WO2017090631A1 - Fluorescent probe for detecting extracellular metabolite and screening method employing said fluorescent probe - Google Patents

Fluorescent probe for detecting extracellular metabolite and screening method employing said fluorescent probe Download PDF

Info

Publication number
WO2017090631A1
WO2017090631A1 PCT/JP2016/084669 JP2016084669W WO2017090631A1 WO 2017090631 A1 WO2017090631 A1 WO 2017090631A1 JP 2016084669 W JP2016084669 W JP 2016084669W WO 2017090631 A1 WO2017090631 A1 WO 2017090631A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fluorescent probe
nadh
alkyl group
lactic acid
Prior art date
Application number
PCT/JP2016/084669
Other languages
French (fr)
Japanese (ja)
Inventor
泰照 浦野
小松 徹
光一 柳
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Publication of WO2017090631A1 publication Critical patent/WO2017090631A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Definitions

  • the present invention relates to a fluorescent probe for detecting an extracellular metabolite such as lactic acid (L-lactic acid), and a method for screening a glycolytic inhibitor using the fluorescent probe.
  • metabolic pathways are complexly configured in cells and are controlled by intracellular signals and metabolites. Therefore, in order to correctly evaluate the metabolic activity of energy production systems, it is necessary to evaluate them in living cells. is there. However, it cannot be said that a useful technique for evaluating the metabolic enzyme activity for small molecule metabolites such as lactic acid, sugar and amino acid involved in the metabolic pathway of the energy production system has been established.
  • Non-patent Document 1 a method of incorporating a fluorescent probe into a substrate
  • Non-patent Document 2 an in-vitro evaluation method using a purified enzyme
  • the former can be used in living cells
  • there is a problem of enzyme recognition and it has been particularly difficult to incorporate a fluorophore into a small molecule metabolite to function as a substrate analog.
  • a single enzyme activity is evaluated in vitro, it does not reflect the complex enzyme control mechanism in the cell, and the enzyme activity in vivo cannot be detected accurately. It was.
  • an object of the present invention is to construct a new technique for evaluating glycolytic activity in living cells by focusing on the glycolytic pathway in the metabolic pathway of the energy production system. More specifically, an object of the present invention is to develop a novel fluorescent probe capable of detecting lactic acid, which is a substance released extracellularly as a glycolytic end product, with high sensitivity. Another object of the present invention is to provide a screening method capable of searching for anticancer drug candidate compounds having a glycolytic inhibitory effect by using such an evaluation system.
  • the present inventors have converted lactic acid into pyruvic acid by an enzyme, and selectively react with NADH (nicotinamide adenine dinucleotide) produced at that time.
  • NADH nicotinamide adenine dinucleotide
  • the fluorescent probe of the present invention has a tetrazolium moiety in the molecule and a silicon-substituted xanthene fluorophore, so that the reaction with NADH can be detected as an ON / OFF-type fluorescence response using photoinduced electron transfer (PET). Moreover, since it has water solubility, it can function in an extracellular fluid.
  • PET photoinduced electron transfer
  • a fluorescent probe for detection of NADH comprising a compound represented by the following formula (I) or a salt thereof: [Where, R 1 represents 1 to 5 identical or different water-soluble substituents; R 2 represents 1 to 5 identical or different electron withdrawing substituents; R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or an alkyl group; R 7 and R 8 are each independently a hydrogen atom, a hydroxy group, a halogen atom, an independently substituted alkyl group, a sulfo group, a carboxy group, an ester group, an amide group, or an azide group.
  • R 1 represents 1 to 5 identical or different water-soluble substituents
  • R 2 represents 1 to 5 identical or different electron withdrawing substituents
  • R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or an alkyl group
  • R 7 and R 8 are each independently a hydrogen atom, a hydroxy group, a halogen atom, an independently substitute
  • R a and R b each independently represent a hydrogen atom or an alkyl group
  • R 3 or R 4 is an alkyl group
  • R 7 a ring structure containing a nitrogen atom to which they are bonded
  • R 5 or R 6 is an alkyl group
  • R 8 it may be combined with R 8 to form a ring structure containing the nitrogen atom to which they are attached.
  • R 1 represents 1 to 5 identical or different substituents independently selected from the group consisting of a sulfo group, a sulfonamido group, a carboxy group, an ester group, and an amido group.
  • the described fluorescent probe (4) The fluorescent probe according to any one of the above (1) to (3), wherein two R 1 are a sulfo group and R 2 is a nitro group; (5) The fluorescent probe according to any one of (1) to (4) above, wherein R 3 , R 4 , R 5 and R 6 are all methyl groups; (6) The fluorescent probe according to any one of (1) to (5), wherein R 7 and R 8 are both hydrogen atoms; and (7) the compound represented by formula (I) is as follows: The fluorescent probe according to (1), which is a compound of Is to provide.
  • the present invention provides: (8) A method for detecting NADH using the fluorescent probe according to any one of (1) to (7) above; (9) The detection method according to (8) above, wherein the presence of NADH is detected by observing a fluorescence response due to a reaction between NADH and the fluorescent probe; (10) The detection method according to (9), wherein the fluorescence response is a fluorescence change caused by light-induced electron transfer (PET); (11) Use of the fluorescent probe according to any one of (1) to (7) above for detecting lactic acid; (12) A method for detecting lactic acid, Step by adding lactate dehydrogenase (LDH) in the test object, is converted to pyruvate and NADH comprising lactic acid and NAD +, Adding the fluorescent probe according to any one of the above (1) to (7) to the obtained test object, and reacting NADH produced in the step with the fluorescent probe; Observing a fluorescence response generated by the reaction, and detecting the presence of NADH from the fluorescence response, thereby detecting
  • LDH
  • the present invention provides: (13) A method for screening a glycolytic inhibitor using the fluorescent probe according to any one of (1) to (7) above; (14) The screening method according to (13) above, wherein the glycolytic inhibitor is an anticancer agent.
  • the novel NADH detection fluorescent probe which becomes fluorescent by reacting with NADH can be provided.
  • the lactic acid released outside a cell via a glycolysis system can be provided. It becomes possible to detect.
  • the fluorescence probe of the present invention controls fluorescence by light-induced electron transfer (PET), it can be detected as an ON / OFF type fluorescence response.
  • the fluorescent probe of the present invention has water solubility, it can function in the extracellular fluid.
  • the screening method using the fluorescent probe of the present invention enables efficient screening of substances having a glycolytic inhibitory effect, and is extremely useful in searching for novel anticancer drug candidate compounds.
  • NADH detection method using water-soluble tetrazolium has a problem in that it is detected by absorbance and thus has low sensitivity and is affected by impurities.
  • NADH is fluorescent. Since it can be detected as a response, such a problem can be solved.
  • FIG. 1 shows the absorption spectrum (C) and fluorescence spectrum (D) of compound 20 which is a fluorescent probe of the present invention, and the absorption spectrum (A) and fluorescence spectrum (B) of compound 19 which is a reduced form of the compound. It is a thing.
  • FIG. 2 is a graph showing the NADH concentration dependence of the fluorescence intensity of Compound 20 which is the fluorescent probe of the present invention.
  • FIG. 3 is a graph showing the lactic acid concentration dependence of the fluorescence intensity of Compound 20, which is the fluorescent probe of the present invention.
  • FIG. 4 is a graph showing changes in fluorescence intensity of compound 20, which is the fluorescent probe of the present invention, depending on the presence or absence of a glycolytic inhibitor.
  • FIG. 5 is a schematic diagram showing the layout of the plate reader used in Example 5.
  • FIG. 6 is a graph showing the results of glycolysis inhibitor screening performed using the fluorescent probe of the present invention.
  • FIG. 7 is a schematic diagram showing the layout of the plate reader used in Example 6.
  • halogen atom means a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • alkyl may be any of an aliphatic hydrocarbon group composed of linear, branched, cyclic, or a combination thereof.
  • the number of carbon atoms of the alkyl group is not particularly limited.
  • the number of carbon atoms is 1 to 20 (C 1-20 )
  • the number of carbons is 3 to 15 (C 3 to 15 )
  • the number of carbons is 5 to 10 (C 5 to 10). ).
  • the number of carbons it means “alkyl” having the number of carbons within the range.
  • C 1-8 alkyl includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neo-pentyl, n-hexyl, isohexyl, n-heptyl, n-octyl and the like are included.
  • the alkyl group may have one or more arbitrary substituents.
  • substituents examples include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and acyl.
  • alkyl group has two or more substituents, they may be the same or different.
  • alkyl part of other substituents containing an alkyl part for example, an alkoxy group, an arylalkyl group, etc.
  • a functional group when a functional group is defined as “may be substituted”, the type of substituent, the substitution position, and the number of substituents are not particularly limited, and two or more substitutions are made. If they have groups, they may be the same or different.
  • the substituent include, but are not limited to, an alkyl group, an alkoxy group, a hydroxyl group, a carboxy group, a halogen atom, a sulfo group, an amino group, an alkoxycarbonyl group, and an oxo group. These substituents may further have a substituent. Examples of such include, but are not limited to, a halogenated alkyl group, a dialkylamino group, and the like.
  • aryl may be either a monocyclic or condensed polycyclic aromatic hydrocarbon group, and a hetero atom (for example, an oxygen atom, a nitrogen atom, or a sulfur atom) as a ring constituent atom Etc.) may be an aromatic heterocyclic ring. In this case, it may be referred to as “heteroaryl” or “heteroaromatic”. Whether aryl is a single ring or a fused ring, it can be attached at all possible positions.
  • Non-limiting examples of monocyclic aryl include phenyl group (Ph), thienyl group (2- or 3-thienyl group), pyridyl group, furyl group, thiazolyl group, oxazolyl group, pyrazolyl group, 2-pyrazinyl Group, pyrimidinyl group, pyrrolyl group, imidazolyl group, pyridazinyl group, 3-isothiazolyl group, 3-isoxazolyl group, 1,2,4-oxadiazol-5-yl group or 1,2,4-oxadiazole-3 -Yl group and the like.
  • Non-limiting examples of fused polycyclic aryl include 1-naphthyl group, 2-naphthyl group, 1-indenyl group, 2-indenyl group, 2,3-dihydroinden-1-yl group, 2,3 -Dihydroinden-2-yl group, 2-anthryl group, indazolyl group, quinolyl group, isoquinolyl group, 1,2-dihydroisoquinolyl group, 1,2,3,4-tetrahydroisoquinolyl group, indolyl group, Isoindolyl group, phthalazinyl group, quinoxalinyl group, benzofuranyl group, 2,3-dihydrobenzofuran-1-yl group, 2,3-dihydrobenzofuran-2-yl group, 2,3-dihydrobenzothiophen-1-yl group, 2 , 3-dihydrobenzothiophen-2-yl group, benzothiazolyl group,
  • an aryl group may have one or more arbitrary substituents on the ring.
  • substituents include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and acyl.
  • the aryl group has two or more substituents, they may be the same or different. The same applies to the aryl moiety of other substituents containing the aryl moiety (for example, an aryloxy group and an arylalkyl group).
  • the “alkoxy group” is a structure in which the alkyl group is bonded to an oxygen atom, and examples thereof include a saturated alkoxy group that is linear, branched, cyclic, or a combination thereof.
  • methoxy group, ethoxy group, n-propoxy group, isopropoxy group, cyclopropoxy group, n-butoxy group, isobutoxy group, s-butoxy group, t-butoxy group, cyclobutoxy group, cyclopropylmethoxy group, n- Pentyloxy group, cyclopentyloxy group, cyclopropylethyloxy group, cyclobutylmethyloxy group, n-hexyloxy group, cyclohexyloxy group, cyclopropylpropyloxy group, cyclobutylethyloxy group, cyclopentylmethyloxy group, etc. are preferable Take as an example.
  • ring structure when formed by a combination of two substituents, means a heterocyclic or carbocyclic group, such group being saturated, unsaturated, or aromatic.
  • it includes cycloalkyl, cycloalkenyl, aryl, and heteroaryl as defined above. Examples include cycloalkyl, phenyl, naphthyl, morpholinyl, piperidinyl, imidazolyl, pyrrolidinyl, pyridyl and the like.
  • a substituent can form a ring structure with another substituent, and when such substituents are bonded to each other, those skilled in the art will recognize a specific substitution, such as bonding to hydrogen.
  • NADH represents a reduced form of nicotinamide adenine dinucleotide
  • NAD + represents an oxidized form of nicotinamide adenine dinucleotide
  • Fluorescent probe of the present invention has a tetrazolium moiety and a fluorophore in the molecule.
  • the tetrazolium moiety is reduced to formazan by the reaction with NADH, and is characterized in that fluorescence control by photoinduced electron transfer (PET) is performed utilizing the difference in electron density between the tetrazolium and formazan.
  • PET photoinduced electron transfer
  • the fluorophore is characterized by having an absorption band on the longer wavelength side than the absorption wavelength of formazan (near 400 to 500 nm).
  • a silicon-substituted xanthene skeleton was employed as such a fluorophore.
  • the fluorescent probe of the present invention has a water-soluble functional group so that it can be used as a fluorescent probe even outside a cell solution.
  • the fluorescent probe of the present invention includes a compound having a structure represented by the following general formula (I).
  • R 1 represents 1 to 5 identical or different water-soluble substituents, preferably from the group consisting of a sulfo group, a sulfonamide group, a carboxy group, an ester group, and an amide group. 1 to 5 independently selected substituents which are the same or different.
  • R 1 is preferably a sulfo group. More preferably, there are two sulfo groups, and even more preferably, the two sulfo groups are in the meta position relative to each other.
  • R 1 is for adding water solubility to the fluorescent probe molecule.
  • R 2 represents 1 to 5 identical or different electron-withdrawing substituents.
  • R 2 represents 1 to 5 identical or different substituents independently selected from the group consisting of a nitro group, a sulfo group, a sulfonamido group, and a cyano group. More preferably, R 2 is a nitro group.
  • R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or an alkyl group.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 10 carbon atoms, and more preferably a methyl group.
  • R 3 , R 4 , R 5 and R 6 are preferably all methyl groups.
  • R 3 or R 4 when either R 3 or R 4 is an alkyl group, it may be combined with R 7 to form a ring structure containing a nitrogen atom to which they are bonded. In that case, only one of R 3 and R 7 or a combination of R 4 and R 7 may form a ring structure, or both may form a ring structure.
  • the ring structure may contain further hetero atoms other than the nitrogen atom.
  • R 5 or R 6 when either R 5 or R 6 is an alkyl group, it may be combined with R 8 to form a ring structure containing the nitrogen atom to which they are attached. In that case, only one of R 5 and R 8 or a combination of R 6 and R 8 may form a ring structure, or both may form a ring structure.
  • the ring structure may contain further hetero atoms other than the nitrogen atom.
  • R 7 and R 8 are each independently a hydrogen atom, a hydroxy group, a halogen atom, an independently substituted alkyl group, a sulfo group, a carboxy group, an ester group, an amide group, or an azide group. Represents 1 to 3 identical or different substituents. Preferably, R 7 and R 8 are both hydrogen atoms.
  • R a and R b each independently represent a hydrogen atom or an alkyl group.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 10 carbon atoms, and more preferably a methyl group.
  • R a and R b are, when an alkyl group, they may have one or more substituents, and examples of the substituent include an alkyl group, an alkoxy group, a halogen atom, a hydroxyl group, a carboxyl It may have one or more groups, amino groups, sulfo groups and the like.
  • R a and R b are preferably both methyl groups.
  • R a and R b may be bonded to each other to form a ring structure.
  • R a and R b are both alkyl groups, R a and R b can be bonded to each other to form a spirocarbocycle.
  • the ring formed is preferably about 5 to 8 membered ring, for example.
  • the compound represented by the above formula (I) has a monovalent positive charge at each of the tetrazolium moiety and the N atom to which R 6 and R 7 are linked, it usually exists as a salt.
  • salts include base addition salts, acid addition salts, amino acid salts and the like.
  • base addition salt include metal salts such as sodium salt, potassium salt, calcium salt, magnesium salt, ammonium salt, or organic amine salts such as triethylamine salt, piperidine salt, morpholine salt, and acid addition salt.
  • Examples include mineral acids such as hydrochlorides, sulfates and nitrates, carboxylates such as trifluoroacetates, organic acids such as methanesulfonate, paratoluenesulfonate, citrate and oxalate. Mention may be made of salts. Examples of amino acid salts include glycine salts. However, it is not limited to these salts.
  • the compound represented by the formula (I) may have one or more asymmetric carbons depending on the type of substituent, and there are stereoisomers such as optical isomers or diastereoisomers. There is a case. Pure forms of stereoisomers, any mixture of stereoisomers, racemates, and the like are all within the scope of the present invention.
  • the compound represented by the formula (I) or a salt thereof may exist as a hydrate or a solvate, and any of these substances is included in the scope of the present invention.
  • solvents such as ethanol, acetone, isopropanol, can be illustrated.
  • the above-described fluorescent probe may be used as a composition by blending an additive for use in a physiological environment, if necessary.
  • an additive for example, additives such as a solubilizing agent, a pH adjusting agent, a buffering agent, and an isotonic agent can be used, and the amount of these can be appropriately selected by those skilled in the art.
  • These compositions can be provided as a composition in an appropriate form such as a powder-form mixture, a lyophilized product, a granule, a tablet, or a liquid.
  • Detection method of NADH and lactic acid using the fluorescent probe of the present invention As shown in the following scheme, an enzyme is added to lactic acid (L-lactic acid) released extracellularly via a glycolysis system. Then, the NADH (nicotinamide adenine dinucleotide) produced at that time is brought into contact with a fluorescent probe, and the fluorescence response is observed to detect the presence of lactic acid through the fluorescence response of the NADH. Is. Thereby, the metabolic activity of glycolysis can be detected and evaluated extracellularly.
  • the method for detecting lactic acid in the present invention includes the following steps.
  • a step of adding lactate dehydrogenase (LDH) to a test subject containing lactic acid and NAD + and converting it into pyruvic acid and NADH (B) adding the fluorescent probe of the present invention to the obtained test object, and reacting the NADH produced by the step with the fluorescent probe;
  • LDH lactate dehydrogenase
  • Steps (b) and (c) are steps in which NADH is detected as a fluorescence response with the fluorescent probe of the present invention using photoinduced electron transfer (PET).
  • PET photoinduced electron transfer
  • the control mechanism of the fluorescence response is shown in the schematic diagram below.
  • photoinduced electron transfer (PET) is a phenomenon in which electrons move between a photoexcited molecule and a molecule in the vicinity thereof, as is generally known in the art.
  • the fluorescent probe molecule is non-fluorescent (weakly fluorescent) by photoinduced electron transfer (PET).
  • PET photoinduced electron transfer
  • Such fluorescence control utilizes a difference in electron density between tetrazolium and formazan. Therefore, in the present invention, as a fluorophore having an absorption band on the longer wavelength side than the absorption wavelength of formazan (near 400 to 500 nm), A silicon-substituted xanthene skeleton is used.
  • detection should be interpreted in the broadest sense including measurement for various purposes such as quantification and qualitative.
  • a fluorometer having a wide measurement wavelength can be used, but it is also possible to visualize the fluorescence response using a fluorescence imaging means capable of displaying the fluorescence response as a two-dimensional image.
  • a fluorimeter and a fluorescence imaging apparatus an apparatus known in the technical field can be used.
  • a sample containing NADH to be measured into contact with a fluorescent probe typically, a sample containing a solution containing a fluorescent probe can be added, applied or sprayed. It is possible to select appropriately according to, for example.
  • the application concentration of the fluorescent probe of the present invention is not particularly limited, but for example, a solution having a concentration of about 0.1 to 50 ⁇ M can be applied.
  • the compound represented by the above formula (I) or a salt thereof may be used as it is, but if necessary, an additive usually used for the preparation of a reagent is blended as a composition. It may be used.
  • additives such as a solubilizer, pH adjuster, buffer, and isotonic agent can be used as an additive for using the reagent in a physiological environment. Is possible.
  • These compositions are generally provided as a composition in an appropriate form such as a mixture in powder form, a lyophilized product, a granule, a tablet, or a liquid, but distilled water for injection or an appropriate buffer at the time of use. It is sufficient to dissolve and apply to.
  • the screening method using the fluorescent probe of the present invention is also effective in detecting a substance having a glycolytic inhibitory activity by detecting extracellular metabolic activity of the glycolytic system using the fluorescent probe. It also relates to a screening method. In particular, by targeting metabolic activity in cancer cells, it can be suitably used for searching for novel anticancer drug candidate compounds.
  • the amount of lactic acid produced can be observed as an ON / OFF type fluorescence response, so that high-throughput screening is possible.
  • Optical properties of probe molecules Optical properties of Compound 20 which is the fluorescent probe molecule of the present invention obtained in Example 1 and Compound 19 which is a reduced form thereof and has a formazan moiety were measured. When the tetrazolium site of compound 20 is reduced by NADH, it becomes compound 19, and by evaluating these optical properties, the fluorescence response change when NADH is detected can be found.
  • the fluorescence intensity at 661 nm has a difference of about 145 times, indicating that the S / N ratio is very good.
  • a dilution series of a fluorescent probe solution and NADH was prepared according to Table 2, and after mixing, the fluorescence intensity was measured with a plate reader (fluorescence intensity was 180 minutes after the start of measurement).
  • the fluorescent probe the compound 20 synthesized in Example 1 was used. * Reaction buffer: phosphate buffer pH 7.4, 1 mM CaCl 2 , 1 mM MgCl 2 (including 0.1% CHAPS)
  • NADH on the order of several tens of ⁇ M can be detected. It can also be seen that the fluorescence intensity and NADH concentration are kept linear up to about 100 ⁇ M, and quantification is possible. This demonstrated that NADH can be detected by the fluorescent probe of the compound.
  • reaction buffer phosphate buffer pH 7.4, 1 mM CaCl 2 , 1 mM MgCl 2 (including 0.1% CHAPS)
  • reaction buffer phosphate buffer pH 7.4, 1 mM CaCl 2 , 1 mM MgCl 2 (including 0.1% CHAPS)
  • Example 5 ⁇ Execution of glycolytic inhibitor screening (fluorescence assay 2)> The 60 hit compounds obtained in Example 5 were confirmed to confirm that they did not inhibit the confirmation assay and the coupled assay.
  • HL60 cells are suspended in a phosphate buffer solution in which glucose is dissolved to 10 mM (4.5 ⁇ 10 5 cells / mL), and a phosphate buffer solution in which 10 mM glucose and 200 ⁇ M lactic acid are dissolved is added. It seed
  • reaction buffer phosphate buffer pH 7.4, 1 mM CaCl 2 , 1 mM MgCl 2 (including 0.1% CHAPS)
  • Example 6 ⁇ Execution of glycolytic inhibitor screening (detection by LC-MS)> The 28 hit compounds obtained in Example 6 were confirmed to inhibit the glycolytic system by detecting lactic acid by LC-MS (liquid chromatography mass spectrometry). In addition, the assay concentration of the compound was assayed at 1, 10, and 50 ⁇ M, and the inhibition ability was examined.
  • the fluorescent probe of the present invention can detect lactic acid produced from living cells and can screen for glycolytic inhibitors using the fluorescent probe with high throughput. It is.

