WO2016147665A1 - 断熱材及びその製造方法 - Google Patents

断熱材及びその製造方法 Download PDF

Info

Publication number
WO2016147665A1
WO2016147665A1 PCT/JP2016/001511 JP2016001511W WO2016147665A1 WO 2016147665 A1 WO2016147665 A1 WO 2016147665A1 JP 2016001511 W JP2016001511 W JP 2016001511W WO 2016147665 A1 WO2016147665 A1 WO 2016147665A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating material
particles
metal oxide
less
Prior art date
Application number
PCT/JP2016/001511
Other languages
English (en)
French (fr)
Inventor
壮二郎 福代
良平 高島
剛 稲垣
洋成 藤木
Original Assignee
ニチアス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015202905A external-priority patent/JP6127353B2/ja
Application filed by ニチアス株式会社 filed Critical ニチアス株式会社
Publication of WO2016147665A1 publication Critical patent/WO2016147665A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials

Definitions

  • the present invention relates to a heat insulating material and a manufacturing method thereof.
  • the maximum heating temperature exceeds 1200 ° C. in a solid oxide fuel cell electrode, a semiconductor wafer heating furnace, and the like, and the maximum heating temperature exceeds 1400 ° C. in a phosphor element, glass, a steel heating furnace, and the like.
  • a heat insulating material that can be used for applications exceeding 1200 ° C. and has low thermal conductivity has not been developed yet.
  • Patent Document 1 discloses a porous heat insulating material. This heat insulating material is made of spinel ceramics.
  • This invention is made in view of the said subject, Comprising: It aims at providing the heat insulating material with low heat conductivity, and its manufacturing method.
  • the following heat insulating materials and its manufacturing method are provided. 1. After heating at 400 ° C. for 24 hours, the ratio of the total volume of pores having a diameter of 400 nm or less to the total volume of all pores is 5% or more, and the heat conduction at 1000 ° C. measured by the periodic heating method. A heat insulating material having a rate of less than 0.15 W / (m ⁇ K). 2. A heat insulating material composed of secondary particles in which metal oxide particles as primary particles are aggregated, There are pores in the secondary particles and between the secondary particles, 2. The heat insulating material according to 1, wherein the metal oxide particles contain 60% by weight or more of an alumina component, and the average particle diameter of the primary particles is 10 nm to 1000 nm. 3.
  • the ratio of the total pore volume of 300 nm or less to the total volume of all pores is 5% or more, and the ratio of the pore volume of 50 nm to 300 nm in the pore volume of 300 nm or less is 50%.
  • the ratio of the total volume of pores having a diameter of 300 nm or less to the total volume of all pores is 15% or more, and heat conduction at 1000 ° C. measured by a periodic heating method.
  • the heat insulating material of 11 or 12 containing a sintering suppression material.
  • the present inventors diligently studied the development of a heat insulating material having a heat-resistant temperature exceeding 1200 ° C., reaching 1300 ° C., and further reaching 1400 ° C.
  • the heat transfer (thermal conductivity) of the porous heat insulating material is determined by heat transfer of gas molecules, contact between solids, conduction by radiation, and the like.
  • the porous heat insulating material has a small amount of solids, and the heat transfer of gas molecules has a great influence. Heat transfer of gas molecules can be suppressed when the pore (pore) diameter is equal to or less than the mean free path. In the high temperature range, the mean free path becomes large.
  • porous heat insulating material it is important to contain many pores having a diameter equal to or less than the mean free path and to maintain the pores at a high temperature.
  • the present inventors have found that the conventional porous heat insulating material collapses the pores at a high temperature exceeding 1200 ° C. and impairs the heat insulating property.
  • a porous heat insulating material using metal oxide particles mainly composed of alumina having an average particle size of submicron contains a large amount of fine pores and has a sufficient amount even after being exposed to a high temperature. I found that pores remained. Furthermore, the present inventors have found that pores remain by suppressing sintering between aluminas by adding components or particles other than the alumina component.
  • the inventors of the present invention have a porous insulating material including pores formed between primary particles and pores formed between secondary particles in which the primary particles are aggregated, and includes many fine pores. It was also found that a sufficient amount of pores remained by suppressing sintering even after exposure to high temperatures. The present invention has been completed based on these findings.
  • the ratio of the total volume of pores having a diameter of 400 nm or less to the total volume of all pores is preferably 5% or more, more preferably 10% or more. More preferably, it is 15% or more. Although an upper limit is not limited, Usually, it is 80% or less.
  • the pore volume can be measured by the method described in Examples.
  • the total volume of all pores before heating of the heat insulating material of the present invention is usually 60% by volume or more, and preferably 75% by volume or more. Although an upper limit is not limited, Usually, it is 98 volume% or less. Further, the total pore volume of the heat insulating material after heating at 1400 ° C. for 24 hours is usually 60% by volume or more, and preferably 75% by volume or more. Although an upper limit is not limited, Usually, it is 90 volume% or less. It is preferable that the volume of all pores does not change (does not shrink) before and after heating.
  • the ratio of the total volume of pores having a diameter of 400 nm or less to the total volume of all pores before heating of the heat insulating material of the present invention is preferably 10% or more, more preferably 25% or more, and further preferably 30% or more. It is. Although an upper limit is not limited, Usually, it is 90% or less or 80% or less.
  • a to B in the numerical range means A or more and B or less.
  • the heat insulating material according to the first aspect of the first invention can be formed from metal oxide particles containing 60% by weight or more of an alumina component and a sintering inhibitor.
  • the average particle diameter of the metal oxide particles exceeds 100 nm, for example. Preferably it is more than 100 nm and 1000 nm or less.
  • the average particle size is preferably 150 nm to 1000 nm, more preferably 200 nm to 500 nm. Fumed alumina is not suitable because the average particle size is usually several tens of nanometers.
  • the average particle size is about 100 particles randomly with a transmission electron microscope (Transmission Electron Microscope; TEM) or a field emission scanning electron microscope (Field Emission Scanning Electron Microscope; FE-SEM). Obtained by observing the diameter (diameter or major axis).
  • TEM Transmission Electron Microscope
  • FE-SEM Field emission scanning electron microscope
  • the total volume of metal oxide particles having a particle size exceeding 100 nm is 50% or more of the total volume of all metal oxide particles. More preferably, it is 80% or more, More preferably, it is 90% or more, Most preferably, it is 95% or more.
  • the metal oxide particles can contain an alumina component, for example, 80% by weight or more, 90% by weight or more, or 99% by weight or more.
