularly suitable as probes for super-resolution fluorescence imaging of the present invention include:
Figure 0006349091
Is mentioned. However, it is not limited to these. Moreover, the said compound can have a labeled substituent in arbitrary positions.

上記式(I)で表される化合物は、R及びRが連結するN原子において1価の正電荷を有するため、通常は塩として存在する。そのような塩としては、塩基付加塩、酸付加塩、アミノ酸塩などを挙げることができる。塩基付加塩としては、例えば、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩などの金属塩、アンモニウム塩、又はトリエチルアミン塩、ピペリジン塩、モルホリン塩などの有機アミン塩を挙げることができ、酸付加塩としては、例えば、塩酸塩、硫酸塩、硝酸塩などの鉱酸塩、メタンスルホン酸塩、パラトルエンスルホン酸塩、クエン酸塩、シュウ酸塩などの有機酸塩を挙げることができる。アミノ酸塩としてはグリシン塩などを例示することができる。もっとも、これらの塩に限定されることはない。 Since the compound represented by the above formula (I) has a monovalent positive charge at the N atom to which R 5 and R 6 are linked, it usually exists as a salt. Examples of such salts include base addition salts, acid addition salts, amino acid salts and the like. Examples of the base addition salt include metal salts such as sodium salt, potassium salt, calcium salt, magnesium salt, ammonium salt, or organic amine salts such as triethylamine salt, piperidine salt, morpholine salt, and acid addition salt. Examples thereof include mineral acid salts such as hydrochloride, sulfate, and nitrate, and organic acid salts such as methanesulfonate, paratoluenesulfonate, citrate, and oxalate. Examples of amino acid salts include glycine salts. However, it is not limited to these salts.

式(I)で表される化合物は、置換基の種類に応じて1個または2個以上の不斉炭素を有する場合があり、光学異性体又はジアステレオ異性体などの立体異性体が存在する場合がある。純粋な形態の立体異性体、立体異性体の任意の混合物、ラセミ体などはいずれも本発明の範囲に包含される。 The compound represented by the formula (I) may have one or more asymmetric carbons depending on the type of substituent, and there are stereoisomers such as optical isomers or diastereoisomers. There is a case. Pure forms of stereoisomers, any mixture of stereoisomers, racemates, and the like are all within the scope of the present invention.

式(I)で表される化合物又はその塩は、水和物又は溶媒和物として存在する場合もあるが、これらの物質はいずれも本発明の範囲に包含される。溶媒和物を形成する溶媒の種類は特に限定されないが、例えば、エタノール、アセトン、イソプロパノールなどの溶媒を例示することができる。 The compound represented by the formula (I) or a salt thereof may exist as a hydrate or a solvate, and any of these substances is included in the scope of the present invention. Although the kind of solvent which forms a solvate is not specifically limited, For example, solvents, such as ethanol, acetone, isopropanol, can be illustrated.

上記の蛍光プローブは、必要に応じて試薬の調製に通常用いられる添加剤を配合して組成物として用いてもよい。例えば、生理的環境で用いるための添加剤として、溶解補助剤、pH調節剤、緩衝剤、等張化剤などの添加剤を用いることができ、これらの配合量は当業者に適宜選択可能である。これらの組成物は、粉末形態の混合物、凍結乾燥物、顆粒剤、錠剤、液剤など適宜の形態の組成物として提供され得る。 The above-described fluorescent probe may be used as a composition by blending additives usually used in the preparation of reagents as required. For example, additives such as solubilizers, pH adjusters, buffers, and tonicity agents can be used as additives for use in a physiological environment, and the amount of these can be appropriately selected by those skilled in the art. is there. These compositions can be provided as a composition in an appropriate form such as a powder-form mixture, a lyophilized product, a granule, a tablet, or a liquid.

本明細書の実施例には、式(I)で表される本発明の化合物に包含される代表的化合物についての製造方法が具体的に示されているので、当業者は本明細書の開示を参照することにより、及び必要に応じて出発原料や試薬、反応条件などを適宜選択することにより、式(II)に包含される任意の化合物を容易に製造することができる。 In the examples of the present specification, production methods for representative compounds included in the compounds of the present invention represented by the formula (I) are specifically shown. Any compound included in the formula (II) can be easily produced by referring to, and appropriately selecting starting materials, reagents, reaction conditions and the like as necessary.

(2)本発明のプローブを用いた超解像蛍光イメージング方法
本発明の超解像蛍光イメージング方法は、生体分子に上記で説明した式(I)のプローブ分子を接触させ、これにレーザー光を照射して前記プローブ分子からの蛍光発光を撮影したCCDカメラ等によって画像データを取得し、一定の時間間隔でこれを繰り返して得られた複数の前記画像データを解析したうえで重ね合わせることによって、前記生体分子の構造に対する超高解像のイメージ画像を得ることを含むものである。観測対象となる生体分子としては、細胞膜(脂質)、タンパク質、DNA、RNA等が挙げられる。
(2) Super-resolution fluorescence imaging method using the probe of the present invention In the super-resolution fluorescence imaging method of the present invention, the probe molecule of the formula (I) described above is brought into contact with a biomolecule, and laser light is applied thereto. By acquiring image data by a CCD camera or the like that has been irradiated and photographed fluorescence emission from the probe molecules, and by repeating a plurality of the image data obtained by repeating this at a fixed time interval, The method includes obtaining an ultrahigh resolution image for the structure of the biomolecule. Examples of biomolecules to be observed include cell membranes (lipids), proteins, DNA, RNA, and the like.

ここで、SLMによる超解像蛍光イメージングの原理については、非特許文献2に詳述されている。従って、本発明の超解像蛍光イメージング方法における基本手順は、式(I)のプローブを用いる点以外は、当該文献に記載された超解像蛍光イメージング手法を参照することができる。 Here, the principle of super-resolution fluorescence imaging by SLM is described in detail in Non-Patent Document 2. Therefore, the basic procedure in the super-resolution fluorescence imaging method of the present invention can refer to the super-resolution fluorescence imaging method described in the document except that the probe of formula (I) is used.

本発明の超解像蛍光イメージング方法は、式(I)の化合物が、以下に示される

Figure 0006349091
スピロ環化平衡によって、開環状態(I)では400〜700nm程度の励起光を吸収して強い蛍光を発光するのに対し、閉環状態(II)では全く蛍光を発光しないという特性を有することを利用するものである。このように自発的な蛍光のON/OFFを行い得るため、当該平衡における平衡定数及び反応速度を適切化することによって、従来の速度を検出器であるCCDカメラ等のフレームレートに最適化することによって、従来のようにチオールとの反応や高強度のレーザー照射など、プローブ分子を無蛍光状態とするために外部刺激を用いることなく、超解像蛍光イメージングに適した確率的な発光が達成できる。従って、本発明の超解像蛍光イメージング方法では、チオールを含む化合物の非存在下で行うことができ、また、酸素の存在下でも測定を行うことができるため、測定系内に酸素を除去する試薬を添加する必要もない。また、自発的に蛍光のON/OFFを行い得るため、従来法のようにデータ取得前に蛍光性のプローブを無蛍光状態にするために必要であったレーザー照射を省くことができるため、細胞毒性を低減することができる。さらに、用いるレーザーの強度を従来の1/10程度で行うことができる。当該レーザーの強度は、シグナル対ノイズ比(S/N比)や細胞毒性等の観点から、0.0001〜0.5kW/cm程度であることが好ましい。 In the super-resolution fluorescence imaging method of the present invention, the compound of formula (I) is shown below.
Figure 0006349091
Due to the spiro cyclization equilibrium, the ring-opened state (I) absorbs excitation light of about 400 to 700 nm and emits strong fluorescence, whereas the ring-closed state (II) has no fluorescence. It is what you use. Since spontaneous fluorescence can be turned on and off in this way, the conventional speed is optimized to the frame rate of the CCD camera or the like as a detector by optimizing the equilibrium constant and reaction speed in the equilibrium. Can achieve stochastic emission suitable for super-resolution fluorescence imaging without using external stimuli to make the probe molecule non-fluorescent, such as reaction with thiols and high-intensity laser irradiation as in the past. . Therefore, the super-resolution fluorescence imaging method of the present invention can be performed in the absence of a compound containing thiol, and can also be measured in the presence of oxygen, so that oxygen is removed in the measurement system. There is no need to add reagents. In addition, since fluorescence can be turned on and off spontaneously, it is possible to omit the laser irradiation necessary to make the fluorescent probe non-fluorescent before data acquisition as in the conventional method. Toxicity can be reduced. Furthermore, the intensity of the laser used can be reduced to about 1/10 of the conventional one. The intensity of the laser is preferably about 0.0001 to 0.5 kW / cm 2 from the viewpoint of signal-to-noise ratio (S / N ratio), cytotoxicity, and the like.

SLMによる超解像蛍光イメージングでは、光の回折限界よりも近接した場所において蛍光プローブ分子が発光することは好ましくないため、一度の測定において蛍光を発する状態のプローブ分子は、一定割合以下である必要がある。従って、上記平衡における式(I)の化合物と式(II)の化合物の存在比は、中性条件の水系溶液中において、室温で、1:10000〜1:10であることが好ましく、1:1000〜1:100がより好ましい。このような存在比となるためには、上記平衡の平衡定数Kcyclが、pKcyclとして3〜7の範囲が好ましく、4〜6の範囲内となることがより好ましい。当該平衡定数は、Kcycl=[平衡状態における(I)の濃度]/[平衡状態における(II)の濃度][Hの濃度]で表され、当該技術分野における周知の手法によって実験的に算出することができる。 In super-resolution fluorescence imaging by SLM, it is not preferable that the fluorescent probe molecule emits light at a location closer than the diffraction limit of light. Therefore, the number of probe molecules that emit fluorescence in one measurement needs to be less than a certain percentage. There is. Therefore, the abundance ratio of the compound of formula (I) to the compound of formula (II) in the above equilibrium is preferably 1: 10000 to 1:10 at room temperature in an aqueous solution under neutral conditions. 1000 to 1: 100 is more preferable. In order to achieve such an abundance ratio, the equilibrium constant K cycl of the above equilibrium is preferably in the range of 3 to 7 as pK cycl and more preferably in the range of 4 to 6. The equilibrium constant is expressed as K cycl == (concentration of (I) in equilibrium state) / [concentration of (II) in equilibrium state] [concentration of H + ], and is experimentally determined by a well-known method in the art. Can be calculated.

また、検出器であるCCDカメラ等のフレームレートに対応させるためには、開環状態の式(I)の化合物の寿命は、1マイクロ秒〜1秒の範囲であることが好ましく、10ミリ秒〜1秒の範囲であることがより好ましい。そのような寿命の範囲となるためには、上記平衡における反応速度定数が、中性条件の水系溶液中において、室温で、1〜1.0x10−1の範囲であることが好ましく、1〜100S−1の範囲であることがより好ましい。当該反応速度については、当該技術分野において公知のレーザーフラッシュフォトリシス等のシステムを用いて、ナノ秒レーザーによって蛍光プローブを励起し、ナノ秒〜ミリ秒オーダーの過渡吸収スペクトルや蛍光スペクトルを測定することによって算出することができる。 In order to correspond to the frame rate of a CCD camera or the like as a detector, the lifetime of the compound of formula (I) in the ring-opened state is preferably in the range of 1 microsecond to 1 second, and 10 milliseconds. More preferably, it is in the range of ˜1 second. In order to reach such a life range, the reaction rate constant in the above equilibrium is preferably in the range of 1 to 1.0 × 10 6 S −1 at room temperature in an aqueous solution under neutral conditions. More preferably, it is in the range of -100S- 1 . Regarding the reaction rate, using a system such as laser flash photolysis known in the technical field, a fluorescent probe is excited by a nanosecond laser, and a transient absorption spectrum or a fluorescence spectrum of nanosecond to millisecond order is measured. Can be calculated.

上述のとおり、これら平衡定数及び反応速度定数は、式(I)の化合物における求核基の求核性と蛍光団骨格の求電子性のバランスに依存するため、これら部分構造の適切な組み合わせを選択することによって、所望の平衡定数及び反応速度を得ることができる。 As described above, since these equilibrium constants and reaction rate constants depend on the balance between the nucleophilicity of the nucleophilic group and the electrophilicity of the fluorophore skeleton in the compound of formula (I), an appropriate combination of these partial structures must be selected. By selecting, a desired equilibrium constant and reaction rate can be obtained.

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by these.

