WO2016147751A1 - Laser beam intensity distribution measurement device and laser beam intensity distribution measurement method - Google Patents

Laser beam intensity distribution measurement device and laser beam intensity distribution measurement method Download PDF

Info

Publication number
WO2016147751A1
WO2016147751A1 PCT/JP2016/053798 JP2016053798W WO2016147751A1 WO 2016147751 A1 WO2016147751 A1 WO 2016147751A1 JP 2016053798 W JP2016053798 W JP 2016053798W WO 2016147751 A1 WO2016147751 A1 WO 2016147751A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
intensity distribution
optical axis
unit
measuring
Prior art date
Application number
PCT/JP2016/053798
Other languages
French (fr)
Japanese (ja)
Inventor
直之 森宮
直哉 吉田
尚樹 岡本
庸男 歳桃
鳥居 尚之
山本 次郎
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2016147751A1 publication Critical patent/WO2016147751A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details

Definitions

  • the present invention relates to a laser beam intensity distribution measuring method and a laser beam intensity distribution measuring apparatus embodying the measuring method.
  • Patent Document 1 there is an apparatus for measuring the intensity distribution of a laser beam (for example, see Patent Document 1).
  • the present invention has been made in order to solve the above-described problems, and a laser beam intensity distribution measuring method capable of sufficiently measuring the intensity distribution of a laser beam whose optical path is deflected from the optical axis and is obliquely incident. It is another object of the present invention to provide a laser beam intensity distribution measuring method that embodies the intensity distribution measuring method.
  • the laser beam intensity distribution measuring apparatus that achieves the above object is an apparatus for measuring the intensity distribution of a laser beam.
  • the intensity distribution measuring apparatus has a measuring unit and an adjusting unit.
  • the measurement unit is arranged to face the optical axis of the laser beam and measures the intensity distribution of the laser beam irradiated on the detection region.
  • the adjustment unit includes a first adjustment unit and a second adjustment unit.
  • the first adjustment unit collimates and propagates the laser beam.
  • the second adjustment unit is disposed downstream of the first adjustment unit along the optical axis and propagates the laser beam while being close to the optical axis.
  • the adjustment unit adjusts the angle formed with the optical axis to be relatively small so that the laser beam deflected from the optical axis and propagates toward the detection region.
  • the laser beam intensity distribution measuring method that achieves the above object is a method for measuring the intensity distribution of a laser beam.
  • the laser beam intensity distribution measurement method is adjusted so that the angle formed with the optical axis is relatively small by collimating the laser beam propagating from the optical axis and then propagating it close to the optical axis.
  • the optical path refers to the path of each laser beam that propagates while being scanned by an optical element such as a galvanometer mirror.
  • the optical axis is an axis connecting the light source and the center of the detection region, and particularly refers to the central axis of the laser beam in a state where scanning by an optical element such as a galvano mirror is not performed.
  • the state where the optical path of the laser beam is deflected from the optical axis refers to a state where the laser beam propagates with a predetermined angle shifted from the central axis.
  • the intensity distribution measuring apparatus 100 is an apparatus that measures the intensity distribution of a laser beam L that is scanned and processed in a processing region of a workpiece (for example, a workpiece 10 that requires fine processing) on a manufacturing line. .
  • the intensity distribution measuring device 100 corresponds to an embodiment of the intensity distribution measuring method.
  • the intensity distribution measuring apparatus 100 can also be used as an apparatus for measuring the intensity distribution of the laser beam L in a laboratory or the like.
  • FIG. 1 is a perspective view showing a main part of an intensity distribution measuring apparatus 100 for a laser beam L according to an embodiment.
  • FIG. 2 is a diagram illustrating an optical system such as the adjusting unit 120 of the intensity distribution measuring apparatus 100.
  • FIG. 3 is a block diagram showing a laser oscillator 200 in addition to the intensity distribution measuring apparatus 100.
  • FIG. 4 is a block diagram showing the laser oscillator 200 in addition to the attenuation unit 110 and the measurement unit 130 of the intensity distribution measuring apparatus 100.
  • FIG. 5 is a side view showing a state in which the intensity distribution measuring apparatus 100 is incorporated in a production line.
  • FIG. 6 is a diagram schematically illustrating a configuration in which the position of the beam waist of the laser beam L is detected by the detection unit 170 of the intensity distribution measuring apparatus 100.
  • the intensity distribution measuring apparatus 100 includes an attenuation unit 110, an adjustment unit 120, a measurement unit 130, a display unit 140, an operation unit 150, a housing unit 160, a detection unit 170, and a control unit 180.
  • the attenuation unit 110 is disposed upstream of the measurement unit 130 along the optical axis C and attenuates the intensity of the laser beam L.
  • the attenuating unit 110 includes a first sampling prism 111, a water cooling damper 112, and a second sampling prism from the upstream side of the optical axis C (laser oscillator 200 side) to the downstream side (detector 131 side of the measuring unit 130). 113, air-cooled damper 114, first reflecting mirror 115, second reflecting mirror 116, first neutral density filter 117A, second neutral density filter 117B, third neutral density filter 117C, and fourth neutral density filter 117D. Each component is disposed.
  • the first sampling prism 111 is disposed on the upstream side of the collimating portion 120M and adjacent to the collimating portion 120M.
  • the second sampling prism 113 to the fourth neutral density filter 117D are disposed in a region between the collimator 120M and the capacitor 120N.
  • the first sampling prism 111 attenuates the intensity of the laser beam L.
  • the laser beam L derived from the laser oscillator 200 is incident on the first sampling prism 111.
  • the first sampling prism 111 propagates a part (for example, 90%) of the laser beam L to the water-cooled damper 112 while transmitting it from the interface to the outside, and reflects a part (for example, 10%) of the laser beam L at the interface.
  • the first sampling prism 111 reflects the laser beam L propagating toward the workpiece 10 in a direction along the processing region (welding region) of the workpiece 10.
  • the first sampling prism 111 is made of prism-shaped glass. The prism-shaped slope corresponds to the interface.
  • the water-cooled damper 112 is for attenuating the liquid by irradiating the liquid with the laser beam L transmitted from the interface of the first sampling prism 111 to the outside.
  • the water cooling damper 112 is adjacent to the first sampling prism 111.
  • the water-cooled damper 112 is made of, for example, metal and is formed in a box shape having a cavity inside.
  • the water-cooled damper 112 is configured to be sealed with a plate-shaped window material that is transparent with respect to light having the wavelength of the laser beam L in a state where water is housed therein.
  • the water cooling damper 112 attenuates the laser beam L by water cooling by irradiating the water stored therein while introducing the laser beam L from the window material.
  • the second sampling prism 113 further attenuates the intensity of the laser beam L attenuated by the first sampling prism 111.
  • the second sampling prism 113 is disposed to face the first sampling prism 111 in the direction along the processing region (welding region) of the workpiece 10.
  • the laser beam L reflected at the interface of the first sampling prism 111 (which has been attenuated to about 10% by the first sampling prism 111) is incident on the second sampling prism 113.
  • the second sampling prism 113 transmits a part (eg, 90%) of the laser beam L to the air-cooled damper 114 while transmitting it from the interface to the outside, and reflects a part (eg, 10%) of the laser beam L at the interface. Propagate toward the first reflecting mirror 115.
  • the second sampling prism 113 is made of prism-shaped glass. The prism-shaped slope corresponds to the interface.
  • the air-cooled damper 114 attenuates the gas by irradiating the gas with the laser beam L transmitted from the interface of the second sampling prism 113 to the outside.
  • the air cooling damper 114 is adjacent to the second sampling prism 113.
  • the air-cooled damper 114 is made of, for example, metal and is formed in a box shape having a cavity inside.
  • the air-cooled damper 114 can be formed from copper or aluminum having excellent thermal conductivity, or a copper alloy or aluminum alloy having a certain strength.
  • the air-cooled damper 114 attenuates the laser beam L while performing multiple reflection of the laser beam L by a cavity between the second sampling prism 113 and the air-cooling damper 114.
  • the first reflecting mirror 115 reflects the laser beam L and changes its optical axis C.
  • the first reflecting mirror 115 is disposed to face the second sampling prism 113 in the direction along the processing region (welding region) of the workpiece 10.
  • the first reflecting mirror 115 propagates the laser beam L propagated from the second sampling prism 113 toward the second reflecting mirror 116 while reflecting the laser beam L toward the direction along the surface of the workpiece 10.
  • the first reflecting mirror 115 turns the optical axis C of the laser beam L 90 degrees.
  • the first reflecting mirror 115 is configured, for example, by depositing a metal such as aluminum on one surface of a prism-shaped glass. In the first reflecting mirror 115, the surface on which the metal is deposited becomes the reflecting surface of the laser beam L.
  • the second reflection mirror 116 reflects the laser beam L and changes its optical axis C.
  • the second reflecting mirror 116 is disposed to face the first neutral density filter 117 ⁇ / b> A in the direction along the processing area (welding area) of the workpiece 10.
  • the second reflecting mirror 116 reflects the laser beam L propagated from the first reflecting mirror 115 in the direction along the surface of the workpiece 10 and applies it to the first neutral density filter 117A to the fourth neutral density filter 117D. Propagate toward.
  • the second reflecting mirror 116 turns back the optical axis C of the laser beam L by 90 °.
  • the second reflection mirror 116 has the same specifications as the first reflection mirror 115.
  • the first neutral density filter 117A, the second neutral density filter 117B, the third neutral density filter 117C, and the fourth neutral density filter 117D adjust the intensity of the laser beam L in accordance with the light resistance characteristics of the detector 131. is there.
  • the first neutral density filter 117 ⁇ / b> A is disposed to face the second reflection mirror 116 in the direction along the plane of the workpiece 10.
  • the first neutral density filter 117A to the fourth neutral density filter 117D are disposed between the second reflection mirror 116 and the capacitor unit 120N at a constant interval.
  • the first neutral density filter 117A to the fourth neutral density filter 117D finely adjust the intensity of the laser beam L significantly attenuated by the first sampling prism 111 and the second sampling prism 113.
  • the first neutral density filter 117A to the fourth neutral density filter 117D are configured as a so-called reflection type, as an example, the reflectance of a plate-shaped window material that is transparent with respect to the light of the wavelength of the laser beam L is several tens% to A film on which several percent of a reflective film (for example, a thin film made of chromium) is deposited is used.
  • first neutral density filter 117A to the fourth neutral density filter 117D filters having different attenuation ratios such as 90%, 50%, 10%, and 1% are used.
  • the first neutral density filter 117A to the fourth neutral density filter 117D are opposed (directly opposed) to the optical axis C so as to be orthogonal to the optical axis C.
  • a plurality of neutral density filters may be used as in the embodiment, or only one may be used.
  • the neutral density filter can easily attenuate the laser beam L to an arbitrary intensity by using a combination of a plurality of neutral density filters. That is, the intensity of the laser beam L can be finely adjusted by the first neutral density filter 117A to the fourth neutral density filter 117D without changing the configuration of the first sampling prism 111 and the second sampling prism 113.
  • the adjusting unit 120 relatively reduces the angle formed with the optical axis C so that the laser beam L propagating from the optical axis C is propagated toward the detection region 131a. adjust.
  • the adjusting unit 120 includes a first adjusting unit (for example, a collimating unit 120M) and a second adjusting unit (for example, a capacitor unit 120N).
  • a first adjusting unit for example, a collimating unit 120M
  • a second adjusting unit for example, a capacitor unit 120N
  • the collimator 120M propagates the laser beam L toward the detector 131 in a parallel light state along the optical axis C or in a state close to parallel light.
  • the infinity correction section is realized by the collimator 120M.
  • the collimating unit 120M is configured by an objective lens including lenses 121, 122, 123, and 124. As such an objective lens, one used in a microscope or the like can be applied.
  • the collimator 120M is incorporated in, for example, a narrow space of the production line, and propagates the laser beam L in a direction along the processing region (welding region) of the workpiece 10 in order to prevent interference with the workpiece 10.
  • the capacitor unit 120N propagates the laser beam L toward the detector 131 in the condensed light state while bringing the laser beam L close to the optical axis C.
  • the capacitor unit 120N is disposed on the downstream side along the optical axis C from the collimating unit 120M.
  • the condenser unit 120N is configured by an imaging lens including lenses 125, 126, 127, and 128. As such an imaging lens, one used in a microscope or the like can be applied.
  • the condenser unit 120N is configured so that the angle of the laser beam L can be corrected by an imaging lens.
  • the focal length of the imaging lens including the lenses 125, 126, 127, and 128 is configured to be equal to the focal length of the laser beam L to the workpiece 10 placed on the welding table 221 in the production line, for example.
  • the measuring unit 130 is arranged to face the optical axis C of the laser beam L, and measures the intensity distribution of the laser beam L irradiated to the detection region 131a.
  • the measuring unit 130 includes a detector 131.
  • the detector 131 is disposed on the most downstream side along the optical axis C.
  • the detection area 131a of the detector 131 is composed of a CCD or a CMOS, and is opposed (facing directly) to the optical axis C so as to be orthogonal to the optical axis C.
  • the detector 131 can be a camera type.
  • the detector 131 may be a scanner type using a knife edge method, a scanner type using a slit method, or a scanner type using a pinhole method. For example, in the case where a scanner type scanner type is used as the detector 131, the laser beam L is made incident while the slit provided in front of the photodetector is rotated.
  • the detector 131 when the laser beam L that has passed through the slit is incident on the detector, an electromotive force is generated, and the intensity of the laser beam L is detected as the magnitude of the current value.
  • the detector 131 detects the distribution of the laser beam L based on the position of the slit.
  • the detection accuracy of the detector 131 generally depends on the incident angle of the laser beam L.
  • the detector 131 can detect the intensity distribution of the laser beam L with the highest accuracy when the laser beam L is perpendicularly incident on the detection region 131a. That is, the laser beam L which is deflected from the optical axis C and propagates is adjusted by the adjustment unit 120 so that the angle formed with the optical axis C is relatively small, and the laser beam L is nearly perpendicular to the detection region 131a. , The intensity distribution of the laser beam L can be accurately detected.
  • the display unit 140 displays the intensity distribution of the laser beam L measured by the measurement unit 130, as shown in FIGS.
  • the display unit 140 includes a monitor 141.
  • the monitor 141 is connected to the detector 131 of the measurement unit 130.
  • the monitor 141 receives and displays the intensity distribution data of the laser beam L obtained by the detector 131.
  • an operator on the production line performs optical adjustment while visually observing the intensity distribution of the laser beam L with the monitor 141.
  • the monitor 141 represents, for example, the intensity of the laser beam L on the vertical axis and the distribution of the laser beam L on the horizontal axis (two axes).
  • the monitor 141 displays the intensity distribution of the laser beam L in a three-dimensional manner, displays the bird's-eye view from the upper side to the lower side, or displays it from the side.
  • the operation unit 150 adjusts the changing unit 210 of the laser oscillator 200 based on the measurement result of the intensity distribution of the laser beam L by the measurement unit 130 to reduce the diameter of the laser beam L. .
  • the operation unit 150 includes a control circuit 151.
  • the control circuit 151 is electrically connected to the rectilinear stage 213 of the changing unit 210 of the laser oscillator 200.
  • the changing unit 210 is provided on the laser oscillator 200 side, and changes the position along the optical axis C of the galvano mirror 211 that reflects the laser beam L to the upstream side or the downstream side.
  • the laser beam L derived from the laser oscillator 200 is reflected by the galvanometer mirror 211, passes through the f ⁇ lens 212, and propagates to the first sampling prism 111.
  • the f ⁇ lens 212 makes the scanning speed of the laser beam L by the galvanometer mirror 211 constant.
  • the control circuit 151 receives the measurement result of the intensity distribution of the laser beam L from the measurement unit 130 and controls the straight stage 213 based on the received measurement result so that the diameter of the laser beam L is minimized. The position along the optical axis C of 211 is adjusted.
  • the housing unit 160 supports each component of the intensity distribution measuring apparatus 100 and fills the interior connected to the laser oscillator 200 with an inert gas.
  • the housing unit 160 includes a support base 161, a drive stage 162, and a nozzle 163.
  • the support base 161 supports each constituent member such as the attenuation unit 110, the adjustment unit 120, and the measurement unit 130 in a fixed state.
  • the drive stage 162 mounts the support stand 161 and moves the support stand 161.
  • the drive stage 162 retracts the support base 161 from the optical path K of the laser beam L so as not to interfere with the workpiece 10 while the workpiece 10 is welded by the laser beam L derived from the laser oscillator 200.
  • the drive stage 162 causes the support base 161 to enter the optical path K of the laser beam L when the workpiece 10 is not welded by the laser oscillator 200 and the intensity distribution of the laser beam L is measured.
  • the nozzle 163 eliminates oxygen while replacing the atmosphere of the optical path K of the laser beam L with an inert gas (assist gas), thereby preventing the surface of the optical member from being burned due to the oxygen.
  • the nozzle 163 is disposed between the laser oscillator 200 and the first optical element (the most upstream side of the optical system) of the attenuation unit 110.
  • the nozzle 163 does not need to have a shape that is isolated from the outside and satisfies the hermetically sealed state.
  • At least the inert gas is circulated so that the region adjacent to the laser oscillator 200 and the intensity distribution measuring device 100 is filled with the inert gas. What is necessary is just to be the structure to do.
  • the detection unit 170 detects the position of the beam waist of the laser beam L as shown in FIG.
  • the detection unit 170 includes a reference table 171 and a probe 172.
  • the position of the upper surface of the reference table 171 is finely adjusted in advance so as to coincide with the focal position of the f ⁇ lens 212 along the optical axis C. That is, the position of the upper surface of the reference table 171 and the focal position of the f ⁇ lens 212 are adjacent to each other along the normal direction of the optical axis C.
  • the reference number 171 is moved together with the f ⁇ lens 212 by the linear stage 213. That is, the position of the upper surface of the reference table 171 and the focal position of the f ⁇ lens 212 always coincide with the optical axis C.
  • the probe 172 moves closer to and away from the upper surface of the reference table 171, and transmits the position when contacting the upper surface of the reference table 171 to the controller of the control unit 180.
  • the probe 172 is normally separated from the reference base 171 as shown in FIG. As shown in FIG. 6B, the probe 172 transmits its position to the controller 181 while moving away from and approaching the reference table 171.
  • the reference table 171 correlated with the focal position of the f ⁇ lens 212 can be used. Therefore, it is not necessary to bring the probe 172 into contact with the f ⁇ lens 212 which is an optical member and requires handling, and is difficult to detect the position in a narrow place. Further, it is not necessary to bring the probe 172 into contact with the antireflection film which is deposited on the surface of the f ⁇ lens 212 and easily peels off.
  • control unit 180 controls the changing unit 210 of the laser oscillator 200 via the operation unit 150 in addition to the control of the measurement unit 130 and the display unit 140.
  • the control unit 180 includes a controller 181.
  • the controller 181 includes a ROM, a CPU, and a RAM.
  • a ROM Read Only Memory stores a control program for the intensity distribution measuring apparatus 100 and the changing unit 210 of the laser oscillator 200 and ideal intensity distribution data that serves as a reference for the laser beam L.
  • a plurality of control programs are stored in the ROM.
  • the control program is a program for adjusting the changing unit 210 so that the diameter of the laser beam L is reduced based on the measurement result of the intensity distribution of the laser beam L by the measuring unit 130.
  • a CPU Central Processing Unit
  • a RAM Random Access Memory temporarily stores data on the intensity distribution of the laser beam L measured by the detector 131.
  • FIG. 7 is a flowchart showing control for automatically optimizing the intensity distribution (diameter) of the laser beam L by the intensity distribution measuring apparatus 100.
  • FIG. 8 is a flowchart showing control for automatically optimizing the intensity distribution (diameter) of the laser beam L by the intensity distribution measuring apparatus 100 before mass production or during mass production.
  • step S111 in order to measure the diameter of the laser beam L, the power source of the intensity distribution measuring apparatus 100 is turned on, and the optimization of the diameter of the laser beam L is started based on the control of the control unit 180.
  • the process proceeds from step S111 to step S112.
  • step S112 the control unit 180 first causes the support base 161 to enter the optical path K of the laser beam L by the drive stage 162 of the housing unit 160.
  • the support base 161 supports the constituent members such as the attenuation unit 110, the adjustment unit 120, and the measurement unit 130.
  • the control unit 180 causes the laser oscillator 200 to derive the laser beam L and causes the detector 131 of the measurement unit 130 to detect the diameter of the laser beam L. Thereafter, the process proceeds from step S112 to step S113.
  • step S113 the control unit 180 determines whether the diameter of the laser beam L detected by the detector 131 is equal to the predetermined reference value diameter by the CPU of the controller 181.
  • the reference value data is stored in the ROM of the controller 181. Thereafter, the process proceeds from step S113 to step S114 (when the diameter of the laser beam L is equal to the reference value) or step S131 (when the diameter of the laser beam L is not equal to the reference value).
  • step S114 the control unit 180 moves the galvanometer mirror 211 toward the upstream side or the downstream side of the optical axis C by the operation unit 150 based on the determination that the diameter of the laser beam L is equal to the reference value in step S113. Move it a certain distance. Thereafter, the process proceeds from step S114 to step S115.
  • step S115 as in step S112, the control unit 180 causes the laser oscillator 200 to derive the laser beam L and causes the detector 131 of the measurement unit 130 to measure the diameter of the laser beam L. Thereafter, the process proceeds from step S115 to step S116.
  • step S116 as in step S113, the control unit 180 determines whether the diameter of the laser beam L detected by the detector 131 is equal to a predetermined reference value diameter by the CPU of the controller 181. . Thereafter, the process proceeds from step S116 to step S117 (when the diameter of the laser beam L is equal to the reference value) or step S121 (when the diameter of the laser beam L is not equal to the reference value).