  • the metal oxide particles can contain components other than the alumina component.
  • particles containing an alumina component and a silica component can be used.
  • Metal oxide particles containing 60 to 80% by weight of the alumina component and 40 to 20% by weight of the silica component or metal oxide particles containing 65 to 75% by weight of the alumina component and 35 to 25% by weight of the silica component can be used.
  • mullite particles can be used. Two or more kinds of metal oxide particles may be mixed and used.
  • sintering inhibitor particles such as zirconia, lanthanum, yttrium, samarium, and europium can be included. Including a sintering inhibitor is preferable because it can inhibit sintering of particles.
  • the particle size of these particles is not limited, but is 0.01 ⁇ m to 2 ⁇ m.
  • the heat insulating material according to the second aspect of the first invention can be formed from metal oxide particles containing 60 to 80% by weight of an alumina component and 40 to 20% by weight of a silica component. Preferably, it is formed from metal oxide particles containing 65 to 75% by weight of the alumina component and 35 to 25% by weight of the silica component. Two or more kinds of metal oxide particles may be mixed and used. For example, mullite particles can be used.
  • the average particle diameter of the metal oxide particles is, for example, 100 nm or more or more than 100 nm. Preferably it is more than 100 nm and 1000 nm or less.
  • the average particle size is preferably 150 nm to 1000 nm, more preferably 200 nm to 500 nm.
  • the total volume of metal oxide particles having a particle size of 100 nm or more or more than 100 nm is 50% or more of the total volume of all metal oxide particles. More preferably, it is 80% or more, More preferably, it is 90% or more, Most preferably, it is 95% or more.
  • a sintering inhibitor can be included.
  • the heat insulating material of the first invention may further contain fibers.
  • fibers Preferably inorganic fiber is included.
  • the fiber is not particularly limited as long as it can reinforce the molded body.
  • the inorganic fiber is, for example, one or more selected from the group consisting of silica-alumina fiber, silica-alumina-magnesia fiber, alumina fiber, zirconia fiber, and biosoluble inorganic fiber.
  • Alumina fibers are preferred.
  • the biosoluble fiber include inorganic fibers having a composition in which the total of SiO 2 , Al 2 O 3 and ZrO 2 is 50 to 82% by weight, and the total of CaO and MgO is 18 to 50% by weight. Further, an inorganic fiber having a composition of 50 to 82% by weight of SiO 2 and 10 to 43% by weight of the total of CaO and MgO can be exemplified.
  • a biosoluble fiber suitable for use in the present invention is a fiber having a shrinkage of 5% or less at 1300 ° C. For example, the fiber of patent gazette 5634637 is mentioned.
  • the average fiber length of the fibers may be, for example, 0.5 mm or more and 20 mm or less, and is 1 mm or more and 10 mm or less.
  • the average fiber diameter of the fibers may be, for example, 1 ⁇ m or more and 20 ⁇ m or less, and is 2 ⁇ m or more and 15 ⁇ m or less.
  • the heat insulating material of the first invention can include a radiation scattering material.
  • the radiation scattering material is not particularly limited as long as it reduces heat transfer by radiation.
  • the radiation scattering material is at least one selected from the group consisting of silicon carbide, zirconia, zirconium silicate (zircon), titania, iron oxide, chromium oxide, zinc sulfide, and barium titanate.
  • the average particle diameter of the radiation scattering material may be, for example, more than 1 ⁇ m and 50 ⁇ m or less, and more than 1 ⁇ m and 20 ⁇ m or less.
  • the radiation scattering material is preferably a far-infrared reflective material, for example, a material having a relative refractive index of 1.25 or more for light having a wavelength of 1 ⁇ m or more.
  • the amount of the metal oxide particles contained in the raw material for the heat insulating material is not particularly limited as long as the desired characteristics are achieved.
  • the heat insulating material includes, for example, 50 to 100% by weight, 60 to 98% by weight, 70 to 95% by weight, or 80 to 90% by weight of metal oxide particles.
  • the amount of the sintering inhibitor is, for example, 0 to 30% by weight, 1 to 20% by weight, or 2 to 10% by weight.
  • the amount of fiber is, for example, 0 to 20% by weight, 1 to 10% by weight, or 2 to 9% by weight.
  • the amount of the radiation scattering material is, for example, 0 to 40% by weight, 3 to 35% by weight, or 10 to 30% by weight.
  • the raw material for the heat insulating material includes the metal oxide particles, including the sintering inhibitor, the fiber, and / or the radiation scattering material
  • the total amount thereof is 95% by weight or more, 98% by weight or more, or 99% by weight or more. be able to.
  • an inevitable impurity may be included and it is good also as 100 weight%.
  • the heat insulating material of the first invention can be obtained by molding metal oxide particles into a mixture (raw material) with a sintering inhibitor, fiber and / or radiation scattering material. More specifically, for example, a raw material prepared containing the above components is filled in a predetermined mold and dry press molded to produce a dry pressure molded body having a shape corresponding to the mold. .
  • the heat insulating material of the second invention has the following structure.
  • the metal oxide particles that are primary particles aggregate to form secondary particles, which contain pores formed between the primary particles.
  • the secondary particles are aggregated so as to include pores between the secondary particles.
  • the metal oxide particles contain 60% by weight or more of an alumina component.
  • the average particle diameter of the primary particles is 10 nm to 1000 nm.
  • the metal oxide particles can contain an alumina component, for example, 80% by weight or more, 90% by weight or more, or 99% by weight or more.
  • the metal oxide particles can contain components other than the alumina component.
  • particles containing an alumina component and a silica component can be used.
  • metal oxide particles containing 60 to 80% by weight of the alumina component and 40 to 20% by weight of the silica component can be used.
  • metal oxide particles containing 65 to 75% by weight of the alumina component and 35 to 25% by weight of the silica component can be used.
  • Two or more kinds of metal oxide particles may be mixed and used. Specifically, for example, alumina particles or mullite particles can be used.
  • the average particle size of the primary particles of the metal oxide particles is preferably 30 nm to 650 nm, more preferably 50 nm to 500 nm, still more preferably 70 nm to 200 nm, and particularly preferably 80 nm to 150 nm.
  • the average particle diameter of the secondary particles is, for example, 100 nm to 1000 nm, preferably 100 nm to 700 nm, more preferably 200 nm to 500 nm.
  • the particle size of the secondary particles is a value measured with a laser type particle size distribution meter.
  • the ratio of the total volume of pores having a diameter of 300 nm or less to the total volume of all pores is preferably 15% or more, more preferably 18 % Or more, more preferably 20% or more.
  • an upper limit is not limited, Usually, it is 50% or less or 30% or less.