Abstract

[Problem] The present invention addresses the problem of developing a novel fluorescent probe that allows high-sensitivity detection of lactic acid, which is a substance released outside cells as the final product of the glycolytic system, and providing a screening method with which it is possible, by using such an evaluation system, to search for compounds that exhibit inhibitory effects on the glycolytic system and that are candidate anti-cancer agents. [Solution] Provided is a fluorescent probe for detecting NADH containing that contains a compound represented by formula (I) or a salt thereof [in the formula, R1 represents the same or different types of 1-5 water-soluble substituents; R2 represents the same or different types of 1-5 electron-accepting substituents; each of R3, R4, R5, and R6 independently represents a hydrogen atom or an alkyl group; each of R7 and R8 independently represents a hydrogen atom or the same or different types of 1-3 substituents that are independently selected from a group including a hydroxy group, a halogen atom, alkyl groups each of which may include substitution, a sulfo group, a carboxy group, an ester group, an amide group, and an azido group; and each of Ra and Rb independently represents a hydrogen atom or an alkyl group, wherein, in the case in which R3 or R4 is an alkyl group, an annular structure may be formed together with R7, which includes nitrogen atoms with which these groups are bonded, and, in the case in which R5 or R6 is an alkyl group, an annular structure may be formed together with R8, which includes nitrogen atoms with which these groups are bonded.].

Description

細胞外代謝物を検出するための蛍光プローブ及び当該蛍光プローブを用いるスクリーニング方法Fluorescent probe for detecting extracellular metabolites and screening method using the fluorescent probe
 本発明は、乳酸(L-乳酸)等の細胞外代謝物を検出するための蛍光プローブ、及び当該蛍光プローブを用いる解糖系阻害剤のスクリーニング方法に関する。 The present invention relates to a fluorescent probe for detecting an extracellular metabolite such as lactic acid (L-lactic acid), and a method for screening a glycolytic inhibitor using the fluorescent probe.
 生体内では常に数千種類を超える代謝反応が進行しており、様々な代謝過程によって生体の恒常性が維持されている。それゆえ、代謝過程を理解し、評価することで疾患のメカニズム解明や治療薬の開発に繋がるものと考えられている。特に、多くのがん種においては、エネルギー産生系の代謝経路は異常な活性を示すことが知られている。例えば、がん細胞では有酸素下においても、ミトコンドリアでの酸化的リン酸化よりも解糖系での代謝を優先させることが分かっており、これはWarburg効果と言われている。実際、解糖系阻害剤には抗がん活性を示すものがあり、解糖系を阻害する2-デオキシグルコースは抗がん剤として用いられている。したがって、このような代謝経路に着目することで多くのがん種に効果のある有用な治療薬の開発に繋がる可能性がある。 Over thousands of metabolic reactions are constantly progressing in the living body, and the homeostasis of the living body is maintained by various metabolic processes. Therefore, understanding and evaluating metabolic processes is thought to lead to elucidation of disease mechanisms and development of therapeutic drugs. In particular, in many cancer types, it is known that the metabolic pathway of the energy production system exhibits abnormal activity. For example, it has been found that cancer cells prioritize metabolism in the glycolytic system over oxidative phosphorylation in mitochondria even under aerobic conditions, which is called the Warburg effect. In fact, some glycolytic inhibitors exhibit anticancer activity, and 2-deoxyglucose that inhibits the glycolytic system is used as an anticancer agent. Therefore, paying attention to such metabolic pathways may lead to the development of useful therapeutic agents effective for many cancer types.
 一般に、代謝経路は細胞内で複雑に構成されており、細胞内シグナルや代謝物によって制御されていることから、エネルギー産生系の代謝活性を正しく評価するためには、生細胞において評価する必要がある。しかしながら、エネルギー産生系の代謝経路に関与する乳酸、糖やアミノ酸などの小分子代謝物に対する代謝酵素活性を評価するための有用な手法は確立されているとは言えない状況である。 In general, metabolic pathways are complexly configured in cells and are controlled by intracellular signals and metabolites. Therefore, in order to correctly evaluate the metabolic activity of energy production systems, it is necessary to evaluate them in living cells. is there. However, it cannot be said that a useful technique for evaluating the metabolic enzyme activity for small molecule metabolites such as lactic acid, sugar and amino acid involved in the metabolic pathway of the energy production system has been established.
 既存の代謝活性の評価法として、蛍光プローブを基質に組み込む手法(非特許文献1)や、精製酵素を用いたin vitroでの評価法(非特許文献2)が知られている。しかしながら、前者は、生細胞で利用できるものの、酵素認識の問題があり、特に小分子代謝物に蛍光団を組み込んで基質アナログとして機能させるのは困難であった。また後者は、in vitroで単一の酵素活性を評価しているため、細胞内での複雑な酵素の制御機構を反映しておらず、生体内の酵素活性を正確に検出できないという問題があった。 As existing metabolic activity evaluation methods, a method of incorporating a fluorescent probe into a substrate (Non-patent Document 1) and an in-vitro evaluation method using a purified enzyme (Non-patent Document 2) are known. However, although the former can be used in living cells, there is a problem of enzyme recognition, and it has been particularly difficult to incorporate a fluorophore into a small molecule metabolite to function as a substrate analog. In the latter case, since a single enzyme activity is evaluated in vitro, it does not reflect the complex enzyme control mechanism in the cell, and the enzyme activity in vivo cannot be detected accurately. It was.
 そこで、本発明は、エネルギー産生系の代謝経路の中で解糖系に着目し、生細胞において解糖系の活性を評価する新たな手法を構築することを課題とするものである。より詳細には、解糖系の最終産物として細胞外へ放出される物質である乳酸を高感度で検出可能な新規蛍光プローブを開発することを課題とする。そして、かかる評価系を用いることで解糖系阻害作用を有する抗ガン剤候補化合物を探索可能なスクリーニング方法を提供することも課題とする。 Therefore, an object of the present invention is to construct a new technique for evaluating glycolytic activity in living cells by focusing on the glycolytic pathway in the metabolic pathway of the energy production system. More specifically, an object of the present invention is to develop a novel fluorescent probe capable of detecting lactic acid, which is a substance released extracellularly as a glycolytic end product, with high sensitivity. Another object of the present invention is to provide a screening method capable of searching for anticancer drug candidate compounds having a glycolytic inhibitory effect by using such an evaluation system.
 本発明者らは、上記課題を解決するべく鋭意検討を行った結果、乳酸を酵素によりピルビン酸に変換し、その際に生じるNADH(ニコチンアミドアデニンジヌクレオチド)と選択的に反応することで発蛍光型の蛍光応答を示す新規蛍光プローブを開発し、それにより乳酸を検出できることを見出した。また、かかる蛍光プローブを用いたスクリーニング方法により、解糖系阻害作用を有する物質を効率的に探索可能であることを見出した。これらの知見に基づき、本発明を完成するに至ったものである。 As a result of intensive studies to solve the above problems, the present inventors have converted lactic acid into pyruvic acid by an enzyme, and selectively react with NADH (nicotinamide adenine dinucleotide) produced at that time. We have developed a new fluorescent probe that exhibits a fluorescence response of the fluorescence type, and found that it is possible to detect lactic acid. Further, it has been found that substances having a glycolytic inhibitory effect can be efficiently searched for by a screening method using such a fluorescent probe. Based on these findings, the present invention has been completed.
 本発明の蛍光プローブは、分子内にテトラゾリウム部位と、ケイ素置換キサンテン蛍光団を有することにより、NADHとの反応を光誘起電子移動(PET)を用いたON/OFF型の蛍光応答として検出でき、また、水溶性を有するため細胞外液中で機能させ得ることを特徴とする。 The fluorescent probe of the present invention has a tetrazolium moiety in the molecule and a silicon-substituted xanthene fluorophore, so that the reaction with NADH can be detected as an ON / OFF-type fluorescence response using photoinduced electron transfer (PET). Moreover, since it has water solubility, it can function in an extracellular fluid.
 すなわち、本発明は、一態様において、
(1)以下の式(I)で表される化合物又はその塩を含む、NADHの検出用蛍光プローブ:
Figure JPOXMLDOC01-appb-C000003