  • step S117 the control unit 180 causes the operation unit 150 to move the galvanometer mirror 211 back along the optical axis C in the reverse direction by a half of a predetermined distance.
  • the galvanometer mirror 211 is scanned (rotated and driven) on the basis of the moved position, and laser welding of the workpiece 10 by the laser oscillator 200 is performed. Thereafter, the process proceeds from step S117 to step S118.
  • step S121 following step S116, the control unit 180 causes the operation unit 150 to move the galvano mirror 211 toward the upstream side or downstream side of the optical axis C in the direction opposite to step S114 by twice a fixed distance. Let That is, the galvanometer mirror 211 is moved by a certain distance along the optical axis C in the direction opposite to the direction in step S114 with reference to the position in step S113. Thereafter, the process proceeds from step S121 to step S113.
  • step S131 following step S113, the control unit 180 causes the operation unit 150 to move the galvanometer mirror 211 by a certain distance along the optical axis C. Thereafter, the process proceeds from step S131 to step S132.
  • step S132 as in step S112, the control unit 180 causes the laser oscillator 200 to derive the laser beam L and causes the detector 131 of the measurement unit 130 to measure the diameter of the laser beam L. Thereafter, the process proceeds from step S132 to step S133.
  • step S133 the control unit 180 determines whether the diameter of the laser beam L detected by the detector 131 is equal to or less than the latest measured value by the CPU of the controller 181. Thereafter, the process proceeds from step S133 to step S113 (when the diameter of the laser beam L is equal to or smaller than the latest measured value) or step S141 (when the diameter of the laser beam L is larger than the latest measured value).
  • step S141 following step S133, the control unit 180 moves the galvano mirror 211 toward the upstream side or the downstream side of the optical axis C by the operation unit 150 in the direction opposite to that in step S131 by twice a fixed distance. Let Thereafter, the process proceeds from step S141 to step S132.
  • step S118 continuing from step S117, the power of the intensity distribution measuring apparatus 100 is turned off, and the control for automatically optimizing the diameter of the laser beam L by the control unit 180 is ended.
  • step S201 in order to measure the diameter of the laser beam L, the intensity distribution measuring apparatus 100 is turned on, and the control unit 180 performs control to automatically optimize the diameter of the laser beam L before mass production or during mass production.
  • “Before mass production” corresponds to, for example, a case where a production line is inspected before starting business. For example, during mass production, it corresponds to a case where in the welding process of the workpiece 10, a piece that does not satisfy the standard is continuously generated.
  • step S202 when the power of the intensity distribution measuring apparatus 100 is turned on, the control unit 180 waits until the welding of the workpiece 10 is completed when the workpiece 10 is welded by the laser oscillator 200. That is, it waits until one cycle of welding is completed.
  • the work 10 and the jig are arranged at predetermined positions by the loader.
  • the workpiece 10 is laser-welded by the laser oscillator 200 in a state where the workpiece 10 is placed on the welding table 221 and a mask 222 for preventing adhesion of spatter and the like is disposed on the workpiece 10. After the table on which the workpiece 10 is placed slides, the laser beam L is scanned by the galvanometer mirror 211, and laser welding of the workpiece 10 is performed.
  • the control unit 180 stops the operation of the laser oscillator 200 and causes the support base 161 to enter the optical path K of the laser beam L by the drive stage 162 of the housing unit 160.
  • the support base 161 supports the constituent members of the attenuation unit 110, the adjustment unit 120, and the measurement unit 130.
  • step S203 the control unit 180 adjusts the position along the optical axis C of the galvanometer mirror 211 based on the measurement result of the laser beam L by the detector 131.
  • the adjustment by the control unit 180 corresponds to S112 to S141 described above with reference to FIG.
  • step S204 the support base 161 is separated from the optical path K of the laser beam L by the drive stage 162 of the housing unit 160.
  • the welding of the workpiece 10 is resumed by the laser oscillator 200.
  • step S205 the power of the intensity distribution measuring apparatus 100 is turned off, and the control for automatically optimizing the diameter of the laser beam L by the control unit 180 before mass production or during mass production is completed.
  • the intensity distribution measuring apparatus 100 for the laser beam L According to the intensity distribution measuring apparatus 100 for the laser beam L according to the above-described embodiment, the following effects can be obtained.
  • the laser beam L intensity distribution measuring apparatus 100 is an apparatus for measuring the intensity distribution of the laser beam L.
  • the intensity distribution measuring apparatus 100 includes a measurement unit 130 and an adjustment unit 120.
  • the measurement unit 130 is disposed to face the optical axis C of the laser beam L, and measures the intensity distribution of the laser beam L irradiated to the detection region 131a.
  • the adjusting unit 120 includes a first adjusting unit (for example, a collimating unit 120M) and a second adjusting unit (for example, a capacitor unit 120N).
  • the collimator 120M collimates and propagates the laser beam L.
  • the condenser unit 120N is disposed downstream of the collimating unit 120M along the optical axis C, and propagates the laser beam L while being close to the optical axis C.
  • the adjustment unit 120 adjusts the angle formed with the optical axis C to be relatively small so that the laser beam L that is deflected from the optical axis C and propagates toward the detection region 131a.
  • the intensity distribution measuring method of the laser beam L is a method of measuring the intensity distribution of the laser beam L.
  • the angle formed with the optical axis C is made relatively small by collimating the laser beam L propagating from the optical axis and then propagating the laser beam L close to the optical axis.
  • the intensity distribution is measured by irradiating the detection region 131a provided opposite to the optical axis C while adjusting.
  • the laser beam L intensity distribution measuring apparatus 100 and the laser beam L intensity distribution measuring method configured as described above the laser beam L in which the optical path K is deflected from the optical axis C and irradiated onto the workpiece 10 by oblique incidence. Even so, the laser beam L can be propagated in a parallel light state along the optical axis C or in a state close to parallel light. For this reason, the intensity distribution measuring apparatus 100 for the laser beam L and the intensity distribution measuring method for the laser beam L have the intensity of the laser beam L even if the distance from the laser oscillator 200 to the detection region 131a is arbitrarily set. The distribution can be measured without removing it from the detection region. Therefore, the intensity distribution measuring apparatus 100 can sufficiently measure the intensity distribution of the laser beam L.
  • the measurement accuracy of the intensity distribution of the laser beam L depends on the incident angle with respect to the detection region 131a. Even if it is a case, it can measure with high precision.
  • the detector 131 is disposed so as to face (directly face) the optical axis C so that the incident angle of the laser beam L with respect to the detection region 131a of the detector 131 is parallel to the optical axis C. When the configuration is close to incidence, the measurement accuracy of the intensity distribution of the laser beam L is increased.
  • the intensity distribution measuring apparatus 100 of the laser beam L is an apparatus that measures the intensity distribution of the laser beam L.
  • the intensity distribution measuring apparatus 100 includes a measurement unit 130, an adjustment unit 120, and an attenuation unit 110.
  • the measurement unit 130 is disposed to face the optical axis C of the laser beam L, and measures the intensity distribution of the laser beam L irradiated to the detection region 131a.
  • the adjustment unit 120 adjusts the angle formed with the optical axis C to be relatively small so that the laser beam L that is deflected from the optical axis C and propagates toward the detection region 131a.
  • the attenuation unit 110 is disposed upstream of the measurement unit 130 along the optical axis C, and attenuates the intensity of the laser beam L.
  • the laser beam L intensity distribution measurement method measures the intensity distribution of the laser beam L. Is the method.
  • the method of measuring the intensity distribution of the laser beam L is provided so as to face the optical axis C while adjusting the angle formed with the optical axis C to be attenuated by attenuating the laser beam L that is deflected from the optical axis and propagating.
  • the laser beam L intensity distribution measuring apparatus 100 and the laser beam L intensity distribution measuring method configured as described above the laser beam L in which the optical path K is deflected from the optical axis C and irradiated onto the workpiece 10 by oblique incidence. Even so, the intensity distribution of the output of the laser beam L at the time of actual use can be accurately measured, and the intensity distribution can be measured without removing it from the detection region. Therefore, the intensity distribution measuring apparatus 100 can sufficiently measure the intensity distribution of the laser beam L.
  • the laser beam L becomes unstable when its output is lowered from the rated value, and its intensity distribution changes. Therefore, it is important to measure the intensity distribution of the laser beam L at the output in actual use without being restricted by the configuration of the measurement unit 130.
  • the measurement accuracy of the intensity distribution of the laser beam L depends on the incident angle with respect to the detection region 131a. Even if it is a case, it can measure with high precision.
  • the detector 131 is disposed so as to face (directly face) the optical axis C so that the incident angle of the laser beam L with respect to the detection region 131a of the detector 131 is parallel to the optical axis C. When the configuration is close to incidence, the measurement accuracy of the intensity distribution of the laser beam L is increased.
  • the laser beam L intensity distribution measuring apparatus 100 is an apparatus that measures the intensity distribution of the laser beam L to be scanned and processed in a processing region of a workpiece (for example, the workpiece 10) on a production line.
  • the intensity distribution measuring apparatus 100 includes a measurement unit 130 and an adjustment unit 120.
  • the measurement unit 130 is disposed to face the optical axis C of the laser beam L, and measures the intensity distribution of the laser beam L irradiated to the detection region 131a.
  • the adjustment unit 120 adjusts the angle formed with the optical axis C to be relatively small so that the laser beam L that is deflected from the optical axis C and propagates toward the detection region 131a.
  • the intensity distribution measuring method of the laser beam L is a method of measuring the intensity distribution of the laser beam L to be processed by being scanned on the processing region of the workpiece (for example, the workpiece 10) on the production line.
  • the method of measuring the intensity distribution of the laser beam L is provided so as to face the optical axis C while adjusting the angle of the laser beam L, which is deflected from the optical axis and propagates, with the optical axis C to be relatively small.
  • the laser beam L intensity distribution measuring apparatus 100 and the laser beam L intensity distribution measuring method configured as described above the laser beam L in which the optical path K is deflected from the optical axis C and irradiated onto the workpiece 10 by oblique incidence. Even so, the intensity distribution of the laser beam L can be measured without removing it from the detection region. Therefore, the intensity distribution measuring apparatus 100 can sufficiently measure the intensity distribution of the laser beam L in a state where it is incorporated in the production line.
  • the measurement accuracy of the intensity distribution of the laser beam L depends on the incident angle with respect to the detection region 131a. Even if it is a case, it can measure with high precision.
  • the detector 131 is disposed so as to face (directly face) the optical axis C so that the incident angle of the laser beam L with respect to the detection region 131a of the detector 131 is parallel to the optical axis C. When the configuration is close to incidence, the measurement accuracy of the intensity distribution of the laser beam L is increased.
  • the adjustment unit 120 may include a first adjustment unit (collimator unit 120M) and a second adjustment unit (capacitor unit 120N).
  • the first adjusting unit (collimating unit 120M) collimates and propagates the laser beam L.
  • the second adjustment unit (capacitor unit 120N) is disposed downstream of the collimator unit 120M along the optical axis C, and propagates the laser beam L while being close to the optical axis C.
  • the collimator 120M can propagate the laser beam L in a parallel light state along the optical axis C or in a state close to the parallel light. It can be configured without depending on the distance from the oscillator 200 to the detection region 131a. That is, the intensity distribution measuring apparatus 100 does not need to sufficiently shorten the distance from the laser oscillator 200 to the detection region 131a, and can arbitrarily set the total length along the optical axis C of the adjustment unit 120. Further, the capacitor portion 120N can relatively reduce the angle formed between the optical axis C and the laser beam L that is deflected from the optical axis C and propagates.
  • the intensity distribution measuring apparatus 100 can be configured to include an attenuation unit 110.
  • the attenuation unit 110 is disposed upstream of the measurement unit 130 along the optical axis C, and attenuates the intensity of the laser beam L.
  • the attenuation unit 110 can sufficiently measure the intensity distribution of the laser beam L without causing the measurement unit 130 to be damaged due to the output of the laser beam L. Therefore, it is possible to accurately measure the intensity distribution of the laser beam L at the output during actual use.
  • the laser beam L becomes unstable when its output is lowered from the rated value, and its intensity distribution changes. Therefore, it is important to measure the intensity distribution of the laser beam L at the output in actual use without being restricted by the configuration of the measurement unit 130.
  • the attenuating unit 110 may be configured to include an optical member that is transparent at least for the light having the wavelength of the laser beam L.
  • the optical member attenuates a part of the laser beam L while being transmitted from the interface to the outside, and propagates the laser beam L toward the detection region 131a while reflecting a part of the laser beam L at the interface.
  • the laser beam L can be propagated toward the detection region 131a while being sufficiently attenuated by the optical member having a simple specification. Therefore, it is not necessary to lower the output of the laser beam L, and the intensity distribution of the laser beam L at the output in actual use can be measured with high accuracy.
  • the attenuation unit 110 can be configured to irradiate at least one of a liquid and a gas with the laser beam L transmitted to the outside from the interface of the optical member.
  • the laser beam L can be effectively and satisfactorily provided by a simple configuration in which at least one of the liquid and the gas is irradiated and attenuated with the laser beam L that is not propagated to the detection region 131a. Can be attenuated.
  • the adjustment unit 120 can be configured to propagate the laser beam L toward the detection region 131a while reflecting the laser beam L.
  • the configuration from the laser oscillator 200 to the detection region 131a need not be provided in a straight line by reflecting the laser beam L so as to be folded back. It can be arranged sufficiently according to the layout of the laboratory or the like.
  • the reflection direction of the laser beam L by the adjusting unit 120 may be a direction along the vertical direction in addition to the horizontal direction in order to avoid interference with equipment in a production line, a laboratory, or the like.
  • the adjustment unit 120 can be configured to propagate the laser beam L propagating toward the workpiece 10 toward the detection region 131a while reflecting the laser beam L in the direction along the processing region (welding region) of the workpiece 10. .
  • the intensity distribution of the laser beam L can be adjusted without interfering with the workpiece 10 by reflecting the laser beam L in the direction along the workpiece 10. it can. That is, the intensity distribution measuring apparatus 100 can measure the intensity distribution of the laser beam L using an empty space in the production line, laboratory, or the like without significantly changing the configuration of the production line, laboratory, or the like. .
  • the intensity distribution measuring apparatus 100 configured in this way, for example, a region that has been abandoned because it is difficult to arrange in a relatively small space, such as processing of the workpiece 10 (laser welding), is sufficiently sufficient. It can be arranged and used.
  • the intensity distribution measuring apparatus 100 can be configured to include an operation unit 150.
  • the operation unit 150 is electrically connected to a change unit 210 that is provided on the laser oscillator 200 side and changes the optical path K of the laser beam L.
  • the operation unit 150 adjusts the changing unit 210 based on the measurement result of the intensity distribution of the laser beam L by the measurement unit 130 so that the diameter of the laser beam L is reduced.
  • the adjustment of the changing unit by the operation unit 150 allows the adjustment of the laser beam L in a short time without depending on the skill level of the operator who operates the laser oscillator 200. It can be carried out with a certain accuracy. That is, the intensity distribution measuring apparatus 100 can adjust the intensity distribution of the laser beam L without stopping the mass production process for a long time. In other words, the operation unit 150 can maintain the machining accuracy of the workpiece (workpiece 10) by the laser oscillator 200 constant.
  • the intensity distribution of the laser beam L is measured in real time in a state where the workpiece 10 is processed (laser welding) in a production line, a laboratory, or the like.
  • the measurement result can be quickly fed back to the laser welding of the workpiece 10.
  • the operation unit 150 adjusts the position of the galvano mirror 211 along the optical axis C. can do.
  • the intensity distribution of the laser beam L can be adjusted efficiently and reliably by adjusting the position of the galvano mirror 211 along the optical axis C by the operation unit 150. Can do.
  • the intensity distribution measuring apparatus 100 can be configured to include a housing portion 160.
  • the casing 160 replaces the atmosphere of the optical path K of the laser beam L with an inert gas.
  • the inert gas (assist gas) of the housing unit 160 can sufficiently prevent the component members from being burned due to the laser beam L.
  • the intensity distribution measuring apparatus 100 effectively burns in the surface of the optical member due to the oxygen by removing, for example, oxygen while introducing an inert gas in the optical path of the laser beam L that covers a wide range with scanning. Can be prevented. Therefore, the intensity distribution measuring apparatus 100 can accurately measure the intensity distribution of the laser beam L.
  • the intensity distribution measuring apparatus 100 can be configured to include a display unit 140.
  • the display unit 140 displays the intensity distribution of the laser beam L measured by the measurement unit 130.
  • the display unit 140 allows the operator to perform optical adjustment while visually observing the intensity distribution of the laser beam L. Therefore, the adjustment can be performed easily and with constant accuracy. It can be carried out.
  • the intensity distribution measuring apparatus 100 is adjacent to the position of the beam waist of the laser beam L along the normal direction of the optical axis C and the focal position of the optical element (f ⁇ lens 212) that receives the focused laser beam. It can be set as the structure which provides the detection part 170 detected based on the position of the suitable reference
  • FIG. 1 is a diagrammatic representation of the intensity distribution measuring apparatus 100.
  • the reference table can be obtained without contacting the f ⁇ lens 212 which is an optical member and requires handling, and is difficult to detect the position in a narrow place. Through 171, the position of the beam waist of the laser beam L can be detected very accurately.
  • the intensity distribution measuring apparatus 100 has been described as a configuration for measuring the intensity distribution of the laser beam L used for welding the workpiece.
  • the present invention is not limited to such a configuration, and the intensity distribution measuring apparatus 100 measures the intensity distribution of the printing laser beam L that marks a production number or the like on the surface of the workpiece as an example. It may be configured. That is, the intensity distribution measuring apparatus 100 is not limited to its use as long as it measures the intensity distribution of the laser beam L that performs some processing on the workpiece.
  • the adjustment unit 120 of the intensity distribution measuring apparatus 100 causes the first adjustment unit (collimating unit 120M) to propagate the laser beam L along the optical axis C in the state of parallel light, and the second The description has been given of the configuration in which the laser beam L is propagated while being close to the optical axis C by the adjusting unit (condenser unit 120N).
  • the present invention is not limited to such a configuration.
  • the intensity distribution measuring apparatus 100 causes the laser beam L propagating at a constant angle to the optical axis C to be along the optical axis C.
  • a configuration in which the light is directly adjusted so that an angle formed with the optical axis is small without using parallel light may be employed.
  • the attenuation unit 110 of the intensity distribution measuring apparatus 100 has been described as a configuration using an optical member such as a prism having a triangular cross section.
  • the configuration is not limited to such a configuration, and the attenuation unit 110 can attenuate the intensity distribution of the laser beam L by various configurations.
  • the optical member when the attenuation unit 110 is configured as the so-called reflection type described in the present embodiment, for example, a plate-shaped window material that is transparent in the light of the wavelength of the laser beam L can be used as the optical member.
  • the optical member is not limited to a prism, and may be a plate-like bulk. In the case of such a configuration, the optical member attenuates while transmitting most of the laser beam L, and propagates toward the measuring unit 130 while reflecting a part of the laser beam L. In the case of such a configuration (example), the optical member can be made inexpensive.
  • the attenuation unit 110 deposits a reflective film (for example, a thin film made of chromium) having a reflectance of several percent on a plate-like window member that is transparent with respect to light having the wavelength of the laser beam L. It can be set as the structure to be used. In the case of such a configuration (other example), the reflectance of the optical member can be accurately defined.
  • the reflection-type attenuation unit 110 is applied when the intensity of the laser beam L is relatively high in consideration of the heat resistance of a transparent optical material in the light of the wavelength of the laser beam L.
  • the attenuation unit 110 is configured as a so-called absorption type, for example, a window material containing an absorbing material that absorbs light of the wavelength of the laser beam L at a certain ratio is used as an optical member. It can. In such a configuration, the optical member absorbs and attenuates most of the laser beam L, and propagates toward the measuring unit 130 while reflecting a very small part of the laser beam L.
  • the transmission type attenuation unit 110 is applied when the intensity of the laser beam L is relatively small in consideration of the heat resistance of a transparent optical material in the light of the wavelength of the laser beam L.
  • the configuration has been described in which the attenuation unit 110 performs water cooling and air cooling on the laser beam L in order to attenuate the laser beam L that is not propagated toward the measurement unit 130.
  • the present invention is not limited to such a configuration, and the attenuation unit 110 may attenuate the laser beam L that is not propagated toward the measurement unit 130, for example, only by water cooling.
  • the attenuation unit 110 may attenuate the laser beam L that is not propagated toward the measurement unit 130 in the order of air cooling and water cooling.
  • the attenuation unit 110 in addition to the adjustment unit 120 propagates the laser beam L toward the detection region 131a while reflecting the laser beam L so as to be bent. Since it comprises in this way, the intensity distribution measuring apparatus 100 can fully be arrange