  • the ratio of the total volume of pores having a diameter of 300 nm or less to the total volume of all pores before heating of the heat insulating material of the second invention is preferably 20% or more, more preferably 30% or more, and still more preferably 40 % Or more. Although an upper limit is not limited, Usually, it is 70% or less or 60% or less.
  • the proportion of the pore volume of 50 nm to 300 nm in the pore volume of 300 nm or less is preferably 50% to 95%, more preferably 55% to 90%, still more preferably 55% to 88%, particularly preferably. 60% to 85%.
  • the second heat insulating material can also include fibers, radiation scattering materials, and sintering suppression materials. The kind and amount thereof are as described in the first heat insulating material.
  • the heat insulating material of 2nd invention can be manufactured with the following manufacturing methods.
  • a first dispersion of metal oxide particles which are primary particles having an average particle diameter of 10 nm to 1000 nm, is prepared, and the pH of the first dispersion is adjusted to adjust the secondary particles in which the primary particles are aggregated.
  • a second dispersion is prepared. The second dispersion is freeze-dried to produce an aggregate of secondary particles. The obtained aggregate is press-molded.
  • the explanation of the primary particles and the secondary particles is the same as described above.
  • the shape of the molded body that can be taken by the first and second heat insulating materials is not particularly limited, and is, for example, a board shape, a plate shape, or a cylindrical shape.
  • the temperature at which dry press molding is performed is not particularly limited.
  • the temperature may be 0 ° C. or more and 100 ° C. or less, or may be 0 ° C. or more and 50 ° C. or less.
  • the molded body may be heated to increase the strength.
  • the heating temperature is preferably more than 900 ° C. and not more than 1500 ° C., more preferably 1000 to 1400 ° C. That is, the molded body may be used as a heat insulating material after firing, or may be used as a heat insulating material before firing.
  • the heat insulating material of the present invention has excellent heat insulating properties.
  • the heat conductivity of the heat insulating material at 1000 ° C. is less than 0.15 W / (m ⁇ K), 0.13 W / (m ⁇ K) or less, or 0.10 W / ( m ⁇ K) or less.
  • the lower limit is not limited, but is usually 0.05 W / (m ⁇ K) or more.
  • the density is preferably 0.20 g / cm 3 to 1.0 g / cm 3 , more preferably 0.25 g / cm 3 to 0.50 g / cm 3 .
  • the heat insulating material of this invention is porous like patent document 1, a structure differs from the heat insulating material of patent document 1.
  • insulation of Patent Document 1 is spinel component such as MgAl 2 O 4 are essential, the heat insulating material of the present invention do not contain spinel component as the main component (high component of most weight%).
  • the heat insulating material of this invention is not a foam.
  • the heat insulator of the present invention is different from aerogel or a composite of airgel and fiber structure.
  • the airgel is usually a structure containing silica-siloxane bonds and surface hydrophobic groups.
  • Airgel is usually produced by supercritical drying. Xerogel and cryogel are not produced by supercritical drying, but are included in aerogels. When a normal airgel is exposed to a high temperature of 400 ° C. or more, the hydrophobic group disappears and the structure is easily destroyed.
  • the heat insulating material of the present invention has a structure of an inorganic oxide not containing a hydrophobic group, it is durable at high temperature. There is sex.
  • the heat insulating material of the present invention can be used in an environment where heat resistance at high temperature is required by utilizing its excellent heat resistance. That is, the heat insulating material of the present invention is, for example, as a heat insulating material that can be used even in an environment exposed to a high temperature of more than 1200 ° C. or 1400 ° C. (for example, a heat insulating material having a maximum use temperature of more than 1200 ° C. (eg, 1400 ° C.)). Can be used.
  • Example 1 Manufacture of insulation materials
  • a mold equipped with a degassing mechanism with a mixture of alumina particles with an average particle size of 0.2 ⁇ m (alumina component 99.99% by weight) and zirconia particles with an average particle size of 100 nm in a volume ratio of 9: 1.
  • dry press molding was performed, and then the molded plate-shaped dry pressure-molded body was taken out of the mold to obtain a heat insulating material.
  • the porosity of 0.5 g / cm 3 was 87%.
  • the ratio of the total volume of pores having a diameter of 400 nm or less to the total volume of all pores was determined.
  • a temperature wave is applied to one side of a rectangular test specimen, the wave propagates inside the specimen, and the temperature wave measured near the center in the thickness direction of the specimen (temperature wave traveling direction)
  • the thermal diffusivity was determined from the phase difference.
  • the dropping method is a method in which a sample heated to a high temperature is dropped into a copper (having a known specific heat) container, and the specific heat is obtained from the temperature rise of the copper container.
  • the measurement temperature was 1000 ° C.
  • Examples 2-4 A heat insulating material was manufactured and evaluated in the same manner as in Example 1 except that mullite particles having an average particle size shown in Table 1 (alumina component 67 wt%, silica component 33 wt%) were used. The results are shown in Table 1.
  • Comparative Examples 1 to 3 A heat insulating material was manufactured and evaluated in the same manner as in Example 1 except that alumina particles having an average particle size shown in Table 1 were used. The results are shown in Table 1.
  • Example 5 Production of heat insulating material A dispersion was prepared in which mullite particles (primary particles) having an average particle size of 0.08 ⁇ m were dispersed in an acidic aqueous solution having a pH of 3 to 4. The pH of the dispersion was adjusted to pH 7 by adding alkaline water to agglomerate primary particles to obtain a dispersion of secondary particles having an average particle size of 0.4 ⁇ m. The dispersion of secondary particles was placed in liquid nitrogen and freeze-dried to obtain an aggregate. The density was 0.05 g / cm 3 .
  • FIG. A photograph of the obtained aggregate is also shown. It turns out that the obtained aggregate is bulky.
  • the agglomerates obtained above are filled into a mold equipped with a degassing mechanism, dry press molding is performed, and then the molded plate-shaped heat insulating material (density 0.5 g / cm 3 ) is taken out from the mold. It was.
  • Examples 6-8 A dry pressure molded article was produced and evaluated in the same manner as in Example 5 except that mullite particles having an average particle diameter (primary particle diameter) shown in Table 2 were used. The results are shown in Table 2.
  • Example 5 Production of heat insulating material As shown in FIG. 2, in Example 5, an aggregate was obtained in the same manner as in Example 5 except that the dispersion of secondary particles was usually dried. A heat insulating material (density 0.5 g / cm 3 ) was produced in the same manner as in Example 5.
  • Comparative Example 5 A dry pressure-molded article was produced and evaluated in the same manner as in Comparative Example 4 except that mullite particles having an average particle diameter shown in Table 2 were used. The results are shown in Table 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermal Insulation (AREA)