〔式中、
は、1~5個の同一又は異なる水溶性の置換基を表し;
は、1~5個の同一又は異なる電子求引性の置換基を表し;
、R、R及びRは、それぞれ独立に水素原子又はアルキル基を表し;
及びRは、それぞれ独立に、水素原子、又はヒドロキシ基、ハロゲン原子、それぞれ置換されていてもよいアルキル基、スルホ基、カルボキシ基、エステル基、アミド基及びアジド基よりなる群から独立に選択される1~3個の同一又は異なる置換基を表し;及び、
及びRは、それぞれ独立に水素原子又はアルキル基を表し、
ここで、R又はRがアルキル基である場合、Rと一緒になって、それらが結合する窒素原子を含む環構造を形成してもよく、
又はRがアルキル基である場合、Rと一緒になって、それらが結合する窒素原子を含む環構造を形成してもよい。〕;
(2)Rが、スルホ基、スルホンアミド基、カルボキシ基、エステル基、アミド基よりなる群から独立に選択される1~5個の同一又は異なる置換基を表す、上記(1)に記載の蛍光プローブ;
(3)Rが、ニトロ基、スルホ基、スルホンアミド基、シアノ基よりなる群から独立に選択される1~5個の同一又は異なる置換基を表す、上記(1)又は(2)に記載の蛍光プローブ;
(4)2つのRがスルホ基であり、Rがニトロ基である、上記(1)~(3)のいずれか1に記載の蛍光プローブ;
(5)R、R、R及びRが、いずれもメチル基である、上記(1)~(4)のいずれか1に記載の蛍光プローブ;
(6)R及びRが、いずれも水素原子である、上記(1)~(5)のいずれか1に記載の蛍光プローブ;及び
(7)式(I)で表される化合物が以下の化合物である、上記(1)に記載の蛍光プローブ
Figure JPOXMLDOC01-appb-C000004



を提供するものである。
That is, the present invention in one aspect,
(1) A fluorescent probe for detection of NADH comprising a compound represented by the following formula (I) or a salt thereof:
Figure JPOXMLDOC01-appb-C000003



[Where,
R 1 represents 1 to 5 identical or different water-soluble substituents;
R 2 represents 1 to 5 identical or different electron withdrawing substituents;
R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or an alkyl group;
R 7 and R 8 are each independently a hydrogen atom, a hydroxy group, a halogen atom, an independently substituted alkyl group, a sulfo group, a carboxy group, an ester group, an amide group, or an azide group. Represents 1 to 3 identical or different substituents selected from; and
R a and R b each independently represent a hydrogen atom or an alkyl group,
Here, when R 3 or R 4 is an alkyl group, together with R 7 , a ring structure containing a nitrogen atom to which they are bonded may be formed,
When R 5 or R 6 is an alkyl group, it may be combined with R 8 to form a ring structure containing the nitrogen atom to which they are attached. ];
(2) The above ( 1 ), wherein R 1 represents 1 to 5 identical or different substituents independently selected from the group consisting of a sulfo group, a sulfonamido group, a carboxy group, an ester group, and an amido group. Fluorescent probes of
(3) In the above (1) or (2), R 2 represents 1 to 5 identical or different substituents independently selected from the group consisting of a nitro group, a sulfo group, a sulfonamido group, and a cyano group The described fluorescent probe;
(4) The fluorescent probe according to any one of the above (1) to (3), wherein two R 1 are a sulfo group and R 2 is a nitro group;
(5) The fluorescent probe according to any one of (1) to (4) above, wherein R 3 , R 4 , R 5 and R 6 are all methyl groups;
(6) The fluorescent probe according to any one of (1) to (5), wherein R 7 and R 8 are both hydrogen atoms; and (7) the compound represented by formula (I) is as follows: The fluorescent probe according to (1), which is a compound of
Figure JPOXMLDOC01-appb-C000004