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Laser Beam Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

[Problem] Provided is a laser beam intensity distribution measurement device with which the intensity distribution of a laser beam can be sufficiently measured even in the case of a laser beam in an oblique incidence state having an optical path that is deflected from the optical axis. [Solution] This laser beam L intensity distribution measurement device 100 is a device that measures the intensity distribution of a laser beam. A measurement part 130 is disposed so as to face the optical axis C of the laser beam and measures the intensity distribution of the laser beam which is shone on a detection region 131a. A first adjustment part (collimating part 120M) of an adjustment part collimates and propagates the laser beam. A second adjustment part (condenser part 120N) of the adjustment part is disposed downstream of the collimating part along the optical axis, and brings the laser beam close to the optical axis and propagates the laser beam. The adjustment part adjusts the angle formed between the laser beam and the optical axis to be relatively small so as to propagate, toward the detection region, the laser beam which is deflected from the optical axis and propagated.

Description

レーザビームの強度分布測定装置およびレーザビームの強度分布測定方法Laser beam intensity distribution measuring apparatus and laser beam intensity distribution measuring method
 本発明は、レーザビームの強度分布測定方法およびその測定方法を具現化したレーザビームの強度分布測定装置に関する。 The present invention relates to a laser beam intensity distribution measuring method and a laser beam intensity distribution measuring apparatus embodying the measuring method.
 従来から、レーザビームの強度分布を測定する装置がある(例えば、特許文献1参照。)。 Conventionally, there is an apparatus for measuring the intensity distribution of a laser beam (for example, see Patent Document 1).
特開2008-128987号公報JP 2008-128987 A
 上記特許文献1のような構成では、光路が光軸から偏向した斜入射の状態によっては、レーザビームの強度分布を十分に計測することが困難である。 In the configuration as described in Patent Document 1, it is difficult to sufficiently measure the intensity distribution of the laser beam depending on the oblique incidence state in which the optical path is deflected from the optical axis.
 本発明は、上記の課題を解決するためになされたものであり、光路が光軸から偏向され斜入射の状態のレーザビームの強度分布を十分に計測することができるレーザビームの強度分布測定方法、およびその強度分布測定方法を具現化したレーザビームの強度分布測定方法の提供を目的とする。 The present invention has been made in order to solve the above-described problems, and a laser beam intensity distribution measuring method capable of sufficiently measuring the intensity distribution of a laser beam whose optical path is deflected from the optical axis and is obliquely incident. It is another object of the present invention to provide a laser beam intensity distribution measuring method that embodies the intensity distribution measuring method.
 上記目的を達成する本発明に係るレーザビームの強度分布測定装置は、レーザビームの強度分布を測定する装置である。強度分布測定装置は、計測部と調整部を有している。計測部は、レーザビームの光軸と対向して配設され、検出領域に照射されたレーザビームの強度分布を計測する。調整部は、第1調整部と第2調整部を備えている。第1調整部は、レーザビームをコリメーションして伝搬させる。第2調整部は、第1調整部よりも光軸に沿った下流側に配設されレーザビームを光軸に近接させつつ伝搬させる。調整部は、光軸から偏向して伝搬するレーザビームを検出領域に向かって伝搬するように光軸との成す角を相対的に小さく調整する。 The laser beam intensity distribution measuring apparatus according to the present invention that achieves the above object is an apparatus for measuring the intensity distribution of a laser beam. The intensity distribution measuring apparatus has a measuring unit and an adjusting unit. The measurement unit is arranged to face the optical axis of the laser beam and measures the intensity distribution of the laser beam irradiated on the detection region. The adjustment unit includes a first adjustment unit and a second adjustment unit. The first adjustment unit collimates and propagates the laser beam. The second adjustment unit is disposed downstream of the first adjustment unit along the optical axis and propagates the laser beam while being close to the optical axis. The adjustment unit adjusts the angle formed with the optical axis to be relatively small so that the laser beam deflected from the optical axis and propagates toward the detection region.
 上記目的を達成する本発明に係るレーザビームの強度分布測定方法は、レーザビームの強度分布を測定する方法である。レーザビームの強度分布測定方法は、光軸から偏向して伝搬するレーザビームをコリメーションしてから光軸に近接させつつ伝搬させることによって光軸との成す角を相対的に小さくするように調整しつつ光軸と対向して設けられた検出領域に照射させて強度分布を計測する工程を有している。 The laser beam intensity distribution measuring method according to the present invention that achieves the above object is a method for measuring the intensity distribution of a laser beam. The laser beam intensity distribution measurement method is adjusted so that the angle formed with the optical axis is relatively small by collimating the laser beam propagating from the optical axis and then propagating it close to the optical axis. However, there is a step of measuring the intensity distribution by irradiating a detection region provided facing the optical axis.
実施形態に係るレーザビームの強度分布測定装置の要部を示す斜視図である。It is a perspective view which shows the principal part of the intensity distribution measuring apparatus of the laser beam which concerns on embodiment. 強度分布測定装置の調整部等の光学系を示す図である。It is a figure which shows optical systems, such as an adjustment part of an intensity distribution measuring apparatus. 強度分布測定装置に加えてレーザ発振器を示すブロック図である。It is a block diagram which shows a laser oscillator in addition to an intensity distribution measuring apparatus. 強度分布測定装置の減衰部と計測部に加えてレーザ発振器を示すブロック図である。It is a block diagram which shows a laser oscillator in addition to the attenuation | damping part and measurement part of an intensity distribution measuring apparatus. 強度分布測定装置を製造ラインに組み込んだ状態を示す側面図である。It is a side view which shows the state which integrated the intensity distribution measuring apparatus in the manufacturing line. 強度分布測定装置の検出部によるレーザビームLのビームウエストの位置を検出する構成を模式的に示す図である。It is a figure which shows typically the structure which detects the position of the beam waist of the laser beam L by the detection part of an intensity distribution measuring apparatus. 強度分布測定装置によってレーザビームの強度分布(径)を自動で最適化する制御を示すフローチャートである。It is a flowchart which shows the control which optimizes the intensity distribution (diameter) of a laser beam automatically by an intensity distribution measuring apparatus. 強度分布測定装置によってレーザビームの強度分布(スポット径)を量産前や量産中に自動で最適化する制御を示すフローチャートである。It is a flowchart which shows the control which optimizes the intensity distribution (spot diameter) of a laser beam automatically before mass production or during mass production by an intensity distribution measuring apparatus.
 以下、添付した図面を参照しながら、本発明に係る実施形態について説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面における部材の大きさや比率は、説明の都合上誇張され実際の大きさや比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. The sizes and ratios of the members in the drawings are exaggerated for convenience of explanation and may be different from the actual sizes and ratios.
 なお、光路は、ガルバノミラーのような光学素子によって走査されつつ伝搬する各々のレーザビームの経路を称する。光軸は、光源と検出領域の中心を結ぶ軸であって、特にガルバノミラーのような光学素子による走査がされない状態におけるレーザビームの中心軸を称す。レーザビームの光路が光軸から偏向した状態は、レーザビームが中心軸から所定の角度だけずれて伝搬する状態を称する。 The optical path refers to the path of each laser beam that propagates while being scanned by an optical element such as a galvanometer mirror. The optical axis is an axis connecting the light source and the center of the detection region, and particularly refers to the central axis of the laser beam in a state where scanning by an optical element such as a galvano mirror is not performed. The state where the optical path of the laser beam is deflected from the optical axis refers to a state where the laser beam propagates with a predetermined angle shifted from the central axis.
 本実施形態において、強度分布測定装置100は、被加工部材(例えば微細な加工を要するワーク10)の加工領域に走査されて加工を施すレーザビームLの強度分布を製造ラインにおいて測定する装置である。強度分布測定装置100は、強度分布測定方法を具現化したものに相当する。強度分布測定装置100は、レーザビームLの強度分布を実験室等において測定する装置として用いることもできる。 In the present embodiment, the intensity distribution measuring apparatus 100 is an apparatus that measures the intensity distribution of a laser beam L that is scanned and processed in a processing region of a workpiece (for example, a workpiece 10 that requires fine processing) on a manufacturing line. . The intensity distribution measuring device 100 corresponds to an embodiment of the intensity distribution measuring method. The intensity distribution measuring apparatus 100 can also be used as an apparatus for measuring the intensity distribution of the laser beam L in a laboratory or the like.
 先ず、強度分布測定装置100の構成について、図1~図6を参照しながら説明する。 First, the configuration of the intensity distribution measuring apparatus 100 will be described with reference to FIGS.
 図1は、実施形態に係るレーザビームLの強度分布測定装置100の要部を示す斜視図である。図2は、強度分布測定装置100の調整部120等の光学系を示す図である。図3は、強度分布測定装置100に加えてレーザ発振器200を示すブロック図である。図4は、強度分布測定装置100の減衰部110と計測部130に加えてレーザ発振器200を示すブロック図である。図5は、強度分布測定装置100を製造ラインに組み込んだ状態を示す側面図である。図6は、強度分布測定装置100の検出部170によるレーザビームLのビームウエストの位置を検出する構成を模式的に示す図である。 FIG. 1 is a perspective view showing a main part of an intensity distribution measuring apparatus 100 for a laser beam L according to an embodiment. FIG. 2 is a diagram illustrating an optical system such as the adjusting unit 120 of the intensity distribution measuring apparatus 100. FIG. 3 is a block diagram showing a laser oscillator 200 in addition to the intensity distribution measuring apparatus 100. FIG. 4 is a block diagram showing the laser oscillator 200 in addition to the attenuation unit 110 and the measurement unit 130 of the intensity distribution measuring apparatus 100. FIG. 5 is a side view showing a state in which the intensity distribution measuring apparatus 100 is incorporated in a production line. FIG. 6 is a diagram schematically illustrating a configuration in which the position of the beam waist of the laser beam L is detected by the detection unit 170 of the intensity distribution measuring apparatus 100.
 強度分布測定装置100は、減衰部110、調整部120、計測部130、表示部140、操作部150、筺体部160、検出部170、および制御部180を有している。 The intensity distribution measuring apparatus 100 includes an attenuation unit 110, an adjustment unit 120, a measurement unit 130, a display unit 140, an operation unit 150, a housing unit 160, a detection unit 170, and a control unit 180.
 減衰部110は、図1、図3、および図4に示すように、計測部130よりも光軸Cに沿った上流側に配設され、レーザビームLの強度を減衰させる。 As shown in FIGS. 1, 3, and 4, the attenuation unit 110 is disposed upstream of the measurement unit 130 along the optical axis C and attenuates the intensity of the laser beam L.
 減衰部110は、光軸Cの上流側(レーザ発振器200の側)から下流側(計測部130の検出器131の側)に向かって、第1サンプリングプリズム111、水冷ダンパ112、第2サンプリングプリズム113、空冷ダンパ114、第1反射ミラー115、第2反射ミラー116、第1減光フィルタ117A、第2減光フィルタ117B、第3減光フィルタ117C、および第4減光フィルタ117Dの順で、各々の構成部材を配設している。第1サンプリングプリズム111は、コリメート部120Mよりも上流側であって、コリメート部120Mと隣り合うように配設している。第2サンプリングプリズム113~第4減光フィルタ117Dは、コリメート部120Mとコンデンサ部120Nの間の領域に配設している。 The attenuating unit 110 includes a first sampling prism 111, a water cooling damper 112, and a second sampling prism from the upstream side of the optical axis C (laser oscillator 200 side) to the downstream side (detector 131 side of the measuring unit 130). 113, air-cooled damper 114, first reflecting mirror 115, second reflecting mirror 116, first neutral density filter 117A, second neutral density filter 117B, third neutral density filter 117C, and fourth neutral density filter 117D. Each component is disposed. The first sampling prism 111 is disposed on the upstream side of the collimating portion 120M and adjacent to the collimating portion 120M. The second sampling prism 113 to the fourth neutral density filter 117D are disposed in a region between the collimator 120M and the capacitor 120N.
 第1サンプリングプリズム111は、レーザビームLの強度を減衰させるものである。第1サンプリングプリズム111には、レーザ発振器200から導出されたレーザビームLが入射される。第1サンプリングプリズム111は、レーザビームLの一部(例えば90%)を界面から外部に透過させつつ水冷ダンパ112に伝搬させ、レーザビームLの一部(例えば10%)を界面で反射させつつ第2サンプリングプリズム113に向かって伝搬させる。第1サンプリングプリズム111は、ワーク10に向かって伝搬するレーザビームLを、ワーク10の加工領域(溶接領域)に沿った方向に反射させる。第1サンプリングプリズム111は、プリズム形状のガラスから構成している。そのプリズム形状の斜面が、界面に相当する。 The first sampling prism 111 attenuates the intensity of the laser beam L. The laser beam L derived from the laser oscillator 200 is incident on the first sampling prism 111. The first sampling prism 111 propagates a part (for example, 90%) of the laser beam L to the water-cooled damper 112 while transmitting it from the interface to the outside, and reflects a part (for example, 10%) of the laser beam L at the interface. Propagate toward the second sampling prism 113. The first sampling prism 111 reflects the laser beam L propagating toward the workpiece 10 in a direction along the processing region (welding region) of the workpiece 10. The first sampling prism 111 is made of prism-shaped glass. The prism-shaped slope corresponds to the interface.
 水冷ダンパ112は、第1サンプリングプリズム111の界面から外部に透過したレーザビームLを、液体に照射させて減衰させるものである。水冷ダンパ112は、第1サンプリングプリズム111と隣接している。水冷ダンパ112は、例えば、金属からなり、内部に空洞を備えた箱状に形成されている。水冷ダンパ112は、内部に水を収納した状態において、レーザビームLの波長の光において透明な板状の窓材によって封止して構成している。水冷ダンパ112は、レーザビームLを窓材から導入しつつ内部に収納した水に照射させることによって、そのレーザビームLを水冷によって減衰させる。 The water-cooled damper 112 is for attenuating the liquid by irradiating the liquid with the laser beam L transmitted from the interface of the first sampling prism 111 to the outside. The water cooling damper 112 is adjacent to the first sampling prism 111. The water-cooled damper 112 is made of, for example, metal and is formed in a box shape having a cavity inside. The water-cooled damper 112 is configured to be sealed with a plate-shaped window material that is transparent with respect to light having the wavelength of the laser beam L in a state where water is housed therein. The water cooling damper 112 attenuates the laser beam L by water cooling by irradiating the water stored therein while introducing the laser beam L from the window material.
 第2サンプリングプリズム113は、第1サンプリングプリズム111によって減衰されたレーザビームLの強度を、さらに減衰させるものである。第2サンプリングプリズム113は、ワーク10の加工領域(溶接領域)に沿った方向において、第1サンプリングプリズム111と対向して配置されている。第2サンプリングプリズム113には、第1サンプリングプリズム111の界面において反射したレーザビームL(第1サンプリングプリズム111によって約10%に減衰済み)が入射される。第2サンプリングプリズム113は、レーザビームLの一部(例えば90%)を界面から外部に透過させつつ空冷ダンパ114に伝搬させ、レーザビームLの一部(例えば10%)を界面で反射させつつ第1反射ミラー115に向かって伝搬させる。第2サンプリングプリズム113は、第1サンプリングプリズム111と同様に、プリズム形状のガラスから構成している。そのプリズム形状の斜面が、界面に相当する。 The second sampling prism 113 further attenuates the intensity of the laser beam L attenuated by the first sampling prism 111. The second sampling prism 113 is disposed to face the first sampling prism 111 in the direction along the processing region (welding region) of the workpiece 10. The laser beam L reflected at the interface of the first sampling prism 111 (which has been attenuated to about 10% by the first sampling prism 111) is incident on the second sampling prism 113. The second sampling prism 113 transmits a part (eg, 90%) of the laser beam L to the air-cooled damper 114 while transmitting it from the interface to the outside, and reflects a part (eg, 10%) of the laser beam L at the interface. Propagate toward the first reflecting mirror 115. Similar to the first sampling prism 111, the second sampling prism 113 is made of prism-shaped glass. The prism-shaped slope corresponds to the interface.
 空冷ダンパ114は、第2サンプリングプリズム113の界面から外部に透過したレーザビームLを、気体に照射させて減衰させるものである。空冷ダンパ114は、第2サンプリングプリズム113と隣接している。空冷ダンパ114は、例えば、金属からなり、内部に空洞を備えた箱状に形成されている。空冷ダンパ114は、特に、熱伝導性に優れた銅またはアルミや、一定の強度を有する銅合金またはアルミ合金から形成することができる。空冷ダンパ114は、第2サンプリングプリズム113との間の空洞によって、レーザビームLを多重反射させつつ、そのレーザビームLを減衰させる。 The air-cooled damper 114 attenuates the gas by irradiating the gas with the laser beam L transmitted from the interface of the second sampling prism 113 to the outside. The air cooling damper 114 is adjacent to the second sampling prism 113. The air-cooled damper 114 is made of, for example, metal and is formed in a box shape having a cavity inside. The air-cooled damper 114 can be formed from copper or aluminum having excellent thermal conductivity, or a copper alloy or aluminum alloy having a certain strength. The air-cooled damper 114 attenuates the laser beam L while performing multiple reflection of the laser beam L by a cavity between the second sampling prism 113 and the air-cooling damper 114.
 第1反射ミラー115は、レーザビームLを反射させて、その光軸Cを変更するものである。第1反射ミラー115は、ワーク10の加工領域(溶接領域)に沿った方向において、第2サンプリングプリズム113と対向して配置されている。第1反射ミラー115は、第2サンプリングプリズム113から伝搬されたレーザビームLを、ワーク10の面に沿った方向に向かって反射させつつ、第2反射ミラー116に向かって伝搬させる。第1反射ミラー115は、レーザビームLの光軸Cを90°折り返している。第1反射ミラー115は、例えば、プリズム形状のガラスの一面に、アルミニウムのような金属を蒸着させて構成している。第1反射ミラー115において、金属を蒸着させた一面が、レーザビームLの反射面になる。第1反射ミラー115は、プリズム形状によって構成することによって、板状によって構成する場合と比較して、その形状(3つの角のうち1つの角が直角)を基準にして角度を調整し易い。 The first reflecting mirror 115 reflects the laser beam L and changes its optical axis C. The first reflecting mirror 115 is disposed to face the second sampling prism 113 in the direction along the processing region (welding region) of the workpiece 10. The first reflecting mirror 115 propagates the laser beam L propagated from the second sampling prism 113 toward the second reflecting mirror 116 while reflecting the laser beam L toward the direction along the surface of the workpiece 10. The first reflecting mirror 115 turns the optical axis C of the laser beam L 90 degrees. The first reflecting mirror 115 is configured, for example, by depositing a metal such as aluminum on one surface of a prism-shaped glass. In the first reflecting mirror 115, the surface on which the metal is deposited becomes the reflecting surface of the laser beam L. By configuring the first reflecting mirror 115 with a prism shape, it is easier to adjust the angle with reference to the shape (one of the three corners is a right angle) as compared with the case of configuring the first reflecting mirror 115 with a plate shape.
 第2反射ミラー116は、レーザビームLを反射させて、その光軸Cを変更するものである。第2反射ミラー116は、ワーク10の加工領域(溶接領域)に沿った方向において、第1減光フィルタ117Aと対向して配置されている。第2反射ミラー116は、第1反射ミラー115から伝搬されたレーザビームLを、ワーク10の面に沿った方向に向かって反射させつつ、第1減光フィルタ117A~第4減光フィルタ117Dに向かって伝搬させる。第2反射ミラー116は、レーザビームLの光軸Cを90°折り返している。第2反射ミラー116は、第1反射ミラー115と同様の仕様からなる。 The second reflection mirror 116 reflects the laser beam L and changes its optical axis C. The second reflecting mirror 116 is disposed to face the first neutral density filter 117 </ b> A in the direction along the processing area (welding area) of the workpiece 10. The second reflecting mirror 116 reflects the laser beam L propagated from the first reflecting mirror 115 in the direction along the surface of the workpiece 10 and applies it to the first neutral density filter 117A to the fourth neutral density filter 117D. Propagate toward. The second reflecting mirror 116 turns back the optical axis C of the laser beam L by 90 °. The second reflection mirror 116 has the same specifications as the first reflection mirror 115.
 第1減光フィルタ117A、第2減光フィルタ117B、第3減光フィルタ117C、および第4減光フィルタ117Dは、レーザビームLの強度を、検出器131の耐光特性に合わせて調整するものである。第1減光フィルタ117Aは、ワーク10の面内に沿った方向において、第2反射ミラー116と対向して配置されている。第1減光フィルタ117A~第4減光フィルタ117Dは、第2反射ミラー116とコンデンサ部120Nの間に一定の間隔で配設している。第1減光フィルタ117A~第4減光フィルタ117Dは、第1サンプリングプリズム111および第2サンプリングプリズム113によって大幅に減衰されたレーザビームLの強度を微調整する。 The first neutral density filter 117A, the second neutral density filter 117B, the third neutral density filter 117C, and the fourth neutral density filter 117D adjust the intensity of the laser beam L in accordance with the light resistance characteristics of the detector 131. is there. The first neutral density filter 117 </ b> A is disposed to face the second reflection mirror 116 in the direction along the plane of the workpiece 10. The first neutral density filter 117A to the fourth neutral density filter 117D are disposed between the second reflection mirror 116 and the capacitor unit 120N at a constant interval. The first neutral density filter 117A to the fourth neutral density filter 117D finely adjust the intensity of the laser beam L significantly attenuated by the first sampling prism 111 and the second sampling prism 113.
 第1減光フィルタ117A~第4減光フィルタ117Dは、所謂反射型として構成する場合、一例として、レーザビームLの波長の光において透明な板状の窓材に、反射率が数十%~数%の反射膜(例えば、クロムからなる薄膜)を蒸着したものを用いる。一方、第1減光フィルタ117A~第4減光フィルタ117Dは、所謂吸収型として構成する場合、一例として、レーザビームLの波長の光を一定の割合で吸収する吸収材を含有させた窓材を用いる。第1減光フィルタ117A~第4減光フィルタ117Dは、例えば、90%、50%、10%、1%のように、減光率が互いに異なるものを用いる。第1減光フィルタ117A~第4減光フィルタ117Dは、光軸Cと直交するように、光軸Cと対向(正対)している。減光フィルタは、実施形態のように複数用いてもよいし、1枚のみ用いてもよい。減光フィルタは、減光率の異なるものを複数組み合わせて用いることによって、レーザビームLを任意の強度に減光し易い。すなわち、第1サンプリングプリズム111および第2サンプリングプリズム113の構成を変更することなく、第1減光フィルタ117A~第4減光フィルタ117Dによって、レーザビームLの強度を微調整することができる。 When the first neutral density filter 117A to the fourth neutral density filter 117D are configured as a so-called reflection type, as an example, the reflectance of a plate-shaped window material that is transparent with respect to the light of the wavelength of the laser beam L is several tens% to A film on which several percent of a reflective film (for example, a thin film made of chromium) is deposited is used. On the other hand, when the first neutralization filter 117A to the fourth neutralization filter 117D are configured as so-called absorption types, as an example, a window material containing an absorber that absorbs light of the wavelength of the laser beam L at a certain ratio. Is used. As the first neutral density filter 117A to the fourth neutral density filter 117D, filters having different attenuation ratios such as 90%, 50%, 10%, and 1% are used. The first neutral density filter 117A to the fourth neutral density filter 117D are opposed (directly opposed) to the optical axis C so as to be orthogonal to the optical axis C. A plurality of neutral density filters may be used as in the embodiment, or only one may be used. The neutral density filter can easily attenuate the laser beam L to an arbitrary intensity by using a combination of a plurality of neutral density filters. That is, the intensity of the laser beam L can be finely adjusted by the first neutral density filter 117A to the fourth neutral density filter 117D without changing the configuration of the first sampling prism 111 and the second sampling prism 113.