Abstract

1400℃で24時間加熱した後、全ての気孔の容積の合計に対する、径400nm以下の気孔の容積の合計の割合が、5%以上であり、周期加熱法で測定した1000℃における熱伝導率が0.15W/(m・K)未満である断熱材。

Description

断熱材及びその製造方法
 本発明は、断熱材及びその製造方法に関する。
 近年の省エネ需要の高まりから、工業炉や焼却炉、工場等の断熱が非常に重要な課題となり、断熱材のさらなる性能向上が求められている。固体酸化物燃料電池電極や半導体ウエハーの加熱炉等では、最高加熱温度が1200℃を超え、蛍光体素子、ガラス、製鉄用加熱炉等では、最高加熱温度が1400℃を超える。しかしながら、1200℃を超える用途に使用でき、なおかつ低熱伝導率を兼ね備えた断熱材は未だ開発されていない。
 特許文献1は、多孔性の断熱材を開示している。この断熱材はスピネル質セラミックスからなる。
特開2012-229139号公報
 本発明は、上記課題に鑑みて為されたものであって、熱伝導率が低い断熱材及びその製造方法を提供することをその目的の一つとする。
 本発明によれば、以下の断熱材及びその製造方法が提供される。
1.1400℃で24時間加熱した後、全ての気孔の容積の合計に対する、径400nm以下の気孔の容積の合計の割合が、5%以上であり、周期加熱法で測定した1000℃における熱伝導率が0.15W/(m・K)未満である断熱材。
2.1次粒子である金属酸化物粒子が凝集した2次粒子で構成される断熱材であって、
 前記2次粒子内と前記2次粒子間に細孔があり、
 前記金属酸化物粒子が、アルミナ成分を60重量%以上含み、前記1次粒子の平均粒径が10nm~1000nmである1記載の断熱材。
3.加熱前、全ての気孔の容積の合計に対する300nm以下の気孔の容積の合計の割合が5%以上であり、かつ
 300nm以下の細孔容積に占める50nm以上300nm以下の細孔容積の割合が、50%~95%である1又は2記載の断熱材。
4.前記金属酸化物粒子が、アルミナ粒子又はムライト粒子である1又は2記載の断熱材。
5.前記2次粒子の平均粒径が100nm~1000nmである2~4のいずれか記載の断熱材。
6.1400℃で24時間加熱した後、全ての気孔の容積の合計に対する、径300nm以下の気孔の容積の合計の割合が、15%以上であり、周期加熱法で測定した1000℃における熱伝導率が0.10W/(m・K)以下である1~5のいずれか記載の断熱材。
7.平均粒径が10nm~1000nmの1次粒子である金属酸化物粒子が分散した第1の分散液を作製し、
 前記第1の分散液のpHを調整して、前記1次粒子が凝集した2次粒子が分散した第2の分散液を作製し、
 前記第2の分散液を凍結乾燥して凝集体を作製し、
 前記凝集体を、プレス成形する、断熱材の製造方法。
8.平均粒径が100nmを超える、アルミナ成分を60重量%以上含む金属酸化物粒子と、
 焼結抑制材を含む1記載の断熱材。
9.前記焼結抑制材が、ジルコニア、ランタン、イットリア、サマリウム及びユウロピウムから選択される1以上である8記載の断熱材。
10.前記金属酸化物粒子が、シリカ成分を含む8又は9記載の断熱材。
11.平均粒径が100nm以上である、アルミナ成分を60~80重量%とシリカ成分を40~20重量%含む金属酸化物粒子を含む1記載の断熱材。
12.前記金属酸化物粒子が、ムライト粒子である11記載の断熱材。
13.さらに、焼結抑制材を含む11又は12記載の断熱材。
14.前記金属酸化物粒子の平均粒径が100nmを超えて1000nm以下である8~13のいずれか記載の断熱材。
15.粒径100nmを超えて1000nm以下の金属酸化物粒子が、前記金属酸化物粒子の全ての50容積%以上である14記載の断熱材。
16.さらに、繊維及び/又は輻射散乱材を含む1~6及び8~15のいずれか記載の断熱材。
 本発明によれば、熱伝導率が低い断熱材及びその製造方法を提供することができる。
実験例1で測定した熱伝導率と300nm以下の細孔容積割合の関係を示す図である。 実施例5と比較例4の断熱材の製造方法を示す模式図である。 実施例5で得られた断熱材の30000倍走査性電子顕微鏡(SEM)写真である。 実施例5で得られた断熱材の加熱前の細孔分布を示す図である。 実施例5で得られた断熱材の加熱後の細孔分布を示す図である。 比較例4で得られた断熱材の30000倍SEM写真である。 比較例4で得られた断熱材の加熱前の細孔分布を示す図である。 比較例4で得られた断熱材の加熱後の細孔分布を示す図である。
 本発明者らは、耐熱温度が1200℃を超える、1300℃、さらには1400℃に達する断熱材の開発を鋭意研究した。
 多孔性断熱材の伝熱(熱伝導率)は、気体分子の伝熱、固体同士の接触、輻射による伝導等により決まる。多孔性断熱材は固体量が少なく、気体分子の伝熱が大きな影響を及ぼす。気体分子の伝熱は気孔(細孔)径が平均自由行程以下の場合に抑制できる。高温域では、平均自由行程は大きくなる。従って、多孔性断熱材の場合、径が平均自由行程以下の気孔を多く含み、かつその気孔を高温で維持することが重要である。
 本発明者らは、従来の多孔性断熱材では1200℃を超える高温では、気孔がつぶれ断熱性が損なわれることを見い出した。
 本発明者らは、平均粒径がサブミクロンのアルミナを主成分とする金属酸化物粒子を用いた多孔性断熱材は、微細な気孔を多く含みかつ高温に曝された後でも十分な量の気孔が残ることを見い出した。更には、本発明者らは、アルミナ成分以外の成分又は粒子を添加することにより、アルミナ同士の焼結を抑制して、気孔が残ることを見い出した。
 また、本発明者らは、1次粒子間で形成される細孔と、1次粒子が凝集した2次粒子間で形成される細孔を含む多孔性断熱材は、微細な気孔を多く含みかつ高温に曝された後でも焼結を抑制して十分な量の気孔が残ることを見い出した。
 本発明はこれら知見により完成した。
 本発明の断熱材は、1400℃で24時間加熱した後、全ての気孔の容積の合計に対する、径400nm以下の気孔の容積の合計の割合は、好ましくは5%以上、より好ましくは10%以上、さらに好ましくは15%以上である。上限は限定されないが、通常80%以下である。
 本発明において、気孔の容積は実施例に記載の方法で測定できる。
 本発明の断熱材の加熱前の全ての気孔の容積の総計は、通常、60容積%以上であり、好ましくは75容積%以上である。上限は限定されないが、通常98容積%以下である。
