WO2016147415A1 - Control device for chromatograph - Google Patents

Control device for chromatograph Download PDF

Info

Publication number
WO2016147415A1
WO2016147415A1 PCT/JP2015/058377 JP2015058377W WO2016147415A1 WO 2016147415 A1 WO2016147415 A1 WO 2016147415A1 JP 2015058377 W JP2015058377 W JP 2015058377W WO 2016147415 A1 WO2016147415 A1 WO 2016147415A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
chromatograph
unit
mode
time
Prior art date
Application number
PCT/JP2015/058377
Other languages
French (fr)
Japanese (ja)
Inventor
恭章 中村
禎宏 早川
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2017506003A priority Critical patent/JP6361816B2/en
Priority to PCT/JP2015/058377 priority patent/WO2016147415A1/en
Publication of WO2016147415A1 publication Critical patent/WO2016147415A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors

Definitions

  • the present invention relates to a chromatograph, and more particularly to a chromatographic control device for controlling the operation thereof.
  • the liquid chromatograph 10 is separated by a separation column 11, a liquid feed pump 13 for feeding the mobile phase 12 to the separation column 11, an injector 14 for injecting a sample into the mobile phase, and the separation column 11. And a detector 15 for detecting components in the sample.
  • a separation column 11 for feeding the mobile phase 12 to the separation column 11
  • an injector 14 for injecting a sample into the mobile phase
  • the separation column 11 for detecting components in the sample.
  • a detector 15 for detecting components in the sample.
  • the detector 15 includes a sample cell 24 that contains a sample eluted from the separation column 11, a light source 21 that generates light of a predetermined wavelength for irradiating the sample cell 24, a spectroscopic element 22, a spectroscopic element
  • the divided optical system 23 that divides the emitted light into the irradiation light to the sample cell 24 and the reference light that does not pass through the sample cell 24, the intensity of the measurement light that has passed through the sample cell 24, and the reference light that does not pass through the sample cell 24 are measured It consists of a light receiving unit 25 and the like, and by measuring the absorbance (absorbance spectrum) for each wavelength of the sample, the component in the sample is specified, or by measuring the absorbance of light of the wavelength corresponding to the target component in the sample The concentration of the target component is detected.
  • impurity measurement can also be performed by measuring the ultraviolet region simultaneously with the absorption wavelength of the target component. Even if the separation of the components in the separation column 11 is sweet, if there is a difference in the absorption wavelength between the components, the separated peak data can be obtained for each wavelength, and the separated analysis can be performed. Therefore, a method of simultaneously measuring a plurality of wavelengths (hereinafter referred to as “multi-wavelength measurement”, and a method using only one wavelength as described above is referred to as “single-wavelength measurement”) is also performed. .
  • a sample cell is irradiated with multi-wavelength light
  • a multi-wavelength detector (photodiode array) 26 in which a plurality of photo-detecting elements such as photodiodes are arranged is used to measure a plurality of wavelengths.
  • a plurality of light sources (LEDs in FIG. 3B) 21a and 21b are prepared and switched, and as shown in FIG. 3C, there is only one light source 21.
  • the measurement wavelength is often set to the ultraviolet region for analysis.
  • some components may be altered (destroyed) by ultraviolet rays. If the target component is significantly destroyed by ultraviolet rays, it is necessary to avoid using strong ultraviolet rays, and measure in the wavelength region other than the ultraviolet region such as the visible region and the infrared region, or use a neutral density filter to reduce the ultraviolet intensity. Must be lowered.
  • Patent Document 1 a time program function that switches the measurement wavelength by designating time is provided, and measurement is performed at a wavelength at which the target component does not change within the peak time range of the target component of the chromatogram.
  • this time range there existed detectors that have a function of switching the measurement wavelength, for example, by measuring at a wavelength in the ultraviolet region.
  • the current time program function only has a command to “specify the measurement wavelength”. For example, “only the target component peak avoids ultraviolet and the other component peaks are measured simultaneously in the sample absorption wavelength and ultraviolet region”. Setting was complicated when trying to set.
  • An object of the present invention is to solve these problems and to provide a chromatographic control device capable of measuring impurities and performing simultaneous analysis with simple settings and without altering target components.
  • the chromatograph control device which has been made to solve the above problems, a) a single wavelength measurement unit for operating the chromatograph in the single wavelength measurement mode; b) a multi-wavelength measurement unit for operating the chromatograph in the multi-wavelength measurement mode; c) A mode switching unit that switches between a single wavelength measurement mode and a multi-wavelength measurement mode according to the time range of the chromatogram.
  • the single wavelength measuring unit irradiates the measurement object with light of only one wavelength, and measures the light transmitted therethrough.
  • the multi-wavelength measurement unit irradiates the measurement target with light having a plurality of wavelengths simultaneously (or substantially simultaneously), and measures the light transmitted through the measurement target.
  • the mode switching unit switches the operation of the single wavelength measurement unit (single wavelength measurement mode) and the operation of the multi wavelength measurement unit (multiwavelength measurement mode) according to the time range of the chromatogram. For example, in the time zone within the peak range of the target component of the chromatogram, the single wavelength measurement mode is used to measure at one wavelength so that the target component does not change, and the target component and other components are detected in other time zones. Measure in the multi-wavelength measurement mode.
  • the single wavelength measurement mode and the multi-wavelength measurement mode can be properly used in one chromatographic measurement (chromatogram), so that the target component can be simply not altered.
  • FIG. 1 is an overall configuration diagram of a liquid chromatograph that can be implemented by the present invention.
  • the schematic block diagram of the control apparatus for liquid chromatographs which is one Example of this invention.