 調整部120は、図1~図3に示すように、光軸Cから偏向して伝搬するレーザビームLを検出領域131aに向かって伝搬するように光軸Cとの成す角を相対的に小さく調整する。 As shown in FIGS. 1 to 3, the adjusting unit 120 relatively reduces the angle formed with the optical axis C so that the laser beam L propagating from the optical axis C is propagated toward the detection region 131a. adjust.
 調整部120は、第1調整部(例えばコリメート部120M)と第2調整部(例えばコンデンサ部120N)を備えている。 The adjusting unit 120 includes a first adjusting unit (for example, a collimating unit 120M) and a second adjusting unit (for example, a capacitor unit 120N).
 コリメート部120Mは、レーザビームLを光軸Cに沿うような平行光の状態または平行光に近い状態で検出器131に向かって伝搬させる。コリメート部120Mによって、無限遠補正区間を実現する。コリメート部120Mは、レンズ121、122、123、および124からなる対物レンズによって構成している。このような対物レンズは、顕微鏡等に用いられているものを適用できる。コリメート部120Mは、例えば製造ラインの狭い空間に組み込み、ワーク10との干渉を防止するために、レーザビームLをワーク10の加工領域(溶接領域)に沿った方向に向かって伝播させる。対物レンズは、その開口数が例えばNA=0.3以上のものを選択することによって、ガルバノミラー211によって走査されるレーザビームLを十分に集光して、検出領域131aに伝播させることができる。 The collimator 120M propagates the laser beam L toward the detector 131 in a parallel light state along the optical axis C or in a state close to parallel light. The infinity correction section is realized by the collimator 120M. The collimating unit 120M is configured by an objective lens including lenses 121, 122, 123, and 124. As such an objective lens, one used in a microscope or the like can be applied. The collimator 120M is incorporated in, for example, a narrow space of the production line, and propagates the laser beam L in a direction along the processing region (welding region) of the workpiece 10 in order to prevent interference with the workpiece 10. By selecting an objective lens whose numerical aperture is, for example, NA = 0.3 or more, the laser beam L scanned by the galvano mirror 211 can be sufficiently condensed and propagated to the detection region 131a. .
 コンデンサ部120Nは、レーザビームLを光軸Cに近接させつつ集光光の状態において、検出器131に向かって伝搬させる。コンデンサ部120Nは、コリメート部120Mよりも光軸Cに沿った下流側に配設されている。コンデンサ部120Nは、レンズ125、126、127、および128からなる結像レンズによって構成している。このような結像レンズは、顕微鏡等に用いられているものを適用できる。コンデンサ部120Nは、結像レンズによって、レーザビームLの角度を矯正可能に構成している。また、レンズ125、126、127、および128からなる結像レンズの焦点距離を、例えば製造ラインにおいて溶接台221に載置されたワーク10までのレーザビームLの焦点距離と同等になるように構成することによって、計測部130によるレーザビームLの計測を、レーザ溶接時のレーザビームLのプロファイラを精度良く再現した状態で行うことができる。 The capacitor unit 120N propagates the laser beam L toward the detector 131 in the condensed light state while bringing the laser beam L close to the optical axis C. The capacitor unit 120N is disposed on the downstream side along the optical axis C from the collimating unit 120M. The condenser unit 120N is configured by an imaging lens including lenses 125, 126, 127, and 128. As such an imaging lens, one used in a microscope or the like can be applied. The condenser unit 120N is configured so that the angle of the laser beam L can be corrected by an imaging lens. Further, the focal length of the imaging lens including the lenses 125, 126, 127, and 128 is configured to be equal to the focal length of the laser beam L to the workpiece 10 placed on the welding table 221 in the production line, for example. By doing so, the measurement of the laser beam L by the measurement unit 130 can be performed in a state where the profiler of the laser beam L at the time of laser welding is accurately reproduced.
 計測部130は、図1~図4に示すように、レーザビームLの光軸Cと対向して配設され、検出領域131aに照射されたレーザビームLの強度分布を計測する。 As shown in FIGS. 1 to 4, the measuring unit 130 is arranged to face the optical axis C of the laser beam L, and measures the intensity distribution of the laser beam L irradiated to the detection region 131a.
 計測部130は、検出器131を備えている。検出器131は、光軸Cに沿った最も下流側に配設されている。検出器131の検出領域131aは、CCDやCMOSからなり、光軸Cと直交するように光軸Cと対向(正対)している。検出器131には、カメラタイプを用いることができる。また、検出器131には、ナイフエッジ方式を用いたスキャナタイプ、スリット方式を用いたスキャナタイプ、またはピンホール方式を用いたスキャナタイプのものを用いることができる。検出器131に、例えば、スリット方式によるスキャナタイプを用いた場合、フォトディテクタの前方に設けたスリットが回転した状態で、レーザビームLを入射させる。検出器131において、スリットを通過したレーザビームLがディテクタに入射されると、起電力が発生して、レーザビームLの強度を電流値の大小として検出する。検出器131は、レーザビームLの分布をスリットの位置に基づいて検出する。 The measuring unit 130 includes a detector 131. The detector 131 is disposed on the most downstream side along the optical axis C. The detection area 131a of the detector 131 is composed of a CCD or a CMOS, and is opposed (facing directly) to the optical axis C so as to be orthogonal to the optical axis C. The detector 131 can be a camera type. The detector 131 may be a scanner type using a knife edge method, a scanner type using a slit method, or a scanner type using a pinhole method. For example, in the case where a scanner type scanner type is used as the detector 131, the laser beam L is made incident while the slit provided in front of the photodetector is rotated. In the detector 131, when the laser beam L that has passed through the slit is incident on the detector, an electromotive force is generated, and the intensity of the laser beam L is detected as the magnitude of the current value. The detector 131 detects the distribution of the laser beam L based on the position of the slit.
 ここで、検出器131の検出精度は、一般的にレーザビームLの入射角に依存する。検出器131は、レーザビームLが検出領域131aに垂直に入射した場合に、レーザビームLの強度分布を最も精度良く検出することができる。すなわち、光軸Cから偏向して伝搬するレーザビームLを調整部120によって光軸Cとの成す角を相対的に小さく調整しつつ、そのレーザビームLを検出領域131aに対して垂直に近い状態で入射させることによって、レーザビームLの強度分布を精度良く検出することができる。 Here, the detection accuracy of the detector 131 generally depends on the incident angle of the laser beam L. The detector 131 can detect the intensity distribution of the laser beam L with the highest accuracy when the laser beam L is perpendicularly incident on the detection region 131a. That is, the laser beam L which is deflected from the optical axis C and propagates is adjusted by the adjustment unit 120 so that the angle formed with the optical axis C is relatively small, and the laser beam L is nearly perpendicular to the detection region 131a. , The intensity distribution of the laser beam L can be accurately detected.
 表示部140は、図1および図3に示すように、計測部130によって計測されたレーザビームLの強度分布を表示する。 The display unit 140 displays the intensity distribution of the laser beam L measured by the measurement unit 130, as shown in FIGS.
 表示部140は、モニター141を備えている。モニター141は、計測部130の検出器131に接続されている。モニター141は、検出器131によって得られたレーザビームLの強度分布のデータを受信して表示する。例えば製造ラインの作業者は、モニター141によってレーザビームLの強度分布を目視しながら光学調整を行う。モニター141は、例えば、レーザビームLの強度を縦軸に表し、レーザビームLの分布を横軸(2軸)の面内に表す。モニター141は、レーザビームLの強度分布を立体的に表示させるたり、上方から下方に向かって鳥瞰図のように表示させたり、側方から表示させたりする。 The display unit 140 includes a monitor 141. The monitor 141 is connected to the detector 131 of the measurement unit 130. The monitor 141 receives and displays the intensity distribution data of the laser beam L obtained by the detector 131. For example, an operator on the production line performs optical adjustment while visually observing the intensity distribution of the laser beam L with the monitor 141. The monitor 141 represents, for example, the intensity of the laser beam L on the vertical axis and the distribution of the laser beam L on the horizontal axis (two axes). The monitor 141 displays the intensity distribution of the laser beam L in a three-dimensional manner, displays the bird's-eye view from the upper side to the lower side, or displays it from the side.
 操作部150は、図3および図5に示すように、計測部130によるレーザビームLの強度分布の計測結果に基づき、レーザ発振器200の変更部210を調整し、レーザビームLの径を小さくする。 As shown in FIGS. 3 and 5, the operation unit 150 adjusts the changing unit 210 of the laser oscillator 200 based on the measurement result of the intensity distribution of the laser beam L by the measurement unit 130 to reduce the diameter of the laser beam L. .
 操作部150は、制御回路151を備えている。制御回路151は、レーザ発振器200の変更部210の直進ステージ213と電気的に接続されている。ここで、変更部210は、レーザ発振器200側に設けられ、レーザビームLを反射させるガルバノミラー211の光軸Cに沿った位置を上流側または下流側に変更するものである。レーザ発振器200から導出されたレーザビームLは、ガルバノミラー211によって反射した後、fθレンズ212を透過して、第1サンプリングプリズム111に伝搬する。fθレンズ212は、ガルバノミラー211によるレーザビームLの走査速度を一定にする。制御回路151は、計測部130からレーザビームLの強度分布の計測結果を受信し、受信した計測結果に基づいて直進ステージ213を制御して、レーザビームLの径が最も小さくなるようにガルバノミラー211の光軸Cに沿った位置を調整する。 The operation unit 150 includes a control circuit 151. The control circuit 151 is electrically connected to the rectilinear stage 213 of the changing unit 210 of the laser oscillator 200. Here, the changing unit 210 is provided on the laser oscillator 200 side, and changes the position along the optical axis C of the galvano mirror 211 that reflects the laser beam L to the upstream side or the downstream side. The laser beam L derived from the laser oscillator 200 is reflected by the galvanometer mirror 211, passes through the fθ lens 212, and propagates to the first sampling prism 111. The fθ lens 212 makes the scanning speed of the laser beam L by the galvanometer mirror 211 constant. The control circuit 151 receives the measurement result of the intensity distribution of the laser beam L from the measurement unit 130 and controls the straight stage 213 based on the received measurement result so that the diameter of the laser beam L is minimized. The position along the optical axis C of 211 is adjusted.
 筺体部160は、図3および図5に示すように、強度分布測定装置100の各構成部材を支持し、レーザ発振器200と連結した内部に不活性ガスを充填する。 As shown in FIGS. 3 and 5, the housing unit 160 supports each component of the intensity distribution measuring apparatus 100 and fills the interior connected to the laser oscillator 200 with an inert gas.
 筺体部160は、支持台161、駆動ステージ162、およびノズル163を備えている。支持台161は、減衰部110、調整部120、および計測部130等の各構成部材を固定した状態で支持している。駆動ステージ162は、支持台161を搭載し、その支持台161を移動させる。駆動ステージ162は、レーザ発振器200から導出されるレーザビームLによってワーク10の溶接が行われている間、ワーク10に干渉しないように、支持台161をレーザビームLの光路Kから退避させる。一方、駆動ステージ162は、レーザ発振器200によるワーク10の溶接が行われず、レーザビームLの強度分布が測定される場合に、支持台161をレーザビームLの光路Kに侵入させる。ノズル163は、レーザビームLの光路Kの雰囲気を不活性ガス(アシストガス)によって置換しつつ酸素を除外することによって、その酸素に起因した光学部材の表面の焼け付きを防止する。ノズル163は、レーザ発振器200と、減衰部110の最初(光学系の最も上流側)の光学素子の間に配設している。ノズル163は、外部と隔離され密閉状態を満たすような形状にする必要はなく、少なくとも不活性ガスを流通させることによって、レーザ発振器200と強度分布測定装置100が隣接した領域に不活性ガスを充填する構成とすればよい。 The housing unit 160 includes a support base 161, a drive stage 162, and a nozzle 163. The support base 161 supports each constituent member such as the attenuation unit 110, the adjustment unit 120, and the measurement unit 130 in a fixed state. The drive stage 162 mounts the support stand 161 and moves the support stand 161. The drive stage 162 retracts the support base 161 from the optical path K of the laser beam L so as not to interfere with the workpiece 10 while the workpiece 10 is welded by the laser beam L derived from the laser oscillator 200. On the other hand, the drive stage 162 causes the support base 161 to enter the optical path K of the laser beam L when the workpiece 10 is not welded by the laser oscillator 200 and the intensity distribution of the laser beam L is measured. The nozzle 163 eliminates oxygen while replacing the atmosphere of the optical path K of the laser beam L with an inert gas (assist gas), thereby preventing the surface of the optical member from being burned due to the oxygen. The nozzle 163 is disposed between the laser oscillator 200 and the first optical element (the most upstream side of the optical system) of the attenuation unit 110. The nozzle 163 does not need to have a shape that is isolated from the outside and satisfies the hermetically sealed state. At least the inert gas is circulated so that the region adjacent to the laser oscillator 200 and the intensity distribution measuring device 100 is filled with the inert gas. What is necessary is just to be the structure to do.
 検出部170は、図6に示すように、レーザビームLのビームウエストの位置を検出する。 The detection unit 170 detects the position of the beam waist of the laser beam L as shown in FIG.
 検出部170は、基準台171およびプローブ172を備えている。基準台171の上面の位置は、fθレンズ212の焦点位置と光軸Cに沿って一致するように予め微調整を行っている。すなわち、基準台171の上面の位置と、fθレンズ212の焦点位置は、光軸Cの法線方向に沿って隣り合っている。基準第171は、fθレンズ212と共に直進ステージ213によって移動される。すなわち、基準台171の上面の位置と、fθレンズ212の焦点位置は、光軸Cに対して常に一致している。プローブ172は、基準台171の上面に対して接近離間し、基準台171の上面に接触したときの位置を制御部180のコントローラに送信する。 The detection unit 170 includes a reference table 171 and a probe 172. The position of the upper surface of the reference table 171 is finely adjusted in advance so as to coincide with the focal position of the fθ lens 212 along the optical axis C. That is, the position of the upper surface of the reference table 171 and the focal position of the fθ lens 212 are adjacent to each other along the normal direction of the optical axis C. The reference number 171 is moved together with the fθ lens 212 by the linear stage 213. That is, the position of the upper surface of the reference table 171 and the focal position of the fθ lens 212 always coincide with the optical axis C. The probe 172 moves closer to and away from the upper surface of the reference table 171, and transmits the position when contacting the upper surface of the reference table 171 to the controller of the control unit 180.
 プローブ172は、図6(A)に示すように通常は基準台171から離間している。プローブ172は、図6(B)に示すように基準台171に接近して接触すると離間しつつ、その位置をコントローラ181に送信する。このように、レーザ発振器200から導出されたレーザビームLのビームウエストの位置を検出する場合、fθレンズ212の焦点位置と相関が取れている基準台171を用いることができる。したがって、光学部材であって取り扱いに注意を要し、かつ、狭所にあって位置検出が困難であるfθレンズ212に対して、プローブ172を接触させる必要がない。さらに、fθレンズ212の表面に蒸着され剥離し易い反射防止膜に対して、プローブ172を接触させる必要がない。 The probe 172 is normally separated from the reference base 171 as shown in FIG. As shown in FIG. 6B, the probe 172 transmits its position to the controller 181 while moving away from and approaching the reference table 171. As described above, when the position of the beam waist of the laser beam L derived from the laser oscillator 200 is detected, the reference table 171 correlated with the focal position of the fθ lens 212 can be used. Therefore, it is not necessary to bring the probe 172 into contact with the fθ lens 212 which is an optical member and requires handling, and is difficult to detect the position in a narrow place. Further, it is not necessary to bring the probe 172 into contact with the antireflection film which is deposited on the surface of the fθ lens 212 and easily peels off.
 制御部180は、図1および図3に示すように、計測部130および表示部140の制御に加えて、操作部150を介してレーザ発振器200の変更部210を制御する。 As shown in FIGS. 1 and 3, the control unit 180 controls the changing unit 210 of the laser oscillator 200 via the operation unit 150 in addition to the control of the measurement unit 130 and the display unit 140.
 制御部180は、コントローラ181を備えている。コントローラ181は、ROM、CPU、およびRAMを含んでいる。ROM(Read Only Memory)は、強度分布測定装置100およびレーザ発振器200の変更部210の制御プログラムや、レーザビームLの基準となる理想的な強度分布のデータを格納している。制御プログラムは、ROMに複数格納され、例えば、計測部130によるレーザビームLの強度分布の計測結果に基づき、レーザビームLの径が小さくなるように変更部210を調整するためのプログラムである。CPU(Central Processing Unit)は、制御プログラムを実行する。RAM(Random Access Memory)は、検出器131によって計測されたレーザビームLの強度分布のデータ等を一時的に記憶する。 The control unit 180 includes a controller 181. The controller 181 includes a ROM, a CPU, and a RAM. A ROM (Read Only Memory) stores a control program for the intensity distribution measuring apparatus 100 and the changing unit 210 of the laser oscillator 200 and ideal intensity distribution data that serves as a reference for the laser beam L. A plurality of control programs are stored in the ROM. For example, the control program is a program for adjusting the changing unit 210 so that the diameter of the laser beam L is reduced based on the measurement result of the intensity distribution of the laser beam L by the measuring unit 130. A CPU (Central Processing Unit) executes a control program. A RAM (Random Access Memory) temporarily stores data on the intensity distribution of the laser beam L measured by the detector 131.
 次に、強度分布測定装置100の使用方法について、図7および図8を参照しながら説明する。 Next, a method of using the intensity distribution measuring apparatus 100 will be described with reference to FIGS.
 図7は、強度分布測定装置100によってレーザビームLの強度分布(径)を自動で最適化する制御を示すフローチャートである。図8は、強度分布測定装置100によってレーザビームLの強度分布(径)を量産前や量産中に自動で最適化する制御を示すフローチャートである。 FIG. 7 is a flowchart showing control for automatically optimizing the intensity distribution (diameter) of the laser beam L by the intensity distribution measuring apparatus 100. FIG. 8 is a flowchart showing control for automatically optimizing the intensity distribution (diameter) of the laser beam L by the intensity distribution measuring apparatus 100 before mass production or during mass production.
 強度分布測定装置100によって、レーザビームLの径を自動で最適化する方法について、図7を参照しながら説明する。 A method for automatically optimizing the diameter of the laser beam L by the intensity distribution measuring apparatus 100 will be described with reference to FIG.
 ステップS111において、レーザビームLの径を測定するために、強度分布測定装置100の電源をONにして、制御部180の制御に基づき、レーザビームLの径の最適化を開始する。ステップS111からステップS112に進む。 In step S111, in order to measure the diameter of the laser beam L, the power source of the intensity distribution measuring apparatus 100 is turned on, and the optimization of the diameter of the laser beam L is started based on the control of the control unit 180. The process proceeds from step S111 to step S112.
 ステップS112において、制御部180は、先ず、筺体部160の駆動ステージ162によって支持台161をレーザビームLの光路Kに侵入させる。支持台161は、減衰部110、調整部120、および計測部130等の各構成部材を支持している。制御部180は、次に、レーザ発振器200にレーザビームLを導出させると共に、計測部130の検出器131にレーザビームLの径を検出させる。その後、ステップS112からステップS113に進む。 In step S112, the control unit 180 first causes the support base 161 to enter the optical path K of the laser beam L by the drive stage 162 of the housing unit 160. The support base 161 supports the constituent members such as the attenuation unit 110, the adjustment unit 120, and the measurement unit 130. Next, the control unit 180 causes the laser oscillator 200 to derive the laser beam L and causes the detector 131 of the measurement unit 130 to detect the diameter of the laser beam L. Thereafter, the process proceeds from step S112 to step S113.
 ステップS113において、制御部180は、検出器131によって検出されたレーザビームLの径が、予め定めておいた基準値の径と同等かを、コントローラ181のCPUによって判定する。基準値のデータは、コントローラ181のROMに格納している。その後、ステップS113からステップS114(レーザビームLの径が基準値と同等の場合)またはステップS131(レーザビームLの径が基準値と同等ではない場合)に進む。 In step S113, the control unit 180 determines whether the diameter of the laser beam L detected by the detector 131 is equal to the predetermined reference value diameter by the CPU of the controller 181. The reference value data is stored in the ROM of the controller 181. Thereafter, the process proceeds from step S113 to step S114 (when the diameter of the laser beam L is equal to the reference value) or step S131 (when the diameter of the laser beam L is not equal to the reference value).
 ステップS114において、制御部180は、ステップS113におけるレーザビームLの径が基準値と同等である旨の判定に基づき、操作部150によって、ガルバノミラー211を光軸Cの上流側または下流側に向かって一定距離だけ移動させる。その後、ステップS114からステップS115に進む。 In step S114, the control unit 180 moves the galvanometer mirror 211 toward the upstream side or the downstream side of the optical axis C by the operation unit 150 based on the determination that the diameter of the laser beam L is equal to the reference value in step S113. Move it a certain distance. Thereafter, the process proceeds from step S114 to step S115.
 ステップS115において、ステップS112と同様に、制御部180は、レーザ発振器200にレーザビームLを導出させると共に、計測部130の検出器131にレーザビームLの径を測定させる。その後、ステップS115からステップS116に進む。 In step S115, as in step S112, the control unit 180 causes the laser oscillator 200 to derive the laser beam L and causes the detector 131 of the measurement unit 130 to measure the diameter of the laser beam L. Thereafter, the process proceeds from step S115 to step S116.
 ステップS116において、ステップS113と同様に、制御部180は、検出器131によって検出されたレーザビームLの径が、予め定めておいた基準値の径と同等かを、コントローラ181のCPUによって判定する。その後、ステップS116からステップS117(レーザビームLの径が基準値と同等の場合)またはステップS121(レーザビームLの径が基準値と同等ではない場合)に進む。 In step S116, as in step S113, the control unit 180 determines whether the diameter of the laser beam L detected by the detector 131 is equal to a predetermined reference value diameter by the CPU of the controller 181. . Thereafter, the process proceeds from step S116 to step S117 (when the diameter of the laser beam L is equal to the reference value) or step S121 (when the diameter of the laser beam L is not equal to the reference value).
 ステップS117において、制御部180は、操作部150によってガルバノミラー211を、光軸Cに沿って逆方向に一定距離の半分だけ戻すように移動させる。例えば製造ラインにおいて、移動後の位置を基準にして、ガルバノミラー211を走査(回転駆動)して、レーザ発振器200によるワーク10のレーザ溶接を行うことになる。その後、ステップS117からステップS118に進む。 In step S117, the control unit 180 causes the operation unit 150 to move the galvanometer mirror 211 back along the optical axis C in the reverse direction by a half of a predetermined distance. For example, on the production line, the galvanometer mirror 211 is scanned (rotated and driven) on the basis of the moved position, and laser welding of the workpiece 10 by the laser oscillator 200 is performed. Thereafter, the process proceeds from step S117 to step S118.