 また、断熱材の1400℃で24時間加熱した後の気孔容積の総計は、通常、60容積%以上であり、好ましくは75容積%以上である。上限は限定されないが、通常90容積%以下である。全ての気孔の容積は、加熱前後で変わらない(収縮しない)ことが好ましい。
 本発明の断熱材の加熱前の全ての気孔の容積の合計に対する、径400nm以下の気孔の容積の合計の割合は、好ましくは10%以上、より好ましくは25%以上、さらに好ましくは30%以上である。上限は限定されないが、通常90%以下又は80%以下である。
 このような断熱材を具体的に以下に示す。
 尚、本願明細書において、数値範囲のA~Bは、A以上B以下を意味する。
[第1の発明]
 第1の発明の第1の態様による断熱材は、アルミナ成分を60重量%以上含む金属酸化物粒子と焼結抑制剤から形成できる。この金属酸化物粒子の平均粒径は例えば100nmを超える。好ましくは100nmを超えて1000nm以下である。平均粒径は好ましくは150nm~1000nmであり、より好ましくは200nm~500nmである。フュームドアルミナは平均粒径は通常数十nmであるので、適さない。
 本明細書において、平均粒径は、ランダムに約100個の粒子について、透過型電子顕微鏡(Transmission Electron Microscope;TEM)又は電界放出形走査電子顕微鏡(Field Emission Scanning Electron Microscope;FE-SEM)で粒子径(直径又は長径)を観察して求める。
 好ましくは、100nmを超える(好ましくは1000nm以下)粒径の金属酸化物粒子の容積の合計が、金属酸化物粒子の全ての合計の容積の50%以上である。より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上である。
 金属酸化物粒子は、アルミナ成分を、例えば、80重量%以上、90重量%以上、又は99重量%以上含むことができる。
 金属酸化物粒子は、アルミナ成分以外の成分を含むことができる。例えば、アルミナ成分とシリカ成分を含む粒子を用いることができる。アルミナ成分を60~80重量%とシリカ成分を40~20重量%含む金属酸化物粒子又はアルミナ成分を65~75重量%とシリカ成分を35~25重量%含む金属酸化物粒子を用いることができる。例えばムライト粒子を用いることができる。
 金属酸化物粒子は2種以上混合して用いてもよい。
 焼結抑制材として、ジルコニア、ランタン、イットリウム、サマリウム、ユウロピウム等の粒子を含むことができる。焼結抑制材を含むと、粒子同士の焼結を阻害することができ好ましい。
 これら粒子の粒径は、限定されないが、0.01μm~2μmである。
 第1の発明の第2の態様による断熱材は、アルミナ成分を60~80重量%とシリカ成分を40~20重量%含む金属酸化物粒子から形成できる。好ましくはアルミナ成分を65~75重量%とシリカ成分を35~25重量%含む金属酸化物粒子から形成する。金属酸化物粒子は2種以上混合して用いてもよい。例えばムライト粒子を用いることができる。
 この金属酸化物粒子の平均粒径は例えば100nm以上又は100nmを超える。好ましくは100nmを超えて1000nm以下である。平均粒径は好ましくは150nm~1000nmであり、より好ましくは200nm~500nmである。
 好ましくは、100nm以上又は100nmを超える(好ましくは1000nm以下)粒径の金属酸化物粒子の容積の合計が、金属酸化物粒子の全ての合計の容積の50%以上である。より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上である。
 さらに、金属酸化物粒子の他に、焼結抑制材を含むことができる。
 第1の発明の断熱材は、さらに、繊維を含んでもよい。好ましくは無機繊維を含む。繊維は、成形体を補強できるものであれば特に限られない。
 無機繊維は、例えば、シリカ-アルミナ繊維、シリカ-アルミナ-マグネシア繊維、アルミナ繊維、ジルコニア繊維、生体溶解性無機繊維からなる群より選択される1種以上である。好ましくはアルミナ繊維である。
 生体溶解性繊維として、SiO、AlとZrOとの合計が50~82重量%、CaOとMgOとの合計が18~50重量%の組成の無機繊維を例示できる。また、SiOが50~82重量%、CaOとMgOとの合計が10~43重量%の組成の無機繊維も例示できる。本発明の使用に好適な生体溶解性繊維は、1300℃において、収縮率が5%以下の繊維である。例えば、特許公報5634637号に記載の繊維を挙げられる。
 繊維の平均繊維長は、例えば、0.5mm以上、20mm以下でよく、1mm以上、10mm以下である。繊維の平均繊維径は、例えば、1μm以上、20μm以下でよく、2μm以上、15μm以下である。
 また、第1の発明の断熱材は、輻射散乱材を含むことができる。輻射散乱材は、輻射による伝熱を低減するものであれば特に限られない。輻射散乱材は、例えば、炭化珪素、ジルコニア、珪酸ジルコニウム(ジルコン)、チタニア、酸化鉄、酸化クロム、硫化亜鉛、チタン酸バリウムからなる群より選択される1種以上である。
 輻射散乱材の平均粒径は、例えば、1μm超、50μm以下でよく、1μm超、20μm以下である。輻射散乱材は、遠赤外線反射性のものが好ましく、例えば、1μm以上の波長の光に対する比屈折率が1.25以上であるものが好ましい。
 断熱材の原料に含まれる金属酸化物粒子の量は、所望の特性を実現する範囲であれば特に限られない。断熱材は、例えば、50~100重量%、60~98重量%、70~95重量%、又は80~90重量%の金属酸化物粒子を含む。
 焼結抑制材の量は、例えば、0~30重量%、1~20重量%、又は2~10重量%である。
 繊維の量は、例えば、0~20重量%、1~10重量%、又は2~9重量%である。
 輻射散乱材の量は、例えば、0~40重量%、3~35重量%、又は10~30重量%である。
 断熱材の原料は、金属酸化物粒子を、焼結抑制材、繊維及び/又は輻射散乱材を含むときはこれらとの合計を95重量%以上、98重量%以上、又は99重量%以上とすることができる。また、不可避不純物を含んでもよく、100重量%としてもよい。
 第1の発明の断熱材は、金属酸化物粒子を、焼結抑制材、繊維及び/又は輻射散乱材を含むときはこれらとの混合物(原料)を成形することにより得られる。より具体的には、例えば、上記の成分を含んで調製された原料を所定の成形型に充填し、乾式プレス成形することにより、当該成形型に対応する形状の乾式加圧成形体を製造する。