Is to provide.
 また、別の側面において、本発明は、
(8)上記(1)~(7)のいずれか1項に記載の蛍光プローブを用いる、NADHの検出方法;
(9)NADHと前記蛍光プローブとの反応による蛍光応答を観測することにより、NADHの存在を検出することを特徴とする、上記(8)に記載の検出方法;
(10)前記蛍光応答が、光誘起電子移動(PET)による蛍光変化である、上記(9)に記載の検出方法;
(11)乳酸を検出するための、上記(1)~(7)のいずれか1項に記載の蛍光プローブの使用;
(12)乳酸の検出方法であって、
乳酸及びNADを含む被試験体に乳酸脱水素酵素(LDH)を添加し、ピルビン酸及びNADHに変換する工程、
得られた被試験体に上記(1)~(7)のいずれか1項に記載の蛍光プローブを添加し、前記工程により生成したNADHを前記蛍光プローブと反応させる工程、
前記反応により生じる蛍光応答を観測する工程、及び
前記蛍光応答からNADHの存在を検出し、それにより被試験体中に存在した乳酸を検出する工程、
を含む、該検出方法
を提供するものである。
In another aspect, the present invention provides:
(8) A method for detecting NADH using the fluorescent probe according to any one of (1) to (7) above;
(9) The detection method according to (8) above, wherein the presence of NADH is detected by observing a fluorescence response due to a reaction between NADH and the fluorescent probe;
(10) The detection method according to (9), wherein the fluorescence response is a fluorescence change caused by light-induced electron transfer (PET);
(11) Use of the fluorescent probe according to any one of (1) to (7) above for detecting lactic acid;
(12) A method for detecting lactic acid,
Step by adding lactate dehydrogenase (LDH) in the test object, is converted to pyruvate and NADH comprising lactic acid and NAD +,
Adding the fluorescent probe according to any one of the above (1) to (7) to the obtained test object, and reacting NADH produced in the step with the fluorescent probe;
Observing a fluorescence response generated by the reaction, and detecting the presence of NADH from the fluorescence response, thereby detecting lactic acid present in the test sample,
The detection method is provided.
 さらに、別の側面において、本発明は、
(13)上記(1)~(7)のいずれか1項に記載の蛍光プローブを用いる、解糖系阻害剤のスクリーニング方法;
(14)前記解糖系阻害剤が、抗がん剤である、上記(13)に記載のスクリーニング方法
を提供するものである。
Furthermore, in another aspect, the present invention provides:
(13) A method for screening a glycolytic inhibitor using the fluorescent probe according to any one of (1) to (7) above;
(14) The screening method according to (13) above, wherein the glycolytic inhibitor is an anticancer agent.
 本発明によれば、NADHと反応することで蛍光性となる新規なNADH検出蛍光プローブを提供することができ、当該蛍光プローブを用いることで、解糖系を経て細胞外へ放出される乳酸を検出することが可能となる。本発明の蛍光プローブは、光誘起電子移動(PET)によって蛍光制御するため、ON/OFF型の蛍光応答として検出できる。さらに、本発明の蛍光プローブは、水溶性を有するため細胞外液中において機能させることができる。また、本発明の蛍光プローブを用いたスクリーニング方法により、解糖系阻害作用を有する物質を効率的にスクリーニングでき、新規の抗ガン剤候補化合物の探索において極めて有用である。 ADVANTAGE OF THE INVENTION According to this invention, the novel NADH detection fluorescent probe which becomes fluorescent by reacting with NADH can be provided, By using the said fluorescent probe, the lactic acid released outside a cell via a glycolysis system can be provided. It becomes possible to detect. Since the fluorescence probe of the present invention controls fluorescence by light-induced electron transfer (PET), it can be detected as an ON / OFF type fluorescence response. Furthermore, since the fluorescent probe of the present invention has water solubility, it can function in the extracellular fluid. In addition, the screening method using the fluorescent probe of the present invention enables efficient screening of substances having a glycolytic inhibitory effect, and is extremely useful in searching for novel anticancer drug candidate compounds.
 なお、従来の水溶性テトラゾリウムを用いたNADH検出法では、吸光度で検出するため、感度が悪く、夾雑物による影響もあることが問題があったが、本発明の蛍光プローブによればNADHを蛍光応答として検出することができるため、かかる問題を解消することができる。 The conventional NADH detection method using water-soluble tetrazolium has a problem in that it is detected by absorbance and thus has low sensitivity and is affected by impurities. However, according to the fluorescent probe of the present invention, NADH is fluorescent. Since it can be detected as a response, such a problem can be solved.
図1は、本発明の蛍光プローブである化合物20の吸収スペクトル(C)、蛍光スペクトル(D)、及び、化合物の還元体である化合物19の吸収スペクトル(A)、蛍光スペクトル(B)を示したものである。FIG. 1 shows the absorption spectrum (C) and fluorescence spectrum (D) of compound 20 which is a fluorescent probe of the present invention, and the absorption spectrum (A) and fluorescence spectrum (B) of compound 19 which is a reduced form of the compound. It is a thing. 図2は、本発明の蛍光プローブである化合物20の蛍光強度のNADH濃度依存性を示すグラフである。FIG. 2 is a graph showing the NADH concentration dependence of the fluorescence intensity of Compound 20 which is the fluorescent probe of the present invention. 図3、本発明の蛍光プローブである化合物20の蛍光強度の乳酸濃度依存性を示すグラフである。FIG. 3 is a graph showing the lactic acid concentration dependence of the fluorescence intensity of Compound 20, which is the fluorescent probe of the present invention. 図4は、本発明の蛍光プローブである化合物20について、解糖系阻害剤の有無等による蛍光強度変化を示したグラフである。FIG. 4 is a graph showing changes in fluorescence intensity of compound 20, which is the fluorescent probe of the present invention, depending on the presence or absence of a glycolytic inhibitor. 図5は、実施例5で用いたプレートリーダーのレイアウトを示す模式図である。FIG. 5 is a schematic diagram showing the layout of the plate reader used in Example 5. 図6は、本発明の蛍光プローブを用いて行った解糖系阻害剤スクリーニングの結果を示すグラフである。FIG. 6 is a graph showing the results of glycolysis inhibitor screening performed using the fluorescent probe of the present invention. 図7は、実施例6で用いたプレートリーダーのレイアウトを示す模式図である。FIG. 7 is a schematic diagram showing the layout of the plate reader used in Example 6.
 以下、本発明の実施形態について説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。 Hereinafter, embodiments of the present invention will be described. The scope of the present invention is not limited to these descriptions, and other than the following examples, the scope of the present invention can be appropriately changed and implemented without departing from the spirit of the present invention.
1.定義
 本明細書中において、「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、又はヨウ素原子を意味する。
1. Definitions In this specification, “halogen atom” means a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
 本明細書中において、「アルキル」は直鎖状、分枝鎖状、環状、又はそれらの組み合わせからなる脂肪族炭化水素基のいずれであってもよい。アルキル基の炭素数は特に限定されないが、例えば、炭素数1~20個(C1~20)、炭素数3~15個(C3~15)、炭素数5~10個(C5~10)である。炭素数を指定した場合は、その数の範囲の炭素数を有する「アルキル」を意味する。例えば、C1~8アルキルには、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、neo-ペンチル、n-ヘキシル、イソヘキシル、n-ヘプチル、n-オクチル等が含まれる。本明細書において、アルキル基は任意の置換基を1個以上有していてもよい。該置換基としては、例えば、アルコキシ基、ハロゲン原子、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、又はアシルなどを挙げることができるが、これらに限定されることはない。アルキル基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。アルキル部分を含む他の置換基(例えばアルコシ基、アリールアルキル基など)のアルキル部分についても同様である。 In the present specification, “alkyl” may be any of an aliphatic hydrocarbon group composed of linear, branched, cyclic, or a combination thereof. The number of carbon atoms of the alkyl group is not particularly limited. For example, the number of carbon atoms is 1 to 20 (C 1-20 ), the number of carbons is 3 to 15 (C 3 to 15 ), and the number of carbons is 5 to 10 (C 5 to 10). ). When the number of carbons is specified, it means “alkyl” having the number of carbons within the range. For example, C 1-8 alkyl includes methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neo-pentyl, n-hexyl, isohexyl, n-heptyl, n-octyl and the like are included. In the present specification, the alkyl group may have one or more arbitrary substituents. Examples of the substituent include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and acyl. When the alkyl group has two or more substituents, they may be the same or different. The same applies to the alkyl part of other substituents containing an alkyl part (for example, an alkoxy group, an arylalkyl group, etc.).
 本明細書において、ある官能基について「置換されていてもよい」と定義されている場合には、置換基の種類、置換位置、及び置換基の個数は特に限定されず、2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。置換基としては、例えば、アルキル基、アルコキシ基、水酸基、カルボキシ基、ハロゲン原子、スルホ基、アミノ基、アルコキシカルボニル基、オキソ基などを挙げることができるが、これらに限定されることはない。これらの置換基にはさらに置換基が存在していてもよい。このような例として、例えば、ハロゲン化アルキル基、ジアルキルアミノ基などを挙げることができるが、これらに限定されることはない。 In the present specification, when a functional group is defined as “may be substituted”, the type of substituent, the substitution position, and the number of substituents are not particularly limited, and two or more substitutions are made. If they have groups, they may be the same or different. Examples of the substituent include, but are not limited to, an alkyl group, an alkoxy group, a hydroxyl group, a carboxy group, a halogen atom, a sulfo group, an amino group, an alkoxycarbonyl group, and an oxo group. These substituents may further have a substituent. Examples of such include, but are not limited to, a halogenated alkyl group, a dialkylamino group, and the like.
 本明細書中において、「アリール」は単環式又は縮合多環式の芳香族炭化水素基のいずれであってもよく、環構成原子としてヘテロ原子(例えば、酸素原子、窒素原子、又は硫黄原子など)を1個以上含む芳香族複素環であってもよい。この場合、これを「ヘテロアリール」または「ヘテロ芳香族」と呼ぶ場合もある。アリールが単環及び縮合環のいずれである場合も、すべての可能な位置で結合しうる。単環式のアリールの非限定的な例としては、フェニル基(Ph)、チエニル基(2-又は3-チエニル基)、ピリジル基、フリ
ル基、チアゾリル基、オキサゾリル基、ピラゾリル基、2-ピラジニル基、ピリミジニル基、ピロリル基、イミダゾリル基、ピリダジニル基、3-イソチアゾリル基、3-イソオキサゾリル基、1,2,4-オキサジアゾール-5-イル基又は1,2,4-オキサジアゾール-3-イル基等が挙げられる。縮合多環式のアリールの非限定的な例としては、1-ナフチル基、2-ナフチル基、1-インデニル基、2-インデニル基、2,3-ジヒドロインデン-1-イル基、2,3-ジヒドロインデン-2-イル基、2-アンスリル基、インダゾリル基、キノリル基、イソキノリル基、1,2-ジヒドロイソキノリル基、1,2,3,4-テトラヒドロイソキノリル基、インドリル基、イソインドリル基、フタラジニル基、キノキサリニル基、ベンゾフラニル基、2,3-ジヒドロベンゾフラン-1-イル基、2,3-ジヒドロベンゾフラン-2-イル基、2,3-ジヒドロベンゾチオフェン-1-イル基、2,3-ジヒドロベンゾチオフェン-2-イル基、ベンゾチアゾリル基、ベンズイミダゾリル基、フルオレニル基又はチオキサンテニル基等が挙げられる。本明細書において、アリール基はその環上に任意の置換基を1個以上有していてもよい。該置換基としては、例えば、アルコキシ基、ハロゲン原子、アミノ基、モノ若しくはジ置換アミノ基、置換シリル基、又はアシルなどを挙げることができるが、これらに限定されることはない。アリール基が2個以上の置換基を有する場合には、それらは同一でも異なっていてもよい。アリール部分を含む他の置換基(例えばアリールオキシ基やアリールアルキル基など)のアリール部分についても同様である。
In the present specification, “aryl” may be either a monocyclic or condensed polycyclic aromatic hydrocarbon group, and a hetero atom (for example, an oxygen atom, a nitrogen atom, or a sulfur atom) as a ring constituent atom Etc.) may be an aromatic heterocyclic ring. In this case, it may be referred to as “heteroaryl” or “heteroaromatic”. Whether aryl is a single ring or a fused ring, it can be attached at all possible positions. Non-limiting examples of monocyclic aryl include phenyl group (Ph), thienyl group (2- or 3-thienyl group), pyridyl group, furyl group, thiazolyl group, oxazolyl group, pyrazolyl group, 2-pyrazinyl Group, pyrimidinyl group, pyrrolyl group, imidazolyl group, pyridazinyl group, 3-isothiazolyl group, 3-isoxazolyl group, 1,2,4-oxadiazol-5-yl group or 1,2,4-oxadiazole-3 -Yl group and the like. Non-limiting examples of fused polycyclic aryl include 1-naphthyl group, 2-naphthyl group, 1-indenyl group, 2-indenyl group, 2,3-dihydroinden-1-yl group, 2,3 -Dihydroinden-2-yl group, 2-anthryl group, indazolyl group, quinolyl group, isoquinolyl group, 1,2-dihydroisoquinolyl group, 1,2,3,4-tetrahydroisoquinolyl group, indolyl group, Isoindolyl group, phthalazinyl group, quinoxalinyl group, benzofuranyl group, 2,3-dihydrobenzofuran-1-yl group, 2,3-dihydrobenzofuran-2-yl group, 2,3-dihydrobenzothiophen-1-yl group, 2 , 3-dihydrobenzothiophen-2-yl group, benzothiazolyl group, benzimidazolyl group, fluorenyl group, thioxanthenyl group, etc. And the like. In the present specification, an aryl group may have one or more arbitrary substituents on the ring. Examples of the substituent include, but are not limited to, an alkoxy group, a halogen atom, an amino group, a mono- or di-substituted amino group, a substituted silyl group, and acyl. When the aryl group has two or more substituents, they may be the same or different. The same applies to the aryl moiety of other substituents containing the aryl moiety (for example, an aryloxy group and an arylalkyl group).
 本明細書中において、「アルコキシ基」とは、前記アルキル基が酸素原子に結合した構造であり、例えば直鎖状、分枝状、環状又はそれらの組み合わせである飽和アルコキシ基が挙げられる。例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、シクロプロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、シクロブトキシ基、シクロプロピルメトキシ基、n-ペンチルオキシ基、シクロペンチルオキシ基、シクロプロピルエチルオキシ基、シクロブチルメチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、シクロプロピルプロピルオキシ基、シクロブチルエチルオキシ基又はシクロペンチルメチルオキシ基等が好適な例として挙げられる。 In the present specification, the “alkoxy group” is a structure in which the alkyl group is bonded to an oxygen atom, and examples thereof include a saturated alkoxy group that is linear, branched, cyclic, or a combination thereof. For example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, cyclopropoxy group, n-butoxy group, isobutoxy group, s-butoxy group, t-butoxy group, cyclobutoxy group, cyclopropylmethoxy group, n- Pentyloxy group, cyclopentyloxy group, cyclopropylethyloxy group, cyclobutylmethyloxy group, n-hexyloxy group, cyclohexyloxy group, cyclopropylpropyloxy group, cyclobutylethyloxy group, cyclopentylmethyloxy group, etc. are preferable Take as an example.
 本明細書中において用いられる「アミド」とは、RNR’CO-(R=アルキルの場合、アルカミノカルボニル-)及びRCONR’-(R=アルキルの場合、アルキルカルボニルアミノ-)の両方を含む。 As used herein, “amide” includes both RNR′CO— (when R = alkyl, alkaminocarbonyl-) and RCONR′- (where R = alkyl, alkylcarbonylamino-).
 本明細書中において用いられる「エステル」とは、ROCO-(R=アルキルの場合、アルコキシカルボニル-)及びRCOO-(R=アルキルの場合、アルキルカルボニルオキシ-)の両方を含む。 As used herein, “ester” includes both ROCO— (in the case of R = alkyl, alkoxycarbonyl-) and RCOO— (in the case of R = alkyl, alkylcarbonyloxy-).
 本明細書中において、「環構造」という用語は、二つの置換基の組み合わせによって形成される場合、複素環または炭素環基を意味し、そのような基は飽和、不飽和、または芳香族であることができる。従って、上記において定義した、シクロアルキル、シクロアルケニル、アリール、及びヘテロアリールを含むものである。例えば、シクロアルキル、フェニル、ナフチル、モルホリニル、ピペルジニル、イミダゾリル、ピロリジニル、及びピリジルなどが挙げられる。本明細書中において、置換基は、別の置換基と環構造を形成することができ、そのような置換基同士が結合する場合、当業者であれば、特定の置換、例えば水素への結合が形成されることを理解できる。従って、特定の置換基が共に環構造を形成すると記載されている場合、当業者であれば、当該環構造は通常の化学反応によって形成することができ、また容易に生成することを理解できる。かかる環構造及びそれらの形成過程はいずれも、当業者の認識範囲内である。 As used herein, the term “ring structure”, when formed by a combination of two substituents, means a heterocyclic or carbocyclic group, such group being saturated, unsaturated, or aromatic. Can be. Accordingly, it includes cycloalkyl, cycloalkenyl, aryl, and heteroaryl as defined above. Examples include cycloalkyl, phenyl, naphthyl, morpholinyl, piperidinyl, imidazolyl, pyrrolidinyl, pyridyl and the like. In the present specification, a substituent can form a ring structure with another substituent, and when such substituents are bonded to each other, those skilled in the art will recognize a specific substitution, such as bonding to hydrogen. Can be understood. Therefore, when it is described that specific substituents together form a ring structure, those skilled in the art can understand that the ring structure can be formed by an ordinary chemical reaction and can be easily generated. Both such ring structures and their process of formation are within the purview of those skilled in the art.
 本明細書中において、「NADH」は還元型のニコチンアミドアデニンジヌクレオチドを表し、「NAD」は酸化型のニコチンアミドアデニンジヌクレオチドを表す。 In the present specification, “NADH” represents a reduced form of nicotinamide adenine dinucleotide, and “NAD + ” represents an oxidized form of nicotinamide adenine dinucleotide.
2.本発明の蛍光プローブ
 本発明の蛍光プローブは、分子内に分子内にテトラゾリウム部位と蛍光団を有するものである。テトラゾリウム部位は、NADHとの反応により還元されてホルマザンとなるが、当該テトラゾリウムとホルマザンとの電子密度の違いを利用して、光誘起電子移動(PET)による蛍光制御を行うことを特徴とする。
2. Fluorescent probe of the present invention The fluorescent probe of the present invention has a tetrazolium moiety and a fluorophore in the molecule. The tetrazolium moiety is reduced to formazan by the reaction with NADH, and is characterized in that fluorescence control by photoinduced electron transfer (PET) is performed utilizing the difference in electron density between the tetrazolium and formazan.
 かかる蛍光制御を行うため、蛍光団はホルマザンの吸収波長(400~500nm付近)よりも長波長側に吸収帯を有することを特徴とする。そのような蛍光団として、ケイ素置換キサンテン骨格を採用した。さらに、本発明の蛍光プローブは、細胞溶液外でも蛍光プローブとして用いることができるよう、水溶性官能基を有する。 In order to perform such fluorescence control, the fluorophore is characterized by having an absorption band on the longer wavelength side than the absorption wavelength of formazan (near 400 to 500 nm). A silicon-substituted xanthene skeleton was employed as such a fluorophore. Furthermore, the fluorescent probe of the present invention has a water-soluble functional group so that it can be used as a fluorescent probe even outside a cell solution.
本発明の蛍光プローブは、以下の一般式(I)で表される構造を有する化合物を含むものである。
Figure JPOXMLDOC01-appb-C000005


The fluorescent probe of the present invention includes a compound having a structure represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000005