  • the front view of the operation panel containing the input part and display part of the control apparatus for liquid chromatographs of an Example The figure which shows the example of 1 display of the display part at the time of creating the time program in the control apparatus for liquid chromatographs of an Example. The figure which shows another example of a display of the display part at the time of creating the time program in the control apparatus for liquid chromatographs of an Example.
  • control device An example of measurement by a liquid chromatograph using the chromatograph control device (hereinafter referred to as “control device”) according to the present invention will be described.
  • the overall configuration of the liquid chromatograph 10 of the present embodiment is as shown in FIG. 1 and includes a sorting function (sorting unit 16).
  • the detector 15 is of the type shown in FIG. 3C, and the spectroscopic element 22 is provided with a rotation drive device 27 that changes its angle in order to change the spectroscopic wavelength.
  • the light source either a D2 (deuterium) lamp or a W (tungsten) lamp can be selected and used.
  • the chromatographic system 100 for controlling the liquid chromatograph 10 is configured to perform a series of operations of separating each component contained in the sample by controlling each part of the liquid chromatograph 10 and further separating the target component.
  • the system controller 30 and the workstation 40 are included.
  • Each of the control units 33, 34, 35, 36 and the system controller 30 includes a computer and a dedicated control program.
  • the workstation 40 is a general-purpose computer in which various dedicated and general-purpose programs are installed, and can control almost all operations of the liquid chromatograph 10 through the system controller 30. Therefore, in this embodiment, the entire chromatographic system 100 corresponds to the chromatographic control device of the present invention.
  • a TM program creation unit 37 related to the present invention that assists the user in creating a time program
  • a TM program execution unit 38 for operating each part of the liquid chromatograph 10 according to the created time program is included.
  • the storage unit 32 includes a temporary storage area used when the central processing unit 31 performs processing, and a non-volatile storage area that retains stored contents even when the power is turned off.
  • the non-volatile storage area includes the dedicated control described above. In addition to the program, parameters for operating various parts of the liquid chromatograph are stored. This nonvolatile storage area also stores programs and parameters for operating the liquid chromatograph 10 in the 1 wavelength mode (single wavelength operation mode) and programs and parameters for operating in the 2 wavelength mode (multiwavelength operation mode). Has been.
  • irradiation of the wavelength must be avoided in the peak time zone (time zone for fractionation) of the target component of the chromatogram. Therefore, in the chromatographic system 100 of the present embodiment, by preparing a time program in advance, detection by one wavelength (one wavelength mode) and detection by two wavelengths (two wavelength mode) in an arbitrary time zone of the chromatogram. Can be used properly.
  • a time program editing screen as shown in FIG. 5 is displayed on the screen.
  • the user obtains the peak time zone (holding time zone) of one or more target components from the chromatogram obtained for the same sample in advance, and based on that data, the time zone of the 1 wavelength mode and the 2 wavelength mode Enter the time zone in the time program.
  • a two-wavelength measurement mode in which the time is measured at two wavelengths of 250 nm and 500 nm between 0.00 [min] and 8.20 [min], and the measurement is performed at only 500 nm between 8.20 [min] and 9.80 [min].
  • the one-wavelength measurement mode 9.80 [min] and after, is set to the two-wavelength measurement mode that measures again at two wavelengths of 250 nm and 500 nm.
  • the two wavelengths here may be different from the two wavelengths used in the time period from time 0.00 [min] to 8.20 [min].
  • the sample is injected again from the injector 14 and the target component is separated.
  • the TM program execution unit 38 of the workstation 40 reads the time program from the storage unit 32 and performs an operation in accordance with the processing instruction of each row ( Instruct each control unit). That is, between the time 0.00 [min] and 8.20 [min], the spectral element 22 of the detector 15 is reciprocated in a short time to measure at two wavelengths (500 nm and 250 nm) described in the numerical value column. During the period from 8.20 [min] to 9.80 [min], the spectroscopic element 22 is held at a predetermined angle to perform measurement at one wavelength (500 nm) described in the numerical value column. After 9.80 [min], measure again at the specified two wavelengths.
  • the operation of the TM program execution unit 38 of the workstation 40 is executed by switching between the 1-wavelength mode and the 2-wavelength mode, and after confirming that the target component is not denatured and separated from the impurities, Are sorted by the sorting unit 16.
  • the detector 15 has been described with respect to the spectral element rotation type as shown in FIG. 3C.
  • the present invention can be implemented even if the detector is a light source switching type as shown in FIG. 3B. be able to.
  • the target peak was measured at one wavelength and was measured at two wavelengths in a time range other than the target peak, but the target peak was measured at two wavelengths and measured at three wavelengths in the time range other than the target peak. Also good. That is, the number of wavelengths scheduled by the time program is not limited to one or two wavelengths.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The objective of the present invention is to provide a chromatograph system 100 with which it is easy for a target component and an impurity component contained in a sample to be measured simultaneously. The chromatograph system 100 according to the present invention is provided with: a single-wavelength measuring unit which causes a chromatograph to operate in a single-wavelength measuring mode (one-wavelength mode); a multiple-wavelength measuring unit which causes the chromatograph to operate in a multiple-wavelength measuring mode (two-wavelength mode); and a mode switching unit which switches between the single-wavelength measuring mode and the multiple-wavelength measuring mode in accordance with a chromatogram time range. Further, the chromatograph system is also provided with: a time program creating unit 37 for creating a time program which causes the chromatograph to operate in one of these modes in accordance with a chromatogram time span; and a time program executing unit 38 which causes the chromatograph to operate in accordance with the time program. The program for causing the chromatograph to operate in these modes is stored in a storage unit 32.