以下のスキーム1に従って、本発明の超解像蛍光イメージング用プローブである化合物7(HMSiRCOOH)及び化合物11(AMSiRCOOH)を合成した。なお、化合物6の合成については、ACSChem.Biol.2011,6,600−608に開示されており、これを参照することができる。

Figure 0006349091
According to the following scheme 1, compound 7 (HMSiRCOOH) and compound 11 (AMSiRCOOH), which are super-resolution fluorescent imaging probes of the present invention, were synthesized. The synthesis of compound 6 is disclosed in ACSChem.Biol.2011,6,600-608, which can be referred to.
Figure 0006349091

化合物(2)の合成
化合物(1)5.03g(23.39mmol,1eq)の四塩化炭素(CCl4)懸濁液(100mL)にN-ブロモスクシンイミド(NBS)9.16g(51.5mmol,2.2eq),アゾビスイソブチロニトリル(AIBN)76.8mg(0.47mmol,0.02eq)を加え、18時間加熱還流した。室温に戻し、10%炭酸ナトリウム水溶液を200mL加え、ジクロロメタンで2回洗浄した。濃塩酸30mLを加え酢酸エチルで2回抽出し、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧除去した。残渣をジクロロメタン/メタノール=10/1で洗浄し、目的化合物(2)(5.93g,68%)を得た。
1HNMR(400MHz,MeOD)δ:7.29(s,1H),7.71(d,J=8.3Hz,1H),7.86(dd,J=2.1,8.3Hz, 1H),8.63(d,J=2.1Hz,1H)
13CNMR(400MHz,MeOD)δ:39.9,125.5,132.9,133.0,133.2,134.4,142.5,167.9
Synthesis of compound (2) Compound (1) 5.03 g (23.39 mmol, 1 eq) in carbon tetrachloride (CCl4) suspension (100 mL) N-bromosuccinimide (NBS) 9.16 g (51.5 mmol, 2.2 eq), 76.8 mg (0.47 mmol, 0.02 eq) of azobisisobutyronitrile (AIBN) was added, and the mixture was heated to reflux for 18 hours. The temperature was returned to room temperature, 200 mL of 10% aqueous sodium carbonate solution was added, and the mixture was washed twice with dichloromethane. Concentrated hydrochloric acid (30 mL) was added, and the mixture was extracted twice with ethyl acetate, washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure. The residue was washed with dichloromethane / methanol = 10/1 to obtain the target compound (2) (5.93 g, 68%).
1 HNMR (400 MHz, MeOD) δ: 7.29 (s, 1H), 7.71 (d, J = 8.3 Hz, 1H), 7.86 (dd, J = 2.1, 8.3 Hz, 1H), 8.63 (d, J = 2.1 Hz , 1H)
13 C NMR (400 MHz, MeOD) δ: 39.9, 125.5, 132.9, 133.0, 133.2, 134.4, 142.5, 167.9

化合物(3)の合成
化合物(2)5.65g(15.15mmol,1eq)を10%炭酸ナトリウム水溶液100mLに溶かし、70℃で1時間撹拌した。反応液をろ過し、ろ液に濃塩酸30mLを加え酢酸エチルで2回抽出し、有機相を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧除去し、目的化合物(3)(3.29g,95%)を得た。
1HNMR(400MHz,Acetone-d6)δ:7.94(d,J=8.3Hz,1H),8.17(dd,J=2.2,8.3Hz,1H), 8.46(d,J=2.2Hz,1H),10.37(s,1H)
13CNMR(400MHz,Acetone-d6)δ:131.5,131.5,131.7,134.7,135.5,136.5,166.1,191.3
HRMS(ESI-):m/zcalcdfor[M]-,226.93493;found,226.93679(err.-1.9mDa)
Synthesis of compound (3) 5.65 g (15.15 mmol, 1 eq) of compound (2) was dissolved in 100 mL of 10% aqueous sodium carbonate solution and stirred at 70 ° C. for 1 hour. The reaction mixture was filtered, 30 mL of concentrated hydrochloric acid was added to the filtrate, and the mixture was extracted twice with ethyl acetate. The organic phase was washed with saturated brine, dried over anhydrous sodium sulfate, the solvent was removed under reduced pressure, and the target compound (3) (3.29 g, 95%) was obtained.
1 HNMR (400 MHz, Acetone-d 6 ) δ: 7.94 (d, J = 8.3 Hz, 1H), 8.17 (dd, J = 2.2, 8.3 Hz, 1H), 8.46 (d, J = 2.2 Hz, 1H), 10.37 (s, 1H)
13 C NMR (400 MHz, Acetone-d 6 ) δ: 131.5, 131.5, 131.7, 134.7, 135.5, 136.5, 166.1, 191.3
HRMS (ESI -): m / zcalcdfor [M] -, 226.93493; found, 226.93679 (err.-1.9mDa)

化合物(4)の合成
化合物(3)500mg(2.18mmol,1eq)をテトラヒドロフラン10mLに溶かし、0℃に冷やした。水素化ホウ素ナトリウム123.8mg(3.27mmol,1.5eq)を加え、0℃で5時間撹拌した。1N塩酸を加え、酢酸エチルで抽出し、有機相を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧除去し、目的化合物(4)(492.7mg,98%)を得た。
1HNMR(400MHz,MeOD)δ:4.69(s,2H),7.67(d,J=8.2Hz,1H),7.81(dd,J=2.2,8.2Hz, 1H),8.21(m,1H)
13CNMR(400MHz,MeOD)δ:64.3,128.0,130.3,130.7,131.5,133.7,142.4,169.1
HRMS(ESI+):m/zcalcdfor[M+Na]+,252.94708;found,252.94774(err.-0.7mDa,mSigma:9.2)
Synthesis of compound (4) 500 mg (2.18 mmol, 1 eq) of compound (3) was dissolved in 10 mL of tetrahydrofuran and cooled to 0C. Sodium borohydride (123.8 mg, 3.27 mmol, 1.5 eq) was added, and the mixture was stirred at 0 ° C. for 5 hours. 1N Hydrochloric acid was added, and the mixture was extracted with ethyl acetate. The organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure to obtain the target compound (4) (492.7 mg, 98%). It was.
1 HNMR (400 MHz, MeOD) δ: 4.69 (s, 2H), 7.67 (d, J = 8.2 Hz, 1H), 7.81 (dd, J = 2.2, 8.2 Hz, 1H), 8.21 (m, 1H)
13 CNMR (400 MHz, MeOD) δ: 64.3, 128.0, 130.3, 130.7, 131.5, 133.7, 142.4, 169.1
HRMS (ESI + ): m / zcalcdfor [M + Na] + , 252.94708; found, 252.94774 (err.-0.7mDa, mSigma: 9.2)

化合物(5)の合成
硫酸マグネシウム83.4mg(0.69mmol,8eq)の脱水ジクロロメタン懸濁液(2mL)に濃硫酸4.6mL(0.087mmol,1eq)を加え室温で15分間撹拌した。化合物(4)20mg(0.087mmol,1eq)、tert-ブチルアルコール64.2mg(0.87mmol,10eq)を加え、密栓して20時間撹拌した。飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出し、有機相を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧除去し、シリカゲルクロマトグラフィーで粗精製し(ヘキサン/酢酸エチル=98/2-87/13(6min))、目的化合物(5)(10.5mg,35%)を得た。
1HNMR(400MHz,CDCl3)δ:1.31(s,9H),1.58(s,9H),4.50(s,2H),7.54 (d,J=8.3Hz,1H),7.71(dd,J=2.2,8.3Hz,1H),8.14(d,J=8.3Hz,1H)
13CNMR(400MHz,MeOD)δ:27.7(CH3),28.3(CH3),63.5(CH),74.1(C),81.3(C), 127.2(C),129.3(CH),130.1(CH),131.4(C),132.3(CH),139.4(C),165.3(C)
HRMS(ESI+):m/zcalcdfor[M+Na]+,365.07228;found,365.07232(err.-0.0mDa,mSigma:9.8)
Synthesis of compound (5) 4.6 mL (0.087 mmol, 1 eq) of concentrated sulfuric acid was added to 83.4 mg (0.69 mmol, 8 eq) of magnesium sulfate in a dehydrated dichloromethane suspension (2 mL), and the mixture was stirred at room temperature for 15 minutes. 20 mg (0.087 mmol, 1 eq) of compound (4) and 64.2 mg (0.87 mmol, 10 eq) of tert-butyl alcohol were added, sealed and stirred for 20 hours. A saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with ethyl acetate. The organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate, the solvent was removed under reduced pressure, and the residue was roughly purified by silica gel chromatography (hexane / acetic acid). Ethyl = 98 / 2-87 / 13 (6 min)) and the target compound (5) (10.5 mg, 35%) was obtained.
1 HNMR (400 MHz, CDCl 3 ) δ: 1.31 (s, 9H), 1.58 (s, 9H), 4.50 (s, 2H), 7.54 (d, J = 8.3 Hz, 1H), 7.71 (dd, J = 2.2 , 8.3Hz, 1H), 8.14 (d, J = 8.3Hz, 1H)
13 C NMR (400 MHz, MeOD) δ: 27.7 (CH 3 ), 28.3 (CH 3 ), 63.5 (CH), 74.1 (C), 81.3 (C), 127.2 (C), 129.3 (CH), 130.1 (CH) , 131.4 (C), 132.3 (CH), 139.4 (C), 165.3 (C)
HRMS (ESI + ): m / zcalcdfor [M + Na] + , 365.07228; found, 365.07232 (err.-0.0mDa, mSigma: 9.8)

化合物(7)(HMSiRCOOH)の合成
化合物(5)103.3mg(0.301mmol,5eq)を脱水テトラヒドロフラン(THF)5mLに溶かし、アルゴン雰囲気下、-78℃で10分間撹拌した。1Msec-ブチルリチウムシクロヘキサン、n-ヘキサン溶液301μL(0.301mmol,5eq)を8分間かけて加え、25分間撹拌した。化合物(1)33.4mg(0.060mmol,1eq)のTHF(2mL)溶液を加え、-78℃で10分間、室温で1時間撹拌した。1N塩酸を0.5mL加え、室温で10分間撹拌した。飽和炭酸水素ナトリウム水溶液を加え、ジクロロメタンで抽出し、有機相を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧除去した。トリフルオロ酢酸3mLを加え、室温で42時間撹拌した後、減圧除去し、HPLCで精製し(eluentA(H2O,1%MeCN,0.1%TFA)及びeluentB(MeCN,1%H2O) (A/B=90/10 to 0/100 40min))、目的化合物(7)(2.4mg,24%)を得た。
1HNMR(400MHz,MeOD)δ:0.61(s,3H),0.62(s,3H),3.35(s,12H),4.36(s,2H), 6.77(dd,J=2.7,9.6Hz,2H),7.03(d,J=9.6Hz,2H),7.28(d,J=7.9Hz,1H),7.37(d,J=2.7Hz,2H),8.10(d,J=7.0Hz,1H),8.41(s,1H)
13CNMR(400MHz,MeOD)δ:-1.33,-1.09,40.93,62.01,115.32,122.34,128. 14,129.22,129.45,130.65,132.77,141.51,142.11,142.97,149.39,155.82,167.92,169.14
HRMS(ESI+):m/zcalcdfor[M]+,459.20985;found,459.21126(err.-1.4mDa)
Synthesis of compound (7) (HMSiRCOOH) Compound (5) (103.3 mg, 0.301 mmol, 5 eq) was dissolved in dehydrated tetrahydrofuran (THF) (5 mL) and stirred at -78 ° C for 10 minutes in an argon atmosphere. 301 μL (0.301 mmol, 5 eq) of 1 Msec-butyllithium cyclohexane and n-hexane solution was added over 8 minutes and stirred for 25 minutes. A solution of compound (1) 33.4 mg (0.060 mmol, 1 eq) in THF (2 mL) was added, and the mixture was stirred at −78 ° C. for 10 minutes and at room temperature for 1 hour. 0.5 mL of 1N hydrochloric acid was added and stirred at room temperature for 10 minutes. A saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with dichloromethane. The organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure. After adding 3 mL of trifluoroacetic acid and stirring at room temperature for 42 hours, it was removed under reduced pressure and purified by HPLC (eluentA (H 2 O, 1% MeCN, 0.1% TFA) and eluentB (MeCN, 1% H2O) (A / B = 90/10 to 0/100 40 min)), and the target compound (7) (2.4 mg, 24%) was obtained.
1 HNMR (400 MHz, MeOD) δ: 0.61 (s, 3H), 0.62 (s, 3H), 3.35 (s, 12H), 4.36 (s, 2H), 6.77 (dd, J = 2.7, 9.6 Hz, 2H) , 7.03 (d, J = 9.6Hz, 2H), 7.28 (d, J = 7.9Hz, 1H), 7.37 (d, J = 2.7Hz, 2H), 8.10 (d, J = 7.0Hz, 1H), 8.41 (s, 1H)
13 CNMR (400 MHz, MeOD) δ: -1.33, -1.09,40.93,62.01,115.32,122.34,128. 14,129.22,129.45,130.65,132.77,141.51,142.11,142.97,149.39,155.82,167.92,169.14
HRMS (ESI + ): m / zcalcdfor [M] + , 459.20985; found, 459.21126 (err.-1.4mDa)

化合物(8)の合成
化合物(7)5.9mg(0.013mmol,1eq)をジクロロメタン1.5mLとメタノール1.5mLに溶かし、0℃に冷やした。2Mトリメチルシリルジアゾメタンジエチルエーテル溶液192μLをゆっくり加え、10分間撹拌した後、溶媒を減圧除去し、目的化合物(8)(4.7mg,77%)を得た。
1HNMR(400MHz,CDCl3)δ:0.54(s,3H),0.62(s,3H),2.95(s,12H),3.93(s,3H), 5.29(s,2H),6.61(dd,J=2.9,8.9Hz,2H),6.94(d,J=8.8Hz,2H),6.96(d,J=2.8Hz,2H),7.09(d,J=8.0Hz,1H),7.93(d,J=8.0Hz,1H),8.00(s,1H)
13CNMR(400MHz,CDCl3)δ:-0.96,0.65,40.60,52.30,72.24,92.60,113.95,116.76, 122.86,124.57,128.69,129.26,129.50,135.48,137.70,140.11,148.94,151.83,167.16
HRMS(ESI+):m/zcalcdfor[M+Na]+,495.20504;found,495.20372(err.1.3mDa)
Synthesis of compound (8) 5.9 mg (0.013 mmol, 1 eq) of compound (7) was dissolved in 1.5 mL of dichloromethane and 1.5 mL of methanol and cooled to 0 ° C. After slowly adding 192 μL of 2M trimethylsilyldiazomethane diethyl ether solution and stirring for 10 minutes, the solvent was removed under reduced pressure to obtain the target compound (8) (4.7 mg, 77%).
1 HNMR (400 MHz, CDCl 3 ) δ: 0.54 (s, 3H), 0.62 (s, 3H), 2.95 (s, 12H), 3.93 (s, 3H), 5.29 (s, 2H), 6.61 (dd, J = 2.9,8.9Hz, 2H), 6.94 (d, J = 8.8Hz, 2H), 6.96 (d, J = 2.8Hz, 2H), 7.09 (d, J = 8.0Hz, 1H), 7.93 (d, J = 8.0Hz, 1H), 8.00 (s, 1H)
13 C NMR (400 MHz, CDCl 3 ) δ: −0.96, 0.65, 40.60, 52.30, 72.24, 92.60, 113.95, 116.76, 122.86, 124.57, 128.69, 129.26, 129.50, 135.48, 137.70, 140.11, 148.94, 151.83, 167.16
HRMS (ESI + ): m / zcalcdfor [M + Na] + , 495.20504; found, 495.20372 (err.1.3mDa)