 ステップS121において、ステップS116から引き続き、制御部180は、操作部150によって、ガルバノミラー211を光軸Cの上流側または下流側に向かって、ステップS114とは逆方向に一定距離の2倍だけ移動させる。すなわち、ガルバノミラー211を、ステップS113における位置を基準として、ステップS114における方向とは正反対の方向に光軸Cに沿って一定距離だけ移動させる。その後、ステップS121からステップS113に進む。 In step S121, following step S116, the control unit 180 causes the operation unit 150 to move the galvano mirror 211 toward the upstream side or downstream side of the optical axis C in the direction opposite to step S114 by twice a fixed distance. Let That is, the galvanometer mirror 211 is moved by a certain distance along the optical axis C in the direction opposite to the direction in step S114 with reference to the position in step S113. Thereafter, the process proceeds from step S121 to step S113.
 ステップS131において、ステップS113から引き続き、制御部180は、操作部150によって、ガルバノミラー211を、光軸Cに沿って一定距離だけ移動させる。その後、ステップS131からステップS132に進む。 In step S131, following step S113, the control unit 180 causes the operation unit 150 to move the galvanometer mirror 211 by a certain distance along the optical axis C. Thereafter, the process proceeds from step S131 to step S132.
 ステップS132において、ステップS112と同様に、制御部180は、レーザ発振器200にレーザビームLを導出させると共に、計測部130の検出器131にレーザビームLの径を測定させる。その後、ステップS132からステップS133に進む。 In step S132, as in step S112, the control unit 180 causes the laser oscillator 200 to derive the laser beam L and causes the detector 131 of the measurement unit 130 to measure the diameter of the laser beam L. Thereafter, the process proceeds from step S132 to step S133.
 ステップS133において、制御部180は、検出器131によって検出されたレーザビームLの径が、直近の計測値以下かを、コントローラ181のCPUによって判定する。その後、ステップS133からステップS113(レーザビームLの径が直近の計測値以下の場合)またはステップS141(レーザビームLの径が直近の計測値よりも大きい場合)に進む。 In step S133, the control unit 180 determines whether the diameter of the laser beam L detected by the detector 131 is equal to or less than the latest measured value by the CPU of the controller 181. Thereafter, the process proceeds from step S133 to step S113 (when the diameter of the laser beam L is equal to or smaller than the latest measured value) or step S141 (when the diameter of the laser beam L is larger than the latest measured value).
 ステップS141において、ステップS133から引き続き、制御部180は、操作部150によって、ガルバノミラー211を光軸Cの上流側または下流側に向かって、ステップS131とは逆方向に一定距離の2倍だけ移動させる。その後、ステップS141からステップS132に進む。 In step S141, following step S133, the control unit 180 moves the galvano mirror 211 toward the upstream side or the downstream side of the optical axis C by the operation unit 150 in the direction opposite to that in step S131 by twice a fixed distance. Let Thereafter, the process proceeds from step S141 to step S132.
 ステップS118において、ステップS117から引き続き、強度分布測定装置100の電源をOFFにして、制御部180によるレーザビームLの径を自動で最適化する制御を終了する。 In step S118, continuing from step S117, the power of the intensity distribution measuring apparatus 100 is turned off, and the control for automatically optimizing the diameter of the laser beam L by the control unit 180 is ended.
 強度分布測定装置100によって、レーザビームLの径を量産中に自動で最適化する方法について、図8を参照しながら説明する。 A method for automatically optimizing the diameter of the laser beam L during mass production by the intensity distribution measuring apparatus 100 will be described with reference to FIG.
 ステップS201において、レーザビームLの径を測定するために、強度分布測定装置100の電源をONにして、制御部180によるレーザビームLの径を量産前や量産中に自動で最適化する制御を開始する。量産前とは、例えば、始業前に製造ラインの点検を行う場合に相当する。量産中とは、例えば、ワーク10の溶接加工において、基準に満たないものが連続して発生したような場合に相当する。 In step S201, in order to measure the diameter of the laser beam L, the intensity distribution measuring apparatus 100 is turned on, and the control unit 180 performs control to automatically optimize the diameter of the laser beam L before mass production or during mass production. Start. “Before mass production” corresponds to, for example, a case where a production line is inspected before starting business. For example, during mass production, it corresponds to a case where in the welding process of the workpiece 10, a piece that does not satisfy the standard is continuously generated.
 ステップS202において、強度分布測定装置100の電源がONされたとき、制御部180は、レーザ発振器200によってワーク10の溶接が行われていた場合、そのワーク10の溶接が完了するまで待機する。すなわち、溶接のワンサイクルが完了するまで待機する。ローダによってワーク10および治具を所定の位置に配設する。ワーク10は、溶接台221に載置され、かつ、上方にスパッタ等の付着を防止するためのマスク222が配設された状態で、レーザ発振器200によってレーザ溶接が行われる。ワーク10を載置したテーブルがスライドした後、ガルバノミラー211によってレーザビームLが走査されて、ワーク10のレーザ溶接が行われる。レーザ溶接は、アノード側金属セパレータとカソード側金属セパレータを一体とするために、互いの外周縁やアクティブエリアと称される凹凸部分を溶接するものである。溶接を終えたワーク10の搬送中に、次のワーク10の溶接が行われる。制御部180は、上記のレーザ溶接のワンサイクルが完了すると、レーザ発振器200の動作を停止させ、筺体部160の駆動ステージ162によって支持台161をレーザビームLの光路Kに侵入させる。支持台161は、減衰部110、調整部120、および計測部130の各構成部材を支持している。 In step S202, when the power of the intensity distribution measuring apparatus 100 is turned on, the control unit 180 waits until the welding of the workpiece 10 is completed when the workpiece 10 is welded by the laser oscillator 200. That is, it waits until one cycle of welding is completed. The work 10 and the jig are arranged at predetermined positions by the loader. The workpiece 10 is laser-welded by the laser oscillator 200 in a state where the workpiece 10 is placed on the welding table 221 and a mask 222 for preventing adhesion of spatter and the like is disposed on the workpiece 10. After the table on which the workpiece 10 is placed slides, the laser beam L is scanned by the galvanometer mirror 211, and laser welding of the workpiece 10 is performed. In laser welding, in order to integrate the anode side metal separator and the cathode side metal separator, the outer peripheral edge of each other and the uneven portion called the active area are welded. During the conveyance of the workpiece 10 that has been welded, the next workpiece 10 is welded. When the one cycle of the laser welding is completed, the control unit 180 stops the operation of the laser oscillator 200 and causes the support base 161 to enter the optical path K of the laser beam L by the drive stage 162 of the housing unit 160. The support base 161 supports the constituent members of the attenuation unit 110, the adjustment unit 120, and the measurement unit 130.
 ステップS203において、制御部180は、検出器131によるレーザビームLの計測結果に基づいて、ガルバノミラー211の光軸Cに沿った位置を調整する。制御部180による調整は、図7を参照しながら前述したS112~S141に相当する。 In step S203, the control unit 180 adjusts the position along the optical axis C of the galvanometer mirror 211 based on the measurement result of the laser beam L by the detector 131. The adjustment by the control unit 180 corresponds to S112 to S141 described above with reference to FIG.
 ステップS204において、筺体部160の駆動ステージ162によって支持台161をレーザビームLの光路Kから離間させる。レーザ発振器200によってワーク10の溶接を再開する。 In step S204, the support base 161 is separated from the optical path K of the laser beam L by the drive stage 162 of the housing unit 160. The welding of the workpiece 10 is resumed by the laser oscillator 200.
 ステップS205において、強度分布測定装置100の電源をOFFにして、制御部180によるレーザビームLの径を量産前や量産中に自動で最適化する制御を終了する。 In step S205, the power of the intensity distribution measuring apparatus 100 is turned off, and the control for automatically optimizing the diameter of the laser beam L by the control unit 180 before mass production or during mass production is completed.
 上述した実施形態に係るレーザビームLの強度分布測定装置100によれば、以下の構成によって作用効果を奏する。 According to the intensity distribution measuring apparatus 100 for the laser beam L according to the above-described embodiment, the following effects can be obtained.
 レーザビームLの強度分布測定装置100は、レーザビームLの強度分布を測定する装置である。強度分布測定装置100は、計測部130と調整部120を有している。計測部130は、レーザビームLの光軸Cと対向して配設され、検出領域131aに照射されたレーザビームLの強度分布を計測する。調整部120は、第1調整部(例えばコリメート部120M)と第2調整部(例えばコンデンサ部120N)を備えている。コリメート部120Mは、レーザビームLをコリメーションして伝搬させる。コンデンサ部120Nは、コリメート部120Mよりも光軸Cに沿った下流側に配設されレーザビームLを光軸Cに近接させつつ伝搬させる。調整部120は、光軸Cから偏向して伝搬するレーザビームLを検出領域131aに向かって伝搬するように光軸Cとの成す角を相対的に小さく調整する。 The laser beam L intensity distribution measuring apparatus 100 is an apparatus for measuring the intensity distribution of the laser beam L. The intensity distribution measuring apparatus 100 includes a measurement unit 130 and an adjustment unit 120. The measurement unit 130 is disposed to face the optical axis C of the laser beam L, and measures the intensity distribution of the laser beam L irradiated to the detection region 131a. The adjusting unit 120 includes a first adjusting unit (for example, a collimating unit 120M) and a second adjusting unit (for example, a capacitor unit 120N). The collimator 120M collimates and propagates the laser beam L. The condenser unit 120N is disposed downstream of the collimating unit 120M along the optical axis C, and propagates the laser beam L while being close to the optical axis C. The adjustment unit 120 adjusts the angle formed with the optical axis C to be relatively small so that the laser beam L that is deflected from the optical axis C and propagates toward the detection region 131a.
 レーザビームLの強度分布測定方法は、レーザビームLの強度分布を測定する方法である。レーザビームLの強度分布測定方法は、光軸から偏向して伝搬するレーザビームLをコリメーションしてから光軸に近接させつつ伝搬させることによって光軸Cとの成す角を相対的に小さくするように調整しつつ光軸Cと対向して設けられた検出領域131aに照射させて強度分布を計測する工程を有している。 The intensity distribution measuring method of the laser beam L is a method of measuring the intensity distribution of the laser beam L. In the intensity distribution measurement method of the laser beam L, the angle formed with the optical axis C is made relatively small by collimating the laser beam L propagating from the optical axis and then propagating the laser beam L close to the optical axis. The intensity distribution is measured by irradiating the detection region 131a provided opposite to the optical axis C while adjusting.
 このように構成したレーザビームLの強度分布測定装置100およびレーザビームLの強度分布測定方法によれば、光路Kが光軸Cから偏向され斜入射によってワーク10に照射されるようなレーザビームLであっても、そのレーザビームLを光軸Cに沿うような平行光の状態または平行光に近い状態で伝搬できる。このようなことから、レーザビームLの強度分布測定装置100およびレーザビームLの強度分布測定方法は、レーザ発振器200から検出領域131aまでの距離を任意に設定しても、そのレーザビームLの強度分布を検出領域から外すことなく計測することができる。したがって、強度分布測定装置100は、レーザビームLの強度分布を十分に計測することができる。 According to the laser beam L intensity distribution measuring apparatus 100 and the laser beam L intensity distribution measuring method configured as described above, the laser beam L in which the optical path K is deflected from the optical axis C and irradiated onto the workpiece 10 by oblique incidence. Even so, the laser beam L can be propagated in a parallel light state along the optical axis C or in a state close to parallel light. For this reason, the intensity distribution measuring apparatus 100 for the laser beam L and the intensity distribution measuring method for the laser beam L have the intensity of the laser beam L even if the distance from the laser oscillator 200 to the detection region 131a is arbitrarily set. The distribution can be measured without removing it from the detection region. Therefore, the intensity distribution measuring apparatus 100 can sufficiently measure the intensity distribution of the laser beam L.
 さらに、このように構成したレーザビームLの強度分布測定装置100およびレーザビームLの強度分布測定方法によれば、レーザビームLの強度分布の計測精度が検出領域131aに対する入射角度に依存するような場合であっても、精度良く計測することができる。一般的に、検出器131を光軸Cに対向(正対)するように配設して、検出器131の検出領域131aに対するレーザビームLの入射角度が光軸Cに平行となるような直入射に近い構成にすると、レーザビームLの強度分布の計測精度が高くなる。 Further, according to the laser beam L intensity distribution measuring apparatus 100 and the laser beam L intensity distribution measuring method configured as described above, the measurement accuracy of the intensity distribution of the laser beam L depends on the incident angle with respect to the detection region 131a. Even if it is a case, it can measure with high precision. In general, the detector 131 is disposed so as to face (directly face) the optical axis C so that the incident angle of the laser beam L with respect to the detection region 131a of the detector 131 is parallel to the optical axis C. When the configuration is close to incidence, the measurement accuracy of the intensity distribution of the laser beam L is increased.
 レーザビームLの強度分布測定装置100は、レーザビームLの強度分布を測定する装置である。強度分布測定装置100は、計測部130、調整部120、および減衰部110を有している。計測部130は、レーザビームLの光軸Cと対向して配設され、検出領域131aに照射されたレーザビームLの強度分布を計測する。調整部120は、光軸Cから偏向して伝搬するレーザビームLを検出領域131aに向かって伝搬するように光軸Cとの成す角を相対的に小さく調整する。減衰部110は、計測部130よりも光軸Cに沿った上流側に配設され、レーザビームLの強度を減衰させる
 レーザビームLの強度分布測定方法は、レーザビームLの強度分布を測定する方法である。レーザビームLの強度分布測定方法は、光軸から偏向して伝搬するレーザビームLを減衰させ光軸Cとの成す角を相対的に小さくするように調整しつつ光軸Cと対向して設けられた検出領域131aに照射させて強度分布を計測する工程を有している。
The intensity distribution measuring apparatus 100 of the laser beam L is an apparatus that measures the intensity distribution of the laser beam L. The intensity distribution measuring apparatus 100 includes a measurement unit 130, an adjustment unit 120, and an attenuation unit 110. The measurement unit 130 is disposed to face the optical axis C of the laser beam L, and measures the intensity distribution of the laser beam L irradiated to the detection region 131a. The adjustment unit 120 adjusts the angle formed with the optical axis C to be relatively small so that the laser beam L that is deflected from the optical axis C and propagates toward the detection region 131a. The attenuation unit 110 is disposed upstream of the measurement unit 130 along the optical axis C, and attenuates the intensity of the laser beam L. The laser beam L intensity distribution measurement method measures the intensity distribution of the laser beam L. Is the method. The method of measuring the intensity distribution of the laser beam L is provided so as to face the optical axis C while adjusting the angle formed with the optical axis C to be attenuated by attenuating the laser beam L that is deflected from the optical axis and propagating. A step of irradiating the detected region 131a and measuring the intensity distribution.
 このように構成したレーザビームLの強度分布測定装置100およびレーザビームLの強度分布測定方法によれば、光路Kが光軸Cから偏向され斜入射によってワーク10に照射されるようなレーザビームLであっても、そのレーザビームLの実使用時の出力等における強度分布を精度良く計測でき、かつ、その強度分布を検出領域から外すことなく計測することができる。したがって、強度分布測定装置100は、レーザビームLの強度分布を十分に計測することができる。なお、レーザビームLは、出力を定格値から下げると不安定になって、その強度分布が変化する。したがって、計測部130の構成に制約されることなく、実使用時の出力におけるレーザビームLの強度分布を計測することが重要である。 According to the laser beam L intensity distribution measuring apparatus 100 and the laser beam L intensity distribution measuring method configured as described above, the laser beam L in which the optical path K is deflected from the optical axis C and irradiated onto the workpiece 10 by oblique incidence. Even so, the intensity distribution of the output of the laser beam L at the time of actual use can be accurately measured, and the intensity distribution can be measured without removing it from the detection region. Therefore, the intensity distribution measuring apparatus 100 can sufficiently measure the intensity distribution of the laser beam L. The laser beam L becomes unstable when its output is lowered from the rated value, and its intensity distribution changes. Therefore, it is important to measure the intensity distribution of the laser beam L at the output in actual use without being restricted by the configuration of the measurement unit 130.
 さらに、このように構成したレーザビームLの強度分布測定装置100およびレーザビームLの強度分布測定方法によれば、レーザビームLの強度分布の計測精度が検出領域131aに対する入射角度に依存するような場合であっても、精度良く計測することができる。一般的に、検出器131を光軸Cに対向(正対)するように配設して、検出器131の検出領域131aに対するレーザビームLの入射角度が光軸Cに平行となるような直入射に近い構成にすると、レーザビームLの強度分布の計測精度が高くなる。 Further, according to the laser beam L intensity distribution measuring apparatus 100 and the laser beam L intensity distribution measuring method configured as described above, the measurement accuracy of the intensity distribution of the laser beam L depends on the incident angle with respect to the detection region 131a. Even if it is a case, it can measure with high precision. In general, the detector 131 is disposed so as to face (directly face) the optical axis C so that the incident angle of the laser beam L with respect to the detection region 131a of the detector 131 is parallel to the optical axis C. When the configuration is close to incidence, the measurement accuracy of the intensity distribution of the laser beam L is increased.
 レーザビームLの強度分布測定装置100は、被加工部材(例えばワーク10)の加工領域に走査されて加工を施すレーザビームLの強度分布を製造ラインにおいて測定する装置である。強度分布測定装置100は、計測部130と調整部120を有している。計測部130は、レーザビームLの光軸Cと対向して配設され、検出領域131aに照射されたレーザビームLの強度分布を計測する。調整部120は、光軸Cから偏向して伝搬するレーザビームLを検出領域131aに向かって伝搬するように光軸Cとの成す角を相対的に小さく調整する。 The laser beam L intensity distribution measuring apparatus 100 is an apparatus that measures the intensity distribution of the laser beam L to be scanned and processed in a processing region of a workpiece (for example, the workpiece 10) on a production line. The intensity distribution measuring apparatus 100 includes a measurement unit 130 and an adjustment unit 120. The measurement unit 130 is disposed to face the optical axis C of the laser beam L, and measures the intensity distribution of the laser beam L irradiated to the detection region 131a. The adjustment unit 120 adjusts the angle formed with the optical axis C to be relatively small so that the laser beam L that is deflected from the optical axis C and propagates toward the detection region 131a.
 レーザビームLの強度分布測定方法は、被加工部材(例えばワーク10)の加工領域に走査されて加工を施すレーザビームLの強度分布を製造ラインにおいて測定する方法である。レーザビームLの強度分布測定方法は、光軸から偏向して伝搬するレーザビームLを光軸Cとの成す角を相対的に小さくするように調整しつつ光軸Cと対向して設けられた検出領域131aに照射させて強度分布を計測する工程を有している。 The intensity distribution measuring method of the laser beam L is a method of measuring the intensity distribution of the laser beam L to be processed by being scanned on the processing region of the workpiece (for example, the workpiece 10) on the production line. The method of measuring the intensity distribution of the laser beam L is provided so as to face the optical axis C while adjusting the angle of the laser beam L, which is deflected from the optical axis and propagates, with the optical axis C to be relatively small. A step of irradiating the detection region 131a to measure the intensity distribution;
 このように構成したレーザビームLの強度分布測定装置100およびレーザビームLの強度分布測定方法によれば、光路Kが光軸Cから偏向され斜入射によってワーク10に照射されるようなレーザビームLであっても、そのレーザビームLの強度分布を検出領域から外すことなく計測することができる。したがって、強度分布測定装置100は、製造ラインに組み込んだ状態において、レーザビームLの強度分布を十分に計測することができる。 According to the laser beam L intensity distribution measuring apparatus 100 and the laser beam L intensity distribution measuring method configured as described above, the laser beam L in which the optical path K is deflected from the optical axis C and irradiated onto the workpiece 10 by oblique incidence. Even so, the intensity distribution of the laser beam L can be measured without removing it from the detection region. Therefore, the intensity distribution measuring apparatus 100 can sufficiently measure the intensity distribution of the laser beam L in a state where it is incorporated in the production line.
 さらに、このように構成したレーザビームLの強度分布測定装置100およびレーザビームLの強度分布測定方法によれば、レーザビームLの強度分布の計測精度が検出領域131aに対する入射角度に依存するような場合であっても、精度良く計測することができる。一般的に、検出器131を光軸Cに対向(正対)するように配設して、検出器131の検出領域131aに対するレーザビームLの入射角度が光軸Cに平行となるような直入射に近い構成にすると、レーザビームLの強度分布の計測精度が高くなる。 Further, according to the laser beam L intensity distribution measuring apparatus 100 and the laser beam L intensity distribution measuring method configured as described above, the measurement accuracy of the intensity distribution of the laser beam L depends on the incident angle with respect to the detection region 131a. Even if it is a case, it can measure with high precision. In general, the detector 131 is disposed so as to face (directly face) the optical axis C so that the incident angle of the laser beam L with respect to the detection region 131a of the detector 131 is parallel to the optical axis C. When the configuration is close to incidence, the measurement accuracy of the intensity distribution of the laser beam L is increased.
 さらに、調整部120は、第1調整部(コリメート部120M)と第2調整部(コンデンサ部120N)を備えた構成とすることができる。第1調整部(コリメート部120M)は、レーザビームLをコリメーションして伝搬させる。第2調整部(コンデンサ部120N)は、コリメート部120Mよりも光軸Cに沿った下流側に配設され、レーザビームLを光軸Cに近接させつつ伝搬させる。 Furthermore, the adjustment unit 120 may include a first adjustment unit (collimator unit 120M) and a second adjustment unit (capacitor unit 120N). The first adjusting unit (collimating unit 120M) collimates and propagates the laser beam L. The second adjustment unit (capacitor unit 120N) is disposed downstream of the collimator unit 120M along the optical axis C, and propagates the laser beam L while being close to the optical axis C.
 このように構成した強度分布測定装置100によれば、コリメート部120Mによって、レーザビームLを光軸Cに沿うような平行光の状態または平行光に近い状態で伝搬できることから、調整部120をレーザ発振器200から検出領域131aまでの距離に依存することなく構成することができる。すなわち、強度分布測定装置100は、レーザ発振器200から検出領域131aまでの距離を十分に短くする必要がなく、調整部120の光軸Cに沿った全長を、任意に設定することができる。さらに、コンデンサ部120Nによって、光軸Cから偏向して伝搬するレーザビームLと光軸Cとの成す角を相対的に小さくすることができる。 According to the intensity distribution measuring apparatus 100 configured as described above, the collimator 120M can propagate the laser beam L in a parallel light state along the optical axis C or in a state close to the parallel light. It can be configured without depending on the distance from the oscillator 200 to the detection region 131a. That is, the intensity distribution measuring apparatus 100 does not need to sufficiently shorten the distance from the laser oscillator 200 to the detection region 131a, and can arbitrarily set the total length along the optical axis C of the adjustment unit 120. Further, the capacitor portion 120N can relatively reduce the angle formed between the optical axis C and the laser beam L that is deflected from the optical axis C and propagates.
