WO2016147850A1 - Deodorant glass agent - Google Patents

Deodorant glass agent Download PDF

Info

Publication number
WO2016147850A1
WO2016147850A1 PCT/JP2016/056156 JP2016056156W WO2016147850A1 WO 2016147850 A1 WO2016147850 A1 WO 2016147850A1 JP 2016056156 W JP2016056156 W JP 2016056156W WO 2016147850 A1 WO2016147850 A1 WO 2016147850A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mol
deodorizing
cuo
agent
Prior art date
Application number
PCT/JP2016/056156
Other languages
French (fr)
Japanese (ja)
Inventor
綾子 石川
Original Assignee
石塚硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石塚硝子株式会社 filed Critical 石塚硝子株式会社
Priority to JP2017506185A priority Critical patent/JP6594405B2/en
Priority to CN201680011391.4A priority patent/CN107427596B/en
Priority to KR1020177024999A priority patent/KR102460894B1/en
Publication of WO2016147850A1 publication Critical patent/WO2016147850A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties

Definitions

  • the present invention relates to a deodorizing glass agent having a function of deodorizing malodorous substances such as lower fatty acids and body odor components as well as sulfur-based malodorous substances such as hydrogen sulfide and methyl mercaptan.
  • methyl mercaptan is known as a foul odor-causing substance that can feel a rotten odor even at a low concentration of about ppb, and technical development relating to its deodorization has been conventionally demanded.
  • a soluble glass containing P 2 O 5 as a main component contains any of silver, copper, and iron, and PO 4 2- ion, Ag + ion, Cu 2+ ion, and Fe 2+ ion.
  • the deodorizing substances such as methyl mercaptan are removed by the technology for deodorizing sulfur-based malodors by setting the dissolution rate of the solution within a specific range (Patent Document 1) and the deodorizer in which copper oxide is dispersed in activated carbon.
  • Patent Document 2 A technique (Patent Document 2) is disclosed.
  • Patent Document 1 is a technology that utilizes a sulfurization reaction between Ag + ions, Cu 2+ ions, Fe 2+ ions, and sulfur components generated by dissolution, when the equilibrium state is reached, further reactions are not possible.
  • the problem is that a continuous deodorizing effect cannot be expected, and the soluble glass agent mainly composed of P 2 O 5 lacks chemical durability, particularly water resistance.
  • the soluble glass agent mainly composed of P 2 O 5 lacks chemical durability, particularly water resistance.
  • it is inferior in convenience because it is restricted in terms of product shape and usage, such as being easy to handle and difficult to handle.
  • Patent Document 2 Although the specific action of copper oxide is not described in Patent Document 2, it is assumed that the malodorous substance removal efficiency of the activated carbon is improved by the catalytic action. However, the technique of Patent Document 2 has a problem that the copper oxide dispersed in the activated carbon is poisoned (catalyst deterioration) due to the reaction with the malodor-causing substance, and the duration of the deodorizing effect is still insufficient. there were.
  • the deodorant As a function of the deodorant, it is originally preferable to be able to deodorize more quickly, but there is a problem that the deodorization speed is not considered in the conventional deodorant.
  • the object of the present invention is to solve the above-mentioned problems, deodorize more quickly than conventional deodorants, and stable deodorizing effect for a long time compared to conventional deodorants.
  • the present invention provides a deodorant having a high degree of freedom and a high degree of freedom in terms of product shape and use mode without being aggregated even in powder form.
  • a deodorizing glass agent comprising “CuO-containing alkali-alkaline earth-borosilicate glass” or “CuO-containing alkali-alkaline earth-silicate glass”, It is characterized by adopting a configuration in which CuO powder is added as a raw material in the range of the following formula (x mol%) so that the particle size (D 50 ) of the deodorizing glass agent is in the following range (y ⁇ m).
  • the range defined by the following mathematical formula is shown in FIG. When 0.01 ⁇ x ⁇ 0.198, y ⁇ 4.27x + 0.34 When 0.198 ⁇ x ⁇ 2.03, y ⁇ 5.08x + 0.18 When 2.03 ⁇ x ⁇ 23, y ⁇ 10.5
  • Al 2 O 3 is 0 to 6 mol%
  • CuO is 0.01 to 23 mol%, and the following formula is satisfied. It is preferable to use one.
  • it is more preferable to use a material containing 5 to 20 mol% of B 2 O 3 and 10 to 30 mol% of R 2 O (R Li, Na, K).
  • a range defined by the following mathematical formula is shown in FIG. When 0.01 ⁇ x ⁇ 2.03, y ⁇ 5.08x + 0.18 When 2.03 ⁇ x ⁇ 23, y ⁇ 10.5
  • the glass composition is SiO 2 53-62 mol%, B 2 O 3 10-17 mol%, Na 2 O 13-19 mol%, CaO 3-7 mol%, Al 2 O 3 0 It is more preferable to use one containing ⁇ 4.5 mol% and CuO 4 ⁇ 13 mol%.
  • the range defined by the following mathematical formula is shown in FIG. When 0.01 ⁇ x ⁇ 2.38, y ⁇ 4.27x + 0.34 When 2.38 ⁇ x ⁇ 23, y ⁇ 10.5
  • the glass composition is 55 to 65 mol% of SiO 2 , 12 to 20 mol% of Na 2 O, 3 to 7 mol% of CaO, 0 to 5 mol% of Al 2 O 3 , and 4 to 13 mol of CuO. It is more preferable that the content is 1%.
  • the present invention has a mechanism for promoting the decomposition reaction of the sulfur-based malodorous substance using CuO contained in the glass as a catalyst as described above, the conventional technique using the “sulfurization reaction” (for example, Patent Document 1). ),
  • the deodorizing capacity (for example, in Patent Document 1, which is proportional to the ion concentration for adsorbing the malodorous component of the sulfur component) can be increased, and the deodorizing effect can be obtained by repeatedly using the catalyst. It can last for a long period of time, and it is difficult for poisoning to proceed as in the prior art (for example, Patent Document 2) in which CuO functioning as a catalyst is dispersed in activated carbon. Can be demonstrated stably.
  • CuO powder is added as a raw material in the range of the following formula (x mol%), and the particle size (D 50 ) of the deodorizing glass agent is set to the following range (y ⁇ m).
  • the particle size (D 50 ) of the deodorizing glass agent is set to the following range (y ⁇ m).
  • the deodorizing glass agent of the present invention is an “oxidation catalyst-based deodorant” that exhibits a deodorizing effect due to an oxidation catalytic action, and can exhibit an excellent deodorizing effect particularly with respect to methyl mercaptan.
  • the function as a catalyst can be more effectively exhibited by securing a large contact area with the malodorous substance by using the deodorizing glass agent in powder form.
  • the deodorizing glass agent of the present invention is not limited to sulfur-based malodorous substances, but can be deodorized as long as it is a malodorous substance capable of dehydrogenation.
  • acetic acid of lower fatty acids known as body odor (sweat, foot odor)
  • isovaleric acid propionic acid
  • normal butyric acid normal valeric acid
  • caproic acid of medium chain fatty acid defined by the Malodor Control Law
  • Enanthate and trans-2-nonenal known as age-related odors
  • short-chain fatty acids lower fatty acids
  • acetic acid having 1 carbon atom and 5 valeric acids are also treated as lower fatty acids.
  • These deodorizing mechanisms for lower fatty acids and trans-2-nonenal are likely to be similar to the catalytic action for sulfurous malodorous substances.
  • the deodorizing glass agent of the present invention catalytically decomposes methyl mercaptan to produce dimeric dimethyl disulfide, and at this time, a dehydrogenation reaction occurs.
  • lower fatty acids are also decomposed by the dehydrogenation reaction.
  • the deodorizing glass agent of the present invention contains a large amount of CuO in the glass, the antibacterial effect due to CuO can be exhibited at the same time.
  • the present invention uses a vitrified CuO as a catalyst to promote the decomposition reaction of the sulfur-based malodorous substance, and the deodorizing effect of the sulfur-based malodorous substance Therefore, the deodorizing function can be exhibited without discoloring the glass.
  • SiO 2 is 46 to 70 mol%
  • B 2 O 3 and R 2 O (R Li, Na, K) in total 15 to 50 mol%
  • R′O (R ' Mg, Ca, Sr, Ba) 0-10 mol%
  • Al 2 O 3 0-6 mol% glass having the above composition containing CuO 0.01-23 mol%
  • the deodorizing glass agent with a high freedom degree regarding a product shape and a use aspect and high convenience is realizable.
  • it can exhibit a deodorizing effect that is stable for a long time, has high chemical durability, is less likely to agglomerate when made into powder, is in the presence of room temperature, oxygen, darkness without light, and in the presence of moisture.
  • An excellent deodorizing effect can be exhibited even in a high-temperature environment (450 ° C. or lower) (in a state where the surface is wet), and an extremely easy-to-handle deodorizing glass agent can be realized.
  • Example 4 is a graph showing measurement results of Example A. It is a graph which shows the measurement result of Example B. It is a graph which shows the measurement result of Example B. 10 is a graph showing measurement results of Example C. 10 is a graph showing measurement results of Example D. 10 is a graph showing measurement results of Example E. 10 is a graph showing measurement results of Example G. 10 is a graph showing measurement results of Example G. It is a graph which shows the measurement result of Example H. It is a graph which shows the relationship between the amount of CuO addition in Claim 1, and a particle size. It is a graph which shows the relationship between the amount of CuO addition in Claim 2, and a particle size. It is a graph which shows the relationship between the amount of CuO addition in Claim 7, and a particle size. 10 is a graph showing measurement results of Example K.
  • the shape of the glass agent is a powder obtained by pulverizing after obtaining a pre-molded body by a melt quenching method.
  • the pulverization referred to here means pulverization by a generally known pulverizer (for example, a ball mill, a bead mill, a jet mill, a CF mill, etc.), and may be dry or wet.
  • SiO 2 SiO 2 is a main component that forms the structural skeleton of glass.
  • the content thereof is 46 to 70 mol%, preferably 51 to 63 mol%. If it is less than 46 mol%, the chemical durability of the glass becomes insufficient, and the glass tends to devitrify, which is not preferable. Furthermore, if it is less than 46 mol%, the water resistance of the glass becomes insufficient, and copper ions are more likely to elute in the presence of moisture (including moisture in the atmosphere). Since the deodorizing effect by the sulfurization reaction which occurs by this becomes strong, it is not preferable. If it exceeds 70 mol%, the melting point increases, which makes glass melting difficult and also causes an increase in viscosity.
  • B 2 O 3 is a component that improves the solubility and clarity of the glass, and in a specific composition, it also becomes a component that forms the structural skeleton of the glass.
  • B 2 O 3 greatly affects the stability of the glass depending on its content, and in the present invention, the meaning as a flux of glass is large.
  • the content thereof is set to 5 to 20 mol%, preferably 8 to 17 mol% in consideration of the volatilization amount of B 2 O 3 . When it exceeds 20 mol%, B 2 O 3 is not preferred because it tends to volatilize in the melting process and the composition control becomes difficult.
  • it exceeds 30 mol% the chemical durability of the glass becomes insufficient. Specifically, a whitening phenomenon called bloom is caused by a reaction between the glass agent and moisture in the atmosphere. The occurrence of bloom is undesirable because it reduces the contact area with malodorous gas.
  • the alumina in the melting furnace is easily eroded.
  • the range in which the total content of B 2 O 3 and R 2 O is 15 to 50 mol%, preferably 21 to 39 mol%, is a region that exhibits a deodorizing effect safely. If it is less than 15 mol%, the meltability of the glass becomes insufficient, and devitrification tends to occur during molding, which is not preferable. If it exceeds 40 mol%, the water resistance of the glass becomes insufficient, and copper ions are more likely to elute in the presence of moisture (including moisture in the atmosphere). Since the deodorizing effect by a sulfurization reaction becomes strong, it is not preferable. On the other hand, if it exceeds 50 mol%, phase separation is likely to occur during melting, and the deodorizing effect of the glass agent becomes insufficient accordingly.
  • CuO functions as a catalyst, accelerates the decomposition reaction (oxidation / reduction reaction) of the sulfur-based malodorous substance, and exhibits the deodorizing effect of the sulfur-based malodorous substance.
  • the content thereof is 0.01 to 23 mol%, preferably 1 to 13 mol%, more preferably 4 to 13 mol%. If it exceeds 23 mol%, undissolved material tends to remain, and metal copper tends to precipitate during rapid cooling or processing, which is not preferable. Since metallic copper also shows a deodorizing effect, from the viewpoint of deodorization, its precipitation is not a problem, but it is not suitable for applications where discoloration of glass is a problem because it causes discoloration of glass with the deposition of metallic copper. .
  • the deodorizing ability tends to decrease with the decrease. This is presumed to be caused by a decrease in the amount of CuO on the glass surface that comes into contact with the malodor.
  • the added amount of CuO powder (x mol%) and the particle size of the deodorizing glass agent (D 50 , y ⁇ m). ) Is limited to the range of the following formula, it is possible to realize “rapid deodorization”, which has not been considered in the conventional deodorizing glass agent.
  • the surface area per unit mass of the powder is said to be the specific surface area [m 2 / g]. The larger this value, the finer the particles.
  • the specific surface area is expressed as 3 / ⁇ R.
  • the deodorizing glass agent of 0.1 ⁇ m or less can be produced by a sol-gel method, PVD (Physical Vapor Deposition) treatment, CVD (Chemical Vapor Deposition), or flame pyrolysis treatment.
  • a sol-gel method of the liquid phase method glass is produced by adjusting the reaction solution using an Si alkoxy compound, an alcohol solution, aqueous ammonia, or the like. Then, a glass agent is obtained through the process of isolate
  • water resistance is insufficient, and the sulfurization reaction may exceed the catalytic deodorizing action.
  • the drying temperature in the vicinity of the glass transition point.
  • glass raw materials evaporate in a plasma state, and glass is produced when they are cooled.
  • the CVD and flame pyrolysis processes also differ depending on whether the raw materials are processed by chemical separation or pyrolysis, and, like PVD, are produced in a glassy state when cooled.
  • heated glass powder is immersed in a cooling liquid, and at that time, the liquid can be irradiated with radio waves to form fine particles.
  • copper ions which are transition metal ions
  • CuO transition metal ions
  • Cu ions are introduced into a glass matrix. It is known that copper ions are strongly affected by crystal fields from surrounding anions when introduced into a glass matrix. Copper ions take a plurality of ion states depending on the surrounding environment, but usually copper ions exist as Cu + or Cu 2+ in glass. Cu 2+ is stable in an oxidizing atmosphere, and Cu + is stable in a reducing atmosphere. Cu 2+ in the glass occupies the position of the network modifying ions of the structural skeleton of the glass, and when a large number of oxygen ions are coordinated to this, it exhibits a blue color.
  • Cu + itself is colorless, but if it coexists with Cu 2+ , ion deformation occurs and absorption is enhanced. Further, as the copper ion concentration increases, it becomes impossible to satisfy the coordination of oxygen ions for all Cu 2+ , and as a result, the number of unsaturated copper ions having a low coordination number increases. Moreover, unsaturated ions also increase with increasing temperature. Along with this, the glass changes from blue to green. Cu 2+ exhibits an absorption band in the visible to near infrared region (around 800 nm). In general, factors that determine the valence of transition metal ions include melting temperature, oxygen partial pressure in the molten atmosphere, addition amount of transition metal ions, and host glass composition. However, there are few reports on valence control of copper ions by glass composition.
  • Al 2 O 3 is a component that improves the chemical durability of the glass and affects the crystal structure stability. Further, Al 2 O 3 functions to suppress the phase separation of the glass and increase the homogeneity of the glass agent. It is desirable that the content is 6 mol% or less, preferably 5.5 mol% or less, because the viscosity may increase or the addition may affect the redox state of copper ions in the glass. .
  • a copper ion may be reduce
  • ZnO, SrO, BaO, TiO 2 , ZrO 2 , Nb 2 O 5 , P 2 O 5 , Cs 2 O, Rb 2 O, TeO 2 , BeO, GeO 2 , Bi 2 can be used as trace components.
  • O 3 , La 2 O 3 , Y 2 O 3 , WO 3 , MoO 3 , CoO, Fe 2 O 3 or the like can also be included.
  • F, Cl, SO 3 , Sb 2 O 3 , SnO 2 , Ce, or the like may be added as a clarifier.
  • Fe 2 O 3 is a component that affects the redox state of copper ions in the glass (enhances Cu + > Cu 2+ ), its content is 0.5 mol% or less, preferably 0.3 mol It is desirable to make it below%.
  • the deodorizing effect is obtained stably, but the redox state is greatly unexpected and the deodorizing effect cannot be obtained (for example, the melting furnace is in a redox state due to corrosion)
  • the valence balance of copper ions can be controlled by adding Cr 2 O 3 , MnO 2 , or CeO 2 .
  • the composition range in which the deodorizing effect is stably obtained is specified. That is, the composition range was specified in consideration of the melting temperature range, the oxidation-reduction state, and the composition range. If a glass agent having the above composition range is produced by a melt quenching method, a deodorizing glass agent can be stably obtained. In particular, it can be stably obtained by melting in a tank furnace, melting an electric furnace, or melting a small-scale crucible. Empirically, in the case of soda lime glass, it is known that the valence balance (Cu2 + / total) of copper ions is about 15% for the former and about 50% for the latter in tank furnace melting and electric furnace melting. . Naturally, the valence balance also changes in the composition of the present embodiment. Since the deodorizing mechanism is a catalytic action, these chemical states may affect the deodorizing effect, but the difference in the effect is not particularly problematic as long as it is in the above composition range.
  • the melting temperature may be controlled to 1200 to 1400 ° C, preferably 1280 to 1380 ° C.
  • the melting time is preferably 6 to 8 hours.
  • the glass obtained here is confirmed to be blue or greenish blue by Cu 2+ .
  • the valence balance of copper ions is not necessarily important as long as the melting temperature and time are taken into consideration.
  • the valence balance of the obtained glass agent was intentionally changed by heat treatment (a blue plate in which a thin plate was produced and Cu 2+ color was confirmed, the valence balance was changed to Cu + >> Cu 2+ Although almost no color tone was confirmed, brown (red) glass in which precipitation of colloidal metallic copper of Cu 0 was confirmed, the deodorizing effect was confirmed.
  • a deodorizing effect is obtained by using a glass agent having the above composition range, and the deodorizing effect is maintained even if the valence balance of copper ions is controlled by heat treatment or the like after molding.
  • the deodorizing glass agent by catalytic action may have insufficient immediate effect when the malodor concentration is high.
  • a temporary trapping agent it can also be used by mixing with a physical adsorbent (activated carbon, silica gel, zeolite, etc.).
  • a physical adsorbent activated carbon, silica gel, zeolite, etc.
  • malodors do not necessarily exist as a single component, it is possible to use a combination of agents specialized in deodorizing various malodors. It can also be used by mixing with a conventional deodorizing glass agent.
  • Example A Deodorization effect confirmation test for sulfurous malodor
  • Deodorization test method A deodorizing glass agent (Example 1) having a glass composition shown in Table 1 and malodor were sealed in a Tedlar bag, and the malodor concentration in the bag over time was measured with a gas detector tube.
  • the gas detector tube is a method suitable for comparison within the same test, but its quantitativeness is low. In addition, since it is affected by the environment (temperature, humidity), it cannot be compared with other tests quantitatively. In other words, it is necessary only to compare the results within the same test.
  • Example B Deodorization mechanism elucidation test of deodorant glass agent
  • Deodorization test method 1 nitrogen atmosphere
  • MM and DMDS dimethyl disulfide
  • FIGS. 2 and 3 shows the result of the deodorization test method 2.
  • DMDS was present even at blank time from 0 hour, but as a result of confirmation, DMDS was contained in the used gas due to contamination.
  • MM ⁇ DMDS undergoes some natural oxidation, the deodorizing glass agent clearly promotes the production of DMDS relative to the blank. In this reaction, MM dimerizes to DMDS.
  • the GC retention time was maintained up to 90 minutes for the presence of sulfur components, and the presence of components other than MM and DMDS was confirmed, but no particular peak was observed. If the deodorizing mechanism of the deodorizing glass agent is a sulfurization reaction like the soluble glass agent of the prior art, the sulfur component and the copper component are combined.
  • Example C Comparative test of CuO and deodorant glass agent
  • Deodorization test method The deodorizing glass agent (Example 1) which consists of a glass composition of Table 1, each CuO reagent, and MM were enclosed in the Tedlar bag, and the MM density
  • the test conditions were as follows.
  • the deodorizing glass agent maintains the deodorizing speed even in the eighth repetition, but the deodorizing effect of CuO tends to decrease.
  • CuO is known to be poisoned (catalyst deterioration) when deodorizing sulfur-based malodors, and this is considered to be due to this effect.
  • Dissolving glass preparation method Dissolvable glass 1 Typical soluble glass agent (Ion Pure) Commercially available soluble glass 2 94.26 g of magnesium phosphate, 157.76 g of 89% by weight phosphoric acid, and 4.0 g of silver oxide were mixed and held at 300 ° C. for 3 hours, and then the dried product was melted at 1300 ° C. for 1 hour. Then, a glass having a glass composition shown in Table 2 below was prepared, and crushed to prepare a sample.
  • Typical soluble glass agent Ion Pure
  • Commercially available soluble glass 2 94.26 g of magnesium phosphate, 157.76 g of 89% by weight phosphoric acid, and 4.0 g of silver oxide were mixed and held at 300 ° C. for 3 hours, and then the dried product was melted at 1300 ° C. for 1 hour. Then, a glass having a glass composition shown in Table 2 below was prepared, and crushed to prepare a sample.
  • Soluble glass 3 71.36 g of potassium phosphate, 38.05 g of monobasic calcium phosphate, 26.17 g of copper oxide, and 117.72 g of 89 wt% phosphoric acid were mixed and held at 300 ° C. for 3 hours.
  • a glass having the glass composition shown in Table 2 below was prepared by melting at 1300 ° C. for 1 hour, and pulverized to prepare a sample.
  • Dissolvable glass 4 Anhydrous boric acid 12.05 g, sodium nitrate 5.62 g, ultrafine silica (product name: Snowtex S) 5.26 g, alumina powder 0.2 g, copper chloride 21.4 g, and pure water 60 ml were stirred with a high-speed stirrer.
  • Deodorization test method The deodorizing glass agent (Example 1) which consists of the glass composition of Table 1, the soluble glass and hydrogen sulfide which consist of the glass composition of the said Table 2 are enclosed in a Tedlar bag, and the hydrogen sulfide concentration in the bag over time is gasified. Measured with a detector tube.
  • the test conditions were as follows.
  • the deodorizing glass agent Since the deodorizing glass agent has a different deodorizing mechanism from that of the soluble glass agent, it was confirmed that the deodorizing glass agent has high durability and a large amount of deodorizing despite the fact that the molar amount of CuO is smaller than that of the soluble glass 4. . Supplement: Since it was adjusted under high humidity conditions, the deodorizing glass agent promoted by the presence of moisture improved the deodorizing speed (compared to other examples) (all other examples had a humidity of 50% or less) .
  • Example E Relationship between CuO content and deodorizing effect
  • Deodorization test method A glass agent (CuO-containing deodorizing glass agent and non-containing glass agent) having the glass composition shown in Table 3 above and MM were sealed in a Tedlar bag, and the MM concentration in the bag over time was measured with a gas detector tube.
  • Tedlar bag capacity 1L
  • Initial gas (MM) concentration 55ppm
  • Temperature Room temperature (20-25 ° C)
  • Deodorant glass agent weight 0.1g
  • Measurement results and discussion As shown in FIG. 6, it was confirmed that the deodorizing effect converged to less than about 10 ppm in any of Experimental Examples 1 to 6 having different CuO contents.
  • Example F Sulfidation and catalytic action accompanying water resistance
  • the amount of dissolution was compared with ion pure (Comparative Examples 2 and 3), which is a typical soluble glass agent. Comparative Examples 2 and 3 are “Ion Pure (commercially available)” which is a typical soluble glass agent.
  • Deodorant glass preparation method After the raw material preparation, the glass was melted at a melting temperature of 1350 ° C. for 8 hours and poured out to obtain a glass having a glass composition shown in Table 4 below. The formation after melting was performed by natural cooling, but can also be performed by water cooling.
  • the glass composition was confirmed by semi-quantitative measurement using a fluorescent X-ray analyzer.
  • the particles having a particle size (diameter) of 100 ⁇ m or more were removed by sieving.
  • the CuO content (mol%) was adjusted to be equal.
  • Deodorization test method 1 (sustainability evaluation): A deodorizing glass agent (Example 1) having the glass composition shown in Table 1 and MM were enclosed in a Tedlar bag, and the MM concentration in the bag over time was measured with a gas detector tube. The test conditions were as follows.
  • Tedlar bag capacity 1L
  • Initial gas (MM) concentration As shown in Table 6 Temperature: Room temperature (20-25 ° C)
  • Deodorant glass agent weight 0.1g
  • Deodorant glass agent specific surface area 1.54 m 2 / g
  • the same deodorizing test was conducted using an inorganic deodorizing glass agent shown in Table 5 below.
  • These inorganic deodorizing glass agents are all commercially available as highly durable inorganic deodorizing glass agents.
  • Deodorization test method 2 water presence condition: A deodorizing glass agent (Example 1) comprising the glass composition of Table 1, the inorganic deodorizing glass agents 1 and 2 of Table 5, each of the CuO reagent, MM, and distilled water are enclosed in a Tedlar bag, and the bag with the elapsed time The MM concentration inside was measured with a gas detector tube.
  • the test conditions were as follows.
  • the test was repeated 10 times while changing the initial gas concentration. As shown in FIG. 7, the same tendency was confirmed until the 10th repetition. That is, the inorganic deodorizing glass agent 1 has a high instantaneous deodorizing effect, but converges because it has a deodorizing limit (adsorption limit).
  • the inorganic deodorizing glass agent 2 and Example 1 can be deodorized at a high concentration, and at the same weight, the inorganic deodorizing glass agent 2 has a higher deodorizing speed. Although the inorganic deodorizing glass agent 1 converges, there is reproducibility of the deodorizing effect if the malodor is replaced (reset).
  • the deodorizing effect is maintained even at the 10th time point in spite of the high concentration of malodor.
  • the change in the deodorization tendency was confirmed by the addition of water.
  • the inorganic deodorant glass agent 1 it was confirmed that the instantaneous deodorizing effect falls. This is considered to be due to the fact that the instant effect is weakened when the surface is wet because the agent has high physical adsorption. It was confirmed that the inorganic deodorizing glass agent 2 cannot exhibit a sufficient deodorizing effect in a water-existing environment. In this example, it was confirmed that the deodorization speed was significantly improved by adding water.
  • Example H Deodorizing effect confirmation test for lower fatty acids
  • Deodorization test method A deodorizing glass agent (Example 1) having a glass composition shown in Table 1 and malodor were sealed in a Tedlar bag, and the malodor concentration in the bag over time was measured with a gas detector tube.
  • lower fatty acids such as acetic acid, propionic acid, normal butyric acid,
  • Example I Deodorizing effect confirmation test for trans-2-nonenal
  • Deodorization test method A deodorizing glass agent (Example 1) having the glass composition shown in Table 1, each CuO reagent and trans-2-nonenal were sealed in a Tedlar bag, and the malodor concentration in the bag over time was measured with a high performance liquid chromatograph. .
  • the gas in the bag is collected in a DNPH cartridge, the DNPH derivative is eluted through this cartridge through acetonitrile, the obtained eluate is measured with a high-performance liquid chromatograph, and the gas concentration in the bag is determined. calculate.
  • the test conditions were as follows.
  • Example J Examination of particle size and deodorization speed of deodorant glass agent
  • Deodorant glass preparation method After preparing the raw materials, it was melted at a melting temperature of 1350 ° C. for 8 hours and poured out to obtain a glass having the glass composition shown in Table 8. After melting, natural cooling was performed, but water cooling can also be used. The obtained glass was crushed and adjusted to the particle size shown in Table 8. All the glasses of Experimental Examples 11 to 18 shown in Table 8 have a sufficient deodorant absolute amount. However, the deodorizing speed required varies depending on the use of the deodorizing glass agent. For example, in a living environment, it is said that several ppb of methyl mercaptan is generated in a toilet.
  • the deodorization speed is expected to be even faster (it appears to be more gradual on the graph at the measurement timing), so the deodorization amount per minute is higher than the calculated value above. Is expected.
  • the evaluation result in FIG. 6 is preferably a speed with a margin for the toilet space because of the effect of the small volume and the glass agent alone. If deodorization of 55 ppm is possible in 24 hours, the speed is about 4 times the environmental concentration of 10 ppb to be deodorized. If deodorization of 55 ppm is possible in 48 hours, the speed is about twice. In Table 8, “A judgment” is about 4 times (allowable range up to ⁇ 5%), and “B judgment” is about twice (allowable range up to ⁇ 5%).
  • Example K Mother composition and deodorizing effect
  • Deodorant glass preparation method After preparing the raw materials, it was melted at a melting temperature of 1350 ° C. for 8 hours and poured out to obtain a glass having the glass composition shown in Table 9 below. The formation after melting was performed by natural cooling, but can also be performed by water cooling. The glass composition was confirmed by semi-quantitative measurement using a fluorescent X-ray analyzer. The obtained glass was dry-ground using a ball mill and adjusted to the particle size shown in Table 9. The particles having a particle size (diameter) of 100 ⁇ m or more were removed by sieving.
  • Deodorization test method Experimental examples 19 to 29 of glass agents having the glass composition shown in Table 9 above and MM were sealed in a Tedlar bag, and the MM concentration in the bag over time was measured with a gas detector tube.
  • the test conditions were as follows. Tedlar bag capacity: 1L Initial gas (MM) concentration: 70ppm Temperature: Room temperature (18-22 ° C) Deodorant glass agent weight: 0.1g Moreover, the same operation as the above was performed without a deodorizing glass agent as a blank. Measurement results and discussion: As shown in FIG. 13, when the content of CuO is the same, the deodorizing effect is sufficiently exhibited regardless of the mother composition. It can also be seen that a slight difference in CuO content than the mother composition affects the deodorization speed.
  • the glass dissolution amount in this test is 10% or less.
  • Alkali (R 2 O) -alkaline earth (R′O) -silicate It is made of “acid glass (SiO 2 )” and can be produced by a melt quenching method in the same manner as a normal glass agent.
  • the shape of the glass agent is a powder obtained by pulverizing after obtaining a pre-molded body by a melt quenching method.
  • the pulverization referred to here means pulverization by a generally known pulverizer (for example, a ball mill, a bead mill, a jet mill, a CF mill, etc.), and may be dry or wet.
  • SiO 2 is a main component that forms the structural skeleton of glass. Its content is 50 to 70 mol%, preferably 55 to 70 mol%. If it is less than 50 mol%, the chemical durability of the glass becomes insufficient, and the glass tends to devitrify, which is not preferable. Furthermore, if it is less than 50 mol%, the water resistance of the glass becomes insufficient, and copper ions are more likely to elute in the presence of moisture (including moisture in the atmosphere). Since the deodorizing effect by the sulfurization reaction which occurs by this becomes strong, it is not preferable. If it exceeds 70 mol%, the melting point increases, which makes glass melting difficult and also causes an increase in viscosity.
  • CuO CuO
  • the addition amount x (mol%) of CuO powder and the particle size (D 50 , y ⁇ m) of the deodorizing glass agent are expressed by the following formulae.
  • “rapid deodorization” that was not considered in the conventional deodorizing glass agent can be realized.
  • Al 2 O 3 is a component that improves the chemical durability of the glass and affects the crystal structure stability. Further, Al 2 O 3 functions to suppress the phase separation of the glass and increase the homogeneity of the glass agent. It is desirable that the content is 6 mol% or less, preferably 5.5 mol% or less, because the viscosity may increase or the addition may affect the redox state of copper ions in the glass. .
  • the composition range in which the deodorizing effect is stably obtained is specified. That is, the composition range was specified in consideration of the melting temperature range, the oxidation-reduction state, and the composition range. If a glass agent having the above composition range is produced by a melt quenching method, a deodorizing glass agent can be stably obtained. In particular, it can be stably obtained by melting in a tank furnace, melting an electric furnace, or melting a small-scale crucible. In general, in the case of soda lime glass, it is known that the valence balance of copper ions (Cu 2 + / total) is about 15% for the former and about 50% for the latter in tank furnace melting and electric furnace melting. . Naturally, the valence balance also changes in the composition of the present embodiment. Since the deodorizing mechanism is a catalytic action, these chemical states may affect the deodorizing effect, but the difference in the effect is not particularly problematic as long as it is in the above composition range.
  • the melting temperature may be controlled to 1200 to 1400 ° C, preferably 1280 to 1380 ° C.
  • the melting time is preferably 6 to 8 hours.
  • the glass obtained here is confirmed to be blue or greenish blue by Cu 2+ .
  • the valence balance of copper ions is not necessarily important as long as the melting temperature and time are taken into consideration.
  • the valence balance of the obtained glass agent was intentionally changed by heat treatment (a blue plate in which a thin plate was produced and Cu 2+ color was confirmed, the valence balance was changed to Cu + >> Cu 2+ Although almost no color tone was confirmed, brown (red) glass in which precipitation of colloidal metallic copper of Cu 0 was confirmed, the deodorizing effect was confirmed.
  • a deodorizing effect is obtained by using a glass agent having the above composition range, and the deodorizing effect is maintained even if the valence balance of copper ions is controlled by heat treatment or the like after molding.
  • a temporary trapping agent As a temporary trapping agent, it can be used by mixing with a physical adsorbent (activated carbon, silica gel, zeolite, etc.). Moreover, since malodors do not necessarily exist as a single component, it is possible to use a combination of agents specialized in deodorizing various malodors. It can also be used by mixing with a conventional deodorizing glass agent.
  • a physical adsorbent activated carbon, silica gel, zeolite, etc.
  • Example L Examination of particle size and deodorization speed of deodorant glass agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Glass Compositions (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