 上記一般式(I)において、Rは、1~5個の同一又は異なる水溶性の置換基を表し、好ましくは、スルホ基、スルホンアミド基、カルボキシ基、エステル基、アミド基よりなる群から独立に選択される1~5個の同一又は異なる置換基を表す。Rはスルホ基であることが好ましい。より好ましくは、スルホ基は2つであり、さらに好ましくは当該2つのスルホ基は互いにメタ位に存在する。Rは、蛍光プローブ分子に水溶性を付加するためのものである。 In the general formula (I), R 1 represents 1 to 5 identical or different water-soluble substituents, preferably from the group consisting of a sulfo group, a sulfonamide group, a carboxy group, an ester group, and an amide group. 1 to 5 independently selected substituents which are the same or different. R 1 is preferably a sulfo group. More preferably, there are two sulfo groups, and even more preferably, the two sulfo groups are in the meta position relative to each other. R 1 is for adding water solubility to the fluorescent probe molecule.
 Rは、1~5個の同一又は異なる電子求引性の置換基を表す。好ましくは、Rは、ニトロ基、スルホ基、スルホンアミド基、シアノ基よりなる群から独立に選択される1~5個の同一又は異なる置換基を表す。より好ましくは、Rはニトロ基である。 R 2 represents 1 to 5 identical or different electron-withdrawing substituents. Preferably, R 2 represents 1 to 5 identical or different substituents independently selected from the group consisting of a nitro group, a sulfo group, a sulfonamido group, and a cyano group. More preferably, R 2 is a nitro group.
 R、R、R及びRは、それぞれ独立に水素原子又はアルキル基を表す。当該アルキル基は、好ましくは炭素数1~10の直鎖又は分岐鎖のアルキル基であり、より好ましくはメチル基である。R、R、R及びRが、いずれもメチル基であることが好ましい。 R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or an alkyl group. The alkyl group is preferably a linear or branched alkyl group having 1 to 10 carbon atoms, and more preferably a methyl group. R 3 , R 4 , R 5 and R 6 are preferably all methyl groups.
 ここで、R又はRのいずれかがアルキル基の場合に、Rと一緒になって、それらが結合する窒素原子を含む環構造を形成してもよい。その場合、RとR、又はRとRの組み合わせのいずれか一方のみが環構造を形成してもよいし、いずれもが環構造を形成してもよい。当該環構造には、上記窒素原子以外の更なるヘテロ原子を含むこともできる。 Here, when either R 3 or R 4 is an alkyl group, it may be combined with R 7 to form a ring structure containing a nitrogen atom to which they are bonded. In that case, only one of R 3 and R 7 or a combination of R 4 and R 7 may form a ring structure, or both may form a ring structure. The ring structure may contain further hetero atoms other than the nitrogen atom.
 同様に、R又はRのいずれかがアルキル基の場合に、Rと一緒になって、それらが結合する窒素原子を含む環構造を形成してもよい。その場合、RとR、又はRとRの組み合わせのいずれか一方のみが環構造を形成してもよいし、いずれもが環構造を形成してもよい。当該環構造には、上記窒素原子以外の更なるヘテロ原子を含むこともできる。 Similarly, when either R 5 or R 6 is an alkyl group, it may be combined with R 8 to form a ring structure containing the nitrogen atom to which they are attached. In that case, only one of R 5 and R 8 or a combination of R 6 and R 8 may form a ring structure, or both may form a ring structure. The ring structure may contain further hetero atoms other than the nitrogen atom.
 R及びRは、それぞれ独立に、水素原子、又はヒドロキシ基、ハロゲン原子、それぞれ置換されていてもよいアルキル基、スルホ基、カルボキシ基、エステル基、アミド基及びアジド基よりなる群から独立に選択される1~3個の同一又は異なる置換基を表す。好ましくは、R及びRは、いずれも水素原子である。 R 7 and R 8 are each independently a hydrogen atom, a hydroxy group, a halogen atom, an independently substituted alkyl group, a sulfo group, a carboxy group, an ester group, an amide group, or an azide group. Represents 1 to 3 identical or different substituents. Preferably, R 7 and R 8 are both hydrogen atoms.
 R及びRは、それぞれ独立に水素原子又はアルキル基を表す。当該アルキル基は、好ましくは炭素数1~10の直鎖又は分岐鎖のアルキル基であり、より好ましくはメチル基である。また、R及びRが、アルキル基である場合、それらは1以上の置換基を有することができ、そのような置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン原子、水酸基、カルボキシ基、アミノ基、スルホ基などを1個又は2個以上有していてもよい。R及びRは、いずれもメチル基であることが好ましい。 R a and R b each independently represent a hydrogen atom or an alkyl group. The alkyl group is preferably a linear or branched alkyl group having 1 to 10 carbon atoms, and more preferably a methyl group. Furthermore, R a and R b are, when an alkyl group, they may have one or more substituents, and examples of the substituent include an alkyl group, an alkoxy group, a halogen atom, a hydroxyl group, a carboxyl It may have one or more groups, amino groups, sulfo groups and the like. R a and R b are preferably both methyl groups.
 また、場合によっては、R及びRは互いに結合して環構造を形成していてもよい。例えば、R及びRがともにアルキル基である場合に、R及びRが互いに結合してスピロ炭素環を形成することができる。形成される環は、例えば5ないし8員環程度であることが好ましい。 In some cases, R a and R b may be bonded to each other to form a ring structure. For example, when R a and R b are both alkyl groups, R a and R b can be bonded to each other to form a spirocarbocycle. The ring formed is preferably about 5 to 8 membered ring, for example.
 本発明の蛍光プローブとして代表的な式(I)の化合物の具体例としては、以下の化合物を挙げることができる。ただし、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000006
Specific examples of the compound represented by the formula (I) that are representative of the fluorescent probe of the present invention include the following compounds. However, it is not limited to this.
Figure JPOXMLDOC01-appb-C000006
 上記式(I)で表される化合物は、テトラゾリウム部位と、R及びRが連結するN原子において、それぞれ1価の正電荷を有するため、通常は塩として存在する。そのような塩としては、塩基付加塩、酸付加塩、アミノ酸塩などを挙げることができる。塩基付加塩としては、例えば、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩などの金属塩、アンモニウム塩、又はトリエチルアミン塩、ピペリジン塩、モルホリン塩などの有機アミン塩を挙げることができ、酸付加塩としては、例えば、塩酸塩、硫酸塩、硝酸塩などの鉱酸塩、トリフルオロ酢酸塩などのカルボン酸塩、メタンスルホン酸塩、パラトルエンスルホン酸塩、クエン酸塩、シュウ酸塩などの有機酸塩を挙げることができる。アミノ酸塩としてはグリシン塩などを例示することができる。もっとも、これらの塩に限定されることはない。 Since the compound represented by the above formula (I) has a monovalent positive charge at each of the tetrazolium moiety and the N atom to which R 6 and R 7 are linked, it usually exists as a salt. Examples of such salts include base addition salts, acid addition salts, amino acid salts and the like. Examples of the base addition salt include metal salts such as sodium salt, potassium salt, calcium salt, magnesium salt, ammonium salt, or organic amine salts such as triethylamine salt, piperidine salt, morpholine salt, and acid addition salt. Examples include mineral acids such as hydrochlorides, sulfates and nitrates, carboxylates such as trifluoroacetates, organic acids such as methanesulfonate, paratoluenesulfonate, citrate and oxalate. Mention may be made of salts. Examples of amino acid salts include glycine salts. However, it is not limited to these salts.
 式(I)で表される化合物は、置換基の種類に応じて1個または2個以上の不斉炭素を有する場合があり、光学異性体又はジアステレオ異性体などの立体異性体が存在する場合がある。純粋な形態の立体異性体、立体異性体の任意の混合物、ラセミ体などはいずれも本発明の範囲に包含される。 The compound represented by the formula (I) may have one or more asymmetric carbons depending on the type of substituent, and there are stereoisomers such as optical isomers or diastereoisomers. There is a case. Pure forms of stereoisomers, any mixture of stereoisomers, racemates, and the like are all within the scope of the present invention.
 式(I)で表される化合物又はその塩は、水和物又は溶媒和物として存在する場合もあるが、これらの物質はいずれも本発明の範囲に包含される。溶媒和物を形成する溶媒の種類は特に限定されないが、例えば、エタノール、アセトン、イソプロパノールなどの溶媒を例示することができる。 The compound represented by the formula (I) or a salt thereof may exist as a hydrate or a solvate, and any of these substances is included in the scope of the present invention. Although the kind of solvent which forms a solvate is not specifically limited, For example, solvents, such as ethanol, acetone, isopropanol, can be illustrated.
 上記の蛍光プローブは、必要に応じて、生理的環境で用いるための添加剤を配合して組成物として用いてもよい。そのような添加剤としては、例えば、溶解補助剤、pH調節剤、緩衝剤、等張化剤などの添加剤を用いることができ、これらの配合量は当業者に適宜選択可能である。これらの組成物は、粉末形態の混合物、凍結乾燥物、顆粒剤、錠剤、液剤など適宜の形態の組成物として提供され得る。 The above-described fluorescent probe may be used as a composition by blending an additive for use in a physiological environment, if necessary. As such an additive, for example, additives such as a solubilizing agent, a pH adjusting agent, a buffering agent, and an isotonic agent can be used, and the amount of these can be appropriately selected by those skilled in the art. These compositions can be provided as a composition in an appropriate form such as a powder-form mixture, a lyophilized product, a granule, a tablet, or a liquid.
 本明細書の実施例には、式(I)で表される本発明の化合物に包含される代表的化合物についての製造方法が具体的に示されているので、当業者は本明細書の開示を参照することにより、及び必要に応じて出発原料や試薬、反応条件などを適宜選択することにより、式(I)に包含される任意の化合物を容易に製造することができる。 In the examples of the present specification, production methods for representative compounds included in the compounds of the present invention represented by the formula (I) are specifically shown. Any compound included in the formula (I) can be easily produced by referring to, and appropriately selecting starting materials, reagents, reaction conditions and the like as necessary.
3.本発明の蛍光プローブを用いたNADH及び乳酸の検出方法
 本発明の検出方法では、以下のスキームに示すように、解糖系を経て細胞外へ放出される乳酸(L-乳酸)に酵素を添加してピルビン酸に変換し、その際に生じるNADH(ニコチンアミドアデニンジヌクレオチド)と蛍光プローブを接触させ、蛍光応答を観測することで、当該NADHの蛍光応答を媒介して乳酸の存在を検出するものである。これにより、解糖系の代謝活性を細胞外で検出して評価することができる。
Figure JPOXMLDOC01-appb-C000007




3. Detection method of NADH and lactic acid using the fluorescent probe of the present invention In the detection method of the present invention, as shown in the following scheme, an enzyme is added to lactic acid (L-lactic acid) released extracellularly via a glycolysis system. Then, the NADH (nicotinamide adenine dinucleotide) produced at that time is brought into contact with a fluorescent probe, and the fluorescence response is observed to detect the presence of lactic acid through the fluorescence response of the NADH. Is. Thereby, the metabolic activity of glycolysis can be detected and evaluated extracellularly.
Figure JPOXMLDOC01-appb-C000007




 より具体的には、本発明における乳酸の検出方法は、以下の工程を含む。
(a)乳酸及びNADを含む被試験体に乳酸脱水素酵素(LDH)を添加し、ピルビン酸及びNADHに変換する工程、
(b)得られた被試験体に本発明の蛍光プローブを添加し、前記工程により生成したNADHを前記蛍光プローブと反応させる工程、
(c)前記反応により生じる蛍光応答を観測する工程、及び
(d)前記蛍光応答からNADHの存在を検出し、それにより被試験体中に存在した乳酸を検出する工程。
More specifically, the method for detecting lactic acid in the present invention includes the following steps.
(A) A step of adding lactate dehydrogenase (LDH) to a test subject containing lactic acid and NAD + and converting it into pyruvic acid and NADH,
(B) adding the fluorescent probe of the present invention to the obtained test object, and reacting the NADH produced by the step with the fluorescent probe;
(C) a step of observing a fluorescence response generated by the reaction, and (d) a step of detecting the presence of NADH from the fluorescence response, thereby detecting lactic acid present in the test sample.
 工程(b)及び(c)は、光誘起電子移動(PET)を利用して、本発明の蛍光プローブによりNADHを蛍光応答として検出する工程である。当該蛍光応答の制御機構を以下の概略図に示す。ここで、光誘起電子移動(PET)とは、当該技術分野において一般に知られているように、光励起状態の分子とそれ近接する分子との間で電子が移動する現象のことである。
Figure JPOXMLDOC01-appb-C000008


Steps (b) and (c) are steps in which NADH is detected as a fluorescence response with the fluorescent probe of the present invention using photoinduced electron transfer (PET). The control mechanism of the fluorescence response is shown in the schematic diagram below. Here, photoinduced electron transfer (PET) is a phenomenon in which electrons move between a photoexcited molecule and a molecule in the vicinity thereof, as is generally known in the art.
Figure JPOXMLDOC01-appb-C000008


 図左に示すテトラゾリウム部位の状態では、光誘起電子移動(PET)により蛍光プローブ分子は無蛍光性(弱蛍光性)となっている。本発明の蛍光プローブとNADHを接触させることにより、蛍光プローブ中のテトラゾリウム部位が還元されてホルマザンに変換されると、LUMOのエネルギーレベルが上昇し、その結果、電子移動が抑制されて蛍光発光が生じる。これにより、NADHの存在を、ON/OFF型の蛍光応答として検出できることとなる。 In the state of the tetrazolium site shown on the left of the figure, the fluorescent probe molecule is non-fluorescent (weakly fluorescent) by photoinduced electron transfer (PET). By bringing the fluorescent probe of the present invention into contact with NADH, when the tetrazolium moiety in the fluorescent probe is reduced and converted to formazan, the LUMO energy level rises. As a result, electron transfer is suppressed and fluorescence emission is suppressed. Arise. Thereby, the presence of NADH can be detected as an ON / OFF type fluorescence response.
 かかる蛍光制御はテトラゾリウムとホルマザンとの電子密度の違いを利用したものであり、そのため、本発明では、ホルマザンの吸収波長(400~500nm付近)よりも長波長側に吸収帯を有する蛍光団として、ケイ素置換キサンテン骨格を用いている。 Such fluorescence control utilizes a difference in electron density between tetrazolium and formazan. Therefore, in the present invention, as a fluorophore having an absorption band on the longer wavelength side than the absorption wavelength of formazan (near 400 to 500 nm), A silicon-substituted xanthene skeleton is used.
 本明細書において「検出」という用語は、定量、定性など種々の目的の測定を含めて最も広義に解釈されるべきである。 In this specification, the term “detection” should be interpreted in the broadest sense including measurement for various purposes such as quantification and qualitative.
 蛍光応答を観測する手段は、広い測定波長を有する蛍光光度計を用いることができるが、前記蛍光応答を2次元画像として表示可能な蛍光イメージング手段を用いて可視化することもできる。かかる蛍光光度計や蛍光イメージング装置としては、当該技術分野において公知の装置を用いることができる。 As a means for observing the fluorescence response, a fluorometer having a wide measurement wavelength can be used, but it is also possible to visualize the fluorescence response using a fluorescence imaging means capable of displaying the fluorescence response as a two-dimensional image. As such a fluorimeter and a fluorescence imaging apparatus, an apparatus known in the technical field can be used.
 測定対象であるNADHを含む試料と蛍光プローブを接触させる手段としては、代表的には、蛍光プローブを含む溶液を試料添加、塗布、或いは噴霧することが挙げられるが、上記試料の形態や測定環境等に応じて適宜選択することが可能である。 As a means for bringing a sample containing NADH to be measured into contact with a fluorescent probe, typically, a sample containing a solution containing a fluorescent probe can be added, applied or sprayed. It is possible to select appropriately according to, for example.
 本発明の蛍光プローブの適用濃度は特に限定されないが、例えば0.1~50μM程度の濃度の溶液を適用することができる。 The application concentration of the fluorescent probe of the present invention is not particularly limited, but for example, a solution having a concentration of about 0.1 to 50 μM can be applied.
 本発明の蛍光プローブとしては、上記式(I)で表される化合物又はその塩をそのまま用いてもよいが、必要に応じて、試薬の調製に通常用いられる添加剤を配合して組成物として用いてもよい。例えば、生理的環境で試薬を用いるための添加剤として、溶解補助剤、pH調節剤、緩衝剤、等張化剤などの添加剤を用いることができ、これらの配合量は当業者に適宜選択可能である。これらの組成物は、一般的には、粉末形態の混合物、凍結乾燥物、顆粒剤、錠剤、液剤など適宜の形態の組成物として提供されるが、使用時に注射用蒸留水や適宜の緩衝液に溶解して適用すればよい。 As the fluorescent probe of the present invention, the compound represented by the above formula (I) or a salt thereof may be used as it is, but if necessary, an additive usually used for the preparation of a reagent is blended as a composition. It may be used. For example, additives such as a solubilizer, pH adjuster, buffer, and isotonic agent can be used as an additive for using the reagent in a physiological environment. Is possible. These compositions are generally provided as a composition in an appropriate form such as a mixture in powder form, a lyophilized product, a granule, a tablet, or a liquid, but distilled water for injection or an appropriate buffer at the time of use. It is sufficient to dissolve and apply to.
 4.本発明の蛍光プローブを用いたスクリーニング方法
 本発明は、また、上記蛍光プローブを用いて解糖系の代謝活性を細胞外で検出して評価することで、解糖系阻害作用を有する物質を効率的にスクリーニングする方法にも関する。特に、がん細胞における代謝活性を対象とすることで、新規の抗ガン剤候補化合物の探索に好適に用いることができる。
4). The screening method using the fluorescent probe of the present invention The present invention is also effective in detecting a substance having a glycolytic inhibitory activity by detecting extracellular metabolic activity of the glycolytic system using the fluorescent probe. It also relates to a screening method. In particular, by targeting metabolic activity in cancer cells, it can be suitably used for searching for novel anticancer drug candidate compounds.
 具体的には、がん由来の細胞にグルコースを添加し、解糖系を経て細胞外に放出される乳酸量について、種々の候補化合物を添加した場合の乳酸の産生量を評価することで、当該産生量を抑制する化合物を探索することができる。本発明の蛍光プローブを用いることで、かかる乳酸の産生量をON/OFF型の蛍光応答とし観測することができるため、ハイスループットのスクリーニングが可能となる。 Specifically, by adding glucose to cancer-derived cells and assessing the amount of lactic acid produced by adding various candidate compounds for the amount of lactic acid released outside the cell via the glycolysis, A compound that suppresses the production amount can be searched. By using the fluorescent probe of the present invention, the amount of lactic acid produced can be observed as an ON / OFF type fluorescence response, so that high-throughput screening is possible.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
<プローブ分子の合成>
 以下のスキームに従って、本発明の蛍光プローブである化合物20を合成した。
<Synthesis of probe molecules>
According to the following scheme, Compound 20, which is a fluorescent probe of the present invention, was synthesized.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009


[化合物14の合成]
 2-Br-4-nitrobenzoic acid 2.54 g(10 mmol)をTHF 30 mLに溶解し、(Boc)2O 5.70 g(26 mmol, 2.6 eq)とDMAP 336 mg(2.75 mmol, 0.275 eq)を加え、75 ℃で23時間攪拌した。TLCプレート(n-hexane/CH2Cl2 = 1/1)で目的物の生成を確認し、減圧下で溶媒を留去した。得られた液体をカラムクロマトグラフィー(silica, n-hexane/CH2Cl2 = 100/0 → 50/50 in 9 min)で精製し、化合物7を2.00 g(6.6 mmol, y. 64 %)得た。
1H NMR(300 MHz, CDCl3) : δ 1.60 (s. 9H), 7.81(d, 1H, J = 8.7 Hz), 8.17(dd, 1H, J = 2.4 Hz, 8.7 Hz), 8.41(d, 1H, J = 2.1 Hz), 13C NMR(75 MHz,CDCl3) : δ27.6, 83.8, 120.9, 121,8, 128.5, 130.9, 139.8, 148.5, 163.8.
Figure JPOXMLDOC01-appb-I000010