 さらに、強度分布測定装置100は、減衰部110を設ける構成とすることができる。減衰部110は、計測部130よりも光軸Cに沿った上流側に配設され、レーザビームLの強度を減衰させる。 Furthermore, the intensity distribution measuring apparatus 100 can be configured to include an attenuation unit 110. The attenuation unit 110 is disposed upstream of the measurement unit 130 along the optical axis C, and attenuates the intensity of the laser beam L.
 このように構成した強度分布測定装置100によれば、減衰部110によって、計測部130がレーザビームLの出力に起因して損傷することなくレーザビームLの強度分布を十分に計測できることから、出力を下げる必要がなく実使用時の出力等におけるレーザビームLの強度分布を精度良く計測することができる。なお、レーザビームLは、出力を定格値から下げると不安定になって、その強度分布が変化する。したがって、計測部130の構成に制約されることなく、実使用時の出力におけるレーザビームLの強度分布を計測することが重要である。 According to the intensity distribution measuring apparatus 100 configured as described above, the attenuation unit 110 can sufficiently measure the intensity distribution of the laser beam L without causing the measurement unit 130 to be damaged due to the output of the laser beam L. Therefore, it is possible to accurately measure the intensity distribution of the laser beam L at the output during actual use. The laser beam L becomes unstable when its output is lowered from the rated value, and its intensity distribution changes. Therefore, it is important to measure the intensity distribution of the laser beam L at the output in actual use without being restricted by the configuration of the measurement unit 130.
 さらに、減衰部110は、少なくともレーザビームLの波長の光において透明な光学部材を備える構成とすることができる。光学部材は、レーザビームLの一部を界面から外部に透過させつつ減衰させ、レーザビームLの一部を界面で反射させつつ検出領域131aに向かって伝搬させる。 Furthermore, the attenuating unit 110 may be configured to include an optical member that is transparent at least for the light having the wavelength of the laser beam L. The optical member attenuates a part of the laser beam L while being transmitted from the interface to the outside, and propagates the laser beam L toward the detection region 131a while reflecting a part of the laser beam L at the interface.
 このように構成した強度分布測定装置100によれば、簡便な仕様からなる光学部材によって、レーザビームLを十分に減衰させつつ、検出領域131aに向かって伝搬させることができる。したがって、レーザビームLの出力を下げる必要が無く、実使用時の出力におけるレーザビームLの強度分布を精度良く計測することができる。 According to the intensity distribution measuring apparatus 100 configured as described above, the laser beam L can be propagated toward the detection region 131a while being sufficiently attenuated by the optical member having a simple specification. Therefore, it is not necessary to lower the output of the laser beam L, and the intensity distribution of the laser beam L at the output in actual use can be measured with high accuracy.
 さらに、減衰部110は、光学部材の界面から外部に透過したレーザビームLを液体および気体の少なくとも一方に照射させて減衰させる構成とすることができる。 Furthermore, the attenuation unit 110 can be configured to irradiate at least one of a liquid and a gas with the laser beam L transmitted to the outside from the interface of the optical member.
 このように構成した強度分布測定装置100によれば、検出領域131aに伝搬させないレーザビームLを液体および気体の少なくとも一方に照射させて減衰させる簡便な構成によって、そのレーザビームLを効果的かつ十分に減衰させることができる。 According to the intensity distribution measuring apparatus 100 configured as described above, the laser beam L can be effectively and satisfactorily provided by a simple configuration in which at least one of the liquid and the gas is irradiated and attenuated with the laser beam L that is not propagated to the detection region 131a. Can be attenuated.
 さらに、調整部120は、レーザビームLを反射させつつ検出領域131aに向かって伝搬させる構成とすることができる。 Furthermore, the adjustment unit 120 can be configured to propagate the laser beam L toward the detection region 131a while reflecting the laser beam L.
 このように構成した強度分布測定装置100によれば、レーザビームLを折り返すように反射させて構成することによって、レーザ発振器200から検出領域131aまでの構成を一直線状に設ける必要がなく、製造ラインや実験室等のレイアウトに合わせて、十分に配置することができる。調整部120によるレーザビームLの反射方向は、製造ラインや実験室等において、設備との干渉を避けるため、水平方向に加えて垂直方向に沿った方向であってもよい。 According to the intensity distribution measuring apparatus 100 configured as described above, the configuration from the laser oscillator 200 to the detection region 131a need not be provided in a straight line by reflecting the laser beam L so as to be folded back. It can be arranged sufficiently according to the layout of the laboratory or the like. The reflection direction of the laser beam L by the adjusting unit 120 may be a direction along the vertical direction in addition to the horizontal direction in order to avoid interference with equipment in a production line, a laboratory, or the like.
 さらに、調整部120は、ワーク10に向かって伝搬するレーザビームLを、ワーク10の加工領域(溶接領域)に沿った方向に反射させつつ検出領域131aに向かって伝播させる構成とすることができる。 Furthermore, the adjustment unit 120 can be configured to propagate the laser beam L propagating toward the workpiece 10 toward the detection region 131a while reflecting the laser beam L in the direction along the processing region (welding region) of the workpiece 10. .
 このように構成した強度分布測定装置100によれば、レーザビームLをワーク10に沿った方向に反射させることによって、レーザビームLの強度分布の調整をワーク10に干渉することなく実施することができる。すなわち、強度分布測定装置100は、製造ラインや実験室等の構成を大幅に変更することなく、製造ラインや実験室等の空きスペースを用いて、レーザビームLの強度分布を測定することができる。 According to the intensity distribution measuring apparatus 100 configured as described above, the intensity distribution of the laser beam L can be adjusted without interfering with the workpiece 10 by reflecting the laser beam L in the direction along the workpiece 10. it can. That is, the intensity distribution measuring apparatus 100 can measure the intensity distribution of the laser beam L using an empty space in the production line, laboratory, or the like without significantly changing the configuration of the production line, laboratory, or the like. .
 特に、このように構成した強度分布測定装置100によれば、例えば、ワーク10の加工(レーザ溶接)のように、比較的狭い空間に配置するが困難として断念していた領域についても、十分に配置して用いることができる。 In particular, according to the intensity distribution measuring apparatus 100 configured in this way, for example, a region that has been abandoned because it is difficult to arrange in a relatively small space, such as processing of the workpiece 10 (laser welding), is sufficiently sufficient. It can be arranged and used.
 さらに、強度分布測定装置100は、操作部150を設ける構成とすることができる。操作部150は、レーザ発振器200の側に設けられレーザビームLの光路Kを変更する変更部210と電気的に接続されている。操作部150は、計測部130によるレーザビームLの強度分布の計測結果に基づき、レーザビームLの径が小さくなるように変更部210を調整する。 Furthermore, the intensity distribution measuring apparatus 100 can be configured to include an operation unit 150. The operation unit 150 is electrically connected to a change unit 210 that is provided on the laser oscillator 200 side and changes the optical path K of the laser beam L. The operation unit 150 adjusts the changing unit 210 based on the measurement result of the intensity distribution of the laser beam L by the measurement unit 130 so that the diameter of the laser beam L is reduced.
 このように構成した強度分布測定装置100によれば、操作部150による変更部の調整によって、レーザ発振器200を操作する作業者の熟練度に依存することなく、レーザビームLの調整を短時間かつ一定の精度において実施することができる。すなわち、強度分布測定装置100は、量産工程を長時間停止させることなくレーザビームLの強度分布を調整することができる。すなわち、操作部150は、レーザ発振器200による被加工部材(ワーク10)に対する加工精度を一定に維持させることができる。 According to the intensity distribution measuring apparatus 100 configured as described above, the adjustment of the changing unit by the operation unit 150 allows the adjustment of the laser beam L in a short time without depending on the skill level of the operator who operates the laser oscillator 200. It can be carried out with a certain accuracy. That is, the intensity distribution measuring apparatus 100 can adjust the intensity distribution of the laser beam L without stopping the mass production process for a long time. In other words, the operation unit 150 can maintain the machining accuracy of the workpiece (workpiece 10) by the laser oscillator 200 constant.
 特に、このように構成した強度分布測定装置100によれば、製造ラインや実験室等でワーク10を加工(レーザ溶接)する状態において、レーザビームLの強度分布をリアルタイムで計測して、その強度分布を調整することによって、その計測結果をワーク10のレーザ溶接に速やかにフィードバックすることができる。 In particular, according to the intensity distribution measuring apparatus 100 configured as described above, the intensity distribution of the laser beam L is measured in real time in a state where the workpiece 10 is processed (laser welding) in a production line, a laboratory, or the like. By adjusting the distribution, the measurement result can be quickly fed back to the laser welding of the workpiece 10.
 さらに、レーザ発振器200の変更部210がレーザビームLを反射させる反射部材(ガルバノミラー211)を備えた上で、操作部150は、ガルバノミラー211の光軸Cに沿った位置を調整する構成とすることができる。 Furthermore, after the changing unit 210 of the laser oscillator 200 includes a reflecting member (galvano mirror 211) for reflecting the laser beam L, the operation unit 150 adjusts the position of the galvano mirror 211 along the optical axis C. can do.
 このように構成した強度分布測定装置100によれば、操作部150によるガルバノミラー211の光軸Cに沿った位置の調整によって、レーザビームLの強度分布の調整を効率良くかつ確実に実施することができる。 According to the intensity distribution measuring apparatus 100 configured as described above, the intensity distribution of the laser beam L can be adjusted efficiently and reliably by adjusting the position of the galvano mirror 211 along the optical axis C by the operation unit 150. Can do.
 さらに、強度分布測定装置100は、筺体部160を設ける構成とすることができる。筺体部160は、レーザビームLの光路Kの雰囲気を不活性ガスによって置換する。 Furthermore, the intensity distribution measuring apparatus 100 can be configured to include a housing portion 160. The casing 160 replaces the atmosphere of the optical path K of the laser beam L with an inert gas.
 このように構成した強度分布測定装置100によれば、筺体部160の不活性ガス(アシストガス)によって、レーザビームLに起因した構成部材の焼け付き等を十分に防止することができる。特に、強度分布測定装置100は、走査を伴い広範囲にわたるレーザビームLの光路において、不活性ガスを導入しつつ例えば酸素を除外することによって、その酸素に起因した光学部材の表面の焼け付きを効果的に防止することができる。したがって、強度分布測定装置100は、レーザビームLの強度分布を精度良く計測することができる。 According to the intensity distribution measuring apparatus 100 configured as described above, the inert gas (assist gas) of the housing unit 160 can sufficiently prevent the component members from being burned due to the laser beam L. In particular, the intensity distribution measuring apparatus 100 effectively burns in the surface of the optical member due to the oxygen by removing, for example, oxygen while introducing an inert gas in the optical path of the laser beam L that covers a wide range with scanning. Can be prevented. Therefore, the intensity distribution measuring apparatus 100 can accurately measure the intensity distribution of the laser beam L.
 さらに、強度分布測定装置100は、表示部140を設ける構成とすることができる。表示部140は、計測部130によって計測されたレーザビームLの強度分布を表示する。 Furthermore, the intensity distribution measuring apparatus 100 can be configured to include a display unit 140. The display unit 140 displays the intensity distribution of the laser beam L measured by the measurement unit 130.
 このように構成した強度分布測定装置100によれば、表示部140によって、作業者がレーザビームLの強度分布を目視しながら光学調整を行うことができることから、その調整を容易かつ一定の精度で行うことができる。 According to the intensity distribution measuring apparatus 100 configured as described above, the display unit 140 allows the operator to perform optical adjustment while visually observing the intensity distribution of the laser beam L. Therefore, the adjustment can be performed easily and with constant accuracy. It can be carried out.
 さらに、強度分布測定装置100は、レーザビームLのビームウエストの位置を、集光されたレーザビームを受光する光学素子(fθレンズ212)の焦点位置と光軸Cの法線方向に沿って隣り合う基準台171の位置に基づき検出する検出部170を設ける構成とすることができる。 Further, the intensity distribution measuring apparatus 100 is adjacent to the position of the beam waist of the laser beam L along the normal direction of the optical axis C and the focal position of the optical element (fθ lens 212) that receives the focused laser beam. It can be set as the structure which provides the detection part 170 detected based on the position of the suitable reference | standard stand 171. FIG.
 このように構成した強度分布測定装置100によれば、光学部材であって取り扱いに注意を要し、かつ、狭所にあって位置検出が困難であるfθレンズ212に接触することなく、基準台171を介してレーザビームLのビームウエストの位置を非常に精度良く検出することができる。 According to the intensity distribution measuring apparatus 100 configured as described above, the reference table can be obtained without contacting the fθ lens 212 which is an optical member and requires handling, and is difficult to detect the position in a narrow place. Through 171, the position of the beam waist of the laser beam L can be detected very accurately.
 そのほか、本発明は、特許請求の範囲に記載された構成に基づき様々な改変が可能であり、それらについても本発明の範疇である。 In addition, the present invention can be variously modified based on the configuration described in the claims, and these are also within the scope of the present invention.
 例えば、本実施形態では、強度分布測定装置100を、被加工部材の溶接に用いるレーザビームLの強度分布を測定する構成として説明した。しかしながら、このような構成に限定されることはなく、強度分布測定装置100は、一例として、被加工部材の表面に製造番号等をマーキングするような印字用のレーザビームLの強度分布を測定する構成してもよい。すなわち、強度分布測定装置100は、被加工部材に対して何らかの加工を施すレーザビームLの強度分布を測定するものであれば、その用途に限定されない。 For example, in the present embodiment, the intensity distribution measuring apparatus 100 has been described as a configuration for measuring the intensity distribution of the laser beam L used for welding the workpiece. However, the present invention is not limited to such a configuration, and the intensity distribution measuring apparatus 100 measures the intensity distribution of the printing laser beam L that marks a production number or the like on the surface of the workpiece as an example. It may be configured. That is, the intensity distribution measuring apparatus 100 is not limited to its use as long as it measures the intensity distribution of the laser beam L that performs some processing on the workpiece.
 また、本実施形態では、強度分布測定装置100の調整部120を、第1調整部(コリメート部120M)によってレーザビームLを光軸Cに沿って平行光の状態で伝搬させ、かつ、第2調整部(コンデンサ部120N)によってレーザビームLを光軸Cに近接させつつ伝搬させる構成として説明した。しかしながら、このような構成に限定されることはなく、強度分布測定装置100は、一例として、光軸Cと一定の角度を成して伝搬するレーザビームLを、光軸Cに沿わせるような平行光にすることなく、光軸との成す角が小さくなるようにダイレクトに調整する構成としてもよい。 In the present embodiment, the adjustment unit 120 of the intensity distribution measuring apparatus 100 causes the first adjustment unit (collimating unit 120M) to propagate the laser beam L along the optical axis C in the state of parallel light, and the second The description has been given of the configuration in which the laser beam L is propagated while being close to the optical axis C by the adjusting unit (condenser unit 120N). However, the present invention is not limited to such a configuration. For example, the intensity distribution measuring apparatus 100 causes the laser beam L propagating at a constant angle to the optical axis C to be along the optical axis C. A configuration in which the light is directly adjusted so that an angle formed with the optical axis is small without using parallel light may be employed.
 また、本実施形態では、強度分布測定装置100の減衰部110を、断面が3角形状からなるプリズム等の光学部材を用いた構成として説明した。しかしながら、このような構成に限定されることはなく、減衰部110は、様々な構成によって、レーザビームLの強度分布を減衰させることができる。 In the present embodiment, the attenuation unit 110 of the intensity distribution measuring apparatus 100 has been described as a configuration using an optical member such as a prism having a triangular cross section. However, the configuration is not limited to such a configuration, and the attenuation unit 110 can attenuate the intensity distribution of the laser beam L by various configurations.
 特に、減衰部110は、本実施形態において説明した所謂反射型として構成する場合、一例として、レーザビームLの波長の光において透明な板状の窓材を光学部材に用いる構成とすることができる。すなわち、光学部材は、プリズムに限定されることなく、板状のバルクであってもよい。このような構成の場合、光学部材は、レーザビームLの大部分を透過させつつ減衰させ、レーザビームLの極一部を反射させつつ計測部130に向かって伝搬させる。このような構成(一例)の場合、光学部材を廉価にすることができる。 In particular, when the attenuation unit 110 is configured as the so-called reflection type described in the present embodiment, for example, a plate-shaped window material that is transparent in the light of the wavelength of the laser beam L can be used as the optical member. . That is, the optical member is not limited to a prism, and may be a plate-like bulk. In the case of such a configuration, the optical member attenuates while transmitting most of the laser beam L, and propagates toward the measuring unit 130 while reflecting a part of the laser beam L. In the case of such a configuration (example), the optical member can be made inexpensive.
 同様に、減衰部110は、他の例として、レーザビームLの波長の光において透明な板状の窓材に、反射率が数%の反射膜(例えば、クロムからなる薄膜)を蒸着して用いる構成とすることができる。このような構成(他の例)の場合、光学部材の反射率を精度よく規定することができる。反射型の減衰部110は、レーザビームLの波長の光において透明な光学材料の耐熱性等を考慮した上で、レーザビームLの強度が比較的大きい場合に適用する。 Similarly, as another example, the attenuation unit 110 deposits a reflective film (for example, a thin film made of chromium) having a reflectance of several percent on a plate-like window member that is transparent with respect to light having the wavelength of the laser beam L. It can be set as the structure to be used. In the case of such a configuration (other example), the reflectance of the optical member can be accurately defined. The reflection-type attenuation unit 110 is applied when the intensity of the laser beam L is relatively high in consideration of the heat resistance of a transparent optical material in the light of the wavelength of the laser beam L.
 さらに、減衰部110は、所謂吸収型として構成する場合、一例として、レーザビームLの波長の光を一定の割合で吸収する吸収材を含有させた窓材を光学部材に用いる構成とすることができる。このような構成の場合、光学部材は、レーザビームLの大部分を吸収しつつ減衰させ、レーザビームLの極一部を反射させつつ計測部130に向かって伝搬させる。透過型の減衰部110は、レーザビームLの波長の光において透明な光学材料の耐熱性等を考慮した上で、レーザビームLの強度が比較的小さい場合に適用する。 Furthermore, when the attenuation unit 110 is configured as a so-called absorption type, for example, a window material containing an absorbing material that absorbs light of the wavelength of the laser beam L at a certain ratio is used as an optical member. it can. In such a configuration, the optical member absorbs and attenuates most of the laser beam L, and propagates toward the measuring unit 130 while reflecting a very small part of the laser beam L. The transmission type attenuation unit 110 is applied when the intensity of the laser beam L is relatively small in consideration of the heat resistance of a transparent optical material in the light of the wavelength of the laser beam L.
 また、本実施形態では、減衰部110において、計測部130に向かって伝搬させないレーザビームLを減衰させるために、そのレーザビームLを水冷および空冷する構成として説明した。しかしながら、このような構成に限定されることはなく、減衰部110は、一例として計測部130に向かって伝搬させないレーザビームLを水冷のみによって減衰させてもよい。減衰部110は、他の例として計測部130に向かって伝搬させないレーザビームLを空冷および水冷の順で減衰させてもよい。 Further, in the present embodiment, the configuration has been described in which the attenuation unit 110 performs water cooling and air cooling on the laser beam L in order to attenuate the laser beam L that is not propagated toward the measurement unit 130. However, the present invention is not limited to such a configuration, and the attenuation unit 110 may attenuate the laser beam L that is not propagated toward the measurement unit 130, for example, only by water cooling. As another example, the attenuation unit 110 may attenuate the laser beam L that is not propagated toward the measurement unit 130 in the order of air cooling and water cooling.
 また、本実施形態では、調整部120に加えて減衰部110も、レーザビームLを折り曲げるように反射させつつ、そのレーザビームLを検出領域131aに向かって伝搬させている。このように構成していることから、強度分布測定装置100は、製造ラインや実験室等のレイアウトに合わせて、十分に配置することができる。 Further, in this embodiment, the attenuation unit 110 in addition to the adjustment unit 120 propagates the laser beam L toward the detection region 131a while reflecting the laser beam L so as to be bent. Since it comprises in this way, the intensity distribution measuring apparatus 100 can fully be arrange | positioned according to layouts, such as a manufacturing line and a laboratory.
 本出願は、2015年3月13日に出願された日本特許出願番号2015-050985号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2015-050985 filed on March 13, 2015, the disclosure of which is incorporated by reference as a whole.
10   ワーク(被加工部材)、
100  強度分布測定装置、
110  減衰部、
111  第1サンプリングプリズム、
112  水冷ダンパ、
113  第2サンプリングプリズム、
114  空冷ダンパ、
115  第1反射ミラー、
116  第2反射ミラー、
117A 第1減光フィルタ、
117B 第2減光フィルタ、
117C 第3減光フィルタ、
117D 第4減光フィルタ、
120  調整部、
120M コリメート部(第1調整部)、
120N コンデンサ部(第2調整部)、
121,122,123,124 レンズ(対物レンズ)、
125,126,127,128 レンズ(結像レンズ)、
130  計測部、
131  検出器、
131a 検出領域、
140  表示部、
141  モニター、
150  操作部、
151  制御回路、
160  筺体部、
161  支持台、
162  駆動ステージ、
163  ノズル、
170  検出部、
171  基準台、
172  プローブ、
180  制御部、
181  コントローラ、
200  レーザ発振器、
210  変更部、
211  ガルバノミラー(反射部材)、
212  fθレンズ、
213  直進ステージ、
221  溶接台、
222  マスク、
C    光軸、
K    光路、
L    レーザビーム。
10 Workpiece (work piece),
100 intensity distribution measuring device,
110 attenuation part,
111 first sampling prism;
112 Water-cooled damper,
113 second sampling prism;
114 Air-cooled damper,
115 first reflecting mirror,
116 second reflection mirror,
117A first neutral density filter,
117B second neutral density filter,
117C third neutral density filter,
117D fourth neutral density filter,
120 adjustment unit,
120M collimating part (first adjusting part),
120N capacitor unit (second adjusting unit),
121, 122, 123, 124 lenses (objective lenses),
125, 126, 127, 128 lenses (imaging lenses),
130 measuring unit,
131 detectors,
131a detection area,
140 display unit,
141 monitor,
150 operation unit,
151 control circuit,
160 body part,
161 support base,
162 drive stage,
163 nozzles,
170 detector,
171 Reference platform,
172 probe,
180 control unit,
181 controller,
200 laser oscillator,
210 Change part,
211 Galvano mirror (reflective member),
212 fθ lens,
213 Straight stage,
221 welding table,
222 mask,
C optical axis,
K optical path,
L Laser beam.