The present invention is designed to provide a highly convenient deodorant with which it is possible to deodorize more rapidly than with conventional deodorants, and actualize a stable deodorant effect over an extended period of time, the deodorant having a high degree of freedom in terms of product shape and mode of use, and not aggregating even when made into a powder. The deodorant of the present invention comprises CuO-containing alkali-alkaline earth-borosilicate glass or CuO-containing alkali-alkaline earth-silicate glass, a CuO powder being added within the range (× mol%) of the following formula as a raw material, and the particle size (D50) of the deodorant glass agent being within the following range (y μm). y ≤ 4.27x + 0.34 when 0,01 ≤ x ≤ 0.198; y ≤ 5.08x + 0.18 when 0.198 ≤ x ≤ 2.03; and y ≤ 10.5 when 2.03 ≤ x ≤ 23

Description

消臭ガラス剤Deodorant glass agent
 本発明は、硫化水素、メチルメルカプタン等の硫黄系悪臭物質をはじめ、その他、低級脂肪酸や体臭成分等の悪臭物質を消臭する機能を備えた消臭ガラス剤に関するものである。 The present invention relates to a deodorizing glass agent having a function of deodorizing malodorous substances such as lower fatty acids and body odor components as well as sulfur-based malodorous substances such as hydrogen sulfide and methyl mercaptan.
 近年、快適な住環境への関心の高まりを受けて、各種の消臭剤への需要が高まっている。 In recent years, demand for various deodorants has been increasing in response to growing interest in comfortable living environments.
 住環境で問題となる臭気のうちでも、硫化水素、メチルメルカプタン等の硫黄系悪臭は、強い不快感を与えるものとして嫌われている。特に、メチルメルカプタンは、ppb程度の低濃度でも腐敗臭が感じられる悪臭原因物質として知られており、その消臭に関する技術開発が従来から求められている。 Among the odors that cause problems in the living environment, sulfur-based malodors such as hydrogen sulfide and methyl mercaptan are disliked as giving a strong discomfort. In particular, methyl mercaptan is known as a foul odor-causing substance that can feel a rotten odor even at a low concentration of about ppb, and technical development relating to its deodorization has been conventionally demanded.
 上記の消臭に関する技術として、Pを主成分とする溶解性ガラスに銀、銅、鉄の何れかを含有させ、PO 2-イオン、Agイオン、Cu2+イオン、Fe2+イオンの溶解速度を特定の範囲に設定することにより硫黄系の悪臭を消臭する技術(特許文献1)や、酸化銅を活性炭に分散させた消臭剤によってメチルメルカプタンなどの悪臭原因物質を除去する技術(特許文献2)が開示されている。 As a technique related to the above deodorization, a soluble glass containing P 2 O 5 as a main component contains any of silver, copper, and iron, and PO 4 2- ion, Ag + ion, Cu 2+ ion, and Fe 2+ ion. The deodorizing substances such as methyl mercaptan are removed by the technology for deodorizing sulfur-based malodors by setting the dissolution rate of the solution within a specific range (Patent Document 1) and the deodorizer in which copper oxide is dispersed in activated carbon. A technique (Patent Document 2) is disclosed.
 しかし、特許文献1の技術は、溶解で生じるAgイオン、Cu2+イオン、Fe2+イオンと硫黄成分との硫化反応を利用した技術であるため、平衡状態となった場合、それ以上の反応は進まず、持続的な消臭効果が期待できないという問題や、Pを主成分とする溶解性ガラス剤が、化学的耐久性、特に耐水性に欠けるため、例えば、粉末状にすると凝集しやすく取扱いが困難である等、製品形状や使用態様などに関し制約を受け、利便性に劣るというという問題があった。 However, since the technology of Patent Document 1 is a technology that utilizes a sulfurization reaction between Ag + ions, Cu 2+ ions, Fe 2+ ions, and sulfur components generated by dissolution, when the equilibrium state is reached, further reactions are not possible. The problem is that a continuous deodorizing effect cannot be expected, and the soluble glass agent mainly composed of P 2 O 5 lacks chemical durability, particularly water resistance. There is a problem that it is inferior in convenience because it is restricted in terms of product shape and usage, such as being easy to handle and difficult to handle.
 特許文献2には、酸化銅の具体的作用は記載されていないが、その触媒作用によって、活性炭の悪臭物質除去効率を改善しているものと推測される。しかし、特許文献2の技術では、活性炭に分散させた酸化銅が、悪臭原因物質との反応によって被毒(触媒劣化)してしまい、消臭効果の持続時間が未だ不十分であるという問題があった。 Although the specific action of copper oxide is not described in Patent Document 2, it is assumed that the malodorous substance removal efficiency of the activated carbon is improved by the catalytic action. However, the technique of Patent Document 2 has a problem that the copper oxide dispersed in the activated carbon is poisoned (catalyst deterioration) due to the reaction with the malodor-causing substance, and the duration of the deodorizing effect is still insufficient. there were.
 また、消臭剤の機能として、本来は、より速やかに消臭を行えることが好ましいが、従来の消臭剤では、消臭スピードは考慮されていない、という問題もあった。 Also, as a function of the deodorant, it is originally preferable to be able to deodorize more quickly, but there is a problem that the deodorization speed is not considered in the conventional deodorant.
特開平4-67868号公報Japanese Unexamined Patent Publication No. 4-67868 特開2009-213992号公報JP 2009-213992 A
 本発明の目的は前記の問題を解決し、従来の消臭剤に比べて、より速やかに消臭を行うことができ、かつ、従来の消臭剤に比べて、長時間安定した消臭効果を発揮することができ、かつ、粉末状としても凝集することがなく、製品形状や使用態様に関する自由度が高く利便性の高い消臭剤を提供することである。 The object of the present invention is to solve the above-mentioned problems, deodorize more quickly than conventional deodorants, and stable deodorizing effect for a long time compared to conventional deodorants. In addition, the present invention provides a deodorant having a high degree of freedom and a high degree of freedom in terms of product shape and use mode without being aggregated even in powder form.
 本発明では、上記課題を解決する手段として、「CuO含有アルカリ-アルカリ土類-ホウケイ酸ガラス」もしくは「CuO含有アルカリ-アルカリ土類-ケイ酸塩ガラス」からなる消臭ガラス剤であって、原料として、CuO粉末を、下記式の範囲(xモル%)で添加して、消臭ガラス剤の粒径(D50)を下記の範囲(yμm)とする」構成を採用したことを特徴とするものである。参考のため、下記の数式で規定される範囲を、図10に示す。
 0.01≦x≦0.198のとき、y≦4.27x+0.34
 0.198≦x≦2.03のとき、y≦5.08x+0.18
 2.03≦x≦23のとき、y≦10.5
In the present invention, as a means for solving the above problems, a deodorizing glass agent comprising “CuO-containing alkali-alkaline earth-borosilicate glass” or “CuO-containing alkali-alkaline earth-silicate glass”, It is characterized by adopting a configuration in which CuO powder is added as a raw material in the range of the following formula (x mol%) so that the particle size (D 50 ) of the deodorizing glass agent is in the following range (y μm). To do. For reference, the range defined by the following mathematical formula is shown in FIG.
When 0.01 ≦ x ≦ 0.198, y ≦ 4.27x + 0.34
When 0.198 ≦ x ≦ 2.03, y ≦ 5.08x + 0.18
When 2.03 ≦ x ≦ 23, y ≦ 10.5
 前記のCuO含有アルカリ-アルカリ土類-ホウケイ酸ガラスとしては、SiOを46~70モル%、BとRO(R=Li、Na、K)を合計で15~50モル%、R´O(R´=Mg、Ca、Sr、Ba)を0~10モル%、Alを0~6モル%、CuOを0.01~23モル%し、下記式を満足するものを用いることが好ましい。ここで、Bを5~20モル%、RO(R=Li、Na、K)を10~30モル%含有するものを用いることが更に好ましい。参考のため、下記の数式で規定される範囲を、図11に示す。
 0.01≦x≦2.03のとき、y≦5.08x+0.18
 2.03≦x≦23のとき、y≦10.5
The CuO-containing alkali-alkaline earth-borosilicate glass is composed of 46 to 70 mol% of SiO 2 and 15 to 50 mol% in total of B 2 O 3 and R 2 O (R = Li, Na, K). , R′O (R ′ = Mg, Ca, Sr, Ba) is 0 to 10 mol%, Al 2 O 3 is 0 to 6 mol%, CuO is 0.01 to 23 mol%, and the following formula is satisfied. It is preferable to use one. Here, it is more preferable to use a material containing 5 to 20 mol% of B 2 O 3 and 10 to 30 mol% of R 2 O (R = Li, Na, K). For reference, a range defined by the following mathematical formula is shown in FIG.
When 0.01 ≦ x ≦ 2.03, y ≦ 5.08x + 0.18
When 2.03 ≦ x ≦ 23, y ≦ 10.5
 前記のガラス組成は、SiOを51~63モル%、BとRO(R=Li、Na、K)を合計で21~39モル%、R´O(R´=Mg、Ca、Sr、Ba)を2~7モル%、Alを0~5.5モル%、CuOを1~13モル%含有するものを用いることが好ましく、ここで、Bを8~17モル%、RO(R=Li、Na、K)を13~22モル%、含有するものを用いることが更に好ましい。 The glass composition includes 51 to 63 mol% of SiO 2 , 21 to 39 mol% in total of B 2 O 3 and R 2 O (R = Li, Na, K), R′O (R ′ = Mg, It is preferable to use a material containing 2 to 7 mol% of Ca, Sr, Ba), 0 to 5.5 mol% of Al 2 O 3 and 1 to 13 mol% of CuO, where B 2 O 3 is added. It is more preferable to use a material containing 8 to 17 mol% and 13 to 22 mol% of R 2 O (R═Li, Na, K).
 前記のガラス組成は、SiOを53~62モル%、Bを10~17モル%、NaOを13~19モル%、CaOを3~7モル%、Alを0~4.5モル%、CuOを4~13モル%含有するものを用いることが、更に好ましい。 The glass composition is SiO 2 53-62 mol%, B 2 O 3 10-17 mol%, Na 2 O 13-19 mol%, CaO 3-7 mol%, Al 2 O 3 0 It is more preferable to use one containing ˜4.5 mol% and CuO 4˜13 mol%.
 前記のCuO含有アルカリ-アルカリ土類-ケイ酸塩ガラスとしては、SiOを50~70モル%、RO(R=Li、Na、K)を10~33モル%、R´O(R´=Mg、Ca、Sr、Ba)を0~15モル%、Alを0~6モル%、CuOを0.01~23モル%含有し、下記式を満足するものを用いることが好ましい。参考のため、下記の数式で規定される範囲を、図12に示す。
 0.01≦x≦2.38のとき、y≦4.27x+0.34
 2.38≦x≦23のとき、y≦10.5
The CuO-containing alkali-alkaline earth-silicate glass is composed of 50 to 70 mol% of SiO 2 , 10 to 33 mol% of R 2 O (R = Li, Na, K), R′O (R '= Mg, Ca, Sr, Ba) is contained in an amount of 0 to 15 mol%, Al 2 O 3 is contained in an amount of 0 to 6 mol%, CuO is contained in an amount of 0.01 to 23 mol%, and the following formula is used. preferable. For reference, the range defined by the following mathematical formula is shown in FIG.
When 0.01 ≦ x ≦ 2.38, y ≦ 4.27x + 0.34
When 2.38 ≦ x ≦ 23, y ≦ 10.5
 前記のガラス組成は、SiOを55~70モル%、RO(R=Li、Na、K)を合計で12~24モル%、R´O(R´=Mg、Ca、Sr、Ba)を2~10モル%、Alを0~5.5モル%、CuOを1~20モル%含有するものとすることがより好ましい。 The glass composition is composed of 55 to 70 mol% of SiO 2 and 12 to 24 mol% in total of R 2 O (R = Li, Na, K), R′O (R ′ = Mg, Ca, Sr, Ba). 2) to 10 mol%, Al 2 O 3 0 to 5.5 mol%, and CuO 1 to 20 mol% are more preferable.
 前記のガラス組成は、SiOを55~65モル%、NaOを12~20モル%、CaOを3~7モル%、Alを0~5モル%、CuOを4~13モル%含有するものとすることが、更に好ましい。 The glass composition is 55 to 65 mol% of SiO 2 , 12 to 20 mol% of Na 2 O, 3 to 7 mol% of CaO, 0 to 5 mol% of Al 2 O 3 , and 4 to 13 mol of CuO. It is more preferable that the content is 1%.
 従来から、溶解性ガラスを用いた消臭ガラス剤は、各種開発されていたが、「触媒作用による消臭効果を示すガラス剤」は存在していない。本発明者らは、長年による研究の結果、「上記組成のガラス中に上記比率で含有されるCuOが触媒として機能して、硫黄系悪臭物質の分解反応(酸化・還元反応)を促進し、硫黄系悪臭物質の消臭効果を奏する」という新たな知見を見出した。本発明は、この知見に基づいてなされたものであり、「触媒作用による消臭効果を示す新規のガラス剤」として各種用途への展開が期待される。 Conventionally, various deodorizing glass agents using soluble glass have been developed, but there is no “glass agent showing a deodorizing effect by catalytic action”. As a result of many years of research, the present inventors have found that “CuO contained in the glass of the above composition in the above ratio functions as a catalyst to promote the decomposition reaction (oxidation / reduction reaction) of sulfur-based malodorous substances, We found a new finding that "deodorizing effect of sulfur-based malodorous substance". The present invention has been made on the basis of this finding, and is expected to develop into various uses as “a novel glass agent exhibiting a deodorizing effect by catalytic action”.
 本発明では、このように、ガラス中にふくまれるCuOを触媒として硫黄系悪臭物質の分解反応を促進するメカニズムを有するものであるため、「硫化反応」を利用した従来技術(例えば、特許文献1)に比べて、消臭容量(例えば、特許文献1では、硫黄成分の悪臭成分を吸着させるイオン濃度に比例する)を増大させることができ、かつ、触媒を繰り返し使用することによって消臭効果を長期間に亘って持続することができるとともに、触媒として機能するCuOを活性炭に分散させた従来技術(例えば、特許文献2)のような被毒が進行し難く、その触媒機能を長期間に亘って安定して発揮することができる。 Since the present invention has a mechanism for promoting the decomposition reaction of the sulfur-based malodorous substance using CuO contained in the glass as a catalyst as described above, the conventional technique using the “sulfurization reaction” (for example, Patent Document 1). ), The deodorizing capacity (for example, in Patent Document 1, which is proportional to the ion concentration for adsorbing the malodorous component of the sulfur component) can be increased, and the deodorizing effect can be obtained by repeatedly using the catalyst. It can last for a long period of time, and it is difficult for poisoning to proceed as in the prior art (for example, Patent Document 2) in which CuO functioning as a catalyst is dispersed in activated carbon. Can be demonstrated stably.
 また、本発明によれば、原料として、CuO粉末を、下記式の範囲(xモル%)で添加して、消臭ガラス剤の粒径(D50)を下記の範囲(yμm)とすることにより、従来の消臭剤では考慮されていなかった、「速やかな消臭」を実現することができる。
 0.01≦x≦0.198のとき、y≦4.27x+0.34
 0.198≦x≦2.03のとき、y≦5.08x+0.18
 2.03≦x≦23のとき、y≦10.5
Moreover, according to this invention, CuO powder is added as a raw material in the range of the following formula (x mol%), and the particle size (D 50 ) of the deodorizing glass agent is set to the following range (y μm). Thus, it is possible to realize “rapid deodorization”, which has not been considered in the conventional deodorant.
When 0.01 ≦ x ≦ 0.198, y ≦ 4.27x + 0.34
When 0.198 ≦ x ≦ 2.03, y ≦ 5.08x + 0.18
When 2.03 ≦ x ≦ 23, y ≦ 10.5
 本発明の消臭ガラス剤は、酸化触媒作用による消臭効果を示す「酸化触媒系消臭剤」であり、特にメチルメルカプタンに対し、優れたな消臭効果を発揮することができる。以下の説明において、消臭ガラス剤を粉末状として、悪臭物質との接触面積を多く確保することにより、触媒としての機能をより効果的に発揮することができる。 The deodorizing glass agent of the present invention is an “oxidation catalyst-based deodorant” that exhibits a deodorizing effect due to an oxidation catalytic action, and can exhibit an excellent deodorizing effect particularly with respect to methyl mercaptan. In the following description, the function as a catalyst can be more effectively exhibited by securing a large contact area with the malodorous substance by using the deodorizing glass agent in powder form.
 なお、本発明の消臭ガラス剤は、硫黄系悪臭物質に限らず、脱水素反応が可能な悪臭物質であれば、消臭可能である。具体的には、体臭(汗、足臭)として知られる低級脂肪酸の酢酸、イソ吉草酸を始め、悪臭防止法で定められるプロピオン酸、ノルマル酪酸、ノルマル吉草酸や、中鎖脂肪酸のカプロン酸、エナント酸や、加齢臭として知られるトランス-2-ノネナールも消臭可能である。一般的に、炭素数2~4個のものを短鎖脂肪酸(低級脂肪酸)というが、本明細書においては炭素数1個の酢酸、5個の吉草酸も低級脂肪酸として取り扱う。これら、低級脂肪酸やトランス-2-ノネナールに対する消臭機構は、硫黄系悪臭物質に対する触媒作用と類似である可能性が高い。例えば、本発明の消臭ガラス剤は、メチルメルカプタンを触媒的に分解し、二量体のジメチルジスルフィドが生成するが、このとき脱水素反応が起きていることになる。同様に、低級脂肪酸も脱水素反応により分解するものと推測される。あるいは、低級脂肪酸による悪臭ガスは酸性として知られるため、アルカリを多く含む本発明の消臭ガラス剤と中和反応を起こしている可能性がある。消臭試験結果から反応量を算出したところ、等量反応以上の消臭効果が確認されたため、触媒作用による消臭効果、中和反応による消臭効果の同時発生の可能性が高い。ただし、トランス-2-ノネナールは中性ガスとして知られるため、中和反応ではなく、触媒作用による消臭効果が主である可能性が高い。また、トランス-2-ノネナールに限らず、前駆体のパルミトレイン酸を分解し、防臭効果を示す可能性も考えられる。 It should be noted that the deodorizing glass agent of the present invention is not limited to sulfur-based malodorous substances, but can be deodorized as long as it is a malodorous substance capable of dehydrogenation. Specifically, acetic acid of lower fatty acids known as body odor (sweat, foot odor), isovaleric acid, propionic acid, normal butyric acid, normal valeric acid and caproic acid of medium chain fatty acid defined by the Malodor Control Law, Enanthate and trans-2-nonenal, known as age-related odors, can also be deodorized. In general, those having 2 to 4 carbon atoms are referred to as short-chain fatty acids (lower fatty acids), but in this specification, acetic acid having 1 carbon atom and 5 valeric acids are also treated as lower fatty acids. These deodorizing mechanisms for lower fatty acids and trans-2-nonenal are likely to be similar to the catalytic action for sulfurous malodorous substances. For example, the deodorizing glass agent of the present invention catalytically decomposes methyl mercaptan to produce dimeric dimethyl disulfide, and at this time, a dehydrogenation reaction occurs. Similarly, it is presumed that lower fatty acids are also decomposed by the dehydrogenation reaction. Alternatively, since malodorous gas due to lower fatty acids is known as acidic, there is a possibility of causing a neutralization reaction with the deodorizing glass agent of the present invention containing a large amount of alkali. When the reaction amount was calculated from the deodorization test result, the deodorization effect over the equivalent reaction was confirmed, so that there is a high possibility that the deodorization effect due to the catalytic action and the deodorization effect due to the neutralization reaction occur simultaneously. However, since trans-2-nonenal is known as a neutral gas, it is highly likely that the deodorizing effect is mainly due to a catalytic action rather than a neutralization reaction. In addition to trans-2-nonenal, the precursor palmitoleic acid may be decomposed to exhibit a deodorizing effect.
 また、本発明の消臭ガラス剤は、ガラス中にCuOを多く含有するため、CuOによる抗菌効果も同時に発揮することができる。 Moreover, since the deodorizing glass agent of the present invention contains a large amount of CuO in the glass, the antibacterial effect due to CuO can be exhibited at the same time.
 その他、「硫化反応」を利用した従来技術(例えば、特許文献1等、硫黄成分と親和性の高いAgイオン、Cu2+イオン、Fe2+イオンを反応させる消臭方法)では、硫化反応によってガラスに変色が生じ、ガラスの美観を損なうという問題もあったのに対し、本発明は、ガラス化したCuOを触媒として、硫黄系悪臭物質の分解反応を促進し、硫黄系悪臭物質の消臭効果を奏するものであるため、ガラスを変色させることなく消臭機能を発揮することができる。 In addition, in the prior art using the “sulfurization reaction” (for example, deodorization method in which Ag + ions, Cu 2+ ions, and Fe 2+ ions having high affinity with the sulfur component are reacted) Discoloration occurs, and there is a problem that the aesthetics of the glass is impaired. On the other hand, the present invention uses a vitrified CuO as a catalyst to promote the decomposition reaction of the sulfur-based malodorous substance, and the deodorizing effect of the sulfur-based malodorous substance Therefore, the deodorizing function can be exhibited without discoloring the glass.
 請求項2記載の発明のように、SiOを46~70モル%、BとRO(R=Li、Na、K)を合計で15~50モル%、R´O(R´=Mg、Ca、Sr、Ba)を0~10モル%、Alを0~6モル%、CuOを0.01~23モル%含有する前記組成のガラスを消臭ガラス剤として使用することにより、従来技術に比べて、製品形状や使用態様に関する自由度が高く利便性の高い消臭ガラス剤を実現することができる。具体的には、長時間安定した消臭効果を発揮することができ、化学的耐久性が高く、粉末にしたとき凝集しにくく、室温・酸素存在下や、光のない暗下や、水分存在下(表面が濡れた状態)、高温環境(450℃以下)でも優れた消臭効果を発揮することができ、極めて扱いやすい消臭ガラス剤を実現することができる。 As in the invention of claim 2, SiO 2 is 46 to 70 mol%, B 2 O 3 and R 2 O (R = Li, Na, K) in total 15 to 50 mol%, R′O (R '= Mg, Ca, Sr, Ba) 0-10 mol%, Al 2 O 3 0-6 mol%, and glass having the above composition containing CuO 0.01-23 mol% are used as a deodorizing glass agent. By doing so, compared with a prior art, the deodorizing glass agent with a high freedom degree regarding a product shape and a use aspect and high convenience is realizable. Specifically, it can exhibit a deodorizing effect that is stable for a long time, has high chemical durability, is less likely to agglomerate when made into powder, is in the presence of room temperature, oxygen, darkness without light, and in the presence of moisture. An excellent deodorizing effect can be exhibited even in a high-temperature environment (450 ° C. or lower) (in a state where the surface is wet), and an extremely easy-to-handle deodorizing glass agent can be realized.
実施例Aの測定結果を示すグラフである。4 is a graph showing measurement results of Example A. 実施例Bの測定結果を示すグラフである。It is a graph which shows the measurement result of Example B. 実施例Bの測定結果を示すグラフである。It is a graph which shows the measurement result of Example B. 実施例Cの測定結果を示すグラフである。10 is a graph showing measurement results of Example C. 実施例Dの測定結果を示すグラフである。10 is a graph showing measurement results of Example D. 実施例Eの測定結果を示すグラフである。10 is a graph showing measurement results of Example E. 実施例Gの測定結果を示すグラフである。10 is a graph showing measurement results of Example G. 実施例Gの測定結果を示すグラフである。10 is a graph showing measurement results of Example G. 実施例Hの測定結果を示すグラフである。It is a graph which shows the measurement result of Example H. 請求項1におけるCuO添加量と粒径の関係を示すグラフである。It is a graph which shows the relationship between the amount of CuO addition in Claim 1, and a particle size. 請求項2におけるCuO添加量と粒径の関係を示すグラフである。It is a graph which shows the relationship between the amount of CuO addition in Claim 2, and a particle size. 請求項7におけるCuO添加量と粒径の関係を示すグラフである。It is a graph which shows the relationship between the amount of CuO addition in Claim 7, and a particle size. 実施例Kの測定結果を示すグラフである。10 is a graph showing measurement results of Example K.
