WO2016147526A1 - Fault detection system and fault detection method - Google Patents
Fault detection system and fault detection method Download PDFInfo
- Publication number
- WO2016147526A1 WO2016147526A1 PCT/JP2016/000305 JP2016000305W WO2016147526A1 WO 2016147526 A1 WO2016147526 A1 WO 2016147526A1 JP 2016000305 W JP2016000305 W JP 2016000305W WO 2016147526 A1 WO2016147526 A1 WO 2016147526A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current
- power
- lamp
- detection system
- current pulses
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q9/00—Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
Definitions
- the present invention relates to a failure detection system and a failure detection method.
- Patent Literature 1 A system that centrally manages multiple electrical devices is known.
- a managed device terminal device terminal unit is interposed between an electric device to be managed and a device centralized management device (host unit), and the power supply of the electric device is connected via the terminal unit.
- a device centralized management system that controls the above is disclosed.
- a power control unit that directly controls the supply of commercial power, which is the operating power source, is interposed between the electrical device and the terminal unit.
- the terminal unit receives the control signal from the host unit, the corresponding control data is transmitted from the terminal unit to the power supply control unit.
- the power supply control unit controls the switch unit according to the data to control the supply of commercial power to the electrical equipment.
- Patent Document 2 discloses a system for detecting an electric power abnormality in a space where electric power is used by a consumer such as a house, an apartment, a building, or a commercial facility.
- a power abnormality is detected based on the predicted power demand of the electrical equipment and the power consumption of the electrical equipment measured by a power measurement unit or the like installed on the distribution board.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a failure detection system and a failure detection method capable of early detection of the occurrence of a failure in an electrical device. It is.
- a failure detection system includes a power supply switch that controls supply of power to a device connected to a distribution board, and a number of current pulses that are preset for the device when the power is turned on.
- the control unit that controls the power supply switch so as to start the supply of power to the device after input, and the current pulse when the device is turned on and is installed in the distribution board
- a power measurement unit that measures the number and the load current of the device and detects a failure of the device based on the measurement result.
- the present invention it is possible to provide a failure detection system and a failure detection method that can detect the occurrence of a failure in an electrical device at an early stage.
- FIG. 1 is a diagram showing a configuration of a failure detection system according to a first exemplary embodiment. It is a figure which shows the waveform of the electric current measured with the failure detection system which concerns on Embodiment 1 when only one area exists. It is a flowchart which shows the failure detection procedure by the failure detection system which concerns on embodiment. It is a figure which shows the state at the time of normal in case a some area exists. In the state shown in FIG. 4, it is a figure which shows the waveform of the current measured with the failure detection system concerning Embodiment 1. FIG. It is a figure which shows the state at the time of abnormality when a some area exists. FIG.
- FIG. 7 is a diagram illustrating a waveform of a current measured by the failure detection system according to the first embodiment in the state illustrated in FIG. 6. It is a figure which shows the state at the time of one part of the failure detection system concerning Embodiment 2.
- FIG. FIG. 9 is a diagram showing a waveform of a current measured by the failure detection system according to the second embodiment in the state shown in FIG. It is a figure which shows the state at the time of the one part abnormality of the failure detection system concerning Embodiment 2.
- FIG. It is a figure which shows the state at the time of normal in case a some area exists.
- FIG. 12 In the state shown in FIG. 12, it is a figure which shows the waveform of the current measured with the failure detection system concerning Embodiment 2.
- FIG. 14 It is a figure which shows the state at the time of abnormality when a some area exists.
- FIG. 14 it is a figure which shows the waveform of the electric current measured with the failure detection system concerning Embodiment 2.
- the failure detection system detects a failure of the electrical device by measuring a current flowing to the electrical device connected to a distribution board, a distribution board, or the like.
- a current flowing to the electrical device connected to a distribution board, a distribution board, or the like.
- FIG. 1 is a diagram illustrating a configuration of a failure detection system according to the first embodiment.
- the failure detection system 1 includes a distribution board 10, a power measuring device 11, a CT (current transformer) 12, a breaker 13, a display 14, a communication network 15, a DB (database) 16, and a control circuit 20. , A switch 21 and a pulse number setting unit 22.
- the failure detection system 1 can detect each failure of the lamp L in a plurality of areas A to C.
- the areas A to C are assumed to be spaces such as houses and apartments, commercial tenants, and office buildings.
- the control circuit 20 and the like in the areas B and C are not shown, but the areas B and C can have the same configuration as the area A.
- the distribution board 10 distributes the electric power supplied from the commercial power system or the private power generator to each electric device (load) via a voltage line.
- AC alternating current
- a breaker 13 is provided on each voltage line of the distribution board 10. The breaker 13 cuts off the supply of power to the electrical device when a current exceeding a certain level flows.
- CT 12 is provided on each voltage line in the distribution board 10.
- CT12 is a current sensor that detects the value of the current flowing through each voltage line.
- lamps L in areas A to C are connected under the voltage line measured by one CT 12.
- the distribution board 10 is provided with a power measuring instrument 11.
- the power measuring instrument 11 can measure the amount of power consumed by the lamp L based on the current value detected by the CT 12.
- a display 14 is connected to the power meter 11 in a state where communication is possible via the communication network 15.
- the communication network 15 is configured by, for example, a LAN (Local Area Network).
- LAN Local Area Network
- the display 14 displays various information output from the power meter 11. For example, the display 14 displays the lamp current flowing through the lamp L, the control circuit current supplied from the control circuit 20 to be described later to the lamp L, and the total current obtained by adding the lamp current and the control circuit current. The display 14 displays the detected failure location.
- the indicator 14 can be installed in the same building or site as the areas A to C.
- a control circuit 20, a switch 21, and a pulse number setting unit 22 are connected to the lamps L in each of the areas A to C.
- the switch 21 is a power supply switch that controls the supply of power to the lamp L connected to the distribution board 10.
- a plurality of switches 21 are connected under the voltage line measured by one CT 12.
- the lamps L in each of the areas A to C are connected to voltage lines via the switches 21, respectively.
- a control circuit 20 is connected to each switch 21.
- the control circuit 20 controls the switch 21 to start supplying power to the lamp L after inputting a preset number of current pulses to the lamp L when the lamp L is turned on. .
- the power measuring instrument 11 described above measures the number of current pulses and the lamp current (load current) of the lamp L when power is supplied to the lamp L, and detects a failure based on the measurement result.
- the pulse number setting unit 22 sets the number of current pulses supplied from the control circuit 20 to the lamp L.
- a plurality of lamps L are connected to one voltage line of the distribution board 10, and the plurality of lamps L are provided with a control circuit 20, a switch 21, and a pulse number setting unit 22, respectively. ing.
- the number of current pulses is set individually for each lamp L. That is, the number of current pulses supplied to the lamps L in the areas A to C is different.
- the control circuits 20 in the areas A to C supply different numbers of current pulses to the lamps L in the areas A to C, respectively.
- the power measuring instrument 11 can identify the failure location according to the number of current pulses.
- a DB 16 is connected to the power meter 11 via a communication network 15.
- the DB 16 stores a plurality of lamps L and the number of current pulses individually set for each lamp L in association with each other. That is, the number of current pulses is an ID for identifying the lamp L.
- the ID and the area where the electric lamp L exists are linked and stored.
- the power meter 11 can identify which area of the lamp L has failed by comparing the measured number of current pulses with the number of current pulses stored in the DB 16. Further, the power measuring instrument 11 can detect the operation of each of the lamps L1 to L3 in accordance with the measured lamp current.