Claims (16)

  1.  レーザビームの強度分布を測定する装置であって、
     前記レーザビームの光軸と対向して配設され、検出領域に照射された前記レーザビームの強度分布を計測する計測部と、
     前記レーザビームをコリメーションして伝搬させる第1調整部と、前記第1調整部よりも光軸に沿った下流側に配設され前記レーザビームを光軸に近接させつつ伝搬させる第2調整部と、を備え、光軸から偏向して伝搬する前記レーザビームを前記検出領域に向かって伝搬するように光軸との成す角を相対的に小さく調整する調整部と、を有するレーザビームの強度分布測定装置。
    An apparatus for measuring the intensity distribution of a laser beam,
    A measurement unit that is arranged opposite to the optical axis of the laser beam and measures the intensity distribution of the laser beam irradiated to the detection region;
    A first adjustment unit that collimates and propagates the laser beam; and a second adjustment unit that is disposed downstream of the first adjustment unit along the optical axis and propagates the laser beam in proximity to the optical axis; And an adjustment unit that adjusts an angle formed with the optical axis to be relatively small so that the laser beam propagating while being deflected from the optical axis is propagated toward the detection region. measuring device.
  2.  レーザビームの強度分布を測定する装置であって、
     前記レーザビームの光軸と対向して配設され、検出領域に照射された前記レーザビームの強度分布を計測する計測部と、
     光軸から偏向して伝搬する前記レーザビームを前記検出領域に向かって伝搬するように光軸との成す角を相対的に小さく調整する調整部と、
     前記計測部よりも光軸に沿った上流側に配設され、前記レーザビームの強度を減衰させる減衰部と、を有するレーザビームの強度分布測定装置。
    An apparatus for measuring the intensity distribution of a laser beam,
    A measurement unit that is arranged opposite to the optical axis of the laser beam and measures the intensity distribution of the laser beam irradiated to the detection region;
    An adjustment unit that adjusts the angle formed with the optical axis to be relatively small so that the laser beam that is deflected from the optical axis propagates toward the detection region;
    An apparatus for measuring an intensity distribution of a laser beam, comprising: an attenuator disposed upstream of the measuring unit along the optical axis and attenuating the intensity of the laser beam.
  3.  被加工部材の加工領域に走査されて加工を施すレーザビームの強度分布を製造ラインにおいて測定する装置であって、
     前記レーザビームの光軸と対向して配設され、検出領域に照射された前記レーザビームの強度分布を計測する計測部と、
     光軸から偏向して伝搬する前記レーザビームを前記検出領域に向かって伝搬するように光軸との成す角を相対的に小さく調整する調整部と、を有するレーザビームの強度分布測定装置。
    An apparatus for measuring the intensity distribution of a laser beam scanned in a processing region of a workpiece to be processed in a production line,
    A measurement unit that is arranged opposite to the optical axis of the laser beam and measures the intensity distribution of the laser beam irradiated to the detection region;
    An apparatus for measuring an intensity distribution of a laser beam, comprising: an adjustment unit that adjusts an angle formed with the optical axis to be relatively small so that the laser beam deflected from the optical axis and propagates toward the detection region.
  4.  前記調整部は、前記レーザビームをコリメーションして伝搬させる第1調整部と、前記第1調整部よりも光軸に沿った下流側に配設され前記レーザビームを光軸に近接させつつ伝搬させる第2調整部と、を備えた請求項2または3に記載のレーザビームの強度分布測定装置。 The adjustment unit is arranged on the downstream side along the optical axis with respect to the first adjustment unit for collimating and propagating the laser beam, and propagates the laser beam while being close to the optical axis. The apparatus for measuring an intensity distribution of a laser beam according to claim 2, further comprising a second adjustment unit.
  5.  前記計測部よりも光軸に沿った上流側に配設され、前記レーザビームの強度を減衰させる減衰部を、さらに有する請求項1、3および4のいずれか1項に記載のレーザビームの強度分布測定装置。 5. The intensity of the laser beam according to claim 1, further comprising an attenuating unit that is disposed upstream of the measuring unit along the optical axis and attenuates the intensity of the laser beam. Distribution measuring device.
  6.  前記減衰部は、少なくとも前記レーザビームの波長の光において透明な光学部材を備え、
     前記光学部材は、前記レーザビームの一部を界面から外部に透過させつつ減衰させ、かつ、前記レーザビームの一部を界面で反射させつつ前記検出領域に向かって伝搬させる請求項2、4および5のいずれか1項に記載のレーザビームの強度分布測定装置。
    The attenuation unit includes an optical member that is transparent at least in the light of the wavelength of the laser beam,
    5. The optical member attenuates a part of the laser beam while being transmitted from the interface to the outside, and propagates toward the detection region while reflecting a part of the laser beam at the interface. 6. The apparatus for measuring the intensity distribution of a laser beam according to any one of 5 above.
  7.  前記減衰部は、前記光学部材の界面から外部に透過した前記レーザビームを液体および気体の少なくとも一方に照射させて減衰させる請求項6に記載のレーザビームの強度分布測定装置。 7. The laser beam intensity distribution measuring apparatus according to claim 6, wherein the attenuation unit irradiates at least one of a liquid and a gas with the laser beam transmitted to the outside from the interface of the optical member and attenuates the laser beam.
  8.  前記調整部は、前記レーザビームを反射させつつ前記検出領域に向かって伝搬させる請求項1~7のいずれか1項に記載のレーザビームの強度分布測定装置。 The laser beam intensity distribution measuring apparatus according to any one of claims 1 to 7, wherein the adjustment unit propagates the laser beam toward the detection region while reflecting the laser beam.
  9.  前記調整部は、前記被加工部材に向かって伝搬する前記レーザビームを、前記被加工部材の前記加工領域に沿った方向に反射させつつ前記検出領域に向かって伝播させる請求項3~8のいずれか1項に記載のレーザビームの強度分布測定装置。 The adjustment unit causes the laser beam propagating toward the workpiece to propagate toward the detection region while reflecting the laser beam in a direction along the machining region of the workpiece. An apparatus for measuring the intensity distribution of a laser beam according to claim 1.
  10.  レーザ発振器の側に設けられ前記レーザビームの光路を変更する変更部と電気的に接続され、前記計測部による前記レーザビームの強度分布の計測結果に基づき前記レーザビームの径が小さくなるように前記変更部を調整する操作部を、さらに有する請求項1~9のいずれか1項に記載のレーザビームの強度分布測定装置。 Provided on the laser oscillator side and electrically connected to a changing unit that changes the optical path of the laser beam, and based on the measurement result of the intensity distribution of the laser beam by the measuring unit, the diameter of the laser beam is reduced. The laser beam intensity distribution measuring apparatus according to any one of claims 1 to 9, further comprising an operation unit for adjusting the changing unit.
  11.  前記変更部は、前記レーザビームを反射させる反射部材を備え、
     前記操作部は、前記反射部材の光軸に沿った位置を調整する請求項10に記載のレーザビームの強度分布測定装置。
    The changing unit includes a reflecting member that reflects the laser beam,
    The laser beam intensity distribution measuring apparatus according to claim 10, wherein the operation unit adjusts a position along the optical axis of the reflecting member.
  12.  前記レーザビームの光路の雰囲気を不活性ガスによって置換する筐体部を、さらに有する請求項1~11のいずれか1項に記載のレーザビームの強度分布測定装置。 The laser beam intensity distribution measuring apparatus according to any one of claims 1 to 11, further comprising a housing portion that replaces an atmosphere of an optical path of the laser beam with an inert gas.
  13.  前記計測部によって計測された前記レーザビームの強度分布を表示する表示部を、さらに有する請求項1~12のいずれか1項に記載のレーザビームの強度分布測定装置。 13. The laser beam intensity distribution measuring apparatus according to claim 1, further comprising a display unit that displays the intensity distribution of the laser beam measured by the measuring unit.
  14.  前記レーザビームのビームウエストの位置を、集光された前記レーザビームを受光する光学素子の焦点位置と光軸の法線方向に沿って隣り合う基準台の位置に基づき検出する検出部を、さらに有する請求項1~13のいずれか1項に記載のレーザビームの強度分布測定装置。 A detector that detects the position of the beam waist of the laser beam based on the position of a reference base adjacent to the focal position of the optical element that receives the focused laser beam and the normal direction of the optical axis; The laser beam intensity distribution measuring apparatus according to any one of claims 1 to 13.
  15.  レーザビームの強度分布を測定する方法であって、
     光軸から偏向して伝搬する前記レーザビームをコリメーションしてから光軸に近接させつつ伝搬させることによって光軸との成す角を相対的に小さくするように調整しつつ光軸と対向して設けられた検出領域に照射させて強度分布を計測する工程を有するレーザビームの強度分布測定方法。
    A method for measuring the intensity distribution of a laser beam, comprising:
    Provided facing the optical axis while adjusting the angle formed with the optical axis to be relatively small by collimating the laser beam propagating from the optical axis and propagating the laser beam close to the optical axis. A method for measuring the intensity distribution of a laser beam, comprising the step of irradiating the detected region to measure the intensity distribution.
  16.  レーザビームの強度分布を測定する方法であって、
     光軸から偏向して伝搬する前記レーザビームを減衰させ光軸との成す角を相対的に小さくするように調整しつつ光軸と対向して設けられた検出領域に照射させて強度分布を計測する工程を有するレーザビームの強度分布測定方法。
    A method for measuring the intensity distribution of a laser beam, comprising:
    The intensity distribution is measured by irradiating the detection area provided opposite to the optical axis while adjusting the angle of the laser beam that is deflected from the optical axis to be attenuated and made relatively small. A method for measuring the intensity distribution of a laser beam comprising the step of:
PCT/JP2016/053798 2015-03-13 2016-02-09 Laser beam intensity distribution measurement device and laser beam intensity distribution measurement method WO2016147751A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015050985A JP6576061B2 (en) 2015-03-13 2015-03-13 Laser beam intensity distribution measuring apparatus and laser beam intensity distribution measuring method
JP2015-050985 2015-03-13