Description

クロマトグラフ用制御装置Chromatographic control device
 本発明はクロマトグラフに関し、特にその動作を制御するクロマトグラフ用制御装置に関する。 The present invention relates to a chromatograph, and more particularly to a chromatographic control device for controlling the operation thereof.
 液体クロマトグラフ10は、図1に示すように、分離カラム11、移動相12を分離カラム11に送液する送液ポンプ13、試料を移動相中に注入するインジェクタ14、分離カラム11で分離された試料中の成分を検出する検出器15等から成る。なお、成分を検出した後、各成分を分離して取り出すこと(分取)も可能である。 As shown in FIG. 1, the liquid chromatograph 10 is separated by a separation column 11, a liquid feed pump 13 for feeding the mobile phase 12 to the separation column 11, an injector 14 for injecting a sample into the mobile phase, and the separation column 11. And a detector 15 for detecting components in the sample. In addition, after detecting a component, it is also possible to isolate | separate and take out each component (sorting).
 検出器15は、図2に示すように、分離カラム11から溶出した試料を収容するサンプルセル24、サンプルセル24に照射するための所定の波長の光を生成する光源21と分光素子22、分光された光をサンプルセル24への照射光とサンプルセル24を通過しない参照光に分割する分割光学系23、サンプルセル24を通過した測定光及びサンプルセル24を通過しない参照光の強度を測定する受光部25等から成り、試料の波長毎の吸光度(吸光度スペクトル)を測定することにより試料中の成分を特定し、或いは、試料中の目的成分に応じた波長の光の吸光度を測定することにより該目的成分の濃度を検出する。 As shown in FIG. 2, the detector 15 includes a sample cell 24 that contains a sample eluted from the separation column 11, a light source 21 that generates light of a predetermined wavelength for irradiating the sample cell 24, a spectroscopic element 22, a spectroscopic element The divided optical system 23 that divides the emitted light into the irradiation light to the sample cell 24 and the reference light that does not pass through the sample cell 24, the intensity of the measurement light that has passed through the sample cell 24, and the reference light that does not pass through the sample cell 24 are measured It consists of a light receiving unit 25 and the like, and by measuring the absorbance (absorbance spectrum) for each wavelength of the sample, the component in the sample is specified, or by measuring the absorbance of light of the wavelength corresponding to the target component in the sample The concentration of the target component is detected.
 多くの物質は特に紫外領域に吸光特性を持つ。よって、目的成分の吸光波長と同時に紫外域の測定を行うと、不純物測定も行うことが出来る。また、分離カラム11での成分の分離が甘くても、成分間の吸光波長に差があれば、波長毎には分離したピークデータを得ることができ、分離した解析を行うことができる。そのため、複数波長を同時に測定するという方法(以下、これを「多波長測定」と呼ぶ。また、これに対して前記の1波長のみを用いる方法を「単波長測定」と呼ぶ。)も行われる。 Many substances have light-absorbing properties especially in the ultraviolet region. Therefore, impurity measurement can also be performed by measuring the ultraviolet region simultaneously with the absorption wavelength of the target component. Even if the separation of the components in the separation column 11 is sweet, if there is a difference in the absorption wavelength between the components, the separated peak data can be obtained for each wavelength, and the separated analysis can be performed. Therefore, a method of simultaneously measuring a plurality of wavelengths (hereinafter referred to as “multi-wavelength measurement”, and a method using only one wavelength as described above is referred to as “single-wavelength measurement”) is also performed. .
 多波長測定には、図3Aに示すように、サンプルセルに多波長の光を照射し、フォトダイオード等の光検出素子を複数並べた多波長検出器(フォトダイオードアレイ)26で複数波長を一挙に測定する方法と、複数の波長を短時間で切り替えることにより実質的に複数波長を同時に測定するようにした方法がある。後者のタイプでは更に、図3Bに示すように、光源(図3BではLED)21a、21bを複数用意して、それらを切り替える方法と、図3Cに示すように、光源21は1つであるものの、分光素子22を回動することにより波長を切り替える方法がある。分光素子22を動かす方法(図3C)は素早い波長の切り替えが難しいため、高速サンプリングが出来ない。よってクロマトピーク幅の狭いような高速分析には適していない。しかしながら低中速の分析の場合は、装置構成が簡単であるため、簡易的に前記メリットを持つ多波長検出を行うことができる。 For multi-wavelength measurement, as shown in FIG. 3A, a sample cell is irradiated with multi-wavelength light, and a multi-wavelength detector (photodiode array) 26 in which a plurality of photo-detecting elements such as photodiodes are arranged is used to measure a plurality of wavelengths. And a method of measuring a plurality of wavelengths substantially simultaneously by switching a plurality of wavelengths in a short time. In the latter type, as shown in FIG. 3B, a plurality of light sources (LEDs in FIG. 3B) 21a and 21b are prepared and switched, and as shown in FIG. 3C, there is only one light source 21. There is a method of switching the wavelength by rotating the spectroscopic element 22. Since the method of moving the spectroscopic element 22 (FIG. 3C) is difficult to switch the wavelength quickly, high-speed sampling cannot be performed. Therefore, it is not suitable for high-speed analysis with a narrow chromatographic peak width. However, in the case of low / medium-speed analysis, since the apparatus configuration is simple, multi-wavelength detection having the above-described merit can be easily performed.
特開平04-038446号公報JP 04-038446
 多くの物質は紫外領域に吸収波長を持つ。従って、前記不純物測定や、複数成分を含んだサンプルを一斉に分析する一斉分析の場合は測定波長を紫外領域に設定して分析することが多い。しかし、一部の成分には、紫外線により変質して(破壊されて)しまうものがある。目的成分が紫外線による破壊が著しい場合には、強い紫外線を用いることは避けなければならず、可視域や赤外域等の紫外域以外の波長領域で測定するか、減光フィルタを用いて紫外線強度を下げなければならない。 Many substances have an absorption wavelength in the ultraviolet region. Therefore, in the case of the impurity measurement or simultaneous analysis in which a sample containing a plurality of components is analyzed all at once, the measurement wavelength is often set to the ultraviolet region for analysis. However, some components may be altered (destroyed) by ultraviolet rays. If the target component is significantly destroyed by ultraviolet rays, it is necessary to avoid using strong ultraviolet rays, and measure in the wavelength region other than the ultraviolet region such as the visible region and the infrared region, or use a neutral density filter to reduce the ultraviolet intensity. Must be lowered.