 以下に本発明の好ましい実施形態を示す。 Hereinafter, preferred embodiments of the present invention will be described.
(実施形態1:CuO含有アルカリ-アルカリ土類-ホウケイ酸ガラス)
 本実施形態の消臭ガラス剤は、SiOを46~70モル%、BとROを合計で15~50モル%、R´O(R´=Mg、Ca、Sr、Ba)を0~10モル%、Alを0~6モル%、CuOを0.01~23モル%含有する「アルカリ(RO)-アルカリ土類(R´O)-ホウケイ酸ガラス(B-SiO)」からなり、通常のガラス剤と同様に、溶融急冷法で製造することができる。ガラス剤の形状は、溶融急冷法でプレ成形体を得た後、粉砕を行って得た粉体とする。ここで言う粉砕とは、一般的に知られる粉砕機(例えば、ボールミル、ビーズミル、ジェットミル、CFミル等)による粉砕を意味し、乾式でも湿式でも構わない。
(Embodiment 1: CuO-containing alkali-alkaline earth-borosilicate glass)
The deodorizing glass agent of the present embodiment is composed of 46 to 70 mol% of SiO 2 , 15 to 50 mol% in total of B 2 O 3 and R 2 O, R′O (R ′ = Mg, Ca, Sr, Ba ) 0-10 mol%, Al 2 O 3 0-6 mol% and CuO 0.01-23 mol% “alkali (R 2 O) -alkaline earth (R′O) -borosilicate glass” (B 2 O 3 —SiO 2 ) ”, and can be produced by a melt quenching method in the same manner as a normal glass agent. The shape of the glass agent is a powder obtained by pulverizing after obtaining a pre-molded body by a melt quenching method. The pulverization referred to here means pulverization by a generally known pulverizer (for example, a ball mill, a bead mill, a jet mill, a CF mill, etc.), and may be dry or wet.
 以下、各ガラス組成について詳細に説明する。 Hereinafter, each glass composition will be described in detail.
(SiO
 SiOは、ガラスの構造骨格を形成する主成分となる。その含有量は、46~70モル%、好ましくは、51~63モル%とする。46モル%未満の場合、ガラスの化学的耐久性が不十分となり、またガラスが失透しやすくなり好ましくない。更に、46モル%未満の場合、ガラスの耐水性が不十分となり、水分存在下(大気中の水分を含む)で銅イオンが溶出しやすくなる結果、触媒作用による消臭効果よりも、イオン溶出によって起こる硫化反応による消臭効果が強くなるため好ましくない。70モル%を超える場合、融点が上昇することにより、ガラスの溶融性が困難となる他、粘度上昇も起こるため好ましくない。
(SiO 2 )
SiO 2 is a main component that forms the structural skeleton of glass. The content thereof is 46 to 70 mol%, preferably 51 to 63 mol%. If it is less than 46 mol%, the chemical durability of the glass becomes insufficient, and the glass tends to devitrify, which is not preferable. Furthermore, if it is less than 46 mol%, the water resistance of the glass becomes insufficient, and copper ions are more likely to elute in the presence of moisture (including moisture in the atmosphere). Since the deodorizing effect by the sulfurization reaction which occurs by this becomes strong, it is not preferable. If it exceeds 70 mol%, the melting point increases, which makes glass melting difficult and also causes an increase in viscosity.
(B
 Bは、ガラスの溶解性、清澄性を向上させる成分であり、特定の組成においてはガラスの構造骨格を形成する成分ともなる。Bは、その含有量によって、ガラスの安定性を大きく左右するものであり、本願発明ではガラスの融剤としての意味合いが大きい。その含有量は、Bの揮発量を勘案して、5~20モル%、好ましくは8~17モル%とする。20モル%を超える場合、Bは溶融過程において揮発しやすく、組成制御が困難となるため好ましくない。
(B 2 O 3 )
B 2 O 3 is a component that improves the solubility and clarity of the glass, and in a specific composition, it also becomes a component that forms the structural skeleton of the glass. B 2 O 3 greatly affects the stability of the glass depending on its content, and in the present invention, the meaning as a flux of glass is large. The content thereof is set to 5 to 20 mol%, preferably 8 to 17 mol% in consideration of the volatilization amount of B 2 O 3 . When it exceeds 20 mol%, B 2 O 3 is not preferred because it tends to volatilize in the melting process and the composition control becomes difficult.
(RO(R=Li、Na、K))
 RO(R=Li、Na、K)は、ガラスの構造骨格におけるSiとOの結合を切断して非架橋酸素を形成し、その結果、ガラスの粘性を低下させ、成形性や溶解性を向上させる成分であり、B同様の融剤である。その含有量は、RO(R=Li、Na、K)の一種もしくは二種以上を、他成分との含有比も考慮しつつ、合計10~30モル%、好ましくは13~22モル%とする。30モル%を超える場合、ガラスの化学的耐久性が不十分となる。具体的には、ガラス剤と大気中の水分が反応してブルームと称される白化現象が引き起こされる。ブルームが発生することにより、悪臭ガスとの接触面積が減少するため望ましくない。また、溶解炉のアルミナ質が浸蝕されやすくなる。
(R 2 O (R = Li, Na, K))
R 2 O (R = Li, Na, K) breaks the bond between Si and O in the glass structure skeleton to form non-crosslinked oxygen, resulting in a decrease in glass viscosity, moldability and solubility. And a flux similar to B 2 O 3 . The content of R 2 O (R = Li, Na, K) is 10 to 30 mol% in total, preferably 13 to 22 mol%, considering the content ratio with other components. And When it exceeds 30 mol%, the chemical durability of the glass becomes insufficient. Specifically, a whitening phenomenon called bloom is caused by a reaction between the glass agent and moisture in the atmosphere. The occurrence of bloom is undesirable because it reduces the contact area with malodorous gas. In addition, the alumina in the melting furnace is easily eroded.
(B+RO(R=Li、Na、K))
 前記のように、BとROは、共に、融剤として使用される。BとROの合計含有量が、15~50モル%、好ましくは21~39モル%の範囲が、安全に消臭効果を示す領域となる。15モル%未満の場合、ガラスの溶融性が不十分となり、成形の際に失透が発生しやすくなるため好ましくない。40モル%を超えると、ガラスの耐水性が不十分となり、水分存在下(大気中の水分を含む)で銅イオンが溶出しやすくなる結果、触媒作用による消臭効果よりも、イオン溶出によって起こる硫化反応による消臭効果が強くなるため好ましくない。また、50モル%を超えると、溶融の際に分相を起こしやすく、それに伴いガラス剤の消臭効果が不十分となるため好ましくない。
(B 2 O 3 + R 2 O (R = Li, Na, K))
As mentioned above, both B 2 O 3 and R 2 O are used as fluxing agents. The range in which the total content of B 2 O 3 and R 2 O is 15 to 50 mol%, preferably 21 to 39 mol%, is a region that exhibits a deodorizing effect safely. If it is less than 15 mol%, the meltability of the glass becomes insufficient, and devitrification tends to occur during molding, which is not preferable. If it exceeds 40 mol%, the water resistance of the glass becomes insufficient, and copper ions are more likely to elute in the presence of moisture (including moisture in the atmosphere). Since the deodorizing effect by a sulfurization reaction becomes strong, it is not preferable. On the other hand, if it exceeds 50 mol%, phase separation is likely to occur during melting, and the deodorizing effect of the glass agent becomes insufficient accordingly.
(R´O(R´=Mg、Ca、Sr、Ba))
 R´O(R´=Mg、Ca、Sr、Ba)は、ガラスの化学的耐久性を向上させる成分である。その含有量は、R´O(R´=Mg、Ca、Sr、Ba)の一種もしくは二種以上を、合計0~10モル%、好ましくは2~7モル%とする。10モル%を超えると溶融時の粘性が高くなるとともに、ガラスが失透しやすくなるため好ましくない。なお、本発明の消臭ガラス剤において必須成分ではなく、その含有量は0モル%でもよい。
(R'O (R '= Mg, Ca, Sr, Ba))
R′O (R ′ = Mg, Ca, Sr, Ba) is a component that improves the chemical durability of the glass. The total content of one or more of R′O (R ′ = Mg, Ca, Sr, Ba) is 0 to 10 mol%, preferably 2 to 7 mol%. If it exceeds 10 mol%, the viscosity at the time of melting becomes high and the glass tends to be devitrified, which is not preferable. In addition, it is not an essential component in the deodorizing glass agent of this invention, and the content may be 0 mol%.
(CuO)
 CuOは、触媒として機能して、硫黄系悪臭物質の分解反応(酸化・還元反応)を促進し、硫黄系悪臭物質の消臭効果を奏するものである。その含有量は、0.01~23モル%、好ましくは1~13モル%、さらに好ましくは4~13モル%とする。23モル%を超えると未溶解物が残留しやすくなる他、急冷の際や加工時に金属銅が析出しやすくなるため好ましくない。金属銅も消臭効果を示すため、消臭という観点からは、その析出は問題とならないが、金属銅の析出に伴いガラスに変色を生じるため、ガラスの変色が問題となる用途には適さない。また、金属銅として析出した場合、被毒が進行してしまう。これに対し、CuOをガラス成分として含ませた本発明によれば、被毒が進行し難く、触媒機能を長期間に亘って安定して発揮することができる。
(CuO)
CuO functions as a catalyst, accelerates the decomposition reaction (oxidation / reduction reaction) of the sulfur-based malodorous substance, and exhibits the deodorizing effect of the sulfur-based malodorous substance. The content thereof is 0.01 to 23 mol%, preferably 1 to 13 mol%, more preferably 4 to 13 mol%. If it exceeds 23 mol%, undissolved material tends to remain, and metal copper tends to precipitate during rapid cooling or processing, which is not preferable. Since metallic copper also shows a deodorizing effect, from the viewpoint of deodorization, its precipitation is not a problem, but it is not suitable for applications where discoloration of glass is a problem because it causes discoloration of glass with the deposition of metallic copper. . Moreover, when it precipitates as metallic copper, poisoning will advance. On the other hand, according to the present invention in which CuO is included as a glass component, poisoning hardly progresses and the catalytic function can be stably exhibited over a long period of time.
 ガラス剤が同重量かつ同粒径の条件下において、CuOの含有量を減少させていくと、その減少に伴い、消臭能力が低下する傾向がある。これは、悪臭と接触するガラス表面のCuO量が減少することに起因するものと推測される。CuOの含有量や粒径は、求められる消臭スピードや消臭容量によって異なるが、本実施形態では、CuO粉末の添加量(xモル%)および消臭ガラス剤の粒径(D50、yμm)を下記式の範囲に限定することにより、従来の消臭ガラス剤では考慮されていなかった、「速やかな消臭」を実現可能とした。
 0.01≦x≦2.03のとき、y≦5.08x+0.18
 2.03≦x≦23のとき、y≦10.5
When the content of CuO is decreased under the condition that the glass agent has the same weight and the same particle size, the deodorizing ability tends to decrease with the decrease. This is presumed to be caused by a decrease in the amount of CuO on the glass surface that comes into contact with the malodor. Although the content and particle size of CuO vary depending on the required deodorization speed and deodorization capacity, in this embodiment, the added amount of CuO powder (x mol%) and the particle size of the deodorizing glass agent (D 50 , y μm). ) Is limited to the range of the following formula, it is possible to realize “rapid deodorization”, which has not been considered in the conventional deodorizing glass agent.
When 0.01 ≦ x ≦ 2.03, y ≦ 5.08x + 0.18
When 2.03 ≦ x ≦ 23, y ≦ 10.5
 CuOの含有量と粒径に関し、粉体の単位質量あたりの表面積は比表面積[m/g]と言われるが、この値が大きいほど粒子は細かくなる。粒子形状が球状であると仮定すると、半径rの粒子がn個あると、このときの全表面積はn4πr、質量は、ρを粒子の密度とすると(n4πr/3)ρであるので、比表面積=n4πr/(n4πr/3)ρ=3/ρrとなる。ここで消臭ガラス剤粒子の半径をR、密度Ρと仮定すると、比表面積は3/ΡRと表される。R=5μmのとき、比表面積(2R=10μm)=3/Ρ(5μm)となり、R=0.5μmのとき、比表面積(2R=1μm)=3/Ρ(0.5μm)となる。つまり、消臭ガラス剤の粒子径(直径)10μmを1μmまで細かくすると、比表面積は10倍大きくなる。これに伴い、当然消臭能力が高まることが想定される。以上より、粒径を小さくすることができれば、CuOの添加量は限りなく下げることができる。なお、前記した、一般的な粉砕技術では、現在、0.1μmまでの微粉砕が限界とされているが、ビルドアップ(気相法・液相法)を用いることにより、0.1μm以下の微粒子化が可能となる。 Regarding the CuO content and particle size, the surface area per unit mass of the powder is said to be the specific surface area [m 2 / g]. The larger this value, the finer the particles. When the particle shape is assumed to be spherical, the particle radius r there are n, the total surface area N4paiaru 2 at this time, since the mass, when the [rho and density of the particles (n4πr 3/3) is [rho, the specific surface area = n4πr 2 / (n4πr 3/ 3) ρ = 3 / ρr. Here, assuming that the radius of the deodorant glass agent particle is R and the density is Ρ, the specific surface area is expressed as 3 / ΡR. When R = 5 μm, the specific surface area (2R = 10 μm) = 3 / Ρ (5 μm), and when R = 0.5 μm, the specific surface area (2R = 1 μm) = 3 / Ρ (0.5 μm). That is, when the particle diameter (diameter) of 10 μm of the deodorizing glass agent is reduced to 1 μm, the specific surface area becomes 10 times larger. Along with this, it is naturally assumed that the deodorizing ability is enhanced. From the above, if the particle size can be reduced, the amount of CuO added can be reduced as much as possible. The above-described general pulverization techniques currently limit the fine pulverization up to 0.1 μm, but by using build-up (gas phase method / liquid phase method), the pulverization is 0.1 μm or less. Fine particles can be formed.
 0.1μm以下の消臭ガラス剤は、具体的には、ゾルゲル法、PVD(Physical Vapor Deposition)処理、CVD(Chemical Vapor Deposition)、火炎熱分解処理により作製可能である。液相法のゾルゲル法では、Siのアルコキシ化合物やアルコール溶液、アンモニア水等を使用して反応溶液を調整することで、ガラスが生成する。その後、遠心分離等でガラスを分離する工程と、分離されたガラスを乾燥する工程を経て、ガラス剤が得られる。ゾルゲル法の場合は、耐水性に不足し、触媒的消臭作用よりも硫化反応が上回る場合がある。これに対し、乾燥温度をガラス転移点近辺にすることで改善が可能である。気相法のPVD処理では、ガラス原料がプラズマ状に蒸発し、それらが冷却されたときにガラスが生成する。CVD、火炎熱分解処理についても、それぞれ原料の処理が化学的分離によるか、熱分解によるかの違いであり、PVD同様に、冷却されたときにガラス状に生成する。その他、ビルドアップではないが、特殊な微粒子作製方法として、加熱したガラス粉末を冷却液体に浸漬させ、その際、この液体にラジオ波を照射することにより微粒子化が可能である。 Specifically, the deodorizing glass agent of 0.1 μm or less can be produced by a sol-gel method, PVD (Physical Vapor Deposition) treatment, CVD (Chemical Vapor Deposition), or flame pyrolysis treatment. In the sol-gel method of the liquid phase method, glass is produced by adjusting the reaction solution using an Si alkoxy compound, an alcohol solution, aqueous ammonia, or the like. Then, a glass agent is obtained through the process of isolate | separating glass by centrifugation etc. and the process of drying the isolate | separated glass. In the case of the sol-gel method, water resistance is insufficient, and the sulfurization reaction may exceed the catalytic deodorizing action. On the other hand, it can be improved by setting the drying temperature in the vicinity of the glass transition point. In the vapor phase PVD process, glass raw materials evaporate in a plasma state, and glass is produced when they are cooled. The CVD and flame pyrolysis processes also differ depending on whether the raw materials are processed by chemical separation or pyrolysis, and, like PVD, are produced in a glassy state when cooled. In addition, although it is not a build-up, as a special fine particle production method, heated glass powder is immersed in a cooling liquid, and at that time, the liquid can be irradiated with radio waves to form fine particles.
 CuOをガラス成分として含ませた本発明において、遷移金属イオンである銅イオンは、ガラスのマトリックス中に導入されている。銅イオンは、ガラスのマトリックス中に導入されたとき、周囲の陰イオンからの結晶場の影響を強く受けることが知られている。銅イオンは、周囲の環境により複数のイオン状態をとるが、通常、銅イオンはガラス中でCuまたはCu2+として存在する。Cu2+は酸化雰囲気で安定であり、Cuは還元雰囲気で安定である。ガラス中のCu2+はガラスの構造骨格の網目修飾イオンの位置を占め、これに多数の酸素イオンが配位されれば青色を呈する。Cu自体は無色であるが、それがCu2+と共存すると、イオンの変形がおきて吸収が強められる。また、銅イオン濃度が高くなると、すべてのCu2+に対しては酸素イオンの配位を満足させることが不可能となる結果、低配位数の不飽和銅イオンの数が増す。また、温度上昇によっても不飽和イオンが増す。これに伴い、ガラスは青色から緑色に変化する。Cu2+は可視から近赤外域(800 nm付近)に吸収帯を示す。一般に遷移金属イオンの原子価決定要因として、溶融温度、溶融雰囲気中の酸素分圧、遷移金属イオンの添加量およびホストガラス組成が挙げられる。しかし、ガラス組成による銅イオンの原子価制御に関する報告は少ない。 In the present invention in which CuO is included as a glass component, copper ions, which are transition metal ions, are introduced into a glass matrix. It is known that copper ions are strongly affected by crystal fields from surrounding anions when introduced into a glass matrix. Copper ions take a plurality of ion states depending on the surrounding environment, but usually copper ions exist as Cu + or Cu 2+ in glass. Cu 2+ is stable in an oxidizing atmosphere, and Cu + is stable in a reducing atmosphere. Cu 2+ in the glass occupies the position of the network modifying ions of the structural skeleton of the glass, and when a large number of oxygen ions are coordinated to this, it exhibits a blue color. Cu + itself is colorless, but if it coexists with Cu 2+ , ion deformation occurs and absorption is enhanced. Further, as the copper ion concentration increases, it becomes impossible to satisfy the coordination of oxygen ions for all Cu 2+ , and as a result, the number of unsaturated copper ions having a low coordination number increases. Moreover, unsaturated ions also increase with increasing temperature. Along with this, the glass changes from blue to green. Cu 2+ exhibits an absorption band in the visible to near infrared region (around 800 nm). In general, factors that determine the valence of transition metal ions include melting temperature, oxygen partial pressure in the molten atmosphere, addition amount of transition metal ions, and host glass composition. However, there are few reports on valence control of copper ions by glass composition.
 酸化物ガラス中にアルミナを添加することにより、ガラスの耐水性が向上することが知られている。例えば、村多、栗村、森永らによる研究(日本金属学会誌 第61巻 第11号(1997))によると、特定の組成において以下が確認されている。一般的にケイ酸塩系ガラスは、ホウ酸塩あるいはリン酸塩系ガラスよりも溶融温度が高いため、他の2つのガラス系よりもCu-Cu2+の酸化還元状態が還元側に移行しやすい。ホウ酸塩あるいはリン酸塩系ガラスにアルミナを加えることでCu-Cu2+の酸化還元状態が還元側に安定される効果がある。二成分系のNaO-SiOガラスではNaOの含有量の減少に伴い、相対的にCuが増加することや、三成分系アルカリ-アルカリ土類-ケイ酸塩ガラスでは、アルカリ土類のイオン半径が減少するにつれて、Cuの量が増加する報告がある。また、遷移金属の内、ホストガラスによる価数バランスの影響の仕方が、銅イオンは特殊であるという報告もある。しかし、ガラス剤の各構成成分が発揮する作用は、必ずしも配合割合に応じた線形的な変化とならない。非晶質のガラス質内の原子同士の結合、結合核の変化等の種々の要因が作用していると考えられる。 It is known that the water resistance of the glass is improved by adding alumina to the oxide glass. For example, according to a study by Murata, Kurimura, Morinaga et al. (The Japan Institute of Metals, Vol. 61, No. 11 (1997)), the following has been confirmed in a specific composition. Since silicate glass generally has a higher melting temperature than borate or phosphate glass, the Cu + -Cu 2+ redox state shifts to the reduction side compared to the other two glass systems. Cheap. By adding alumina to a borate or phosphate glass, there is an effect that the redox state of Cu + -Cu 2+ is stabilized on the reducing side. In the binary Na 2 O—SiO 2 glass, as the Na 2 O content decreases, the Cu + increases relatively. In the ternary alkali-alkaline earth-silicate glass, the alkali There are reports that the amount of Cu + increases as the ionic radius of the earth decreases. In addition, among transition metals, there is a report that copper ions are special in terms of how the valence balance is influenced by the host glass. However, the action exhibited by each component of the glass agent does not necessarily change linearly according to the blending ratio. It is considered that various factors such as bonds between atoms in the amorphous glassy material and changes in bond nuclei are acting.
(Al
 Alは、ガラスの化学的耐久性を向上させ、結晶構造安定性に影響を与える成分である。また、Alは、ガラスの分相を抑制しガラス剤の均質性を高める働きをする。粘性を上げること、添加によってガラス中の銅イオンの酸化還元状態に影響を与える可能性があることから、その含有量は、6モル%以下、好ましくは5.5モル%以下とすることが望ましい。
(Al 2 O 3 )
Al 2 O 3 is a component that improves the chemical durability of the glass and affects the crystal structure stability. Further, Al 2 O 3 functions to suppress the phase separation of the glass and increase the homogeneity of the glass agent. It is desirable that the content is 6 mol% or less, preferably 5.5 mol% or less, because the viscosity may increase or the addition may affect the redox state of copper ions in the glass. .
 なお、CuO添加量が23モル%を超える場合、ガラス溶融後の急冷や成形時に銅イオンが還元され、金属銅が析出する場合がある。金属銅も消臭効果を示すため、消臭という観点からは、その析出は問題とならないが、金属銅として析出した場合、被毒が進行してしまう。このとき、SiOで構成されるガラス構造の一部をAl3+にすることにより、金属銅の析出を抑制することができる。 In addition, when CuO addition amount exceeds 23 mol%, a copper ion may be reduce | restored at the time of rapid cooling after glass melting, or a shaping | molding, and metal copper may precipitate. Since metallic copper also exhibits a deodorizing effect, from the viewpoint of deodorization, its precipitation does not become a problem, but when it is deposited as metallic copper, poisoning proceeds. At this time, precipitation of metallic copper can be suppressed by using Al 3+ as a part of the glass structure composed of SiO 2 .
(その他の微量成分)