化合物(11)(AMSiRCOOH)の合成
化合物(8)25mg(0.053mmol,1eq)をTHF5mLに溶かし、パラジウム炭素26mgを加え、水素雰囲気下室温で30分間激しく撹拌した。セライト上でろ過し、ろ液を減圧除去した。残渣をトルエン5mLに溶かし、ジアザビシクロウンデセン(DBU)15.8μL(0.106mmol,2eq)、ジフェニルリン酸アジド(DPPA)23.7μL(0.106mmol,2eq)を加え、アルゴン雰囲気下、80℃で3時間撹拌した。飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出し、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧除去した。THF5mL、水0.5mLに溶かし、トリフェニルホスフィン23mg(0.088mmol,2eq)を加え、アルゴン雰囲気下で12時間加熱還流した。溶媒を減圧除去し、シリカゲルクロマトグラフィーで粗精製した(ジクロロメタン/メタノール=92/8-85/15(6min))。0.4M水酸化リチウム水-メタノール(1/3)溶液を1mL加え、室温で6時間撹拌した。1N塩酸を加え、ジクロロメタンで抽出し、飽和食塩水で洗浄、無水硫酸ナトリウムで乾燥した後、溶媒を減圧除去した。ジクロロメタン5mLに溶かし、クロラニル22mgを加え、室温で12時間撹拌した。溶媒を減圧除去し、HPLCで精製し(eluentA(H2O,1%MeCN,0.1%TFA)及びeluentB(MeCN,1%H2O)(A/B=90/10 to 0/100 40min))、目的化合物(11)(AMSiRCOOH)(2.1mg,9%)を得た。
1HNMR(400MHz,MeOD)δ:0.51(s,3H),0.64(s,3H),2.97(s,12H),4.45(s,2H), 6.63,6.70(m,4H),6.96(d,J=8.0Hz,1H),7.07(d,J=2.5Hz,2H),8.01(d,J=8.0Hz,1H),8.05(s,1H)
13CNMR(400MHz,MeOD)δ:-2.04,0.73,40.45,79.95,115.17,118.01,124.52, 126.24,131.17,131.30,134.13,137.91,138.59,140.33,147.96,151.11,174.25
HRMS(ESI+):m/zcalcdfor[M]+,458.22583;found,458.22584(err.-0.0mDa)
Synthesis of compound (11) (AMSiRCOOH) 25 mg (0.053 mmol, 1 eq) of compound (8) was dissolved in 5 mL of THF, 26 mg of palladium carbon was added, and the mixture was vigorously stirred at room temperature for 30 minutes in a hydrogen atmosphere. Filtration over Celite and the filtrate was removed under reduced pressure. Dissolve the residue in 5 mL of toluene, add diazabicycloundecene (DBU) 15.8 μL (0.106 mmol, 2 eq), diphenyl phosphate azide (DPPA) 23.7 μL (0.106 mmol, 2 eq), and add 3 3 at 80 ° C. under an argon atmosphere. Stir for hours. A saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with ethyl acetate, washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. It was dissolved in 5 mL of THF and 0.5 mL of water, 23 mg (0.088 mmol, 2 eq) of triphenylphosphine was added, and the mixture was heated to reflux for 12 hours under an argon atmosphere. The solvent was removed under reduced pressure, and the residue was roughly purified by silica gel chromatography (dichloromethane / methanol = 92 / 8-85 / 15 (6 min)). 1 mL of 0.4M lithium hydroxide aqueous-methanol (1/3) solution was added and stirred at room temperature for 6 hours. 1N Hydrochloric acid was added, extracted with dichloromethane, washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure. Dissolved in 5 mL of dichloromethane, added 22 mg of chloranil, and stirred at room temperature for 12 hours. Solvent was removed under reduced pressure and purified by HPLC (eluentA (H 2 O, 1% MeCN, 0.1% TFA) and eluentB (MeCN, 1% H2O) (A / B = 90/10 to 0/100 40 min)) The target compound (11) (AMSiRCOOH) (2.1 mg, 9%) was obtained.
1 HNMR (400 MHz, MeOD) δ: 0.51 (s, 3H), 0.64 (s, 3H), 2.97 (s, 12H), 4.45 (s, 2H), 6.63, 6.70 (m, 4H), 6.96 (d, J = 8.0Hz, 1H), 7.07 (d, J = 2.5Hz, 2H), 8.01 (d, J = 8.0Hz, 1H), 8.05 (s, 1H)
13 CNMR (400 MHz, MeOD) δ: −2.04, 0.73,40.45, 79.95, 115.17, 118.01, 124.52, 126.24, 131.17, 131.30, 134.13, 137.91, 138.59, 140.33, 147.96, 151.11, 174.25
HRMS (ESI + ): m / zcalcdfor [M] + , 458.22583; found, 458.22584 (err.-0.0mDa)

化合物(12)の合成
化合物(7)8.4mg(0.018mmol,1eq)を脱水N,N-ジメチルホルムアミド2mLに溶かし、N-ヒドロキシコハク酸イミド10.5mg(0.091mmol,5eq),1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(WSCD)17.5mg(0.091mmol,5eq)を加え、24時間撹拌した。溶媒を減圧除去し、HPLCで精製し(eluentA(H2O,1%MeCN,0.1%TFA)及びeluentB(MeCN,1%H2O) (A/B=90/10 to 0/100 30min))、目的化合物(12)(8.1mg,79%)を得た。
1HNMR(400MHz,MeOD)δ:0.62(s,3H),0.62(s,3H),2.95(s,4H),3.36(s,12H),4.38(s,2H),6.80(dd,J=2.8,9.6Hz,2H),7.03(d,J=9.6Hz,2H),7.38(d,J=2.8Hz,2H),7.42(d,J=7.9Hz,1H),8.23(d,J=7.9Hz,1H),8.52(s,1H)
13CNMR(400MHz,MeOD)δ:-1.3,-1.1,26.6,41.0,61.7,115.5,122.5,127.3,127.8, 129.7,131.4,141.9,142.6,145.1,149.4,155.9,163.1,166.5,171.8
HRMS(ESI+):m/zcalcdfor[M+H]+,556.22622;found,556.22596(err.0.3mDa)
Synthesis of compound (12) 8.4 mg (0.018 mmol, 1 eq) of compound (7) was dissolved in 2 mL of dehydrated N, N-dimethylformamide, and 10.5 mg (0.091 mmol, 5 eq), 1 of N-hydroxysuccinimide was obtained. -Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (WSCD) 17.5 mg (0.091 mmol, 5 eq) was added and stirred for 24 hours. Solvent was removed under reduced pressure and purified by HPLC (eluentA (H2O, 1% MeCN, 0.1% TFA) and eluentB (MeCN, 1% H2O) (A / B = 90/10 to 0/100 30min)) (12) (8.1 mg, 79%) was obtained.
1H NMR (400 MHz, MeOD) δ: 0.62 (s, 3H), 0.62 (s, 3H), 2.95 (s, 4H), 3.36 (s, 12H), 4.38 (s, 2H), 6.80 (dd, J = 2.8 , 9.6Hz, 2H), 7.03 (d, J = 9.6Hz, 2H), 7.38 (d, J = 2.8Hz, 2H), 7.42 (d, J = 7.9Hz, 1H), 8.23 (d, J = 7.9 Hz, 1H), 8.52 (s, 1H)
13C NMR (400MHz, MeOD) δ: -1.3, -1.1, 26.6, 41.0, 61.7, 115.5, 122.5, 127.3, 127.8, 129.7, 131.4, 141.9, 142.6, 145.1, 149.4, 155.9, 163.1, 166.5, 171.8
HRMS (ESI +): m / zcalcdfor [M + H] +, 556.22622; found, 556.22596 (err.0.3mDa)

また、以下のスキーム2に従って、本発明の超解像蛍光イメージング用プローブである化合物14(HMAcRG)、16(AMAcRG)、及び17(AMRG)を合成した。なお、化合物13及び14の合成については、J.Am.Chem.Soc.,2013,135,409−414に開示されており、これを参照することができる。

Figure 0006349091
Further, according to the following scheme 2, compounds 14 (HMAcRG), 16 (AMAcRG), and 17 (AMRG), which are super-resolution fluorescent imaging probes of the present invention, were synthesized. The synthesis of compounds 13 and 14 is disclosed in J. Am. Chem. Soc., 2013, 135, 409-414, which can be referred to.
Figure 0006349091

化合物(14)(HMAcRG)の合成
化合物(13)30mg(0.095mmol)をピリジン1mLに溶かし、0度に冷やした。無水酢酸9.0μL(0.095mmol,1eq)のピリジン(1mL)溶液を加え、アルゴン雰囲気下、室温で23時間撹拌した。溶媒を減圧除去し、HPLCで精製し(eluentA(H2O,1%MeCN,0.1%TFA)及びeluentB(MeCN,1%H2O)(A/B=90/10 to 0/100 60min))、目的化合物(14)(HMAcRG)(23.6mg,69%)を得た。
1HNMR(300MHz,MeOD)δ:7.64(d,1H,J=7.7Hz),7.56(t,1H,J=7.6Hz),7.44(t,1H,J=7.5Hz),7.17(d,1H,J=7.5Hz),7.03-7.00(m,2H),6.71-6.74(m,4H),4.23(s,2H).13CNMR(75MHz,MeOD)δ:161.5,159.9,159.6,141.0,133.4,132.2,131.3,130.3,129.5,128.8,118.0,115.0,98.4,62.8.
HRMS(ESI+):m/zcalcdfor[M]+,317.12900;found,317.12862(err.-0.38mDa)
Synthesis of compound (14) (HMAcRG) 30 mg (0.095 mmol) of compound (13) was dissolved in 1 mL of pyridine and cooled to 0 ° C. A solution of acetic anhydride (9.0 μL, 0.095 mmol, 1 eq) in pyridine (1 mL) was added, and the mixture was stirred at room temperature for 23 hours under an argon atmosphere. Solvent was removed under reduced pressure and purified by HPLC (eluentA (H 2 O, 1% MeCN, 0.1% TFA) and eluentB (MeCN, 1% H2O) (A / B = 90/10 to 0/100 60 min)) The target compound (14) (HMAcRG) (23.6 mg, 69%) was obtained.
1 HNMR (300 MHz, MeOD) δ: 7.64 (d, 1H, J = 7.7 Hz), 7.56 (t, 1H, J = 7.6 Hz), 7.44 (t, 1H, J = 7.5 Hz), 7.17 (d, 1H , J = 7.5 Hz), 7.03-7.00 (m, 2H), 6.71-6.74 (m, 4H), 4.23 (s, 2H). 13 C NMR (75 MHz, MeOD) δ: 161.5, 159.9, 159.6, 141.0, 133.4 , 132.2, 131.3, 130.3, 129.5, 128.8, 118.0, 115.0, 98.4, 62.8.
HRMS (ESI + ): m / zcalcdfor [M] + , 317.12900; found, 317.12862 (err.-0.38mDa)

化合物(16)(AMAcRG)の合成
化合物(14)7.3mg(0.020mmol,1eq)をTHF2mLに溶かし、パラジウム炭素34mgを加え、水素雰囲気下室温で40分間激しく撹拌した。セライト上でろ過し、ろ液を減圧除去した。残渣をTHF2mL,トルエン2mLに溶かし、ジアザビシクロウンデセン(DBU)6.1μL(0.041mmol,2eq)、ジフェニルリン酸アジド(DPPA)9.1μL(0.041mmol,2eq)を加え、アルゴン雰囲気下、80℃で18時間撹拌した。飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出し、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧除去し、シリカゲルクロマトグラフィーで粗精製した(ジクロロメタン/メタノール=95/5-88/12(6min))。THF3mL、水0.3mLに溶かし、トリフェニルホスフィン7.8mg(0.030mmol,2eq)を加え、アルゴン雰囲気下で6時間加熱還流した。溶媒を減圧除去し、ジクロロメタン2mLに溶かし、クロラニル7.3mgを加え、室温で24時間撹拌した。溶媒を減圧除去し、HPLCで精製し(eluentA(H2O,1%MeCN,0.1%TFA)及びeluentB(MeCN,1%H2O)(A/B=90/10 to 0/100 40min))、目的化合物(16)(AMAcRG)(2.0mg,27%)を得た。
1HNMR(400MHz,MeOD)δ2.12(s,3H),4.35(d,J=5.0Hz,2H),6.41(dd,J=2.2,8.4Hz,1H),6.52(d,J=2.3Hz,1H),6.59(d,J=8.4Hz,1H),6.74(d,J=8.6Hz,1H),6.90(d,J=7.6Hz,1H),7.07(dd,J=2.1,8.5Hz,1H),7.30(t,J=7.4Hz,1H),7.39(dt,J=1.0,7.4Hz,1H),7.45(d,J=7.5Hz,1H),7.59(d,J=2.1Hz,1H)
HRMS(ESI+):m/zcalcdfor[M]+,358.15500;found,358.15672(err.-1.7mDa)
Synthesis of Compound (16) (AMAcRG) 7.3 mg (0.020 mmol, 1 eq) of Compound (14) was dissolved in 2 mL of THF, 34 mg of palladium carbon was added, and the mixture was vigorously stirred at room temperature for 40 minutes under a hydrogen atmosphere. Filtration over Celite and the filtrate was removed under reduced pressure. Dissolve the residue in 2 mL of THF and 2 mL of toluene, add diazabicycloundecene (DBU) 6.1 μL (0.041 mmol, 2 eq), diphenylphosphate azide (DPPA) 9.1 μL (0.041 mmol, 2 eq), and add 80 ° C. under argon atmosphere. For 18 hours. Saturated aqueous sodium hydrogen carbonate solution was added, extracted with ethyl acetate, washed with water and saturated brine, and dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure, and the residue was roughly purified by silica gel chromatography (dichloromethane / methanol = 95 / 5-88 / 12 (6min)). It was dissolved in 3 mL of THF and 0.3 mL of water, 7.8 mg (0.030 mmol, 2 eq) of triphenylphosphine was added, and the mixture was heated to reflux for 6 hours under an argon atmosphere. The solvent was removed under reduced pressure, dissolved in 2 mL of dichloromethane, 7.3 mg of chloranil was added, and the mixture was stirred at room temperature for 24 hours. Solvent was removed under reduced pressure and purified by HPLC (eluentA (H 2 O, 1% MeCN, 0.1% TFA) and eluentB (MeCN, 1% H2O) (A / B = 90/10 to 0/100 40 min)) The target compound (16) (AMAcRG) (2.0 mg, 27%) was obtained.
1 HNMR (400MHz, MeOD) δ2.12 (s, 3H), 4.35 (d, J = 5.0Hz, 2H), 6.41 (dd, J = 2.2,8.4Hz, 1H), 6.52 (d, J = 2.3Hz , 1H), 6.59 (d, J = 8.4Hz, 1H), 6.74 (d, J = 8.6Hz, 1H), 6.90 (d, J = 7.6Hz, 1H), 7.07 (dd, J = 2.1,8.5Hz , 1H), 7.30 (t, J = 7.4Hz, 1H), 7.39 (dt, J = 1.0,7.4Hz, 1H), 7.45 (d, J = 7.5Hz, 1H), 7.59 (d, J = 2.1Hz , 1H)
HRMS (ESI + ): m / zcalcdfor [M] + , 358.15500; found, 358.15672 (err.-1.7mDa)