 そこで、従来、時間を指定して測定波長を切り替えるタイムプログラム機能(特許文献1)を備え、クロマトグラムの目的成分のピークの時間範囲内ではその目的成分が変質しない波長で測定を行い、それ以外の時間範囲では紫外域の波長で測定をする等、測定波長を切り替える機能を持つ検出器が存在した。 Therefore, conventionally, a time program function (Patent Document 1) that switches the measurement wavelength by designating time is provided, and measurement is performed at a wavelength at which the target component does not change within the peak time range of the target component of the chromatogram. In this time range, there existed detectors that have a function of switching the measurement wavelength, for example, by measuring at a wavelength in the ultraviolet region.
 しかし、現状のタイムプログラム機能は「測定波長を指定する」というコマンドしか存在せず、例えば「目的成分ピークのみ紫外を避け、その他の成分のピークはサンプル吸光波長と紫外域で同時測定する」という設定を行おうとすると設定が煩雑であった。 However, the current time program function only has a command to “specify the measurement wavelength”. For example, “only the target component peak avoids ultraviolet and the other component peaks are measured simultaneously in the sample absorption wavelength and ultraviolet region”. Setting was complicated when trying to set.
 本発明は、これらの問題を解決し、簡易な設定で、目的成分を変質させることなく、不純物測定や一斉分析が可能なクロマトグラフ用制御装置を提供することを目的とする。 An object of the present invention is to solve these problems and to provide a chromatographic control device capable of measuring impurities and performing simultaneous analysis with simple settings and without altering target components.
 上記課題を解決するために成された本発明に係るクロマトグラフ用制御装置は、
 a) 単波長測定モードでクロマトグラフを動作させる単波長測定部と、
 b) 多波長測定モードでクロマトグラフを動作させる多波長測定部と、
 c) クロマトグラムの時間範囲に応じて単波長測定モードと多波長測定モードを切り替えるモード切替部と
 を備えることを特徴とする。
The chromatograph control device according to the present invention, which has been made to solve the above problems,
a) a single wavelength measurement unit for operating the chromatograph in the single wavelength measurement mode;
b) a multi-wavelength measurement unit for operating the chromatograph in the multi-wavelength measurement mode;
c) A mode switching unit that switches between a single wavelength measurement mode and a multi-wavelength measurement mode according to the time range of the chromatogram.
 本発明に係るクロマトグラフ用制御装置において、単波長測定部は、前記のように、測定対象に1波長のみの光を照射し、それを透過した光を測定する。多波長測定部は、測定対象に複数の波長の光を同時に(又は、実質的に同時に)照射し、測定対象を透過した光を測定する。 In the chromatograph control device according to the present invention, as described above, the single wavelength measuring unit irradiates the measurement object with light of only one wavelength, and measures the light transmitted therethrough. The multi-wavelength measurement unit irradiates the measurement target with light having a plurality of wavelengths simultaneously (or substantially simultaneously), and measures the light transmitted through the measurement target.
 モード切替部は、これら単波長測定部の動作(単波長測定モード)と多波長測定部の動作(多波長測定モード)を、クロマトグラムの時間範囲に応じて切り替える。例えば、クロマトグラムの目的成分のピーク範囲内の時間帯では目的成分が変質しないような1つの波長で測定を行う単波長測定モードとし、それ以外の時間帯では目的成分とそれ以外の成分を検出する多波長測定モードで測定するようにする。 The mode switching unit switches the operation of the single wavelength measurement unit (single wavelength measurement mode) and the operation of the multi wavelength measurement unit (multiwavelength measurement mode) according to the time range of the chromatogram. For example, in the time zone within the peak range of the target component of the chromatogram, the single wavelength measurement mode is used to measure at one wavelength so that the target component does not change, and the target component and other components are detected in other time zones. Measure in the multi-wavelength measurement mode.
 目的成分のピークの時間帯は、予め同じ試料で測定することにより調べておく。 * The time zone of the peak of the target component is examined in advance by measuring with the same sample.
 本発明に係るクロマトグラフ用制御装置では、1つのクロマトグラフ測定(クロマトグラム)の中で単波長測定モードと多波長測定モードを適切に使い分けることができるため、簡便に目的成分を変質させることなく、また、他成分ピークも同時検出することができるクロマトグラフの制御が可能となる。 In the chromatograph control device according to the present invention, the single wavelength measurement mode and the multi-wavelength measurement mode can be properly used in one chromatographic measurement (chromatogram), so that the target component can be simply not altered. In addition, it is possible to control a chromatograph capable of simultaneously detecting other component peaks.
本発明が実施し得る液体クロマトグラフの全体構成図。1 is an overall configuration diagram of a liquid chromatograph that can be implemented by the present invention. 液体クロマトグラフの1波長検出器の一例の概略構成図。The schematic block diagram of an example of the 1 wavelength detector of a liquid chromatograph. 液体クロマトグラフの多波長検出器の一例(フォトダイオードアレイ型)の概略構成図。The schematic block diagram of an example (photodiode array type) of the multiwavelength detector of a liquid chromatograph. 液体クロマトグラフの多波長検出器の他の例(光源切替型)の概略構成図。The schematic block diagram of the other example (light source switching type) of the multi-wavelength detector of a liquid chromatograph. 液体クロマトグラフの多波長検出器の更に他の例(分光素子回動型)の概略構成図。The schematic block diagram of further another example (spectral element rotation type) of the multi-wavelength detector of a liquid chromatograph. 本発明の一実施例である液体クロマトグラフ用制御装置の概略構成図。The schematic block diagram of the control apparatus for liquid chromatographs which is one Example of this invention. 実施例の液体クロマトグラフ用制御装置に接続されるワークステーションの画面に表示されるタイムプログラム作成画面の一例を示す図。The figure which shows an example of the time program creation screen displayed on the screen of the workstation connected to the control apparatus for liquid chromatographs of an Example. 実施例の液体クロマトグラフ用制御装置の入力部及び表示部を含む操作パネルの正面図。The front view of the operation panel containing the input part and display part of the control apparatus for liquid chromatographs of an Example. 実施例の液体クロマトグラフ用制御装置においてタイムプログラムを作成する際の表示部の一表示例を示す図。The figure which shows the example of 1 display of the display part at the time of creating the time program in the control apparatus for liquid chromatographs of an Example. 実施例の液体クロマトグラフ用制御装置においてタイムプログラムを作成する際の表示部の別の表示例を示す図。The figure which shows another example of a display of the display part at the time of creating the time program in the control apparatus for liquid chromatographs of an Example.