- FIG. 2 is a diagram illustrating a waveform of a current measured by the failure detection system 1 according to the first embodiment when only one area A exists.
- FIG. 3 is a flowchart showing a failure detection procedure by the failure detection system 1.
- the total current Ia includes one current pulse and a lamp current.
- the lamp current does not flow due to the failure of the lamp L in area A such as a broken bulb.
- the lamp current does not rise at the time of abnormality.
- the total current Ia includes only one current pulse and does not include the lamp current.
- step S1 when the supply of power is started by turning on the switch 21 (step S1), the control circuit 20 operates (step S2).
- the control circuit 20 generates the number of current pulses set by the pulse number setting unit 22 (step S3). Here, one current pulse is generated. Thereafter, the control circuit 20 supplies a lamp current to the lamp L (step S4).
- the power meter 11 measures the total current including the current pulse and the lamp current (step S5). Then, the power measuring instrument 11 measures the number of current pulses included in the total current Ia, and specifies an area (step S6). As shown in FIG. 2, when one current pulse is measured, area A is specified.
- step S7 determines whether or not the lamp current is included in the total current Ia (step S7).
- step S7 when the lamp current is present (present), it is determined as normal and the process ends.
- step S7 when there is no lamp current (none), the power measuring device 11 detects a broken ball (failure) of the lamp L in the area A (step S8). Then, the failure location (out of the bulb L of the lamp L in area A) is displayed on the display 14 (step S9).
- FIG. 4 is a diagram showing a normal state when a plurality of areas exist.
- FIG. 5 is a diagram illustrating a waveform of a current measured by the failure detection system according to the first embodiment in the state illustrated in FIG. 4.
- FIG. 6 is a diagram illustrating a state at the time of abnormality when a plurality of areas exist.
- FIG. 7 is a diagram illustrating a waveform of a current measured by the failure detection system according to the first embodiment in the state illustrated in FIG. 6.
- lamps L1 to L3 are referred to as lamps L1 to L3, respectively.
- one current pulse is supplied to the lamp L1 in the area A
- two current pulses are supplied to the lamp L2 in the area B
- three current pulses are supplied to the lamp L3 in the area C.
- the number of current pulses may be different for each of the lamps L1 to L3, and can be arbitrarily set in advance.
- the area A is specified.
- area B is specified when two current pulses are measured by the power meter 11.
- the area C is specified.
- the power measuring device 11 identifies the area with reference to the DB 16. That is, the power measuring instrument 11 extracts individual feature amounts (current pulse numbers) of the lamps L1 to L3, and compares them with the feature amounts (current pulse numbers) for the lamps L1 to L3 registered in the DB 16. The lights L1 to L3 can be specified.
- the power measuring device 11 performs individual operation detection of the lamps L1 to L3 according to the lamp current. Thereby, the failure of the lamp L2 in the area B can be detected.
- the failure detection system 1 can identify the area where the failure of the electrical device has occurred based on the number of current pulses, and automatically detect the presence or absence of the failure based on the current flowing through the electrical device. can do. Thereby, it becomes possible to detect a failure of an electric device such as a relatively simple lamp without a failure detection function. According to the failure detection system 1, it is possible to find a failure without omission at an early stage without requiring a person to check the electrical device.
- Embodiment 2 Next, a failure detection system 1A according to the second embodiment will be described with reference to FIGS.
- the examples illustrated in FIGS. 8 to 11 are examples in which a failure is determined using the failure detection system 1A according to the second embodiment when one area exists.
- FIG. 8 is a diagram illustrating a normal state of a part of the failure detection system according to the second embodiment.
- FIG. 9 is a diagram showing a waveform of current measured by the failure detection system according to Embodiment 2 in the state shown in FIG.
- FIG. 10 is a diagram illustrating a state of a part of the failure detection system according to the second embodiment when there is an abnormality.
- FIG. 11 is a diagram showing a waveform of a current measured by the failure detection system according to the second embodiment in the state shown in FIG.
- the configuration of the distribution board 10 to which the switch 21 is connected can be the same as that shown in FIG.
- a plurality of lamps L are connected to one switch 21.
- the switch 21 is connected to three lamps L1 to L3.
- a control circuit 20 is connected between the switch 21 and the lamp L3.
- the number of current pulses supplied from the control circuit 20 to the lamps L1 to L3 is set by the pulse number setting unit 22.
- one current pulse number is set for the lamps L1 to L3. That is, the number of current pulses (feature amount) of the lamps L1 to L3 is the same.
- the total current Ia + b + c of the area is the current pulse and the lamp currents of the lamps L1 to L3 (lamp 1). Current, lamp 2 current, lamp 3 current).
- the lamp current included in the total current is 3A.
- the power meter 11 can identify the number of operating lamps based on the magnitude of the lamp current included in the total current.
- step S7 it is determined whether or not the lamp current included in the total current Ia + b + c is insufficient compared to the normal time. The If the lamp current is less than normal, the number of lamps that are out of bulb (failed) is detected in step S8.
- FIG. 12 is a diagram illustrating a normal state when there are a plurality of areas.
- FIG. 13 is a diagram illustrating a waveform of a current measured by the failure detection system according to the second embodiment in the state illustrated in FIG.
- FIG. 14 is a diagram illustrating a state at the time of abnormality when a plurality of areas exist.
- FIG. 15 is a diagram illustrating a waveform of a current measured by the failure detection system according to the second embodiment in the state illustrated in FIG.
- FIGS. 12 and 14 it is assumed here that there are two areas A and B.
- the lamps arranged in area A are referred to as lamps L1 to L3, and the lamps arranged in area B are lamps L4 to L6.
- FIGS. 13 and 15 it is assumed that one current pulse is supplied to the lamps L1 to L3 in the area A, and two current pulses are supplied to the lamps L4 to L6 in the area B.
- the number of current pulses may be different for each of the lamps L1 to L3 and the lamps L4 to L6, and can be arbitrarily set in advance.
- the area A is specified.
- area B is specified when two current pulses are measured by the power meter 11.
- the total current Ia + b + c in area A includes the lamp currents of lamps L1 to L3
- the total current Ic + d + e in area B includes the lamp currents of lamps L4 to L6.
- the lamp current included in the total current Ia + b + c and the total current Ic + d + e is 3A.
- the total current Ia + b + c in area A includes the lamp currents of lamps L1 to L3.
- the total current Ic + d + e in area B includes only the lamp currents of the lamps L5 and L6, and does not include the lamp current to the lamp L4. That is, in area A, the lamp current for three lamps is included, while in area B, only the lamp current for two lamps is included.
- the total current Ia + b + c is 3A
- the total current Ic + d + e is 2A.
- the power measuring instrument 11 can detect the number of operating lamps according to the magnitude of the lamp current.
- the failure detection system 1A it is possible to narrow down the area where the failure of the lamp is generated by the number of current pulses. Then, it is possible to expedite the discovery of a failure by inspecting only the narrowed area by visual inspection or the like. Further, since the number of electric lamps operating in the narrowed area can be specified, it is possible to grasp the number of failures to be found when a person inspects. Thereby, it becomes possible to suppress an inspection omission. In addition, the number of electrical devices to be inspected can be reduced, and the management cost can be reduced.
- the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.
- the CT 12 is arranged on the voltage line in the distribution board 10, but the location of the CT 12 is not particularly limited as long as it is on the electric circuit that supplies power to the electrical equipment. .
- the example which provided CT12 in the distribution board 10 is shown in FIG. 1, it is also possible to provide a current sensor in electric equipment other than the distribution board.