化合物(17)(AMRG)の合成
化合物(15)6.7mg(0.017mmol,1eq)をTHF5mL、水2mLに溶かし、トリフェニルホスフィン9.1mg(0.035mmol,2eq)を加え、アルゴン雰囲気下で18時間、80℃で撹拌した。溶媒を減圧除去し、1N塩酸5mLを加えアルゴン雰囲気下で1時間、加熱還流した。飽和炭酸水素ナトリウム水溶液を加え、ジクロロメタンで抽出し、情話食塩水で洗浄、無水硫酸ナトリウムで乾燥した。溶媒を減圧除去し、HPLCで精製し(eluentA(H2O,1%MeCN,0.1%TFA)及びeluentB(MeCN,1%H2O) (A/B=90/10 to 0/100 60min))、目的化合物(12)(AMRG)(3.1mg,56%)を得た。
1HNMR(400MHz,MeOD)δ3.88(s,2H),6.86,6.89(m,4H),7.09(d,J=9.4Hz,2H), 7.42(d,J=7.4Hz,1H),7.68(d,J=2.2,10.9Hz,1H),7.76-7.81(m,2H)
HRMS(ESI+):m/zcalcdfor[M]+,316.14444;found,316.14521(err.-0.8mDa)
Synthesis of compound (17) (AMRG) 6.7 mg (0.017 mmol, 1 eq) of compound (15) was dissolved in 5 mL of THF and 2 mL of water, 9.1 mg (0.035 mmol, 2 eq) of triphenylphosphine was added, and the atmosphere was argon. And stirred at 80 ° C. for 18 hours. The solvent was removed under reduced pressure, 5 mL of 1N hydrochloric acid was added, and the mixture was heated to reflux for 1 hour under an argon atmosphere. A saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with dichloromethane, washed with narrative saline, and dried over anhydrous sodium sulfate. Solvent was removed under reduced pressure and purified by HPLC (eluentA (H 2 O, 1% MeCN, 0.1% TFA) and eluentB (MeCN, 1% H2O) (A / B = 90/10 to 0/100 60 min)) The target compound (12) (AMRG) (3.1 mg, 56%) was obtained.
1 HNMR (400MHz, MeOD) δ3.88 (s, 2H), 6.86,6.89 (m, 4H), 7.09 (d, J = 9.4Hz, 2H), 7.42 (d, J = 7.4Hz, 1H), 7.68 (d, J = 2.2,10.9Hz, 1H), 7.76-7.81 (m, 2H)
HRMS (ESI + ): m / zcalcdfor [M] + , 316.14444; found, 316.14521 (err.-0.8mDa)

また、以下のスキームに従って、本発明の超解像蛍光イメージング用プローブである化合物21(HMAcRGCOOH)を合成した。なお、化合物18の合成については、J.Org.Chem., 2008, 73, 8711−8718に開示されており、これを参照することができる。

Figure 0006349091
Further, Compound 21 (HMAcRGCOOH), which is a probe for super-resolution fluorescence imaging of the present invention, was synthesized according to the following scheme. For the synthesis of compound 18, see J. et al. Org. Chem., 2008, 73, 8711-8718, which can be referred to.
Figure 0006349091

化合物(19)の合成
化合物(18)2g(4.062 mmol, 1 eq)をトルエン70mLに溶かし、トリス(ジベンジリデンアセトン)二パラジウム(0)(クロロホルム付加物) 840mg(0.8125mmol, 0.2 eq)、キサントホス1.176g(2.031mmol, 0.5eq)、炭酸セシウム4g(12.19mmol, 3 eq)、ベンゾフェノンイミン4.09mL(24.37mmol, 6eq ) を加え、100℃で13時間撹拌した。セライト上で濾過し、飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出し、水、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、溶媒を減圧除去した。シリカゲルクロマトグラフィーで粗精製し(ヘキサン/酢酸エチル=83/17―62/38(15min))、酢酸エチルで再結晶することで目的化合物(19)(1.3805g、61%)を得た。
1H NMR (400 MHz, CDCl3): δ 8.05 (d, J = 8.5 Hz, 2 H), 7.77 (d, J = 7.0 Hz, 4 H), 7.52-7.49 (m, 2 H), 7.45-7.44 (m, 4 H), 7.29-7.27 (m, 6 H), 7.16 (m, 4 H), 6.75 (d, J = 1.9 Hz, 2 H) , 6.66 (dd, J = 8.5, 1.9 Hz, 2 H); 13C NMR (101 MHz, CDCl3): δ176.1 (C), 169.3 (C), 157.6 (C), 157.0 (C), 138.9 (C), 135.5 (C), 131.5 (CH), 129.7 (CH), 129.4 (CH), 128.5 (CH), 128.3 (CH), 127.3 (CH), 117.7 (CH), 117.6 (C), 108.4 (CH); HRMS (m/z): [M+Na]+ calcd. for C39H26N2NaO2, 577.18865; found, 577.18802.(err. 0.6 mDa)
Synthesis of compound (19) 2 g (4.062 mmol, 1 eq) of compound (18) was dissolved in 70 mL of toluene, and 840 mg (0. 0 of chloroform adduct) of tris (dibenzylideneacetone) dipalladium (0). 8125 mmol, 0.2 eq), 1.176 g (2.031 mmol, 0.5 eq) xanthophos, 4 g (12.19 mmol, 3 eq) cesium carbonate, 4.09 mL (24.37 mmol, 6 eq) benzophenone imine, and 100 Stir at 13 ° C. for 13 hours. The mixture was filtered over celite, saturated aqueous sodium hydrogen carbonate solution was added, extracted with ethyl acetate, washed with water and saturated brine, dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure. The product was roughly purified by silica gel chromatography (hexane / ethyl acetate = 83 / 17-62 / 38 (15 min)) and recrystallized from ethyl acetate to obtain the target compound (19) (1.3805 g, 61%).
1 H NMR (400 MHz, CDCl 3 ): δ 8.05 (d, J = 8.5 Hz, 2 H), 7.77 (d, J = 7.0 Hz, 4 H), 7.52-7.49 (m, 2 H), 7.45- 7.44 (m, 4 H), 7.29-7.27 (m, 6 H), 7.16 (m, 4 H), 6.75 (d, J = 1.9 Hz, 2 H), 6.66 (dd, J = 8.5, 1.9 Hz, 2 H); 13 C NMR (101 MHz, CDCl 3 ): δ176.1 (C), 169.3 (C), 157.6 (C), 157.0 (C), 138.9 (C), 135.5 (C), 131.5 (CH ), 129.7 (CH), 129.4 (CH), 128.5 (CH), 128.3 (CH), 127.3 (CH), 117.7 (CH), 117.6 (C), 108.4 (CH); HRMS (m / z): [ M + Na] + calcd.for C 39 H 26 N 2 NaO 2 , 577.18865; found, 577.18802. (Err. 0.6 mDa)

化合物(20)(HMRGCOOH)の合成
化合物(5)371.3mg(1.0818mmol, 3 eq)を脱水テトラヒドロフラン(THF)15 mLに溶かし、アルゴン雰囲気下、-78℃で10分間撹拌した。1M sec-ブチルリチウム シクロヘキサン、n-ヘキサン溶液1.08 mL(1.08mmol, 3 eq)を5分間かけて加え、30分間撹拌した。化合物(19) 200 mg (0.3606 mmol, 1 eq)のTHF (8 mL)溶液を加え、-78℃で10分間、室温で1時間半撹拌した。飽和炭酸水素ナトリウム水溶液を5 mL加え、酢酸エチルで抽出し、有機相を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧除去した。シリカゲルクロマトグラフィーで粗精製し(ヘキサン/酢酸エチル=67/33―46/54(9min))、トリフルオロ酢酸 5mLを加え、室温で18時間撹拌した後、減圧除去し、HPLCで精製し(eluent A (H2O, 1% MeCN, 0.1% TFA) and eluent B (MeCN, 1% H2O) (A/B = 90/10 to 0/100 40min))、目的化合物(20) (64.9 mg, 38%)を得た。
1H NMR (400 MHz, MeOD): δ8.41 (d, J = 1.0 Hz, 1 H), 8.17 (dd, J = 7.9, 1.5 Hz, 1 H), 7.39 (d, J = 7.9 Hz, 1 H), 7.05 (d, J = 9.2 Hz, 2 H), 6.83 (dd, J = 9.2, 2.1 Hz, 2 H), 6.75 (d, J = 2.1 Hz, 2 H), 4.34 (s, 2 H); 13C NMR (101 MHz, MeOD): δ168.9 (C), 161.5 (C), 159.6 (C), 157.9 (C), 141.7 (C), 136.5 (C), 133.8 (C), 133.0 (CH), 130.7 (CH), 130.4 (CH), 129.8 (CH), 118.2 (CH), 114.5 (C), 98.6 (CH), 62.4 (CH2); HRMS (m/z): [M]+ calcd. for C21H17N2O4, 361.11828; found, 361.11837.(err. -0.1 mDa)
Synthesis of compound (20) (HMRGCOOH) Compound (5) 371.3 mg (1.0818 mmol, 3 eq) was dissolved in 15 mL of dehydrated tetrahydrofuran (THF) and stirred at -78 ° C for 10 minutes under an argon atmosphere. did. 1M sec-butyllithium cyclohexane / 1.08 mL (1.08 mmol, 3 eq) of n-hexane solution was added over 5 minutes and stirred for 30 minutes. A solution of compound (19) 200 mg (0.3606 mmol, 1 eq) in THF (8 mL) was added, and the mixture was stirred at −78 ° C. for 10 minutes and at room temperature for 1.5 hours. 5 mL of a saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with ethyl acetate. The organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure. Crudely purified by silica gel chromatography (hexane / ethyl acetate = 67 / 33-46 / 54 (9 min)), 5 mL of trifluoroacetic acid was added, stirred at room temperature for 18 hours, then removed under reduced pressure, and purified by HPLC (eluent A (H 2 O, 1% MeCN, 0.1% TFA) and eluent B (MeCN, 1% H 2 O) (A / B = 90/10 to 0/100 40 min)), target compound (20) (64. 9 mg, 38%).
1 H NMR (400 MHz, MeOD): δ8.41 (d, J = 1.0 Hz, 1 H), 8.17 (dd, J = 7.9, 1.5 Hz, 1 H), 7.39 (d, J = 7.9 Hz, 1 H), 7.05 (d, J = 9.2 Hz, 2 H), 6.83 (dd, J = 9.2, 2.1 Hz, 2 H), 6.75 (d, J = 2.1 Hz, 2 H), 4.34 (s, 2 H ); 13 C NMR (101 MHz, MeOD): δ168.9 (C), 161.5 (C), 159.6 (C), 157.9 (C), 141.7 (C), 136.5 (C), 133.8 (C), 133.0 (CH), 130.7 (CH), 130.4 (CH), 129.8 (CH), 118.2 (CH), 114.5 (C), 98.6 (CH), 62.4 (CH 2 ); HRMS (m / z): [M] + calcd.for C 21 H 17 N 2 O 4 , 361.11828; found, 361.11837. (err.-0.1 mDa)