 本発明に係るクロマトグラフ用制御装置(以下、「制御装置」という。)を用いた液体クロマトグラフによる測定の一例を説明する。本実施例の液体クロマトグラフ10の全体構成は図1に示すとおりであり、分取機能(分取部16)を備えている。検出器15は図3Cに示すタイプのもので、分光素子22には分光波長を変化させるためにその角度を変える回転駆動装置27が設けられている。光源としては、D2(重水素)ランプ及びW(タングステン)ランプのいずれも選択して使用することができる。 An example of measurement by a liquid chromatograph using the chromatograph control device (hereinafter referred to as “control device”) according to the present invention will be described. The overall configuration of the liquid chromatograph 10 of the present embodiment is as shown in FIG. 1 and includes a sorting function (sorting unit 16). The detector 15 is of the type shown in FIG. 3C, and the spectroscopic element 22 is provided with a rotation drive device 27 that changes its angle in order to change the spectroscopic wavelength. As the light source, either a D2 (deuterium) lamp or a W (tungsten) lamp can be selected and used.
 この液体クロマトグラフ10を制御するクロマトグラフシステム100は、液体クロマトグラフ10の各部を制御することにより試料に含まれる各成分を分離し、更には目的成分を分取するという一連の動作をさせるためのシステムであり、ポンプ13やインジェクタ14、検出器15、分取部16をそれぞれ制御する各制御部33、34、35、36の他、システムコントローラ30及びワークステーション40を含む。各制御部33、34、35、36及びシステムコントローラ30はコンピュータと専用の制御プログラムにより構成されている。ワークステーション40は汎用のコンピュータに各種専用及び汎用プログラムがインストールされたものであり、システムコントローラ30を通じて液体クロマトグラフ10のほぼ全ての動作を制御することができる。従って、本実施例ではクロマトグラフシステム100全体が本発明のクロマトグラフ用制御装置に該当する。 The chromatographic system 100 for controlling the liquid chromatograph 10 is configured to perform a series of operations of separating each component contained in the sample by controlling each part of the liquid chromatograph 10 and further separating the target component. In addition to the control units 33, 34, 35, and 36 that control the pump 13, the injector 14, the detector 15, and the sorting unit 16, the system controller 30 and the workstation 40 are included. Each of the control units 33, 34, 35, 36 and the system controller 30 includes a computer and a dedicated control program. The workstation 40 is a general-purpose computer in which various dedicated and general-purpose programs are installed, and can control almost all operations of the liquid chromatograph 10 through the system controller 30. Therefore, in this embodiment, the entire chromatographic system 100 corresponds to the chromatographic control device of the present invention.
 本実施例のワークステーション40には、一般のコンピュータに含まれる中央処理部31及び記憶部32の他、本発明に関連する、ユーザーがタイムプログラムを作成することを支援するTMプログラム作成部37と、作成されたタイムプログラムに従って液体クロマトグラフ10の各部を動作させるTMプログラム実行部38が含まれる。これらについては後に詳しく述べる。 In the workstation 40 of this embodiment, in addition to the central processing unit 31 and the storage unit 32 included in a general computer, a TM program creation unit 37 related to the present invention that assists the user in creating a time program, A TM program execution unit 38 for operating each part of the liquid chromatograph 10 according to the created time program is included. These will be described in detail later.
 記憶部32は、中央処理部31が処理を行う際に使用する一時記憶領域の他、電源が切断されても記憶内容を保持する不揮発記憶領域が含まれ、不揮発記憶領域には、上記専用制御プログラムの他、液体クロマトグラフ各部を様々に動作させるためのパラメータ等が記憶される。この不揮発記憶領域に、本液体クロマトグラフ10を1波長モード(単波長動作モード)で動作させるためのプログラム及びパラメータと、2波長モード(多波長動作モード)で動作させるためのプログラム及びパラメータも記憶されている。 The storage unit 32 includes a temporary storage area used when the central processing unit 31 performs processing, and a non-volatile storage area that retains stored contents even when the power is turned off. The non-volatile storage area includes the dedicated control described above. In addition to the program, parameters for operating various parts of the liquid chromatograph are stored. This nonvolatile storage area also stores programs and parameters for operating the liquid chromatograph 10 in the 1 wavelength mode (single wavelength operation mode) and programs and parameters for operating in the 2 wavelength mode (multiwavelength operation mode). Has been.
 本実施例のクロマトグラフシステム100により試料中の成分を分離し、特定の一又は複数の目的成分を採取する場合の動作を説明する。この試料に目的成分以外の成分(不純物など)が含まれている場合、検出器15において1波長のみで吸光度測定を行ってもそれらの成分がどれくらいあるか、また、目的ピークから十分に分離できたかを確認できない可能性がある。この場合に分取しても純度は保障されない。そこで、2波長で吸光度測定を行うことにより、より確実な目的成分のみの分離抽出が可能となる。しかし、紫外線はエネルギーの高い放射線であるため、この目的成分が紫外線により変質する可能性がある。この場合、クロマトグラムの目的成分のピークの時間帯(分取する時間帯)においては、その波長の照射を避けなければならない。そこで、本実施例のクロマトグラフシステム100では、予めタイムプログラムを作成しておくことにより、クロマトグラムの任意の時間帯で1波長による検出(1波長モード)と2波長による検出(2波長モード)を使い分けることができるようになっている。 The operation when the components in the sample are separated by the chromatographic system 100 of the present embodiment and one or more specific target components are collected will be described. If this sample contains components other than the target component (impurities, etc.), even if the absorbance measurement is performed with only one wavelength in the detector 15, how much of these components are present and can be sufficiently separated from the target peak. There is a possibility that it cannot be confirmed. Even in this case, the purity is not guaranteed. Therefore, by performing absorbance measurement at two wavelengths, it is possible to more reliably separate and extract only the target component. However, since ultraviolet rays are high energy radiation, this target component may be altered by ultraviolet rays. In this case, irradiation of the wavelength must be avoided in the peak time zone (time zone for fractionation) of the target component of the chromatogram. Therefore, in the chromatographic system 100 of the present embodiment, by preparing a time program in advance, detection by one wavelength (one wavelength mode) and detection by two wavelengths (two wavelength mode) in an arbitrary time zone of the chromatogram. Can be used properly.