- the area is specified and the failure of the electric device is determined based on the current flowing through the electric device.
- the present invention is not limited to this.
- Failure detection system 1A Failure detection system 10 Distribution board 11 Power meter 12 CT 13 Breaker 14 Display 15 Communication Network 16 DB 20 Control circuit 21 Switch 22 Pulse number setting section L, L1 to L6 Light
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
- Selective Calling Equipment (AREA)
Abstract
Provided is a fault detection system that is capable of detecting the occurrence of faults in electric equipment at an early stage. According to one embodiment of the present invention, a fault detection system is provided with the following: a switch (21) for controlling the supply of power to an electric light (L1) that is connected to a distribution board (10); a control circuit (20) that, when power is activated, controls the switch (21) so that the supply of power to the electric light (L1) is commenced after a preset number of current pulses have been inputted to the electric light (L1); and a power measurement apparatus (11) that is installed on the distribution board (10), and that, when the power to the electric light (L1) is activated, measures the number of current pulses and the load current of the electric light (L1) to detect any faults in the electric light (L1) on the basis of the measurement results.
Description
本発明は、故障検出システム及び故障検出方法に関する。
The present invention relates to a failure detection system and a failure detection method.
複数の電気機器を集中管理するシステムが知られている。特許文献1には、管理対象である電気機器と機器集中管理装置(ホストユニット)との間に、被管理機器用端末装置(端末ユニット)を介在させ、端末ユニットを介してその電気機器の電源等を制御する機器集中管理システムが開示されている。
A system that centrally manages multiple electrical devices is known. In Patent Literature 1, a managed device terminal device (terminal unit) is interposed between an electric device to be managed and a device centralized management device (host unit), and the power supply of the electric device is connected via the terminal unit. A device centralized management system that controls the above is disclosed.
電気機器がシステムに対応していない場合には、電気機器と端末ユニットとの間に、該電気機器へその動作電源である商用電源の供給を直接制御する電源制御ユニットが介在される。端末ユニットがホストユニットからの制御信号を受信すると、対応する制御データが端末ユニットから電源制御ユニットに伝えられる。電源制御ユニットはそのデータに応じてスイッチ部を制御して、電気機器への商用電源の供給を制御する。
When the electrical device is not compatible with the system, a power control unit that directly controls the supply of commercial power, which is the operating power source, is interposed between the electrical device and the terminal unit. When the terminal unit receives the control signal from the host unit, the corresponding control data is transmitted from the terminal unit to the power supply control unit. The power supply control unit controls the switch unit according to the data to control the supply of commercial power to the electrical equipment.
特許文献2には、住宅、マンション、ビルディング、商業施設などの需要者が電力を使用する空間において、電力異常を検出するシステムが開示されている。この電力異常検出システムでは、電気機器の電力需要予測量と、分電盤に設置された電力測定部等により測定された電気機器の消費電力量とに基づいて電力異常を検出している。
Patent Document 2 discloses a system for detecting an electric power abnormality in a space where electric power is used by a consumer such as a house, an apartment, a building, or a commercial facility. In this power abnormality detection system, a power abnormality is detected based on the predicted power demand of the electrical equipment and the power consumption of the electrical equipment measured by a power measurement unit or the like installed on the distribution board.
従来、電灯等の故障検出機能のない比較的単純な電気機器では、人が目視等により球切れ等の故障を検出していた。電気機器の数が多い場合、人が一つ一つの電気機器の点検を行っていたのでは、故障の検出が遅れる場合がある。また、人による点検ではヒューマンエラーによる点検漏れもあり得る。また、電気機器の数が多い場合、管理コストが高くなるという問題がある。
Conventionally, in a relatively simple electric device having no failure detection function such as an electric light, a person has detected a failure such as a broken ball by visual observation or the like. If the number of electrical devices is large, the detection of a failure may be delayed if a person inspects each electrical device. In addition, in human inspection, there may be omission of inspection due to human error. Moreover, when there are many electric devices, there exists a problem that management cost becomes high.
本発明は、上述した課題を解決するためになされたものであり、本発明の目的は、電気機器の故障の発生を早期に検出することが可能な故障検出システム及び故障検出方法を提供することである。
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a failure detection system and a failure detection method capable of early detection of the occurrence of a failure in an electrical device. It is.
本発明の一態様に係る故障検出システムは、分電盤に接続された機器への電源の供給を制御する電源供給スイッチと、電源投入時に、前記機器に対して予め設定された数の電流パルスを入力した後に、当該機器への電源の供給を開始するように、前記電源供給スイッチを制御する制御部と、前記分電盤に設置され、前記機器へ電源が投入された際に、電流パルス数の計測と前記機器の負荷電流の測定を行い、測定結果に基づいて前記機器の故障を検出する電力測定部とを備える。
A failure detection system according to an aspect of the present invention includes a power supply switch that controls supply of power to a device connected to a distribution board, and a number of current pulses that are preset for the device when the power is turned on. The control unit that controls the power supply switch so as to start the supply of power to the device after input, and the current pulse when the device is turned on and is installed in the distribution board A power measurement unit that measures the number and the load current of the device and detects a failure of the device based on the measurement result.
本発明によれば、電気機器の故障の発生を早期に検出することが可能な故障検出システム及び故障検出方法を提供することが可能である。
According to the present invention, it is possible to provide a failure detection system and a failure detection method that can detect the occurrence of a failure in an electrical device at an early stage.
以下、図面を参照して本発明の実施の形態について説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。なお、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. For clarity of explanation, the following description and drawings are omitted and simplified as appropriate. Note that, in each drawing, the same element is denoted by the same reference numeral, and redundant description is omitted as necessary.
実施の形態に係る故障検出システムは、分電盤・配電盤等に接続される電気機器へ流れる電流を測定することにより当該電気機器の故障を検出する。実施の形態では、電気機器の一例として電灯を用いた例について説明する。
The failure detection system according to the embodiment detects a failure of the electrical device by measuring a current flowing to the electrical device connected to a distribution board, a distribution board, or the like. In the embodiment, an example in which an electric lamp is used as an example of an electric device will be described.
実施の形態1
図1は、実施の形態1にかかる故障検出システムの構成を示す図である。図1に示すように、故障検出システム1は、分電盤10、電力測定器11、CT(カレントトランス)12、ブレーカー13、表示器14、通信ネットワーク15、DB(データベース)16、制御回路20、スイッチ21、パルス数設定部22を有している。Embodiment 1
FIG. 1 is a diagram illustrating a configuration of a failure detection system according to the first embodiment. As shown in FIG. 1, thefailure detection system 1 includes a distribution board 10, a power measuring device 11, a CT (current transformer) 12, a breaker 13, a display 14, a communication network 15, a DB (database) 16, and a control circuit 20. , A switch 21 and a pulse number setting unit 22.
図1は、実施の形態1にかかる故障検出システムの構成を示す図である。図1に示すように、故障検出システム1は、分電盤10、電力測定器11、CT(カレントトランス)12、ブレーカー13、表示器14、通信ネットワーク15、DB(データベース)16、制御回路20、スイッチ21、パルス数設定部22を有している。
FIG. 1 is a diagram illustrating a configuration of a failure detection system according to the first embodiment. As shown in FIG. 1, the
故障検出システム1は、複数のエリアA~Cにおける電灯Lの故障をそれぞれ検出することが可能である。エリアA~Cは、例えば、住宅やマンションの各部屋、商業施設の各テナント、オフィスビルの各事務所などの空間が想定される。なお、図1においては、エリアB、Cにおける制御回路20等の図示を省略しているが、エリアB、Cにおいても、エリアAと同様の構成とすることができる。
The failure detection system 1 can detect each failure of the lamp L in a plurality of areas A to C. The areas A to C are assumed to be spaces such as houses and apartments, commercial tenants, and office buildings. In FIG. 1, the control circuit 20 and the like in the areas B and C are not shown, but the areas B and C can have the same configuration as the area A.