Publications (1)

Publication Number Publication Date
WO2016147751A1 true WO2016147751A1 (en) 2016-09-22

Family

ID=56919607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053798 WO2016147751A1 (en) 2015-03-13 2016-02-09 Laser beam intensity distribution measurement device and laser beam intensity distribution measurement method

Country Status (2)

Country Link
JP (1) JP6576061B2 (en)
WO (1) WO2016147751A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021092563A (en) * 2019-12-05 2021-06-17 致茂電子股▲分▼有限公司Chroma Ate Inc. Measuring device for optoelectronic unit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6955932B2 (en) * 2017-08-25 2021-10-27 株式会社ディスコ Laser beam profiler unit and laser processing equipment
JP7296834B2 (en) * 2019-09-12 2023-06-23 株式会社ディスコ Laser processing equipment
JP7547060B2 (en) 2020-03-18 2024-09-09 株式会社ディスコ Inspection device and inspection method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133186A (en) * 1988-11-10 1990-05-22 Toshiba Corp Carbonic acid gas laser beam machine
JPH05228670A (en) * 1992-02-20 1993-09-07 Matsushita Electric Ind Co Ltd Excimer laser machine
JPH07232290A (en) * 1994-02-23 1995-09-05 Matsushita Electric Ind Co Ltd Focus adjusting device for laser beam machine
JPH09318438A (en) * 1996-05-29 1997-12-12 Fuji Xerox Co Ltd Beam shape measurement device for scan optical system
JPH1133756A (en) * 1997-07-15 1999-02-09 Nec Corp Laser processing device
JP2002048640A (en) * 2000-08-04 2002-02-15 Ricoh Co Ltd Inspection device for scanning optical system
JP2003181668A (en) * 2001-11-30 2003-07-02 Matsushita Electric Ind Co Ltd Pico-second laser micro-machining system, system for controlling intensity of beam of light, method of laser milling cutting, method of controlling intensity distribution of beam of light, method of designing micro- filter, method of rectifying angle of reflection, method of correcting hysteresis effect, and method of operating scanning mirror
JP2008119714A (en) * 2006-11-10 2008-05-29 Marubun Corp Laser beam machining apparatus
JP2008126277A (en) * 2006-11-21 2008-06-05 Sumitomo Heavy Ind Ltd Laser beam machining apparatus and method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133186A (en) * 1988-11-10 1990-05-22 Toshiba Corp Carbonic acid gas laser beam machine
JPH05228670A (en) * 1992-02-20 1993-09-07 Matsushita Electric Ind Co Ltd Excimer laser machine
JPH07232290A (en) * 1994-02-23 1995-09-05 Matsushita Electric Ind Co Ltd Focus adjusting device for laser beam machine
JPH09318438A (en) * 1996-05-29 1997-12-12 Fuji Xerox Co Ltd Beam shape measurement device for scan optical system
JPH1133756A (en) * 1997-07-15 1999-02-09 Nec Corp Laser processing device
JP2002048640A (en) * 2000-08-04 2002-02-15 Ricoh Co Ltd Inspection device for scanning optical system
JP2003181668A (en) * 2001-11-30 2003-07-02 Matsushita Electric Ind Co Ltd Pico-second laser micro-machining system, system for controlling intensity of beam of light, method of laser milling cutting, method of controlling intensity distribution of beam of light, method of designing micro- filter, method of rectifying angle of reflection, method of correcting hysteresis effect, and method of operating scanning mirror
JP2008119714A (en) * 2006-11-10 2008-05-29 Marubun Corp Laser beam machining apparatus
JP2008126277A (en) * 2006-11-21 2008-06-05 Sumitomo Heavy Ind Ltd Laser beam machining apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021092563A (en) * 2019-12-05 2021-06-17 致茂電子股▲分▼有限公司Chroma Ate Inc. Measuring device for optoelectronic unit
JP7164584B2 (en) 2019-12-05 2022-11-01 致茂電子股▲分▼有限公司 Measuring device for optoelectronic unit

Also Published As

Publication number Publication date
JP2016170104A (en) 2016-09-23
JP6576061B2 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
US8427633B1 (en) Laser beam analysis apparatus
JP6462140B2 (en) Equipment for measuring weld seam depth in real time
WO2016147751A1 (en) Laser beam intensity distribution measurement device and laser beam intensity distribution measurement method
CN111247403B (en) Device and method for determining the focal position of a laser beam in a laser processing system, and laser processing system having such a device
US10761037B2 (en) Laser processing device for determining the presence of contamination on a protective window
US9293882B2 (en) Low noise, high stability, deep ultra-violet, continuous wave laser
Blomqvist et al. All-in-quartz optics for low focal shifts
JP2008119716A (en) Laser beam machining apparatus, and focus maintaining method therein
TWI644749B (en) Laser processing apparatus and laser processing method
CN111670345A (en) Method and device for detecting the focal position of a laser beam
KR20160127461A (en) Laser apparatus and method of manufacturing the same
KR101895629B1 (en) Extending the lifetime of a deep uv laser in a wafer inspection tool
US8848177B2 (en) Apparatus for focus beam analysis of high power lasers
JP2008119714A (en) Laser beam machining apparatus
JP2008122202A (en) Beam observation device
CN113305418A (en) Coaxial focus searching device for laser processing and laser processing method
KR20220129660A (en) laser cutting head for machine tools
JP7262081B2 (en) LASER PROCESSING DEVICE AND OPTICAL ADJUSTMENT METHOD
EP3663031A1 (en) Laser processing apparatus
WO2019216040A1 (en) Laser beam processing machine and method for detecting state of optical component
KR20190071729A (en) Laser processing device and operation confirmation method
JP2006326629A (en) Laser beam machining apparatus and its machining method
US10162187B2 (en) High-output optical attenuator, measurement device, and 3D shaping apparatus
KR20220149027A (en) Laser machining apparatus having laser power monitoring device
Starke et al. Standard measurement procedures for the characterization of fs-laser optical components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764582

Country of ref document: EP

Kind code of ref document: A1