 タイムプログラムをワークステーション40で作成する場合は、画面上に図5に示すようなタイムプログラム編集画面を表示する。ユーザーは、予め同じ試料について得られたクロマトグラムにより1又は複数の目的成分のピークの時間帯(保持時間帯)を求めておき、そのデータを基に、1波長モードの時間帯と2波長モードの時間帯をタイムプログラムに記入する。図5の例では、時間0.00[min]から8.20[min]の間を250nmと500nmの2波長で測定する2波長測定モード、8.20[min]から9.80[min]の間を500nmだけで測定する1波長測定モード、9.80[min]以降を再び250nmと500nmの2波長で測定する2波長測定モードと設定している。なお、ここでの2波長は、時刻0.00[min]から8.20[min]の時間帯で用いた2波長と異なっていてもよい。 When creating a time program on the workstation 40, a time program editing screen as shown in FIG. 5 is displayed on the screen. The user obtains the peak time zone (holding time zone) of one or more target components from the chromatogram obtained for the same sample in advance, and based on that data, the time zone of the 1 wavelength mode and the 2 wavelength mode Enter the time zone in the time program. In the example of FIG. 5, a two-wavelength measurement mode in which the time is measured at two wavelengths of 250 nm and 500 nm between 0.00 [min] and 8.20 [min], and the measurement is performed at only 500 nm between 8.20 [min] and 9.80 [min]. The one-wavelength measurement mode, 9.80 [min] and after, is set to the two-wavelength measurement mode that measures again at two wavelengths of 250 nm and 500 nm. The two wavelengths here may be different from the two wavelengths used in the time period from time 0.00 [min] to 8.20 [min].
 次に、再度試料をインジェクタ14から注入し、目的成分の分取を行う。このとき、ユーザーが、先般作成したタイムプログラムを実行することを指定すると、ワークステーション40のTMプログラム実行部38はそのタイムプログラムを記憶部32から読み出し、各行の処理命令に従った動作を行う(各制御部に指示する)。すなわち、時刻0.00[min]から8.20[min]の間は、検出器15の分光素子22を短時間で往復回動させることにより、数値欄に記載された2つの波長(500nmと250nm)で測定を行い、8.20[min]から9.80[min]の間は分光素子22を所定角度に保持することにより数値欄に記載された1波長(500nm)で測定を行う。9.80[min]以降は再び指定された2波長で測定を行う。 Next, the sample is injected again from the injector 14 and the target component is separated. At this time, if the user designates execution of the previously created time program, the TM program execution unit 38 of the workstation 40 reads the time program from the storage unit 32 and performs an operation in accordance with the processing instruction of each row ( Instruct each control unit). That is, between the time 0.00 [min] and 8.20 [min], the spectral element 22 of the detector 15 is reciprocated in a short time to measure at two wavelengths (500 nm and 250 nm) described in the numerical value column. During the period from 8.20 [min] to 9.80 [min], the spectroscopic element 22 is held at a predetermined angle to perform measurement at one wavelength (500 nm) described in the numerical value column. After 9.80 [min], measure again at the specified two wavelengths.
 こうして、ワークステーション40のTMプログラム実行部38の動作により、1波長モードと2波長モードが切り替えて実行され、目的成分が変性することなく、不純物とも分離されたことを確認したうえで、目的成分が分取部16において分取される。 Thus, the operation of the TM program execution unit 38 of the workstation 40 is executed by switching between the 1-wavelength mode and the 2-wavelength mode, and after confirming that the target component is not denatured and separated from the impurities, Are sorted by the sorting unit 16.
 上記実施例は、検出器15が図3Cに示す分光素子回動型のものについて説明したが、検出器が図3Bに示すような光源切替型のものであっても本発明は変わりなく実施することができる。 In the above embodiment, the detector 15 has been described with respect to the spectral element rotation type as shown in FIG. 3C. However, the present invention can be implemented even if the detector is a light source switching type as shown in FIG. 3B. be able to.
 上記実施例ではタイムプログラムをワークステーション40で編集する場合について説明したが、システムコントローラ30もしくは検出器制御部35の入力部41を操作することにより、表示部42に表示されるタイムプログラムの各行の入力欄にデータを入力してもよい(図7A及び図7B)。 Although the case where the time program is edited by the workstation 40 has been described in the above embodiment, each line of the time program displayed on the display unit 42 by operating the input unit 41 of the system controller 30 or the detector control unit 35 is described. Data may be entered in the input field (FIGS. 7A and 7B).
 上記実施例では、目的ピークでは1波長で測定し目的ピーク以外の時間範囲では2波長する例であったが、目的ピークを2波長で測定し目的ピーク以外の時間範囲では3波長で測定してもよい。つまりタイムプログラムによりスケジューリングされる波長の数は1波長ないしは2波長に限定されない。 In the above example, the target peak was measured at one wavelength and was measured at two wavelengths in a time range other than the target peak, but the target peak was measured at two wavelengths and measured at three wavelengths in the time range other than the target peak. Also good. That is, the number of wavelengths scheduled by the time program is not limited to one or two wavelengths.
10…液体クロマトグラフ
11…分離カラム
12…移動相
13…送液ポンプ
14…インジェクタ
15…検出器
16…分取部
21…光源
22…分光素子
23…分割光学系
24…サンプルセル
25…受光部
27…分光素子回転駆動装置
30…システムコントローラ
31…中央処理部
32…記憶部
37…タイム(TM)プログラム作成部
38…タイム(TM)プログラム実行部
40…クロマトグラフ制御用ワークステーション
41…入力部
42…表示部
100…クロマトグラフシステム
DESCRIPTION OF SYMBOLS 10 ... Liquid chromatograph 11 ... Separation column 12 ... Mobile phase 13 ... Liquid feed pump 14 ... Injector 15 ... Detector 16 ... Sorting part 21 ... Light source 22 ... Spectral element 23 ... Splitting optical system 24 ... Sample cell 25 ... Light receiving part 27 ... Spectral element rotation drive device 30 ... System controller 31 ... Central processing unit 32 ... Storage unit 37 ... Time (TM) program creation unit 38 ... Time (TM) program execution unit 40 ... Chromatograph control workstation 41 ... Input unit 42 ... Display unit 100 ... Chromatograph system