分電盤10は、商用電力系統や自家発電装置から供給される電力を各電気機器(負荷)へ電圧線を介して振り分ける。図1に示す例では、分電盤10にはAC(交流)100Vの電力が供給されている。分電盤10の各電圧線上には、それぞれブレーカー13が設けられている。ブレーカー13は、一定以上の電流が流れた場合、電気機器への電源の供給を遮断する。
The distribution board 10 distributes the electric power supplied from the commercial power system or the private power generator to each electric device (load) via a voltage line. In the example shown in FIG. 1, AC (alternating current) 100 V power is supplied to the distribution board 10. A breaker 13 is provided on each voltage line of the distribution board 10. The breaker 13 cuts off the supply of power to the electrical device when a current exceeding a certain level flows.
また、分電盤10内の各電圧線上には、それぞれCT12が設けられている。CT12は、各電圧線に流れる電流の値を検知する電流センサである。図1に示す例では、1つのCT12が測定する電圧線の配下に、エリアA~Cの電灯Lが接続されている。
Further, CT 12 is provided on each voltage line in the distribution board 10. CT12 is a current sensor that detects the value of the current flowing through each voltage line. In the example shown in FIG. 1, lamps L in areas A to C are connected under the voltage line measured by one CT 12.
分電盤10には、電力測定器11が設けられている。電力測定器11は、CT12によって検出された電流値に基づき、電灯Lで消費される電力量を測定可能である。電力測定器11には、通信ネットワーク15を介して通信可能な状態で表示器14が接続される。通信ネットワーク15は、例えば、LAN(Local Area Network)で構成される。なお、通信ネットワーク15として、専用回線、公衆回線等を用いることも可能である。
The distribution board 10 is provided with a power measuring instrument 11. The power measuring instrument 11 can measure the amount of power consumed by the lamp L based on the current value detected by the CT 12. A display 14 is connected to the power meter 11 in a state where communication is possible via the communication network 15. The communication network 15 is configured by, for example, a LAN (Local Area Network). As the communication network 15, a dedicated line, a public line, or the like can be used.
表示器14には、電力測定器11から出力される各種情報が表示される。例えば、表示器14は、電灯Lに流れる電灯電流、後述する制御回路20から電灯Lへ供給される制御回路電流、電灯電流と制御回路電流とを合計した合計電流を表示する。また、表示器14は、検出された故障個所を表示する。表示器14は、エリアA~Cと同一の建物や敷地内などに設置することができる。
The display 14 displays various information output from the power meter 11. For example, the display 14 displays the lamp current flowing through the lamp L, the control circuit current supplied from the control circuit 20 to be described later to the lamp L, and the total current obtained by adding the lamp current and the control circuit current. The display 14 displays the detected failure location. The indicator 14 can be installed in the same building or site as the areas A to C.
各エリアA~Cにおける電灯Lには、それぞれ制御回路20、スイッチ21、パルス数設定部22が接続されている。スイッチ21は、分電盤10に接続された電灯Lへの電源の供給を制御する電源供給スイッチである。図1に示す例では、一つのCT12が測定する電圧線の配下に複数のスイッチ21が接続されている。各エリアA~Cの電灯Lは、それぞれスイッチ21を介して電圧線に接続されている。
A control circuit 20, a switch 21, and a pulse number setting unit 22 are connected to the lamps L in each of the areas A to C. The switch 21 is a power supply switch that controls the supply of power to the lamp L connected to the distribution board 10. In the example shown in FIG. 1, a plurality of switches 21 are connected under the voltage line measured by one CT 12. The lamps L in each of the areas A to C are connected to voltage lines via the switches 21, respectively.
スイッチ21には、それぞれ制御回路20が接続される。制御回路20は、電灯Lへの電源投入時に、電灯Lに対して予め設定された数の電流パルスを入力した後に、当該電灯Lへの電源の供給を開始するように、スイッチ21を制御する。上述の電力測定器11は、電灯Lへ電源が投入された際に、電流パルス数の計測と電灯Lの電灯電流(負荷電流)の測定を行い、測定結果に基づいて故障を検出する。
A control circuit 20 is connected to each switch 21. The control circuit 20 controls the switch 21 to start supplying power to the lamp L after inputting a preset number of current pulses to the lamp L when the lamp L is turned on. . The power measuring instrument 11 described above measures the number of current pulses and the lamp current (load current) of the lamp L when power is supplied to the lamp L, and detects a failure based on the measurement result.
パルス数設定部22は、制御回路20から電灯Lに供給する電流パルスの数を設定する。図1に示す例では、分電盤10の一つの電圧線に複数の電灯Lが接続されており、複数の電灯Lには、それぞれ制御回路20、スイッチ21、パルス数設定部22が設けられている。電流パルスの数は、電灯L毎にそれぞれ個別に設定される。すなわち、各エリアA~Cの電灯Lに供給される電流パルスの数はそれぞれ異なる。各エリアA~Cの制御回路20は、エリアA~Cの電灯L対してそれぞれ異なる数の電流パルスを供給する。電力測定器11は、電流パルス数に応じて故障個所の識別が可能である。
The pulse number setting unit 22 sets the number of current pulses supplied from the control circuit 20 to the lamp L. In the example illustrated in FIG. 1, a plurality of lamps L are connected to one voltage line of the distribution board 10, and the plurality of lamps L are provided with a control circuit 20, a switch 21, and a pulse number setting unit 22, respectively. ing. The number of current pulses is set individually for each lamp L. That is, the number of current pulses supplied to the lamps L in the areas A to C is different. The control circuits 20 in the areas A to C supply different numbers of current pulses to the lamps L in the areas A to C, respectively. The power measuring instrument 11 can identify the failure location according to the number of current pulses.
電力測定器11には、通信ネットワーク15を介してDB16が接続されている。DB16には、複数の電灯Lと電灯L毎に個別に設定された電流パルスの数とが対応づけて保存される。すなわち、電流パルス数は、電灯Lを識別するIDとなる。DB16には、当該IDと電灯Lが存在するエリアとが紐付されて保存される。電力測定器11は、計測した電流パルス数と、DB16に保存された電流パルスの数とを比較することによって、どのエリアの電灯Lが故障したかを特定することができる。また、電力測定器11は、測定された電灯電流に応じて、電灯L1~L3個別の稼働検出を行うことが可能である。
A DB 16 is connected to the power meter 11 via a communication network 15. The DB 16 stores a plurality of lamps L and the number of current pulses individually set for each lamp L in association with each other. That is, the number of current pulses is an ID for identifying the lamp L. In the DB 16, the ID and the area where the electric lamp L exists are linked and stored. The power meter 11 can identify which area of the lamp L has failed by comparing the measured number of current pulses with the number of current pulses stored in the DB 16. Further, the power measuring instrument 11 can detect the operation of each of the lamps L1 to L3 in accordance with the measured lamp current.