[第2の発明]
 第2の発明の断熱材は、以下の構造を有する。1次粒子である金属酸化物粒子が凝集して、2次粒子を形成し、その内部に1次粒子間でつくる細孔を含む。この2次粒子同士が2次粒子間に細孔を含むように凝集する。金属酸化物粒子は、アルミナ成分を60重量%以上含む。1次粒子の平均粒径は、10nm~1000nmである。
 金属酸化物粒子は、アルミナ成分を、例えば、80重量%以上、90重量%以上、又は99重量%以上含むことができる。
 金属酸化物粒子は、アルミナ成分以外の成分を含むことができる。例えば、アルミナ成分とシリカ成分を含む粒子を用いることができる。例えばアルミナ成分を60~80重量%とシリカ成分を40~20重量%含む金属酸化物粒子を用いることができる。好ましくはアルミナ成分を65~75重量%とシリカ成分を35~25重量%含む金属酸化物粒子を用いることができる。金属酸化物粒子は2種以上混合して用いてもよい。具体的には、例えばアルミナ粒子又はムライト粒子を用いることができる。
 金属酸化物粒子の1次粒子の平均粒径は、好ましくは30nm~650nmであり、より好ましくは50nm~500nmであり、さらに好ましくは70nm~200nm、特に好ましくは80nm~150nmである。
 2次粒子の平均粒径は、例えば、100nm~1000nmであり、好ましくは100nm~700nmより好ましくは200nm~500nmである。尚、2次粒子の粒径とは、レーザー式粒度分布計で測定した値である。
 第2の発明の断熱材は、1400℃で24時間加熱した後、全ての気孔の容積の合計に対する、径300nm以下の気孔の容積の合計の割合は、好ましくは15%以上、より好ましくは18%以上、さらに好ましくは20%以上である。上限は限定されないが、通常50%以下又は30%以下である。
 第2の発明の断熱材の加熱前の全ての気孔の容積の合計に対する、径300nm以下の気孔の容積の合計の割合は、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは40%以上である。上限は限定されないが、通常70%以下又は60%以下である。
 300nm以下の細孔容積に占める、50nm以上300nm以下の細孔容積の割合は、好ましくは50%~95%、より好ましくは55%~90%、さらに好ましくは55%~88%、特に好ましくは60%~85%である。
 第2の断熱材も、第1の断熱材と同様に、繊維、輻射散乱材、焼結抑制材を含むことができる。その種類や量は、第1の断熱材で説明した通りである。
 第2の発明の断熱材は、以下の製法により製造できる。
 平均粒径が10nm~1000nmの1次粒子である金属酸化物粒子の第1の分散液を作製し、この第1の分散液のpHを調整して、1次粒子が凝集した2次粒子の第2の分散液を作製する。第2の分散液を凍結乾燥して2次粒子の凝集体を作製する。得られた凝集体を、プレス成型する。1次粒子、2次粒子の説明は上記と同じである。
 第1及び第2の断熱材(以下、単に本発明の断熱材ともいう)が取り得る成形体の形状は、特に限られないが、例えば、ボード状、板状又は円筒状である。乾式プレス成形を行う温度は、特に限られないが、例えば、0℃以上、100℃以下の温度で行うこととしてもよく、0℃以上、50℃以下の温度で行うこととしてもよい。
 また、成形体を加熱して強度を出しても構わない。加熱温度は、好ましくは900℃超1500℃以下、より好ましくは1000~1400℃である。即ち、成形体は、焼成した後に、断熱材として使用してもよいし、焼成前に断熱材として使用してもよい。
 本発明の断熱材は、優れた断熱性を有する。好ましくは、断熱材の1000℃における熱伝導率は、実施例で測定の方法で、0.15W/(m・K)未満、0.13W/(m・K)以下、又は0.10W/(m・K)以下である。下限は限定されないが、通常0.05W/(m・K)以上である。
 また、密度は、好ましくは0.20g/cm~1.0g/cmであり、より好ましくは0.25g/cm~0.50g/cmである。
 本発明の断熱材は、特許文献1のような多孔性であるが、特許文献1の断熱材とは構成が異なる。例えば、特許文献1の断熱材はMgAl等のスピネル成分が必須であるが、本発明の断熱材は主成分(最も重量%の高い成分)としてスピネル成分を含まない。また、本発明の断熱材は発泡体ではない。
 本発明の断熱体は、エアロゲル、又はエアロゲルと繊維構造体の複合体とは異なる。エアロゲルは通常シリカ同士のシロキサン結合と表面疎水基を含んだ構造体である。エアロゲルは通常超臨界乾燥で製造する。キセロゲル、クリオゲルは超臨界乾燥で製造されないが、エアロゲルに含まれる。通常のエアロゲルは、400℃以上の高温に曝されると疎水基が消失して構造が破壊され易くなるが、本発明の断熱材は疎水基を含まない無機酸化物の構造を持つため高温耐久性がある。
 本発明の断熱材は、その優れた耐熱性を利用して、高温での耐熱性が要求される環境で使用できる。すなわち、本発明の断熱材は、例えば、1200℃超又は1400℃の高温に曝される環境でも使用できる断熱材(例えば、最高使用温度が1200℃超(例えば、1400℃)の断熱材)として使用できる。
 以下に、本発明の実施例について説明するが、本発明は、これら実施例に限られるものではない。
<第1の発明の実施例>
実施例1
[断熱材の製造]
 平均粒径0.2μmのアルミナ粒子(アルミナ成分99.99重量%)と、平均粒径100nmのジルコニア粒子を、体積比9:1で混合した粒子を、脱気機構が付属した成形型に充填し、乾式プレス成形を行い、その後、成形された板状の乾式加圧成形体を型から取り出し、断熱材を得た。0.5g/cmの気孔率は、87%であった。
[断熱材の評価]
 以下の方法で断熱材を評価した。結果を表1に示す。
(1)細孔容積割合の測定
 得られた断熱材を1400℃で24時間で加熱する前と後の400nm以下の細孔容積を、以下の方法で測定した。
 Micromeritics社製の商品名「AutoPore IV 9500」を用いた。
測定条件:
 気孔径範囲:5.5nm~360μm
 測定圧力:0.0036~226.96MPa
計算条件:
 水銀と試料との接触角:130度
 水銀の表面張力:485dyn/cm