化合物(21)(HMAcRGCOOH)の合成
化合物(20)45.8mg(0.1271mmol, 1 eq)を脱水ピリジン5 mLと脱水N,N−ジメチルホルムアミド5 mLに溶かし、無水酢酸18 mL(0.1906 mmol, 1.5 eq)を加え、アルゴン雰囲気下、室温で12時間撹拌した。溶媒を減圧除去し、HPLCで粗精製し(eluent A (H2O, 1% MeCN, 0.1% TFA) and eluent B (MeCN, 1% H2O) (A/B = 90/10 to 0/100 40min))、シリカゲルクロマトグラフィーで精製し(ヘキサン/酢酸エチル=87/13―79/21(6 min))、目的化合物(21) (14.6 mg, 29%)を得た。
1H NMR (400 MHz, MeOD): δ8.08 (s, 1 H), 7.93 (d, J = 8.0 Hz, 1 H), 7.61 (d, J = 2.0 Hz, 1 H), 7.07 (dd, J = 8.6, 2.0 Hz, 1 H), 6.87 (d, J = 8.0 Hz, 1 H), 6.84 (d, J = 8.6 Hz, 1 H), 6.65 (d, J = 8.5 Hz, 1 H), 6.50 (d, J = 2.2 Hz, 1 H), 6.41 (dd, J = 8.5, 2.2 Hz, 1 H), 5.29 (s, 2 H), 2.12 (s, 3 H); HRMS (m/z): [M-H]- calcd. for C23H17N2O5, 401.11430; found, 401.11696.(err. -2.7 mDa)
Synthesis of compound (21) (HMAcRGCOOH) Compound (20) 45.8 mg (0.1271 mmol, 1 eq) was dissolved in dehydrated pyridine 5 mL and dehydrated N, N-dimethylformamide 5 mL, and acetic anhydride 18 mL. (0.1906 mmol, 1.5 eq) was added, and the mixture was stirred at room temperature for 12 hours under an argon atmosphere. Solvent was removed under reduced pressure and crude purified by HPLC (eluent A (H 2 O, 1% MeCN, 0.1% TFA) and eluent B (MeCN, 1% H 2 O) (A / B = 90/10 to 0 / And purified by silica gel chromatography (hexane / ethyl acetate = 87 / 13-79 / 21 (6 min)) to obtain the target compound (21) (14.6 mg, 29%).
1 H NMR (400 MHz, MeOD): δ8.08 (s, 1 H), 7.93 (d, J = 8.0 Hz, 1 H), 7.61 (d, J = 2.0 Hz, 1 H), 7.07 (dd, J = 8.6, 2.0 Hz, 1 H), 6.87 (d, J = 8.0 Hz, 1 H), 6.84 (d, J = 8.6 Hz, 1 H), 6.65 (d, J = 8.5 Hz, 1 H), 6.50 (d, J = 2.2 Hz, 1 H), 6.41 (dd, J = 8.5, 2.2 Hz, 1 H), 5.29 (s, 2 H), 2.12 (s, 3 H); HRMS (m / z) :.. [MH] - calcd for C 23 H 17 N 2 O 5, 401.11430; found, 401.11696 (. err -2.7 mDa)

さらに、以下のスキームに従って、本発明の超解像蛍光イメージング用プローブである化合物21(HMMoRCOOH)を合成した。なお、化合物22の合成については、J.Org.Chem., 2008, 73, 8711−8718に開示されており、これを参照することができる。

Figure 0006349091
Further, Compound 21 (HMMoRCOOH), which is a probe for super-resolution fluorescence imaging of the present invention, was synthesized according to the following scheme. For the synthesis of compound 22, see J. et al. Org. Chem., 2008, 73, 8711-8718, which can be referred to.
Figure 0006349091

化合物(23)(HMRGCOOH)の合成
化合物(5)58.5mg(0.1703 mmol, 2 eq)を脱水テトラヒドロフラン(THF)7 mLに溶かし、アルゴン雰囲気下、-78℃で10分間撹拌した。1M sec-ブチルリチウム シクロヘキサン、n-ヘキサン溶液0.17 mL(0.17 mmol, 2 eq)を2分間かけて加え、30分間撹拌した。化合物(22) 31.2 mg (0.0852 mmol, 1 eq)のTHF (5 mL)溶液を加え、-78℃で30分間、室温で23時間半撹拌した。飽和炭酸水素ナトリウム水溶液を3 mL加え、酢酸エチルで抽出し、有機相を水、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧除去した。トリフルオロ酢酸 3 mLを加え、室温で23時間撹拌した後、減圧除去し、HPLCで精製し(eluent A (H2O, 1% MeCN, 0.1% TFA) and eluent B (MeCN, 1% H2O) (A/B = 90/10 to 0/100 40min))、目的化合物(20) (39.0 mg, 75%)を得た。
1H NMR (400 MHz, MeOD) dδ: 3.77 (t, J = 4.7, 8 H), 3.85 (t, J = 4.7, 8 H), 4.38 (s, 2 H), 7.21-7.28 (m, 6 H), 7.43 (d, J = 7.9 Hz, 1 H), 8.18 (dd, J = 7.9, 1.6 Hz, 1 H), 8.41 (d, J = 1.0 Hz, 1 H); 13C NMR (400 MHz, MeOD) δ: 48.5 (CH2), 62.6 (CH2), 67.4 (CH2), 98.6 (CH), 115.6, 116.2 (CH), 129.9 (CH), 130.6 (CH), 130.8 (CH), 132.7 (CH), 134.0 (C), 136.3 (C), 141.9 (C), 158.2 (C), 159.0 (C), 159.8 (C), 168.8 (C); HRMS (ESI +): m/z calcd for [M] +, 501.20201; found, 501.20237 (err. -0.4 mDa)
Synthesis of compound (23) (HMRGCOOH) Compound (5) 58.5 mg (0.1703 mmol, 2 eq) was dissolved in dehydrated tetrahydrofuran (THF) 7 mL, and at -78C for 10 minutes under argon atmosphere. Stir. 1 M sec-butyllithium cyclohexane and n-hexane solution 0.17 mL (0.17 mmol, 2 eq) was added over 2 minutes, and the mixture was stirred for 30 minutes. A solution of compound (22) 31.2 mg (0.0852 mmol, 1 eq) in THF (5 mL) was added, and the mixture was stirred at −78 ° C. for 30 minutes and at room temperature for 23 and a half hours. 3 mL of a saturated aqueous sodium hydrogen carbonate solution was added, and the mixture was extracted with ethyl acetate. The organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate, and the solvent was removed under reduced pressure. 3 mL of trifluoroacetic acid was added, and the mixture was stirred at room temperature for 23 hours, then removed under reduced pressure, and purified by HPLC (eluent A (H 2 O, 1% MeCN, 0.1% TFA) and eluent B (MeCN, 1% H 2 O) (A / B = 90/10 to 0/100 40 min)), the target compound (20) (39.0 mg, 75%) was obtained.
1 H NMR (400 MHz, MeOD) dδ: 3.77 (t, J = 4.7, 8 H), 3.85 (t, J = 4.7, 8 H), 4.38 (s, 2 H), 7.21-7.28 (m, 6 H), 7.43 (d, J = 7.9 Hz, 1 H), 8.18 (dd, J = 7.9, 1.6 Hz, 1 H), 8.41 (d, J = 1.0 Hz, 1 H); 13 C NMR (400 MHz , MeOD) δ: 48.5 (CH 2 ), 62.6 (CH 2 ), 67.4 (CH 2 ), 98.6 (CH), 115.6, 116.2 (CH), 129.9 (CH), 130.6 (CH), 130.8 (CH), 132.7 (CH), 134.0 (C), 136.3 (C), 141.9 (C), 158.2 (C), 159.0 (C), 159.8 (C), 168.8 (C); HRMS (ESI + ): m / z calcd for [M] + , 501.20201; found, 501.20237 (err. -0.4 mDa)

また、以下のスキームに従って、本発明の超解像蛍光イメージング用プローブである化合物を合成した。なお、化合物24の合成については、Nat.Biotech.,2003, 21,86−89に開示されており、化合物25の合成については、J.Am.Chem.Soc.2013,135,6184−6191に開示されており、これらを参照することができる。

Figure 0006349091
Moreover, the compound which is the probe for super-resolution fluorescence imaging of this invention was synthesize | combined according to the following schemes. For the synthesis of compound 24, see Nat. Biotech. , 2003, 21, 86-89, and the synthesis of compound 25 is described in J. Am. Am. Chem. Soc. 2013, 135, 6184-6191, which can be referred to.
Figure 0006349091

化合物(26)(HMSiR−BG)の合成
化合物(7)9.2 mg(0.0201 mmol, 1 eq)を脱水N,N−ジメチルホルムアミド1 mLに溶かし、化合物(24)5.4 mg(0.0201 mmol, 1 eq)、1-ヒドロキシベンゾトリアゾール2.7 mg(0.0201 mmol, 1 eq)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩3.8 mg(0.0201 mmol, 1 eq)、トリエチルアミン5.6 mL(0.0402 mmol, 2 eq)を加え、アルゴン雰囲気下、室温で17時間撹拌した。溶媒を減圧除去し、HPLCで精製し(eluent A (H2O, 1% MeCN, 0.1% TFA) and eluent B (MeCN, 1% H2O) (A/B = 90/10 to 0/100 50min))、目的化合物(26) (HMSiR−BG)(9.9 mg, 60%)を得た。
1H NMR (400 MHz, MeOD): δ 8.33 (s, 1 H), 8.25 (s, 1 H), 7.95 (d, J = 7.1 Hz, 1 H), 7.56 (d, J = 8.0 Hz, 2 H), 7.46 (d, J = 8.0, 2 H), 7.37 (d, J = 2.6 Hz, 2 H), 7.27 (d, J = 7.9 Hz, 1 H), 7.04 (d, J = 9.6 Hz, 2 H), 6.75 (dd, J = 9.6, 2.6 Hz, 2 H), 5.66 (s, 2 H), 4.66 (s, 2 H), 4.36 (s, 2 H), 3.35 (s, 12 H), 0.61 (s, 3 H), 0.60 (s, 3 H); 13C NMR (101 MHz, MeOD): δ 169.4, 168.0, 161.2,158.3, 155.8, 153.7, 149.4, 143.5, 142.2, 141.8, 141.6, 141.0, 136.2, 135.5, 130.7, 130.3, 128.8, 128.2, 127.3, 126.9, 122.3, 115.2, 108.4, 70.8, 62.1, 44.3, 40.9, -1.1, -1.3; HRMS (m/z): [M]+ calcd. for C40H43N8O3Si, 711.32219; found, 711.32339. (err. 1.2 mDa)
Synthesis of compound (26) (HMSiR-BG) Compound (7) 9.2 mg (0.0201 mmol, 1 eq) was dissolved in dehydrated N, N-dimethylformamide 1 mL to give compound (24) 5 .4 mg (0.0201 mmol, 1 eq), 1-hydroxybenzotriazole 2.7 mg (0.0201 mmol, 1 eq), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride 8 mg (0.0201 mmol, 1 eq) and 5.6 mL (0.0402 mmol, 2 eq) of triethylamine were added, and the mixture was stirred at room temperature for 17 hours under an argon atmosphere. Solvent was removed under reduced pressure and purified by HPLC (eluent A (H 2 O, 1% MeCN, 0.1% TFA) and eluent B (MeCN, 1% H 2 O) (A / B = 90/10 to 0/100 50 min)) and the target compound (26) (HMSiR-BG) (9.9 mg, 60%) was obtained.
1 H NMR (400 MHz, MeOD): δ 8.33 (s, 1 H), 8.25 (s, 1 H), 7.95 (d, J = 7.1 Hz, 1 H), 7.56 (d, J = 8.0 Hz, 2 H), 7.46 (d, J = 8.0, 2 H), 7.37 (d, J = 2.6 Hz, 2 H), 7.27 (d, J = 7.9 Hz, 1 H), 7.04 (d, J = 9.6 Hz, 2 H), 6.75 (dd, J = 9.6, 2.6 Hz, 2 H), 5.66 (s, 2 H), 4.66 (s, 2 H), 4.36 (s, 2 H), 3.35 (s, 12 H) , 0.61 (s, 3 H), 0.60 (s, 3 H); 13 C NMR (101 MHz, MeOD): δ 169.4, 168.0, 161.2,158.3, 155.8, 153.7, 149.4, 143.5, 142.2, 141.8, 141.6, 141.0, 136.2, 135.5, 130.7, 130.3, 128.8, 128.2, 127.3, 126.9, 122.3, 115.2, 108.4, 70.8, 62.1, 44.3, 40.9, -1.1, -1.3; HRMS (m / z): [M] + calcd for C 40 H 43 N 8 O 3 Si, 711.32219; found, 711.32339. (err. 1.2 mDa)

化合物(27)(HMSiR−Halo)の合成
化合物(7)10.6 mg(0.0185 mmol, 1 eq)を脱水N,N−ジメチルホルムアミド2 mLに溶かし、化合物(25)7.2 mg(0.0278 mmol, 1.5 eq)、1-ヒドロキシベンゾトリアゾール3.8 mg(0.0278 mmol, 1.5 eq)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩5.3 mg(0.0278 mmol, 1.5 eq)、トリエチルアミン12.9 mL(0.0926 mmol, 5 eq)を加え、アルゴン雰囲気下、室温で13時間撹拌した。溶媒を減圧除去し、HPLCで精製し(eluent A (H2O, 1% MeCN, 0.1% TFA) and eluent B (MeCN, 1% H2O) (A/B = 90/10 to 0/100 40min))、目的化合物(27) (HMSiR−Halo)(5.2 mg, 36%)を得た。
1H NMR (400 MHz, MeOD): δ 8.22 (s, 1 H), 7.92 (d, J = 7.8 Hz, 1H), 7.37 (d, J = 2.6 Hz, 2H), 7.26 (d, J = 7.8 Hz, 1 H), 7.05 (d, J = 9.6 Hz, 2H), 6.76 (dd, J = 9.6, 2.6 Hz, 2H), 4.37 (s, 2 H), 3.71-3.61 (m, 8 H), 3.53-3.49 (m, 4 H), 3.35 (s, 12 H), 1.77-1.70 (m, 2H), 1.63-1.56 (m, 2 H), 1.48-1.37 (m, 4 H), 0.62 (s, 3 H), 0.61 (s, 3 H); 13C NMR (101 MHz, MeOD): δ169.5 (C), 168.1 (C), 155.8 (C), 149.5 (C), 142.2 (CH), 141.6 (C), 141.5 (C), 136.4 (C), 130.6 (CH), 128.3 (C), 127.3 (CH), 126.8 (CH), 122.3 (CH), 115.2 (CH), 72.2 (CH2), 71.3 (CH2), 71.2 (CH2), 70.6 (CH2), 62.2 (CH2), 45.7 (CH2), 41.1 (CH2), 40.9 (CH3), 33.7 (CH2), 30.5 (CH2), 27.7 (CH2), 26.5 (CH2), -1.1 (CH3), -1.3 (CH3); HRMS (m/z): [M]+ calcd. for C37H51ClN3O4Si, 664.33319; found, 664.33434.(err. -1.2 mDa)
Synthesis of compound (27) (HMSiR-Halo) Compound (7) 10.6 mg (0.0185 mmol, 1 eq) was dissolved in dehydrated N, N-dimethylformamide 2 mL to give compound (25) 7 0.2 mg (0.0278 mmol, 1.5 eq), 1-hydroxybenzotriazole 3.8 mg (0.0278 mmol, 1.5 eq), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide Hydrochloride 5.3 mg (0.0278 mmol, 1.5 eq) and triethylamine 12.9 mL (0.0926 mmol, 5 eq) were added, and the mixture was stirred at room temperature for 13 hours under an argon atmosphere. Solvent was removed under reduced pressure and purified by HPLC (eluent A (H 2 O, 1% MeCN, 0.1% TFA) and eluent B (MeCN, 1% H 2 O) (A / B = 90/10 to 0/100 40 min)) and the target compound (27) (HMSiR-Halo) (5.2 mg, 36%) was obtained.
1 H NMR (400 MHz, MeOD): δ 8.22 (s, 1 H), 7.92 (d, J = 7.8 Hz, 1H), 7.37 (d, J = 2.6 Hz, 2H), 7.26 (d, J = 7.8 Hz, 1 H), 7.05 (d, J = 9.6 Hz, 2H), 6.76 (dd, J = 9.6, 2.6 Hz, 2H), 4.37 (s, 2 H), 3.71-3.61 (m, 8 H), 3.53-3.49 (m, 4 H), 3.35 (s, 12 H), 1.77-1.70 (m, 2H), 1.63-1.56 (m, 2 H), 1.48-1.37 (m, 4 H), 0.62 (s , 3 H), 0.61 (s, 3 H); 13 C NMR (101 MHz, MeOD): δ169.5 (C), 168.1 (C), 155.8 (C), 149.5 (C), 142.2 (CH), 141.6 (C), 141.5 (C), 136.4 (C), 130.6 (CH), 128.3 (C), 127.3 (CH), 126.8 (CH), 122.3 (CH), 115.2 (CH), 72.2 (CH 2 ) , 71.3 (CH 2 ), 71.2 (CH 2 ), 70.6 (CH 2 ), 62.2 (CH 2 ), 45.7 (CH 2 ), 41.1 (CH 2 ), 40.9 (CH 3 ), 33.7 (CH 2 ), 30.5 (CH 2 ), 27.7 (CH 2 ), 26.5 (CH 2 ), -1.1 (CH 3 ), -1.3 (CH 3 ); HRMS (m / z): [M] + calcd. For C 37 H 51 ClN 3 O 4 Si, 664.33319; found, 664.33434. (Err.-1.2 mDa)