 上記成分以外にも、微量成分として、ZnO、SrO、BaO、TiO、ZrO、Nb、P、CsO、RbO、TeO、BeO、GeO、Bi、La、Y、WO、MoO、CoO、またはFe等も含めることができる。さらに、F、Cl、SO、Sb、SnO、あるいはCe等を清澄剤として添加してもよい。
(Other trace components)
In addition to the above components, ZnO, SrO, BaO, TiO 2 , ZrO 2 , Nb 2 O 5 , P 2 O 5 , Cs 2 O, Rb 2 O, TeO 2 , BeO, GeO 2 , Bi 2 can be used as trace components. O 3 , La 2 O 3 , Y 2 O 3 , WO 3 , MoO 3 , CoO, Fe 2 O 3 or the like can also be included. Furthermore, F, Cl, SO 3 , Sb 2 O 3 , SnO 2 , Ce, or the like may be added as a clarifier.
(Fe
 Feは、ガラス中の銅イオンの酸化還元状態に影響を与える(Cu>Cu2+を強める)成分のため、その含有量は、0.5モル%以下、好ましくは0.3モル%以下とすることが望ましい。
(Fe 2 O 3 )
Since Fe 2 O 3 is a component that affects the redox state of copper ions in the glass (enhances Cu + > Cu 2+ ), its content is 0.5 mol% or less, preferably 0.3 mol It is desirable to make it below%.
(Cr、MnO、CeO
 Cr、MnO、CeOは、遷移金属イオンであり、CuOと同様に原子価を変化し得る成分である。CuOと混在するとき、酸化性が強いこれらの成分(酸化力Cr>MnO>CeO)によってガラス中の銅イオンの酸化還元状態は酸性に傾く(Cu<Cu2+)。本願発明の組成範囲、製造方法では安定性して消臭効果が得られるが、酸化還元状態が大きく予想を外れて消臭効果が得られない場合(例えば、溶解炉は浸蝕に伴い酸化還元状態の制御が困難となる場合がある)、Cr、MnO、CeOの添加によって銅イオンの価数バランスを制御することもできる。
(Cr 2 O 3 , MnO 2 , CeO 2 )
Cr 2 O 3 , MnO 2 , and CeO 2 are transition metal ions and are components that can change the valence similarly to CuO. When mixed with CuO, the redox state of the copper ions in the glass tends to be acidic (Cu + <Cu 2+ ) due to these highly oxidizing components (oxidizing power Cr 2 O 3 > MnO 2 > CeO 2 ). In the composition range and the production method of the present invention, the deodorizing effect is obtained stably, but the redox state is greatly unexpected and the deodorizing effect cannot be obtained (for example, the melting furnace is in a redox state due to corrosion) In other words, the valence balance of copper ions can be controlled by adding Cr 2 O 3 , MnO 2 , or CeO 2 .
 以上を考慮し、本実施形態では、安定して消臭効果が得られる組成範囲を特定した。つまり、溶融温度範囲、酸化還元状態、組成範囲を考慮した上で、組成範囲を特定した。上記組成範囲のガラス剤を、溶融急冷法で製造すれば安定して消臭ガラス剤が得られる。特に、タンク炉溶融、電気炉溶融、小規模のるつぼ溶融で安定して得られる。経験的にソーダライムガラスの場合、タンク炉溶融、電気炉溶融では、銅イオンの価数バランス(Cu2+/total)が、前者が15%程度、後者が50%程度であると知られている。本実施形態の組成でも当然価数バランスは変化する。消臭機構が触媒作用であるため、これらの化学状態が消臭効果に影響を及ぼす可能性があるが、上記組成範囲であれば、その効果の違いは特に問題とならない。 Considering the above, in the present embodiment, the composition range in which the deodorizing effect is stably obtained is specified. That is, the composition range was specified in consideration of the melting temperature range, the oxidation-reduction state, and the composition range. If a glass agent having the above composition range is produced by a melt quenching method, a deodorizing glass agent can be stably obtained. In particular, it can be stably obtained by melting in a tank furnace, melting an electric furnace, or melting a small-scale crucible. Empirically, in the case of soda lime glass, it is known that the valence balance (Cu2 + / total) of copper ions is about 15% for the former and about 50% for the latter in tank furnace melting and electric furnace melting. . Naturally, the valence balance also changes in the composition of the present embodiment. Since the deodorizing mechanism is a catalytic action, these chemical states may affect the deodorizing effect, but the difference in the effect is not particularly problematic as long as it is in the above composition range.
 なお、溶融温度、溶融時間によって酸化還元状態が異なることは考慮が必要である。溶融温度1200~1400℃、好ましくは1280~1380℃に制御するとよい。溶融時間は6~8時間が望ましい。ここで得られるガラスは、Cu2+による青、もしくは緑青色が確認される。以上の通り、本発明の組成範囲では、溶融温度と時間にさえ注意すれば、銅イオンの価数バランスは必ずしも重要でない。また、得られたガラス剤を熱処理で意図的に価数バランスを変化させて(薄板を作製し、Cu2+の発色が確認される青色ガラス、Cu>>Cu2+に価数バランスが変化しほとんど色調の確認されないガラス、Cuのコロイド状金属銅の析出が確認される褐色(赤色)ガラス)消臭効果を確認したが、いずれも十分な消臭効果が得られた。このように、上記組成範囲のガラス剤とすることにより消臭効果が得られ、また、成形後に熱処理等で銅イオンの価数バランスを制御しても消臭効果は維持される。 Note that it is necessary to consider that the oxidation-reduction state varies depending on the melting temperature and the melting time. The melting temperature may be controlled to 1200 to 1400 ° C, preferably 1280 to 1380 ° C. The melting time is preferably 6 to 8 hours. The glass obtained here is confirmed to be blue or greenish blue by Cu 2+ . As described above, in the composition range of the present invention, the valence balance of copper ions is not necessarily important as long as the melting temperature and time are taken into consideration. In addition, the valence balance of the obtained glass agent was intentionally changed by heat treatment (a blue plate in which a thin plate was produced and Cu 2+ color was confirmed, the valence balance was changed to Cu + >> Cu 2+ Although almost no color tone was confirmed, brown (red) glass in which precipitation of colloidal metallic copper of Cu 0 was confirmed, the deodorizing effect was confirmed. Thus, a deodorizing effect is obtained by using a glass agent having the above composition range, and the deodorizing effect is maintained even if the valence balance of copper ions is controlled by heat treatment or the like after molding.
 触媒作用による消臭ガラス剤は、悪臭濃度が高濃度の場合、即効性に不十分な場合がある。一時的なトラップ剤として、物理吸着剤(活性炭、シリカゲル、ゼオライト等)と混合して利用することもできる。また、悪臭は必ずしも一成分で存在するわけではないため、各種悪臭の消臭に特化した剤を複合利用することもできる。従来からの消臭ガラス剤と混合して利用することもできる。 The deodorizing glass agent by catalytic action may have insufficient immediate effect when the malodor concentration is high. As a temporary trapping agent, it can also be used by mixing with a physical adsorbent (activated carbon, silica gel, zeolite, etc.). Moreover, since malodors do not necessarily exist as a single component, it is possible to use a combination of agents specialized in deodorizing various malodors. It can also be used by mixing with a conventional deodorizing glass agent.
消臭ガラス剤作製方法:
 原料調合後、溶融温度1350℃で8時間溶融し、流し出して、表1のガラス組成から成るガラスを得た。溶融後は、自然冷却を行ったが、水冷とすることもできる。得られたガラスを、ボールミルを用いて乾式粉砕し、粒度計でD50(粒径を累積分布させたときの積算値50%にあたる)=4.5μm以下、D98(粒径を累積分布させたときの積算値98%にあたる)=40μm以下となるように制御した。なお、粒径(直径)100μm以上の粒子はふるいで分けて除去した。
Deodorant glass preparation method:
After preparing the raw materials, it was melted at a melting temperature of 1350 ° C. for 8 hours and poured out to obtain a glass having the glass composition shown in Table 1. After melting, natural cooling was performed, but water cooling can also be used. The obtained glass was dry-pulverized using a ball mill, and D 50 (corresponding to 50% of the cumulative value when the particle size was cumulatively distributed) = 4.5 μm or less with a particle size meter, D 98 (cumulatively distribute the particle size. The integrated value is 98%)) = 40 μm or less. The particles having a particle diameter (diameter) of 100 μm or more were removed by separating with a sieve.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例A:硫黄系悪臭に対する消臭効果確認試験)
消臭試験方法:
 表1のガラス組成からなる消臭ガラス剤(実施例1)と悪臭とをテドラーバッグに封入し、経過時間に伴うバッグ内の悪臭濃度をガス検知管で測定した。
 試験条件は、下記の通りとした。
テドラーバッグ容量 : 1L
温度 : 室温(20~25℃)
消臭ガラス剤重量 : 0.1g
消臭ガラス剤粒径 : D50= 4.21μm
消臭ガラス剤比表面積 : 1.54m/g
 また、ブランクとして、消臭ガラス剤なしで上記同様の操作を行った。
測定結果および考察:
 図1に示すように、硫化水素、エチルメルカプタン、ブチルメルカプタン、2-メルカプトエタノール、いずれの硫黄系悪臭に対しても消臭効果があることが確認された。その他、図2、3、4、6、7、8に示す通りメチルメルカプタンに対しても消臭効果があることが確認された。
補足:
 ガス検知管は、同一試験内での比較に適した手法だが、定量性は低い。また、環境(温度、湿度)の影響を受けるため、他試験と定量性をもって比較できるものではない。つまり、あくまで、同一試験内での結果比較のみに留める必要がある。
(Example A: Deodorization effect confirmation test for sulfurous malodor)
Deodorization test method:
A deodorizing glass agent (Example 1) having a glass composition shown in Table 1 and malodor were sealed in a Tedlar bag, and the malodor concentration in the bag over time was measured with a gas detector tube.
The test conditions were as follows.
Tedlar bag capacity: 1L
Temperature: Room temperature (20-25 ° C)
Deodorant glass agent weight: 0.1g
Deodorant glass agent particle size: D 50 = 4.21 μm
Deodorant glass agent specific surface area: 1.54 m 2 / g
Moreover, the same operation as the above was performed without a deodorizing glass agent as a blank.
Measurement results and discussion:
As shown in FIG. 1, it was confirmed that there was a deodorizing effect against hydrogen sulfide, ethyl mercaptan, butyl mercaptan, 2-mercaptoethanol, and any sulfur-based malodor. In addition, as shown in FIGS. 2, 3, 4, 6, 7 and 8, it was confirmed that methyl mercaptan also has a deodorizing effect.
Supplement:
The gas detector tube is a method suitable for comparison within the same test, but its quantitativeness is low. In addition, since it is affected by the environment (temperature, humidity), it cannot be compared with other tests quantitatively. In other words, it is necessary only to compare the results within the same test.
(実施例B:消臭ガラス剤の消臭機構解明試験)
消臭試験方法1(窒素雰囲気):
 上記表1のガラス組成からなる消臭ガラス剤(実施例1)とMM(メチルメルカプタン)とをテドラーバッグに封入し、悪臭注入直後、2時間後、24時間後に、MMおよびDMDS(ジメチルジスルフィド)濃度をガスクロマトグラフ(GC)で測定した。
 試験条件は、下記の通りとした。
テドラーバッグ容量 : 5L
初期ガス(MM)濃度 : 100ppm
温度 : 室温(20~25℃)
消臭ガラス剤重量 : 1g
消臭ガラス剤粒径 : D50= 4.21μm
消臭ガラス剤比表面積 : 1.54m/g
 また、ブランクとして、消臭ガラス剤なしで上記同様の操作を行った。
 上記の試験は、株式会社 環境科学研究所に依頼した。
消臭試験方法2(人工エアー雰囲気):
 上記同様の試験を、人工エアー雰囲気(酸素濃度20%、窒素濃度80%)で行った。
消臭試験方法1に同じく、株式会社 環境科学研究所に依頼した。
測定結果および考察:
 図2には、消臭試験方法1の結果を示し、図3には、消臭試験方法2の結果を示している。
 図2、図3に示すように、ブランクでも0時間の時点からDMDSが存在しているが、確認したところ、使用したガス中にコンタミでDMDSが含まれていた。
MM→DMDSは、自然酸化が若干は起こるものの、ブランクに対し消臭ガラス剤は明らかにDMDSの生成が促進されている。この反応は、MMが二量体化してDMDSとなる。
 その他、硫黄成分がないかGCの保持時間を90分まで保持し、その中でMM、DMDS以外の存在を確認したが、特にピークは確認されなかった。
 消臭ガラス剤の消臭機構が、先行技術の溶解性ガラス剤のように硫化反応であれば、硫黄成分と銅成分の結合が起きる。しかし、GC結果の通り、銅との結合ではなく、MMから別の硫黄成分DMDSへの変換が確認された。変換量もほぼ等量と考えられる(ブランク自体のMMの減少等考慮して)。
 また、図3に示すように、酸素が存在すると、その消臭効果が明らかに高まった。酸素を介してMM→DMDSの反応を促進する触媒と考えられる。触媒作用による消臭機構を示すことが知られているCuOも、酸素を介してMM→DMDSの反応を促進する。表面に吸着している酸素を介すといわれている。消臭ガラス剤も同様の触媒作用を示している可能性がある。窒素雰囲気のときも消臭効果が確認されるが、封入前、ガラス表面に吸着していた酸素が影響した可能性がある。
 反応式としては、下記式が想定される。
 2CH‐SH+oxidant→CH‐S‐S‐CH+2H+2e
(Example B: Deodorization mechanism elucidation test of deodorant glass agent)
Deodorization test method 1 (nitrogen atmosphere):
A deodorizing glass agent (Example 1) having the glass composition shown in Table 1 above and MM (methyl mercaptan) were sealed in a Tedlar bag, immediately after malodor injection, 2 hours and 24 hours later, MM and DMDS (dimethyl disulfide) concentrations. Was measured with a gas chromatograph (GC).
The test conditions were as follows.
Tedlar bag capacity: 5L
Initial gas (MM) concentration: 100ppm
Temperature: Room temperature (20-25 ° C)
Deodorant glass agent weight: 1g
Deodorant glass agent particle size: D 50 = 4.21 μm
Deodorant glass agent specific surface area: 1.54 m 2 / g
Moreover, the same operation as the above was performed without a deodorizing glass agent as a blank.
The above test was commissioned to the Environmental Science Research Institute.
Deodorization test method 2 (artificial air atmosphere):
The same test as described above was performed in an artificial air atmosphere (oxygen concentration 20%, nitrogen concentration 80%).
In the same manner as in the deodorization test method 1, an environmental science research institute was requested.
Measurement results and discussion:
FIG. 2 shows the result of the deodorization test method 1, and FIG. 3 shows the result of the deodorization test method 2.
As shown in FIGS. 2 and 3, DMDS was present even at blank time from 0 hour, but as a result of confirmation, DMDS was contained in the used gas due to contamination.
Although MM → DMDS undergoes some natural oxidation, the deodorizing glass agent clearly promotes the production of DMDS relative to the blank. In this reaction, MM dimerizes to DMDS.
In addition, the GC retention time was maintained up to 90 minutes for the presence of sulfur components, and the presence of components other than MM and DMDS was confirmed, but no particular peak was observed.
If the deodorizing mechanism of the deodorizing glass agent is a sulfurization reaction like the soluble glass agent of the prior art, the sulfur component and the copper component are combined. However, as a GC result, conversion from MM to another sulfur component DMDS was confirmed instead of bonding with copper. The amount of conversion is also considered to be almost equal (considering the reduction of MM of the blank itself).
Moreover, as shown in FIG. 3, the presence of oxygen clearly increased its deodorizing effect. It is considered that the catalyst promotes the reaction of MM → DMDS through oxygen. CuO, which is known to show a deodorizing mechanism by catalytic action, also promotes the reaction of MM → DMDS via oxygen. It is said to be through oxygen adsorbed on the surface. There is a possibility that the deodorizing glass agent exhibits the same catalytic action. Although the deodorizing effect is confirmed even in a nitrogen atmosphere, oxygen adsorbed on the glass surface before sealing may have been affected.
As the reaction formula, the following formula is assumed.
2CH 3 —SH + oxidant → CH 3 —SS—CH 3 + 2H + + 2e
(実施例C:CuOと消臭ガラス剤の比較試験)
消臭試験方法:
 表1のガラス組成からなる消臭ガラス剤(実施例1)、CuO試薬それぞれとMMとをテドラーバッグに封入し、経過時間に伴うバッグ内のMM濃度をガス検知管で測定した。
 試験条件は、下記の通りとした。
テドラーバッグ容量 : 1L
初期ガス(MM)濃度 : 55ppm (55ppmで繰り返し8回実施)
温度 : 室温(20~25℃)
消臭ガラス剤重量 : 0.1g
消臭ガラス剤粒径 : D50= 4.21μm
消臭ガラス剤比表面積 : 1.54m/g
CuO : Wako試薬、粒径(記載値5μm)、比表面積0.38m/g。
 また、ブランクとして、消臭ガラス剤なしで上記同様の操作を行った。
測定結果および考察:
 図4に示すように、消臭ガラス剤もCuOも、約10ppm弱で収束することが確認された。これは、触媒作用によってDMDSが生成することによる、ガス検知管の誤差である(MM以外の硫黄成分があるとき、識別ができないため誤差要因となる)。別途、収束時点のMMをGCで確認したが、検出限界以下であることを確認した(結果割愛)。単純にCuO含有量からすると、消臭ガラス剤はCuO試薬の1/10程度にあるにも関わらず、高い消臭効果を示した。
 繰返し1回目の時点では、CuOの消臭スピードが上回っているが、繰返し8回目ともなると、両者の関係は逆転し、消臭ガラス剤の消臭スピードが勝っていることが確認された。具体的には、繰返し8回目も消臭ガラス剤は消臭スピードを保っているが、CuOの消臭効果が低下傾向にあることがわかる。硫黄系悪臭を消臭するとき、CuOは被毒(触媒劣化)することが知られており、この影響によると考えられる。本実施例では、ガラス化することで、安定な触媒状態になっていることが確認された。
(Example C: Comparative test of CuO and deodorant glass agent)
Deodorization test method:
The deodorizing glass agent (Example 1) which consists of a glass composition of Table 1, each CuO reagent, and MM were enclosed in the Tedlar bag, and the MM density | concentration in a bag accompanying elapsed time was measured with the gas detector tube.
The test conditions were as follows.
Tedlar bag capacity: 1L
Initial gas (MM) concentration: 55 ppm (repeated 8 times at 55 ppm)
Temperature: Room temperature (20-25 ° C)
Deodorant glass agent weight: 0.1g
Deodorant glass agent particle size: D 50 = 4.21 μm
Deodorant glass agent specific surface area: 1.54 m 2 / g
CuO: Wako reagent, particle size (described value 5 μm), specific surface area 0.38 m 2 / g.
Moreover, the same operation as the above was performed without a deodorizing glass agent as a blank.
Measurement results and discussion:
As shown in FIG. 4, it was confirmed that both the deodorizing glass agent and CuO converge at about 10 ppm or less. This is an error of the gas detector tube due to the generation of DMDS by catalytic action (when there is a sulfur component other than MM, it becomes an error factor because it cannot be identified). Separately, the MM at the time of convergence was confirmed by GC, but it was confirmed that it was below the detection limit (result omitted). From the CuO content, the deodorizing glass agent showed a high deodorizing effect despite being about 1/10 of the CuO reagent.
At the time of the first repetition, the deodorization speed of CuO was higher, but when it was the eighth repetition, the relationship between the two was reversed and it was confirmed that the deodorization speed of the deodorant glass agent was superior. Specifically, it is understood that the deodorizing glass agent maintains the deodorizing speed even in the eighth repetition, but the deodorizing effect of CuO tends to decrease. CuO is known to be poisoned (catalyst deterioration) when deodorizing sulfur-based malodors, and this is considered to be due to this effect. In the present Example, it was confirmed that it has become a stable catalyst state by vitrification.
(実施例D:溶解性ガラス剤と消臭ガラス剤の比較=硫化反応による消臭ガラス剤と触媒反応による消臭ガラス剤の比較)
溶解性ガラス剤作製方法:
溶解性ガラス1
 代表的な溶解性ガラス剤(イオンピュア)市販品
溶解性ガラス2
 リン酸マグネシウム94.26gと、89重量%のリン酸157.76gと、酸化銀4.0gとを混合して300℃にて3時間保持し、次にその乾燥物を1300℃で1時間溶融して下記表2のガラス組成から成るガラスを作製し、これを粉砕して試料とした。
溶解性ガラス3
 リン酸カリウム71.36gと、第一リン酸カルシウム38.05gと、酸化銅26.17gと89重量%のリン酸117.72gを混合して300℃にて3時間保持し、次にその乾燥物を1300℃で1時間溶融して下記表2のガラス組成から成るガラスを作製し、これを粉砕して試料とした。
溶解性ガラス4
 無水硼酸12.05g、硝酸ソーダ5.62g、超微粉シリカ(製品名:スノーテックスS)5.26g、アルミナ粉末0.2g、塩化銅21.4g、純水60mlを高速攪拌機で撹拌して、ゾルを調整した後、これに10Nのアンモニア水3mlを加えてゲル化し、乾燥機にて、120℃で180分乾燥した後、焼成炉にて、常温→525℃で30分、525℃で10分、525→950℃で30分、950℃で30分焼成して下記表2のガラス組成から成るガラス剤を作製し、これを粉砕して試料とした。
(Example D: Comparison of soluble glass agent and deodorant glass agent = comparison of deodorant glass agent by sulfurization reaction and deodorant glass agent by catalytic reaction)
Dissolving glass preparation method:
Dissolvable glass 1
Typical soluble glass agent (Ion Pure) Commercially available soluble glass 2
94.26 g of magnesium phosphate, 157.76 g of 89% by weight phosphoric acid, and 4.0 g of silver oxide were mixed and held at 300 ° C. for 3 hours, and then the dried product was melted at 1300 ° C. for 1 hour. Then, a glass having a glass composition shown in Table 2 below was prepared, and crushed to prepare a sample.
Soluble glass 3
71.36 g of potassium phosphate, 38.05 g of monobasic calcium phosphate, 26.17 g of copper oxide, and 117.72 g of 89 wt% phosphoric acid were mixed and held at 300 ° C. for 3 hours. A glass having the glass composition shown in Table 2 below was prepared by melting at 1300 ° C. for 1 hour, and pulverized to prepare a sample.
Dissolvable glass 4
Anhydrous boric acid 12.05 g, sodium nitrate 5.62 g, ultrafine silica (product name: Snowtex S) 5.26 g, alumina powder 0.2 g, copper chloride 21.4 g, and pure water 60 ml were stirred with a high-speed stirrer. After preparing the sol, 3 ml of 10N ammonia water was added thereto to gel it, dried in a dryer at 120 ° C. for 180 minutes, then in a baking furnace at room temperature → 525 ° C. for 30 minutes, and at 525 ° C. for 10 minutes. Minutes, 525 → 950 ° C. for 30 minutes, and 950 ° C. for 30 minutes to produce a glass agent having the glass composition shown in Table 2 below, which was crushed to prepare a sample.
Figure JPOXMLDOC01-appb-T000002
消臭試験方法:
 表1のガラス組成からなる消臭ガラス剤(実施例1)、上記表2のガラス組成からなる溶解性ガラスと硫化水素とをテドラーバッグに封入し、経過時間に伴うバッグ内の硫化水素濃度をガス検知管で測定した。
 試験条件は、下記の通りとした。
テドラーバッグ容量 : 1L
初期ガス(硫化水素)濃度 : 55ppm
温度 : 室温(20~25℃)
湿度 : 約80% 
消臭ガラス剤重量 : 0.1g
消臭ガラス剤粒径 : D50= 4.21μm
消臭ガラス剤比表面積 : 1.54m/g
 また、ブランクとして、消臭ガラス剤なしで上記同様の操作を行った。
測定結果および考察:
 図5に示すように、溶解性ガラス剤は、硫化反応による消臭のため反応スピードが速いことが確認された。このため、溶解性ガラス剤は、10分後にも測定した。溶解性ガラス1、3は、繰返し1回目で収束した。ほぼ消臭限界に達したことが確認された。また、これらのガラス剤は耐水性が低く吸湿しやすいせいか、凝集が確認された。参考値として、試料量中のAgO、CuO換算値を示した。しかし、これはガラス全量中であり、実際は表面に析出している分が消臭効果を示す。溶解性ガラス剤は表面で硫化反応を示し(実際、反応を裏付ける変色(黄色~褐色)が確認された)、それ以上、ガラス内部のAg、Cuは反応に寄与しないと考えられる。溶解性ガラス3は、繰返し2回目も若干の消臭効果を示したが、凝集していたため、ガスがゆっくりと内部に潜り込んで消臭された可能性がある。消臭ガラス剤は、溶解性ガラス剤と消臭機構が異なるために、溶解性ガラス4よりもCuOモル量が少ないにも関わらず持続性が高く、消臭量が多くなることが確認された。
補足:
 高湿度条件で調整したため、水分の存在よって助長される消臭ガラス剤は、(他の実施例と比較して)消臭スピードが向上した(他の実施例は、いずれも湿度50%以下)。
Figure JPOXMLDOC01-appb-T000002
Deodorization test method:
The deodorizing glass agent (Example 1) which consists of the glass composition of Table 1, the soluble glass and hydrogen sulfide which consist of the glass composition of the said Table 2 are enclosed in a Tedlar bag, and the hydrogen sulfide concentration in the bag over time is gasified. Measured with a detector tube.
The test conditions were as follows.
Tedlar bag capacity: 1L
Initial gas (hydrogen sulfide) concentration: 55ppm
Temperature: Room temperature (20-25 ° C)
Humidity: About 80%
Deodorant glass agent weight: 0.1g
Deodorant glass agent particle size: D 50 = 4.21 μm
Deodorant glass agent specific surface area: 1.54 m 2 / g
Moreover, the same operation as the above was performed without a deodorizing glass agent as a blank.
Measurement results and discussion:
As shown in FIG. 5, it was confirmed that the soluble glass agent has a high reaction speed due to deodorization by the sulfurization reaction. For this reason, the soluble glass agent was also measured after 10 minutes. The soluble glasses 1 and 3 converged in the first repetition. It was confirmed that the deodorization limit was almost reached. These glass agents were confirmed to be agglomerated because of their low water resistance and easy moisture absorption. As reference values, Ag 2 O and CuO equivalent values in the sample amount are shown. However, this is in the total amount of glass, and the amount deposited on the surface actually shows the deodorizing effect. The soluble glass agent exhibits a sulfurization reaction on the surface (in fact, a discoloration (yellow to brown) confirming the reaction was confirmed), and it is considered that Ag and Cu inside the glass do not contribute to the reaction. The soluble glass 3 showed a slight deodorizing effect the second time repeatedly, but because it was agglomerated, there was a possibility that the gas slowly dipped inside and was deodorized. Since the deodorizing glass agent has a different deodorizing mechanism from that of the soluble glass agent, it was confirmed that the deodorizing glass agent has high durability and a large amount of deodorizing despite the fact that the molar amount of CuO is smaller than that of the soluble glass 4. .
Supplement:
Since it was adjusted under high humidity conditions, the deodorizing glass agent promoted by the presence of moisture improved the deodorizing speed (compared to other examples) (all other examples had a humidity of 50% or less) .
(実施例E:CuO含有量と消臭効果の関係)
消臭ガラス剤作製方法:
 原料調合後、溶融温度1350 ℃で8時間溶融し、流し出して、下記表3のガラス組成から成るガラスを得た。溶融後の形成は、自然冷却で行ったが、水冷とすることもできる。
 ガラス組成は、蛍光X線分析装置を用いた半定量測定により確認した。得られたガラスをボールミルを用いて乾式粉砕し、粒度計でD50=4.5μm以下、D98=40μm以下となるように制御した。なお、粒径(直径)100μm以上の粒子はふるいで分けて除去した。
(Example E: Relationship between CuO content and deodorizing effect)
Deodorant glass preparation method:
After preparing the raw materials, it was melted at a melting temperature of 1350 ° C. for 8 hours and poured out to obtain a glass having the glass composition shown in Table 3 below. The formation after melting was performed by natural cooling, but can also be performed by water cooling.
The glass composition was confirmed by semi-quantitative measurement using a fluorescent X-ray analyzer. The obtained glass was dry-pulverized using a ball mill and controlled so that D 50 = 4.5 μm or less and D 98 = 40 μm or less by a particle size meter. The particles having a particle size (diameter) of 100 μm or more were removed by sieving.
Figure JPOXMLDOC01-appb-T000003
消臭試験方法:
 上記表3のガラス組成からなるガラス剤(CuO含有の消臭ガラス剤と未含有ガラス剤)とMMとをテドラーバッグに封入し、経過時間に伴うバッグ内のMM濃度をガス検知管で測定した。
 試験条件は、下記の通りとした。
テドラーバッグ容量 : 1L
初期ガス(MM)濃度 : 55ppm 
温度 : 室温(20~25℃)
消臭ガラス剤重量 : 0.1g
 また、ブランクとして、消臭ガラス剤なしで上記同様の操作を行った。
測定結果および考察:
 図6に示すように、CuOの含有量が異なる実験例1~6の何れも、消臭効果が、約10ppm弱に収束することが確認された。これは、触媒作用によってDMDSが生成することによる、ガス検知管の誤差である(MM以外の硫黄成分があるとき、識別ができないため誤差要因となる)。
 また、同粒径、同重量のとき、CuO含有量に伴って、消臭効果が上がる(具体的には、消臭スピードが上がる)ことが確認された。
 これは、CuOの含有量に伴って、悪臭と接触するガラス表面のCuO含有量も増加することによる。
 ただし、最も少ないCuO含有量の実験例1でも、55ppmという高濃度のMMを消臭しており、その消臭効果は十分である。
 実験例1は、24時間時点で比較したときに、実験例2~6よりも消臭スピードが劣るが、粒子径を小さくし表面積を上げることでそのスピードは容易に補える。
Figure JPOXMLDOC01-appb-T000003
Deodorization test method:
A glass agent (CuO-containing deodorizing glass agent and non-containing glass agent) having the glass composition shown in Table 3 above and MM were sealed in a Tedlar bag, and the MM concentration in the bag over time was measured with a gas detector tube.
The test conditions were as follows.
Tedlar bag capacity: 1L
Initial gas (MM) concentration: 55ppm
Temperature: Room temperature (20-25 ° C)
Deodorant glass agent weight: 0.1g
Moreover, the same operation as the above was performed without a deodorizing glass agent as a blank.
Measurement results and discussion:
As shown in FIG. 6, it was confirmed that the deodorizing effect converged to less than about 10 ppm in any of Experimental Examples 1 to 6 having different CuO contents. This is an error of the gas detector tube due to the generation of DMDS by catalytic action (when there is a sulfur component other than MM, it becomes an error factor because it cannot be identified).
Moreover, it was confirmed that the deodorizing effect increases (specifically, the deodorizing speed increases) with the CuO content at the same particle size and weight.
This is because the CuO content on the glass surface in contact with the malodor increases with the CuO content.
However, even in Experimental Example 1 having the smallest CuO content, MM having a high concentration of 55 ppm is deodorized, and the deodorizing effect is sufficient.
In Experimental Example 1, when compared at 24 hours, the deodorization speed is inferior to that of Experimental Examples 2 to 6, but the speed can be easily compensated by reducing the particle size and increasing the surface area.
(実施例F:耐水性に伴う硫化作用と触媒作用)
 ガラス組成変化に伴って、耐水性が変化する。このとき、溶解性ガラス剤に近づくと消臭機構が変化する可能性があるため、代表的な溶解性ガラス剤であるイオンピュア(比較例2、3)と溶解量を比較した。比較例2、3は、代表的な溶解性ガラス剤である「イオンピュア(市販品)」である。
消臭ガラス剤作製方法:
 原料調合後、溶融温度1350 ℃で8時間溶融し、流し出して、下記表4のガラス組成から成るガラスを得た。溶融後の形成は、自然冷却で行ったが、水冷とすることもできる。
 ガラス組成は、蛍光X線分析装置を用いた半定量測定により確認した。得られたガラスをボールミルを用いて乾式粉砕し、粒度計でD50=4.5μm以下、D98=40μm以下となるように制御した。なお、粒径(直径)100μm以上の粒子はふるいで分けて除去した。実験例7~10はCuO含有量(モル%)が同等となるように調整した。
(Example F: Sulfidation and catalytic action accompanying water resistance)
As the glass composition changes, the water resistance changes. At this time, since the deodorizing mechanism may change as it approaches the soluble glass agent, the amount of dissolution was compared with ion pure (Comparative Examples 2 and 3), which is a typical soluble glass agent. Comparative Examples 2 and 3 are “Ion Pure (commercially available)” which is a typical soluble glass agent.
Deodorant glass preparation method:
After the raw material preparation, the glass was melted at a melting temperature of 1350 ° C. for 8 hours and poured out to obtain a glass having a glass composition shown in Table 4 below. The formation after melting was performed by natural cooling, but can also be performed by water cooling.
The glass composition was confirmed by semi-quantitative measurement using a fluorescent X-ray analyzer. The obtained glass was dry-pulverized using a ball mill and controlled so that D 50 = 4.5 μm or less and D 98 = 40 μm or less by a particle size meter. The particles having a particle size (diameter) of 100 μm or more were removed by sieving. In Experimental Examples 7 to 10, the CuO content (mol%) was adjusted to be equal.
Figure JPOXMLDOC01-appb-T000004
ガラス溶解量確認方法:
 試料0.1gに対し、蒸留水100mLに浸漬し、室温(20~25℃)で24時間保持した後、その減少量を確認した。
判定方法:
 テドラーバッグ1L、MM濃度55ppm、繰り返し8回後までに消臭限界を迎えたものを×、消臭限界は迎えていないが、消臭スピードの低下が確認されたものを△、
繰返し8回後も持続性が確認されたものを○、として評価した。
 消臭試験時のガラス剤の比表面積、粒径は表4の通りであり、試料重量は0.1gである。
判定結果および考察:
 実験例9、10も触媒作用は確認されたが、耐水性が不十分なために溶解性ガラス剤と同様のイオン溶出における硫化反応が大きく働いたと思われる。
Figure JPOXMLDOC01-appb-T000004
Method for confirming glass dissolution:
A 0.1 g sample was immersed in 100 mL of distilled water and kept at room temperature (20 to 25 ° C.) for 24 hours, and the amount of decrease was confirmed.
Judgment method:
Tedlar bag 1L, MM concentration 55ppm, x that has reached the deodorization limit by 8 times repeatedly, deodorization limit has not been reached, but it has been confirmed that the deodorization speed has decreased, △,
The case where sustainability was confirmed even after repeated 8 times was evaluated as ◯.
The specific surface area and particle size of the glass agent during the deodorization test are as shown in Table 4, and the sample weight is 0.1 g.
Judgment results and discussion:
Although Experimental Examples 9 and 10 were confirmed to have a catalytic action, it is thought that the sulfurization reaction in ion elution similar to that of the soluble glass agent worked greatly due to insufficient water resistance.
(実施例G:持続性の高い無機系消臭ガラス剤(市販品)との性能比較)
消臭試験方法1(持続性評価):
 表1のガラス組成からなる消臭ガラス剤(実施例1)とMMとをテドラーバッグに封入し、経過時間に伴うバッグ内のMM濃度をガス検知管で測定した。
 試験条件は、下記の通りとした。
テドラーバッグ容量 : 1L
初期ガス(MM)濃度 : 表6の通り
温度 : 室温(20~25℃)
消臭ガラス剤重量 : 0.1g
消臭ガラス剤粒径 : D50= 4.21μm
消臭ガラス剤比表面積 : 1.54m/g
 比較評価対象として、下記の表5に示す無機系消臭ガラス剤を用いて上記同様の消臭試験を行った。なお、これらの無機系消臭ガラス剤は、何れも持続性の高い無機系消臭ガラス剤として市販されているものである。
(Example G: Performance comparison with highly durable inorganic deodorant glass agent (commercially available))
Deodorization test method 1 (sustainability evaluation):
A deodorizing glass agent (Example 1) having the glass composition shown in Table 1 and MM were enclosed in a Tedlar bag, and the MM concentration in the bag over time was measured with a gas detector tube.
The test conditions were as follows.
Tedlar bag capacity: 1L
Initial gas (MM) concentration: As shown in Table 6 Temperature: Room temperature (20-25 ° C)
Deodorant glass agent weight: 0.1g
Deodorant glass agent particle size: D 50 = 4.21 μm
Deodorant glass agent specific surface area: 1.54 m 2 / g
As a comparative evaluation object, the same deodorizing test was conducted using an inorganic deodorizing glass agent shown in Table 5 below. These inorganic deodorizing glass agents are all commercially available as highly durable inorganic deodorizing glass agents.
Figure JPOXMLDOC01-appb-T000005
 また、ブランクとして、消臭ガラス剤なしで上記同様の消臭試験を行った。
消臭試験方法2(水分存在条件):
 表1のガラス組成からなる消臭ガラス剤(実施例1)、表5の無機系消臭ガラス剤1~2、CuO試薬それぞれとMM、蒸留水とをテドラーバッグに封入し、経過時間に伴うバッグ内のMM濃度をガス検知管で測定した。
 試験条件は、下記の通りとした。
テドラーバッグ容量 : 1L
初期ガス(MM)濃度 : 55ppm
温度 : 室温(20~25℃)
消臭ガラス剤重量 : 0.1g
消臭ガラス剤粒径 : D50= 4.21μm
消臭ガラス剤比表面積 : 1.54m/g
蒸留水添加量 : 500μl(試料表面全体を濡らした)
CuO : Wako試薬、粒径(記載値5μm)、比表面積0.38m/g。
 また、ブランクとして、消臭ガラス剤なしで上記同様の消臭試験を行った。
測定結果および考察: 
Figure JPOXMLDOC01-appb-T000005
Moreover, the deodorizing test similar to the above was done without a deodorizing glass agent as a blank.
Deodorization test method 2 (water presence condition):
A deodorizing glass agent (Example 1) comprising the glass composition of Table 1, the inorganic deodorizing glass agents 1 and 2 of Table 5, each of the CuO reagent, MM, and distilled water are enclosed in a Tedlar bag, and the bag with the elapsed time The MM concentration inside was measured with a gas detector tube.
The test conditions were as follows.
Tedlar bag capacity: 1L
Initial gas (MM) concentration: 55ppm
Temperature: Room temperature (20-25 ° C)
Deodorant glass agent weight: 0.1g
Deodorant glass agent particle size: D 50 = 4.21 μm
Deodorant glass agent specific surface area: 1.54 m 2 / g
Distilled water addition amount: 500 μl (wet the entire sample surface)
CuO: Wako reagent, particle size (described value 5 μm), specific surface area 0.38 m 2 / g.
Moreover, the deodorizing test similar to the above was done without a deodorizing glass agent as a blank.
Measurement results and discussion:
Figure JPOXMLDOC01-appb-T000006
 上記の表6に示すように初期ガス濃度を変化させながら、繰返し10回実施したところ、図7に示すように、繰返し10回目まで同様の傾向が確認された。つまり、無機系消臭ガラス剤1は、瞬間的消臭効果が高いが、消臭限界(吸着限界)があるため収束する。無機系消臭ガラス剤2、実施例1は高濃度で消臭可能であり、同重量のとき、無機系消臭ガラス剤2の方が消臭スピードが上回る。無機系消臭ガラス剤1は収束するものの、悪臭を入れ替えて(リセットして)使用すれば、消臭効果の再現性がある。いずれも、悪臭が高濃度であったにも関わらず、繰返し10回目時点でも消臭効果が持続している。
 また、図8に示すように、水分添加により、消臭傾向に変化が確認された。
 無機系消臭ガラス剤1では、瞬間的な消臭効果が低下することが確認された。これは、物理吸着が高い剤のため、表面が濡れるとその瞬間的効果が弱まることに起因するものと考えられる。無機系消臭ガラス剤2は、水分存在環境では十分な消臭効果を奏することができないことが確認された。本実施例では、水分添加によって、消臭スピードが大幅に向上することが確認された。本実施例では、水分の存在によって、触媒効果を助長することやイオン溶出によって硫化反応による消臭機構が加わった可能性がある。本実施例は銅イオン溶出量がわずかなため、前者の可能性が高い。また、水分添加条件のとき、繰返し1回目にも関わらず、CuOよりも消臭スピードが速い結果であった(図4比較参照)。
 なお、ブランクでは、若干の減少があるものの明らかな濃度低下は確認されなかった。この結果は、MMが水に溶けたわけではなく、各剤の消臭効果を評価できたことを示している。
Figure JPOXMLDOC01-appb-T000006
As shown in Table 6 above, the test was repeated 10 times while changing the initial gas concentration. As shown in FIG. 7, the same tendency was confirmed until the 10th repetition. That is, the inorganic deodorizing glass agent 1 has a high instantaneous deodorizing effect, but converges because it has a deodorizing limit (adsorption limit). The inorganic deodorizing glass agent 2 and Example 1 can be deodorized at a high concentration, and at the same weight, the inorganic deodorizing glass agent 2 has a higher deodorizing speed. Although the inorganic deodorizing glass agent 1 converges, there is reproducibility of the deodorizing effect if the malodor is replaced (reset). In any case, the deodorizing effect is maintained even at the 10th time point in spite of the high concentration of malodor.
Moreover, as shown in FIG. 8, the change in the deodorization tendency was confirmed by the addition of water.
In the inorganic deodorant glass agent 1, it was confirmed that the instantaneous deodorizing effect falls. This is considered to be due to the fact that the instant effect is weakened when the surface is wet because the agent has high physical adsorption. It was confirmed that the inorganic deodorizing glass agent 2 cannot exhibit a sufficient deodorizing effect in a water-existing environment. In this example, it was confirmed that the deodorization speed was significantly improved by adding water. In this example, there is a possibility that a catalyst effect is promoted by the presence of moisture and a deodorization mechanism by a sulfurization reaction is added by ion elution. In this example, the elution amount of copper ions is small, so the former possibility is high. In addition, the deodorization speed was faster than that of CuO in the water addition condition despite the first repetition (see FIG. 4 comparison).
In the blank, although there was a slight decrease, a clear decrease in density was not confirmed. This result indicates that MM was not dissolved in water and the deodorizing effect of each agent could be evaluated.
(実施例H:低級脂肪酸に対する消臭効果確認試験)
消臭試験方法:
 表1のガラス組成からなる消臭ガラス剤(実施例1)と悪臭とをテドラーバッグに封入し、経過時間に伴うバッグ内の悪臭濃度をガス検知管で測定した。
試験条件は、下記の通りとした。
テドラーバッグ容量 : 1L
温度 : 室温(20~25℃)
消臭ガラス剤重量 : 0.1g
消臭ガラス剤粒径 : D50= 4.21μm
消臭ガラス剤比表面積 : 1.54m/g
 また、ブランクとして、消臭ガラス剤なしで上記同様の操作を行った。
測定結果および考察:
 図9に示すように、酢酸、プロピオン酸、ノルマル酪酸、ノルマル吉草酸、イソ吉草酸、いずれの低級脂肪酸に対しても、消臭効果があることが確認された。
(Example H: Deodorizing effect confirmation test for lower fatty acids)
Deodorization test method:
A deodorizing glass agent (Example 1) having a glass composition shown in Table 1 and malodor were sealed in a Tedlar bag, and the malodor concentration in the bag over time was measured with a gas detector tube.
The test conditions were as follows.
Tedlar bag capacity: 1L
Temperature: Room temperature (20-25 ° C)
Deodorant glass agent weight: 0.1g
Deodorant glass agent particle size: D 50 = 4.21 μm
Deodorant glass agent specific surface area: 1.54 m 2 / g
Moreover, the same operation as the above was performed without a deodorizing glass agent as a blank.
Measurement results and discussion:
As shown in FIG. 9, it was confirmed that there was a deodorizing effect on any of lower fatty acids such as acetic acid, propionic acid, normal butyric acid, normal valeric acid, and isovaleric acid.
(実施例I:トランス-2-ノネナールに対する消臭効果確認試験)
消臭試験方法:
 表1のガラス組成からなる消臭ガラス剤(実施例1)、CuO試薬それぞれとトランス-2-ノネナールとをテドラーバッグに封入し、経過時間に伴うバッグ内の悪臭濃度を高速液体クロマトグラフで測定した。
 高速液体クロマトグラフ法では、バッグ内のガスをDNPHカートリッジに捕集し、このカートリッジにアセトニトリルを通してDNPH誘導体を溶出させ、得られた溶出液を高速液体クロマトグラフで測定し、バッグ内のガス濃度を算出する。
 試験条件は、下記の通りとした。
テドラーバッグ容量 : 4L
温度 : 室温(20~25℃)
消臭ガラス剤重量 : 0.1g
消臭ガラス剤粒径 : D50= 4.21μm
消臭ガラス剤比表面積 : 1.54m/g
CuO : Wako試薬、粒径(記載値5μm)、比表面積0.38m/g
 また、ブランクとして、消臭ガラス剤なしで上記同様の操作を行った。
 上記の試験は、一般財団法人 日本食品分析センターに依頼した。
測定結果および考察:
(Example I: Deodorizing effect confirmation test for trans-2-nonenal)
Deodorization test method:
A deodorizing glass agent (Example 1) having the glass composition shown in Table 1, each CuO reagent and trans-2-nonenal were sealed in a Tedlar bag, and the malodor concentration in the bag over time was measured with a high performance liquid chromatograph. .
In the high-performance liquid chromatographic method, the gas in the bag is collected in a DNPH cartridge, the DNPH derivative is eluted through this cartridge through acetonitrile, the obtained eluate is measured with a high-performance liquid chromatograph, and the gas concentration in the bag is determined. calculate.
The test conditions were as follows.
Tedlar bag capacity: 4L
Temperature: Room temperature (20-25 ° C)
Deodorant glass agent weight: 0.1g
Deodorant glass agent particle size: D 50 = 4.21 μm
Deodorant glass agent specific surface area: 1.54 m 2 / g
CuO: Wako reagent, particle size (described value 5 μm), specific surface area 0.38 m 2 / g
Moreover, the same operation as the above was performed without a deodorizing glass agent as a blank.
The above test was commissioned to the Japan Food Analysis Center.
Measurement results and discussion:
Figure JPOXMLDOC01-appb-T000007
 上記の表7に示すように、トランス-2-ノネナールに対して消臭効果があることが確認された。
Figure JPOXMLDOC01-appb-T000007
As shown in Table 7 above, it was confirmed that there was a deodorizing effect on trans-2-nonenal.
(実施例J:消臭ガラス剤の粒子径と消臭スピードの検討)
消臭ガラス剤作製方法:
 原料調合後、溶融温度1350℃で8時間溶融し、流し出して、表8のガラス組成から成るガラスを得た。溶融後は、自然冷却を行ったが、水冷とすることもできる。得られたガラスを、粉砕し、表8の粒度に調整した。
Figure JPOXMLDOC01-appb-T000008
 表8に示す実験例11~18のガラスは、何れも、消臭絶対量は十分である。しかし、消臭ガラス剤の用途によって求められる消臭スピードが異なる。