ここで、図2、3を参照して、故障検出システム1における電気機器の故障検出手順について説明する。図2は、一つのエリアAのみが存在する場合に、故障検出システム1実施の形態1に係る障検出システムで測定される電流の波形を示す図である。図3は、故障検出システム1による故障検出手順を示すフローチャートである。
Here, with reference to FIGS. 2 and 3, the failure detection procedure of the electrical device in the failure detection system 1 will be described. FIG. 2 is a diagram illustrating a waveform of a current measured by the failure detection system 1 according to the first embodiment when only one area A exists. FIG. 3 is a flowchart showing a failure detection procedure by the failure detection system 1.
図2に示すように、エリアAの電灯Lに対して、1つの電流パルスが制御回路電流として供給されるものとする。正常時には、電流パルスが入力された後に、電灯電流が立ち上がる。したがって、正常時には、合計電流Iaは、1つの電流パルスと電灯電流を含む。
As shown in FIG. 2, it is assumed that one current pulse is supplied as a control circuit current to the lamp L in the area A. Under normal conditions, the lamp current rises after a current pulse is input. Therefore, at the normal time, the total current Ia includes one current pulse and a lamp current.
異常時には、エリアAの電灯Lが球切れ等の故障により、電灯電流が流れないものとする。図2において点線で示すように、異常時には、電灯電流が立ち上がらない。このため、異常時には、合計電流Iaには、1つの電流パルスのみ含まれ、電灯電流が含まれない。
In the event of an abnormality, it is assumed that the lamp current does not flow due to the failure of the lamp L in area A such as a broken bulb. As indicated by a dotted line in FIG. 2, the lamp current does not rise at the time of abnormality. For this reason, at the time of abnormality, the total current Ia includes only one current pulse and does not include the lamp current.
図3に示すように、まず、スイッチ21を入れる(ステップS1)ことにより電源の供給が開始されると、制御回路20が動作する(ステップS2)。制御回路20は、パルス数設定部22により設定された数の電流パルスを発生させる(ステップS3)。ここでは、1つの電流パルスが生成される。その後、制御回路20は、電灯Lに電灯電流を供給する(ステップS4)。
As shown in FIG. 3, when the supply of power is started by turning on the switch 21 (step S1), the control circuit 20 operates (step S2). The control circuit 20 generates the number of current pulses set by the pulse number setting unit 22 (step S3). Here, one current pulse is generated. Thereafter, the control circuit 20 supplies a lamp current to the lamp L (step S4).
電灯電流が供給された後、電力測定器11が電流パルスと電灯電流とを含む合計電流を測定する(ステップS5)。そして、電力測定器11が合計電流Iaに含まれる電流パルス数を計測して、エリアを特定する(ステップS6)。図2に示すように、電流パルスが1つ計測されると、エリアAが特定される。
After the lamp current is supplied, the power meter 11 measures the total current including the current pulse and the lamp current (step S5). Then, the power measuring instrument 11 measures the number of current pulses included in the total current Ia, and specifies an area (step S6). As shown in FIG. 2, when one current pulse is measured, area A is specified.
その後、電力測定器11は合計電流Iaに電灯電流が含まれるか否かを判定する(ステップS7)。ステップS7において、電灯電流が存在する場合(有)は、正常と判断し、処理が終了する。一方、ステップS7において、電灯電流がない場合は(無)、電力測定器11がエリアAの電灯Lの球切れ(故障)を検出する(ステップS8)。そして、故障個所(エリアAの電灯Lの球切れ)が表示器14に表示される(ステップS9)。
Thereafter, the power meter 11 determines whether or not the lamp current is included in the total current Ia (step S7). In step S7, when the lamp current is present (present), it is determined as normal and the process ends. On the other hand, in step S7, when there is no lamp current (none), the power measuring device 11 detects a broken ball (failure) of the lamp L in the area A (step S8). Then, the failure location (out of the bulb L of the lamp L in area A) is displayed on the display 14 (step S9).
次に、複数のエリアが存在する例について、図4~図7を参照して説明する。図4は、複数のエリアが存在する場合の正常時の状態を示す図である。図5は、図4に示す状態において、実施の形態1にかかる故障検出システムで測定される電流の波形を示す図である。図6は、複数のエリアが存在する場合の異常時の状態を示す図である。図7は、図6に示す状態において、実施の形態1にかかる故障検出システムで測定される電流の波形を示す図である。
Next, an example in which a plurality of areas exist will be described with reference to FIGS. FIG. 4 is a diagram showing a normal state when a plurality of areas exist. FIG. 5 is a diagram illustrating a waveform of a current measured by the failure detection system according to the first embodiment in the state illustrated in FIG. 4. FIG. 6 is a diagram illustrating a state at the time of abnormality when a plurality of areas exist. FIG. 7 is a diagram illustrating a waveform of a current measured by the failure detection system according to the first embodiment in the state illustrated in FIG. 6.
図6に示すように、異常時には、エリアBの電灯L2が故障しているものとする。なお、複数のエリアが存在する場合であっても、故障検出システム1による故障検出手順は図3に示すものと同様であるため、重複説明は省略する。
As shown in FIG. 6, it is assumed that the lamp L2 in the area B is out of order at the time of abnormality. Even when there are a plurality of areas, the failure detection procedure by the failure detection system 1 is the same as that shown in FIG.
図4、6に示すように、ここでは、エリアA~Cの3つのエリアが存在するものとする。エリアA~Cに配置される電灯を、それぞれ電灯L1~L3とする。図5、7に示すように、エリアAの電灯L1には1つの電流パルスが供給され、エリアBの電灯L2には2つの電流パルスが供給され、エリアCの電灯L3には3つの電流パルスが供給されるものとする。なお、電流パルスの数は、電灯L1~L3でそれぞれ異なればよく、予め任意に設定することが可能である。
4 and 6, it is assumed here that there are three areas A to C. The lamps arranged in the areas A to C are referred to as lamps L1 to L3, respectively. As shown in FIGS. 5 and 7, one current pulse is supplied to the lamp L1 in the area A, two current pulses are supplied to the lamp L2 in the area B, and three current pulses are supplied to the lamp L3 in the area C. Shall be supplied. The number of current pulses may be different for each of the lamps L1 to L3, and can be arbitrarily set in advance.
図5、7に示すように、電力測定器11で電流パルスが1つ計測されると、エリアAが特定される。同様に、電力測定器11で電流パルスが2つ計測されると、エリアBが特定される。また、電力測定器11で電流パルスが3つ計測されると、エリアCが特定される。電力測定器11は、DB16を参照してエリアを特定する。すなわち、電力測定器11は、電灯L1~L3の個別の特徴量(電流パルス数)を抽出し、DB16に登録された電灯L1~L3毎の特徴量(電流パルス数)と比較することにより、電灯L1~L3を特定することができる。
As shown in FIGS. 5 and 7, when one current pulse is measured by the power meter 11, the area A is specified. Similarly, area B is specified when two current pulses are measured by the power meter 11. Further, when the current measuring device 11 measures three current pulses, the area C is specified. The power measuring device 11 identifies the area with reference to the DB 16. That is, the power measuring instrument 11 extracts individual feature amounts (current pulse numbers) of the lamps L1 to L3, and compares them with the feature amounts (current pulse numbers) for the lamps L1 to L3 registered in the DB 16. The lights L1 to L3 can be specified.