化合物(28)(HMAcRG−BG)の合成
化合物(21)2.4 mg(0.0060 mmol, 1 eq)を脱水N,N−ジメチルホルムアミド1 mLに溶かし、化合物(24)4.8 mg(0.0180 mmol, 3 eq)、1-ヒドロキシベンゾトリアゾール2.4 mg(0.0180 mmol, 3 eq)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩3.4 mg(0.0180 mmol, 3 eq)、トリエチルアミン8.3 mL(0.0596 mmol, 10 eq)を加え、アルゴン雰囲気下、室温で20時間撹拌した。溶媒を減圧除去し、HPLCで精製し(eluent A (H2O, 1% MeCN, 0.1% TFA) and eluent B (MeCN, 1% H2O) (A/B = 90/10 to 0/100 40min))、目的化合物(28) (HMAcRG−BG) (2.1 mg, 46%)を得た。
1H NMR (400 MHz, MeOD): δ8.48 (s, 1 H), 8.27 (s, 1 H), 8.23 (s, 1 H), 8.04 (d, J = 7.9 Hz, 1 H), 7.56 (d, J = 8.0 Hz, 2 H), 7.48-7.44 (m, 4 H), 7.34-7.30 (m, 2 H), 7.04 (d, J = 9.1 Hz, 1 H), 6.98 (s, 1 H), 5.65 (s, 2 H), 4.67 (s, 2 H), 4.39 (s, 2 H), 2.23 (s, 3 H); HRMS (m/z): [M+Na]+ (closed form + Na) calcd. for C36H30N8NaO5, 677.22314; found, 677.22302.(err. 0.1 mDa)
Synthesis of compound (28) (HMAcRG-BG) Compound (21) 2.4 mg (0.0060 mmol, 1 eq) was dissolved in dehydrated N, N-dimethylformamide 1 mL to give compound (24) 4 0.8 mg (0.0180 mmol, 3 eq), 1-hydroxybenzotriazole 2.4 mg (0.0180 mmol, 3 eq), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride 4 mg (0.0180 mmol, 3 eq) and 8.3 mL (0.0596 mmol, 10 eq) of triethylamine were added, and the mixture was stirred at room temperature for 20 hours under an argon atmosphere. Solvent was removed under reduced pressure and purified by HPLC (eluent A (H 2 O, 1% MeCN, 0.1% TFA) and eluent B (MeCN, 1% H 2 O) (A / B = 90/10 to 0/100 40 min)) and the title compound (28) (HMAcRG-BG) (2.1 mg, 46%) was obtained.
1 H NMR (400 MHz, MeOD): δ8.48 (s, 1 H), 8.27 (s, 1 H), 8.23 (s, 1 H), 8.04 (d, J = 7.9 Hz, 1 H), 7.56 (d, J = 8.0 Hz, 2 H), 7.48-7.44 (m, 4 H), 7.34-7.30 (m, 2 H), 7.04 (d, J = 9.1 Hz, 1 H), 6.98 (s, 1 H), 5.65 (s, 2 H), 4.67 (s, 2 H), 4.39 (s, 2 H), 2.23 (s, 3 H); HRMS (m / z): [M + Na] + (closed form + Na) calcd.for C 36 H 30 N 8 NaO 5 , 677.22314; found, 677.22302. (err. 0.1 mDa)

化合物(29)(HMAcRG−Halo)の合成
化合物(21)4.2 mg(0.0104 mmol, 1 eq)を脱水N,N−ジメチルホルムアミド2 mLに溶かし、化合物(25)7.0 mg(0.0312 mmol, 3 eq)、1-ヒドロキシベンゾトリアゾール4.2 mg(0.0312 mmol, 3 eq)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩6.0 mg(0.0312 mmol, 3 eq)、トリエチルアミン14.6 mL(0.1044 mmol, 10 eq)を加え、アルゴン雰囲気下、室温で21時間撹拌した。溶媒を減圧除去し、HPLCで精製し(eluent A (H2O, 1% MeCN, 0.1% TFA) and eluent B (MeCN, 1% H2O) (A/B = 90/10 to 0/100 40min))、目的化合物(29)(HMAcRG−Halo)(2.0 mg, 21%)を得た。
1H NMR (400 MHz, MeOD): δ 8.50 (s, 1 H), 8.21 (s, 1 H), 8.02 (d, J = 7.4 Hz, 1 H), 7.47-7.44 (m, 2 H), 7.34-7.30 (m, 2 H), 7.05 (d, J = 9.1 Hz, 1 H), 6.97 (d, J = 2.0 Hz, 1 H), 4.40 (s, 2 H), 3.73-3.62 (m, 8 H), 3.54-3.49 (m, 4 H), 2.23 (s, 3 H), 1.75 (quin, J = 6.9 Hz, 2 H), 1.59 (quin, J = 6.9 Hz, 2 H), 1.48-1.37 (m, 4 H); HRMS (m/z): [M+Na]+ (closed form + Na) calcd. for C33H38ClN3NaO6, 630.23413; found, 630.23342.(err. -0.7 mDa)
Synthesis of compound (29) (HMAcRG-Halo) Compound (21) 4.2 mg (0.0104 mmol, 1 eq) was dissolved in dehydrated N, N-dimethylformamide 2 mL to give compound (25) 7 0.0 mg (0.0312 mmol, 3 eq), 1-hydroxybenzotriazole 4.2 mg (0.0312 mmol, 3 eq), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride 0 mg (0.0312 mmol, 3 eq) and 14.6 mL (0.1044 mmol, 10 eq) of triethylamine were added, and the mixture was stirred at room temperature for 21 hours under an argon atmosphere. Solvent was removed under reduced pressure and purified by HPLC (eluent A (H 2 O, 1% MeCN, 0.1% TFA) and eluent B (MeCN, 1% H 2 O) (A / B = 90/10 to 0/100 40 min)) and the title compound (29) (HMAcRG-Halo) (2.0 mg, 21%) was obtained.
1 H NMR (400 MHz, MeOD): δ 8.50 (s, 1 H), 8.21 (s, 1 H), 8.02 (d, J = 7.4 Hz, 1 H), 7.47-7.44 (m, 2 H), 7.34-7.30 (m, 2 H), 7.05 (d, J = 9.1 Hz, 1 H), 6.97 (d, J = 2.0 Hz, 1 H), 4.40 (s, 2 H), 3.73-3.62 (m, 8 H), 3.54-3.49 (m, 4 H), 2.23 (s, 3 H), 1.75 (quin, J = 6.9 Hz, 2 H), 1.59 (quin, J = 6.9 Hz, 2 H), 1.48- 1.37 (m, 4 H); HRMS (m / z): [M + Na] + (closed form + Na) calcd.for C 33 H 38 ClN 3 NaO 6 , 630.23413; found, 630.23342. (Err.-0.7 mDa)

化合物(30)(HMMoR−BG)の合成
化合物(23)10.3 mg(0.0206 mmol, 1 eq)を脱水N,N−ジメチルホルムアミド5 mLに溶かし、化合物(24)16.7 mg(0.0618 mmol, 3 eq)、1-ヒドロキシベンゾトリアゾール8.3 mg(0.0618 mmol, 3 eq)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩11.8 mg(0.0618 mmol, 3 eq)、トリエチルアミン28.7 mL(0.2060 mmol, 10 eq)を加え、アルゴン雰囲気下、室温で15時間撹拌した。溶媒を減圧除去し、HPLCで精製し(eluent A (H2O, 1% MeCN, 0.1% TFA) and eluent B (MeCN, 1% H2O) (A/B = 90/10 to 0/100 40min))、目的化合物(30)(HMMoR−BG)(12.6 mg, 71%)を得た。
1H NMR (400 MHz, MeOD): δ 8.38 (s, 1 H), 8.25 (d, J = 1.4 Hz, 1 H), 8.03 (dd, J = 7.9, 1.4 Hz, 1 H), 7.57 (d, J = 8.1 Hz, 2 H), 7.47 (d, J = 8.1 Hz, 2 H), 7.43 (d, J = 7.9 Hz, 1 H), 7.28-7.22 (m, 6 H), 5.68 (s, 2 H), 4.67 (s, 2 H), 4.38 (s, 2 H), 3.85 (dd, J = 4.9, 4.2 Hz, 8 H), 3.77 (dd, J = 4.9, 4.2 Hz, 8 H); 13C NMR (101 MHz, MeOD): δ169.1,161.1, 159.8, 159.1, 158.3, 158.0, 153.4, 143.9, 142.0, 141.1, 137.5, 135.4, 135.1, 132.7, 130.9, 130.3, 128.9, 128.4, 127.6, 116.2, 115.7, 107.8, 98.5, 71.0, 67.4, 62.7, 48.5, 44.4; HRMS (m/z): [M]+ calcd. for C42H41N8O6, 753.31436; found, 753.31450.(err. -0.1 mDa)
Synthesis of compound (30) (HMMoR-BG) Compound (23) 10.3 mg (0.0206 mmol, 1 eq) was dissolved in dehydrated N, N-dimethylformamide 5 mL to give compound (24) 16 0.7 mg (0.0618 mmol, 3 eq), 1-hydroxybenzotriazole 8.3 mg (0.0618 mmol, 3 eq), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride 8 mg (0.0618 mmol, 3 eq) and 28.7 mL (0.2060 mmol, 10 eq) of triethylamine were added, and the mixture was stirred at room temperature for 15 hours under an argon atmosphere. Solvent was removed under reduced pressure and purified by HPLC (eluent A (H 2 O, 1% MeCN, 0.1% TFA) and eluent B (MeCN, 1% H 2 O) (A / B = 90/10 to 0/100 40 min)) and the target compound (30) (HMMoR-BG) (12.6 mg, 71%) was obtained.
1 H NMR (400 MHz, MeOD): δ 8.38 (s, 1 H), 8.25 (d, J = 1.4 Hz, 1 H), 8.03 (dd, J = 7.9, 1.4 Hz, 1 H), 7.57 (d , J = 8.1 Hz, 2 H), 7.47 (d, J = 8.1 Hz, 2 H), 7.43 (d, J = 7.9 Hz, 1 H), 7.28-7.22 (m, 6 H), 5.68 (s, 2 H), 4.67 (s, 2 H), 4.38 (s, 2 H), 3.85 (dd, J = 4.9, 4.2 Hz, 8 H), 3.77 (dd, J = 4.9, 4.2 Hz, 8 H); 13 C NMR (101 MHz, MeOD): δ169.1,161.1, 159.8, 159.1, 158.3, 158.0, 153.4, 143.9, 142.0, 141.1, 137.5, 135.4, 135.1, 132.7, 130.9, 130.3, 128.9, 128.4, 127.6, 116.2, 115.7, 107.8, 98.5, 71.0, 67.4, 62.7, 48.5, 44.4; HRMS (m / z): [M] + calcd.for C 42 H 41 N 8 O 6 , 753.31436; found, 753.31450. (Err.-0.1 mDa)