 試料に圧力をかけると、試料の気孔に水銀が圧入されていく。圧力と気孔径の関係式から、試料に存在する気孔径とその容量が求まる。断熱材の全気孔体積をVとする。1400℃での平均自由行程400nmに対応した測定圧力以上の細孔量総和をV1とし、以下の式で細孔容積割合を算出した。
 細孔容積割合(%)=V1/V×100
 1400℃で24時間加熱した後、全ての気孔の容積の合計に対する、径400nm以下の気孔の容積の合計の割合を求めた。
(2)熱伝導率の測定
 得られた断熱材について、以下の方法で熱伝導率を測定した。結果を表1に示す。
 周期加熱法の概要は以下の文献に示されている。
 熱物性21〔2〕(2007)86/96、「異なる測定方法による断熱材の熱伝導率比較」、大村高弘
 周期加熱法により測定した熱拡散率と、投下法による測定した比熱、および試験体の密度の3者を掛け合わせて、熱伝導率を求めた。周期加熱法を簡単に説明すると、試験体の温度の波(周期約1時間、振幅約4K)を伝播させ、試験体内部における波の時間的遅れ、すなわち位相差から熱拡散率を測定する方法である。具体的には、矩形上の試験体の片面に温度波をかけ、その波が試験体内部を伝播し、試験体の厚さ方向(温度波進行方向)における中央付近で測定された温度波との位相差から、熱拡散率を求めた。また投下法は、高温に加熱した試料を銅(比熱が既知)の容器に落とし、銅容器の温度上昇から比熱を求める方法である。測定温度は1000℃とした。
実施例2~4
 表1に示す平均粒径を有するムライト粒子(アルミナ成分67重量%、シリカ成分33重量%)を用いた他は、実施例1と同様にして、断熱材を製造し、評価した。結果を表1に示す。
比較例1~3
 表1に示す平均粒径を有するアルミナ粒子を用いた他は、実施例1と同様にして、断熱材を製造し、評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<第2の発明の実施例>
実験例1
 1000℃で熱伝導率が0.10W/(m・K)未満となるためには、300nm以下の細孔がどのくらいあればよいかを調べるために以下の実験をした。
 様々な粒径のアルミナ微粒子を用いて、300nm以下の細孔容積割合が異なる、密度0.5g/cmの成形体を製造し、熱伝導率を測定した。結果を図1に示す。この図から、300nm以下の細孔容積割合が約15%以上あれば、熱伝導率が0.10W/(m・K)未満となることが分かる。
実施例5
(1)断熱材の製造
 平均粒子径0.08μmのムライト粒子(1次粒子)がpH3~4の酸性水溶液に分散する分散液を準備した。この分散液のpHをアルカリ水を添加してpH7として、1次粒子を凝集させて平均粒子径0.4μmの2次粒子の分散液を得た。
 2次粒子の分散液を、液体窒素の中に入れて凍結乾燥して凝集体を得た。密度は0.05g/cmであった。
 上記の製造の工程の模式図を図2に示す。得られた凝集体の写真も併せて示す。得られた凝集体が嵩高いことが分かる。
 上記で得られた凝集体を、脱気機構が付属した成形型に充填し、乾式プレス成形を行い、その後、成形された板状の断熱材(密度0.5g/cm)を型から取り出した。
(2)断熱材の評価1
 (1)で得られた乾式加圧成形体を、加熱しないで、SEMで観察した。30000倍のSEM写真を図3に示す。2次粒子内にある細孔(1次粒子間の細孔)と、2次粒子間にある細孔が見られる。
 さらに、水銀圧入法により細孔容積割合及び細孔分布を求めた。結果を表2及び図4に示す。図4に示すように、1次粒子由来(2次粒子内)の小さなピークと2次粒子由来(2次粒子間)の大きなピークがあった。
 次に(1)で得られた乾式加圧成形体を、1400℃で24時間加熱した。この断熱材について、上記と同様にして細孔容積割合及び細孔分布を測定した。結果を表2及び図5に実線で示す。この図から分かるように、加熱後も、300nm以下の細孔が残り、細孔容積割合は17.6%であった。従って、実験例1からこの断熱材の1000℃の熱伝導率は0.10W/(m・K)未満といえる。また、全ての細孔(気孔)の容積の合計に対する、径400nm以下の気孔の容積の合計の割合は20%であった。従って、表1からこの断熱材の1000℃の熱伝導率は0.10W/(m・K)未満といえる。
(3)断熱材の評価2
 (1)で得られた乾式加圧成形体について、1300℃で24時間、及び1400℃で24時間加熱して、300nm以下の細孔の割合を測定した。その結果、1300℃24時間加熱後の細孔容積割合は40%、1400℃24時間加熱後の細孔容積割合は17.6%であった。
実施例6~8
 表2に示す平均粒子径(一次粒子径)のムライト粒子を用いた以外は、実施例5と同様にして乾式加圧成形体を製造して、評価した。結果を表2に示す。
比較例4
(1)断熱材の製造
 図2に示すように、実施例5において、2次粒子の分散液を、通常乾燥した他は実施例5と同じようにして、凝集体を得た。
 実施例5と同様にして断熱材(密度0.5g/cm)を製造した。
(2)断熱材の評価1
 (1)で得られた乾式加圧成形体を、加熱しないでSEMで観察した。その結果、1次粒子間の細孔しか見られず、得られた凝集体は、1次粒子がそのまま集合したものであった。30000倍のSEM写真を図6に示す。
 実施例5と同様に細孔容積割合及び細孔分布を測定し結果を表2及び図7に示す。この図に示すように、1次粒子由来(1次粒子間)のピークしかなかった。
 (1)で得られた乾式加圧成形体を1400℃で24時間加熱した断熱材の細孔容積割合及び細孔分布を表2及び図8に実線で示す。この図から分かるように、加熱後は、300nm以下の細孔はほとんどなく、細孔容積割合は1.8%であった。従って、実験例1からこの断熱材の熱伝導率は0.10W/(m・K)を超えるといえる。また、全ての細孔(気孔)の容積の合計に対する、径400nm以下の気孔の容積の合計の割合は2%であった。
(3)断熱材の評価2
 (1)で得られた乾式加圧成形体について、1300℃で24時間、及び1400℃で24時間加熱して、300nm以下の細孔の割合を測定した。その結果、1300℃24時間加熱後の細孔容積割合は13%、1400℃24時間加熱後の細孔容積割合は1.8%であった。
比較例5
 表2に示す平均粒子径のムライト粒子を用いた以外は、比較例4と同様にして乾式加圧成形体を製造して、評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献及び本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