 例えば、生活環境の中、トイレではメチルメルカプタンが数ppb発生すると言われている。10ppbと仮定したとき、1分で全て消臭したいとする。
上記の図6で示した通り、実験例2~6は、24hで55ppm消臭可能である。(二次生成物のジメチルジスルフィドは無視し、メチルメルカプタンを約55ppm消臭可能と捉える)計算上(55ppm/24h/60m)、1分あたりの消臭量は38ppbである。また、実験例1は、48hで55ppm消臭可能なことから、計算上(55ppm/48h/60m)、1分あたりの消臭量は19ppbである。
図6を見て分かる通り、実際はさらに消臭スピードが速いことが予想されるため(測定のタイミングでグラフ上ゆるやかに見える)、上述の算出値よりもさらに1分あたりの消臭量が高いことが予想される。
 図6の評価結果は、あくまで小容量、ガラス剤単体での効果のため、トイレ空間に対しては余裕を持ったスピードが好ましい。
24hで55ppm消臭可能であれば、消臭すべき環境濃度の10ppbよりも約4倍、48hで55ppm消臭可能であれば、約2倍のスピードである。
 表8では、約4倍(-5%まで許容範囲)のものを「A判定」、約2倍(-5%まで許容範囲)のものを「B判定」とした。
測定結果および考察:
 消臭ガラス剤の粒径(D50)y(μm)、CuO添加量x(モル%)として、
0.01≦x≦2.03のとき、y≦5.08x+0.18
2.03≦x≦23のとき、y≦10.5
の範囲において、より速やかな消臭が行われることが確認された。
 なお、消臭ガラス剤の粒径(D50)y(μm)については、「粉末」状の消臭ガラス剤とするために、10.5μmを上限とした。
(Example J: Examination of particle size and deodorization speed of deodorant glass agent)
Deodorant glass preparation method:
After preparing the raw materials, it was melted at a melting temperature of 1350 ° C. for 8 hours and poured out to obtain a glass having the glass composition shown in Table 8. After melting, natural cooling was performed, but water cooling can also be used. The obtained glass was crushed and adjusted to the particle size shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
All the glasses of Experimental Examples 11 to 18 shown in Table 8 have a sufficient deodorant absolute amount. However, the deodorizing speed required varies depending on the use of the deodorizing glass agent.
For example, in a living environment, it is said that several ppb of methyl mercaptan is generated in a toilet. Assuming 10 ppb, suppose you want to deodorize all in one minute.
As shown in FIG. 6 above, Experimental Examples 2 to 6 can deodorize 55 ppm in 24 hours. (The secondary product dimethyl disulfide is ignored, and methyl mercaptan is considered to be capable of deodorizing about 55 ppm) In calculation (55 ppm / 24 h / 60 m), the deodorizing amount per minute is 38 ppb. Moreover, since Experimental Example 1 can deodorize 55 ppm in 48 hours, the amount of deodorization per minute is 19 ppb in calculation (55 ppm / 48 h / 60 m).
As can be seen from FIG. 6, the deodorization speed is expected to be even faster (it appears to be more gradual on the graph at the measurement timing), so the deodorization amount per minute is higher than the calculated value above. Is expected.
The evaluation result in FIG. 6 is preferably a speed with a margin for the toilet space because of the effect of the small volume and the glass agent alone.
If deodorization of 55 ppm is possible in 24 hours, the speed is about 4 times the environmental concentration of 10 ppb to be deodorized. If deodorization of 55 ppm is possible in 48 hours, the speed is about twice.
In Table 8, “A judgment” is about 4 times (allowable range up to −5%), and “B judgment” is about twice (allowable range up to −5%).
Measurement results and discussion:
Deodorant glass agent particle size (D 50 ) y (μm), CuO addition amount x (mol%),
When 0.01 ≦ x ≦ 2.03, y ≦ 5.08x + 0.18
When 2.03 ≦ x ≦ 23, y ≦ 10.5
In this range, it was confirmed that quicker deodorization was performed.
Note that the particle diameter of the deodorant glass agent (D 50) y (μm) , in order to "powder" form of deodorant glass agent, was made the upper limit 10.5 [mu] m.
(実施例K:母組成と消臭効果)
消臭ガラス剤作製方法:
 原料調合後、溶融温度1350 ℃で8時間溶融し、流し出して、下記表9のガラス組成から成るガラスを得た。溶融後の形成は、自然冷却で行ったが、水冷とすることもできる。
 ガラス組成は、蛍光X線分析装置を用いた半定量測定により確認した。得られたガラスをボールミルを用いて乾式粉砕し、表9の粒度に調整した。なお、粒径(直径)100μm以上の粒子はふるいで分けて除去した。
(Example K: Mother composition and deodorizing effect)
Deodorant glass preparation method:
After preparing the raw materials, it was melted at a melting temperature of 1350 ° C. for 8 hours and poured out to obtain a glass having the glass composition shown in Table 9 below. The formation after melting was performed by natural cooling, but can also be performed by water cooling.
The glass composition was confirmed by semi-quantitative measurement using a fluorescent X-ray analyzer. The obtained glass was dry-ground using a ball mill and adjusted to the particle size shown in Table 9. The particles having a particle size (diameter) of 100 μm or more were removed by sieving.
Figure JPOXMLDOC01-appb-T000009
消臭試験方法:
 上記表9のガラス組成からなるガラス剤の実験例19~29とMMとをテドラーバッグに封入し、経過時間に伴うバッグ内のMM濃度をガス検知管で測定した。
 試験条件は、下記の通りとした。
テドラーバッグ容量 : 1L
初期ガス(MM)濃度 : 70ppm 
温度 : 室温(18~22℃)
消臭ガラス剤重量 : 0.1g
 また、ブランクとして、消臭ガラス剤なしで上記同様の操作を行った。
測定結果および考察:
 図13に示すように、CuOの含有量が同等のとき、母組成に関わらずその消臭効果は十分に発現する。また、母組成よりも若干のCuO含有量の違いが消臭スピードに影響していることがわかる。実験例19~20は、消臭スピードがCuO含有量に依存していないが、粒度の影響が生じたものと思われる(ただし、ガス検知管のため測定誤差も十分考えられる)。
ガラス溶解量確認方法、ガラス成分溶出量確認方法:
 試料0.1gに対し、蒸留水100mLに浸漬し、室温(18~22℃)で24時間保持した後、その減少量を確認した。この結果をガラス溶解量とした。
24時間保持後、吸引濾過により蒸留水のみを採取し、250mLに希釈した。この調整液に対し、ICP発光分光分析装置(Optima2000DV)を用いて溶出した成分濃度を測定した。測定は、JIS K0116(2003)に規定された手法に基づいて実施し、検出下限値を0.01ppmで設定した。また、高濃度成分は、必要に応じてさらに希釈した。測定値を蒸留水100ml中濃度に補正し、この結果を溶出量とした。
粒径確認方法:
 粒度計(MicrotracII)を用いて測定した。比表面積を実測値で確認していないものについては、粒度計結果から算出される比表面積CS(全て球状と仮定した場合の比表面積)を示した。
全結果および考察:
 表9の組成範囲内では、CuO含有量が同等のとき、母組成が与える消臭効果への影響は大差ないことが判明した。しかし、その溶解量、溶出量には差が確認された。消臭剤として使用したとき、凝集や周辺材料への影響、安全性の観点から溶出、溶解が少ないに越したことはない。経験的に、本試験でのガラス溶解量が10%以下となることが望ましい。
Figure JPOXMLDOC01-appb-T000009
Deodorization test method:
Experimental examples 19 to 29 of glass agents having the glass composition shown in Table 9 above and MM were sealed in a Tedlar bag, and the MM concentration in the bag over time was measured with a gas detector tube.
The test conditions were as follows.
Tedlar bag capacity: 1L
Initial gas (MM) concentration: 70ppm
Temperature: Room temperature (18-22 ° C)
Deodorant glass agent weight: 0.1g
Moreover, the same operation as the above was performed without a deodorizing glass agent as a blank.
Measurement results and discussion:
As shown in FIG. 13, when the content of CuO is the same, the deodorizing effect is sufficiently exhibited regardless of the mother composition. It can also be seen that a slight difference in CuO content than the mother composition affects the deodorization speed. In Experimental Examples 19 to 20, although the deodorization speed does not depend on the CuO content, it seems that the influence of the particle size has occurred (however, the measurement error is also sufficiently considered because of the gas detection tube).
Glass dissolution amount confirmation method, glass component elution amount confirmation method:
A 0.1 g sample was immersed in 100 mL of distilled water and kept at room temperature (18-22 ° C.) for 24 hours, and then the amount of decrease was confirmed. This result was taken as the glass dissolution amount.
After holding for 24 hours, only distilled water was collected by suction filtration and diluted to 250 mL. With respect to this adjustment liquid, the component concentration eluted using an ICP emission spectroscopic analyzer (Optima 2000 DV) was measured. The measurement was performed based on the method defined in JIS K0116 (2003), and the detection lower limit was set at 0.01 ppm. Moreover, the high concentration component was further diluted as necessary. The measured value was corrected to a concentration in 100 ml of distilled water, and this result was taken as the elution amount.
Particle size confirmation method:
It measured using the particle size meter (MicrotracII). For those whose specific surface area was not confirmed by actual measurement values, the specific surface area CS (specific surface area assuming all spherical shapes) calculated from the particle size measurement results was shown.
All results and discussion:
Within the composition range of Table 9, it was found that when the CuO content is the same, the influence on the deodorizing effect given by the mother composition is not much different. However, there was a difference between the amount dissolved and the amount eluted. When used as a deodorant, elution and dissolution have never been less in terms of aggregation, effects on surrounding materials, and safety. Empirically, it is desirable that the glass dissolution amount in this test be 10% or less.
(実施形態2:CuO含有アルカリ-アルカリ土類-ケイ酸塩ガラス)
 本実施形態の消臭ガラス剤は、SiOを50~70モル%、RO(R=Li、Na、K)を10~33モル%、R´O(R´=Mg、Ca、Sr、Ba)を0~15モル%、Alを0~6モル%、CuOを0.01~23モル%含有する「アルカリ(RO)-アルカリ土類(R´O)-ケイ酸ガラス(SiO)」からなり、通常のガラス剤と同様に、溶融急冷法で製造することができる。ガラス剤の形状は、溶融急冷法でプレ成形体を得た後、粉砕を行って得た粉体とする。ここで言う粉砕とは、一般的に知られる粉砕機(例えば、ボールミル、ビーズミル、ジェットミル、CFミル等)による粉砕を意味し、乾式でも湿式でも構わない。
(Embodiment 2: CuO-containing alkali-alkaline earth-silicate glass)
The deodorizing glass agent of the present embodiment includes 50 to 70 mol% of SiO 2 , 10 to 33 mol% of R 2 O (R = Li, Na, K), and R′O (R ′ = Mg, Ca, Sr). Ba) in an amount of 0 to 15 mol%, Al 2 O 3 in an amount of 0 to 6 mol%, and CuO in an amount of 0.01 to 23 mol% “alkali (R 2 O) -alkaline earth (R′O) -silicate” It is made of “acid glass (SiO 2 )” and can be produced by a melt quenching method in the same manner as a normal glass agent. The shape of the glass agent is a powder obtained by pulverizing after obtaining a pre-molded body by a melt quenching method. The pulverization referred to here means pulverization by a generally known pulverizer (for example, a ball mill, a bead mill, a jet mill, a CF mill, etc.), and may be dry or wet.
 以下、各ガラス組成について詳細に説明する。
(SiO
 SiOは、ガラスの構造骨格を形成する主成分となる。その含有量は、50~70モル%、好ましくは、55~70モル%とする。50モル%未満の場合、ガラスの化学的耐久性が不十分となり、またガラスが失透しやすくなり好ましくない。更に、50モル%未満の場合、ガラスの耐水性が不十分となり、水分存在下(大気中の水分を含む)で銅イオンが溶出しやすくなる結果、触媒作用による消臭効果よりも、イオン溶出によって起こる硫化反応による消臭効果が強くなるため好ましくない。70モル%を超える場合、融点が上昇することにより、ガラスの溶融性が困難となる他、粘度上昇も起こるため好ましくない。
Hereinafter, each glass composition will be described in detail.
(SiO 2 )
SiO 2 is a main component that forms the structural skeleton of glass. Its content is 50 to 70 mol%, preferably 55 to 70 mol%. If it is less than 50 mol%, the chemical durability of the glass becomes insufficient, and the glass tends to devitrify, which is not preferable. Furthermore, if it is less than 50 mol%, the water resistance of the glass becomes insufficient, and copper ions are more likely to elute in the presence of moisture (including moisture in the atmosphere). Since the deodorizing effect by the sulfurization reaction which occurs by this becomes strong, it is not preferable. If it exceeds 70 mol%, the melting point increases, which makes glass melting difficult and also causes an increase in viscosity.
(RO(R=Li、Na、K))
 RO(R=Li、Na、K)は、ガラスの構造骨格におけるSiとOの結合を切断して非架橋酸素を形成し、その結果、ガラスの粘性を低下させ、成形性や溶解性を向上させる成分であり、B同様の融剤である。その含有量は、RO(R=Li、Na、K)の一種もしくは二種以上を、多成分との含有比も考慮しつつ、合計10~33モル%、好ましくは12~24モル%とする。33モル%を超える場合、ガラスの化学的耐久性が不十分となる。具体的には、ガラス剤と大気中の水分が反応してブルームと称される白化現象が引き起こされる。ブルームが発生することにより、悪臭ガスとの接触面積が減少するため望ましくない。また、溶解炉のアルミナ質が浸蝕されやすくなる。
(R 2 O (R = Li, Na, K))
R 2 O (R = Li, Na, K) breaks the bond between Si and O in the glass structure skeleton to form non-crosslinked oxygen, resulting in a decrease in glass viscosity, moldability and solubility. And a flux similar to B 2 O 3 . The content of R 2 O (R = Li, Na, K) is 10 to 33 mol% in total, preferably 12 to 24 mol%, taking into consideration the content ratio with multiple components. And When it exceeds 33 mol%, the chemical durability of the glass becomes insufficient. Specifically, a whitening phenomenon called bloom is caused by a reaction between the glass agent and moisture in the atmosphere. The occurrence of bloom is undesirable because it reduces the contact area with malodorous gas. In addition, the alumina in the melting furnace is easily eroded.
(R´O(R´=Mg、Ca、Sr、Ba))
 R´O(R´=Mg、Ca、Sr、Ba)は、ガラスの化学的耐久性を向上させる成分である。その含有量は、R´O(R´=Mg、Ca、Sr、Ba)の一種もしくは二種以上を、合計0~15モル%、好ましくは2~10モル%とする。15モル%を超えると溶融時の粘性が高くなるとともに、ガラスが失透しやすくなるため好ましくない。なお、発明の消臭ガラス剤において必須成分ではなく、その含有量は0モル%でもよい。
(R'O (R '= Mg, Ca, Sr, Ba))
R′O (R ′ = Mg, Ca, Sr, Ba) is a component that improves the chemical durability of the glass. The content of one or more of R′O (R ′ = Mg, Ca, Sr, Ba) is 0 to 15 mol%, preferably 2 to 10 mol% in total. If it exceeds 15 mol%, the viscosity at the time of melting becomes high and the glass tends to be devitrified, which is not preferable. In addition, it is not an essential component in the deodorizing glass agent of the invention, and its content may be 0 mol%.
(CuO)
 CuOに関しては、基本的に上記した実施形態1と同様であるが、本実施形態では、CuO粉末の添加量x(モル%)および消臭ガラス剤の粒径(D50、yμm)を下記式の範囲に限定することにより、従来の消臭ガラス剤では考慮されていなかった、「速やかな消臭」を実現可能とした。
 0.01≦x≦2.38のとき、y≦4.27x+0.34
 2.38≦x≦23のとき、y≦10.5
(CuO)
Regarding CuO, it is basically the same as in Embodiment 1 described above, but in this embodiment, the addition amount x (mol%) of CuO powder and the particle size (D 50 , y μm) of the deodorizing glass agent are expressed by the following formulae. By limiting to this range, “rapid deodorization” that was not considered in the conventional deodorizing glass agent can be realized.
When 0.01 ≦ x ≦ 2.38, y ≦ 4.27x + 0.34
When 2.38 ≦ x ≦ 23, y ≦ 10.5
(Al
 Alは、ガラスの化学的耐久性を向上させ、結晶構造安定性に影響を与える成分である。また、Alは、ガラスの分相を抑制しガラス剤の均質性を高める働きをする。粘性を上げること、添加によってガラス中の銅イオンの酸化還元状態に影響を与える可能性があることから、その含有量は、6モル%以下、好ましくは5.5モル%以下とすることが望ましい。
(Al 2 O 3 )
Al 2 O 3 is a component that improves the chemical durability of the glass and affects the crystal structure stability. Further, Al 2 O 3 functions to suppress the phase separation of the glass and increase the homogeneity of the glass agent. It is desirable that the content is 6 mol% or less, preferably 5.5 mol% or less, because the viscosity may increase or the addition may affect the redox state of copper ions in the glass. .
(その他の微量成分)(Fe)(Cr、MnO、CeO)に関しては、上記した実施形態1と同様である。 (Other trace components) (Fe 2 O 3 ) (Cr 2 O 3 , MnO 2 , CeO 2 ) is the same as in Embodiment 1 described above.
 以上を考慮し、本実施形態では、安定して消臭効果が得られる組成範囲を特定した。つまり、溶融温度範囲、酸化還元状態、組成範囲を考慮した上で、組成範囲を特定した。上記組成範囲のガラス剤を、溶融急冷法で製造すれば安定して消臭ガラス剤が得られる。特に、タンク炉溶融、電気炉溶融、小規模のるつぼ溶融で安定して得られる。一般的にソーダライムガラスの場合、タンク炉溶融、電気炉溶融では、銅イオンの価数バランス(Cu2+/total)が、前者が15%程度、後者が50%程度であると知られている。本実施形態の組成でも当然価数バランスは変化する。消臭機構が触媒作用であるため、これらの化学状態が消臭効果に影響を及ぼす可能性があるが、上記組成範囲であれば、その効果の違いは特に問題とならない。 Considering the above, in the present embodiment, the composition range in which the deodorizing effect is stably obtained is specified. That is, the composition range was specified in consideration of the melting temperature range, the oxidation-reduction state, and the composition range. If a glass agent having the above composition range is produced by a melt quenching method, a deodorizing glass agent can be stably obtained. In particular, it can be stably obtained by melting in a tank furnace, melting an electric furnace, or melting a small-scale crucible. In general, in the case of soda lime glass, it is known that the valence balance of copper ions (Cu 2 + / total) is about 15% for the former and about 50% for the latter in tank furnace melting and electric furnace melting. . Naturally, the valence balance also changes in the composition of the present embodiment. Since the deodorizing mechanism is a catalytic action, these chemical states may affect the deodorizing effect, but the difference in the effect is not particularly problematic as long as it is in the above composition range.
 なお、溶融温度、溶融時間によって酸化還元状態が異なることは考慮が必要である。溶融温度1200~1400℃、好ましくは1280~1380℃に制御するとよい。溶融時間は6~8時間が望ましい。ここで得られるガラスは、Cu2+による青、もしくは緑青色が確認される。以上の通り、本発明の組成範囲では、溶融温度と時間にさえ注意すれば、銅イオンの価数バランスは必ずしも重要でない。また、得られたガラス剤を熱処理で意図的に価数バランスを変化させて(薄板を作製し、Cu2+の発色が確認される青色ガラス、Cu>>Cu2+に価数バランスが変化しほとんど色調の確認されないガラス、Cuのコロイド状金属銅の析出が確認される褐色(赤色)ガラス)消臭効果を確認したが、いずれも十分な消臭効果が得られた。このように、上記組成範囲のガラス剤とすることにより消臭効果が得られ、また、成形後に熱処理等で銅イオンの価数バランスを制御しても消臭効果は維持される。 Note that it is necessary to consider that the oxidation-reduction state varies depending on the melting temperature and the melting time. The melting temperature may be controlled to 1200 to 1400 ° C, preferably 1280 to 1380 ° C. The melting time is preferably 6 to 8 hours. The glass obtained here is confirmed to be blue or greenish blue by Cu 2+ . As described above, in the composition range of the present invention, the valence balance of copper ions is not necessarily important as long as the melting temperature and time are taken into consideration. In addition, the valence balance of the obtained glass agent was intentionally changed by heat treatment (a blue plate in which a thin plate was produced and Cu 2+ color was confirmed, the valence balance was changed to Cu + >> Cu 2+ Although almost no color tone was confirmed, brown (red) glass in which precipitation of colloidal metallic copper of Cu 0 was confirmed, the deodorizing effect was confirmed. Thus, a deodorizing effect is obtained by using a glass agent having the above composition range, and the deodorizing effect is maintained even if the valence balance of copper ions is controlled by heat treatment or the like after molding.
 一時的なトラップ剤として、物理吸着剤(活性炭、シリカゲル、ゼオライト等)と混合して利用することもできる。また、悪臭は必ずしも一成分で存在するわけではないため、各種悪臭の消臭に特化した剤を複合利用することもできる。従来からの消臭ガラス剤と混合して利用することもできる。 As a temporary trapping agent, it can be used by mixing with a physical adsorbent (activated carbon, silica gel, zeolite, etc.). Moreover, since malodors do not necessarily exist as a single component, it is possible to use a combination of agents specialized in deodorizing various malodors. It can also be used by mixing with a conventional deodorizing glass agent.
(実施例L:消臭ガラス剤の粒子径と消臭スピードの検討)
 実施形態1の実施例Jと同様にして、粒子径と消臭スピードの検討を行った。
(Example L: Examination of particle size and deodorization speed of deodorant glass agent)
In the same manner as in Example J of Embodiment 1, the particle size and deodorization speed were examined.
Figure JPOXMLDOC01-appb-T000010
 表10に示す実験例33~45のガラスは、何れも、消臭絶対量は十分である。
測定結果および考察:
 消臭ガラス剤の粒径(D50)y(μm)、CuO添加量x(モル%)として、
 0.01≦x≦2.38のとき、y≦4.27x+0.34
 2.38≦x≦23のとき、y≦10.5
の範囲において、より速やかな消臭が行われることが確認された。
 なお、消臭ガラス剤の粒径(D50)y(μm)については、「粉末」状の消臭ガラス剤とするために、10.5μmを上限とした。
Figure JPOXMLDOC01-appb-T000010
All of the glasses of Experimental Examples 33 to 45 shown in Table 10 have a sufficient deodorizing absolute amount.
Measurement results and discussion:
Deodorant glass agent particle size (D 50 ) y (μm), CuO addition amount x (mol%),
When 0.01 ≦ x ≦ 2.38, y ≦ 4.27x + 0.34
When 2.38 ≦ x ≦ 23, y ≦ 10.5
In this range, it was confirmed that quicker deodorization was performed.
Note that the particle diameter of the deodorant glass agent (D 50) y (μm) , in order to "powder" form of deodorant glass agent, was made the upper limit 10.5 [mu] m.