化合物(31)(HMMoR−Halo)の合成
化合物(23)9.8 mg(0.0196 mmol, 1 eq)を脱水N,N−ジメチルホルムアミド2 mLに溶かし、化合物(24)5.9 mg(0.0711 mmol, 3.6 eq)、1-ヒドロキシベンゾトリアゾール7.9 mg(0.0587 mmol, 3 eq)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩11.3 mg(0.0587 mmol, 3 eq)、トリエチルアミン27.3 mL(0.1960 mmol, 10 eq)を加え、アルゴン雰囲気下、室温で13時間撹拌した。溶媒を減圧除去し、HPLCで精製し(eluent A (H2O, 1% MeCN, 0.1% TFA) and eluent B (MeCN, 1% H2O) (A/B = 90/10 to 0/100 40min))、目的化合物(31) (HMMoR−Halo)(10.0 mg, 62%)を得た。
1H NMR (400 MHz, MeOD): δ 8.23 (d, J = 1.2 Hz, 1 H), 8.01 (dd, J = 7.9, 1.7 Hz, 1 H), 7.42 (d, J = 7.9 Hz, 1 H), 7.28-7.23 (m, 6 H), 4.39 (s, 2 H), 3.86 (dd, J = 5.0, 4.2 Hz, 8 H), 3.77 (dd, J = 5.0, 4.2 Hz, 8 H), 3.73-3.56 (m, 8 H), 3.54-3.49 (m, 4 H), 1.79-1.70 (m, 2 H), 1.63-1.56 (m, 2 H), 1.49-1.35 (m, 4 H); 13C NMR (101 MHz, MeOD): δ169.2 (C), 159.8 (C), 159.1 (C), 158.4 (C), 142.0 (C), 137.6 (C), 135.0 (C), 132.7 (CH), 130.8 (CH), 128.5 (CH), 127.5 (CH), 116.2 (CH), 115.8 (C), 98.5 (CH), 72.2 (CH2), 71.3 (CH2), 71.2 (CH2), 70.5 (CH2), 67.4 (CH2), 62.8 (CH2), 48.9 (CH2), 45.7 (CH2), 41.1 (CH2), 33.7 (CH2), 30.5 (CH2), 27.7 (CH2), 26.5 (CH2); HRMS (m/z): [M]+ calcd. for C39H49ClN3O7, 706.32536; found, 706.32555.(err. -0.2 mDa)
Synthesis of compound (31) (HMMoR-Halo) Compound (23) 9.8 mg (0.0196 mmol, 1 eq) was dissolved in dehydrated N, N-dimethylformamide 2 mL to give compound (24) 5 .9 mg (0.0711 mmol, 3.6 eq), 1-hydroxybenzotriazole 7.9 mg (0.0587 mmol, 3 eq), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride 11.3 mg (0.0587 mmol, 3 eq) and 27.3 mL (0.1960 mmol, 10 eq) of triethylamine were added, and the mixture was stirred at room temperature for 13 hours under an argon atmosphere. Solvent was removed under reduced pressure and purified by HPLC (eluent A (H 2 O, 1% MeCN, 0.1% TFA) and eluent B (MeCN, 1% H 2 O) (A / B = 90/10 to 0/100 40 min)) and the target compound (31) (HMMoR-Halo) (10.0 mg, 62%) was obtained.
1 H NMR (400 MHz, MeOD): δ 8.23 (d, J = 1.2 Hz, 1 H), 8.01 (dd, J = 7.9, 1.7 Hz, 1 H), 7.42 (d, J = 7.9 Hz, 1 H ), 7.28-7.23 (m, 6 H), 4.39 (s, 2 H), 3.86 (dd, J = 5.0, 4.2 Hz, 8 H), 3.77 (dd, J = 5.0, 4.2 Hz, 8 H), 3.73-3.56 (m, 8 H), 3.54-3.49 (m, 4 H), 1.79-1.70 (m, 2 H), 1.63-1.56 (m, 2 H), 1.49-1.35 (m, 4 H); 13 C NMR (101 MHz, MeOD): δ169.2 (C), 159.8 (C), 159.1 (C), 158.4 (C), 142.0 (C), 137.6 (C), 135.0 (C), 132.7 (CH ), 130.8 (CH), 128.5 (CH), 127.5 (CH), 116.2 (CH), 115.8 (C), 98.5 (CH), 72.2 (CH 2 ), 71.3 (CH 2 ), 71.2 (CH 2 ), 70.5 (CH 2 ), 67.4 (CH 2 ), 62.8 (CH 2 ), 48.9 (CH 2 ), 45.7 (CH 2 ), 41.1 (CH 2 ), 33.7 (CH 2 ), 30.5 (CH 2 ), 27.7 ( CH 2 ), 26.5 (CH 2 ); HRMS (m / z): [M] + calcd. For C 39 H 49 ClN 3 O 7 , 706.32536; found, 706.32555. (Err.-0.2 mDa)

平衡定数(pK cycl )の算出
本発明のプローブ化合物について、溶液中での吸収スペクトル変化及び蛍光スペクトル変化を測定し、そのpH依存性から平衡定数を算出した。化合物7(HMSiRCOOH)、化合物11(AMSiRCOOH)、化合物14(HMAcRG)、化合物16(AMAcRG)、化合物17(AMRG)、及び化合物21(HMAcRGCOOH)の各pHにおける吸収スペクトル変化及び蛍光スペクトル変化(励起波長620nm)を図1中の(a)及び(b)にそれぞれ示す。測定は、化合物3が0.5μMの1%DMSO水溶液で行った。その結果、化合物7ではpKcycl=5.8が得られた。その他も同様にして、pKcyclを測定し、得られた結果を以下の表1に示す。

Figure 0006349091
Calculation of equilibrium constant (pK cycl ) With respect to the probe compound of the present invention, changes in absorption spectrum and fluorescence spectrum in solution were measured, and the equilibrium constant was calculated from its pH dependence. Absorption spectrum change and fluorescence spectrum change (excitation wavelength) at each pH of Compound 7 (HMSiRCOOH), Compound 11 (AMSiRCOOH), Compound 14 (HMAcRG), Compound 16 (AMAcRG), Compound 17 (AMRG), and Compound 21 (HMAcRGCOOH) (620 nm) is shown in FIG. 1 (a) and (b), respectively. The measurement was carried out with a 1% DMSO aqueous solution in which compound 3 was 0.5 μM. As a result, in compound 7, pK cycl = 5.8 was obtained. Similarly, pK cycl was measured for others , and the obtained results are shown in Table 1 below.
Figure 0006349091

表1によれば、これら化合物のpKcyclは、いずれも3.6〜6.7の範囲であり、これら化合物が中性条件下では大多数が閉環状態であり、開環状態のものの存在比率がSLMによる超解像蛍光イメージングに適した範囲内であることを示している。 According to Table 1, the pK cycl of these compounds is in the range of 3.6 to 6.7, and the majority of these compounds are in a ring-closed state under neutral conditions, and the abundance ratio of those in the ring-opened state Is within the range suitable for super-resolution fluorescence imaging by SLM.

また、プローブ化合物の蛍光団の部分構造を固定して、種々の求核基を変化させた場合におけるpKcyclを算出した結果を図2に示す。逆に、プローブ化合物の求核基を固定して、蛍光団の部分構造を変化させた場合におけるpKcyclを算出した結果を図3に示す。これらの結果から、求核基と蛍光団の組み合わせを変えることによって、pKcyclを制御することが可能であることが分かった。 Further, FIG. 2 shows the result of calculating pK cycl when the partial structure of the fluorophore of the probe compound is fixed and various nucleophilic groups are changed. Conversely, FIG. 3 shows the result of calculating pK cycl when the nucleophilic group of the probe compound was fixed and the partial structure of the fluorophore was changed. From these results, it was found that pK cycl could be controlled by changing the combination of the nucleophilic group and the fluorophore.

閉環速度の算出
レーザーフラッシュフォトリシスにより本発明のプローブ化合物の過渡吸収スペクトルの経時変化を測定することによって、開環構造と閉環構造の平衡における反応速度定数k、閉環速度時定数τ、開環量子収率Φoを算出した。溶液条件は、3%DMSO水溶液、pH7.4(10mMNaPiバッファー)である。測定条件は295Kで、光源は10mJ/pulseのXeClエキシマーレーザー(308nm)である。各化合物について得られた結果を表2に示す。

Figure 0006349091
Calculation of ring-closing rate By measuring the time-dependent change of the transient absorption spectrum of the probe compound of the present invention by laser flash photolysis, the reaction rate constant k and the ring-closing rate time constant τ in the equilibrium between the ring-opening structure and the ring-closing structure are obtained. The ring-opening quantum yield Φo was calculated. The solution conditions are 3% DMSO aqueous solution, pH 7.4 (10 mM NaPi buffer). The measurement conditions are 295 K, and the light source is a 10 mJ / pulse XeCl excimer laser (308 nm). The results obtained for each compound are shown in Table 2.
Figure 0006349091

微小管の超解像蛍光イメージング
化合物7(HMSiRCOOH)のカルボキシル基をエステル化した化合物12でラベル化したチューブリンをin vitroで構築した微小管を、チオールを添加せず、酸素存在下で、データ取得前に無蛍光状態にするためのレーザーを照射することなく、従来法より極めて低い0.02 kW/cmの励起強度によりSTORM顕微鏡で観察し、解析することで超解像画像が取得できた。解析前のprojection画像に比べ、解像度が高い(線が細くなる)ことが確認できた(図4)。
Super-resolution fluorescence imaging of microtubules Microtubules constructed in vitro with tubulin labeled with compound 12 esterified with the carboxyl group of compound 7 (HMSiRCOOH), without the addition of thiols and presence of oxygen Below, super-resolution is obtained by observing and analyzing with a STORM microscope with an excitation intensity of 0.02 kW / cm 2 which is extremely lower than the conventional method, without irradiating a laser to make it non-fluorescent before data acquisition. The image was acquired. It was confirmed that the resolution was higher (the line was thinner) than the projection image before analysis (FIG. 4).

RecAfilamentonplasmidDNAの超解像蛍光イメージング
直径約500nmの環状構造を持つプラスミドDNA上に構築したRecAfilamentをSTORM顕微鏡で観察した。蛍光プローブとして、化合物7(HMSiRCOOH)のカルボキシル基をエステル化した化合物12を用いた。解析をしない状態(Projection画像)では、環状構造が潰れてしまうのに対して、STORMイメージングでは明確に環状構造が確認できた(図5)。
RecAfilamentonplasmid DNA super-resolution fluorescence imaging RecAfilament constructed on plasmid DNA having a circular structure with a diameter of about 500 nm was observed with a STORM microscope. As a fluorescent probe, compound 12 obtained by esterifying the carboxyl group of compound 7 (HMSiRCOOH) was used. In the state where the analysis was not performed (Projection image), the annular structure was crushed, whereas in the STORM imaging, the annular structure was clearly confirmed (FIG. 5).

実施例4及び5の結果は、本発明のプローブを用いて、チオールを添加せず、酸素存在下で、データ取得前に無蛍光状態にするためのレーザーを照射することなく、超解像蛍光イメージングが可能であることを実証するものである。 The results of Examples 4 and 5 show that, using the probe of the present invention, super-resolution fluorescence without adding a thiol, in the presence of oxygen, and without irradiating a laser for making it non-fluorescent before data acquisition. This demonstrates that imaging is possible.

固定細胞における微小管の超解像蛍光イメージング
化合物7(HMSiRCOOH)のカルボキシル基をSNAP−tagの基質であるベンジルグアニン基と結合した化合物26(HMSiR−BG)でHeLa生細胞のβ−チューブリンをラベル化し、メタノールで固定後、PBS中で観察した。細胞膜を通過し、β−チューブリンを選択的にラベル化できていることが確認できた。また、チオールを添加せず、酸素存在下で、データ取得前に無蛍光状態にするためのレーザーを照射することなく超解像画像を取得できた。解析前のprojection画像に比べ、解像度が高い(線が細くなる)だけでなく、1本に見えていた微小管を2本に分離することが出来た(図6)。
Super-resolution fluorescence imaging of microtubules in fixed cells Compound 26 (HMSiRCOOH) conjugated with benzylguanine which is a substrate of SNAP-tag Compound 26 (HMSiR-BG) β -Tubulin was labeled, fixed with methanol, and observed in PBS. It was confirmed that β-tubulin was selectively labeled through the cell membrane. Moreover, a super-resolution image could be acquired without adding thiol and in the presence of oxygen, without irradiating a laser for making it non-fluorescent before data acquisition. Compared to the projection image before the analysis, not only the resolution was high (the line became thinner), but the microtubules that appeared to be one could be separated into two (FIG. 6).

生細胞における微小管の超解像蛍光イメージング
化合物7(HMSiRCOOH)のカルボキシル基をSNAP−tagの基質であるベンジルグアニン基と結合した化合物26(HMSiR−BG)でHeLa生細胞のβ−チューブリンをラベル化し、培地で洗浄後、培地中で観察した。細胞膜を通過し、β−チューブリンを選択的にラベル化できることが確認できた。細胞質内においても、チオールを添加せず、酸素存在下で、データ取得前に無蛍光状態にするためのレーザーを照射することなく、超解像画像を取得できた。解析前のprojection画像に比べ、解像度が高い(線が細くなる)だけでなく、1本に見えていた微小管を2本に分離することが出来た(図7)。
Super-resolution fluorescence imaging of microtubules in living cells Compound 26 (HMSiRCOOH) is bound to benzylguanine group, which is a substrate of SNAP-tag, with compound 26 (HMSiR-BG) β -Tubulin was labeled and washed in the medium and then observed in the medium. It was confirmed that β-tubulin can be selectively labeled through the cell membrane. Even in the cytoplasm, a super-resolution image could be acquired without adding thiol and in the presence of oxygen without irradiating a laser for making it non-fluorescent before data acquisition. Compared to the projection image before the analysis, not only the resolution was high (the line became thinner), but the microtubules that appeared to be one could be separated into two (FIG. 7).

実施例6及び7の結果は、本発明のプローブをSNAP−tag等の基質特異的にラベル化されるタンパク質を用いることで、任意のタンパク質の超解像蛍光イメージングが固定細胞及び生細胞において可能であることを実証するものである。 The results of Examples 6 and 7 show that by using a protein specifically labeled with a substrate such as SNAP-tag as the probe of the present invention, super-resolution fluorescence imaging of any protein can be performed in fixed cells and living cells. It is proved that.