図5に示すように、正常時には、各エリアA~Cの合計電流Ia~Icにそれぞれ電灯電流が存在する。図7に示すように、異常時には、エリアA、Cの合計電流Ia、Icには電灯電流がそれぞれ存在するものの、エリアBの合計電流Ibには電灯電流が存在しない。このように、電力測定器11は、電灯電流に応じて電灯L1~L3個別の稼働検出を行う。これにより、エリアBの電灯L2の故障を検出することができる。
As shown in FIG. 5, there are lamp currents in the total currents Ia to Ic in the areas A to C at normal times. As shown in FIG. 7, when there is an abnormality, there is a lamp current in the total currents Ia and Ic in the areas A and C, but there is no lamp current in the total current Ib in the area B. As described above, the power measuring device 11 performs individual operation detection of the lamps L1 to L3 according to the lamp current. Thereby, the failure of the lamp L2 in the area B can be detected.
このように、故障検出システム1では、電流パルスの数により電気機器の故障が発生しているエリアを特定することができるとともに、当該電気機器に流れる電流により故障の発生の有無を自動的に検知することができる。これにより、故障検出機能のない比較的単純な電灯などの電気機器の故障を検出することが可能となる。故障検出システム1によれば、人による電気機器の点検を必要とすることなく、故障を早期に漏れなく発見することが可能となる。
As described above, the failure detection system 1 can identify the area where the failure of the electrical device has occurred based on the number of current pulses, and automatically detect the presence or absence of the failure based on the current flowing through the electrical device. can do. Thereby, it becomes possible to detect a failure of an electric device such as a relatively simple lamp without a failure detection function. According to the failure detection system 1, it is possible to find a failure without omission at an early stage without requiring a person to check the electrical device.
実施の形態2
次に、図8~11を参照して、実施の形態2に係る故障検出システム1Aについて説明する。図8~11に示す例は、1つのエリアが存在する場合に、実施の形態2にかかる故障検出システム1Aを用いて故障の判定を行う例である。 Embodiment 2
Next, afailure detection system 1A according to the second embodiment will be described with reference to FIGS. The examples illustrated in FIGS. 8 to 11 are examples in which a failure is determined using the failure detection system 1A according to the second embodiment when one area exists.
次に、図8~11を参照して、実施の形態2に係る故障検出システム1Aについて説明する。図8~11に示す例は、1つのエリアが存在する場合に、実施の形態2にかかる故障検出システム1Aを用いて故障の判定を行う例である。 Embodiment 2
Next, a
図8は、実施の形態2にかかる故障検出システムの一部の正常時の状態を示す図である。図9は、図8に示す状態において、実施の形態2に係る故障検出システムで測定される電流の波形を示す図である。図10は、実施の形態2にかかる故障検出システムの一部の異常時の状態を示す図である。図11は、図10に示す状態において、実施の形態2に係る故障検出システムで測定される電流の波形を示す図である。なお、スイッチ21が接続される分電盤10等の構成は、図1に示すものと同一とすることができる。
FIG. 8 is a diagram illustrating a normal state of a part of the failure detection system according to the second embodiment. FIG. 9 is a diagram showing a waveform of current measured by the failure detection system according to Embodiment 2 in the state shown in FIG. FIG. 10 is a diagram illustrating a state of a part of the failure detection system according to the second embodiment when there is an abnormality. FIG. 11 is a diagram showing a waveform of a current measured by the failure detection system according to the second embodiment in the state shown in FIG. The configuration of the distribution board 10 to which the switch 21 is connected can be the same as that shown in FIG.
実施の形態2では、一つのスイッチ21に複数の電灯Lが接続されている。図8に示す例では、スイッチ21には、電灯L1~L3の3つの電灯が接続されている。スイッチ21と電灯L3との間には、制御回路20が接続されている。パルス数設定部22により、制御回路20から電灯L1~L3に供給する電流パルスの数が設定される。実施の形態2では、電灯L1~L3に一つの電流パルス数が設定されることとなる。すなわち、電灯L1~L3の電流パルス数(特徴量)は同一となる。
In Embodiment 2, a plurality of lamps L are connected to one switch 21. In the example shown in FIG. 8, the switch 21 is connected to three lamps L1 to L3. A control circuit 20 is connected between the switch 21 and the lamp L3. The number of current pulses supplied from the control circuit 20 to the lamps L1 to L3 is set by the pulse number setting unit 22. In the second embodiment, one current pulse number is set for the lamps L1 to L3. That is, the number of current pulses (feature amount) of the lamps L1 to L3 is the same.
図8のように電灯L1~L3のいずれもが正常に点灯している場合、図9に示すように、当該エリアの合計電流Ia+b+cは、電流パルスと電灯L1~L3それぞれの電灯電流(電灯1電流、電灯2電流、電灯3電流)が含まれる。各電灯L1~L3に流れる電流が1Aずつである場合、合計電流に含まれる電灯電流は3Aとなる。
When all of the lamps L1 to L3 are normally lit as shown in FIG. 8, as shown in FIG. 9, the total current Ia + b + c of the area is the current pulse and the lamp currents of the lamps L1 to L3 (lamp 1). Current, lamp 2 current, lamp 3 current). When the current flowing through each of the lamps L1 to L3 is 1A, the lamp current included in the total current is 3A.
異常時には、図10に示すように、電灯L1、L2は正常に点灯し、電灯L3のみが球切れにより点灯していないものとする。このような異常時には、図11に示すように、合計電流Ia+b+cは、電流パルスと電灯L1及びL2の電灯電流(電灯1電流、電灯2電流)のみが含まれる。したがって、合計電流Ia+b+cに含まれる電灯電流は2Aとなる。このように、実施の形態2では、電力測定器11は、合計電流に含まれる電灯電流の大きさに基づいて、稼働する電灯の数を特定することができる。
In the case of an abnormality, as shown in FIG. 10, it is assumed that the lights L1 and L2 are normally lit and only the lamp L3 is not lit due to a broken ball. In such an abnormality, as shown in FIG. 11, the total current Ia + b + c includes only the current pulse and the lamp currents of the lamps L1 and L2 (lamp 1 current, lamp 2 current). Therefore, the lamp current included in the total current Ia + b + c is 2A. Thus, in Embodiment 2, the power meter 11 can identify the number of operating lamps based on the magnitude of the lamp current included in the total current.
なお、故障検出システム1Aによる故障検出手順は図3に示すものと略同様であるが、ステップS7では合計電流Ia+b+cに含まれる電灯電流が正常時と比較して不足しているか否かが判定される。電灯電流が正常時よりも不足している場合、ステップS8では球切れ(故障)している電灯の数が検出される。
Note that the failure detection procedure by the failure detection system 1A is substantially the same as that shown in FIG. 3, but in step S7, it is determined whether or not the lamp current included in the total current Ia + b + c is insufficient compared to the normal time. The If the lamp current is less than normal, the number of lamps that are out of bulb (failed) is detected in step S8.
次に、複数のエリアが存在する例について、図12~図15を参照して説明する。図12は、複数のエリアが存在する場合の正常時の状態を示す図である。図13は、図12に示す状態において、実施の形態2にかかる故障検出システムで測定される電流の波形を示す図である。図14は、複数のエリアが存在する場合の異常時の状態を示す図である。図15は、図14に示す状態において、実施の形態2にかかる故障検出システムで測定される電流の波形を示す図である。
Next, an example in which a plurality of areas exist will be described with reference to FIGS. FIG. 12 is a diagram illustrating a normal state when there are a plurality of areas. FIG. 13 is a diagram illustrating a waveform of a current measured by the failure detection system according to the second embodiment in the state illustrated in FIG. FIG. 14 is a diagram illustrating a state at the time of abnormality when a plurality of areas exist. FIG. 15 is a diagram illustrating a waveform of a current measured by the failure detection system according to the second embodiment in the state illustrated in FIG.