Claims (9)

  1.  CuO含有アルカリ-アルカリ土類-ホウケイ酸ガラスもしくはCuO含有アルカリ-アルカリ土類-ケイ酸塩ガラスからなる消臭ガラス剤であって、
     原料として、CuO粉末を、下記式の範囲(xモル%)で添加して、消臭ガラス剤の粒径(D50)を下記の範囲(yμm)としたことを特徴とする消臭ガラス剤。  
     0.01≦x≦0.198のとき、y≦4.27x+0.34
     0.198≦x≦2.03のとき、y≦5.08x+0.18
     2.03≦x≦23のとき、y≦10.5
    A deodorizing glass agent comprising CuO-containing alkali-alkaline earth-borosilicate glass or CuO-containing alkali-alkaline earth-silicate glass,
    Deodorant glass agent characterized by adding CuO powder as a raw material in the range of the following formula (x mol%) and setting the particle size (D 50 ) of the deodorant glass agent to the following range (y μm). .
    When 0.01 ≦ x ≦ 0.198, y ≦ 4.27x + 0.34
    When 0.198 ≦ x ≦ 2.03, y ≦ 5.08x + 0.18
    When 2.03 ≦ x ≦ 23, y ≦ 10.5
  2.  前記ガラスが、
     SiOを46~70モル%、
     BとRO(R=Li、Na、K)を合計で15~50モル%、
     R´O(R´=Mg、Ca、Sr、Ba)を0~10モル%、
     Alを0~6モル%、
     CuOを0.01~23モル%
     含有するものであり、
     下記式を満足することを特徴とする請求項1記載の消臭ガラス剤。
     0.01≦x≦2.03のとき、y≦5.08x+0.18
     2.03≦x≦23のとき、y≦10.5
    The glass is
    The SiO 2 46 ~ 70 mol%,
    15 to 50 mol% in total of B 2 O 3 and R 2 O (R = Li, Na, K),
    R′O (R ′ = Mg, Ca, Sr, Ba) 0-10 mol%,
    0 to 6 mol% of Al 2 O 3 ,
    0.01-23 mol% CuO
    Contains
    The deodorizing glass agent according to claim 1, which satisfies the following formula.
    When 0.01 ≦ x ≦ 2.03, y ≦ 5.08x + 0.18
    When 2.03 ≦ x ≦ 23, y ≦ 10.5
  3.  前記ガラスが、
     Bを5~20モル%、
     RO(R=Li、Na、K)を10~30モル%
     含有するものであることを特徴とする請求項2記載の消臭ガラス剤。
    The glass is
    5 to 20 mol% of B 2 O 3 ,
    10-30 mol% of R 2 O (R = Li, Na, K)
    The deodorizing glass agent according to claim 2, which is contained.
  4.  前記ガラスが、
     SiOを51~63モル%、
     BとRO(R=Li、Na、K)を合計で21~39モル%、
     R´O(R´=Mg、Ca、Sr、Ba)を2~7モル%、
     Alを0~5.5モル%、
     CuOを1~13モル%
     含有するものであることを特徴とする請求項2記載の消臭ガラス剤。
    The glass is
    The SiO 2 51 ~ 63 mol%,
    A total of 21 to 39 mol% of B 2 O 3 and R 2 O (R = Li, Na, K),
    2-7 mol% of R′O (R ′ = Mg, Ca, Sr, Ba)
    0 to 5.5 mol% Al 2 O 3
    1 to 13 mol% of CuO
    The deodorizing glass agent according to claim 2, which is contained.
  5.  前記ガラスが、
     Bを8~17モル%、
     RO(R=Li、Na、K)を13~22モル%、
     含有するものであることを特徴とする請求項4記載の消臭ガラス剤。
    The glass is
    8 to 17 mol% B 2 O 3 ,
    R 2 O (R = Li, Na, K) 13-22 mol%,
    The deodorizing glass agent according to claim 4, which is contained.
  6.  前記ガラスが、
     SiOを53~62モル%、
     Bを10~17モル%、
     NaOを13~19モル%、
     CaOを3~6モル%、
     Alを0~4.5モル%、
     CuOを4~13モル%
     含有するものであることを特徴とする請求項2記載の消臭ガラス剤。
    The glass is
    SiO 2 53-62 mol%,
    10 to 17 mol% B 2 O 3
    Na 2 O 13-19 mol%,
    3-6 mol% CaO,
    0 to 4.5 mol% of Al 2 O 3
    4-13 mol% CuO
    The deodorizing glass agent according to claim 2, which is contained.
  7.  前記ガラスが、
     SiOを50~70モル%、
     RO(R=Li、Na、K)を10~33モル%
     R´O(R´=Mg、Ca、Sr、Ba)を0~15モル%、
     Alを0~6モル%、
     CuOを0.01~23モル%
     含有するものであり、
     下記式を満足することを特徴とする請求項1記載の消臭ガラス剤。
     0.01≦x≦2.38のとき、y≦4.27x+0.34
     2.38≦x≦23のとき、y≦10.5
    The glass is
    50 to 70 mol% of SiO 2
    10 to 33 mol% of R 2 O (R = Li, Na, K)
    0 to 15 mol% of R′O (R ′ = Mg, Ca, Sr, Ba),
    0 to 6 mol% of Al 2 O 3 ,
    0.01-23 mol% CuO
    Contains
    The deodorizing glass agent according to claim 1, which satisfies the following formula.
    When 0.01 ≦ x ≦ 2.38, y ≦ 4.27x + 0.34
    When 2.38 ≦ x ≦ 23, y ≦ 10.5
  8.  前記ガラスが、
     SiOを55~70モル%、
     RO(R=Li、Na、K)を合計で12~24モル%、
     R´O(R´=Mg、Ca、Sr、Ba)を2~10モル%、
     Alを0~5.5モル%、
     CuOを1~20モル%
     含有するものであることを特徴とする請求項7記載の消臭ガラス剤。
    The glass is
    55 to 70 mol% of SiO 2
    A total of 12 to 24 mol% of R 2 O (R = Li, Na, K),
    2 to 10 mol% of R′O (R ′ = Mg, Ca, Sr, Ba),
    0 to 5.5 mol% Al 2 O 3
    1-20 mol% CuO
    The deodorizing glass agent according to claim 7, which is contained.
  9.  前記ガラスが、
     SiOを55~65モル%、
     NaOを12~20モル%、
     CaOを3~7モル%、
     Alを0~5モル%、
     CuOを4~13モル%
     含有するものであることを特徴とする請求項7記載の消臭ガラス剤。
    The glass is
    The SiO 2 55 ~ 65 mol%,
    12-20 mol% Na 2 O,
    3-7 mol% CaO,
    0 to 5 mol% of Al 2 O 3 ,
    4-13 mol% CuO
    The deodorizing glass agent according to claim 7, which is contained.
PCT/JP2016/056156 2015-03-17 2016-03-01 Deodorant glass agent WO2016147850A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017506185A JP6594405B2 (en) 2015-03-17 2016-03-01 Deodorant glass agent
CN201680011391.4A CN107427596B (en) 2015-03-17 2016-03-01 Deodorizing glass agent
KR1020177024999A KR102460894B1 (en) 2015-03-17 2016-03-01 deodorant glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015052894 2015-03-17
JP2015-052894 2015-03-17