 

Claims (16)

  1.  1400℃で24時間加熱した後、全ての気孔の容積の合計に対する、径400nm以下の気孔の容積の合計の割合が、5%以上であり、
     周期加熱法で測定した1000℃における熱伝導率が0.15W/(m・K)未満である断熱材。
  2.  1次粒子である金属酸化物粒子が凝集した2次粒子で構成される断熱材であって、
     前記2次粒子内と前記2次粒子間に細孔があり、
     前記金属酸化物粒子が、アルミナ成分を60重量%以上含み、前記1次粒子の平均粒径が10nm~1000nmである請求項1記載の断熱材。
  3.  前記2次粒子の平均粒径が100nm~1000nmである請求項2記載の断熱材。
  4.  加熱前、全ての気孔の容積の合計に対する300nm以下の気孔の容積の合計の割合が5%以上であり、かつ
     300nm以下の細孔容積に占める50nm以上300nm以下の細孔容積の割合が、50%~95%である請求項1~3のいずれか記載の断熱材。
  5.  前記金属酸化物粒子が、アルミナ粒子又はムライト粒子である請求項1~4のいずれか記載の断熱材。
  6.  1400℃で24時間加熱した後、全ての気孔の容積の合計に対する、径300nm以下の気孔の容積の合計の割合が、15%以上であり、周期加熱法で測定した1000℃における熱伝導率が0.10W/(m・K)以下である請求項1~5のいずれか記載の断熱材。
  7.  平均粒径が10nm~1000nmの1次粒子である金属酸化物粒子が分散した第1の分散液を作製し、
     前記第1の分散液のpHを調整して、前記1次粒子が凝集した2次粒子が分散した第2の分散液を作製し、
     前記第2の分散液を凍結乾燥して凝集体を作製し、
     前記凝集体を、プレス成形する、断熱材の製造方法。
  8.  平均粒径が100nmを超える、アルミナ成分を60重量%以上含む金属酸化物粒子と、
     焼結抑制材を含む請求項1記載の断熱材。
  9.  前記焼結抑制材が、ジルコニア、ランタン、イットリア、サマリウム及びユウロピウムから選択される1以上である請求項8記載の断熱材。
  10.  前記金属酸化物粒子が、シリカ成分を含む請求項8又は9記載の断熱材。
  11.  平均粒径が100nm以上である、アルミナ成分を60~80重量%とシリカ成分を40~20重量%含む金属酸化物粒子を含む請求項1記載の断熱材。
  12.  前記金属酸化物粒子が、ムライト粒子である請求項11記載の断熱材。
  13.  さらに、焼結抑制材を含む請求項11又は12記載の断熱材。
  14.  前記金属酸化物粒子の平均粒径が100nmを超えて1000nm以下である請求項8~13のいずれか記載の断熱材。
  15.  粒径100nmを超えて1000nm以下の金属酸化物粒子が、前記金属酸化物粒子の全ての50容積%以上である請求項14記載の断熱材。
  16.  さらに、繊維及び/又は輻射散乱材を含む請求項1~6及び8~15のいずれか記載の断熱材。

     
PCT/JP2016/001511 2015-03-16 2016-03-16 断熱材及びその製造方法 WO2016147665A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015051899 2015-03-16
JP2015-051899 2015-03-16
JP2015202905A JP6127353B2 (ja) 2015-03-16 2015-10-14 断熱材及びその製造方法
JP2015-202905 2015-10-14

Publications (1)

Publication Number Publication Date
WO2016147665A1 true WO2016147665A1 (ja) 2016-09-22

Family

ID=56918621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001511 WO2016147665A1 (ja) 2015-03-16 2016-03-16 断熱材及びその製造方法

Country Status (1)

Country Link
WO (1) WO2016147665A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082980A (ja) * 1994-06-17 1996-01-09 Shinagawa Refract Co Ltd 断熱用ジルコニア質耐火物及びその製造方法
JP2003002754A (ja) * 2001-06-19 2003-01-08 Kurosaki Harima Corp 断熱性キャスタブル耐火物
JP2013209278A (ja) * 2012-02-29 2013-10-10 Covalent Materials Corp 多孔質セラミックス
JP2013224235A (ja) * 2012-04-20 2013-10-31 Japan Insulation Co Ltd 断熱材用組成物、断熱材用成形体及びそれらの製造方法
JP2014081072A (ja) * 2012-09-28 2014-05-08 Kurosaki Harima Corp 断熱材及びその製造方法
JP2014527500A (ja) * 2011-07-13 2014-10-16 サン−ゴバン イゾベ 高性能断熱材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH082980A (ja) * 1994-06-17 1996-01-09 Shinagawa Refract Co Ltd 断熱用ジルコニア質耐火物及びその製造方法
JP2003002754A (ja) * 2001-06-19 2003-01-08 Kurosaki Harima Corp 断熱性キャスタブル耐火物
JP2014527500A (ja) * 2011-07-13 2014-10-16 サン−ゴバン イゾベ 高性能断熱材
JP2013209278A (ja) * 2012-02-29 2013-10-10 Covalent Materials Corp 多孔質セラミックス
JP2013224235A (ja) * 2012-04-20 2013-10-31 Japan Insulation Co Ltd 断熱材用組成物、断熱材用成形体及びそれらの製造方法
JP2014081072A (ja) * 2012-09-28 2014-05-08 Kurosaki Harima Corp 断熱材及びその製造方法

Similar Documents

Publication Publication Date Title
Yu et al. Gelcasting preparation of porous silicon nitride ceramics by adjusting the content of monomers
JP6602827B2 (ja) 断熱材及びその製造方法
Ding et al. Fabrication of mullite ceramics with ultrahigh porosity by gel freeze drying
WO2015182768A1 (ja) 真空断熱材
US9950963B2 (en) Thermal insulator and method of manufacturing the same
US10253917B2 (en) Insulation material and method of manufacturing same
JP2011085216A (ja) 断熱材及びその製造方法
CN105764872B (zh) 多孔材料及绝热膜
JP5833152B2 (ja) 断熱材及びその製造方法
Chen et al. Preparation of porous Al2O3 ceramics by starch consolidation casting method
Liu et al. Spheroidization of SiC powders and their improvement on the properties of SiC porous ceramics
JP6607839B2 (ja) 断熱材
Sun et al. In situ formation of the TiCN phase in SiBCN ceramic aerogels enabling superior thermal and structural stability up to 1800° C
Foratirad et al. Fabrication of porous titanium carbide ceramics by gelcasting process
Liu et al. Effect of K2SO4 additions on properties of porous fibrous alumina ceramics prepared by DCC and lost‐mold method
JP6127353B2 (ja) 断熱材及びその製造方法
Jia et al. Sintering behavior of gehlenite. Part I: Self‐forming, macro‐/mesoporous gehlenite—pore‐forming mechanism, microstructure, mechanical, and physical properties
WO2016147665A1 (ja) 断熱材及びその製造方法
JP2018146098A (ja) 断熱材の製造方法
Jiao et al. Preparation and properties of magnesia porous ceramics by particle‐stabilized foam casting
JPWO2020009226A1 (ja) 断熱充填材、断熱材、断熱構造
Hassanzadeh‐Tabrizi et al. Effects of milling and calcination temperature on the compressibility and sinterability of a nanocrystalline Al2O3–Y3Al5O12 composite powder
JP2015038365A (ja) 断熱材及びその製造方法
Han et al. Effect of Al2O3 powder on properties of fumed silica thermal insulating composites using mechanofusion technique
Barry et al. Properties of phyllosilicate‐based porous ceramics shaped by conventional tape casting and freeze tape casting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764496

Country of ref document: EP

Kind code of ref document: A1