[Synthesis of Compound 14]
2-Br-4-nitrobenzoic acid 2.54 g (10 mmol) is dissolved in THF 30 mL, (Boc) 2 O 5.70 g (26 mmol, 2.6 eq) and DMAP 336 mg (2.75 mmol, 0.275 eq) are added, The mixture was stirred at 75 ° C. for 23 hours. Formation of the target product was confirmed with a TLC plate (n-hexane / CH 2 Cl 2 = 1/1), and the solvent was distilled off under reduced pressure. The resulting liquid was purified by column chromatography (silica, n-hexane / CH 2 Cl 2 = 100/0 → 50/50 in 9 min) to obtain 2.00 g (6.6 mmol, y. 64%) of compound 7. It was.
1 H NMR (300 MHz, CDCl 3 ): δ 1.60 (s. 9H), 7.81 (d, 1H, J = 8.7 Hz), 8.17 (dd, 1H, J = 2.4 Hz, 8.7 Hz), 8.41 (d, 1H, J = 2.1 Hz), 13 C NMR (75 MHz, CDCl 3 ): δ27.6, 83.8, 120.9, 121,8, 128.5, 130.9, 139.8, 148.5, 163.8.
Figure JPOXMLDOC01-appb-I000010

[化合物15の合成]
 化合物7 2.00 g(6.6 mmol)をEtOH 32 mLに溶解し、SnCl2・2H2Oを7.94 g(35 mmol, 5.3 eq)を加え、70 ℃で2.5時間攪拌した。TLCプレート(silica, CH2Cl2)で目的物の生成を確認し、反応液を室温まで冷ました後、AcOEtを加え、飽和NaHCO3aq、brineで洗浄した。Na2SO4で脱水後、減圧下で溶媒を留去し、化合物8を1.31 g(4.8 mmol, y. 73 %)得た。
1H NMR(300 MHz, CDCl3) : δ 1.56 (s. 9H), 4.26(s, 2H), 6.51(dd, 1H, J = 2.4, 7.5 Hz), 6.85(d, 1H, J = 2.4 Hz), 7.63(d, 1H, J = 8.1 Hz), 13C NMR(75 MHz,CDCl3) : δ28.0, 81.0, 112.5, 119,2, 121.0, 123.0, 133.1, 150.3, 165.0.
Figure JPOXMLDOC01-appb-I000011

[Synthesis of Compound 15]
Compound 7 (2.00 g, 6.6 mmol) was dissolved in EtOH (32 mL), SnCl 2 .2H 2 O (7.94 g, 35 mmol, 5.3 eq) was added, and the mixture was stirred at 70 ° C. for 2.5 hours. After confirming the formation of the desired product with a TLC plate (silica, CH 2 Cl 2 ), the reaction solution was cooled to room temperature, AcOEt was added, and the mixture was washed with saturated NaHCO 3 aq and brine. After dehydration with Na 2 SO 4 , the solvent was distilled off under reduced pressure to obtain 1.31 g (4.8 mmol, y. 73%) of Compound 8.
1 H NMR (300 MHz, CDCl 3 ): δ 1.56 (s. 9H), 4.26 (s, 2H), 6.51 (dd, 1H, J = 2.4, 7.5 Hz), 6.85 (d, 1H, J = 2.4 Hz ), 7.63 (d, 1H, J = 8.1 Hz), 13 C NMR (75 MHz, CDCl 3 ): δ28.0, 81.0, 112.5, 119,2, 121.0, 123.0, 133.1, 150.3, 165.0.
Figure JPOXMLDOC01-appb-I000011

[化合物16の合成]
 化合物15 1.31 g(4.8 mmol)をMeCN 40 mLに溶解し、K2CO1.63 g(12 mmol, 2.5 eq)とAllyl bromide 1.5 mL(17.3 mmol, 3.6 eq)を加えて80 ℃加熱還流で3日間攪拌した。TLCプレート(silica, n-hexane/CH2Cl2 = 1/1)で目的物の生成を確認後、反応液を濾過した。ろ液を集め減圧下で溶媒留去した。得られた液体をシリカゲルカラムクロマトグラフィー(silica, n-hexane/CH2Cl= 100/0 → 50/50 in 12 min)で精製し、化合物9を1.20 g(3.4 mmol, y. 71 %)得た。
1H NMR(300 MHz, CDCl3) : δ 1.57 (s. 9H), 3.90(d, 4H, J = 3.0 Hz), 5.08-5.19(m, 4H), 5.73-5.85(m, 2H), 6.54(dd, 1H, J = 3.0, 9.6 Hz), 6.86(d, 1H, J = 2.4 Hz), 7.72(d, 1H, J = 9.0 Hz). 13C NMR(75 MHz,CDCl3) : δ28.4, 52.4, 110.0, 116.4, 116.9, 119.3, 123.6, 132.2, 133.0, 151.1, 164.8, HRMS(ESI+): Calcd. For [M+H]+ 352.09122 Found 352.09595(4.73 mmu)
Figure JPOXMLDOC01-appb-I000012


[Synthesis of Compound 16]
Compound 15 1.31 g (4.8 mmol) was dissolved in MeCN 40 mL, K 2 CO 3 1.63 g (12 mmol, 2.5 eq) and Allyl bromide 1.5 mL (17.3 mmol, 3.6 eq) were added, and the mixture was heated at 80 ° C. under reflux. Stir for days. After confirming the formation of the target product with a TLC plate (silica, n-hexane / CH 2 Cl 2 = 1/1), the reaction solution was filtered. The filtrate was collected and the solvent was distilled off under reduced pressure. The resulting liquid was purified by silica gel column chromatography (silica, n-hexane / CH 2 Cl 2 = 100/0 → 50/50 in 12 min) to obtain compound 9 (1.20 g, 3.4 mmol, y. 71%) Obtained.
1 H NMR (300 MHz, CDCl 3 ): δ 1.57 (s. 9H), 3.90 (d, 4H, J = 3.0 Hz), 5.08-5.19 (m, 4H), 5.73-5.85 (m, 2H), 6.54 . (dd, 1H, J = 3.0, 9.6 Hz), 6.86 (d, 1H, J = 2.4 Hz), 7.72 (d, 1H, J = 9.0 Hz) 13 C NMR (75 MHz, CDCl 3): δ28. 4, 52.4, 110.0, 116.4, 116.9, 119.3, 123.6, 132.2, 133.0, 151.1, 164.8, HRMS (ESI + ): Calcd. For [M + H] + 352.09122 Found 352.09595 (4.73 mmu)
Figure JPOXMLDOC01-appb-I000012


[化合物17の合成]
 よく乾燥させたフラスコに化合物16を360 mg(1.03 mmol, 8.0 eq)入れて脱水THFに溶解させ、-78 ℃でAr下20 min攪拌した。ここへ1 M sec-BuLiを1.1 mL(1.1 mmol, 8.5 eq)少しずつ加え-78 ℃でAr下15 min攪拌した。さらに反応液へTHFに溶解させたSi-xanthone 41.8 mg(0.129 mmol) を少しずつ加えた後、室温Ar下で2時間攪拌させた。TFA 2.5 mLを反応液に加え室温で20 min攪拌し、ESI-MSにて目的物の生成を確認後、減圧下で溶媒を留去した。ESI-MS得られた液体をHPLCで精製し(A/B = 95/5 → 0/100 in 25 min, A : 0.1% TFA/H2O, B : 0.1 % TFA/80 % MeCN/20 % H2O)、化合物10の粗生成物を62 mg得た。
HRMS(ESI+): Calcd. For [M]+ 524.27333 Found 524.27215(-1.18 mmu)
Figure JPOXMLDOC01-appb-I000013


[Synthesis of Compound 17]
360 mg (1.03 mmol, 8.0 eq) of Compound 16 was placed in a well-dried flask, dissolved in dehydrated THF, and stirred at −78 ° C. under Ar for 20 min. To this was added 1 M sec-BuLi 1.1 mL (1.1 mmol, 8.5 eq) little by little, and the mixture was stirred at −78 ° C. under Ar for 15 min. Further, 41.8 mg (0.129 mmol) of Si-xanthone dissolved in THF was added little by little to the reaction solution, followed by stirring at room temperature under Ar for 2 hours. 2.5 mL of TFA was added to the reaction mixture, and the mixture was stirred at room temperature for 20 min. After confirming the formation of the target product by ESI-MS, the solvent was distilled off under reduced pressure. ESI-MS The resulting liquid was purified by HPLC (A / B = 95/5 → 0/100 in 25 min, A: 0.1% TFA / H 2 O, B: 0.1% TFA / 80% MeCN / 20% 62 mg of a crude product of compound 2 was obtained.
HRMS (ESI + ): Calcd. For [M] + 524.27333 Found 524.27215 (-1.18 mmu)
Figure JPOXMLDOC01-appb-I000013


[化合物18の合成]
 化合物17の粗生成物62 mgをCH2Cl2 9 mLに溶解させ、Pd(PPh3)31.3 mg(0.027 mmol)と1,3-dimethylbarbituric acid 69 mg(0.44 mmol)を加えた。Ar下、35 ℃で14時間攪拌し、ESI-MSで目的物の生成を確認した後減圧下で溶媒を留去した。HPLCで精製し(A/B = 95/5 → 0/100 in 25 min, A : 0.1% TFA/H2O, B : 0.1 % TFA/80 % MeCN/20 % H2O)、化合物11を23 mg(0.041 mmol, y. 32 %)を得た。
1H NMR(300 MHz, CDCl3) : δ 0.60 (s. 3H), 0.65 (s. 3H), 3.04(s, 12H), 4.20(s, 2H), 6.31(s, 1H), 6.72(dd, 1H, J = 1.5, 8.1 Hz), 6,86(dd, 2H, J =3.0, 9.0 Hz), 7.07(d, 2H, J = 8.7 Hz), 7.23(d, 2H, J = 3.0 Hz), 7.72(d, 1H, J = 8.1 Hz).
HRMS(ESI+): Calcd. For [M]+ 444.21073 Found 444.20619(-4.54 mmu)
Figure JPOXMLDOC01-appb-I000014

[Synthesis of Compound 18]
62 mg of the crude product of Compound 17 was dissolved in 9 mL of CH 2 Cl 2 , and Pd (PPh 3 ) 4 31.3 mg (0.027 mmol) and 1,3-dimethylbarbituric acid 69 mg (0.44 mmol) were added. The mixture was stirred at 35 ° C. for 14 hours under Ar. After confirming the formation of the desired product by ESI-MS, the solvent was distilled off under reduced pressure. Purification by HPLC (A / B = 95/5 → 0/100 in 25 min, A: 0.1% TFA / H 2 O, B: 0.1% TFA / 80% MeCN / 20% H 2 O) 23 mg (0.041 mmol, y. 32%) was obtained.
1 H NMR (300 MHz, CDCl 3 ): δ 0.60 (s. 3H), 0.65 (s. 3H), 3.04 (s, 12H), 4.20 (s, 2H), 6.31 (s, 1H), 6.72 (dd , 1H, J = 1.5, 8.1 Hz), 6,86 (dd, 2H, J = 3.0, 9.0 Hz), 7.07 (d, 2H, J = 8.7 Hz), 7.23 (d, 2H, J = 3.0 Hz) , 7.72 (d, 1H, J = 8.1 Hz).
HRMS (ESI + ): Calcd. For [M] + 444.21073 Found 444.20619 (-4.54 mmu)
Figure JPOXMLDOC01-appb-I000014

[化合物19の合成]
 化合物18 23 mg(0.041 mmol) を塩酸溶液(12N塩酸266 μL + H2O 1.84 mL)に溶解し、0 ℃で20 min攪拌した。ここにNaNO2 2.9 mg(0.042 mmol, 1.0 eq) をH2O 69μLに溶かした溶液を少しずつ加え、0 ℃で30 min 攪拌した。反応液へ化合物1 33 mg(0.074 mmol, 1.8 eq)をH2O 920 μLに溶かしたものを少しずつ加えた後、KOHaq(KOH 266 mg + H2O 920 μL)をゆっくり滴下し、0 ℃で1.5時間攪拌した。ESI-MSにて目的物の生成を確認し、溶媒を減圧下留去した。得られた固体をHPLCで精製し(A/B = 95/5 → 0/100 in 25 min, A : 0.1% TEAA/H2O, B : 0.1 % TEAA/80 % MeCN/20 % H2O)、目的物を 14.4 mg(0.017 mmol, y. 41 %)得た。
1H NMR(300 MHz, CD3OD) : δ 0.61 (s. 3H), 0.71(s. 3H), 2.96(s, 12H), 6.64(d, 2H, J = 8.7 Hz), 6.77-6.89(m, 3H), 7.04(s, 2H), 7.20(d, 1H, J = 8.1 Hz), 7.52(d, 2H), 7.83(d, 1H), 7.98(d, 2H, J = 7.5 Hz), 8.16(d, 1H, J = 9.0 Hz), 8.27(d, 1H, J = 8.7 Hz), 8.58(s, 1H). HRMS(ESI-): Calcd. For [M-2H]-854.17343 Found 854.17682(-4.54 mmu)
Figure JPOXMLDOC01-appb-I000015


[Synthesis of Compound 19]
Compound 18 (23 mg, 0.041 mmol) was dissolved in hydrochloric acid solution (266 μL of 12N hydrochloric acid + 1.84 mL of H 2 O), and the mixture was stirred at 0 ° C. for 20 min. A solution prepared by dissolving 2.9 mg (0.042 mmol, 1.0 eq) of NaNO 2 in 69 μL of H 2 O was added little by little, and the mixture was stirred at 0 ° C. for 30 min. To the reaction mixture, 33 mg (0.074 mmol, 1.8 eq) of compound 1 dissolved in 920 μL of H 2 O was added little by little, and then KOHaq (KOH 266 mg + H 2 O 920 μL) was slowly added dropwise at 0 ° C. For 1.5 hours. The production of the target product was confirmed by ESI-MS, and the solvent was distilled off under reduced pressure. The resulting solid was purified by HPLC (A / B = 95/5 → 0/100 in 25 min, A: 0.1% TEAA / H 2 O, B: 0.1% TEAA / 80% MeCN / 20% H 2 O ), 14.4 mg (0.017 mmol, y. 41%) of the desired product was obtained.
1 H NMR (300 MHz, CD 3 OD): δ 0.61 (s. 3H), 0.71 (s. 3H), 2.96 (s, 12H), 6.64 (d, 2H, J = 8.7 Hz), 6.77-6.89 ( m, 3H), 7.04 (s, 2H), 7.20 (d, 1H, J = 8.1 Hz), 7.52 (d, 2H), 7.83 (d, 1H), 7.98 (d, 2H, J = 7.5 Hz), 8.16 (d, 1H, J = 9.0 Hz), 8.27 (d, 1H, J = 8.7 Hz), 8.58 (s, 1H) HRMS (ESI -):.. Calcd For [M-2H] - 854.17343 Found 854.17682 ( -4.54 mmu)
Figure JPOXMLDOC01-appb-I000015