Claims (4)

  1.  a) 単波長測定モードでクロマトグラフを動作させる単波長測定部と、
     b) 多波長測定モードでクロマトグラフを動作させる多波長測定部と、
     c) クロマトグラムの時間範囲に応じて単波長測定モードと多波長測定モードを切り替えるモード切替部と
     を備えるクロマトグラフ用制御装置。
    a) a single wavelength measurement unit for operating the chromatograph in the single wavelength measurement mode;
    b) a multi-wavelength measurement unit for operating the chromatograph in the multi-wavelength measurement mode;
    c) A chromatographic control device comprising: a mode switching unit that switches between a single wavelength measurement mode and a multiwavelength measurement mode according to the time range of the chromatogram.
  2.  更に、ユーザーにクロマトグラムの時間範囲に応じた単波長測定モードと多波長測定モードの切り替えのスケジュールであるタイムプログラムを作成させるタイムプログラム作成部を備えることを特徴とする請求項1に記載のクロマトグラフ用制御装置。 The chromatogram according to claim 1, further comprising a time program creation unit that allows a user to create a time program that is a schedule for switching between a single wavelength measurement mode and a multiwavelength measurement mode according to a time range of the chromatogram. Graph control device.
  3.  クロマトグラフを制御するためのコンピュータを
     a) 単波長測定モードでクロマトグラフを動作させる単波長測定部と、
     b) 多波長測定モードでクロマトグラフを動作させる多波長測定部と、
     c) クロマトグラムの時間範囲に応じて単波長測定モードと多波長測定モードを切り替えるモード切替部と
     して機能させることを特徴とするクロマトグラフ制御用プログラム。
    A) a computer for controlling the chromatograph; a) a single wavelength measurement unit for operating the chromatograph in the single wavelength measurement mode;
    b) a multi-wavelength measurement unit for operating the chromatograph in the multi-wavelength measurement mode;
    c) A chromatograph control program that functions as a mode switching unit that switches between a single wavelength measurement mode and a multiwavelength measurement mode according to the time range of the chromatogram.
  4.  更に、ユーザーにクロマトグラムの時間範囲に応じた単波長測定モードと多波長測定モードの切り替えのスケジュールであるタイムプログラムを作成させるタイムプログラム作成部としても機能することを特徴とする請求項3に記載のクロマトグラフ制御用プログラム。 Furthermore, it functions also as a time program creation part which makes a user create the time program which is the schedule of switching of the single wavelength measurement mode and multiwavelength measurement mode according to the time range of a chromatogram. Program for chromatographic control.
PCT/JP2015/058377 2015-03-19 2015-03-19 Control device for chromatograph WO2016147415A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017506003A JP6361816B2 (en) 2015-03-19 2015-03-19 Chromatographic control device
PCT/JP2015/058377 WO2016147415A1 (en) 2015-03-19 2015-03-19 Control device for chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/058377 WO2016147415A1 (en) 2015-03-19 2015-03-19 Control device for chromatograph