Claims (13)

以下の式(I)で表される化合物又はその塩を含む超解像蛍光イメージング用プローブ:
Figure 0006349091
〔式中、
Xは、酸素原子又はC(R)(R)又はSi(R)(R)を表し(ここで、R及びRは、それぞれ独立に水素原子、又はアルキル基を表す);
は、水素原子、アルキル基、カルボキシル基、エステル基、アルコキシ基、アミド基、又はアジド基を表し;
Yは、 -Cアルキレン基を表し;
は、置換されていてもよいアミノ基、置換されていてもよいアミド基、ヒドロキシル基、チオール基、又はカルボキシル基を表し;
、R、R、及びRは、それぞれ独立に水素原子、ヒドロキシル基、アルキル基、スルホ基、カルボキシル基、エステル基、アミド基、アジド基、又はハロゲン原子を表し;
及びRは、それぞれ独立に水素原子又はアルキル基を示し(ここで、R及びRは、それぞれR及びRと一緒になって、それらが結合する窒素原子を含む環構造を形成してもよい);及び、
及びR10は、それぞれ独立に水素原子もしくはアルキル基を示し、又は、N(R)(R10)がアミド基もしくはカルバメート基を形成する(ここで、R及びR10がアルキル基である場合、それぞれR及びRと一緒になって、それらが結合する窒素原子を含む環構造を形成してもよい。
A probe for super-resolution fluorescence imaging containing a compound represented by the following formula (I) or a salt thereof:
Figure 0006349091
[Where,
X represents an oxygen atom or C (R a ) (R b ) or Si (R a ) (R b ) (where R a and R b independently represent a hydrogen atom or an alkyl group) ;
R 1 represents a hydrogen atom, an alkyl group, a carboxyl group, an ester group, an alkoxy group, an amide group, or an azide group;
Y represents a C 1 -C 3 alkylene group;
R 2 represents an optionally substituted amino group, an optionally substituted amide group, a hydroxyl group, a thiol group, or a carboxyl group;
R 3 , R 4 , R 7 , and R 8 each independently represent a hydrogen atom, a hydroxyl group, an alkyl group, a sulfo group, a carboxyl group, an ester group, an amide group, an azide group, or a halogen atom;
R 5 and R 6 each independently represent a hydrogen atom or an alkyl group (wherein R 5 and R 6 together with R 3 and R 7 respectively contain a nitrogen atom to which they are bonded) And); and
R 9 and R 10 each independently represent a hydrogen atom or an alkyl group, or N (R 9 ) (R 10 ) forms an amide group or a carbamate group (where R 9 and R 10 are alkyl groups) If it is, respectively together with R 8 and R 4, may form a ring structure containing a nitrogen atom to which they are attached.)]
Xが、Si(R)(R)であり、
Yがメチレン基であり、
が、置換されていてもよいアミノ基又はヒドロキシル基であり、
、R、R及びR10が、いずれもメチル基である、
請求項1に記載の超解像蛍光イメージング用プローブ。
X is Si (R a ) (R b );
Y is a methylene group;
R 2 is an optionally substituted amino group or hydroxyl group,
R 5 , R 6 , R 9 and R 10 are all methyl groups,
The probe for super-resolution fluorescence imaging according to claim 1.
Xが、酸素原子であり、
Yがメチレン基であり、
が、置換されていてもよいアミノ基又はヒドロキシル基であり、
及びRが、いずれも水素原子であり、
N(R)(R10)がアミド基である
請求項1に記載の超解像蛍光イメージング用プローブ。
X is an oxygen atom,
Y is a methylene group;
R 2 is an optionally substituted amino group or hydroxyl group,
R 5 and R 6 are both hydrogen atoms,
The probe for super-resolution fluorescence imaging according to claim 1, wherein N (R 9 ) (R 10 ) is an amide group.
Xが、酸素原子であり、
Yがメチレン基であり、
が、置換されていてもよいアミノ基又はヒドロキシル基であり、
、R、R及びR10が、いずれも水素原子であ
請求項1に記載の超解像蛍光イメージング用プローブ。
X is an oxygen atom,
Y is a methylene group;
R 2 is an optionally substituted amino group or hydroxyl group,
R 5, R 6, R 9 and R 10, the super-resolution fluorescence imaging probe according to <br/> claim 1 Both Ru Oh hydrogen atom.
R 5 及び/又はRAnd / or R 6 が、ハロゲン原子で置換されていてもよいアルキル基であり;且つ/又は、Is an alkyl group optionally substituted with a halogen atom; and / or
R 9 及び/又はRAnd / or R 1010 は、ハロゲン原子で置換されていてもよいアルキル基であるIs an alkyl group optionally substituted with a halogen atom
請求項1に記載の超解像蛍光イメージング用プローブ。The probe for super-resolution fluorescence imaging according to claim 1.
式(I)における
Figure 0006349091
の部分構造が、以下よりなる群:
Figure 0006349091
から選択され、及び、
式(I)における
Figure 0006349091
の部分構造が、以下よりなる群:
Figure 0006349091
から選択され、式(I)の化合物がこれらの任意の組み合わせからなる、請求項1に記載の超解像蛍光イメージング用プローブ。
In formula (I)
Figure 0006349091
The partial structure of is a group consisting of:
Figure 0006349091
And selected from
In formula (I)
Figure 0006349091
The partial structure of is a group consisting of:
Figure 0006349091
The probe for super-resolution fluorescence imaging according to claim 1, wherein the compound of formula (I) is selected from any combination thereof.
式(I)で表される化合物が以下よりなる群から選択される、請求項1に記載の超解像蛍光イメージング用プローブ。
Figure 0006349091
The probe for super-resolution fluorescence imaging according to claim 1, wherein the compound represented by formula (I) is selected from the group consisting of:
Figure 0006349091
以下の平衡反応
Figure 0006349091
における式(I)の化合物と式(II)の化合物の存在比が、中性条件の水系溶液中において、1:10000〜1:10であることを特徴とする、請求項1乃至のいずれか1項に記載の超解像蛍光イメージング用プローブ。
The following equilibrium reaction
Figure 0006349091
In the presence ratio of the compound with a compound of formula (II) of formula (I), in aqueous solution at neutral conditions, 1: 10,000 to 1: characterized in that it is a 10, any of claims 1 to 7 The probe for super-resolution fluorescence imaging according to claim 1.
以下の平衡反応
Figure 0006349091
における平衡定数Kcyclが、pKcyclとして3〜7の範囲内となることを特徴とする、請求項1乃至のいずれか1項に記載の超解像蛍光イメージング用プローブ。
The following equilibrium reaction
Figure 0006349091
The equilibrium constant K cycl in, characterized by comprising in the range of 3-7 as pK cycl, super-resolution fluorescence imaging probe according to any one of claims 1 to 7.
以下の平衡反応
Figure 0006349091
における反応速度定数kが、中性条件の水系溶液中において、1〜1.0x10−1であることを特徴とする、請求項1乃至のいずれか1項に記載の超解像蛍光イメージング用プローブ。
The following equilibrium reaction
Figure 0006349091
The super-resolution fluorescence according to any one of claims 1 to 9 , wherein the reaction rate constant k is 1 to 1.0 x 10 6 S -1 in an aqueous solution under neutral conditions. Imaging probe.
請求項1〜10のいずれか1項に記載の超解像蛍光イメージング用プローブを用いる超解像蛍光イメージング方法であって、
生体分子にプローブ分子を結合させ、これにレーザー光を照射して前記プローブ分子からの蛍光発光を撮影した画像データを取得し、一定の時間間隔でこれを繰り返して得られた複数の前記画像データを解析したうえで重ね合わせることによって、前記生体分子の構造に対する超高解像のイメージ画像を得ることを含む、方法。
A super-resolution fluorescence imaging method using the super-resolution fluorescence imaging probe according to any one of claims 1 to 10 ,
A plurality of image data obtained by binding a probe molecule to a biomolecule, irradiating it with a laser beam, and capturing image data obtained by photographing fluorescence emission from the probe molecule, and repeating this at regular time intervals And obtaining a super high resolution image of the structure of the biomolecule by superimposing and analyzing.
チオールを含む化合物の非存在下で行う、請求項11に記載の超解像蛍光イメージング方法。 The super-resolution fluorescence imaging method according to claim 11 , which is performed in the absence of a compound containing a thiol. 酸素の存在下で行う、請求項11又は12に記載の超解像蛍光イメージング方法。 The super-resolution fluorescence imaging method according to claim 11 or 12 , which is performed in the presence of oxygen.
JP2014006456A 2013-01-18 2014-01-17 Probe for super-resolution fluorescence imaging Active JP6349091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014006456A JP6349091B2 (en) 2013-01-18 2014-01-17 Probe for super-resolution fluorescence imaging

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013007544 2013-01-18
JP2013007544 2013-01-18
JP2014006456A JP6349091B2 (en) 2013-01-18 2014-01-17 Probe for super-resolution fluorescence imaging

Publications (2)

Publication Number Publication Date
JP2014157150A JP2014157150A (en) 2014-08-28
JP6349091B2 true JP6349091B2 (en) 2018-06-27

Family

ID=51578081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014006456A Active JP6349091B2 (en) 2013-01-18 2014-01-17 Probe for super-resolution fluorescence imaging

Country Status (1)

Country Link
JP (1) JP6349091B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110922783A (en) * 2018-09-19 2020-03-27 深圳华大生命科学研究院 Silicon-based rhodamine derivative and preparation method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10087199B2 (en) 2014-10-22 2018-10-02 Yale University Super-resolution imaging compositions and methods using same
WO2016136328A1 (en) * 2015-02-27 2016-09-01 国立大学法人 東京大学 Super-resolution fluorescent imaging probe
WO2017090631A1 (en) * 2015-11-24 2017-06-01 国立大学法人 東京大学 Fluorescent probe for detecting extracellular metabolite and screening method employing said fluorescent probe
JP6919653B2 (en) * 2016-06-22 2021-08-18 富士フイルム和光純薬株式会社 Silicon-containing heterocyclic compounds and quenchers
WO2018101473A1 (en) * 2016-12-02 2018-06-07 国立大学法人東京大学 Compound, folate receptor visualization fluorescent probe, and use of these
JOP20190161A1 (en) * 2016-12-27 2017-06-16 Profusa Inc Near-ir glucose sensors
KR102228538B1 (en) 2018-06-01 2021-03-15 주식회사 엘지화학 Dye compound and photopolymer composition
CN110526886B (en) * 2019-08-30 2021-04-30 忻州师范学院 Method for synthesizing 1-oxo-1, 3-dihydro-3-hydroxybenzofuran-5-formic acid
WO2023166801A1 (en) * 2022-03-02 2023-09-07 国立大学法人 東京大学 Novel time-resolved fluorescence imaging probe

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7776613B2 (en) * 2006-08-07 2010-08-17 President And Fellows Of Harvard College Sub-diffraction image resolution and other imaging techniques
CN101918816B (en) * 2007-12-21 2015-12-02 哈佛大学 Sub-diffraction limit image resolution in three-dimensional
EP2107363B1 (en) * 2008-03-31 2012-07-11 Deutsches Krebsforschungszentrum Method of fluorescence-microscopically imaging a structure in a sample with high three-dimensional spatial resolution
WO2009141410A1 (en) * 2008-05-21 2009-11-26 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. High spatial resolution imaging of a structure of interest in a specimen
US8174692B2 (en) * 2008-05-21 2012-05-08 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. High spatial resolution imaging of a structure of interest in a specimen
JP5588962B2 (en) * 2009-02-20 2014-09-10 国立大学法人 東京大学 Fluorescent probe for protease measurement
US9329184B2 (en) * 2011-02-18 2016-05-03 The University Of Tokyo Fluorescent probe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110922783A (en) * 2018-09-19 2020-03-27 深圳华大生命科学研究院 Silicon-based rhodamine derivative and preparation method thereof

Also Published As

Publication number Publication date
JP2014157150A (en) 2014-08-28

Similar Documents

Publication Publication Date Title
JP6349091B2 (en) Probe for super-resolution fluorescence imaging
JP5090731B2 (en) Fluorescent probe
JP6522339B2 (en) Carboxy X Rhodamine Analogue
JP6754970B2 (en) Probe for super-resolution fluorescence imaging
JP2019522688A (en) Super bright dimer or polymer dye
JP6090934B2 (en) Fluorescent probe for acidic environment detection
ES2622998T3 (en) New iridium-based complexes for EQL
JP6675758B2 (en) Phosphafluorescein compound or salt thereof, or fluorescent dye using the same
CN104745177A (en) Light activated fluorescent probe having protein label positioning function as well as preparation method and application thereof
JP6275253B2 (en) Fluorescent probe, singlet oxygen detection agent, or singlet oxygen detection method
Roubinet et al. Photoactivatable rhodamine spiroamides and diazoketones decorated with “Universal Hydrophilizer” or hydroxyl groups
WO2015136583A1 (en) Two-photon-absorbing compound
WO2009110487A1 (en) Fluorescent probe specific to hydrogen peroxide
WO2018003686A1 (en) Enzyme-specific intracellularly-retained red fluorescent probe
WO2017078623A1 (en) Background-free fluorescent probes for live cell imaging
US20090318707A1 (en) Novel maleimide derivative
JP2016074787A (en) Light emitting composition light-emitting by three-photon excitation
JP2009014369A (en) Fluorescence reagent for labeling biomolecule
JP2024528902A (en) 2-Diazo-3-oxo-2,3-dihydrospiro[indene-1,9&#39;-xanthene] derivatives and analogs as photoactivatable fluorescent compounds for labeling proteins
JP6883332B2 (en) Calcium ion detection fluorescent probe that can be tagged
JP5240704B2 (en) Novel fluorescent compound and method for detecting intracellular cholesterol using the same
JPWO2016132802A1 (en) sulfuresulfur selective fluorescent probe
WO2017090631A1 (en) Fluorescent probe for detecting extracellular metabolite and screening method employing said fluorescent probe
JPWO2018043579A1 (en) Phospharhodamine compounds or salts thereof, and fluorescent dyes using the same
JP6308867B2 (en) Uracil nucleoside derivatives, uracil nucleotide derivatives and polynucleotide derivatives and probes containing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R150 Certificate of patent or registration of utility model

Ref document number: 6349091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250