図12、14に示すように、ここでは、エリアA、Bの2つのエリアが存在するものとする。エリアAに配置される電灯を電灯L1~L3とし、エリアBに配置される電灯を電灯L4~L6とする。図13、15に示すように、エリアAの電灯L1~L3には1つの電流パルスが供給され、エリアBの電灯L4~L6には2つの電流パルスが供給されるものとする。なお、電流パルスの数は、電灯L1~L3と、電灯L4~L6とでそれぞれ異なればよく、予め任意に設定することが可能である。
As shown in FIGS. 12 and 14, it is assumed here that there are two areas A and B. The lamps arranged in area A are referred to as lamps L1 to L3, and the lamps arranged in area B are lamps L4 to L6. As shown in FIGS. 13 and 15, it is assumed that one current pulse is supplied to the lamps L1 to L3 in the area A, and two current pulses are supplied to the lamps L4 to L6 in the area B. The number of current pulses may be different for each of the lamps L1 to L3 and the lamps L4 to L6, and can be arbitrarily set in advance.
図13、15に示すように、電力測定器11で電流パルスが1つ計測されると、エリアAが特定される。同様に、電力測定器11で電流パルスが2つ計測されると、エリアBが特定される。図13に示すように、正常時には、エリアAの合計電流Ia+b+cに電灯L1~L3の電灯電流が含まれる、また、エリアBの合計電流Ic+d+eに電灯L4~L6の電灯電流が含まれる。合計電流Ia+b+c、合計電流Ic+d+eに含まれる電灯電流は、3Aずつとなる。
As shown in FIGS. 13 and 15, when one current pulse is measured by the power meter 11, the area A is specified. Similarly, area B is specified when two current pulses are measured by the power meter 11. As shown in FIG. 13, in the normal state, the total current Ia + b + c in area A includes the lamp currents of lamps L1 to L3, and the total current Ic + d + e in area B includes the lamp currents of lamps L4 to L6. The lamp current included in the total current Ia + b + c and the total current Ic + d + e is 3A.
異常時には、図14に示すように、エリアBの電灯L4のみが故障しているものとする。図15に示すように、異常時には、エリアAの合計電流Ia+b+cには、電灯L1~L3の電灯電流が含まれる。しかし、エリアBの合計電流Ic+d+eには、電灯L5、L6の電灯電流のみが含まれ、電灯L4への電灯電流は含まれない。すなわち、エリアAでは3つの電灯分の電灯電流が含まれるのに対して、エリアBでは2つの電灯分の電灯電流しか含まれない。各電灯L1~L6に流れる電流が1Aずつの場合、合計電流Ia+b+cは3Aであるのに対し、合計電流Ic+d+eは2Aとなる。電力測定器11は、電灯電流の大きさに応じて、稼働している電灯の数を検出することができる。
In the event of an abnormality, it is assumed that only the lamp L4 in area B has failed as shown in FIG. As shown in FIG. 15, in the event of an abnormality, the total current Ia + b + c in area A includes the lamp currents of lamps L1 to L3. However, the total current Ic + d + e in area B includes only the lamp currents of the lamps L5 and L6, and does not include the lamp current to the lamp L4. That is, in area A, the lamp current for three lamps is included, while in area B, only the lamp current for two lamps is included. When the current flowing through each of the lamps L1 to L6 is 1A, the total current Ia + b + c is 3A, while the total current Ic + d + e is 2A. The power measuring instrument 11 can detect the number of operating lamps according to the magnitude of the lamp current.
このように、故障検出システム1Aでは、電流パルスの数により電灯の故障が発生しているエリアを絞り込むことができる。そして、人が目視等により、絞り込んだエリアのみを点検することで、故障の発見を早めることができる。また、絞り込んだエリアにおいて稼働する電灯の数を特定することができるため、人が点検する際に発見すべき故障の数を把握することができる。これにより、点検漏れを抑制することが可能となる。また、点検すべき電気機器の数を減らすことができ、管理コストの低減を図ることが可能となる。
Thus, in the failure detection system 1A, it is possible to narrow down the area where the failure of the lamp is generated by the number of current pulses. Then, it is possible to expedite the discovery of a failure by inspecting only the narrowed area by visual inspection or the like. Further, since the number of electric lamps operating in the narrowed area can be specified, it is possible to grasp the number of failures to be found when a person inspects. Thereby, it becomes possible to suppress an inspection omission. In addition, the number of electrical devices to be inspected can be reduced, and the management cost can be reduced.
以上説明したように、本発明によれば、故障の発生を早期に検出することが可能な故障検出システムを提供することが可能である。
As described above, according to the present invention, it is possible to provide a failure detection system that can detect the occurrence of a failure at an early stage.
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。図1に示す例では、CT12は分電盤10内の電圧線上に配置されているが、CT12の配地位置は、電気機器への給電を行う電路上であれば特に限定されるものではない。また、図1では、分電盤10にCT12を設けた例を示しているが、分電盤以外の電気機器に電流センサを設けることも可能である。
Note that the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention. In the example shown in FIG. 1, the CT 12 is arranged on the voltage line in the distribution board 10, but the location of the CT 12 is not particularly limited as long as it is on the electric circuit that supplies power to the electrical equipment. . Moreover, although the example which provided CT12 in the distribution board 10 is shown in FIG. 1, it is also possible to provide a current sensor in electric equipment other than the distribution board.
また、上述の実施の形態では、電気機器に流れる電流に基づいて、エリアの特定、電気機器の故障の判定を行ったが、これに限定されるものではない。例えば、電力測定器11において電流波形と電圧波形から演算した電力波形を用いることも可能である。
In the above-described embodiment, the area is specified and the failure of the electric device is determined based on the current flowing through the electric device. However, the present invention is not limited to this. For example, it is possible to use a power waveform calculated from a current waveform and a voltage waveform in the power measuring instrument 11.
以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
The present invention has been described above with reference to the embodiment, but the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
この出願は、2015年3月18日に出願された日本出願特願2015-054534を基礎とする優先権を主張し、その開示の全てをここに取り込む。
This application claims priority based on Japanese Patent Application No. 2015-054534 filed on March 18, 2015, the entire disclosure of which is incorporated herein.
1 故障検出システム
1A 故障検出システム
10 分電盤
11 電力測定器
12 CT
13 ブレーカー
14 表示器
15 通信ネットワーク
16 DB
20 制御回路
21 スイッチ
22 パルス数設定部
L、L1~L6 電灯 1Failure detection system 1A Failure detection system 10 Distribution board 11 Power meter 12 CT
13Breaker 14 Display 15 Communication Network 16 DB
20Control circuit 21 Switch 22 Pulse number setting section L, L1 to L6 Light
1A 故障検出システム
10 分電盤
11 電力測定器
12 CT
13 ブレーカー
14 表示器
15 通信ネットワーク
16 DB
20 制御回路
21 スイッチ
22 パルス数設定部
L、L1~L6 電灯 1
13
20
Claims (7)
- 分電盤に接続された機器への電源の供給を制御する電源供給手段と、
電源投入時に、前記機器に対して予め設定された数の電流パルスを入力した後に、当該機器への電源の供給を開始するように、前記電源供給手段を制御する制御手段と、
前記分電盤に設置され、前記機器へ電源が投入された際に、電流パルス数の計測と前記機器の負荷電流の測定を行い、測定結果に基づいて前記機器の故障を検出する電力測定手段と、
を備える、
故障検出システム。 Power supply means for controlling the supply of power to the equipment connected to the distribution board;
Control means for controlling the power supply means so as to start supplying power to the device after inputting a preset number of current pulses to the device at the time of power-on;
A power measuring unit that is installed in the distribution board and measures the number of current pulses and the load current of the device when the device is powered on, and detects a failure of the device based on the measurement result When,
Comprising
Fault detection system. - 前記分電盤には、複数の前記機器が接続されており、
複数の前記機器に対してそれぞれ前記電源供給手段が設けられ、
前記電流パルスの数は、前記機器毎に個別に設定されている、
請求項1に記載の故障検出システム。 A plurality of the devices are connected to the distribution board,
The power supply means is provided for each of the plurality of devices,
The number of current pulses is set individually for each device,
The failure detection system according to claim 1. - 複数の前記機器と前記機器毎に個別に設定された前記電流パルスの数とを対応づけて保存するデータベースをさらに備え、
前記電力測定手段は、計測した前記電流パルス数と、前記データベースに保存された前記電流パルスの数とを比較することによって、故障した前記機器を特定する、
請求項2に記載の故障検出システム。 A database that stores a plurality of the devices and the number of the current pulses set individually for each device in association with each other;
The power measuring means identifies the failed device by comparing the measured number of current pulses with the number of current pulses stored in the database.