Publications (1)

Publication Number Publication Date
WO2016147415A1 true WO2016147415A1 (en) 2016-09-22

Family

ID=56918587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058377 WO2016147415A1 (en) 2015-03-19 2015-03-19 Control device for chromatograph

Country Status (2)

Country Link
JP (1) JP6361816B2 (en)
WO (1) WO2016147415A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128165A (en) * 1984-11-26 1986-06-16 Shimadzu Corp Liquid chromatograph apparatus
JPS633257A (en) * 1986-06-24 1988-01-08 Japan Spectroscopic Co System controller for multiwavelength uv detector control
US5043928A (en) * 1989-06-19 1991-08-27 Linear Instruments Resampling system using data interpolation to eliminate time effects
JPH04204374A (en) * 1990-11-30 1992-07-24 Shimadzu Corp Spectrum measuring device for liquid chromatograph or the like
JPH0798270A (en) * 1993-09-29 1995-04-11 Shimadzu Corp Flow-through-type ultraviolet visible spectrophotometer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554254B2 (en) * 1973-12-28 1980-01-29
JPS50139791A (en) * 1974-04-26 1975-11-08
JP2771915B2 (en) * 1991-09-11 1998-07-02 花王株式会社 Simultaneous automatic analysis system for various compounds with absorption in the ultraviolet and visible regions
EP0798559B1 (en) * 1996-03-27 2003-09-17 Agilent Technologies, Inc. (a Delaware corporation) Method of detecting sample substances and fluorescence spectrometer using the method
US8268625B2 (en) * 2006-03-24 2012-09-18 Arkray, Inc. Method of measuring glycated hemoglobin concentration and concentration measuring apparatus
JP5915540B2 (en) * 2011-06-01 2016-05-11 株式会社ツムラ Peak attribution method, attribution program, and attribution device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128165A (en) * 1984-11-26 1986-06-16 Shimadzu Corp Liquid chromatograph apparatus
JPS633257A (en) * 1986-06-24 1988-01-08 Japan Spectroscopic Co System controller for multiwavelength uv detector control
US5043928A (en) * 1989-06-19 1991-08-27 Linear Instruments Resampling system using data interpolation to eliminate time effects
JPH04204374A (en) * 1990-11-30 1992-07-24 Shimadzu Corp Spectrum measuring device for liquid chromatograph or the like
JPH0798270A (en) * 1993-09-29 1995-04-11 Shimadzu Corp Flow-through-type ultraviolet visible spectrophotometer

Also Published As

Publication number Publication date
JPWO2016147415A1 (en) 2017-10-19
JP6361816B2 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6041041B2 (en) Preparative chromatograph
JP5804070B2 (en) Chromatogram data processing apparatus and processing method
JP6620894B2 (en) Data analyzer for chromatographic mass spectrometry
JP2009180706A (en) Spectrofluorometric detection apparatus for liquid chromatograph
US20050121392A1 (en) Chromatographic system with mobile phase recycling ability
JP6394803B2 (en) Preparative chromatograph
CN102818792A (en) Spectrometric measurement device and program
US10585041B2 (en) Sample analysis system, display method, and sample analysis method
JP2016206051A (en) Optical analyzer
JP5181650B2 (en) Analysis system
WO2011092766A1 (en) Spectrophotofluorometer and fluorescence detector for liquid chromatograph
Dolan How Does It Work? Part V: Fluorescence Detectors
JP6361816B2 (en) Chromatographic control device
JP6167920B2 (en) Spectrophotometer
Es’haghi Photodiode array detection in clinical applications; quantitative analyte assay advantages, limitations and disadvantages
WO2019202776A1 (en) Absorbance detector and liquid chromatograph
Catrain et al. 2D-LC–MS for the analysis of monoclonal antibodies and antibody–drug conjugates in a regulated environment
WO2013046418A1 (en) Spectrophotofluorometer
JP2008256652A (en) Chromatograph analysis method
JP5445348B2 (en) Fluorescence spectrophotometer
Guo et al. Key Steps in the Workflow to Analyze Raman Spectra
JP6784038B2 (en) Detector for liquid chromatograph
JP6614056B2 (en) Spectrophotometer
WO2021116493A1 (en) Time-resolved method of protein analysis
Adrianova et al. Rapid Rinse and Shoot: A Screening Workflow for Pesticides in Fruit by GC–MS in Under Six Minutes Using Library Searching of Deconvoluted Spectra

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885510

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506003

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885510

Country of ref document: EP

Kind code of ref document: A1