[化合物20の合成]
 化合物19 13 mg(0.015 mmol)をMeOH 2.6 mLに溶解し、DDQを22.6 mg(0.104 mmol, 6.9 eq)を加えた。遮光下、室温で1時間攪拌し、ESI-MSで目的物の生成を確認した後、溶媒を減圧下で留去した。得られた固体をHPLCで精製し(A/B = 95/5 → 0/100 in 25 min, A : 0.1% TEAA/H2O, B : 0.1 % TEAA/80 % MeCN/20 % H2O)、化合物13を1.6 mg(0.0019mmol, y. 12 %)得た。
HRMS(ESI-): Calcd. For [M-3H]-852.15778 Found 852.15576(-2.02 mmu)
Figure JPOXMLDOC01-appb-I000016

[Synthesis of Compound 20]
Compound 19 13 mg (0.015 mmol) was dissolved in MeOH 2.6 mL, and DDQ 22.6 mg (0.104 mmol, 6.9 eq) was added. The mixture was stirred at room temperature for 1 hour in the dark, and after confirming the formation of the desired product by ESI-MS, the solvent was distilled off under reduced pressure. The resulting solid was purified by HPLC (A / B = 95/5 → 0/100 in 25 min, A: 0.1% TEAA / H 2 O, B: 0.1% TEAA / 80% MeCN / 20% H 2 O ) And compound 13 (1.6 mg, 0.0019 mmol, y. 12%) was obtained.
HRMS (ESI -):. Calcd For [M-3H] - 852.15778 Found 852.15576 (-2.02 mmu)
Figure JPOXMLDOC01-appb-I000016

<プローブ分子の光学特性>
 実施例1で得た本発明の蛍光プローブ分子である化合物20、及びその還元体でありホルマザン部位を有する化合物19の光学特性を測定した。化合物20のテトラゾリウム部位がNADHによって還元されると化合物19となるため、これらの光学特性を評価することによって、NADHを検出する際の蛍光応答変化が分かる。
<Optical properties of probe molecules>
Optical properties of Compound 20 which is the fluorescent probe molecule of the present invention obtained in Example 1 and Compound 19 which is a reduced form thereof and has a formazan moiety were measured. When the tetrazolium site of compound 20 is reduced by NADH, it becomes compound 19, and by evaluating these optical properties, the fluorescence response change when NADH is detected can be found.
 0.1%DMSOを含むPBS溶液中における化合物19及び20の吸収スペクトル及び蛍光スペクトルを測定した。結果を図1に示す。得られた吸収極大波長、蛍光極大波長及び量子収率を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000017

Absorption spectra and fluorescence spectra of compounds 19 and 20 in a PBS solution containing 0.1% DMSO were measured. The results are shown in FIG. The obtained absorption maximum wavelength, fluorescence maximum wavelength and quantum yield are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000017

 661nmにおける蛍光強度は約145倍の差がついており、非常にS/N比が良いことが分かった。 The fluorescence intensity at 661 nm has a difference of about 145 times, indicating that the S / N ratio is very good.
<プレートリーダーを用いた蛍光強度の測定>
 本発明の蛍光プローブ分子を用いて、NADH及び乳酸の添加に伴う蛍光応答変化を確認した。
<Measurement of fluorescence intensity using a plate reader>
Using the fluorescent probe molecule of the present invention, the fluorescence response change accompanying the addition of NADH and lactic acid was confirmed.
 表2に従い、蛍光プローブ溶液およびNADHの希釈系列を作成し、混合後プレートリーダーにて蛍光強度を測定した(蛍光強度は測定開始後180分後)。蛍光プローブは、実施例1で合成した化合物20を用いた。
Figure JPOXMLDOC01-appb-T000018


※reaction buffer: リン酸バッファー pH 7.4, 1 mM CaCl2, 1 mM MgCl2 (0.1%CHAPS含む)
A dilution series of a fluorescent probe solution and NADH was prepared according to Table 2, and after mixing, the fluorescence intensity was measured with a plate reader (fluorescence intensity was 180 minutes after the start of measurement). As the fluorescent probe, the compound 20 synthesized in Example 1 was used.
Figure JPOXMLDOC01-appb-T000018


* Reaction buffer: phosphate buffer pH 7.4, 1 mM CaCl 2 , 1 mM MgCl 2 (including 0.1% CHAPS)
 その結果を図2に示す。数十μMオーダーのNADHを検出できていることがわかる。また100μM程度まで蛍光強度とNADH濃度は線形を保っており定量も可能であることが分かる。このことから、化合物の蛍光プローブによって、NADHを検出できることが実証された。 The result is shown in FIG. It can be seen that NADH on the order of several tens of μM can be detected. It can also be seen that the fluorescence intensity and NADH concentration are kept linear up to about 100 μM, and quantification is possible. This demonstrated that NADH can be detected by the fluorescent probe of the compound.
 表3に従い、乳酸の希釈系列と蛍光プローブ溶液を作成し、混合後プレートリーダーにて蛍光強度を測定した(蛍光強度は測定開始後180分後)。蛍光プローブは、実施例1で合成した化合物20を用いた。
Figure JPOXMLDOC01-appb-T000019


※reaction buffer: リン酸バッファー pH 7.4, 1 mM CaCl2, 1 mM MgCl2 (0.1%CHAPS含む)
According to Table 3, a lactic acid dilution series and a fluorescent probe solution were prepared, and after mixing, the fluorescence intensity was measured with a plate reader (fluorescence intensity was 180 minutes after the start of measurement). As the fluorescent probe, the compound 20 synthesized in Example 1 was used.
Figure JPOXMLDOC01-appb-T000019


* Reaction buffer: phosphate buffer pH 7.4, 1 mM CaCl 2 , 1 mM MgCl 2 (including 0.1% CHAPS)
 その結果を図3に示す。数十 μMオーダーの乳酸を検出できていることがわかる。また100μM程度まで蛍光強度と乳酸濃度は線形を保っており定量も可能であることが分かる。このことから、化合物6の蛍光プローブによって、乳酸を検出できることが実証された。 The result is shown in FIG. It can be seen that lactic acid on the order of several tens of μM can be detected. It can also be seen that the fluorescence intensity and the lactic acid concentration remain linear up to about 100 μM and can be quantified. From this, it was demonstrated that lactic acid can be detected by the fluorescent probe of compound 6.
<生細胞を用いた蛍光アッセイ>
 実際に生細胞を用いて細胞外液に放出される乳酸を蛍光プローブで検出できるかについて検討を行った。表4に従って溶液を作成し、この溶液でHL60細胞(3.0×10 cells/mL)を37℃で6時間インキュベーションした。その後表5に従って蛍光プローブ溶液と細胞溶液を混ぜ合わせプレートリーダーにて蛍光強度を測定した(蛍光強度は測定開始後120分後)。
<Fluorescence assay using living cells>
We examined whether lactic acid released into the extracellular fluid using live cells could be detected with a fluorescent probe. A solution was prepared according to Table 4, and HL60 cells (3.0 × 10 5 cells / mL) were incubated at 37 ° C. for 6 hours with this solution. Thereafter, the fluorescent probe solution and the cell solution were mixed according to Table 5, and the fluorescence intensity was measured with a plate reader (fluorescence intensity was 120 minutes after the start of measurement).
Figure JPOXMLDOC01-appb-T000020


Figure JPOXMLDOC01-appb-T000021


※reaction buffer: リン酸バッファー pH 7.4, 1 mM CaCl2, 1 mM MgCl2 (0.1%CHAPS含む)
Figure JPOXMLDOC01-appb-T000020


Figure JPOXMLDOC01-appb-T000021


* Reaction buffer: phosphate buffer pH 7.4, 1 mM CaCl 2 , 1 mM MgCl 2 (including 0.1% CHAPS)
 その結果を図4に示す。グルコースを加えた(2)と加えなかった(1)では蛍光強度に十分な差がついた。また既知の解糖系阻害剤を加えた(3)と(4)では蛍光強度は抑制されており、乳酸脱水素酵素(LDH)を加えなかった(5)では蛍光強度は上昇しなかった。このことから解糖系によって代謝されて細胞外に放出された乳酸を検出できており、解糖系の活性を蛍光シグナルとして捉えていることが分かった。 The result is shown in FIG. There was a sufficient difference in fluorescence intensity between glucose (2) and glucose not added (1). In addition, the fluorescence intensity was suppressed in (3) and (4) with the addition of a known glycolytic inhibitor, and the fluorescence intensity did not increase in (5) without addition of lactate dehydrogenase (LDH). From this, it was found that lactic acid metabolized by the glycolytic system and released to the outside of the cell could be detected, and the activity of the glycolytic system was captured as a fluorescent signal.
<解糖系阻害剤スクリーニングの実施(蛍光アッセイ1)>
 図5に従い、10 mMになるようにグルコースを溶かしたリン酸バッファー溶液にヒト白血病由来細胞(HL60細胞)を懸濁し(4.5×10 cells/mL)、化合物の入った384ウェルプレートに播いて37℃で2時間インキュベーションした。化合物ライブラリーはLOPAC(登録商標)1280(Sigma-Aldrich社)を使用した。その後、表6に従い、反応溶液を作成し室温で1時間インキュベーションした後、プレートリーダーにて蛍光強度を測定した。蛍光プローブは、実施例1で合成した化合物20を用いた。
<Execution of glycolytic inhibitor screening (fluorescence assay 1)>
According to FIG. 5, human leukemia-derived cells (HL60 cells) are suspended in a phosphate buffer solution in which glucose is dissolved to 10 mM (4.5 × 10 5 cells / mL) and placed in a 384 well plate containing the compound. Seeded and incubated at 37 ° C. for 2 hours. As a compound library, LOPAC (registered trademark) 1280 (Sigma-Aldrich) was used. Then, according to Table 6, after preparing the reaction solution and incubating at room temperature for 1 hour, the fluorescence intensity was measured with the plate reader. As the fluorescent probe, the compound 20 synthesized in Example 1 was used.
Figure JPOXMLDOC01-appb-T000022


※reaction buffer : リン酸バッファー pH 7.4, 1 mM CaCl2, 1 mM MgCl2 (0.1%CHAPS含む)
Figure JPOXMLDOC01-appb-T000022


* Reaction buffer: phosphate buffer pH 7.4, 1 mM CaCl 2 , 1 mM MgCl 2 (including 0.1% CHAPS)
 その結果を図6に示す。アッセイは二回実施し、二回とも阻害率が30%を超えたものをヒット化合物とした。このスクリーニングにより60個のヒット化合物が得られた。
 MeanMax responseを1、MeanMinimum responseを0として阻害率 (InH) を算出した。                          
・InH = 1- (Valuesample-MeanMinimum response)/(MeanMax respons-MeanMinimum response)
The result is shown in FIG. The assay was carried out twice, and in both cases, the compound with an inhibition rate exceeding 30% was regarded as a hit compound. This screening yielded 60 hit compounds.
The inhibition rate (InH) was calculated with a Mean Max response of 1 and a Mean Minimum response of 0.
・ InH = 1- (Valuesample-Mean Minimum response ) / (Mean Max respons -Mean Minimum response )
<解糖系阻害剤スクリーニングの実施(蛍光アッセイ2)>
 実施例5で得られた60個のヒット化合物について、confirmation assayおよびカップルドアッセイを阻害していないかの確認を行った。図7に従い、10 mMになるようにグルコースを溶かしたリン酸バッファー溶液にHL60細胞を懸濁し(4.5×10 cells/mL)および10 mMグルコース、200μM乳酸を溶かしたリン酸バッファー溶液を384ウェルプレートに播き、37℃で2時間インキュベーションした。その後、表7に従い、反応溶液を作成し384ウェルプレートに播き、室温で1時間インキュベーションした後プレートリーダーにて蛍光強度を測定した。
<Execution of glycolytic inhibitor screening (fluorescence assay 2)>
The 60 hit compounds obtained in Example 5 were confirmed to confirm that they did not inhibit the confirmation assay and the coupled assay. According to FIG. 7, HL60 cells are suspended in a phosphate buffer solution in which glucose is dissolved to 10 mM (4.5 × 10 5 cells / mL), and a phosphate buffer solution in which 10 mM glucose and 200 μM lactic acid are dissolved is added. It seed | inoculated to 384 well plate and incubated at 37 degreeC for 2 hours. Then, according to Table 7, a reaction solution was prepared and seeded on a 384 well plate, incubated for 1 hour at room temperature, and then the fluorescence intensity was measured with a plate reader.
Figure JPOXMLDOC01-appb-T000023


※reaction buffer : リン酸バッファー pH 7.4, 1 mM CaCl2, 1 mM MgCl2 (0.1%CHAPS含む)
Figure JPOXMLDOC01-appb-T000023


* Reaction buffer: phosphate buffer pH 7.4, 1 mM CaCl 2 , 1 mM MgCl 2 (including 0.1% CHAPS)
 この結果、細胞溶液を播いたプレートでのみ阻害を示した(つまり、カップルドアッセイを阻害せずに解糖系を阻害している)28個の化合物をヒット化合物とした。 As a result, 28 compounds showing inhibition only in the plate seeded with the cell solution (that is, inhibiting glycolysis without inhibiting the coupled assay) were used as hit compounds.
<解糖系阻害剤スクリーニングの実施(LC-MSによる検出)>
 実施例6にて得た28個のヒット化合物について、LC-MS(液体クロマトグラフィー質量分析法)にて乳酸を検出することで解糖系を阻害していることを確認した。また化合物のアッセイ濃度を1、10、50 μMとしてアッセイしその阻害能を検討した。
<Execution of glycolytic inhibitor screening (detection by LC-MS)>
The 28 hit compounds obtained in Example 6 were confirmed to inhibit the glycolytic system by detecting lactic acid by LC-MS (liquid chromatography mass spectrometry). In addition, the assay concentration of the compound was assayed at 1, 10, and 50 μM, and the inhibition ability was examined.
 15 mMグルコースを溶解させたリン酸バッファー溶液にHL60細胞を懸濁し(6.75×10 cells/mL)、表8に従い溶液を作成した。これを37℃で2時間インキュベーションした後、遠心し上清を回収した。この上清と等量の10%ギ酸溶液を添加し、LC-MSにて乳酸を検出した。Min.responseとしてグルコース10 mM、IAA0.1 mMで細胞をインキュベーションし、Max.responseとして10 mMグルコースのみで細胞をインキュベーションした。 Was suspended 15 mM HL60 cells glucose phosphate buffer solution prepared by dissolving (6.75 × 10 5 cells / mL ), the solution was created in accordance with Table 8. This was incubated at 37 ° C. for 2 hours and then centrifuged to collect the supernatant. An equal amount of 10% formic acid solution was added to the supernatant, and lactic acid was detected by LC-MS. Cells were incubated with 10 mM glucose and IAA 0.1 mM as Min.response, and cells were incubated with 10 mM glucose alone as Max.response.
Figure JPOXMLDOC01-appb-T000024


※buffer : リン酸バッファー pH 7.4, 1 mM CaCl2, 1 mM MgCl2 
Figure JPOXMLDOC01-appb-T000024


* Buffer: Phosphate buffer pH 7.4, 1 mM CaCl 2 , 1 mM MgCl 2
 この結果、確かに乳酸を減少させる化合物がヒット化合物として得られていることがLC-MSによって確認された。この化合物の中には既知の解糖系阻害剤であるIAAの類縁体であるiodoacetamideが含まれておりその阻害率は10 μMで0.648±0.058(n = 2)であった。本発明の蛍光プローブを用いたスクリーニングにより解糖系阻害剤を取得することができることが示された。
  MeanMax responseを1、MeanMinimum responseを0として阻害率 (InH) を算出した。                         
・InH = 1- (Valuesample-MeanMinimum response)/(MeanMax respons-MeanMinimum response)
As a result, it was confirmed by LC-MS that a compound capable of reducing lactic acid was obtained as a hit compound. This compound contained iodoacetamide, an analog of IAA, a known glycolytic inhibitor, and its inhibition rate was 0.648 ± 0.058 (n = 2) at 10 μM. It was shown that glycolytic inhibitors can be obtained by screening using the fluorescent probe of the present invention.
The inhibition rate (InH) was calculated with a Mean Max response of 1 and a Mean Minimum response of 0.
・ InH = 1- (Valuesample-Mean Minimum response ) / (Mean Max respons -Mean Minimum response )
 以上の結果は、本発明の蛍光プローブにより、生細胞から産生される乳酸を検出することができ、また、蛍光プローブを用いた解糖系阻害剤のスクリーニングをハイスループットで行えることを実証するものである。 The above results demonstrate that the fluorescent probe of the present invention can detect lactic acid produced from living cells and can screen for glycolytic inhibitors using the fluorescent probe with high throughput. It is.