Publications (1)

Publication Number Publication Date
WO2016147850A1 true WO2016147850A1 (en) 2016-09-22

Family

ID=56918814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056156 WO2016147850A1 (en) 2015-03-17 2016-03-01 Deodorant glass agent

Country Status (4)

Country Link
JP (1) JP6594405B2 (en)
KR (1) KR102460894B1 (en)
CN (1) CN107427596B (en)
WO (1) WO2016147850A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017023444A (en) * 2015-07-23 2017-02-02 石塚硝子株式会社 Absorbent pad
JP2017036192A (en) * 2015-08-13 2017-02-16 石塚硝子株式会社 Material for forming glass coating, and glass-coated product using the same
JPWO2018185948A1 (en) * 2017-04-04 2020-02-13 石塚硝子株式会社 Material showing deodorant effect
JP2021112438A (en) * 2020-01-21 2021-08-05 石塚硝子株式会社 Deodorant agent and deodorant composite
JP2021194124A (en) * 2020-06-10 2021-12-27 石塚硝子株式会社 Deodorant for sulfur-based malodor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102668210B1 (en) * 2021-01-29 2024-05-21 엘지전자 주식회사 Activated carbon filter including antibacterial glass and home electric appliance using the same
KR20220111769A (en) * 2021-02-01 2022-08-10 엘지전자 주식회사 Photocatalytic glass composition, photocatalytic glass and method for preparation thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0467868A (en) * 1990-07-07 1992-03-03 Ishizuka Glass Co Ltd Deodorizer
US5512521A (en) * 1995-03-09 1996-04-30 Bayer Corporation Cobalt-free, black, dual purpose porcelain enamel glass
JP2005525985A (en) * 2002-01-24 2005-09-02 カール−ツァイス−スティフツング Antimicrobial water-insoluble silicate glass powder and glass powder mixture
JP2006089310A (en) * 2004-09-22 2006-04-06 Shoei Chem Ind Co Glass powder and conductor paste containing the same
JP2016027999A (en) * 2014-07-10 2016-02-25 石塚硝子株式会社 Deodorant

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1252324A (en) * 1999-11-25 2000-05-10 邢少祥 Preparation and application of catalyst
DE112004000094A5 (en) * 2003-02-25 2008-04-03 Schott Ag Antimicrobial borosilicate glass
JP2006520311A (en) * 2003-02-25 2006-09-07 ショット アクチエンゲゼルシャフト Antimicrobial action borosilicate glass
CN100387325C (en) * 2006-01-11 2008-05-14 雷景华 Air purifier
JP2009213992A (en) 2008-03-10 2009-09-24 Hiroshima Univ Deodorant and method for manufacturing deodorant
CN102448902B (en) * 2010-05-27 2016-01-20 兴亚硝子株式会社 mixed antibacterial glass
CN103443042A (en) * 2011-03-28 2013-12-11 康宁股份有限公司 Antimicrobial action of Cu, Cuo and Cu2O nanoparticles on glass surfaces and durable coatings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0467868A (en) * 1990-07-07 1992-03-03 Ishizuka Glass Co Ltd Deodorizer
US5512521A (en) * 1995-03-09 1996-04-30 Bayer Corporation Cobalt-free, black, dual purpose porcelain enamel glass
JP2005525985A (en) * 2002-01-24 2005-09-02 カール−ツァイス−スティフツング Antimicrobial water-insoluble silicate glass powder and glass powder mixture
JP2006089310A (en) * 2004-09-22 2006-04-06 Shoei Chem Ind Co Glass powder and conductor paste containing the same
JP2016027999A (en) * 2014-07-10 2016-02-25 石塚硝子株式会社 Deodorant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017023444A (en) * 2015-07-23 2017-02-02 石塚硝子株式会社 Absorbent pad
JP2017036192A (en) * 2015-08-13 2017-02-16 石塚硝子株式会社 Material for forming glass coating, and glass-coated product using the same
JPWO2018185948A1 (en) * 2017-04-04 2020-02-13 石塚硝子株式会社 Material showing deodorant effect
JP2021112438A (en) * 2020-01-21 2021-08-05 石塚硝子株式会社 Deodorant agent and deodorant composite
JP7333279B2 (en) 2020-01-21 2023-08-24 石塚硝子株式会社 Deodorants and deodorant complexes
JP2021194124A (en) * 2020-06-10 2021-12-27 石塚硝子株式会社 Deodorant for sulfur-based malodor
JP7288420B2 (en) 2020-06-10 2023-06-07 石塚硝子株式会社 Sulfur-based odor deodorant

Also Published As

Publication number Publication date
KR20170129120A (en) 2017-11-24
JPWO2016147850A1 (en) 2017-12-28
CN107427596A (en) 2017-12-01
CN107427596B (en) 2020-10-02
JP6594405B2 (en) 2019-10-23
KR102460894B1 (en) 2022-10-28

Similar Documents

Publication Publication Date Title
JP6594405B2 (en) Deodorant glass agent
JP6514595B2 (en) Deodorant film and bag with deodorizing function
US20200229441A1 (en) Fungicide, photo catalytic composite material, adsorbent, and depurative
CN103285805B (en) Mercury removal agent and preparation method thereof
JP5784848B1 (en) Deodorants
JP2010273698A (en) Antibacterial deodorant and method for producing the same
JP5888719B2 (en) Sulfur compound adsorbent
CN104817272A (en) Use of metal ion-adsorption adsorbent as coloring agent, coloring agent and preparation method and use of coloring agent
US20170143862A1 (en) Deodorant
CN105693079B (en) The preparation method and products obtained therefrom of the green glass of a kind of green colourant and shielding ultraviolet rays
JP3977151B2 (en) Deodorants
CN104324052A (en) Inorganic anti-bacterial agent and preparation method thereof
JPWO2018185948A1 (en) Material showing deodorant effect
JP7288420B2 (en) Sulfur-based odor deodorant
JP6472727B2 (en) Absorbent pad
JP2010501866A (en) Process for the production of catalytically active components for thermal ionization detectors for the detection of halogen-containing compounds and oxide ceramic materials for the components
JP2017046747A (en) Filter having deodorant function
JP2017024749A (en) Deodorant glass container
JP2005524594A (en) Antimicrobial alkali silicate glass ceramic and its use
JP5833630B2 (en) Catalyst for oxidizing SO2 to SO3
JP2017031375A (en) Deodorant resin composition, masterbatch and method for producing deodorant resin composition
JP7333279B2 (en) Deodorants and deodorant complexes
JP2017046745A (en) Shoe having deodorant function
JP2585157B2 (en) Adsorbent composition and method for producing the same
JPH05345703A (en) Antibacterial activated carbon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764680

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506185

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177024999

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764680

Country of ref document: EP

Kind code of ref document: A1