The failure detection system according to claim 2. - 一つの前記電源供給手段に複数の前記機器が接続されており、
前記電力測定手段によって測定された前記負荷電流に基づいて、稼働する前記機器の数を特定する、
請求項1に記載の故障検出システム。 A plurality of the devices are connected to one power supply means,
Based on the load current measured by the power measuring means, the number of the devices to be operated is specified.
The failure detection system according to claim 1. - 電源投入時に、分電盤に接続された機器に対して予め設定された数の電流パルスを入力した後に、当該機器への電源の供給を開始するように、電源の供給を制御する電源供給手段を制御し、
前記機器へ電源が投入された際に、電流パルス数の計測と前記機器の負荷電流の測定を行い、測定結果に基づいて前記機器の故障を検出する、
故障検出方法。 Power supply means for controlling the supply of power to start supplying power to the device after inputting a preset number of current pulses to the device connected to the distribution board when the power is turned on Control
When the device is powered on, measure the number of current pulses and measure the load current of the device, and detect a failure of the device based on the measurement result,
Fault detection method. - 前記分電盤には、複数の前記機器が接続されており、
複数の前記機器に対してそれぞれ前記電源供給手段が設けられ、
前記電流パルスの数は、前記機器毎に個別に設定され、
計測した前記電流パルス数と、前記機器ごとに個別に設定された前記電流パルスの数とを比較することによって、故障した前記機器を特定する、
請求項5に記載の故障検出方法。 A plurality of the devices are connected to the distribution board,
The power supply means is provided for each of the plurality of devices,
The number of current pulses is set individually for each device,
Identify the failed device by comparing the measured number of current pulses with the number of current pulses set individually for each device.
The failure detection method according to claim 5. - 一つの前記電源供給手段に複数の前記機器が接続されており、
測定された前記負荷電流に基づいて、稼働する前記機器の数を特定する、
請求項5に記載の故障検出方法。 A plurality of the devices are connected to one power supply means,
Identifying the number of devices in operation based on the measured load current;
The failure detection method according to claim 5.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015054534A JP6641707B2 (en) | 2015-03-18 | 2015-03-18 | Failure detection system |
JP2015-054534 | 2015-03-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016147526A1 true WO2016147526A1 (en) | 2016-09-22 |
Family
ID=56920388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/000305 WO2016147526A1 (en) | 2015-03-18 | 2016-01-21 | Fault detection system and fault detection method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6641707B2 (en) |
WO (1) | WO2016147526A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09153396A (en) * | 1995-11-30 | 1997-06-10 | Nissin Electric Co Ltd | Illuminating lamp monitoring system |
JP2008306840A (en) * | 2007-06-07 | 2008-12-18 | Konica Minolta Holdings Inc | Power management system and method of controlling power management system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011142771A (en) * | 2010-01-08 | 2011-07-21 | Yokogawa Electric Corp | Power packet system |
JP5389060B2 (en) * | 2011-01-12 | 2014-01-15 | 中国電力株式会社 | Distribution system operation method, distribution system operation apparatus, distribution system operation system, and program |
JP2014072561A (en) * | 2012-09-27 | 2014-04-21 | Nitto Denko Corp | Home electric appliance remote monitoring system |
JP5370566B1 (en) * | 2012-10-17 | 2013-12-18 | 三菱電機株式会社 | Connection state diagnosis device and connection state diagnosis method |
-
2015
- 2015-03-18 JP JP2015054534A patent/JP6641707B2/en active Active
-
2016
- 2016-01-21 WO PCT/JP2016/000305 patent/WO2016147526A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09153396A (en) * | 1995-11-30 | 1997-06-10 | Nissin Electric Co Ltd | Illuminating lamp monitoring system |
JP2008306840A (en) * | 2007-06-07 | 2008-12-18 | Konica Minolta Holdings Inc | Power management system and method of controlling power management system |
Also Published As
Publication number | Publication date |
---|---|
JP6641707B2 (en) | 2020-02-05 |
JP2016174511A (en) | 2016-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101717775B1 (en) | System for Analysising and Predicting Electric Fire using Intelligent Pre-signal Analysis | |
US9640998B2 (en) | AC power over Ethernet | |
KR20120032925A (en) | Electric apparatus, electric apparatus system and method for detecting arc fault thereof | |
US10755549B2 (en) | High voltage safety system and method for electrical cabinetry | |
US8063763B2 (en) | System for testing NAC operability using reduced operating voltage | |
JP6092129B2 (en) | Temperature measuring system and temperature measuring instrument | |
US10145903B2 (en) | Methods and systems for monitoring devices in a power distribution system | |
JP2004222374A (en) | Monitoring system for electric equipment | |
WO2015025828A1 (en) | Device for detecting indoor wiring connection defect, and connection defect determination method using same | |
US20140361620A1 (en) | Overload detection device | |
US20150192613A1 (en) | Electrical connector | |
KR101552174B1 (en) | Apparatus for monitoring multi power isolation having signal detection mode, and method for monitoring multi power isolation using the same | |
KR101030107B1 (en) | Illumination equipment puts out leakage electric current diagnosis and integration energy detection system | |
WO2016147526A1 (en) | Fault detection system and fault detection method | |
WO2015023531A1 (en) | Absence of voltage indicator with communication network based secondary power source | |
US20180097349A1 (en) | Junction box and network for distributing energy | |
JP2007312445A (en) | Management system for insulation monitoring device | |
JP6611668B2 (en) | Instrument current transformer secondary side wiring connection confirmation device | |
KR101263414B1 (en) | A condition lamp sensing system using neautral-earth diagnosis and sensing method using the same | |
JP7187379B2 (en) | INSULATION MONITORING DEVICE, ACCURACY TESTING DEVICE FOR INSULATION MONITORING DEVICE, ACCURACY TESTING METHOD AND PROGRAM FOR INSULATION MONITORING DEVICE | |
KR200484477Y1 (en) | Branch circuit measuring apparatus | |
JP7172384B2 (en) | dimmer | |
KR101474848B1 (en) | Lifetime estimating and management device of surge protector | |
JP2002243787A (en) | Insulation monitoring device | |
KR20080026831A (en) | Interlock system of semiconductor processing equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16764360 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16764360 Country of ref document: EP Kind code of ref document: A1 |