Claims (14)

  1. 以下の式(I)で表される化合物又はその塩を含む、NADHの検出用蛍光プローブ:
    Figure JPOXMLDOC01-appb-C000001


    〔式中、
    は、1~5個の同一又は異なる水溶性の置換基を表し;
    は、1~5個の同一又は異なる電子求引性の置換基を表し;
    、R、R及びRは、それぞれ独立に水素原子又はアルキル基を表し;
    及びRは、それぞれ独立に、水素原子、又はヒドロキシ基、ハロゲン原子、それぞれ置換されていてもよいアルキル基、スルホ基、カルボキシ基、エステル基、アミド基及びアジド基よりなる群から独立に選択される1~3個の同一又は異なる置換基を表し;及び、
    及びRは、それぞれ独立に水素原子又はアルキル基を表し、
    ここで、R又はRがアルキル基である場合、Rと一緒になって、それらが結合する窒素原子を含む環構造を形成してもよく、
    又はRがアルキル基である場合、Rと一緒になって、それらが結合する窒素原子を含む環構造を形成してもよい。〕。
    A fluorescent probe for detection of NADH comprising a compound represented by the following formula (I) or a salt thereof:
    Figure JPOXMLDOC01-appb-C000001


    [Where,
    R 1 represents one to five identical or different water-soluble substituent;
    R 2 represents 1 to 5 identical or different electron withdrawing substituents;
    R 3 , R 4 , R 5 and R 6 each independently represent a hydrogen atom or an alkyl group;
    R 7 and R 8 are each independently a hydrogen atom, a hydroxy group, a halogen atom, an independently substituted alkyl group, a sulfo group, a carboxy group, an ester group, an amide group, or an azide group. Represents 1 to 3 identical or different substituents selected from; and
    R a and R b each independently represent a hydrogen atom or an alkyl group,
    Here, when R 3 or R 4 is an alkyl group, together with R 7 , a ring structure containing a nitrogen atom to which they are bonded may be formed,
    When R 5 or R 6 is an alkyl group, it may be combined with R 8 to form a ring structure containing the nitrogen atom to which they are attached. ].
  2. が、スルホ基、スルホンアミド基、カルボキシ基、エステル基、及びアミド基よりなる群から独立に選択される1~5個の同一又は異なる置換基を表す、請求項1に記載の蛍光プローブ。 The fluorescent probe according to claim 1, wherein R 1 represents 1 to 5 identical or different substituents independently selected from the group consisting of a sulfo group, a sulfonamide group, a carboxy group, an ester group, and an amide group. .
  3. が、ニトロ基、スルホ基、スルホンアミド基、及びシアノ基よりなる群から独立に選択される1~5個の同一又は異なる置換基を表す、請求項1又は2に記載の蛍光プローブ。 The fluorescent probe according to claim 1 or 2, wherein R 2 represents 1 to 5 identical or different substituents independently selected from the group consisting of a nitro group, a sulfo group, a sulfonamido group, and a cyano group.
  4. 2つのRがスルホ基であり、Rがニトロ基である、請求項1~3のいずれか1に記載の蛍光プローブ。 The fluorescent probe according to any one of claims 1 to 3, wherein two R 1 are a sulfo group and R 2 is a nitro group.
  5. 、R、R及びRが、いずれもメチル基である、請求項1~4のいずれか1に記載の蛍光プローブ。 The fluorescent probe according to any one of claims 1 to 4, wherein R 3 , R 4 , R 5 and R 6 are all methyl groups.
  6. 及びRが、いずれも水素原子である、請求項1~5のいずれか1に記載の蛍光プローブ。 The fluorescent probe according to any one of claims 1 to 5, wherein R 7 and R 8 are both hydrogen atoms.
  7. 式(I)で表される化合物が以下の化合物である、請求項1に記載の蛍光プローブ。
    Figure JPOXMLDOC01-appb-C000002

    The fluorescent probe according to claim 1, wherein the compound represented by the formula (I) is the following compound.
    Figure JPOXMLDOC01-appb-C000002

  8. 請求項1~7のいずれか1項に記載の蛍光プローブを用いる、NADHの検出方法。 A method for detecting NADH using the fluorescent probe according to any one of claims 1 to 7.
  9. NADHと前記蛍光プローブとの反応による蛍光応答を観測することにより、NADHの存在を検出することを特徴とする、請求項8に記載の検出方法。 9. The detection method according to claim 8, wherein the presence of NADH is detected by observing a fluorescence response due to a reaction between NADH and the fluorescent probe.
  10. 前記蛍光応答が、光誘起電子移動(PET)による蛍光変化である、請求項9に記載の検出方法。 The detection method according to claim 9, wherein the fluorescence response is a fluorescence change caused by light-induced electron transfer (PET).
  11. 乳酸を検出するための、請求項1~7のいずれか1項に記載の蛍光プローブの使用。 Use of the fluorescent probe according to any one of claims 1 to 7 for detecting lactic acid.
  12. 乳酸の検出方法であって、
    乳酸及びNADを含む被試験体に乳酸脱水素酵素(LDH)を添加し、ピルビン酸及びNADHに変換する工程、
    得られた被試験体に請求項1~7のいずれか1項に記載の蛍光プローブを添加し、前記工程により生成したNADHを前記蛍光プローブと反応させる工程、
    前記反応により生じる蛍光応答を観測する工程、及び
    前記蛍光応答からNADHの存在を検出し、それにより被試験体中に存在した乳酸を検出する工程、
    を含む、該検出方法。
    A method for detecting lactic acid,
    A step of adding lactate dehydrogenase (LDH) to a test subject containing lactic acid and NAD + to convert it into pyruvic acid and NADH;
    A step of adding the fluorescent probe according to any one of claims 1 to 7 to the obtained test object, and reacting the NADH generated by the step with the fluorescent probe,
    Observing a fluorescence response generated by the reaction, and detecting the presence of NADH from the fluorescence response, thereby detecting lactic acid present in the test sample,
    The detection method comprising:
  13. 請求項1~7のいずれか1項に記載の蛍光プローブを用いる、解糖系阻害剤のスクリーニング方法。 A method for screening a glycolytic inhibitor using the fluorescent probe according to any one of claims 1 to 7.
  14. 前記解糖系阻害剤が、抗がん剤である、請求項13に記載のスクリーニング方法。 The screening method according to claim 13, wherein the glycolytic inhibitor is an anticancer agent.
PCT/JP2016/084669 2015-11-24 2016-11-22 Fluorescent probe for detecting extracellular metabolite and screening method employing said fluorescent probe WO2017090631A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562259176P 2015-11-24 2015-11-24
US62/259176 2015-11-24

Publications (1)

Publication Number Publication Date
WO2017090631A1 true WO2017090631A1 (en) 2017-06-01

Family

ID=58763217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084669 WO2017090631A1 (en) 2015-11-24 2016-11-22 Fluorescent probe for detecting extracellular metabolite and screening method employing said fluorescent probe

Country Status (1)

Country Link
WO (1) WO2017090631A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004420A (en) * 2019-12-19 2021-06-22 华东理工大学 Lactic acid optical probe and preparation method and application thereof
WO2021162126A1 (en) * 2020-02-13 2021-08-19 シーシーアイホールディングス株式会社 Inhibitor of aspartic acid synthesis in tumor cells, inhibitor of spheroid formation of tumor cells, inhibitor of tumor cell metastasis, activity enhancer of glycolytic inhibitor, and pharmaceutical composition for suppressing and/or preventing tumor metastasis

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504467A (en) * 1989-04-12 1992-08-06 パブリツク・ヘルス・ラボラタリイ・サーヴイス・ボード Assays using albumin-tetrazolium interactions
JPH08333352A (en) * 1995-06-07 1996-12-17 Doujin Kagaku Kenkyusho:Kk New water-soluble tetrazolium salt compound
WO2005023786A1 (en) * 2003-07-14 2005-03-17 Dojindo Laboratories Water-soluble tetrazolium compounds
JP2008526990A (en) * 2005-01-14 2008-07-24 バイエル・ヘルスケア・エルエルシー Water-soluble tetrazolium salt
WO2011132480A1 (en) * 2010-04-19 2011-10-27 Jnc株式会社 Tetrazolium compound for detecting microorganisms, reagent for detecting microorganisms and method for detecting microorganisms
JP2014157150A (en) * 2013-01-18 2014-08-28 Univ Of Tokyo Probe for super-resolution fluorescent imaging
WO2014136780A1 (en) * 2013-03-04 2014-09-12 国立大学法人 東京大学 Fluorescent probe for detecting activity of calpain
JP2014526443A (en) * 2011-09-02 2014-10-06 プロメガ コーポレイション Compounds and methods for assessing the redox state of metabolically active cells, and methods for measuring NAD (P) / NAD (P) H

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504467A (en) * 1989-04-12 1992-08-06 パブリツク・ヘルス・ラボラタリイ・サーヴイス・ボード Assays using albumin-tetrazolium interactions
JPH08333352A (en) * 1995-06-07 1996-12-17 Doujin Kagaku Kenkyusho:Kk New water-soluble tetrazolium salt compound
WO2005023786A1 (en) * 2003-07-14 2005-03-17 Dojindo Laboratories Water-soluble tetrazolium compounds
JP2008526990A (en) * 2005-01-14 2008-07-24 バイエル・ヘルスケア・エルエルシー Water-soluble tetrazolium salt
WO2011132480A1 (en) * 2010-04-19 2011-10-27 Jnc株式会社 Tetrazolium compound for detecting microorganisms, reagent for detecting microorganisms and method for detecting microorganisms
JP2014526443A (en) * 2011-09-02 2014-10-06 プロメガ コーポレイション Compounds and methods for assessing the redox state of metabolically active cells, and methods for measuring NAD (P) / NAD (P) H
JP2014157150A (en) * 2013-01-18 2014-08-28 Univ Of Tokyo Probe for super-resolution fluorescent imaging
WO2014136780A1 (en) * 2013-03-04 2014-09-12 国立大学法人 東京大学 Fluorescent probe for detecting activity of calpain

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004420A (en) * 2019-12-19 2021-06-22 华东理工大学 Lactic acid optical probe and preparation method and application thereof
CN113004420B (en) * 2019-12-19 2023-02-24 华东理工大学 Lactic acid optical probe and preparation method and application thereof
WO2021162126A1 (en) * 2020-02-13 2021-08-19 シーシーアイホールディングス株式会社 Inhibitor of aspartic acid synthesis in tumor cells, inhibitor of spheroid formation of tumor cells, inhibitor of tumor cell metastasis, activity enhancer of glycolytic inhibitor, and pharmaceutical composition for suppressing and/or preventing tumor metastasis

Similar Documents

Publication Publication Date Title
JP5228190B2 (en) Peroxynitrite fluorescent probe
WO2012111818A1 (en) Fluorescent probe
Zhu et al. Novel BODIPY-based fluorescent probes with large Stokes shift for imaging hydrogen sulfide
US8394850B2 (en) Fluorescent probe specific to hydrogen peroxide
WO2005085811A1 (en) Fluorescent probes
Hagimori et al. Fluorescence ON/OFF switching Zn2+ sensor based on pyridine–pyridone scaffold
JPWO2010126077A1 (en) Near-infrared fluorescent compound
Wang et al. Endoplasmic reticulum-targeted fluorogenic probe based on pyrimidine derivative for visualizing exogenous/endogenous H2S in living cells
WO2017078623A9 (en) Background-free fluorescent probes for live cell imaging
Zhang et al. Development of large Stokes shift, near-infrared fluorescence probe for rapid and bioorthogonal imaging of nitroxyl (HNO) in living cells
US11319331B2 (en) Probe for selective detection of hypochlorous acid (HOCl) under physiological condition, and related methods
JPWO2014136781A1 (en) Fluorescent probe
JP5887011B2 (en) Fluorescent probe
WO2017090631A1 (en) Fluorescent probe for detecting extracellular metabolite and screening method employing said fluorescent probe
Cai et al. A rational design of fluorescent probes for specific detection and imaging of endogenous formaldehyde in living cells
BR112020021664A2 (en) formamide compound, method of preparation and application of the same
Li et al. Synthesis and biological evaluation of heterocyclic substituted Bis (indolyl) methanes
Janecki et al. 4-Methylideneisoxazolidin-5-ones—A new class of α-methylidene-γ-lactones with high cytostatic activity
JP6685546B2 (en) Fluorescent substance for dopamine detection
CN110590664A (en) Preparation method of fluorescent probe and application of fluorescent probe
CN115160327A (en) Micro-molecular fluorescent probe targeting mu opioid receptor and preparation and application thereof
Li et al. Coumarin-containing aminophosphonates bridged with chiral side chain: Synthesis and influence of chirality on cytotoxicity and DNA binding
JP5360609B2 (en) Reagent for low oxygen environment measurement
JP2018025399A (en) Hydro-polysulfide detection fluorescence probe
WO2016112447A1 (en) Α-ketoacyl isoniazid compounds, method for producing these compounds, use of the compounds for the treatment of tuberculosis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP